
Approximation, Randomization,
and Combinatorial Optimization.
Algorithms and Techniques

APPROX/RANDOM 2021, August 16–18, 2021,
University of Washington, Seattle, Washington, US (Virtual
Conference)

Edited by

Mary Wootters
Laura Sanità

LIPIcs – Vo l . 207 – APPROX/RANDOM 2021 www.dagstuh l .de/ l ip i c s

Editors

Mary Wootters
Stanford University, Departments of Computer Science and Electrical Engineering, CA, USA
marykw@stanford.edu

Laura Sanità
Eindhoven University of Technology, Department of Mathematics and Computer Science, The Netherlands
l.sanita@tue.nl

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-207-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-207-5.

Publication date
September, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.APPROX/RANDOM.2021.0

ISBN 978-3-95977-207-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-2345-2531
mailto:marykw@stanford.edu
https://orcid.org/0000-0002-6384-1857
mailto:l.sanita@tue.nl
https://www.dagstuhl.de/dagpub/978-3-95977-207-5
https://www.dagstuhl.de/dagpub/978-3-95977-207-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-207-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

APPROX/RANDOM 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Mary Wootters and Laura Sanità . 0:ix

APPROX

On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources
Umang Bhaskar, A. R. Sricharan, and Rohit Vaish . 1:1–1:23

Optimal Algorithms for Online b-Matching with Variable Vertex Capacities
Susanne Albers and Sebastian Schubert . 2:1–2:18

Bag-Of-Tasks Scheduling on Related Machines
Anupam Gupta, Amit Kumar, and Sahil Singla . 3:1–3:16

Hardness of Approximation for Euclidean k-Median
Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal . 4:1–4:23

Online Directed Spanners and Steiner Forests
Elena Grigorescu, Young-San Lin, and Kent Quanrud . 5:1–5:25

Query Complexity of Global Minimum Cut
Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar 6:1–6:15

A Constant-Factor Approximation for Weighted Bond Cover
Eun Jung Kim, Euiwoong Lee, and Dimitrios M. Thilikos . 7:1–7:14

Truly Asymptotic Lower Bounds for Online Vector Bin Packing
János Balogh, Ilan Reuven Cohen, Leah Epstein, and Asaf Levin 8:1–8:18

Fine-Grained Completeness for Optimization in P
Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann 9:1–9:22

An Estimator for Matching Size in Low Arboricity Graphs with Two Applications
Hossein Jowhari . 10:1–10:13

An Optimal Algorithm for Triangle Counting in the Stream
Rajesh Jayaram and John Kallaugher . 11:1–11:11

Matching Drivers to Riders: A Two-Stage Robust Approach
Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein 12:1–12:22

Secretary Matching Meets Probing with Commitment
Allan Borodin, Calum MacRury, and Akash Rakheja . 13:1–13:23

Semi-Streaming Algorithms for Submodular Function Maximization Under
b-Matching Constraint

Chien-Chung Huang and François Sellier . 14:1–14:18

General Knapsack Problems in a Dynamic Setting
Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, and Danny Raz 15:1–15:18

Min-Sum Clustering (With Outliers)
Sandip Banerjee, Rafail Ostrovsky, and Yuval Rabani . 16:1–16:16

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2021).
Editors: Mary Wootters and Laura Sanità

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Streaming Approximation Resistance of Every Ordering CSP
Noah Singer, Madhu Sudan, and Santhoshini Velusamy . 17:1–17:19

Upper and Lower Bounds for Complete Linkage in General Metric Spaces
Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and
Julian Wargalla . 18:1–18:22

On Two-Pass Streaming Algorithms for Maximum Bipartite Matching
Christian Konrad and Kheeran K. Naidu . 19:1–19:18

Approximation Algorithms for Demand Strip Packing
Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi 20:1–20:24

Peak Demand Minimization via Sliced Strip Packing
Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas 21:1–21:24

Tight Approximation Algorithms For Geometric Bin Packing with Skewed Items
Arindam Khan and Eklavya Sharma . 22:1–22:23

Approximating Two-Stage Stochastic Supplier Problems
Brian Brubach, Nathaniel Grammel, David G. Harris, Aravind Srinivasan,
Leonidas Tsepenekas, and Anil Vullikanti . 23:1–23:22

Fast Approximation Algorithms for Bounded Degree and Crossing Spanning
Tree Problems

Chandra Chekuri, Kent Quanrud, and Manuel R. Torres . 24:1–24:21

Hitting Weighted Even Cycles in Planar Graphs
Alexander Göke, Jochen Koenemann, Matthias Mnich, and Hao Sun 25:1–25:23

Revenue Maximization in Transportation Networks
Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit . 26:1–26:16

Connected k-Partition of k-Connected Graphs and c-Claw-Free Graphs
Ralf Borndörfer, Katrin Casel, Davis Issac, Aikaterini Niklanovits,
Stephan Schwartz, and Ziena Zeif . 27:1–27:14

RANDOM

Better Pseudodistributions and Derandomization for Space-Bounded
Computation

William M. Hoza . 28:1–28:23

On the Hardness of Average-Case k-SUM
Zvika Brakerski, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan 29:1–29:19

Improved Hitting Set for Orbit of ROABPs
Vishwas Bhargava and Sumanta Ghosh . 30:1–30:23

A New Notion of Commutativity for the Algorithmic Lovász Local Lemma
David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov . 31:1–31:25

From Coupling to Spectral Independence and Blackbox Comparison with the
Down-Up Walk

Kuikui Liu . 32:1–32:21

Contents 0:vii

Singularity of Random Integer Matrices with Large Entries
Sankeerth Rao Karingula and Shachar Lovett . 33:1–33:16

Interplay Between Graph Isomorphism and Earth Mover’s Distance in the Query
and Communication Worlds

Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen 34:1–34:23

The Product of Gaussian Matrices Is Close to Gaussian
Yi Li and David P. Woodruff . 35:1–35:22

Fast Mixing via Polymers for Random Graphs with Unbounded Degree
Andreas Galanis, Leslie Ann Goldberg, and James Stewart . 36:1–36:13

Deterministic Approximate Counting of Polynomial Threshold Functions via a
Derandomized Regularity Lemma

Rocco A. Servedio and Li-Yang Tan . 37:1–37:18

Improved Product-Based High-Dimensional Expanders
Louis Golowich . 38:1–38:17

Improved Bounds for Coloring Locally Sparse Hypergraphs
Fotis Iliopoulos . 39:1–39:16

Smoothed Analysis of the Condition Number Under Low-Rank Perturbations
Rikhav Shah and Sandeep Silwal . 40:1–40:21

Matroid Intersection: A Pseudo-Deterministic Parallel Reduction from Search to
Weighted-Decision

Sumanta Ghosh and Rohit Gurjar . 41:1–41:16

On the Probabilistic Degree of an n-Variate Boolean Function
Srikanth Srinivasan and S. Venkitesh . 42:1–42:20

The Swendsen-Wang Dynamics on Trees
Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda 43:1–43:15

Distance Estimation Between Unknown Matrices Using Sublinear Projections on
Hamming Cube

Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra . 44:1–44:22

Decision Tree Heuristics Can Fail, Even in the Smoothed Setting
Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan . 45:1–45:16

On the Structure of Learnability Beyond P/Poly
Ninad Rajgopal and Rahul Santhanam . 46:1–46:23

The Critical Mean-Field Chayes-Machta Dynamics
Antonio Blanca, Alistair Sinclair, and Xusheng Zhang . 47:1–47:15

On the Robust Communication Complexity of Bipartite Matching
Sepehr Assadi and Soheil Behnezhad . 48:1–48:17

L1 Regression with Lewis Weights Subsampling
Aditya Parulekar, Advait Parulekar, and Eric Price . 49:1–49:21

Hitting Sets for Orbits of Circuit Classes and Polynomial Families
Chandan Saha and Bhargav Thankey . 50:1–50:26

APPROX/RANDOM 2021

0:viii Contents

Sampling Multiple Edges Efficiently
Talya Eden, Saleet Mossel, and Ronitt Rubinfeld . 51:1–51:15

Lower Bounds for XOR of Forrelations
Uma Girish, Ran Raz, and Wei Zhan . 52:1–52:14

Fourier Growth of Structured F2-Polynomials and Applications
Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and
Emanuele Viola . 53:1–53:20

Candidate Tree Codes via Pascal Determinant Cubes
Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan . 54:1–54:22

Towards a Decomposition-Optimal Algorithm for Counting and Sampling
Arbitrary Motifs in Sublinear Time

Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld . 55:1–55:19

Ideal-Theoretic Explanation of Capacity-Achieving Decoding
Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan 56:1–56:21

Visible Rank and Codes with Locality
Omar Alrabiah and Venkatesan Guruswami . 57:1–57:18

Pseudorandom Generators for Read-Once Monotone Branching Programs
Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan 58:1–58:21

On the Power of Choice for k-Colorability of Random Graphs
Varsha Dani, Diksha Gupta, and Thomas P. Hayes . 59:1–59:17

Memory-Sample Lower Bounds for Learning Parity with Noise
Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz 60:1–60:19

Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs
Reut Levi and Nadav Shoshan . 61:1–61:23

Parallel Repetition for the GHZ Game: A Simpler Proof
Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan 62:1–62:19

Preface

This volume contains the papers presented at the 24th International Conference on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX 2021) and
the 25th International Conference on Randomization and Computation (RANDOM 2021),
which due to COVID-19 were organized as parallel virtual conferences during August 16–18,
2021. APPROX focuses on algorithmic and complexity issues surrounding the development
of efficient approximate solutions to computationally difficult problems, and was the 24th in
the series. RANDOM is concerned with applications of randomness to computational and
combinatorial problems, and was the 25th in the series. Prior to 2003, APPROX took place
in Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), and Rome (2002),
while RANDOM took place in Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva
(2000), Berkeley (2001), and Harvard (2002). Since 2003, APPROX and RANDOM have been
co-located, taking place in Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona
(2006), Princeton (2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011),
Boston (2012), Berkeley (2013), Barcelona (2014), Princeton (2015), Paris (2016), Berkeley
(2017), Princeton (2018), Boston (2019), and online (2020).

Topics of interest for APPROX and RANDOM are: approximation algorithms, hardness
of approximation, small space, sub-linear time and streaming algorithms, online algorithms,
approaches that go beyond worst case analysis, distributed and parallel approximation, em-
beddings and metric space methods, mathematical programming methods, spectral methods,
combinatorial optimization, algorithmic game theory, mechanism design and economics,
computational geometric problems, approximate learning, design and analysis of randomized
algorithms, randomized complexity theory, pseudorandomness and derandomization, random
combinatorial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings, error-correcting
codes, average-case analysis, smoothed analysis, property testing, and computational learning
theory.

The volume contains 27 contributed papers, selected by the APPROX Program Committee
out of 62 submissions; and 35 contributed papers, selected by the RANDOM Program
Committee out of 84 submissions. We would like to thank all of the authors who submitted
papers, the members of the Program Committees, and the external reviewers. We are grateful
for the guidance of the steering committees: Jarosław Byrka, Klaus Jansen, Samir Khuller,
Monaldo Mastrolili, and László Végh for APPROX, and Oded Goldreich, Raghu Meka, Cris
Moore, Anup Rao, Omer Reingold, Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel,
Alistair Sinclair, and Paul Spirakis for RANDOM.

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2021).
Editors: Mary Wootters and Laura Sanità

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

On Approximate Envy-Freeness for Indivisible
Chores and Mixed Resources
Umang Bhaskar #

Tata Institute of Fundamental Research, Mumbai, India

A. R. Sricharan #

Chennai Mathematical Institute, India

Rohit Vaish #

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We study the fair allocation of undesirable indivisible items, or chores. While the case of desirable
indivisible items (or goods) is extensively studied, with many results known for different notions of
fairness, less is known about the fair division of chores. We study envy-free allocation of chores and
make three contributions. First, we show that determining the existence of an envy-free allocation
is NP-complete even in the simple case when agents have binary additive valuations. Second, we
provide a polynomial-time algorithm for computing an allocation that satisfies envy-freeness up to
one chore (EF1), correcting a claim in the existing literature. A modification of our algorithm can be
used to compute an EF1 allocation for doubly monotone instances (where each agent can partition
the set of items into objective goods and objective chores). Our third result applies to a mixed
resources model consisting of indivisible items and a divisible, undesirable heterogeneous resource
(i.e., a bad cake). We show that there always exists an allocation that satisfies envy-freeness for
mixed resources (EFM) in this setting, complementing a recent result of Bei et al. [22] for indivisible
goods and divisible cake.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Exact and approximate computation of equilibria; Mathematics of computing →
Combinatorial algorithms

Keywords and phrases Fair Division, Indivisible Chores, Approximate Envy-Freeness

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.1

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2012.06788 [27]

Funding UB and RV acknowledge support from project no. RTI4001 of the Department of Atomic
Energy, Government of India. RV also acknowledges support from the Prof. R Narasimhan
postdoctoral award.

Acknowledgements We thank the anonymous reviewers for helpful comments.

1 Introduction

The problem of fairly dividing a set of resources among agents is of central importance in
various fields including economics, computer science, and political science. Such problems
arise in many settings such as settling border disputes, assigning credit among contributing
individuals, rent division, and distributing medical supplies such as vaccines [58]. The
theoretical study of fair division has classically focused on divisible resources (such as land
or clean water), most prominently in the cake-cutting literature [28, 61, 60]; here, cake is a
metaphor for a heterogeneous resource that can be fractionally allocated. A well-established
concept of fairness in this setup is envy-freeness [40] which stipulates that no agent envies

© Umang Bhaskar, A. R. Sricharan, and Rohit Vaish;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:umang@tifr.res.in
mailto:arsricharan@cmi.ac.in
mailto:rohit.vaish@tifr.res.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.1
https://arxiv.org/abs/2012.06788
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Approximate EF for Indivisible Chores and Mixed Resources

another, i.e., prefers the share of another agent to its own. An envy-free division of a divisible,
desirable resource (i.e., a cake) is known to exist under general settings [65, 4, 66, 15], and
can be efficiently computed for a wide range of utility functions [37, 52, 18, 21].

By contrast, an envy-free solution can fail to exist when the goods are discrete or
indivisible; important examples include the assignment of course seats at universities [57, 32]
and the allocation of public housing units [24]. This has motivated relaxations such as
envy-freeness up to one good (EF1) where pairwise envy can be eliminated by removing some
good from the envied bundle [53, 31]. The EF1 notion enjoys strong theoretical and practical
motivation: On the theoretical side, there exist efficient algorithms for computing an EF1
allocation under general, monotone valuations [53]. At the same time, EF1 has also found
impressive practical appeal on the popular fair division website Spliddit [45] and in course
allocation applications [31, 32].

Our focus in this work is on fair allocation of undesirable or negatively-valued indivisible
items, also known as chores. The chore division problem, introduced by Martin Gardner [44],
models scenarios such as distribution of household tasks (e.g., cleaning, cooking, etc.) or
the allocation of responsibilities for controlling carbon emissions among countries [67]. For
indivisible chores, too, an envy-free allocation could fail to exist, and one of our contributions
is to show that determining the existence of such outcomes is NP-complete even under highly
restrictive settings (Theorem 2). This negative result prompts us to explore the corresponding
relaxation of envy-freeness up to one chore, also denoted by EF1, which addresses pairwise
envy by removing some chore from the envious agent’s bundle.

At first glance, the chore division problem appears to be the “opposite” of the goods
problem, and hence one might expect natural adaptation of algorithms that compute an EF1
allocation for goods to also work for chores. This, however, turns out to not be the case.

Goods vs chores: Consider the well-known envy-cycle elimination algorithm of Lipton et
al. [53] for computing an EF1 allocation of indivisible goods. Briefly, the algorithm works by
iteratively assigning a good to an agent that is not envied by anyone else. The existence of
such an agent is guaranteed by means of resolving cycles in the underlying envy graph. (The
envy graph of an allocation is a directed graph whose vertices correspond to the agents and
there is an edge (i, j) if agent i envies agent j.) When adapted to the chores problem, the
algorithm (Algorithm 1) assigns a chore to a “non-envious” agent that has no outgoing edge
in the envy graph. Contrary to an existing claim in the literature [10], we observe that this
algorithm could fail to find an EF1 allocation even when agents have additive valuations.1

▶ Example 1 (Envy-cycle elimination algorithm fails EF1 for additive chores). Consider
the following instance with six chores c1, . . . , c6 and three agents a1, a2, a3 with additive
valuations:

c1 c2 c3 c4 c5 c6

a1 -1 -4 -2 -3 0 -1
a2 -2 -1 -2 -2 -3 -1
a3 -1 -3 -1 -1 -3 -10

Suppose the algorithm considers the chores in the increasing order of their indices (i.e.,
c1, c2, . . .), and breaks ties among agents in favor of a1 and then a2. No directed cycles
appear at any intermediate step during the execution of the algorithm on the above instance.

1 A recent work by Bérczi et al. [26] shows that this algorithm fails to find an EF1 allocation when agents
have non-monotone and non-additive valuations. We show a stronger result, in that the failure in finding
an EF1 allocation persists even when agents have additive, monotone nonincreasing valuations.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:3

Algorithm 1 Naïve envy-cycle elimination algorithm.
Input: An instance ⟨N, M,V⟩ with non-increasing valuations
Output: An allocation A

1 Initialize A← (∅, ∅, . . . , ∅)
2 for c ∈M do
3 Choose a sink i in the envy graph GA

4 Update Ai ← Ai ∪ {c}
5 while GA contains a directed cycle C do
6 A← AC

7 return A

a1

{c1, c4}

a2

{c2, c5}

a3

{c3, c6}

(a) Envy graph of A.

a1

{c3, c6}

a2

{c2, c5}

a3

{c1, c4}

(b) Envy graph of X.

a1

{c1, c4}

a2

{c3, c6}

a3

{c2, c5}

(c) Envy graph of Y .

Figure 1 Envy graphs of various allocations in Example 1. A red edge points to the favorite (or
most envied) bundle of an agent, while a black edge points to an envied (but not the most envied)
bundle.

The resulting allocation, say A, is given by A1 = {c1, c4}, A2 = {c2, c5}, and A3 = {c3, c6}
(shown as circled entries in the above table). Notice that A is EF1 and its envy graph is as
shown in Figure 1a.

Each node in the envy graph of A has an outgoing edge (Figure 1a). Therefore, if the
algorithm were to allocate another chore after this, it would have to resolve either the cycle
{a1, a3} or the cycle {a2, a3}. Let X and Y denote the allocations obtained by resolving
the cycles {a1, a3} and {a2, a3}, respectively (the corresponding envy graphs are shown in
Figures 1b and 1c). Although both envy graphs are acyclic (and thus admit a “sink” agent),
only the allocation X satisfies EF1; in particular, the pair {a1, a3} violates EF1 for Y .

The above example highlights an important contrast between indivisible goods and chores:
For goods, resolving arbitrary envy cycles preserves EF1, whereas for chores, the choice of
which envy cycle is resolved matters. This is because when evaluating EF1 for chores, a
chore is removed from the envious agent’s bundle. In the envy-cycle resolution step, if a
cycle is chosen without caution, then it is possible for an agent to acquire a bundle that,
although strictly more preferable, contains no chore that is large enough to compensate for
the envy on its own.

A key insight of our work is that there always exists a specific envy cycle – the top-trading
envy cycle – that can be resolved to compute an EF1 allocation of chores. Our algorithm
computes EF1 allocations for monotone valuations, and thus provides an analogue of the
result of Lipton et al. [53] for the chores setting. Furthermore, a simple modification of our
algorithm computes an EF1 allocation for doubly monotone instances (Theorem 4), where
each agent can partition the items into “objective goods” and “objective chores”, i.e., items
with non-negative and negative marginal utility, respectively, for the agent [10]. This class
has also been referred to as itemwise monotone in the literature [36].

APPROX/RANDOM 2021

1:4 Approximate EF for Indivisible Chores and Mixed Resources

Table 1 EFM existence results for different combinations of indivisible and divisible resources. A
✓indicates that EFM exists in that setting.

Indivisible

Divisible
Cake Bad Cake

Goods ✓ [22]
✓ (Theorem 16)

Chores
✓for identical rankings (Theorem 17)

✓for n + 1 items (Theorem 18)

Motivated by this positive observation, we study a mixed model, consisting of both
divisible as well as indivisible resources. This is a natural model in many settings, e.g.,
dividing an inheritance that consists of both property and money, or the simultaneous division
of chores and rent among housemates. Although the use of payments in fair allocation of
indivisible resources has been explored in several works [54, 3, 6, 66, 50, 55, 46, 47, 9, 30, 33],
the most general formulation of a model with mixed resources, in our knowledge, is due to
Bei et al. [22] who study combined allocation of a divisible heterogeneous resource (i.e., a
cake) and a set of indivisible goods. This model and its variants are the focus of our work.

Generalizing the set of resources calls for revising the fairness benchmark. While exact
envy-freeness still remains out of reach in the mixed model, EF1 can be “too permissive”
when only the divisible resource is present. Bei et al. [22] propose a fairness concept called
envy-freeness for mixed goods (EFM) for indivisible goods and divisible cake, which evaluates
fairness with respect to EF1 if the envied bundle only contains indivisible goods, but switches
to exact envy-freeness if the envied agent is allocated any cake. They show that an EFM
allocation always exists for a mixed instance when agents have additive valuations within as
well as across resource types. We note that neither the algorithm of Bei et al. [22] nor its
analysis crucially depends on the valuations for the indivisible goods being additive; in fact,
their results extend to monotone valuations for the indivisible goods.

We consider the problem of envy-free allocation in mixed instances with doubly monotone
indivisible items and bad cake. We extend the definition of EFM naturally to this model,
and show that in this model as well, an EFM allocation always exists (Theorem 16). Our
work thus extends the results of Bei et al. in two ways – allowing for bad cake as well as
doubly monotone indivisible items.

We also study a mixed model with indivisible chores and good cake. This turns out to
be quite challenging, because unlike previous cases, one cannot start with an arbitrary EF1
allocation of the indivisible items and then allocate cake to obtain an EFM allocation. We
however show the existence of an EFM allocation for two special cases in this model: when
each agent has the same ranking over the chores (Theorem 17), and when the number of
chores is at most one more than the number of agents (Theorem 18).

Our Contributions

1. We first show that determining whether an envy-free allocation of chores exists is strongly
NP-complete, even in the highly restricted setting when agents have binary additive
valuations, i.e., when for all agents i ∈ [n] and items j ∈ [m], vi,j ∈ {−1, 0} (Theorem 2).
The analogous problem for indivisible goods with binary valuations is already known to
be NP-complete [13, 48].

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:5

2. When the fairness goal is relaxed to envy-freeness up to one chore (EF1), we establish
efficient computation for instances with chores (Theorem 3), and instances with doubly
monotone valuations, when each agent i can partition the set of items into goods Gi (which
always have nonnegative marginal value) and chores Ci (which always have nonpositive
marginal value) (Theorem 4).

3. For a mixed instance consisting of doubly monotone indivisible items and bad cake, we
show the existence of an allocation that satisfies the stronger fairness guarantee called
envy-freeness up to a mixed item (EFM) (Theorem 16). Our result uses our previous
theorem for indivisible chores as well as the framework of Bei et al. [22] for the allocation
of the divisible item. This complements the result of Bei et al. [22] by showing existence of
EFM allocations for mixed instances consisting of both desirable and undesirable items.

4. Lastly, for a mixed instance consisting of indivisible chores and (good) cake (see Sec-
tion 6.4), we show the existence of an EFM allocation in two special cases: when each
agent has the same preference ranking over the set of items (Theorem 17), and when the
number of items is at most one more than the number of agents (Theorem 18).

Our results for mixed instances are summarized in Table 1.

2 Related Work

As mentioned, fair division has been classically studied for divisible resources. For a heterogen-
eous, desirable resource (i.e., a cake), the existence of envy-free solutions is known under mild
assumptions [65, 4, 66, 15]. In addition, efficient algorithms are known for computing ε-envy-
free divisions [60] and envy-free divisions under restricted preferences [37, 52, 18, 21]. For an
undesirable heterogeneous resource (a bad cake), too, the existence of an envy-free division
is known [59], along with a discrete and bounded procedure for finding such a division [39].
For the case of non-monotone cake (i.e., a real-valued divisible heterogeneous resource), the
existence of envy-free outcomes has been shown for specific numbers of agents [62, 56, 7, 8].

Turning to the indivisible setting, we note that the sweeping result of Lipton et al. [53]
on EF1 for indivisible goods has inspired considerable work on establishing stronger existence
and computation guarantees in conjunction with other well-studied economic properties [34,
19, 20, 42, 25, 35, 5, 41]. The case of indivisible chores has been similarly well studied for a
variety of solution concepts such as maximin fair share [12, 17, 14, 49], equitability [43, 2],
competitive equilibria with general incomes [63], and envy-freeness [1, 29, 41].

Aziz et al. [10, 11] study a model containing both indivisible goods and chores, wherein
envy-freeness up to an item (EF1) entails that pairwise envy is bounded by the removal of some
good from the envied bundle or some chore from the envious agent’s bundle. They show that
a variant of the classical round-robin algorithm computes an EF1 allocation under additive
utilities, and also claim that a variant of the envy-cycle elimination algorithm [53] returns such
allocations for doubly monotone instances (we revisit the latter claim in Example 1). Other
fairness notions such as approximate proportionality [10, 11, 16], maximin fair share [51],
approximate jealousy-freeness [2], and weaker versions of EF1 [41] have also been studied in
this model.

Finally, we note that the model with mixed resources comprising of both indivisible and
(heterogeneous) divisible parts has been recently formalized by Bei et al. [22], although a
special case of their model where the divisible resource is homogenous and desirable (e.g.,
money) has been extensively studied [54, 3, 6, 66, 50, 55, 46, 47, 9, 30, 33]. Bei et al. [22]
showed that when there are indivisible goods and a divisible cake, an allocation satisfying
envy-freness for mixed goods (EFM) always exists. Subsequent work considers the maximin
fairness notion in the mixed model [23].

APPROX/RANDOM 2021

1:6 Approximate EF for Indivisible Chores and Mixed Resources

3 Preliminaries

We consider two kinds of instances: one with purely indivisible items and the other with a
mixture of divisible and indivisible items. We will present the preliminaries for instances
with purely indivisible items in this section, and defer details for the mixed resources model
to Section 6.

Problem instance

An instance ⟨N, M, V⟩ of the fair division problem is defined by a set N of n ∈ N agents, a
set M of m ∈ N indivisible items, and a valuation profile V = {v1, v2, . . . , vn} that specifies
the preferences of every agent i ∈ N over each subset of the items in M via a valuation
function vi : 2M → R.

Marginal valuations

For any agent i ∈ N and any set of items S ⊆ M , the marginal valuation of the set T ⊆ M \S

is given by vi(T |S) := vi(S ∪ T) − vi(S). When the set T is a singleton (say T = {j}), we
will write vi(j|S) instead of vi({j}|S) for simplicity.

Goods and chores

Given an agent i ∈ N and an item j ∈ M , we say that j is a good for agent i if for every
subset S ⊆ M \ {j}, vi(j|S) ≥ 0. We say that j is a chore for agent i if for every subset
S ⊆ M \ {j}, vi(j|S) ≤ 0, with one of the inequalities strict. Note that for general valuations,
an item may neither be a good nor a chore for an agent.

Doubly monotone instances

An instance is said to be doubly monotone if for each agent, each item is either a good or
a chore. That is, each agent i can partition the items as M = Gi ⊎ Ci, where Gi are her
goods, and Ci are her chores. Note that an item may be a good for one agent and a chore
for another.

Monotone instances

A valuation function v is monotone non-decreasing if for any sets S ⊆ T ⊆ M , we have
v(T) ≥ v(S), and monotone non-increasing if for any sets S ⊆ T ⊆ M , we have v(S) ≥ v(T).
A monotone goods instance is one where all the agents have monotone non-decreasing
valuations, and a monotone chores instance is one where all the agents have monotone
non-increasing valuations. We refer to such an instance as a monotone if it is clear from
context whether we are working with goods or chores.

Additive valuations

A well-studied subclass of monotone valuations is that of additive valuations, wherein an
agent’s value of any subset of items is equal to the sum of the values of individual items in
the set, i.e., for any agent i ∈ N and any set of items S ⊆ M , vi(S) :=

∑
j∈S vi({j}), where

we assume that vi(∅) = 0. For simplicity, we will write vi(j) or vi,j to denote vi({j}).

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:7

Allocation

An allocation A := (A1, . . . , An) is an n-partition of a subset of the set of items M , where
Ai ⊆ M is the bundle allocated to the agent i (note that Ai can be empty). An allocation is
said to be complete if it assigns all items in M , and is called partial otherwise.

Envy graph

The envy graph GA of an allocation A is a directed graph on the vertex set N with a directed
edge from agent i to agent k if vi(Ak) > vi(Ai), i.e., if agent i prefers the bundle Ak over
the bundle Ai.

Top-trading envy graph

The top-trading envy graph TA of an allocation A is a subgraph of its envy graph GA with a
directed edge from agent i to agent k if vi(Ak) = maxj∈N vi(Aj) and vi(Ak) > vi(Ai), i.e., if
agent i envies agent k and Ak is the most preferred bundle for agent i.

Cycle-swapped allocation

Given an allocation A and a directed cycle C in an envy graph or a top-trading envy graph,
the cycle-swapped allocation AC is obtained by reallocating bundles backwards along the
cycle. For each agent i in the cycle, define i+ as the agent that she is pointing to in C. Then,
AC

i = Ai+ if i ∈ C, otherwise AC
i = Ai.

Envy-freeness and its relaxations

An allocation A is said to be
envy-free (EF) if for every pair of agents i, k ∈ N , we have vi(Ai) ≥ vi(Ak), and
envy-free up to one item (EF1) if for every pair of agents i, k ∈ N such that Ai ∪ Ak ≠ ∅,
there exists an item j ∈ Ai ∪ Ak such that vi(Ai \ {j}) ≥ vi(Ak \ {j}).

4 Envy-Freeness for Binary Valued Chores

Our first result shows that determining the existence of an envy-free allocation is NP-complete
even when agents have binary valuations, i.e., when, for all agents i ∈ N and items j ∈ M ,
vi,j ∈ {−1, 0} (Theorem 2). If agent valuations are not binary-valued, but are identical, the
problem is still (weakly) NP-complete via a straightforward reduction from Partition. By
contrast, our result establishes strong NP-completeness.

▶ Theorem 2. Determining whether a given chores instance admits an envy-free allocation
is NP-complete even for binary utilities.

The proof of Theorem 2 can be found in the full version [27] of the paper.

5 EF1 For Doubly Monotone Instances

In light of the intractability result in the previous section, we will now explore whether
one can achieve approximate envy-freeness (specifically, EF1) for indivisible chores. To this
end, we note that the well-known round-robin algorithm (where, in each round, agents take
turns in picking their favorite available chore) computes an EF1 allocation when agents have
additive valuations [11]. In the following, we will provide an algorithm for computing an

APPROX/RANDOM 2021

1:8 Approximate EF for Indivisible Chores and Mixed Resources

Algorithm 2 Top-trading envy-cycle elimination algorithm.
Input: An instance ⟨N, M,V⟩ with non-increasing valuations
Output: An allocation A

1 Initialize A← (∅, ∅, . . . , ∅)
2 for c ∈M do
3 if there is no sink in GA then
4 C ← any cycle in TA ▷ if GA has no sink, then TA must have a cycle (Lemma 6)
5 A← AC

6 Choose a sink k in the graph GA

7 Update Ak ← Ak ∪ {c}
8 return A

EF1 allocation for the much more general class of monotone valuations. Thus, our result
establishes the analogue of the result of Lipton et al. [53] from the goods-only model for
indivisible chores.

5.1 An Algorithm for Monotone Chores
As previously mentioned, the algorithm of Lipton et al. [53] computes an EF1 allocation for
indivisible goods under monotone valuations. Recall that the algorithm works by assigning,
at each step, an unassigned good to an agent who is not envied by anyone else (such an
agent is a “source” agent in the underlying envy graph). The existence of such an agent is
guaranteed by resolving arbitrary envy cycles in the envy graph until it becomes acyclic.
Importantly, resolving an arbitrary envy cycle preserves EF1.

To design an EF1 algorithm for indivisible chores, prior work [10, 11] has proposed the
following natural adaptation of this algorithm (see Algorithm 1): Instead of a “source” agent,
an unassigned chore is now allocated to a “sink” (i.e., non-envious) agent in the envy graph.
The existence of such an agent is once again guaranteed by means of resolving envy cycles.
However, as noted in Example 1, resolving arbitrary envy cycles could destroy the EF1
property.

To address this gap, we propose to resolve a specific envy cycle that we call the top-trading
envy cycle. (The nomenclature is inspired from the celebrated top-trading cycle algorithm [64]
for finding a core-stable allocation that involves cyclic swaps of the most preferred objects.)
Specifically, given a partial allocation A, we consider a subgraph of the envy graph GA that
we call the top-trading envy graph TA whose vertices denote the agents, and an edge (i, k)
denotes that agent i’s (weakly) most preferred bundle is Ak.

It is easy to observe that if the envy graph does not have a sink, then the top-trading
envy graph TA has a cycle (Lemma 6). Thus, resolving top-trading envy cycles (instead of
arbitrary envy cycles) also guarantees the existence of a sink agent in the envy graph. More
importantly, though, resolving a top-trading envy cycle preserves EF1. Indeed, every agent
involved in the top-trading exchange receives its most preferred bundle after the swap, and
therefore does not envy anyone else in the next round. The resulting algorithm is presented
in Algorithm 2.

▶ Theorem 3. For a monotone instance with indivisible chores, Algorithm 2 returns an EF1
allocation.

In Section 5.2, we will discuss a more general result (Theorem 4) that extends the
top-trading envy-cycle elimination algorithm to doubly monotone instances containing both
indivisible goods as well as indivisible chores.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:9

Algorithm 3 An EF1 algorithm for doubly monotone indivisible instances.
Input: An instance ⟨N, M,V, {Gi}, {Ci}⟩ with indivisible items and doubly monotone

valuations, where Gi and Ci are the set of goods and chores for agent i, respectively
Output: An allocation A

1 A← (∅, ∅, . . . , ∅)
// Goods Phase

2 for each item g ∈ ∪iGi do
3 V g = {i ∈ N | g ∈ Gi} ▷ V g contains all agents for whom g is a good
4 Gg

A = the envy graph GA restricted to the vertices V g

5 Choose a source k in the graph Gg
A

6 Update Ak ← Ak ∪ {g}
7 while GA contains a directed cycle C do
8 A← AC

// Chores Phase
9 for each item c ∈ ∩iCi do

10 if there is no sink in GA then
11 C ← any cycle in TA ▷ if GA has no sink, then TA must have a cycle
12 A← AC

13 Choose a sink k in the graph GA

14 Update Ak ← Ak ∪ {c}
15 return A

5.2 An Algorithm for Doubly Monotone Instances
For a doubly monotone instance with indivisible items, we now give an algorithm (Algorithm 3)
that returns an EF1 allocation. The algorithm runs in two phases. The first phase is for
all the items that are a good for at least one agent. For these items, we run the envy-cycle
elimination algorithm of Lipton et al. [53], but restricted to the subgraph of agents who
consider the item a good. In the second phase, we allocate items that are chores to everybody
by running the top-trading envy-cycle elimination algorithm. For a monotone chores-only
instance, we recover Algorithm 2 as a special case of Algorithm 3.

▶ Theorem 4. For a doubly monotone instance with indivisible items, Algorithm 3 returns
an EF1 allocation.

We first provide a brief sketch of the proof: At each step, we maintain the invariant
that the partial allocation maintained by the algorithm is EF1. This is certainly true for
the goods phase, where any envy created from agent i to agent j can always be eliminated
by removing a good g ∈ Aj (however, unlike in the envy-cycle cancellation for goods-only
instances [53], the eliminated item may not be the most recently added one since such an
item could be a chore for an envious agent). In the chores phase, any new envy created by
adding a chore can be removed by dropping the newly added chore. If we resolve top-trading
envy cycles, then none of the agents within the cycle envy any of the agents outside it, since
they now have their most preferred bundle. For any agent i outside the cycle, any envy can
be removed by either removing a chore from i or a good from the envied bundle, since i’s
allocation is unchanged and the bundles remain unbroken.

▶ Lemma 5. After every step of the goods phase, the partial allocation remains EF1. Further,
the goods phase terminates in polynomial time.

APPROX/RANDOM 2021

1:10 Approximate EF for Indivisible Chores and Mixed Resources

The proof of Lemma 5 closely follows the arguments of Lipton et al. [53]; for completeness,
we present a self-contained proof in Appendix A.1. We will now consider the chores phase of
the algorithm, and show that if there is no sink in the envy graph GA, then there is a cycle
in the top-trading envy graph TA.

▶ Lemma 6. Let A be a partial allocation whose envy graph GA does not have a sink. Then,
the top-trading envy graph TA must have a cycle. Furthermore, such a cycle can be found in
polynomial time.

Proof. Since GA has no sinks, every vertex in GA has outdegree at least one. Thus for all
agents i, i ̸∈ arg maxk vi(Ak). So even in the top-trading envy graph TA, each vertex has
outdegree at least one. We start at an arbitrary agent and follow an outgoing edge from each
successive agent. This gives us a cycle in TA. It is easy to see that finding the cycle takes
only polynomial time since we encounter each vertex at most once. ◀

We now show that resolving a cycle in the top-trading envy graph TA gives an allocation
that necessarily has a sink (the existence of such a cycle in TA is given by Lemma 6).

▶ Lemma 7. Let A be a partial allocation whose top-trading envy graph TA contains a cycle.
Let A′ denote the allocation obtained by resolving an arbitrary cycle in TA. Then the envy
graph GA′ of the allocation A′ must have a sink.

Proof. Note that each agent points to its favorite bundle in TA. Thus after resolving a cycle
in TA, all agents who participated in the cycle-swap now have their most preferred bundle in
A′ and do not envy any other agent. These agents are sinks in the graph GA′ . ◀

To show that the partial allocation remains EF1 throughout the chores phase, we use
Lemmas 8 and 9.

▶ Lemma 8. In the chores phase, adding a new chore to the allocation (Line 13-14) preserves
EF1.

Proof. Suppose at time step t, the algorithm assigns a new chore (Line 13-14). Suppose
before time step t, our allocation A was EF1, and the allocation after time step t is A′.
We show that A′ is EF1 as well. A sink exists in the envy graph GA at time step t, either
because there were no top-trading envy cycles when we entered the loop (at Line 9) which
implies the existence of a sink, or because we resolved a top-trading envy cycle C in the
previous time step t − 1 (Lines 10-12), in which case all the agents who were a part of the
resolved top-trading envy cycle do not envy anyone after the cycle swap, and are sinks in the
envy graph GA.

Then after time t, the allocation A′ will be A′
k = Ak ∪ {c}, and A′

j = Aj for all j ̸= k,
where k is a sink in GA. Pick two agents i and j such that i envies j in A′. If i did not envy j

in A, then clearly i = k. In this case, removing c from Ai removes i’s envy. Suppose i envied j

in A as well, and the envy was eliminated by removing o ∈ Ai ∪ Aj . Then i ≠ k since k was a
sink in the graph GA, and so vi(Ai) = vi(A′

i). If o ∈ Ai, then vi(A′
i \ {o}) ≥ vi(Aj) ≥ vi(A′

j).
If o ∈ Aj , then vi(A′

i) ≥ vi(Aj \ {o}) ≥ vi(Aj ∪ {c} \ {o}), since c is a chore for all agents. ◀

▶ Lemma 9. In the chores phase, resolving a top-trading envy cycle (Lines 10-12) preserves
EF1.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:11

Proof. Suppose at time step t, the algorithm resolves a top-trading envy cycle (Line 10-12).
Let A be the allocation before time t, C be the cycle along which the swap happens, and
A′ = AC the allocation obtained by swapping backwards along the cycle. Pick two agents i

and j such that i envies j in A′. Since every agent in the cycle obtains their favorite bundle,
i ̸∈ C. Thus Ai = A′

i. Let j′ be the agent such that A′
j = Aj′ . Since vi(A′

i) = vi(Ai), i

envied j′ before the swap which could be eliminated by removing o ∈ Ai ∪Aj′ . If o ∈ Ai, then
vi(A′

i \ {o}) ≥ vi(A′
j). If o ∈ Aj′ , then vi(A′

i) ≥ vi(A′
j \ {o}). Thus removing o ∈ Ai ∪ Aj′

eliminates the envy in A′. ◀

By Lemma 5, the allocation at the beginning of the chores phase is EF1. At every time
step t of the chores phase, the algorithm either assigns a chore to a sink agent or resolves
a top-trading envy cycle. Thus Lemma 8 and Lemma 9 together show that the allocation
remains EF1 throughout the chores phase. By Lemma 6, finding a cycle in TA takes only
polynomial time. Since the while-loop executes only once for each chore, the chores phase
terminates in polynomial time. This gives us the following lemma:

▶ Lemma 10. At every step of the chores phase, the allocation remains EF1, and the chores
phase terminates in polynomial time.

The proof of Theorem 4 follows immediately, since by Lemma 10 the allocation at the
end of the chores phase is EF1. Thus Algorithm 3 returns an EF1 allocation for a doubly
monotone instance. Specialized to instances with only chores, we obtain Theorem 3 as a
corollary.

6 Approximate Envy Freeness for Mixed Resources

We will now describe the setting with mixed resources consisting of both divisible and
indivisible parts. This model was recently studied by Bei et al. [22], who introduced the
notion of envy-freeness for mixed goods (EFM) in the context of a model consisting of
indivisible goods and a divisible cake. We generalize this notion to a setting with both goods
and chores.

6.1 Preliminaries for Instances with Divisible and Indivisible Resources
Mixed instance

A mixed instance ⟨N, M, V, , F⟩ is defined by a set of n agents, m indivisible items, a valuation
profile V (over the indivisible items), a divisible resource represented by the interval [0, 1],
and a family F of density functions over the divisible resource. The valuations for the
indivisible items are as described in Section 3. For the divisible resource, each agent has a
density function fi : [0, 1] → R such that for any measurable subset S ⊂ [0, 1], agent i values
it at vi(S) :=

∫
S

fi(x)dx. When the density function is non-negative for every agent (i.e., for
all i ∈ N , fi : [0, 1] → R≥0), we will call the divisible resource a “cake”, and for non-positive
densities (i.e., for all i ∈ N , fi : [0, 1] → R≤0), we will use the term “bad cake”. We do not
deal with general real-valued density functions in this work.

Allocation

An allocation A := (A1, . . . , An) is given by Ai = Mi ∪ Ci, where (M1, . . . , Mn) is an n-
partition of the set of indivisible items M , and (C1, . . . , Cn) is an n-partition of the divisible
resource = [0, 1]. where Ai is the bundle allocated to the agent i (note that Ai can be empty).
Given an allocation A, the utility of agent i ∈ N for the bundle Ai is vi(Ai) := vi(Mi)+vi(Ci),
i.e., utility is additive across resource types.

APPROX/RANDOM 2021

1:12 Approximate EF for Indivisible Chores and Mixed Resources

Perfect partition

For any k ∈ N, a k-partition C = (C1, C2, . . . , Ck) of either cake or bad cake is said to be
perfect if each agent values all the pieces equally, i.e., for all agents i ∈ N and for all pieces
of the cake j ∈ [k], vi(Cj) = vi()

k . Note that a perfect allocation of a cake exists even when
the agents’ valuations are not normalized, since multiplicative scaling of agents’ valuations
preserves envy-freeness [4]. As in the work of Bei et al. [22], we will assume the existence of
a perfect allocation oracle in our algorithmic results.

Generalized envy graph

The generalized envy graph GA of an allocation A is a directed graph on the vertex set N ,
with a directed edge from agent i to agent k if vi(Ak) ≥ vi(Ai). If vi(Ak) = vi(Ai), then we
refer to the edge (i, k) as an equality edge, otherwise we call it an envy edge. A generalized
envy cycle in this graph is a cycle C that contains at least one envy edge.

Top-trading generalized envy graph

The top-trading generalized envy graph T A of an allocation A is a subgraph of GA, with a
directed edge from agent i to agent k if i ̸= k and vi(Ak) = maxj∈N vi(Aj), i.e., Ak is one of
the most preferred bundles for agent i in the allocation A. A generalized envy cycle in this
graph is called a top-trading generalized envy cycle.

Envy-freeness for mixed resources (EFM)

We will now discuss the notion of envy-freeness for mixed resources (EFM) that was formalized
by Bei et al. [22] in the context of indivisible goods and divisible cake. Our definition extends
their formulation to related settings where the indivisible part consists of chores and/or the
divisible part is bad cake. The definition below is based on the following idea: Any agent who
owns cake should not be envied, any agent who owns bad cake should not envy anyone else,
and subject to these conditions, any pairwise envy should be EF1. Formally, an allocation A

is said to be envy-free for mixed resources (EFM) if for any pair of agents i, k ∈ N , either i

does not envy k (i.e., vi(Ai) ≥ vi(Ak)), or all of the following hold: (a) i does not have bad
cake, i.e., vi(Ci) ≥ 0, (b) k does not have cake, i.e., vi(Ck) ≤ 0, and (c) the envy from i to k

is bounded according to EF1, i.e., ∃ j ∈ Mi ∪ Mk such that vi(Ai \ {j}) ≥ vi(Ak \ {j}).

6.2 Background: Indivisible Goods and Cake
The algorithm of Bei et al. [22] gives an EFM allocation for an instance with additive
indivisible goods and cake. The algorithm initially finds an EF1 allocation of the indivisible
goods using the envy-cycle elimination algorithm. It then allocates the cake in the following
manner: In successive iterations, it tries to find an inclusion-wise maximal source addable set
of agents, to which cake is then allocated.

▶ Definition 11 (Source addable set). Given a generalized envy graph, a non-empty set of
agents S ⊆ N is a source addable set if (a) there is no envy edge from an agent in N to an
agent in S, and (b) there is no equality edge from an agent in N \ S to an agent in S.

Intuitively, to satisfy the EFM property, an agent that is envied must not get any cake,
and an equality edge (i, j) implies that i’s value for the cake she gets must be at least her
value for the cake that j gets.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:13

To find a maximal source addable set of agents, the algorithm first resolves all generalized
envy cycles in the generalized envy graph GA. It then removes all agents that are reachable
from an envied agent. Bei et al. show that the remaining agents form the unique maximal
source addable set. If there are k agents in this set, then the algorithm finds a perfect
k-partition of the largest prefix of the cake (if [a, 1] is the remaining unallocated piece of
cake, then a prefix of the cake is a piece [a, x] of the cake where a < x ≤ 1) such that giving
each agent in the set a piece of this partition does not introduce envy towards any agent in
the set. This continues until all the cake is allocated.

6.3 EFM for Doubly Monotone Indivisible Items and Bad Cake
For an instance with doubly monotone indivisible items and bad cake, we give an algorithm
to obtain an EFM allocation (Algorithm 4). First, we run the doubly monotone algorithm
(Algorithm 3) on the indivisible instance to obtain an EF1 allocation. We then extend it to
an EFM allocation by allocating the bad cake as follows: Our algorithm always allocates
prefixes of the bad cake, hence the remaining cake is always an interval [a, 1] for some a ≥ 0.
In each iteration, we first find an inclusion-wise maximal sink addable set of agents, defined
analogously to the source addable set introduced earlier.

▶ Definition 12 (Sink addable set). Given a generalized envy graph, a non-empty set of
agents S ⊆ N is a sink addable set if (a) there is no envy edge from an agent in S to an
agent in N , and (b) there is no equality edge from an agent in S to an agent in N \ S.

Since we will allocate bad cake to the agents in this set S, no agent in a sink addable set
should envy another agent. Further, an equality edge (i, j) implies that if i is in the sink
addable set S, j must be in the set as well. We find a maximal sink addable set by first
resolving all top-trading generalized envy cycles in the top-trading generalized envy graph T A,
and then using the procedure in Lemma 13. The resolution of top-trading generalized envy
cycles does not affect the EFM property, because of the same reasons as in the top-trading
envy-cycle elimination algorithm (Section 5).

Once we find the maximal sink addable set S to which we can allocate bad cake, we
need to quantify the amount of bad cake that can be allocated to the agents in S while still
preserving the EFM property. We find the largest loss in utility δi that an agent i ∈ S (who
is to be given bad cake) can tolerate before she starts to envy another agent j ̸∈ S (who is
not allocated any bad cake), i.e.,

δi = min
j∈N\S

vi(Ai) − vi(Aj) for all i ∈ S.

Note that δi > 0 since there are no envy or equality edges from S to N \ S. We then find
the smallest prefix [a, xi∗] of the cake, and a perfect |S|-partition of this prefix, so that if
each part is allocated to an agent in S, then the utility of each agent decreases by at most δi,
and for a particular agent i∗, her utility goes down by exactly δi∗ . By definition of δi∗ , a
new equality edge arises in the generalized envy graph GA from agent i∗ ∈ S to some agent
in N \ S. Once we allocate [a, xi∗] perfectly to all agents in S, the allocation still remains
EFM (Lemma 15), and we only have [xi∗ , 1] of the cake left to allocate. We will establish in
Theorem 16 that the algorithm terminates with a polynomial number of such iterations.

We first show that the maximal sink addable set is unique if it exists (Bei et al. [22] show
a similar result for source addable sets). All missing proofs can be found in the appendix.

▶ Lemma 13. Given a partial allocation A, the maximal sink addable set (if it exists) is
unique, and can be found in polynomial time.

APPROX/RANDOM 2021

1:14 Approximate EF for Indivisible Chores and Mixed Resources

Algorithm 4 Algorithm for EFM with doubly monotone indivisible items and bad cake.
Input: An instance ⟨N, M, ,V,F⟩ with doubly monotone indivisible items M , and a divisible

bad cake
Output: An allocation A

1 Run the doubly monotone algorithm to obtain an EF1 allocation A = (A1, A2, . . . , An) of M

// Bad cake allocation phase
2 while there is still unallocated cake = [a, 1] do
3 T A = top-trading generalized envy graph of A

4 while there is a top-trading generalized envy cycle C in T A do
5 A← AC ▷ This ensures the existence of a sink addable set

6 S = maximal sink addable set for A ▷ Using Lemmas 13 and 14
7 if S = N then
8 Find an EF allocation (C1, C2, . . . , Cn) of
9 Ai = Ai ∪ Ci for all i ∈ N

10 ← ∅
11 else
12 δi = minj∈N\S vi(Ai)− vi(Aj) for all i ∈ S

13 if vi() ≥ −|S| · δi for all i ∈ S then
14 C′ ←
15 ← ∅
16 else
17 xi = sup {x | vi([a, x]) ≥ −|S| · δi} for all i ∈ S

18 i∗ = arg mini∈S xi

19 C′ ← [a, xi∗]
20 ← [xi∗ , 1]
21 Obtain a perfect partition (C1, C2, . . . , C|S|) of C′

22 Ai ← Ai ∪ Ci for all i ∈ S

23 return A

We now show that once we resolve all top-trading generalized envy cycles, the generalized
envy graph GA contains a sink addable set (and thus a maximal sink addable set).

▶ Lemma 14. If the top-trading generalized envy graph T A does not contain any generalized
envy cycles, then the generalized envy graph GA has a sink addable set.

Once we run the top-trading generalized envy cycle elimination procedure, we are thus
guaranteed the existence of a sink addable set. Then, we move to the bad cake allocation
procedure. The agents in the set S are then perfectly allocated a small amount of bad cake
while preserving the EFM property. We now show that the partial allocation remains EFM
throughout the algorithm.

▶ Lemma 15. At each step of the bad cake allocation phase, the partial allocation in
Algorithm 4 satisfies EFM.

Finally, we will show that the algorithm terminates, assuming the existence of a perfect
partition oracle.

▶ Theorem 16. Algorithm 4 terminates after O(n3) rounds of the while-loop and returns an
EFM allocation.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:15

6.4 Special Case Results with Indivisible Chores and Divisible Cake
While the approach of first allocating the indivisible resources followed by assigning the
divisible resource works well for instances with indivisible goods and cake [22], and for
instances with doubly monotone indivisible items and bad cake (Theorem 16), extending
this approach to an instance with indivisible chores and cake is challenging for the following
reason: Suppose, in such an instance, we initially allocate the indivisible chores to satisfy
EF1 using the top-trading envy-cycle elimination algorithm. Then we might not be able
to proceed with cake allocation, since the algorithm does not guarantee us the existence
of a source in the generalized envy graph. In an effort to remedy this, we introduce the
component-wise matching algorithm (refer to the full version for details [27]) to obtain an
EF1 allocation of additive indivisible chores that does not have any generalized envy cycles.
This algorithm ensures that the allocation at the end of indivisible chores stage is generalized
envy-cycle free. However, adding even a small amount of cake might once again make the
generalized envy graph sourceless, and it is unclear how to proceed at this stage.

Nevertheless, for special cases of this problem, we can prove the existence of an EFM
allocation. Restricted to additive valuations of the indivisible chores, we show methods of
obtaining an EFM allocation in two cases: 1) when the agents have identical rankings of the
items (formalized in Appendix A.6), and 2) when the number of items does not exceed the
number of agents by more than one, i.e., m ≤ n + 1. At a high level, the reason we are able
to circumvent the aforementioned challenge in these two cases is because the particular EF1
allocation we obtain for indivisible chores in these cases has the property that we can resolve
any generalized envy cycle that arises during the cake allocation stage. This freedom allows
us to execute the algorithm of Bei et al. directly on these instances.

▶ Theorem 17. For a mixed instance with additive indivisible chores with identical rankings
and cake, an EFM allocation exists.

▶ Theorem 18. For a mixed instance with n agents, m additive indivisible chores and cake
where m ≤ n + 1, an EFM allocation exists.

The proofs of the above two theorems can be found in Appendix A.6 and in the full
version [27] of the paper respectively.

References
1 Martin Aleksandrov. Almost Envy Freeness and Welfare Efficiency in Fair Division with

Goods or Bads. arXiv preprint arXiv:1808.00422, 2018.
2 Martin Aleksandrov. Jealousy-Freeness and Other Common Properties in Fair Division of

Mixed Manna. arXiv preprint arXiv:2004.11469, 2020.
3 Ahmet Alkan, Gabrielle Demange, and David Gale. Fair Allocation of Indivisible Goods and

Criteria of Justice. Econometrica: Journal of the Econometric Society, pages 1023–1039, 1991.
4 Noga Alon. Splitting Necklaces. Advances in Mathematics, 63(3):247–253, 1987.
5 Georgios Amanatidis, Evangelos Markakis, and Apostolos Ntokos. Multiple Birds with One

Stone: Beating 1/2 for EFX and GMMS via Envy Cycle Elimination. Theoretical Computer
Science, 841:94–109, 2020.

6 Enriqueta Aragones. A Derivation of the Money Rawlsian Solution. Social Choice and Welfare,
12(3):267–276, 1995.

7 Sergey Avvakumov and Roman Karasev. Envy-Free Division Using Mapping Degree. arXiv
preprint arXiv:1907.11183, 2019.

8 Sergey Avvakumov and Roman Karasev. Equipartition of a Segment. arXiv preprint
arXiv:2009.09862, 2020.

APPROX/RANDOM 2021

1:16 Approximate EF for Indivisible Chores and Mixed Resources

9 Haris Aziz. Achieving Envy-freeness and Equitability with Monetary Transfers. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence, pages 5102–5109, 2021.

10 Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair Allocation of Com-
binations of Indivisible Goods and Chores. arXiv preprint arXiv:1807.10684 (version v3),
2018.

11 Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. Fair Allocation of Indivisible
Goods and Chores. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 53–59, 2019.

12 Haris Aziz, Hau Chan, and Bo Li. Weighted Maxmin Fair Share Allocation of Indivisible
Chores. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 46–52, 2019.

13 Haris Aziz, Serge Gaspers, Simon Mackenzie, and Toby Walsh. Fair Assignment of Indivisible
Objects under Ordinal Preferences. Artificial Intelligence, 227:71–92, 2015.

14 Haris Aziz, Bo Li, and Xiaowei Wu. Strategyproof and Approximately Maxmin Fair Share
Allocation of Chores. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 60–66, 2019.

15 Haris Aziz and Simon Mackenzie. A Discrete and Bounded Envy-Free Cake Cutting Protocol
for Any Number of Agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science, pages 416–427, 2016.

16 Haris Aziz, Hervé Moulin, and Fedor Sandomirskiy. A Polynomial-Time Algorithm for
Computing a Pareto Optimal and Almost Proportional Allocation. Operations Research
Letters, 48(5):573–578, 2020.

17 Haris Aziz, Gerhard Rauchecker, Guido Schryen, and Toby Walsh. Algorithms for Max-Min
Share Fair Allocation of Indivisible Chores. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, pages 335–341, 2017.

18 Haris Aziz and Chun Ye. Cake Cutting Algorithms for Piecewise Constant and Piecewise
Uniform Valuations. In Proceedings of the 10th International Conference on Web and Internet
Economics, pages 1–14, 2014.

19 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding Fair and Efficient
Allocations. In Proceedings of the 19th ACM Conference on Economics and Computation,
pages 557–574, 2018.

20 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy Algorithms for
Maximizing Nash Social Welfare. In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems, pages 7–13, 2018.

21 Siddharth Barman and Nidhi Rathi. Fair Cake Division Under Monotone Likelihood Ratios.
In Proceedings of the 21st ACM Conference on Economics and Computation, pages 401–437,
2020.

22 Xiaohui Bei, Zihao Li, Jinyan Liu, Shengxin Liu, and Xinhang Lu. Fair Division of Mixed
Divisible and Indivisible Goods. Artificial Intelligence, 293:103436, 2021.

23 Xiaohui Bei, Shengxin Liu, Xinhang Lu, and Hongao Wang. Maximin Fairness with Mixed
Divisible and Indivisible Goods. Autonomous Agents and Multi-Agent Systems, 35(2):1–21,
2021.

24 Nawal Benabbou, Mithun Chakraborty, Xuan-Vinh Ho, Jakub Sliwinski, and Yair Zick. The
Price of Quota-based Diversity in Assignment Problems. ACM Transactions on Economics
and Computation, 8(3):1–32, 2020.

25 Nawal Benabbou, Mithun Chakraborty, Ayumi Igarashi, and Yair Zick. Finding Fair and
Efficient Allocations When Valuations Don’t Add Up. In Proceedings of the 13th International
Symposium on Algorithmic Game Theory, pages 32–46, 2020.

26 Kristóf Bérczi, Erika R Bérczi-Kovács, Endre Boros, Fekadu Tolessa Gedefa, Naoyuki Kam-
iyama, Telikepalli Kavitha, Yusuke Kobayashi, and Kazuhisa Makino. Envy-Free Relaxations
for Goods, Chores, and Mixed Items. arXiv preprint arXiv:2006.04428, 2020.

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:17

27 Umang Bhaskar, AR Sricharan, and Rohit Vaish. On Approximate Envy-Freeness for Indivisible
Chores and Mixed Resources. arXiv preprint arXiv:2012.06788, 2021.

28 Steven J Brams and Alan D Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

29 Simina Brânzei and Fedor Sandomirskiy. Algorithms for Competitive Division of Chores.
arXiv preprint arXiv:1907.01766, 2019.

30 Johannes Brustle, Jack Dippel, Vishnu V Narayan, Mashbat Suzuki, and Adrian Vetta. One
Dollar Each Eliminates Envy. In Proceedings of the 21st ACM Conference on Economics and
Computation, pages 23–39, 2020.

31 Eric Budish. The Combinatorial Assignment Problem: Approximate Competitive Equilibrium
from Equal Incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

32 Eric Budish, Gérard P Cachon, Judd B Kessler, and Abraham Othman. Course Match: A
Large-Scale Implementation of Approximate Competitive Equilibrium from Equal Incomes for
Combinatorial Allocation. Operations Research, 65(2):314–336, 2017.

33 Ioannis Caragiannis and Stavros Ioannidis. Computing Envy-Freeable Allocations with Limited
Subsidies. arXiv preprint arXiv:2002.02789, 2020.

34 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and
Junxing Wang. The Unreasonable Fairness of Maximum Nash Welfare. ACM Transactions on
Economics and Computation, 7(3):12, 2019.

35 Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. Fair and Efficient Allocations under
Subadditive Valuations. In The 35th AAAI Conference on Artificial Intelligence, pages
5269–5276, 2021.

36 Xingyu Chen and Zijie Liu. The Fairness of Leximin in Allocation of Indivisible Chores. arXiv
preprint arXiv:2005.04864, 2020.

37 Yuga J Cohler, John K Lai, David C Parkes, and Ariel D Procaccia. Optimal Envy-Free Cake
Cutting. In Proceedings of the 25th AAAI Conference on Artificial Intelligence, pages 626–631,
2011.

38 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

39 Sina Dehghani, Alireza Farhadi, MohammadTaghi HajiAghayi, and Hadi Yami. Envy-Free
Chore Division For an Arbitrary Number of Agents. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2564–2583. SIAM, 2018.

40 Duncan Foley. Resource Allocation and the Public Sector. Yale Economic Essays, pages 45–98,
1967.

41 Rupert Freeman, Nisarg Shah, and Rohit Vaish. Best of Both Worlds: Ex-Ante and Ex-Post
Fairness in Resource Allocation. In Proceedings of the 21st ACM Conference on Economics
and Computation, pages 21–22, 2020.

42 Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Equitable Allocations of
Indivisible Goods. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 280–286, 2019.

43 Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Equitable Allocations of
Indivisible Chores. In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, pages 384–392, 2020.

44 Martin Gardner. aha! Insight. W. H. Freeman and Company, 1978.
45 Jonathan Goldman and Ariel D Procaccia. Spliddit: Unleashing Fair Division Algorithms.

ACM SIGecom Exchanges, 13(2):41–46, 2015.
46 Claus-Jochen Haake, Matthias G Raith, and Francis Edward Su. Bidding for Envy-Freeness:

A Procedural Approach to N-Player Fair-Division Problems. Social Choice and Welfare,
19(4):723–749, 2002.

47 Daniel Halpern and Nisarg Shah. Fair Division with Subsidy. In Proceedings of the 12th
International Symposium on Algorithmic Game Theory, pages 374–389, 2019.

APPROX/RANDOM 2021

1:18 Approximate EF for Indivisible Chores and Mixed Resources

48 Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, Hejun Wang, and Lirong Xia. Fair division through
information withholding. Proceedings of the AAAI Conference on Artificial Intelligence,
34(02):2014–2021, April 2020. doi:10.1609/aaai.v34i02.5573.

49 Xin Huang and Pinyan Lu. An Algorithmic Framework for Approximating Maximin Share
Allocation of Chores. In The 22nd ACM Conference on Economics and Computation (forth-
coming), 2021.

50 Flip Klijn. An Algorithm for Envy-Free Allocations in an Economy with Indivisible Objects
and Money. Social Choice and Welfare, 17(2):201–215, 2000.

51 Rucha Kulkarni, Ruta Mehta, and Setareh Taki. Approximating Maximin Shares with Mixed
Manna. In The 22nd ACM Conference on Economics and Computation (forthcoming), 2021.

52 David Kurokawa, John K Lai, and Ariel D Procaccia. How to Cut a Cake Before the Party
Ends. In Proceedings of the 27th AAAI Conference on Artificial Intelligence, pages 555–561,
2013.

53 Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On Approximately
Fair Allocations of Indivisible Goods. In Proceedings of the 5th ACM Conference on Electronic
Commerce, pages 125–131, 2004.

54 Eric S Maskin. On the Fair Allocation of Indivisible Goods. In Arrow and the Foundations of
the Theory of Economic Policy, pages 341–349. Palgrave Macmillan UK, 1987.

55 Marc Meertens, Jos Potters, and Hans Reijnierse. Envy-Free and Pareto Efficient Allocations
in Economies with Indivisible Goods and Money. Mathematical Social Sciences, 44(3):223–233,
2002.

56 Frédéric Meunier and Shira Zerbib. Envy-Free Cake Division Without Assuming the Players
Prefer Nonempty Pieces. Israel Journal of Mathematics, 234(2):907–925, 2019.

57 Abraham Othman, Tuomas Sandholm, and Eric Budish. Finding Approximate Competitive
Equilibria: Efficient and Fair Course Allocation. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, pages 873–880, 2010.

58 Parag A Pathak, Tayfun Sönmez, M Utku Ünver, and M Bumin Yenmez. Fair Allocation of
Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in Health
Care Rationing. arXiv preprint arXiv:2008.00374, 2020.

59 Elisha Peterson and Francis Edward Su. N-Person Envy-Free Chore Division. arXiv preprint
arXiv:0909.0303, 2009.

60 Ariel D Procaccia. Cake Cutting Algorithms. In Handbook of Computational Social Choice,
Chapter 13. Citeseer, 2015.

61 Jack Robertson and William Webb. Cake-Cutting Algorithms: Be Fair If You Can. CRC
Press, 1998.

62 Erel Segal-Halevi. Fairly Dividing a Cake after Some Parts were Burnt in the Oven. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, pages 1276–1284, 2018.

63 Erel Segal-Halevi. Competitive Equilibrium for Almost All Incomes: Existence and Fairness.
Autonomous Agents and Multi-Agent Systems, 34(1):1–50, 2020.

64 Lloyd Shapley and Herbert Scarf. On Cores and Indivisibility. Journal of Mathematical
Economics, 1(1):23–37, 1974.

65 Walter Stromquist. How to Cut a Cake Fairly. The American Mathematical Monthly, 87(8):640–
644, 1980.

66 Francis Edward Su. Rental Harmony: Sperner’s Lemma in Fair Division. The American
Mathematical Monthly, 106(10):930–942, 1999.

67 Martino Traxler. Fair Chore Division for Climate Change. Social Theory and Practice,
28(1):101–134, 2002.

https://doi.org/10.1609/aaai.v34i02.5573

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:19

A Appendix

A.1 Proof of Lemma 5
▶ Lemma 5. After every step of the goods phase, the partial allocation remains EF1. Further,
the goods phase terminates in polynomial time.

Proof. Clearly the empty allocation at the beginning is EF1. Suppose before time step t,
our allocation A is EF1 (i.e., any envy from agent i to agent j can be eliminated by removing
an item from Aj). Denote the allocation after time step t by A′. We will argue that A′ is
EF1, and any envy from agent i to agent j can be eliminated by removing an item from A′

j .
At every time step, either a good is allocated or an envy cycle is resolved.

Suppose at time step t, we allocate a new item (Lines 5-6). Note that the graph GA is
acyclic at this stage. This is because it holds trivially the first time an item is allocated, and
in every subsequent execution of the while-loop, we eliminate all envy cycles present (Lines
7-8) before we begin allocating the next ite. Thus, the subgraph Gg

A is acyclic as well, where
Gg

A is the graph GA restricted to the agents for whom g is a good.
Then after time t, our allocation A′ will be A′

k = Ak ∪ {g}, and A′
j = Aj for all j ̸= k,

where k is a source in Gg
A. Pick two agents i and j such that i envies j in A′. If i did not

envy j in A, then clearly j must be the agent who received the good g (i.e., j = k) and
i ∈ V g. In this case, removing g from Ak removes i’s envy as well. Suppose i envied j

in A as well, and the envy was eliminated by removing g′ from Aj . If j = k then i ̸∈ V g

since k was a source in Gg
A. Then removing g′ eliminates the envy in A′ as well, since

vi(Ak ∪ {g} \ {g′}) ≤ vi(Ak \ {g′}). If j ̸= k, then since j’s bundle remains the same and
vi(A′

i) ≥ vi(Ai), the envy can again be eliminated by removing g′ from A′
j .

Suppose at time t we resolve an envy cycle (Lines 7-8). Let A be the allocation before
time t, C be the cycle along which the swap happens, and A′ = AC the allocation obtained
by swapping backwards along the circle. Pick two agents i and j such that i envies j in A′.
Let i′ and j′ be the agents such that A′

i = Ai′ and A′
j = Aj′ . Since vi(A′

i) ≥ vi(Ai), i envied
j′ in the allocation A before the swap. Suppose this envy was eliminated by removing g′

from Aj′ . Then vi(A′
i) ≥ vi(Ai) ≥ vi(Aj′ \ {g′}), and thus removing g′ from A′

j eliminates
the envy in A′.

To show that the algorithm terminates in polynomial time, we show that we resolve envy
cycles at most a polynomial number of times for each item. Consider a single while-loop for
an item, where a cycle swap occurs on the cycle C. Since the bundles remain unbroken, all
agents outside the cycle have the same outdegree in GA′ as in GA. An agent i inside the
cycle has strictly lesser outdegree in GA′ compared to GA, since the (i, i+) edge in GA does
not translate into a (i, i) edge in GA′ (since i gets i+’s bundle). Thus the number of envy
edges goes down by at least |C| during each cycle swap, and the while-loop terminates in
polynomial time. ◀

A.2 Proof of Lemma 13
▶ Lemma 13. Given a partial allocation A, the maximal sink addable set (if it exists) is
unique, and can be found in polynomial time.

Proof. Suppose there were two distinct maximal sink addable sets S1 and S2. Then we show
that S1 ∪ S2 is also a sink addable set, contradicting their maximality. The existence of an
envy edge from an agent in S1 ∪ S2 to an agent in N contradicts either S1 or S2 being a sink
addable set. Similarly, an equality edge from an agent in S1 ∪ S2 to an agent in N \ S1 ∪ S2
contradicts either S1 or S2 being a sink addable set. Thus S1 ∪ S2 is a sink addable set, a
contradiction.

APPROX/RANDOM 2021

1:20 Approximate EF for Indivisible Chores and Mixed Resources

To find a maximal sink addable set, say that an agent i is an envious agent if there is
an envy edge (i, j) in the generalized envy graph. Note that by definition a sink addable
set cannot contain an envious agent. Let T be the set of all agents that have a path to
an envious agent (i.e., if agent r is in T , there there exists a path from r to an envious
agent i in the generalized envy graph along envy and equality edges). Let S = N \ T be the
complementary set of agents. We claim that S is a maximal sink addable set. Clearly, no
agent outside S can be in any sink addable set. To see this, consider any agent r ̸∈ S, and
let r have a path to an envious agent i. By the properties of sink addable sets, if r is in S,
then so must all the agents in the path including i, but this contradicts the property that a
sink addable set cannot contain an envious agent. Now consider an agent r in S, and note
that r does not have a path to an envious agent. Since r is not envious, it does not have an
envy edge to any other agent. Further, since all agents outside S have a path to an envious
agent, r cannot have an (equality or envy) edge to an outside agent. Hence, the set of agents
so obtained must be a maximal sink addable set. ◀

A.3 Proof of Lemma 14
▶ Lemma 14. If the top-trading generalized envy graph T A does not contain any generalized
envy cycles, then the generalized envy graph GA has a sink addable set.

Proof. Suppose the top-trading generalized envy graph T A does not contain any generalized
envy cycles. Then each strongly connected component Ci of the graph T A contains only
equality edges inside it. Let C1 be a leaf component obtained by Tarjan’s algorithm to find
strongly connected components (see Section 22.5 of [38]). We claim that C1 is a sink addable
set in the generalized envy graph GA.

Suppose there was an envy edge from an agent i in C1. Since the top-trading envy graph
points to an agent’s favorite bundle, there would be an envy edge from i in the graph T A as
well. Thus i would not be part of a leaf component of T A, contradicting that i ∈ C1. Thus
all agents in C1 only have equality edges in GA.

Suppose now that there was an equality edge from an agent i ∈ C1 to an agent j ∈ N \C1.
Since i does not envy any other agent, the edge (i, j) would be present in T A as well,
contradicting that C1 is a leaf component of T A. Thus C1 is a sink addable set, and thus
GA contains a maximal sink addable set as well. ◀

A.4 Proof of Lemma 15
▶ Lemma 15. At each step of the bad cake allocation phase, the partial allocation in
Algorithm 4 satisfies EFM.

Proof. The allocation of indivisible items at the start of the algorithm is EF1 and consequently
EFM as well. In the generalized top-trading envy graph, suppose we resolve a cycle C. Then
the allocation remains EFM for agents outside the cycle since the bundles are unbroken.
Since all agents in the cycle receive their highest valued item, they do not envy any other
agent and thus satisfy EFM as well.

In the bad cake allocation stage, if N is the maximal sink addable set, then there are
no envy edges inside the graph GA and the initial allocation is envy-free. The allocation
remains envy-free on adding an EF allocation of the remaining cake to their bundles, and
thus the final allocation is EFM as well.

If the maximal sink addable set S ⊂ N is a strict subset, then the amount of cake we
allocate is chosen such that the EFM property is satisfied. Since every agent in S is given
bad cake, the envy from agents in N \ S remains EFM. By definition of sink addable set,

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:21

none of the agents in S envy anyone before the bad cake allocation. Since we obtain a
perfect allocation, none of the agents in S envy each other after the bad cake allocation as
well. Note that the value of the bad cake allocated to each agent in this round is bounded
below by δi = minj∈N\S vi(Ai) − vi(Aj) for all i ∈ S. Thus no agent in S envies an agent in
N \ S in the final allocation as well by choice of δi, and the partial allocation remains EFM
throughout the algorithm. ◀

A.5 Proof of Theorem 16
We will break down the running time analysis into two parts: (1) The number of rounds
where the algorithm resolves a top-trading generalized envy cycle, and (2) between any such
consecutive rounds, the number of times when the algorithm assigns bad cake to agents in a
maximal sink addable set.

Let us start with the first part. Note that assigning bad cake to a maximal sink addable
set never creates new envy edges, and resolving a top-trading generalized envy cycle reduces
the number of envy edges by at least one. Therefore, following the allocation of the indivisible
items, the number of envy edges is a non-increasing function of time. This means that there
can be at most O(n2) rounds where a top-trading generalized envy cycle is resolved by the
algorithm.

Let us now consider the second part. We will argue that between any consecutive rounds
where the algorithm resolves a top-trading generalized envy cycle, there can be at most n

steps where the algorithm allocates bad cake. Observe that if there are no envy edges in the
graph, then the maximal sink addable set is the entire set of agents (i.e., S = N), and the
algorithm immediately terminates by allocating the entire remaining cake. Otherwise, after
each round of adding bad cake, at least one new equality edge is created from S to N \ S. If
this creates a new top-trading generalized envy cycle, then the number of envy edges strictly
reduces in the next round. Else, the size of the maximal sink addable set strictly decreases
in the next round, implying that there can be at most n rounds of adding bad cake before
the number of envy edges strictly decreases.

Overall, we obtain that the algorithm terminates in O(n3) rounds.

▶ Theorem 16. Algorithm 4 terminates after O(n3) rounds of the while-loop and returns an
EFM allocation.

Proof. By Lemma 15, the allocation returned by the algorithm is EFM. So, it suffices to
show that the algorithm executes O(n3) iterations of the while-loop.

First, note that there can be at most O(n2) rounds where the algorithm resolves a
top-trading generalized envy cycle. This follows from the following two observations: (a) The
number of envy edges never increases during the algorithm, and (b) the number of envy edges
strictly decreases by at least one whenever a top-trading generalized envy cycle is resolved.
Observation (b) is straightforward. To see why (a) holds, it suffices to argue that adding bad
cake does not introduce any new envy edges. Indeed, since we are adding bad cake, none
of the agents in the set N \ S (i.e., the agents outside the maximal sink addable set) can
develop new envy edges to an agent in S or N \ S. For each agent in S, since the amount
of cake added is bounded below by δi = minj∈N\S vi(Ai) − vi(Aj) for all i ∈ S, none of the
agents in S have new envy edges to an agent in N \ S. Furthermore, since the allocation
is perfect, agents in S do not end up envying one another. Thus, no new envy edges are
created due to the allocation of the bad cake, and therefore we have at most O(n2) rounds
of top-trading generalized envy-cycle elimination.

APPROX/RANDOM 2021

1:22 Approximate EF for Indivisible Chores and Mixed Resources

Next, we will argue that between any consecutive cycle-elimination rounds, there can be at
most n steps where the algorithm assigns bad cake to a maximal sink addable set. Note that
if at any stage there are no envy edges in the generalized envy graph, then the maximal sink
addable set is the entire set of agents (i.e., S = N), and the algorithm terminates immediately
after assigning the entire remaining bad cake. So, let us assume for the remainder of the
proof that there is always at least one envy edge.

If, for all agents i ∈ S, a perfect allocation of the remaining cake = [a, 1] preserves EFM,
then the algorithm terminates in the next step. Else, we mark the point xi on the cake for
each agent such that after perfectly allocating [a, xi], they have a new equality edge to an
agent in N \S. By choice of i∗ as the agent with minimum value of xi, the agent i∗ has a new
equality edge to an agent j in N \ S after this round. If this edge creates a new top-trading
generalized envy cycle, then the number of envy edges strictly reduces in the next round.
Else, the size of the maximal sink addable set decreases since i∗ now has a path to an envious
agent and must therefore be excluded from the maximal sink addable set (additionally, no
new agents are added to the sink addable set). Thus, bad cake allocation can occur for at
most n consecutive rounds before the number of envy edges strictly decreases, leading to the
desired O(n3) number of rounds. ◀

A.6 Special Case Results for EFM with Indivisible Chores and Divisible
Cake

We first discuss the case of additive indivisible chores with identical rankings and cake.
By identical rankings, we mean that all the agents have the same preference order on the
indivisible chores, and we can order the chores as c1, c2, . . . , cm such that vi(c1) ≥ vi(c2) ≥
. . . ≥ vi(cm) for all agents i ∈ N . We assume for simplicity that the number of chores is a
multiple of the number of agents. If not, we add an appropriate number of virtual chores
that are valued at 0 by every agent, and remove them at the end of the algorithm. Note that
this does not affect the EF1 or the EFM property. In this setting, the round-robin algorithm
satisfies two desirable properties:

Let (B1, B2, . . . , Bn) be a partition of the chores given by Bi = {cj | j ≡ i (mod n)}.
For each of the n! possible orderings of the agents, under lexicographic tiebreaking of
the preferable chores, the round-robin algorithm allocates the same bundle Bi to the ith

agent in the ordering, and
Resolving any generalized envy cycle in the allocation obtained from a round-robin
instance does not violate EFM.

By lexicographic tiebreaking, we mean that if an agent has many chores of the same value to
choose in round-robin, they choose the chore with the lexicographically smallest index.

▶ Lemma 19. For an additive indivisible chores instance with identical rankings, every
ordering of the agents for round-robin allocates the bundle Bi = {cj | j ≡ i (mod n)} to the
ith agent in the ordering when tiebreaking happens lexicographically.

Proof. Order the chores as c1, c2, . . . , cm in non-increasing order of their value. Suppose that
in the execution of the round-robin algorithm, if an agent has many chores that it has the
same value for, it chooses the lexicographically smallest chore. We claim that the bundles
remain the same regardless of the ordering of the agents.

Suppose the agents were ordered as π(1), π(2), . . . , π(n) for round-robin. In the first
round of the algorithm, we claim that agent π(i) chooses the chore ci during the execution.
Indeed, since all the agents have the same rankings on the chores, agent π(1) chooses c1 in
the first round (even if there were other chores with the same value, c1 is lexicographically the

U. Bhaskar, A. R. Sricharan, and R. Vaish 1:23

smallest). Inductively, once agents {π(1), π(2), . . . , π(i)} have chosen {c1, c2, . . . , ci}, agent
π(i + 1) weakly prefers ci+1 over any other chore, and adds it to their bundle because it is the
lexicographically smallest chore present. Thus {c1, c2, . . . , cn} are allocated in the first round.
By a straightforward induction on the number of rounds, we see that the final allocation is
Aπ(i) = {cj | j ≡ i (mod n)}. ◀

Note that for every position j and every agent i, there is an ordering of the agents such that
agent i is in the jth position during the round-robin algorithm (if i = j consider the identity
permutation, else consider the permutation (i j)). Since the round-robin algorithm always
returns an EF1 allocation, this implies the strong property that the partition (B1, B2, . . . , Bn)
satisfies EF1 for agent i, regardless of which bundle is allocated to that agent. Since the
agent i was chosen arbitrarily at the beginning, this gives us the following lemma:

▶ Lemma 20. For an additive indivisible chores instance with identical rankings, the allocation
Aπ(i) = Bi is an EF1 allocation for any ordering π of the agents, where Bi = {cj | j ≡ i

(mod n)}.

Recall from Section 5.1 that the reason we had to restrict ourselves to resolving top-trading
envy cycles when searching for an EF1 allocation of monotone indivisible chores was because
resolving an arbitrary envy cycle could upset EF1 (Example 1), where an agent might obtain
a bundle of higher value during the cycle swap, but the newly acquired bundle might consist
of chores with low absolute value. By contrast, we can resolve any generalized envy cycle in
the case of identical rankings, since the allocation is EF1 regardless of which agent obtains
which bundle. Note that this property continues to hold even when we add cake using Bei
et al.’s algorithm, since any agent with cake is never envied throughout the algorithm, and
any envy present can be eliminated by the removal of one good (in fact, the same good)
regardless of the identity of the agent holding a bundle (the valuation is weakly better for
bundles with some portion of cake present). Thus, we have the following theorem:

▶ Theorem 17. For a mixed instance with additive indivisible chores with identical rankings
and cake, an EFM allocation exists.

Using this result, we also show the existence of an EFM allocation when n − 1 of the n

agents have identical rankings. Say the agents are {1, 2, . . . , n}, and the agent n does not
have a ranking identical to the others. Run the round-robin algorithm with the first n − 1
agents and one virtual copy of one of the identical agents, say agent 1. At the end of the
round-robin algorithm, allow agent n to pick their favorite bundle and arbitrarily allocate
the remaining bundles between the other agents. Note that since agent n does not envy
anybody at the beginning of cake allocation, and since the cake allocation stage does not
create any new envy edges, the final allocation will be EFM for agent n. For all other agents,
the allocation will be EF1 at the beginning of cake allocation (Lemma 20). Since resolving
any generalized envy cycle still preserves EFM (Theorem 17), the final allocation will be
EFM for the agents {1, 2, . . . , n − 1} as well. Thus we get the following corollary:

▶ Corollary 21. For a mixed instance with additive indivisible chores with identical rankings
for n − 1 agents and cake, an EFM allocation exists. In particular, for two agents, an EFM
allocation always exists in this setting.

This property of being able to resolve any generalized envy cycle can also be obtained
when the number of indivisible chores is at most one higher than the number of agents, i.e.,
m ≤ n + 1. A proof of Theorem 18 can be found in the full version [27] of the paper.

APPROX/RANDOM 2021

Optimal Algorithms for Online b-Matching with
Variable Vertex Capacities
Susanne Albers #

Department of Computer Science, Technische Universität München, Germany

Sebastian Schubert1 #

Department of Computer Science, Technische Universität München, Germany

Abstract
We study the b-matching problem, which generalizes classical online matching introduced by Karp,
Vazirani and Vazirani (STOC 1990). Consider a bipartite graph G = (S∪̇R, E). Every vertex s ∈ S

is a server with a capacity bs, indicating the number of possible matching partners. The vertices
r ∈ R are requests that arrive online and must be matched immediately to an eligible server. The
goal is to maximize the cardinality of the constructed matching. In contrast to earlier work, we
study the general setting where servers may have arbitrary, individual capacities. We prove that the
most natural and simple online algorithms achieve optimal competitive ratios.

As for deterministic algorithms, we give a greedy algorithm RelativeBalance and analyze
it by extending the primal-dual framework of Devanur, Jain and Kleinberg (SODA 2013). In the
area of randomized algorithms we study the celebrated Ranking algorithm by Karp, Vazirani and
Vazirani. We prove that the original Ranking strategy, simply picking a random permutation of
the servers, achieves an optimal competitiveness of 1 − 1/e, independently of the server capacities.
Hence it is not necessary to resort to a reduction, replacing every server s by bs vertices of unit
capacity and to then run Ranking on this graph with

∑
s∈S

bs vertices on the left-hand side. From
a theoretical point of view our result explores the power of randomization and strictly limits the
amount of required randomness. From a practical point of view it leads to more efficient allocation
algorithms.

Technically, we show that the primal-dual framework of Devanur, Jain and Kleinberg cannot
establish a competitiveness better than 1/2 for the original Ranking algorithm, choosing a permuta-
tion of the servers. Therefore, we formulate a new configuration LP for the b-matching problem
and then conduct a primal-dual analysis. We extend this analysis approach to the vertex-weighted
b-matching problem. Specifically, we show that the algorithm PerturbedGreedy by Aggarwal,
Goel, Karande and Mehta (SODA 2011), again with a sole randomization over the set of servers, is
(1 − 1/e)-competitive. Together with recent work by Huang and Zhang (STOC 2020), our results
demonstrate that configuration LPs can be strictly stronger than standard LPs in the analysis of
more complex matching problems.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, primal-dual analysis, configuration LP, b-matching,
variable vertex capacities, unweighted matching, vertex-weighted matching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.2

Category APPROX

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Corresponding author

© Susanne Albers and Sebastian Schubert;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:albers@in.tum.de
mailto:sebastian.schubert@tum.de
https://orcid.org/0000-0002-3883-2297
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

1 Introduction

Matching in bipartite graphs is a fundamental problem with numerous applications in
computer science. We study the b-matching problem [13], where the vertices of one set of the
bipartition may be matched multiple times. It generalizes the standard matching problem.
Furthermore, it models capacitated allocations as well as interesting special cases of the
timely AdWords problem.

More specifically, let G = (S∪̇R, E) be a bipartite graph. The vertices of S are servers.
Each server s ∈ S has an individual capacity bs, indicating the maximum number of possible
matching partners. The vertices of R are requests that have to be assigned to the servers. We
consider the online problem where the set S of servers is known in advance and the requests
of R arrive sequentially one by one. Whenever a new request r ∈ R arrives, its incident edges
are revealed. The request has to be matched immediately and irrevocably to an eligible
server, provided that there is one. The goal is to maximize the number of matching edges.

Prior work on b-matchings has mostly focused on the case that all servers have the same
capacity, i.e. bs = b, for all s ∈ S. In this paper we study the general setting of individual
server capacities, as described above. This setting is particularly relevant in applications.
Furthermore, we examine the vertex-weighted problem extension, where additionally each
server s ∈ S has a weight ws and the value of every matching edge incident to s is multiplied
by ws. The goal is to maximize the total weight of the constructed matching. Again this
extension is interesting in allocation problems.

If bs = 1 for all s ∈ S, the b-matching problem is equal to classic online bipartite matching,
which was introduced in a seminal paper by Karp et al. [15] and has received tremendous
research interest over the last 30 years. The b-matching problem models a range of interesting
applications. Naturally, the servers can be compute servers that process persistent jobs
arriving over time. Furthermore, the servers can be facilities that stream content online,
host web pages or store data remotely [5]. More generally, the servers can represent stations
in mobile computing, queues in a network switch or even locations in a hash table [2, 5, 9].
Obviously, each server can only handle a limited number of clients.

Another relevant application are the AdWords problem and ad auctions in search engine
companies [18]. There is a set of advertisers, each with a daily budget, who wish to link their
ads to search keywords and issue respective bids. Queries along with their keywords arrive
online and must be allocated instantly to the advertisers. The b-matching problem models
the basic setting where all bids are either 0 or 1. The vertex-weighted extension captures the
scenario where all the bids of an advertiser s ∈ S have a value of 0 or ws.

We analyze the performance of algorithms for the b-matching problem using competitive
analysis. Given an input graph G, let Alg(G) denote the size (or weight) of the matching
constructed by an online algorithm Alg. Let Opt(G) be the corresponding value of an
optimal offline algorithm Opt. Algorithm Alg is c-competitive if Alg(G) ≥ c · Opt(G)
holds, for all G. If Alg is a randomized algorithm, then Alg(G) has to be replaced by the
expected value E[Alg(G)].

Related Work. Straightforward arguments show that any algorithm that matches an
incoming request to an eligible server with remaining capacity, if there exists one, is 1

2 -
competitive. Kalyanasundaram and Pruhs [13] investigate the b-matching problem if all
servers have equal capacity, i.e. bs = b for all s ∈ S. They present a deterministic Balance
algorithm that matches a new request to an adjacent server whose current load is smallest.
Kalyanasundaram and Pruhs prove that Balance achieves an optimal competitive ratio

S. Albers and S. Schubert 2:3

of 1 − 1/(1 + 1/b)b. As b grows, the latter expression tends to 1 − 1/e ≈ 0.63. Azar and
Litichevsky [2] give an alternative analysis of the Balance algorithm. Chaudhuri et al. [5]
and Grove et al. [9] study b-matchings with a different objective. At any time an algorithm
must maintain a matching between the requests that have arrived so far and the servers. The
goal is to minimize the total number of switches where a request is reassigned to a different
server.

In a famous paper, Karp et al. [15] introduced the online bipartite matching problem. This
is a b-matching problem where all servers have a capacity of 1, i.e. each vertex in the graph may
be incident to at most one matching edge. Online bipartite matching has received tremendous
research interest over the last years and we only mention the most important results relevant
to our work. Again, any algorithm that matches an incoming request to an arbitrary available
partner is 1

2 -competitive. No deterministic online algorithm can be better than 1
2 -competitive.

Karp et al. [15] show that an algorithm Random, which matches a request to an available
partner chosen uniformly at random, does not achieve a competitiveness greater than 1/2.
As a main result they propose the celebrated Ranking algorithm. This strategy initially
chooses a random permutation of the vertices in S. Thereby, each such vertex is assigned
a priority or rank. Whenever a vertex of R arrives, it is matched to the eligible vertex of
highest rank in S. Karp et al. prove that Ranking is (1 − 1/e)-competitive. This ratio is
best possible for randomized algorithms [15].

Simplified and alternative analyses of Ranking were provided in [1, 3, 6, 7]. In particular,
Devanur et al. [6] developed an elegant primal-dual analysis. Aggarwal et al. [1] defined
online vertex-weighted bipartite matching, where each vertex s ∈ S has a weight ws. Again,
all vertices of S have a capacity of 1. The goal is to maximize the total weight of the
constructed matching. Aggarwal et al. [1] devise a generalization of Ranking, named
Perturbed-Greedy, and prove that it is (1 − 1/e)-competitive. Devanur et al. [6] analyze
this strategy in their compact primal-dual framework. Further work on online bipartite
matching considers different input models [8, 12, 14, 16] or refined matching models [10, 17].

The AdWords problem was formally defined by Mehta et al. [18]. They present a
deterministic online algorithm that achieves a competitive ratio of 1 − 1/e, under the
assumption that the bids are small compared to the advertisers’ budgets. No randomized
algorithm can obtain a better competitive factor. Buchbinder et al. [4] develop a primal-dual
algorithm that attains a competitiveness of (1 − 1/c)(1 − Rmax), where c = (1 + Rmax)1/Rmax

and Rmax is the maximum ratio between the bid of any advertiser and its total budget.
Huang et al. [11] give a 0.5016-competitive algorithm, for AdWords without the small-bids
assumption.

Our Contributions. We present a comprehensive study of the b-matching problem with
variable server capacities. As a main contribution we show that the most natural and simple
online algorithms obtain optimal competitive ratios.

First, we concentrate on the unweighted setting, with the objective to maximize the
cardinality of the constructed matching. In Section 2 we study deterministic algorithms. We
formulate and analyze a strategy RelativeBalance that assigns an incoming request to
an eligible server with minimum relative load. The relative load of a server s is the number
requests that are currently matched with s divided by the capacity bs. Thus the algorithm
considers which fraction of a server’s capacity is already used. This is the most straightforward
greedy policy for the setting with variable server capacities. We show that RelativeBalance
achieves a competitive ratio of 1 − 1/(1 + 1/bmin)bmin , where bmin = mins bs is the minimum
server capacity. The performance ratio is best possible for deterministic online algorithms.

APPROX/RANDOM 2021

2:4 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

In order to evaluate RelativeBalance we conduct a primal-dual analysis. We extend
the framework by Devanur et al. [6], this time to analyze a deterministic algorithm different
from Ranking. We remark that Balance by Kalyanasundaram and Pruhs [13] does not
achieve a competitive ratio of 1 − 1/(1 + 1/bmin)bmin when using only bmin spots of each server
because Opt may use the additional capacity. Moreover, we would like to add that the results
by Buchbinder et al. [4] also imply a deterministic online algorithm with a competitiveness
of 1 − 1/(1 + 1/bmin)bmin for the b-matching problem. However, their algorithm is not equal
to RelativeBalance. In fact, their strategy may assign a request to a server not having
the smallest relative load and does not necessarily use the full capacity of a server, leaving
requests unmatched. This leads to somewhat unintuitive assignments. We give details in
Appendix A. Of course, Buchbinder et al. [4] were interested in the general AdWords problem
and did not tailor their analysis to b-matchings.

In Section 3 we study randomized online algorithms. In a first step we examine the
Random algorithm, which assigns an incoming request to a random adjacent server with
remaining capacity. We prove that the competitive factor of Random is not better than
1/2. The major part of Section 3 investigates the original Ranking algorithm. More
specifically, Ranking initially picks a random permutation of the servers. An incoming
request is matched to the eligible server of highest rank. We prove that Ranking achieves a
competitive ratio of 1 − 1/e, independently of the server capacities. The ratio of 1 − 1/e is
best possible for randomized algorithms [18]. Surprisingly, the original Ranking algorithm
has an optimal competitiveness for the more complex b-matching problem. We are not aware
of any other generalization of the classical online matching problem where this holds true.

Observe that we can also obtain a competitive ratio of 1−1/e using the following reduction
to standard online bipartite matching: Replace each server s with capacity bs by exactly
bs individual vertices of capacity 1. Each request adjacent to s gets incident edges to each
of these bs vertices. On the resulting graph with

∑
s∈S bs vertices on the left-hand side of

the bipartition, execute the Ranking algorithm. Such a reduction can also be applied for
deterministic online algorithms but only gives a competitive factor of 1/2.

Our result for the original Ranking algorithm, executed on the initial input graph G,
has the following implications. (1) From a theoretical point of view, an interesting question
is how much randomness is needed to obtain a competitiveness of 1 − 1/e. Our analysis
demonstrates that a straightforward execution of the barely random Ranking strategy
attains this ratio. No randomization over the server spots is necessary. (2) In practical
applications a ranking of the servers leads to simple and efficient allocation algorithms. With
a random permutation of a huge number of server spots, assignments might be difficult,
perhaps even impossible to compute.

In our analysis we first demonstrate that the framework by Devanur et al. [6] cannot
establish a competitiveness of 1 − 1/e for Ranking, when executed on the original graph
G. It only yields a competitiveness of 1/2. Therefore, as a main technical contribution, we
formulate a new configuration linear program (LP) for the b-matching problem. Using this
configuration LP, we then conduct a primal-dual analysis by extending the framework of
Devanur et al. [6]. We point out that, for the bipartite matchings with stochastic rewards,
Huang and Zhang [10] recently were the first to employ configuration LPs. However, the
concrete LPs used in [10] and in this paper are different, apart from a modeling of vertex
neighborhoods. Also, the analyses differ so as to obtain the desired performance ratios.

In Section 4 we investigate vertex-weighted b-matching, with the objective to maximize
the total weight of the constructed matching. We focus on randomized strategies and study
Perturbed-Greedy [1], which was introduced for vertex-weighted online bipartite matching,

S. Albers and S. Schubert 2:5

where each vertex s ∈ S has a capacity of 1. The algorithm, for each s ∈ S, computes a
rank based on an initial random choice. A request is matched to the eligible vertex s ∈ S

of highest rank. We investigate Perturbed-Greedy for the b-matching problem when
executed on the original input graph G, without the above reduction of splitting a server s

into bs vertices of unit capacity. We extend our analysis approach based on configuration
LPs and prove that the algorithm achieves an optimal competitive ratio of 1 − 1/e.

In summary, simple rank-based algorithms that make initial random choices for the servers
(but not for the server spots) achieve an optimal competitive ratio of 1 − 1/e, independently
of the server capacities. Furthermore, the paper by Huang and Zhang [10] and our work
show that configuration LPs can be more powerful than standard LPs in the analysis of more
advanced matching problems.

2 Deterministic algorithms for maximum-cardinality b-matching

It is easy to verify that an online algorithm that matches a new request to an eligible server
with largest remaining capacity does not achieve a competitiveness greater than 1/2.

In the following we present our natural RelativeBalance algorithm. Let loads denote
the (absolute) load of a server s ∈ S, i.e. the number of requests assigned to s so far. We
define the relative server load as ls := loads/bs. RelativeBalance simply assigns incoming
requests to an eligible neighbor with minimum relative server load.

Algorithm 1 RelativeBalance.

while a new request r ∈ R arrives do
Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min{ls : s ∈ N(r)} (break ties arbitrarily);
end

end

We analyze RelativeBalance by conducting a primal-dual analysis. For this, consider
the classical (relaxed) primal and dual LP of maximum cardinality online bipartite b-matching.
Here, we use a primal variable m(s, r) for each edge e = {s, r} ∈ E, where s ∈ S and r ∈ R,
indicating whether or not e is contained in the matching.

Primal: max
∑

{s,r}∈E

m(s, r)

s.t.
∑

r:{s,r}∈E

m(s, r) ≤ bs, (∀s ∈ S)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E) .

Dual: min
∑
s∈S

bs · x(s) +
∑
r∈R

y(r)

s.t. x(s) + y(r) ≥ 1, (∀{s, r} ∈ E)
x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

APPROX/RANDOM 2021

2:6 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Devanur et al. [6] developed an elegant framework that unifies the analysis of randomized
online algorithms for matching problems. We will extend their framework to analyze our
deterministic algorithm RelativeBalance. Whenever an online algorithm assigns a request
r to a server s, the gain of 1 in the primal objective function (and thus the size of the
matching) is translated into a gain of 1/c in the dual objective function by splitting it across
the dual variables x(s) and y(r). Here, c is a constant that will be maximized during the
analysis and will denote the competitive ratio of the algorithm, 0 < c ≤ 1. If an arriving
request remains unmatched, the dual solution will remain unchanged as well.

It then has to be shown that this can be done in a way such that all the dual constraints
are satisfied in the end. Let P and D be the value of the constructed primal and dual
solution, respectively. By summing over all steps of the algorithm, we get P = c · D, and
thus P ≥ c · Opt, by weak duality. This implies that the online algorithm is c-competitive.

In the case without vertex capacities, Devanur et al. [6] show that for the known optimal
randomized online algorithms that choose a random value xs ∈ [0, 1] for every server s ∈ S,
the gain of matching a request r to s can be split across x(s) and y(r) according to the
function g(xs) = exs−1. More precisely, in the unweighted scenario, they argue that setting

x(s) = g(xs)
c

and y(r) = 1 − g(xs)
c

with c = 1 − 1/e results in a dual solution that is feasible in expectation.
In our case with vertex capacities, we first have to deal with the fact that a server s

may be assigned multiple requests. Therefore, we increase the value of x(s) whenever this
happens. Moreover, we change the function that determines how the gain is split. Our
algorithm uses the relative load of the servers for its matching decisions instead of a ranking
based on the random values. Therefore, whenever RelativeBalance matches a request r

to a server s, we update

∆x(s) = f(ls)
c · bs

and y(r) = 1 − f(ls)
c

,

where f : [0, 1] → [0, 1] is a monotonically non-decreasing function and ls denotes the relative
load of s before the assignment. Observe that this increases the value of the dual solution by
exactly 1/c and guarantees x(s) ≥ 0 and y(r) ≥ 0 for all s ∈ S and r ∈ R, respectively.

Now, we have to show that f and c can be chosen such that this results in a feasible
dual solution, i.e. x(s) + y(r) ≥ 1 holds for all edges {s, r} ∈ E. If r is not matched by
RelativeBalance, then y(r) = 0. Nonetheless, we know that all of r’s neighbors had to be
fully loaded when r arrived. Thus, in this case, for all bs, we need that

x(s) + y(r) = 1
c · bs

bs−1∑
i=0

f

(
i

bs

)
≥ 1 . (1)

On the other hand, if r is matched to a server s′ by RelativeBalance, then we know
that ls′ ≤ ls had to hold at the time of r’s arrival. In this case, it therefore needs to hold that

x(s) + y(r) = 1
c

(
1
bs

loads−1∑
i=0

f

(
i

bs

)
+ 1 − f

(
loads′

bs′

))
≥ 1 , (2)

for all ratios loads′/bs′ ≤ loads/bs. Recall that loads′ and loads are absolute server loads.

▷ Claim 1. Let c := 1 − 1/d, where d > 1. Then, f (ls) = dls−1 satisfies both (1) and (2) if
d ≤ (1 + 1/bs)bs .

S. Albers and S. Schubert 2:7

Proof. First, observe that d ≤ (1 + 1/bs)bs implies d
1

bs − 1 ≤ 1/bs. It then follows that

1
c · bs

bs−1∑
i=0

f

(
i

bs

)
= 1

c · bs · d

bs−1∑
i=0

(
d

1
bs

)i

= 1
c · bs · d

· d − 1
d

1
bs − 1

≥ d − 1
c · bs · d · 1

bs

= 1 .

The last step follows from the choice of c. Moreover, we can show that

1
c

(
1
bs

loads−1∑
i=0

f

(
i

bs

)
+ 1 − f

(
loads′

bs′

))
= 1

c

(
1

bs · d

loads−1∑
i=0

(
d

1
bs

)i

+ 1 − dls′ −1

)

= 1
c

(
1

bs · d
· dls − 1

d
1

bs − 1
+ 1 − dls′ −1

)
≥ 1

c

(
dls − 1

d
+ 1 − dls′ −1

)
≥ 1

c

(
1 − 1

d

)
= 1 . ◁

We have now shown that the combination of f (ls) := dls−1 with c = 1 − 1/d yields a
feasible dual solution if 1 < d ≤ (1 + 1/bs)bs , for all s ∈ S. Here c denotes the competitiveness
of RelativeBalance. (1 + 1/bs)bs is a monotonically increasing function for bs > 0. The
largest possible value for d is therefore (1 + 1/bmin)bmin , where bmin = mins bs is the smallest
server capacity.

▶ Theorem 2. RelativeBalance achieves a competitiveness of 1 − 1/ (1 + 1/bmin)bmin ,
where bmin := mins∈S bs.

The competitive ratio of 1 − 1/ (1 + 1/bmin)bmin is optimal for deterministic algorithms:
Kalyanasudaram and Pruhs [13] showed that no deterministic online algorithm can achieve a
competitiveness greater than 1 − 1/ (1 + 1/b)b if all servers have a uniform capacity equal to
b. We can take their nemesis sequence and add servers with capacity b′ > b that are adjacent
to few (or no) extra requests.

3 Randomized algorithms for maximum-cardinality b-matching

Karp et al. [15] proposed an algorithm Random, for online bipartite matching, which assigns
a newly arriving request to a random eligible neighbor. They showed that Random is not
better than 1

2 -competitive. We prove that the performance ratio does not improve, for the
b-matching problem, even if all servers have a uniform capacity of b ≥ 2. The material on
Random with the proof of the following theorem is given in Appendix B.

▶ Theorem 3. Random does not achieve a competitive ratio better than 1/2 for the maximum
cardinality online b-matching problem, even if all server capacities are equal.

The remainder of this section is devoted to the Ranking algorithm. We will prove that
the algorithm achieves an optimal competitiveness of 1 − 1/e, for the maximum cardinality
online b-matching problem. Again, we execute Ranking on the original input graph G. We
will work with a version of Ranking (see Alg. 2) that is similar to that in [6]. Note that,
importantly, there is a single random choice for each server s ∈ S. Initially, a Zs ∈ [0, 1]
is picked uniformly at random. This value is used as a rank for s. An incoming request is
matched to the eligible server with smallest Z-value.

First, we argue that the classical primal-dual framework fails here, meaning that it is not
able to establish a competitive ratio better than 1/2. As usual, whenever Ranking assigns a
request r to a server s, we increase x(s) by and set y(r) to

∆x(s) = g(Zs)
c · bs

and y(r) = 1 − g(Zs)
c

,

APPROX/RANDOM 2021

2:8 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Algorithm 2 Ranking.

foreach server s ∈ S do
Pick Zs ∈ [0, 1] uniformly at random;

end
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min {Zs : s ∈ N(r)} (break ties consistently);
end

end

respectively. Again, g : [0, 1] → [0, 1] is a monotonically non-decreasing function and c is a
constant that will denote the competitive ratio of the algorithm. Let P and D be random
variables denoting the value of the random primal and dual solution, respectively. If we
were able to show that a combination of g and c yields a dual solution that is feasible
in expectation, then this would imply a competitive ratio of c. To see this, create a new
(deterministic) dual solution that sets its variables to the expected value of the corresponding
variable of the random solution and denote its value by D′. It then holds that the new dual
solution satisfies all dual constraints and thus Opt ≤ D′ = E[D]. Moreover, the framework
yields P = c · D, always, implying E[P] = c · E[D] ≥ c · Opt.

Now, consider the two input graphs GA and GB (see Fig. 1). If there was a combination of
g and c that always yields a dual solution that is feasible in expectation, then this combination
also has to satisfy the constraint for the edge {s, r} in both GA and GB in expectation. In
graph GA, this means

E[x(s) + y(r)] = E[g(Zs)]
c · bs

+ 1 − E[g(Zs)]
c

!
≥ 1 bs≥2⇐⇒ E[g(Zs)] ≤ (1 − c) · bs

bs − 1 .

In GB however, this means

E[x(s) + y(r)] = bs · E[g(Zs)]
c · bs

+ 0
!
≥ 1 ⇐⇒ E[g(Zs)] ≥ c .

Combining these two inequalities yields c ≤ (1 − c) · bs

bs−1 . This is equivalent to c ≤ bs

2bs−1 ,
which implies that the best competitive ratio that may be shown for Ranking with this
framework approaches 1/2 for larger server capacities bs.

...

GA: GB:

s r s

r

bs

Figure 1 Two example input graphs for Ranking. Graph GA only consists of a single edge
between a server s and a request r, whereas GB consists of a server s and its bs + 1 neighboring
requests. Request r denotes the last arriving request.

S. Albers and S. Schubert 2:9

Given this fact, we proceed and model the b-matching problem by a configuration LP. Let
Ns denote the set of neighbors of a server s. The configuration LP differs from the classical
matching LP in that it does not use a variable for every edge {s, r} indicating whether this
edge is chosen by the algorithm. Instead it uses a variable m(s, N), for every server s and
every subset N ⊆ Ns, indicating whether this subset is the set of requests matched to s.

Config LP: max
∑
s∈S

∑
N⊆Ns

min{|N |, bs} · m(s, N)

s.t.
∑

N⊆Ns

m(s, N) ≤ 1, (∀s ∈ S)

∑
s∈S

∑
N⊆Ns:r∈N

m(s, N) ≤ 1, (∀r ∈ R)

m(s, N) ≥ 0, (∀s ∈ S, ∀N ⊆ Ns) .

Dual CLP: min
∑
s∈S

x(s) +
∑
r∈R

y(r)

s.t. x(s) +
∑
r∈N

y(r) ≥ min{|N |, bs}, (∀s ∈ S, ∀N ⊆ Ns)

x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

Obviously, every valid b-matching in a graph G is captured by a solution of the configuration
LP. Its optimal solution is an upper bound on the cardinality of the maximum b-matching in
G. Hence the configuration LP is a suitable primal program for a primal-dual analysis.

We adapt the primal-dual analysis framework. Initially, all primal and dual variables are
set to 0. Whenever a new request r ∈ R arrives and Ranking assigns it to a server s, we
update the primal variables of s accordingly, keeping track of the set N of matching partners.
The value of the primal solution increases by 1. Moreover, we update the dual variables

∆x(s) = g(Zs)
c

and y(r) = 1 − g(Zs)
c

,

where g : [0, 1] → [0, 1] is a monotonically non-decreasing function to be determined during
the analysis and c is a constant that will denote the competitive ratio of the algorithm. Note
that we now do not have to divide the gain of x(s) by bs, since the dual objective function
does not have a factor bs before x(s). Therefore, we still translate a gain of 1 in the primal
solution to a gain of 1/c in the dual solution, guaranteeing that P = c ·D, where P and D are
the random variables denoting the value of the primal and dual solution, respectively. Similar
arguments to before imply that it is sufficient to satisfy all dual constraints in expectation to
show a competitive ratio of c.

Thus, it remains to show is that we can choose g and c such that

E

[
x(s) +

∑
r∈N

y(r)
]

≥ min{|N |, bs} ,

for all servers s ∈ S and all N ⊆ Ns. For this, we will need two lemmas similar to the
Dominance and Monotonicity Lemmas in [6]. We will consider two executions of Ranking
on G and on G \ s, for some server s ∈ S. Here, G \ s denotes the graph induced by the
vertex set S \ {s} ∪ R. We assume that Ranking uses the same Z-values Zt for all servers
t ∈ S \ {s} in both executions. Further, let r ∈ R be any request in G and let zr be the

APPROX/RANDOM 2021

2:10 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Z-value of its matching partner in the G \ s execution. If r is unmatched, we set zr := 1
and assign a dummy matching partner. Moreover, let ys(r) be the value of y(r) in the G \ s

execution. We impose from now on that g(1) = 1, which implies ys(r) = (1 − g (zr))/ c. We
use the idea of server spots. A server spot si of a server s, 1 ≤ i ≤ bs, denotes an individual
unit of a server that can accept a request. When Ranking assigns requests to a server s, we
assume without loss of generality that it assigns the j-th request to the server spot sj . A
server spot is matched if it has been assigned a request, and unmatched otherwise.

▶ Lemma 4. At any point during the parallel execution of Ranking on G and G \ s, the set
of unmatched server spots U in the G execution forms a superset of the unmatched server
spots Ũ in the G \ s execution. For all server spots s′

i ∈ U \ Ũ , it holds that Zs′ ≥ Zs. If
Zs′ = Zs and s′ ̸= s, then s has a higher priority in the tiebreaking.

Proof. By induction. Initially, the properties trivially hold, since U \ Ũ = {s1, . . . , sbs}
at the start. Then, whenever a new request r arrives, Ũ ⊆ U can only be violated if r is
assigned to a server spot ti ∈ Ũ in the G execution, but r is not assigned to ti in the G \ s

execution. There, it is either unmatched or matched to a different server spot, which leads
to a contradiction in either case. Since ti ∈ Ũ and r is a neighbor of the server t, r cannot
be unmatched in the G \ s execution. If Ranking chooses a different server spot tj for r in
the G \ s execution, then either i < j or i > j has to hold. i < j results in a contradiction
because ti ∈ Ũ and we defined that Ranking always chooses the unmatched server spot
with smallest index. Furthermore, i > j also results in a contradiction because tj ∈ Ũ ⊆ U

and thus Ranking would have chosen tj in the G execution as well. Moreover, if Ranking
assigns r to a server spot of a different server t′ in the G \ s execution, then Zt′ ≤ Zt has to
hold. However, Ũ ⊆ U implies that this server spot would also be unmatched and available in
the G execution. If Zt′ < Zt, Ranking would not have chosen an unmatched neighbor with
smallest Z-value in the G execution, and if Zt′ = Zt, then the tiebreak would be inconsistent
between the two executions.

Moreover, a new server spot t′
i is only added to U \ Ũ if the matching decision for r is

different in the two execution, i.e. the G execution assigns r to some server spot tj ∈ U \ Ũ

and the G \ s execution assigns r to t′
i ∈ Ũ . Therefore, it has to hold that either Zt′ > Zt

or Zt′ = Zt and t has a higher tiebreak priority than t′. By induction hypothesis, Zt ≥ Zs

and thus Zt′ ≥ Zs. If t′ ̸= s and Zt′ = Zt = Zs, then by induction hypothesis s has a higher
tiebreak priority than t, which in turn has a higher priority than t′. We conclude that s has
a higher tiebreak priority than t′. ◀

Hence, if a request r is unmatched in the G execution, it is also unmatched in the G \ s

execution. If r gets matched, its matching partner has a Z-value of at most zr. Since g is
non-decreasing with g(1) = 1, the following statement holds.

▶ Corollary 5. Given Zt for all servers t ∈ S \ {s}, y(r) ≥ ys(r) holds for all possible values
of Zs.

▶ Lemma 6. Given Zt for all servers t ∈ S \ {s}, let z1 ≥ . . . ≥ zk be the Z-values of the
matching partners of the k = |Ns| neighbors of s in a G \ s execution in non-increasing order.
Then, server s has at least min{a, bs} matching partners in an execution of Ranking on G,
where a is the largest possible integer such that Zs < za ≤ . . . ≤ z1.

Proof. Whenever a neighbor ri of s with zi > Zs arrives and s still has remaining capacity,
then by Lemma 4 ri will be matched to s. Among adjacent servers with remaining capacity,
s has the smallest Z-value and the highest priority in case of ties. ◀

S. Albers and S. Schubert 2:11

Now, we can finally show how to choose g and c such that the dual constraints are
satisfied in expectation. Let s be any server in G with k neighbors. Let zi be the Z-value
of the matching partner of neighbor ri ∈ Ns, 1 ≤ i ≤ k, in the G \ s execution. If k < bs,
we further define zk+1 = . . . = zbs = 0. Let z′

1 ≥ . . . ≥ z′
bs

then be the bs largest values of
{z1, . . . , zmax{k,bs}} in non-increasing order. Lemma 6 implies that

E

x(s)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥
bs∑

i=1

∫ z′
i

0

g(t)
c

dt .

Moreover, by Corollary 5, it holds for every neighbor r ∈ Ns of s

E

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ys(r) = 1 − g (zr)
c

,

where zr = zi for some i, 1 ≤ i ≤ k. Putting everything together yields

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ 1
c

(
bs∑

i=1

∫ z′
i

0
g(t) dt +

∑
r∈N

(1 − g (zr))
)

.

Note that
∑

r∈N (1 − g (zr)) is lower bounded by
∑min{|N |,bs}

i=1 (1 − g (z′
i)), since g is a non-

decreasing function with g(1) = 1 and the z′-values are an upper bound for the zr-values.
Plugging this in, we get

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ 1
c

min{|N |,bs}∑
i=1

(∫ z′
i

0
g(t) dt + 1 − g (z′

i)
)

!
≥ min{|N |, bs} .

Observe that the last inequality holds if g and c satisfy the following inequality, which is the
same inequality that emerges in the analysis of Ranking without server capacities.∫ z

0
g(t) dt + 1 − g (z) ≥ c , ∀z ∈ [0, 1] . (3)

It is easy to check that the combination of g(x) = ex−1 with c = 1 − 1/e satisfies (3) and
our additional condition g(1) = 1. By applying the law of total expectation, we finish the
proof:

E

[
x(s) +

∑
r∈N

y(r)
]

=
∫ 1

0
. . .

∫ 1

0
E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 dzt . . . dzt′

≥
∫ 1

0
. . .

∫ 1

0
min{|N |, bs} dzt . . . dzt′ = min{|N |, bs} .

▶ Theorem 7. Ranking is (1 − 1/e)-competitive for the maximum-cardinality online b-
matching problem (with variable server capacities).

APPROX/RANDOM 2021

2:12 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

4 Vertex-weighted b-matching

The work by Buchbinder et al. [4] implies a deterministic online algorithm with an optimal
competitiveness of 1−1/(1+1/bmin)bmin . We are not aware of any simpler strategy. Therefore,
we focus on randomized algorithms and extend our previous result for Ranking to the
vertex-weighted case. We will show that Perturbed-Greedy [1] achieves a competitiveness
of 1 − 1/e for vertex-weighted b-matching. Again, we execute the algorithm on the initial
input graph G.

Perturbed-Greedy is similar to Ranking; only the definition of ranks differs. For
each server s ∈ S, a single number Zs ∈ [0, 1] is chosen uniformly at random. The rank of s

is ws(1 − g(Zs)), where g : [0, 1] → [0, 1] is a monotonically increasing function that will be
set to g(x) = ex−1.

Algorithm 3 Perturbed-Greedy.

foreach server s ∈ S do
Pick Zs ∈ [0, 1] uniformly at random;

end
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg max{ws (1 − g (Zs)) : s ∈ N(r)} (break ties consistently);
end

end

We formulate the configuration LP and its dual for the vertex-weighted b-matching
problem, where we take into account that each matching edge incident to a server s has a
value of ws.

Config LP: max
∑
s∈S

∑
N⊆Ns

ws · min{|N |, bs} · m(s, N)

s.t.
∑

N⊆Ns

m(s, N) ≤ 1, (∀s ∈ S)

∑
s∈S

∑
N⊆Ns:r∈N

m(s, N) ≤ 1, (∀r ∈ R)

m(s, N) ≥ 0, (∀s ∈ S, ∀N ⊆ Ns) .

Dual CLP: min
∑
s∈S

x(s) +
∑
r∈R

y(r)

s.t. x(s) +
∑
r∈N

y(r) ≥ ws · min{|N |, bs}, (∀s ∈ S, ∀N ⊆ Ns)

x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

In the primal-dual analysis, we again update the primal variables as well as the dual
variables x(s) and y(r) whenever Perturbed-Greedy matches a request r to a server s.
We set

∆x(s) = wsg(Zs)
c

and y(r) = ws (1 − g(Zs))
c

S. Albers and S. Schubert 2:13

to ensure that the value of the dual solution is always 1/c times the value of the solution for
the configuration LP. Here, g : [0, 1] → [0, 1] is a monotonically increasing function and c is a
constant that will be the competitive ratio of the algorithm.

As before, it is sufficient to show that the dual constraints are satisfied in expectation. For
this, we have to adapt Lemma 4 and Lemma 6. We consider two execution of Perturbed-
Greedy on G and G \ s with the same Z-values Zt for all servers t ∈ S \ {s}. Moreover,
denote the neighbors of s in G by {r1, . . . , rk} = Ns and let zi, 1 ≤ i ≤ k, be the Z-value of
the matching partner σi of request ri in the G \ s execution, if ri is matched there. If ri is
unmatched, we set zr := 1 and assign a dummy matching partner σi with wσi := 0. Now,
further define ζi as the unique value in [0, 1] such that

ws (1 − g (ζi)) = wσi
(1 − g (zi)) ,

if it exists. Assuming that g is a monotonically increasing function with g(1) = 1, note that
such a solution can only not exist if wσi

(1 − g (zi)) > ws (1 − g (0)), in which case we define
ζi := 0. It is easy to see that Perturbed-Greedy would prefer server s over server σi if
Zs < ζi. Moreover, let ys(ri) be the value of y(ri) in the G \ s execution. It follows that

ys(ri) = wσi
(1 − g (zi))

c
≥ ws (1 − g (ζi))

c
.

We assume that Perturbed-Greedy assigns the j-th request matched to a server s to the
server spot sj .

▶ Lemma 8. At any point during the parallel execution of Perturbed-Greedy on G and
G \ s, it holds that the set of unmatched server spots U in the G execution forms a superset
of the unmatched server spots Ũ in the G \ s execution. For all server spots s′

i ∈ U \ Ũ ,
it holds that ws′ (1 − g (Zs′)) ≤ ws (1 − g (Zs)). If equality holds and s′ ̸= s, then s has a
higher priority in the tiebreaking.

Proof. By induction. The properties trivially hold initially. Then, whenever a new request
r arrives, Ũ ⊆ U can only be violated if r is assigned to a server spot ti ∈ Ũ in the G

execution, but r is not assigned to ti in the G \ s execution. There, it is either unmatched
or matched to a different server spot, which leads to a contradiction in either case. Since
ti ∈ Ũ and r is a neighbor of the server t, r cannot be unmatched in the G \ s execution. If
Perturbed-Greedy chooses a different server spot tj for r in the G\s execution, then either
i < j or i > j has to hold. i < j results in a contradiction because ti ∈ Ũ and we defined that
Perturbed-Greedy always chooses the server spot with smallest index. Furthermore, i > j

also results in a contradiction because tj ∈ Ũ ⊆ U and thus Perturbed-Greedy would have
chosen tj in the G execution as well. Moreover, if Perturbed-Greedy assigns r to a server
spot of a different server t′ in the G \ s execution, then wt′ (1 − g (Zt′)) ≥ wt (1 − g (Zt))
has to hold. However, Ũ ⊆ U implies that this server spot would also be unmatched and
available in the G execution. If wt′ (1 − g (Zt′)) > wt (1 − g (Zt)), Perturbed-Greedy
would not have chosen the correct neighbor in the G execution according to its definition,
and if wt′ (1 − g (Zt′)) = wt (1 − g (Zt)), then the tiebreak would be inconsistent between
the two executions.

Moreover, a new server spot t′
i is only added to U \ Ũ if the matching decision for

r is different in the two execution, i.e. the G execution assigns r to some server spot
tj ∈ U \ Ũ and the G \ s execution assigns r to t′

i ∈ Ũ . Therefore, it has to hold that either
wt′ (1 − g (Zt′)) < wt (1 − g (Zt)) or wt′ (1 − g (Zt′)) = wt (1 − g (Zt)) and t has a higher
tiebreak priority than t′. The induction hypothesis then finishes the proof. ◀

APPROX/RANDOM 2021

2:14 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

▶ Corollary 9. Given Zt for all servers t ∈ S \ {s}, y(ri) ≥ ys(ri) ≥ ws (1 − g (ζi))/ c holds
for all i, 1 ≤ i ≤ k, and all possible values of Zs.

▶ Lemma 10. Given Zt for all servers t ∈ S \ {s}, let ζ1 ≥ . . . ≥ ζk be the ζ-values of the
k = |Ns| neighbors of s in a G \ s execution in non-increasing order. Then, server s has at
least min{a, bs} matching partners in an execution of Perturbed-Greedy on G, where a

is the largest possible integer such that Zs < ζa ≤ . . . ≤ ζ1.

Proof. Whenever a neighbor ri of s with ζi > Zs (note that this implies ζi > 0) arrives
and s still has remaining capacity, then Lemma 8 implies that ri will be matched to s since
ws (1 − g (Zs)) > ws (1 − g (ζi)) = wσi

(1 − g (zi)) holds by definition. ◀

We finally show how to choose g and c such that the dual constraints are satisfied in
expectation. Let s be any server in G with k neighbors. Let ζi be the ζ-value of neighbor
ri ∈ Ns, 1 ≤ i ≤ k, in the G \ s execution. If k < bs, we further define ζk+1 = . . . = ζbs

= 0.
Let z′

1 ≥ . . . ≥ z′
bs

then be the bs largest values of {ζ1, . . . , ζmax{k,bs}} in non-increasing order.
Lemma 10 implies that

E

x(s)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 =
bs∑

i=1
ws

∫ z′
i

0

g(t)
c

dt .

Moreover, by Corollary 9, it holds for every neighbor r ∈ Ns of s

E

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws (1 − g (ζr))
c

,

where ζr = ζi for some i, 1 ≤ i ≤ k. Putting everything together yields

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws

c

(
bs∑

i=1

∫ z′
i

0
g(t) dt +

∑
r∈N

(1 − g (ζr))
)

.

Note that
∑

r∈N (1 − g (ζr)) is lower bounded by
∑min{|N |,bs}

i=1 (1 − g (z′
i)), since g is an

increasing function with g(1) = 1 and the z′-values are an upper bound for the ζr-values.
Plugging this in, we get

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws

c

min{|N |,bs}∑
i=1

(∫ z′
i

0
g(t) dt + 1 − g (z′

i)
)

!
≥ ws min{|N |, bs} .

Observe that this holds true if g and c fulfill the same inequality (3) as for Ranking. As
argued before, it is satisfied for g(x) = ex−1 and c = 1−1/e, which also satisfies our additional
constraint g(1) = 1. Therefore, using the law of total expectation, we conclude that

E

[
x(s) +

∑
r∈N

y(r)
]

=
∫ 1

0
. . .

∫ 1

0
E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 dzt . . . dzt′

≥
∫ 1

0
. . .

∫ 1

0
ws min{|N |, bs} dzt . . . dzt′ = ws min{|N |, bs} .

▶ Theorem 11. Perturbed-Greedy is (1 − 1/e)-competitive for the vertex-weighted online
b-matching problem (with variable server capacities).

S. Albers and S. Schubert 2:15

References

1 G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching
and single-bid budgeted allocations. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1253–1264. SIAM, 2011.

2 Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. Algorithmica,
45(1):69–90, 2006.

3 B.E. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,
39(1):80–87, 2008.

4 N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-auctions
revenue. In Proceedings of the 15th Annual European Symposium on Algorithms (ESA), volume
4698 of Lecture Notes in Computer Science, pages 253–264. Springer, 2007.

5 K. Chaudhuri, C. Daskalakis, R.D. Kleinberg, and H. Lin. Online bipartite perfect matching
with augmentations. In Proceedings of the 28th IEEE International Conference on Computer
Communications (INFOCOM), pages 1044–1052, 2009.

6 N.R. Devanur, K. Jain, and R.D. Kleinberg. Randomized primal-dual analysis of RANKING
for online bipartite matching. In Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 101–107, 2013.

7 A. Eden, M. Feldman, A. Fiat, and K. Segal. An economics-based analysis of RANKING for
online bipartite matching. In Proceedings of the 4th Symposium on Simplicity in Algorithms
(SOSA), pages 107–110, 2021.

8 G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to adwords. In Proceedings of the 19thAnnual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 982–991, 2008.

9 E.F. Grove, M.-Y. Kao, P. Krishnan, and J.S. Vitter. Online perfect matching and mobile
computing. In Proceedings 4th International Workshop, on Algorithms and Data Structures
(WADS), volume 955 of Lecture Notes in Computer Science, pages 194–205. Springer, 1995.

10 Z. Huang and Q. Zhang. Online primal dual meets online matching with stochastic rewards:
configuration LP to the rescue. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 1153–1164, 2020.

11 Z. Huang, Q. Zhang, and Y. Zhang. Adwords in a panorama. In Proceedings of the 61st IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426, 2020.

12 B. Jin and D.P. Williamson. Improved analysis of RANKING for online vertex-weighted
bipartite matching. CoRR, abs/2007.12823, 2020. arXiv:2007.12823.

13 B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithm for online b-matching.
Theor. Comput. Sci., 233(1-2):319–325, 2000.

14 C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 587–596.
ACM, 2011.

15 R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 352–358, 1990.

16 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing LPs. In Proceedings of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 597–606, 2011.

17 A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 728–737, 2012.

18 A. Mehta, A. Saberi, U.V. Vazirani, and V.V. Vazirani. Adwords and generalized online
matching. J. ACM, 54(5):22, 2007.

APPROX/RANDOM 2021

http://arxiv.org/abs/2007.12823

2:16 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

A Comparison of RelativeBalance and Allocation

Consider the algorithm Allocation [4] specialized for maximum cardinality online b-
matching. It is the other known optimal deterministic online algorithm for this problem
besides RelativeBalance.

Algorithm 4 Allocation.

Initialize x(s) = 0, ∀s ∈ S, and y(r) = 0, ∀r ∈ R;
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors s of r with x(s) < 1;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min{x(s) : s ∈ N(r)} (break ties arbitrarily);
Upadte y(r) = 1 − x(s);
Update x(s) = x(s) ·

(
1 + 1

bs

)
+ 1

(d−1)bs
;

end
end

The analysis of Buchbinder et al. [4] can be extended to show that Allocation constructs
a feasible solution for the classical dual matching LP with its variables x(s) and y(r). Moreover,
it can be shown that the size of the constructed matching is at least c = 1 − 1/d times
the value of the constructed dual solution, where d = (1 + 1/bmin)bmin . This implies that
Allocation achieves the optimal competitiveness of 1 − 1/ (1 + 1/bmin)bmin .

Recall that RelativeBalance matches a request r to an eligible neighbor with minimum
relative server load. In contrast, Allocation matches r to a neighbor s with minimum
x(s), if x(s) < 1. It can be proven by induction that at any point during the execution of
Allocation, a server s with capacity bs and loads assigned requests has

x(s) = 1
d − 1

((
1 + 1

bs

)loads

− 1
)

. (4)

This has two consequences: on the one hand, Allocation may choose a different
matching partner for r compared to RelativeBalance in certain situations, since loads/bs ≤
loads′/bs′ does not imply (1 + 1/bs)loads ≤ (1 + 1/bs′)loads′ . On the other hand, Allocation
considers s to be full once x(s) ≥ 1. Equation (4) implies that this is the case when

(
1 + 1

bs

)loads

≥
(

1 + 1
bmin

)bmin

.

Observe that this may occur before loads becomes bs, meaning before s actually has been
assigned bs requests. This implies that an unmodified version of Allocation may leave
some server spots unused and thus not create a maximal matching.

S. Albers and S. Schubert 2:17

B Analysis of Random

We start with a pseudo-code description of Random.

Algorithm 5 Random.

while a new request r ∈ R arrives do
Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to a random s ∈ N(r);
end

end

We extend Random’s worst case input graph of the problem without server capacities
and show that Random also does not achieve a competitive ratio better than 1

2 for the online
b-matching problem, even if all server capacities are equal. Consider a graph with n servers
S = {s1, . . . , sn} and n rounds of requests R = R1∪̇ . . . ∪̇Rn, where n = 2k. Every server s

has the same capacity bs := b and each round contains b identical requests that all have the
same neighbors. The different rounds arrive one after another, such that the first request of
Ri+1 only arrives after the last request of Ri arrived, 1 ≤ i < n. Requests within the same
round can arrive in an arbitrary order. All requests r ∈ Ri of the i-th round are adjacent to
server si. This implies that there exists a perfect matching of size b · n that matches Ri to si.
Moreover, all requests r ∈ R1∪̇ . . . ∪̇Rk of the first half of rounds are additionally adjacent
to all servers sk+1, . . . , sn of the second half (see Fig. 2).

S R

arrival

Figure 2 A bad input for Random. There are n = 6 servers, each with capacity b = 3, and n

rounds of requests, each containing b identical requests. For clarity, the adjacencies of a round are
depicted as a whole. Note that requests still arrive individually one after another and not together
with their complete round.

Intuitively, Random performs poorly on this graph since its very unlikely that it makes
the correct matching decision for the requests from the first half or rounds, i.e. assigning
a request from Ri to server si. Observe that - irrespective of the matching decision made

APPROX/RANDOM 2021

2:18 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

by Random for the requests of the first half of rounds - every server of the second half will
be assigned exactly b requests. Let X be a random variable indicating how many requests
were matched to the first half of servers by Random. The size of the constructed matching
M is then |M | = b · k + X. Therefore, it is possible to compute the expected size of the
constructed matching by determining the expected value of X.

Let Xi, 1 ≤ i ≤ k, be the number of requests assigned to server si. It holds that
X =

∑k
i=1 Xi. By design, only requests from Ri may be assigned to si, for 1 ≤ i ≤ k. Let r

be any request from such a round Ri and let pi be the probability that Random assigns
r to its perfect matching partner si. Observe that pi depends on the number of servers in
the second half with remaining capacity. At most b · (i − 1) + (b − 1) requests arrived before
r (r may be the last request of Ri). Hence at most (i − 1) of the last k servers can be full,
implying at least (k − i + 1) eligible neighbors in the second half of servers for all requests
from Ri. Furthermore, server si cannot become full before the last request of Ri arrives.
Random has therefore at least (k − i + 2) servers to choose from when assigning a request
from round Ri. This yields

E[X] =
k∑

i=1
E[Xi] ≤

k∑
i=1

b · pi ≤ b
k∑

i=1

1
k + 2 − i

= b
k+1∑
j=2

1
j

= b (Hk+1 − 1) ≤ b ln(k + 1) ,

where Hn denotes the n-th harmonic number and the inequality Hn ≤ ln(n) + 1 is used. The
size of the perfect matching in this graph is b · n. Thus, Random achieves a competitive
ratio of

E[|M |]
b · n

≤ b · k + b ln(k + 1)
b · n

= 1
2 + ln(n/2 + 1)

n

n→∞−→ 1
2 .

This finishes the proof of Theorem 3.

Bag-Of-Tasks Scheduling on Related Machines
Anupam Gupta #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Amit Kumar #

Computer Science and Engineering Department, Indian Institute of Technology, Delhi, India

Sahil Singla #

Department of Computer Science, Princeton University, NJ, USA

Abstract
We consider online scheduling to minimize weighted completion time on related machines, where
each job consists of several tasks that can be concurrently executed. A job gets completed when all
its component tasks finish. We obtain an O(K3 log2 K)-competitive algorithm in the non-clairvoyant
setting, where K denotes the number of distinct machine speeds. The analysis is based on dual-fitting
on a precedence-constrained LP relaxation that may be of independent interest.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Scheduling algorithms

Keywords and phrases approximation algorithms, scheduling, bag-of-tasks, related machines

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.3

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2107.06216

Funding Anupam Gupta: Supported in part by NSF awards CCF-1907820, CCF1955785, and
CCF-2006953.

1 Introduction

Scheduling to minimize the weighted completion time is a fundamental problem in scheduling.
Many algorithms have been developed in both the online and offline settings, and for the
cases where machines are identical, related, or unrelated. Most of the work, however, focuses
on the setting where each job is a monolithic entity, and has to be processed in a sequential
manner.

In this work, we consider the online setting with multiple related machines, where each
job consists of several tasks. These tasks are independent of each other, and can be executed
concurrently on different machines. (Tasks can be preempted and migrated.) A job is
said to have completed when all its component tasks finish processing. We consider the
non-clairvoyant setting where the algorithm does not know the size of a task up-front, but
only when the task finishes processing. Such instances arise in operating system schedulers,
where a job and its tasks correspond to a process and its threads that can be executed in
parallel. This setting is sometimes called a “bag of tasks” (see e.g. [2, 10, 4]).

The bag-of-tasks model can be modeled using precedence constraints. Indeed, each job is
modeled as a star graph, where the tasks correspond to the leaves (and have zero weight),
and the root is an auxiliary task with zero processing requirement but having weight wj .
Hence the root can be processed only after all leaf tasks have completed processing. The goal
is to minimize total weighted completion time. Garg et al. [7] gave a constant-competitive
algorithm for this problem for identical machines, in a more general setting where tasks form
arbitrary precedence DAGs.

© Anupam Gupta, Amit Kumar, and Sahil Singla;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anupamg@cs.cmu.edu
mailto:amitk@cse.iitd.ac.in
mailto:singla@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.3
https://arxiv.org/abs/2107.06216
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Bag-Of-Tasks Scheduling on Related Machines

We extend this result to the setting of related machines where machine i has speed si.
By losing a constant factor, we assume that all speeds are powers of some constant C. Let K

denote the number of distinct machine speeds. In §2, we show that this problem is strictly
more challenging than in the identical machines setting:

▶ Theorem 1 (Lower Bound). Any online non-clairvoyant algorithm has Ω(K) competitive
ratio for bags-of-tasks on related machines.

The lower bound arises because we want to process larger tasks on fast machines, but we
have no idea about the sizes of the tasks, so we end up clogging the fast machines with small
tasks: this issue did not arise when machines were identical. Given the lower bound, we now
look for a non-clairvoyant scheduling algorithm with a competitive ratio that depends on K,
the number of distinct speeds. This number may be small in many settings, e.g., when we
use commodity hardware of a limited number of types (say, CPUs and GPUs). Our main
result is a positive answer to this question:

▶ Theorem 2 (Upper Bound). The online non-clairvoyant algorithm for bags-of-tasks on
related machines has a competitive ratio of §3 is O(min{K3 log2 K, K + log n}).

Our algorithm uses a greedy strategy. Instead of explicitly building a schedule, it assigns
(processing) rates to tasks at each time t. Such a rate assignment is called feasible if for
every k, the rate assigned to any subset of k tasks is at most the total speed of the k fastest
machines. Using an argument based on Hall’s matching theorem, a schedule exists if and
only if such a rate assignment can be found. To assign these rates, each alive task gets a
“priority”, which is the ratio of the weight of the job containing it to the number of alive tasks
of this job. In other words, a task with low weight or with many tasks gets a low priority.
We assign feasible rates to alive tasks in a “fair manner”, i.e., we cannot increase the rate of
a high priority task by decreasing the rate of a lower priority task. To efficiently find such
feasible rates, we use a water-filling procedure.

The analysis proceeds using the popular dual-fitting approach, but we need new ideas:
(i) we adapt the precedence-constrained LP relaxation for completion time in [5] to our
setting. A naive relaxation would define the completion time of a task as the maximum of
the (fractional) completion times of each of the tasks, where the fractional completion time
of a task is the sum over times t of the fraction of the task remaining at this time Instead,
we define Uj,t, for a job j and time t as the maximum over all tasks v for j of the fraction of
v which remains to be completed at time t, the completion time of j as

∑
t Ujt. (See §4 for

details.) (ii) Although it is natural to divide the machines into classes based on their speeds,
we need a finer partitioning, which drives our setting of dual variables. Indeed, the usual
idea of dividing up the job’s weight equally among the tasks that are still alive only leads to
an O(log n)-competitiveness (see §5). To do better, we first preprocess the instance so that
distinct machine speeds differ by a constant factor, but the total processing capacity of a
slower speed class is far more than that of all faster machines. Now, at each time, we divide
the machines into blocks. A constant fraction of the blocks have the property that either
the average speed of the machines in the block is close to one of the speed classes, or the
total processing capacity of a block is close to that of all the machines of a speed class. It
turns out that our dual-fitting approach works for accounting the weight of jobs which get
processed by such blocks; proving this constitutes the bulk of technical part of the analysis.
Finally, we show that most jobs (in terms of weight) get processed by such blocks, and hence
we are able to bound the overall weighted completion time. We present the proofs in stages,
giving intuition for the new components in each of the sections.

A. Gupta, A. Kumar, and S. Singla 3:3

1.1 Related Work
Minimizing weighted completion time on parallel machines with precedence constraints has
O(1)-approximation in the offline setting: Li [9] improves on [8, 11] to give a 3.387 + ε-
approximation. For related machines the precedence constraints make the problem harder:
there is an O(log m/ log log m)-approximation [9] improving on a prior O(log K) result [5],
and an ω(1) hardness under certain complexity assumptions [3]. Here m denotes the number
of machines. These results are for offline and hence clairvoyant settings, and do not apply to
our setting of non-clairvoyant scheduling.

In the setting of parallel machines, there has been recent work on minimizing weighted
completion time in DAG scheduling, where each job consists of a set of tasks with precedence
constraints between them given by a DAG [13, 1]. [7] generalized this to the non-clairvoyant
setting and gave an O(1)-competitive algorithm. Our algorithm for the related case is based
on a similar water-filling rate assignment idea. Since the machines have different speeds, a set
of rates assigned to tasks need to satisfy a more involved feasibility condition. Consequently,
its analysis becomes much harder; this forms the main technical contribution of the paper.
Indeed, even for the special case considered in this paper where every DAG is a star, we
can show a lower bound of Ω(K) on the competitive ratio of any non-clairvoyant algorithm.
In the full version, we show that any non-clairvoyant algorithm for related machines DAG
scheduling must have Ω

(log m
log log m

)
-competitive ratio.

Our problem also has similarities to open shop scheduling. In open shop scheduling, each
jobs consists of several tasks, where each task v (for job j) needs to be processed on a distinct
machine for pvj amount of time. However, unlike our setting, two tasks for a job cannot
be processed simultaneously on different machines. [12] considered open shop scheduling in
the offline setting for related machines and gave a (2 + ε)-approximation. [6] considered a
further generalization of our problem to unrelated machines, where the tasks corresponding
to distinct jobs need not be disjoint. They gave a constant-factor approximation algorithm,
again offline.

1.2 Paper Organization
In this extended abstract, we first give the algorithm in §3, and the linear program in §4. A
simpler proof of O(K + log n)-competitiveness is in §5. We show poly(K)-competitiveness
for the case of a single job (which corresponds to makespan minimization) in §6, and then
give the complete proof for the general case in §7.

2 Problem Statement and the Ω(K) Hardness

Each job j has a weight wj and consists of tasks T (j) = {(j, 1), (j, 2), . . . , (j, kj)} for some
kj . Each task v = (j, ℓ) has an associated processing requirement/size pv = p(j,ℓ). The job j

completes when all its associated tasks finish processing. We use letters j, j′, etc. to denote
jobs, and v, v′, etc. to denote tasks (j, ℓ).

There are m machines with speeds s1 ≥ s2 ≥ . . . ≥ sm. The goal is to minimize the
weighted completion time of the jobs. We allow task preemption and migration, and different
tasks of a job can be processed concurrently on different machines. However, a task itself
can be processed on at most one machine at any time. In this extended abstract we consider
the special case when all release dates are 0, but our results also extend to the more general
setting of arbitrary release dates (details in the full version). Let Sk := s1 + . . .+sk denote the
total speed of the fastest k machines. Since we care about the number of distinct speeds, we
assume there are K speed classes, with speeds σ1 > σ2 > . . . > σK . There are mi machines
having speed σi, where

∑
i mi = m.

APPROX/RANDOM 2021

3:4 Bag-Of-Tasks Scheduling on Related Machines

▶ Assumption 3 (Increasing Capacity Assumption). For parameter γ ≥ 1:
(1) (Falling Speeds.) For each ℓ, we have σi/σi+1 ≥ 64.
(2) (Increasing Capacity.) For each ℓ, the total processing capacity of speed class ℓ is at least

twice that of the previous (faster) speed classes. I.e., mℓσℓ ≥ 2(m1σ1 + . . . + mℓ−1σℓ−1).
(3) (Speed-up.) The algorithm uses machines that are γ times faster than the adversary’s

machines.

▶ Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3
by losing a factor O(γK) in the competitive ratio.

Proof. (Sketch) For the first part, we round down the speed of each machine to a power
of 64. This changes the completion time by at most a factor of 64. The second increasing
capacity assumption is not without loss of generality – we greedily find a subset of speed
classes by losing O(K) factor in competitive ratio (see details in Appendix A). Finally, the
γ-speedup can only change the competitive ratio by γ factor. ◀

Next we show that any online algorithm has to be Ω(K)-competitive even for a single job
with the machines satisfying increasing capacity Assumption 3.

▶ Proposition 5. Any online algorithm is Ω(K)-competitive even for a single job under
increasing capacity Assumption 3.

Proof. (Sketch) Consider a single job j with m tasks, where m is the number of machines.
For every speed class ℓ, there are mℓ tasks of size σℓ – call these tasks Tℓ(j). Since there is
only one job, the objective is to minimize the makespan. The offline (clairvoyant) objective
is 1, since all tasks can be assigned to machines with matching speeds. However, any
online algorithm incurs a makespan of Ω(K). Here is an informal argument, which can be
proved even for randomized algorithms against oblivious adversaries: since there is no way
to distinguish between the tasks, the algorithm can at best run all the alive tasks at the
same speed. The tasks in TK(j) will be the first to finish by time mK σK∑

ℓ
mℓσℓ

≥ 1
2 , where the

inequality follows from the increasing capacity assumption. At this time, the processing on
tasks from Tℓ(j) for ℓ < K has been very small, and so tasks in TK−1(j) will require about
1/2 more units of time to finish, and so on. ◀

3 The Scheduling Algorithm

The scheduling algorithm assigns, at each time t, a rate Lt
v to each unfinished task v. The

following lemma (whose proof is deferred to the appendix) characterizes rates that correspond
to schedules:

▶ Lemma 6. A schedule S is feasible if for every time t and every value of k:

(⋆) the total rate assigned to any subset of k tasks is at most γ · Sk.

For each time t, we now specify the rates Lt
v assigned to each unfinished task v. For

job j, let T t(j) be the set of tasks in T (j) which are alive at time t. Initially all tasks are
unfrozen. We raise a parameter τ , starting at zero, at a uniform speed. The values taken by
τ will be referred to as moments. For each job j and each task v ∈ T t(j) that is unfrozen,
define a tentative rate at τ to be

Lt
v := wj

|T t(j)| · τ . (1)

A. Gupta, A. Kumar, and S. Singla 3:5

Hence the tentative rates of these unfrozen tasks increase linearly, as long as condition (⋆) is
satisfied. However, if (⋆) becomes tight for some subset V of alive tasks, i.e.,

∑
v∈V Lt

v =
γ · S|V |, pick a maximal set of such tasks and freeze them, fixing their rates at their current
tentative values. (Observe the factor of γ appears on the right side because we assume the
machines in the algorithm to have a speedup of γ.) Now continue the algorithm this way,
raising τ and the Lt

v values of remaining unfrozen tasks v until another subset gets tight,
etc., stopping when all jobs are frozen. This defines the Lt

v rates for each task v for time t.
By construction, these rates satisfy (⋆).

3.1 Properties of the Rate Assignment
The following claim shows that all alive tasks corresponding to a job get frozen simultaneously.

▶ Lemma 7 (Uniform Rates). For any time t and any job j, all its alive tasks (i.e., those in
T t(j)) freeze at the same moment τ , and hence get the same rate.

Proof. For the sake of contradiction, consider the first moment τ where a maximal set V of
tasks contains v but not v′, for some job j with v, v′ ∈ T (j). Both v, v′ have been treated
identically until now, so Lt

v = Lt
v′ . Also, by the choice of τ ,

∑
u∈V :u ̸=v Lt

u + Lt
v = γS|V |.

Since we maintain feasibility at all moments,∑
u∈V :u̸=v Lt

u + Lt
v + Lt

v′ ≤ γS|V |+1 and
∑

u∈V :u̸=v Lt
u ≤ γS|V |−1 .

This implies Lt
v ≥ γs|V | and Lt

v′ ≤ γs|V |+1. Since Lt
v = Lt

v′ and s|V | ≥ s|V |+1, all of these
must be equal. In that case, by the maximality of set V , the algorithm should have picked
V ∪ {v′} instead of V . ◀

For a task v ∈ T t(j), define w̃t(v) := wj/|T t(j)| to be task v’s “share” of the weight of
job j at time t. So if task v freezes at moment τ , then its rate is Lt

v = w̃t(v) · τ . Let us relate
this share for v to certain averages of the weight. (Proof in Appendix B)

▶ Corollary 8. Fix a time t. Let V be the set of tasks frozen by some moment τ . For a task
v ∈ V ,

(i) if V ′ ⊆ V is any subset of tasks which freeze either at the same moment as v, or after
it, then w̃t(v)

s|V |
≥ w(V ′)

S|V |
.

(ii) if V ′′ ⊆ V is any subset of tasks which freeze either at the same moment as v, or before
it, then w̃t(v)

Lt
v

≤ w̃t(V ′′)∑
v′∈V ′′ Lt

v′
.

3.2 Defining the Blocks
The rates for tasks alive at any time t are defined by a sequence of freezing steps, where
some group of tasks are frozen: we call these groups blocks. By Lemma 7, all tasks in T t(j)
belong to the same block. The weight w(B) of block B is the total weight of jobs whose
tasks belong to B. Let Bt

1, Bt
2, . . . be the blocks at time t in the order they were frozen, and

τ t
1, τ t

2, . . . be the moments at which they froze. Letting bt
r := |Bt

1 ∪ . . . ∪ Bt
r|, we get that any

task v ∈ Bt
r satisfies τ t

v · w(Bt
r) = γ(Sbt

r+1
− Sbt

r
).

Each block Bt
r has an associated set of machines, namely the machines on which the

tasks in this block are processed – i.e., the machines indexed bt
r−1 + 1, . . . , bt

r. We use m(B)
to denote the set of machines associated with a block B. Since |B| = |m(B)| and the jobs in
B are processed on m(B) in a pre-emptive manner at time t, the rate assigned to any job is
at least the slowest speed (and at most the fastest speed) of the machines in m(B).

APPROX/RANDOM 2021

3:6 Bag-Of-Tasks Scheduling on Related Machines

4 The Analysis and Intuition

We prove the competitiveness by a dual-fitting analysis: we give a primal-dual pair of LPs,
use the algorithm above to give a feasible primal, and then exhibit a feasible dual with value
within a small factor of the primal cost.

In the primal LP, we have variables xivt for each task v, machine i, and time t denoting
the extent of processing done on task v at machine i during the interval [t, t + 1]. Here Uj,t

denotes fraction of job j finished at or after time t, and Cj denotes the completion time of
job j.

min
∑

j wjCj +
∑

j,t wjUj,t

Uj,t ≥
∑

t′≥t

∑
i

xivt′
pv

∀j, ∀v ∈ T (j), ∀t (2)

Cj ≥
∑

t

∑
i

xivt

si
∀j, ∀v ∈ T (j) (3)∑

i

∑
t

xivt

pv
≥ 1 ∀j, ∀v ∈ T (j) (4)∑

v
xivt

si
≤ 1 ∀i, ∀t (5)

The constraint (2) is based on precedence-constrained LP relaxations for completion time.
Indeed, each job can be thought of as a star graph with a zero size task at the root preceded
by all the actual tasks at the leaf. In our LP, for each time t, we define Uj,t ∈ [0, 1] to be the
maximum over all tasks v ∈ T (j) of the fraction of v that remains (the RHS of (2)), and the
completion time of j is at least the total sum over times t of Uj,t values. Since we do not
explicitly enforce that a task cannot be processed simultaneously on many machines, the
first term

∑
j wjCj is added to avoid a large integrality gap. We show feasibility of this LP

relaxation (up to factor 2) in §C.

▷ Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at
most 2 cost(S).

The linear programming dual has variables αj,v, δj,v, δj,v,t corresponding to constraints
(4),(3),(2) for every job j and task v ∈ T (j), and βi,t corresponding to constraints (5) for
every machine i and time t:

max .
∑

j,v αj,v −
∑

i,t βi,t

αj,v

pv
≤ βi,t

si
+

∑
t′≤t

δj,v,t

pv
+ δj,v

si
∀j, ∀i, ∀t, ∀v ∈ T (j) (6)∑

v∈T (j) δj,v ≤ wj ∀j (7)∑
v∈T (j) δj,v,t ≤ wj ∀j, t (8)

We now give some intuition about these dual variables. The quantity δj,v,t should be
thought of the contribution (at time t) towards the weighted flow-time of j. Similarly, δj,v is
global contribution of v towards the flow-time of v. (In the integral case, δj,v would be wj

for the task which finishes last. If there are several such tasks, δj,v would be non-zero only
for such tasks only and would add up to wj). The quantity αj,v can be thought of as v’s
contribution towards the total weighted flow-time, and βi,t is roughly the queue size at time
t on machine i. Constraint (6) upper bounds αj,v in terms of the other dual variables. More
intuition about these variables can be found in §4.2.

A. Gupta, A. Kumar, and S. Singla 3:7

4.1 Simplifying the dual LP
Before interpreting the dual variables, we rewrite the dual LP and add some additional
constraints. Define additional variables αj,v,t for each job j and task v ∈ T (j) and time t,
such that variable αj,v =

∑
t αj,v,t. We add a new constraint:∑

v∈T (j) αj,v,t ≤ wj . (9)

This condition is not a requirement in the dual LP, but we will set αj,v,t to satisfy it.
Assuming this, we set δj,v,t := αj,v,t for all jobs j, tasks v ∈ T (j) and times t; feasibility
of (9) implies that of (8). Moreover, (6) simplifies to∑

t′≥t

αj,v,t′

pv
≤ βi,t

si
+ δj,v

si
.

Observe that we can write pv as the sum of the rates, and hence as pv =
∑

t′ Lt′

v . Since this
is at least

∑
t′≥t Lt′

v for any t, we can substitute above, and infer that it suffices to verify the
following condition for all tasks v ∈ T (j), time t, and time t′ ≥ t:

αj,v,t′ ≤ βi,t·Lt′
v

si
+ δj,v·Lt′

v

si
. (10)

Henceforth, we ensure that our duals (including αj,v,t) satisfy (9),(10) and (7).

4.2 Interpreting the Duals and the High-Level Proof Idea
We give some intuition about the dual variables, which will be useful for understanding the
subsequent analysis. We set dual variables αj,v such that for any job j, the sum

∑
v∈T (j) αj,v

is (approximately) the weighted completion of job j. This ensures that
∑

j,v αj,v is the total
weighted completion of the jobs. One way of achieving this is as follows: for every time t

and task-job pair (j, v) we define αj,v,t variables such that they add up to be wj if job j is
unfinished at time t (i.e., (9) is satisfied with equality). If αj,v is set to

∑
t αj,v,t, then these

αj,v variables would add up to the weighted completion time of j.
The natural way of defining αj,v,t is to evenly distribute the weight of j among all the

alive tasks at time t, i.e., to set αj,v,t = wj

T t(j) . This idea works if we only want to show that
the algorithm is O(log n)-competitive, but does not seem to generalize if we want to show
O(K)-competitiveness. The reason for this will be clearer shortly, when we discuss the δj,v

variables.
Now we discuss βi,t dual variables. We set these variables so that

∑
t βi,t is a constant

(less than 1) times the total weighted completion time. This ensures that the objective value
of the dual LP is also a constant times the total weighted completion time. A natural idea
(ignoring constant factors for now) is to set βi,t = w(At)

Kmℓ
, where At is the set of alive jobs

at time t and ℓ is the speed class of machine i. Since we have put an Ω(K) term in the
denominator of βi,t (and no such term in the definition of αj,v), ensuring the feasibility of (6)
would require a speed augmentation of Ω(K).

Finally, consider the δj,v dual variables. As (7) suggests, setting δj,v is the same as
deciding how to distribute the weight wj among the tasks in T (j). Notice, however, that
this distribution cannot depend on time (unlike αj,v,t where we were distributing wj among
all the alive tasks at time t). In the ideal scenario, tasks finishing later should get high δj,v

values. Since we are in the non-clairvoyant setting, we may want to set δj,v = wj

|T (j)| . We
now argue this can lead to a problem in satisfying (10).

Consider the setting of a single unit-weight job j initially having n tasks, and so we
set δj,v = 1

n for all v. Say that n = mℓ for a large value of ℓ: by the increasing capacity
assumption, mℓ ≈ m1 + . . . + mℓ. Now consider a later point in time t when only n′ tasks

APPROX/RANDOM 2021

3:8 Bag-Of-Tasks Scheduling on Related Machines

remain, where n′ = mℓ′ for some speed class ℓ′ ≪ ℓ. At this time t, each of the n′ surviving
tasks have αj,v,t = 1

n′ . But look at the RHS of (10), with machine i of speed class ℓ. The
rate Lt

v will be very close to σℓ′ (again, by the increasing capacity assumption), and so both
the terms would be about σℓ′

mℓσℓ
. However, mℓσℓ could be much larger than mℓ′σℓ′ , and so

this constraint will not be satisfied. In fact, we can hope to satisfy (10) at some time t only if
n′ is close to n, say at least n/2. When the number of alive tasks drops below n/2, we need
to redistribute the weight of j among these tasks, i.e., we need to increase the δj,v value for
these tasks, to about 1

n/2 . Since these halving can happen for log n steps, we see that (3) is
violated by a factor of log n. These ideas can be extended to give an O(log n+K)-competitive
algorithm for arbitrary inputs; see §5 for details. To get a better bound, we need a more
careful setting of the dual variables, which we talk about in §6 and §7.

5 Analysis I: A Weaker O(K + log n) Guarantee

We start with a simpler analysis which yields an O(K +log n)-competitiveness. This argument
will not use the increasing capacity assumption from Assumption 3; however, the result
gives a competitiveness of O(max(K, log n)) which is logarithmic when K is small, whereas
our eventual result will be O(min(KO(1), K + log n)), which can be much smaller when
K ≪ log n.

▶ Theorem 10. The scheduling algorithm in §3 is O(K + log n)-competitive.

Proof. For each job j, we arrange the tasks in T (j) in descending order of their processing
requirements. (This is the opposite of the order in which they finish, since all alive tasks of a
job are processed at the same rate.) Say the sequence of the tasks for a job j is v1, . . . , vr. We
partition these tasks into groups with exponentially increasing cardinalities: T1(j) := {v1},
T2(j) := {v2, v3}, and Th(j) := {v2h−1 , . . . , v2h−1} has 2h−1 tasks. (Assume w.l.o.g. that
r + 1 is a power of 2 by adding zero-sized tasks to T (j)). Now we define the dual variables.

Dual Variables. Define γ := 2 max{K, log2 n}.
For a time t and machine i of speed class ℓ, let At denote the set of active (unfinished)

jobs at time t, and define βi,t := w(At)
mℓ · γ

.

For job j and a task v ∈ Th(j) in the h-th group, define δj,v := wj

2h−1 · γ
.

In order to define αj,v, we first define quantities αj,v,t for every time t, and then set
αj,v :=

∑
t αj,v,t. At time t, recall that T t(j) is the set of alive tasks of job j, and define

αj,v,t := wj

|T t(j)| · 1(v alive at time t) = wj

|T t(j)| · 1(v∈T t(j)) .

This “spreads” the weight of j equally among its alive tasks.

Having defined the dual variables, we first argue that they are feasible.

▶ Lemma 11 (Dual feasibility). The dual variables defined above always satisfy the con-
straints (9), (7) and(10) for a speed-up factor γ ≥ 2 max{K, log2 n}.

Proof. To check feasibility of (7), consider a job j and observe that∑
v∈T (j) δj,v =

∑
h

∑
v∈Th(j) δj,v =

∑
h

∑
v∈Th(j)

wj

2h−1·γ =
∑

h
wj

γ ≤ wj ,

because |Th(j)| = 2h−1 and there are at most log2 n ≤ γ distinct groups. Feasibility of (9)
also follows easily. It remains to check (10) for a job j, task v, machine i and times t′ ≤ t.

A. Gupta, A. Kumar, and S. Singla 3:9

If v is not alive at time t′, then αj,v,t′ is 0, and (10) follows trivially. Else, v ∈ T t′(j),
and suppose v ∈ Th(j). This means the jobs in T1(j), . . . , Th−1(j) are also alive at time
t′, so |T t′(j)| ≥ 1 + 2 + . . . + 2h−2 + 1 = 2h−1. Furthermore, suppose the tasks in T t′(j)
belong to block B (defined in §3.1), and let ℓ⋆ be the speed class with the slowest machines
among the associated machines m(B). Let ℓ denote the speed class of machine i (considered
in (10)). Two cases arise: the first is when ℓ ≥ ℓ⋆, where Lt′

v ≥ γσℓ⋆ ≥ γσℓ = γsi, so (10)
holds because

αj,v,t′ = wj

|T t′ (j)| ≤ wj

2h−1 = γ · δj,v ≤ δj,v·Lt′
v

si
.

The second case is ℓ < ℓ⋆: Let V ⊆ At′ be the set of jobs which are frozen by the moment
v freezes. In other words, V contains tasks in block B and the blocks before it. Applying
the second statement in Corollary 8 with V ′′ = V ,

wj

|T t′ (v)|Lt′
v

≤ w̃t(V)∑
v′∈V

Lt′
v′

≤ w(V)∑
v′∈V

Lt′
v′

≤ w(At′
)

γ·mℓσℓ
,

where the last inequality uses the fact that all machines of speed class ℓ are busy processing
jobs in V . Therefore,

αj,v,t′ = wj

|T t′ (j)| ≤ w(At′
)·Lt′

v

γ·mℓσℓ
≤ βi,t·Lt′

v

si
,

the last inequality useing the definition of βi,t and that w(At) ≥ w(At′). ◀

Finally, we show that the dual objective value for this setting of dual variables is close to
the primal value. It is easy to check that

∑
j αj =

∑
t w(At), which is the total weighted

completion time of the jobs. Moreover,∑
i,t βi,t =

∑
t

∑
ℓ

∑
i:si=σℓ

w(At)
mℓ γ = K

γ ·
∑

t w(At) .

Since we chose speedup γ = 2 max{K, log2 n}, we have K ≤ γ/2 and the dual objective value∑
j,v αj,v −

∑
i,t βi,t is at least half of the total weighted completion time (primal value).

This completes the proof of Theorem 10. ◀

6 Analysis II: An Improved Guarantee for a Single Job

We want to show that the competitiveness of our algorithm just depends on K, the number
of speed classes. To warm up, in this section we consider the special case of a single job;
in §7 we consider the general case. As was shown in Proposition 5, any algorithm has
competitive ratio Ω(K) even in the case of a single job. We give a matching upper bound
using dual fitting for an instance with a single job j, say of weight 1, when the machines
satisfy Assumption 3.

▶ Theorem 12. If the machines satisfy Assumption 3, the scheduling algorithm in §3 is
O(K2)-competitive for a single job.

6.1 The Intuition Behind the Improvement
The analysis in §5 incurred Ω(log n)-competitive ratio because we divided the execution of
the tasks of each job into O(log n) epochs, where each epoch ended when the number of tasks
halved. In each such epoch, we set the δj,v variables by distributing the job’s weight evenly
among all tasks alive at the beginning of the epoch. A different way to define epochs would

APPROX/RANDOM 2021

3:10 Bag-Of-Tasks Scheduling on Related Machines

be to let them correspond to the time periods when the number of alive tasks falls in the
range (mℓ, mℓ+1). This would give us only K epochs. There is a problem with this definition:
as the number of tasks vary in the range (mℓ, mℓ+1), the rate assigned to tasks varies from
σℓ to σℓ+1. Indeed, there is a transition point m̃ℓ in (mℓ, mℓ+1) such that the rate assigned
to the tasks stays close to σℓ+1 as long as the number of tasks lie in the range (m̃ℓ, σℓ+1);
but if the number of tasks lie in the range (mℓ, m̃ℓ), the assigned rate may not stay close to
any fixed value. However, in this range, the total processing rate assigned to all the tasks
stays close to mℓσℓ.

It turns out that our argument for an epoch (with minor modifications) works as long as
one of these two facts hold during an epoch: (i) the total rate assigned to the tasks stays
close to mℓσℓ for some speed class ℓ (even though the number of tasks is much larger than
mℓ), or (ii) the actual rate assigned to the tasks stays close to σℓ. Thus we can divide the
execution of the job into 2K epochs, and get an O(K)-competitive algorithm. In this section,
we prove this for a single job; we extend to the case of multiple jobs in §7 (with a slightly
worse competitiveness).

6.2 Defining the New Epochs
Before defining the dual variables, we begin with a definition. For each speed class ℓ, define
the threshold m̃ℓ to be the following:

m̃ℓ := 1
σℓ+1

(σ1m1 + · · · + σℓmℓ) . (11)

The parameter m̃ℓ is such that the processing capacity of m̃ℓ machines of class ℓ + 1 equals
the combined processing capacity of machines of class at most ℓ. The increasing capacity
assumption implies mℓ < m̃ℓ < mℓ+1, as formalized below:

▷ Claim 13. Define Mℓ := m1 + . . . + mℓ and M̃ℓ := Mℓ + m̃ℓ. Under the increasing capacity
Assumption 3 and κ = 2, for any speed class ℓ, we have
(a) 2m̃ℓ ≤ mℓ+1 and so, M̃ℓ ≤ Mℓ+1,
(b) M̃ℓ ≥ 2Mℓ,
(c) mℓσℓ ≥ 1

2 m̃ℓσℓ+1, and
(d) m̃ℓ ≥ 2mℓ.

Proof. Fact (a) follows from the increasing capacity assumption and the definition of the
threshold, since 2m̃ℓσℓ+1 ≤ σℓ+1mℓ+1. This implies M̃ℓ = Mℓ + m̃ℓ ≤ Mℓ + mℓ+1 ≤ Mℓ+1.
Proving (b) is equivalent to showing m̃ℓ ≥ Mℓ, which follows from the definition of m̃ℓ and
the fact that σℓ+1 < σi for all i ≤ ℓ. The last two statements also follow from the increasing
capacity assumption. ◁

We identify a set of 2K break-points as follows: for each speed class ℓ, let tℓ denote the
first time when Mℓ alive tasks remain. Similarly, let t̃ℓ be the first time when exactly M̃ℓ

alive tasks remain. Note that tℓ+1 < t̃ℓ < tℓ. Let F̃ℓ be the tasks which finish during [tℓ+1, t̃ℓ],
and Fℓ be those which finish during [t̃ℓ, tℓ]. Let f̃ℓ and fℓ denote the cardinality of F̃ℓ and
Fℓ respectively. Note that f̃ℓ = Mℓ+1 − M̃ℓ = mℓ+1 − m̃ℓ, fℓ = M̃ℓ − Mℓ = m̃ℓ.

▷ Claim 14. For any speed class ℓ, we have fℓ ≤ f̃ℓ ≤ fℓ+1.

Proof. The first statement requires that m̃ℓ ≤ mℓ+1 − m̃ℓ. This is the same as 2m̃ℓ ≤ mℓ+1,
which follows from Claim 13 (a). The second statement requires that mℓ+1 − m̃ℓ ≤ m̃ℓ+1,

i.e., mℓ+1 ≤ m̃ℓ + m̃ℓ+1. But mℓ+1 ≤ m̃ℓ+1 (by Claim 13 (d)), hence the proof. ◁

A. Gupta, A. Kumar, and S. Singla 3:11

M` M̃` M`+1

m`+1 − m̃`m̃`

F̃`: tasks that finish here

t`+1 t̃` t`

F`: tasks that finish here

M`+1 tasks alive here M̃` tasks . . . M` tasks . . .

machines

time

f̃` := |F̃`| = M`+1 − M̃` = m`+1 − m̃` f` := |F`| = M̃` −M` = m̃`

Figure 1 Defining breakpoints.

Next we set the duals. Although it is possible to directly argue that the delay incurred
by the job in each epoch is at most (a constant times) the optimal objective value, the dual
fitting proof generalizes to the arbitrary set of jobs.

6.3 Setting the Duals
Define the speed-up γ ≥ 2K. We set the duals as:

Define δj,v :=
{ 1

2K·fℓ
if v ∈ Fℓ

1
2K·f̃ℓ

if v ∈ F̃ℓ
.

For machine i of class ℓ, define βi,t := 1
2K·mℓ

· 1(not all tasks finished) .

Finally, as in §5, we define αj,v,t for each task v of job j, and then set αj,v :=
∑

t αj,v,t.
To define αj,v,t, we consider two cases (we use nt to denote the number of alive tasks at
time t):

1. nt ∈ [Mℓ, M̃ℓ) for some ℓ: Then αj,v,t := (1/nt) · 1(v alive at time t).

2. nt ∈ [M̃ℓ, Mℓ+1) for some ℓ: Then αj,v,t := (1/fℓ) · 1(v∈Fℓ).

Note the asymmetry in the definition. It arises because in the first case, the total speed
of machines processing a task is (up to a constant) mℓσℓ, whereas in the second case the
average speed of such machines is about σℓ+1.

▶ Lemma 15 (Dual feasibility). The dual variables defined above always satisfy the con-
straints (7) and (9), and satisfy constraint (10) for speed-up γ ≥ 2K.

Proof. It is easy to check from the definition of δj,v and αj,v,t that the dual constraints (7)
and (9) are satisfied. It remains to verify constraint (10) (re-written below) for any task v,
machine i, times t and t′ ≥ t.

αj,v,t′ ≤ Lt′

v

si
· (βi,t + δj,v) . ((10) repeated)

As in the definition of αj,v,t′ , there are two cases depending on where nt′ lies. First assume
that there is class ℓ⋆ such that Mℓ⋆ ≤ nt′ < M̃ℓ⋆ . Assume that v is alive at time t′ (otherwise
αj,v,t′ is 0), so αj,v,t′ = 1

nt′
, where nt′ is the number of alive tasks at time t′. Being alive at

this time t′, we know that v will eventually belong to some Fℓ with ℓ ≤ ℓ⋆, or in some F̃ℓ

with ℓ < ℓ⋆. So by Claim 14, δj,v ≥ 1
2K·fℓ⋆

. Moreover, let i be a machine of some class ℓ, so
si = σℓ. Hence, it is enough to verify the following in order to satisfy (10):

1
nt′

≤ Lt′

v

σℓ
·
(

1
2K · mℓ

+ 1
2K · fℓ⋆

)
. (12)

Two subcases arise, depending on how ℓ and ℓ⋆ relate – in each we show that just one of the
terms on the right is larger than the left.

APPROX/RANDOM 2021

3:12 Bag-Of-Tasks Scheduling on Related Machines

ℓ⋆ ≥ ℓ: Since at least Mℓ⋆ tasks are alive at this time, the total speed assigned to all the
alive tasks at time t′ is at least γ · σℓ⋆mℓ⋆ . Therefore, Lt′

v ≥ γ·mℓ⋆ σℓ⋆

nt′
. Now using γ ≥ 2K,

we get

Lt′

v

2K · mℓσℓ
≥ mℓ⋆σℓ⋆

mℓσℓ
· 1

nt′
≥ 1

nt′
,

where the last inequality follows from the increasing capacity assumption.
ℓ⋆ ≤ ℓ − 1: The quantity Lt′

v nt′ is the total speed of the machines which are busy at time
t′, which is at least γ(m1σ1 + . . . + mℓ⋆σℓ⋆) = γ · m̃ℓ⋆σℓ⋆+1. Again, using γ ≥ 2K, we get

Lt′

v · nt′

2K · fℓ⋆σℓ
≥ m̃ℓ⋆σℓ⋆+1

fℓ⋆σℓ
≥ 1

because σℓ⋆+1 ≥ σℓ and m̃ℓ⋆ = fℓ⋆ .

Thus, (12) is satisfied in both the above subcases.
Next we consider the case when there is a speed class ℓ⋆ such that M̃ℓ⋆ < nt′ ≤ Mℓ⋆+1.

We can assume that v ∈ Fℓ⋆ , otherwise αj,v,t′ is 0; this means δv,j = 1
2K·fℓ⋆

. Since
αj,v,t′ = 1

fℓ
= 1

m̃ℓ⋆
, and Lt′

v ≥ γ · σℓ⋆+1, the expression (10) follows from showing

1
m̃ℓ⋆

≤ γ

σℓ
·
(

1
2K · mℓ

+ 1
2K · fℓ⋆

)
· σℓ⋆+1 . (13)

Since γ ≥ 2K, we can drop those terms. Again, two cases arise:
ℓ⋆ ≥ ℓ: By definition, σℓ⋆+1 · m̃ℓ⋆ ≥ σℓ⋆mℓ⋆ ≥ σℓmℓ (by the increasing capacity assump-
tion).
ℓ⋆ ≤ ℓ − 1: Since fℓ⋆ = m̃ℓ⋆ and σℓ ≤ σℓ⋆+1, this case also follows easily. ◀

Proof of Theorem 12. Having checked dual feasibility in Lemma 15, consider now the
objective function. For any time t when at least one task is alive,

∑
v αj,v,t = 1. Therefore,∑

v αj,v is the makespan. Also,
∑

i βi,t = 1/2 as long as there are unfinished tasks, so∑
i,t βi,t is half the makespan, and the objective function

∑
v αj,v −

∑
i,t βit also equals

half the makespan. Since we had assumed γ = O(K)-speedup, the algorithm is O(K)-
competitive. ◀

7 Analysis III: Proof for Õ(K3) Guarantee

We now extend the ideas from the single job case to the general case. We only discuss the
proof outline here, and refer the readers to the full version for details. For time t, let At be
the set of alive jobs at time t. Unlike the single job case where we had only one block, we can
now have multiple blocks. While defining αj,v,t in the single job case, we had considered two
cases: (i) the rate assigned to each task stayed close to σℓ for some class ℓ (this corresponded
to nt ∈ [M̃ℓ−1, Mℓ)), and (ii) the total rate assigned to each task was close to mℓσℓ for speed
class ℓ (this corresponded to nt ∈ [Mℓ, M̃ℓ)). We extend these notions to blocks as follows:
Simple blocks: A block B is said to be simple w.r.t. to a speed class ℓ if the average rate
assigned to the tasks in B is close to σℓ. Similarly a job j is said to be simple w.r.t. a speed
class ℓ if all the alive tasks in it are assigned rates close to σℓ (recall that all alive tasks in
a job are processed at the same rate). All the jobs in a simple block B may not be simple
(w.r.t. the same speed class ℓ), but we show that a large fraction of jobs (in terms of weight)
in B will be simple. Thus, it is enough to account for the weight of simple jobs in B. This is
analogous to case (i) mentioned above (when there is only one job and tasks in it receive rate

A. Gupta, A. Kumar, and S. Singla 3:13

close to σℓ). In §6, we had defined αj,v,t for such time t as follows: we consider only those
tasks which survive in Fℓ, and then evenly distribute wj among these tasks. The analogous
definition here would be as follows: let τℓ,j be the last time when j is simple w.r.t. the speed
class ℓ. We define αj,v,t by evenly distributing wj among those tasks in v which are alive at
τℓ,j . We give details in the full version.
Long blocks: The total speed of the machines in this block stays close to mℓσℓ for some
speed class ℓ. Again, inspired by the definitions in §6, we assign αj,v,t for tasks v ∈ B by
distributing w(B) to these tasks (in proportion to the rate assigned to them). From the
perspective of a job j which belongs to a long block B w.r.t. a speed class σℓ at a time t,
the feasibility of (6) works out provided for all subsequent times t′ when j again belongs
to such a block B′, we have w(B′) and w(B) remain close to each other. If w(B′) exceeds
(say) 2w(B), we need to reassign a new set of δj,v values for v. To get around this problem
we require that long blocks (at a time t) also have weight at least w(At)/(10K). With this
requirement, the doubling step mentioned above can only happen O(log K) times (and so
we incur an additional O(log K) in the competitive ratio). The details are given in the full
version. Blocks which were cheaper than w(At)/(10K) do not create any issue because there
can be at most K of them, and so their total weight is small in comparison to w(At).
Short blocks: Such blocks B straddle two speed classes, say ℓ and ℓ + 1, but do not contain
too many machines of either class (otherwise they will fall into one of the two categories
above). We show in the full version that the total weight of such blocks is small compared
to w(At). The intuitive reason is as follows: for any two consecutive short blocks B1 and
B2, there must be blocks in between them whose span is much longer than B2. Since these
blocks freeze before B2, their total weight would be large compared to w(B2).

In the overall analysis, we charge short blocks to simple and long blocks, and use dual
fitting as indicated above to handle simple and long blocks.

8 Discussion

Several interesting problems remain open. (i) Can we close the gap between lower bound of
Ω(K) and upper bound of O(K3 log2 K)? (ii) Can we prove an analogous result for weighted
flow-time (with speed augmentation)? (iii) Can we generalize this result to the unrelated
machines setting? (iv) Our lower bound of Ω(K)-competitive ratio relies on non-clairvoyance;
can we prove a better bound if the processing times of tasks are known at their arrival
times?

References
1 Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallel DAG jobs online

to minimize average flow time. In Proceedings of SODA, pages 176–189, 2016.
2 C. Anglano and M. Canonico. Scheduling algorithms for multiple bag-of-task applications

on desktop grids: A knowledge-free approach. In 2008 IEEE International Symposium on
Parallel and Distributed Processing, pages 1–8, 2008.

3 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling problems.
In Proceedings of ESA, pages 118–129, 2015.

4 Anne Benoit, Loris Marchal, Jean-Francois Pineau, Yves Robert, and Frédéric Vivien. Schedul-
ing concurrent bag-of-tasks applications on heterogeneous platforms. IEEE Trans. Computers,
59(2):202–217, 2010.

5 Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds. J. Algorithms, 30(2):323–
343, 1999.

APPROX/RANDOM 2021

3:14 Bag-Of-Tasks Scheduling on Related Machines

6 José R. Correa, Martin Skutella, and José Verschae. The power of preemption on unrelated
machines and applications to scheduling orders. In Proceedings of APPROX/RANDOM, pages
84–97, 2009.

7 Naveen Garg, Anupam Gupta, Amit Kumar, and Sahil Singla. Non-clairvoyant precedence
constrained scheduling. In Proceedings of ICALP, pages 63:1–63:14, 2019.

8 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: off-line and on-line approximation algorithms. Math. Oper. Res.,
22(3):513–544, 1997.

9 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. In Proceedings of FOCS, pages 283–294. 2017.

10 Ioannis A. Moschakis and Helen D. Karatza. Multi-criteria scheduling of bag-of-tasks applica-
tions on heterogeneous interlinked clouds with simulated annealing. J. Syst. Softw., 101:1–14,
2015.

11 Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. In Proceedings of IPCO,
volume 1412, pages 367–382. 1998.

12 Maurice Queyranne and Maxim Sviridenko. A (2+epsilon)-approximation algorithm for
generalized preemptive open shop problem with minsum objective. In Proceedings of IPCO,
volume 2081, pages 361–369, 2001.

13 Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.
In Proceedings of SODA, pages 491–500, 2008.

A Missing Proofs of Section 2

▶ Proposition 4. An arbitrary instance can be transformed into one satisfying Assumption 3
by losing a factor O(γK) in the competitive ratio.

Proof. We show how to transform the instance so that it satisfies the increasing capacity
assumption, while losing only O(K)-factor in the competitive ratio. For sake of brevity, let κ

denote the constant 64.
For a speed class ℓ, let Cℓ denote mℓσℓ, i.e., the total processing capacity of the machines

in this speed class. Starting from speed class 1, we construct a subset X of speed classes as
follows: if ℓ denotes the last speed class added to X, then let ℓ′ > ℓ be the smallest class
such that Cℓ′ ≥ 2κCℓ. We add ℓ′ to X and continue this process till we have exhausted all
the speed classes.

Consider the instance I ′ in which the set of jobs is the same as those in I, but there
are Kmℓ machines of speed class ℓ for each ℓ ∈ X. For a speed class ℓ ∈ X, let C ′

ℓ denote
2κKmℓσℓ, which is at most the total capacity of the speed class ℓ machines in I ′. Let us now
consider the optimal solutions of the two instances. We first observe that opt(I ′) ≤ opt(I).
Consider two consecutive speed classes ℓ1 < ℓ2 in X. From the definition of X, we see that
C ′

ℓ1
≥

∑ℓ2−1
l=ℓ1

Cl. Therefore all the processing done by a solution to I on machines of speed
class [ℓ1, ℓ2) during a timeslot [t, t + 1] can be performed on machines of speed class ℓ1 in I ′

during the same timeslot. Therefore, opt(I ′) ≤ opt(I).
For the converse statement, it is easy to see that if we give 2κK speedup to each machine

in I, then the processing capacity of each speed class in I is at least that in I ′. Therefore,
opt(I) ≤ 2κKopt(I ′). Therefore, replacing I by I ′ will result in O(κK) loss in competitive
ratio. It is also easy to check that I ′ satisfies increasing capacity assumption.

Observe that the conversion from I to I ′ can be easily done at the beginning – we just
need to identify the index set X, and use only these for processing. The factor K loss
in competitive ratio is also tight for the instance I where all speed classes have the same
capacity. ◀

A. Gupta, A. Kumar, and S. Singla 3:15

B Missing proofs of Section 3

▶ Lemma 6. A schedule S is feasible if for every time t and every value of k:

(⋆) the total rate assigned to any subset of k tasks is at most γ · Sk.

Proof. The rates assigned to tasks change only when one of these events happen: (i) a new
job j arrives, (ii) an existing task finishes. Assuming that the job sizes, release dates are
integers, we can find a suitable δ > 0 (which will also depend on the speeds of the machines)
such that all the above events happen at integral multiples of δ.

Consider an interval [t, t + δ), where t is an integral multiple of δ. We need to show that
if Lt

v’s satisfy the condition (⋆), then we can build a feasible schedule during [t, t + δ). By
feasibility, we mean that each task v can be processed to an extent of p̄v := Lt

v · δ extent and
at any point of time, it gets processed on at most one machine.

We follow a greedy strategy to build the schedule. Suppose we have built the schedule
till time t′ ∈ [t, t + δ). At time t′, we order the tasks in descending order of the remaining
processing requirement for this slot (at time t, each task v has processing requirement of p̄v).
Let the ordered tasks at time t′ be v1, . . . , vn. We schedule vi on machine i.

Suppose for the sake of contradiction, a task v⋆ is not able to complete p̄v⋆ amount of
processing. We first make the following observation:

▷ Claim 16. Let v and v′ be two tasks such that at some time t′ ∈ [t, t + δ), we prefer v to
v′ in the ordering at time t′. Then if v′ does not complete p̄v′ amount of processing during
[t, t + δ), then neither does v.

Proof. Since we prefer v at time t′, v has more remaining processing time. If we never prefer
v′ to v after time t′, then v always has more remaining processing requirement than v′ during
this interval. If we prefer v′ to v at some point of time during (t′, t + δ), then it is easy to
check that the remaining processing requirements for both v and v′ will remain the same.
The result follows easily from this observation. ◁

Starting from {v⋆}, we build a set S of tasks which has the following property: if v ∈ S,
then we add to S all the tasks v′ such that v′ was preferred over v at some point of time
during [t, t + δ). Repeating application of Claim 16 shows that none of these tasks v complete
p̄v amount of processing during [t, t + δ). Let m̄ denote |S|. We note that only tasks in S

would have been processed on the first m̄ machines during [t, t + δ) – otherwise, we can add
more tasks to S. Since none of these tasks finish their desired amount of processing during
this interval, it follows that∑

v∈S

p̄v ≥ γδ · Sm̄ .

Since p̄v = δLt
v, we see that the set of tasks in S violates (⋆). This is a contradiction, and so

such a task v⋆ cannot exist. ◀

▶ Corollary 8. Fix a time t. Let V be the set of tasks frozen by some moment τ . For a task
v ∈ V ,

(i) if V ′ ⊆ V is any subset of tasks which freeze either at the same moment as v, or after
it, then w̃t(v)

s|V |
≥ w(V ′)

S|V |
.

(ii) if V ′′ ⊆ V is any subset of tasks which freeze either at the same moment as v, or before
it, then w̃t(v)

Lt
v

≤ w̃t(V ′′)∑
v′∈V ′′ Lt

v′
.

APPROX/RANDOM 2021

3:16 Bag-Of-Tasks Scheduling on Related Machines

Proof. For any task v′, let τv′ be the value of τ at which v′ freezes. We know that∑
v′∈V

w̃t(v′) · τv′ = γS|V | . (14)

Since
∑

v′∈V \{v} w̃t(v′) · τv′ ≤ γS|V |−1 by feasibility, it follows that

w̃t(v) · τv ≥ γs|V | . (15)

Now for all v′ ∈ V ′, we have τv′ ≥ τv, so

w̃t(V ′) · τv =
∑

v′∈V ′

w̃t(v′) · τv ≤
∑

v′∈V ′

w̃t(v′) · τv′ ≤
∑

v′∈V

w̃t(v′) · τv′
(14)= γS|V | .

Hence, the first claim follows:

w̃t(v)
s|V |

(15)
≥ γ

τv
≥ w̃t(V ′)

S|V |
.

For the second claim,∑
v′∈V ′′

Lt
v′ =

∑
v′∈V ′′

w̃t
v′ · τv′ ≤ w̃t(V ′′) · τv .

The claim now follows by the definition Lt
v = w̃t(v) · τv. ◀

C Missing Proofs of Section 4

▷ Claim 9. For any schedule S, there is a feasible solution to the LP of objective value at
most 2 cost(S).

Proof. Consider a schedule S, and let xivt be the extent of processing done on a task v

(belonging to job j) during [t, t + 1] on machine i. More formally, if the task is processed for
ε units of time on machine i during this time slot, then we set xivt to ε · si. Constraint (4)
states that every task v needs to be processed to an extent of pv, whereas (5) requires that
we cannot do more than si unit of processing in a unit time slot on machine i. Now we verify
verify (3). Consider a task job j and a task v belonging to it. The total processing time of v

is ∑
i,t

xivt

si
. (16)

The completion time Fj of j is at least the processing time of each of the tasks in it. Finally,
we check (2). Define Fj,t to be 1 if j is alive at time t. The RHS of this constraint is the
fraction of v which is done after time t; and so if this is non-zero, then Fj,t is 1. This shows
the validity of this constraint.

In the objective function, the first term is the total weighted completion time of all the
jobs. The second term is also the same quantity, because Fj is equal to

∑
t≥rj

Fj,t. ◁

Hardness of Approximation for Euclidean k-Median
Anup Bhattacharya #

School of Computer Sciences, National Institute of Science Education and Research (NISER),
Khurda, India

Dishant Goyal #

Indian Institute of Technology Delhi, India

Ragesh Jaiswal #

Indian Institute of Technology Delhi, India

Abstract
The Euclidean k-median problem is defined in the following manner: given a set X of n points in
d-dimensional Euclidean space Rd, and an integer k, find a set C ⊂ Rd of k points (called centers)
such that the cost function Φ(C, X) ≡

∑
x∈X minc∈C ∥x − c∥2 is minimized. The Euclidean k-means

problem is defined similarly by replacing the distance with squared Euclidean distance in the cost
function. Various hardness of approximation results are known for the Euclidean k-means problem
[7, 29, 17]. However, no hardness of approximation result was known for the Euclidean k-median
problem. In this work, assuming the unique games conjecture (UGC), we provide the hardness of
approximation result for the Euclidean k-median problem in O(log k) dimensional space. This solves
an open question posed explicitly in the work of Awasthi et al. [7].

Furthermore, we study the hardness of approximation for the Euclidean k-means/k-median
problems in the bi-criteria setting where an algorithm is allowed to choose more than k centers.
That is, bi-criteria approximation algorithms are allowed to output βk centers (for constant β > 1)
and the approximation ratio is computed with respect to the optimal k-means/k-median cost. We
show the hardness of bi-criteria approximation result for the Euclidean k-median problem for any
β < 1.015, assuming UGC. We also show a similar hardness of bi-criteria approximation result for
the Euclidean k-means problem with a stronger bound of β < 1.28, again assuming UGC.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Approximation algorithms analysis

Keywords and phrases Hardness of approximation, bicriteria approximation, approximation al-
gorithms, k-median, k-means

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.4

Category APPROX

Related Version Full Version: https://arxiv.org/pdf/2011.04221.pdf [9]

Acknowledgements Dishant Goyal would like to thank TCS Research Scholar Program.

1 Introduction

We start by giving the definition of the Euclidean k-median problem.

▶ Definition 1 (k-median). Given a set X of n points in d-dimensional Euclidean space Rd,
and a positive integer k, find a set of centers C ⊂ Rd of size k such that the cost function
Φ(C, X) ≡

∑
x∈X minc∈C ∥x − c∥ is minimized.

The Euclidean k-means problem is defined similarly by replacing the distance with squared
Euclidean distance in the cost function (i.e., replacing ∥x−c∥ with ∥x−c∥2). These problems
are also studied in the discrete setting where the centers are restricted to be chosen from
a specific set L ⊂ Rd, also given as input. This is known as the discrete version whereas
the former version (with L = Rd) is known as the continuous version. In the approximation

© Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bhattacharya.anup@gmail.com
mailto:dishant.goyal@cse.iitd.ac.in
mailto:rjaiswal@cse.iitd.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.4
https://arxiv.org/pdf/2011.04221.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Hardness of Approximation for Euclidean k-Median

setting, the continuous version is not harder than its discrete counterpart since it is known(e.g.,
[22, 36]) that an α-approximation for the discrete problem gives an α + ε approximation
for the continuous version, for arbitrary small constant ε > 0, in polynomial time. In this
work, we only study the hardness of approximation for continuous version of the problem.
The hardness of approximation for the discrete version thus follows from the hardness of
approximation of continuous version. In the rest of the paper, we use k-means/median to
implicitly mean continuous Euclidean k-means/median unless specified otherwise 1.

The relevance of the k-means and k-median problems in various computational domains
such as resource allocation, big data analysis, pattern mining, and data compression is
well known. A significant amount of work has been done to understand the computational
aspects of the k-means/median problems. The k-means problem is known to be NP-hard
even for fixed k or d [4, 20, 33, 40]. Similar NP hardness result is also known for the
k-median problem [37]. Even the 1-median problem, popularly known as the Fermat-Weber
problem [21], is a hard problem and designing efficient algorithms for this problem is a
separate line of research in itself – see for e.g. [27, 42, 12, 10, 15]. These hardness barriers
motivate approximation algorithms for these problems and a lot of progress have been
made in this area. For example, there are various polynomial time approximation schemes
(PTASs) known for k-means and k-median when k is fixed (or constant) [36, 28, 22, 14, 25].
Similarly, various PTASs are known for fixed d [19, 23, 16]. A number of constant factor
approximation algorithms are also known for k-means and k-median when k and d are
considered as part of the input. For the k-means problem, constant approximation algorithms
have been given [26, 2], the best being a 6.357 approximation algorithm by Ahmadian et
al. [2]. On the negative side, there exists a constant ε > 0 such that there does not exist
an efficient (1 + ε)-approximation algorithm for the k-means problem, assuming P ̸= NP
[7, 29, 17]. The best-known hardness of approximation result for the k-means problem is
1.07 due to Cohen-Addad and Karthik [17].

The constant factor approximation algorithms for the k-median problem are also known [13,
5, 32, 11, 2]. The best known approximation guarantee for k-median is 2.633 due to
Ahmadian et al. [2]. On the hardness side, it was known that for general metric spaces, the
discrete k-median problem is hard to approximate within a factor of 1 + 2/e [24]. However,
unlike the Euclidean k-means problem, no hardness of approximation result was known for
the Euclidean k-median problem. Resolving the hardness of approximation for the Euclidean
k-median problem was left as an open problem in the work of Awasthi et al. [7]. They asked
whether their techniques for proving the inpproximability results for Euclidean k-means can
be used to prove the hardness of approximation result for the Euclidean k-median problem.
From their paper,

“It would also be interesting to study whether our techniques give hardness of approx-
imation results for the Euclidean k-median problem.”

In this work, assuming UGC, we solve this open problem by obtaining the hardness of
approximation result for the Euclidean k-median problem. Following is one of the main
results of this work.

▶ Theorem 2 (Main Theorem). There exists a constant ε > 0 such that the Euclidean
k-median problem in O(log k) dimensional space cannot be approximated to a factor better
than (1 + ε), assuming the Unique Games Conjecture.

1 In some literature, the Euclidean space implicitly means the dimension is bounded, but in our case the
dimension d can be arbitrarily large

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:3

Having established the hardness of approximation results for k-means and k-median, the
next natural step in the discussion is to allow more flexibility to the algorithm. One possible
relaxation is to allow an approximation algorithm to choose more than k centers, say, βk

centers (for some constant β > 1) and produce a solution that is close to the optimal solution
with respect to k centers. This is known as bi-criteria approximation and the following
definition formalizes this notion.

▶ Definition 3 ((α, β)-approximation algorithm). An algorithm A is called an (α, β) approxim-
ation algorithm for the Euclidean k-means/k-median problem if given any instance I = (X , k)
with X ⊂ Rd, A outputs a center set F ⊂ Rd of size βk that has the cost at most α times
the optimal cost with k centers. That is,

∑
x∈X

min
f∈F

{D(x, f)} ≤ α · min
C⊆Rd

|C|=k

{∑
x∈X

min
c∈C

{D(x, c)}
}

For the Euclidean k-means problem, D(p, q) ≡ ∥p − q∥2 and for the k-median problem
D(p, q) ≡ ∥p − q∥.

One expects that as β grows, there would exist efficient (α, β)-approximation algorithms
with smaller values of α. This is indeed observed in the work of Makarychev et al. [35]. For
example, their algorithm gives a (9 + ε) approximation for β = 1; 2.59 approximation
for β = 2; 1.4 approximation for β = 3. In other words, the approximation factor
of their algorithm decreases as the value of β increases. Furthermore, their algorithm
gives a (1 + ε)-approximation guarantee with O(k log(1/ε)) centers. Bandyapadhyay and
Varadarajan [8] gave a (1 + ε) approximation algorithm that outputs (1 + ε)k centers in
constant dimension. There are various other bi-criteria approximation algorithms that use
distance-based sampling techniques and achieve better approximation guarantees than their
non bi-criteria counterparts [3, 1, 41]. Unfortunately in these bi-criteria algorithms, at least
one of α, β is large. Ideally, we would like to obtain a PTAS with a small violation of the
number of output centers. More specifically, we would like to address the following question:

Does the Euclidean k-means or Euclidean k-median problem admit an efficient (1 +
ε, 1 + ε)-approximation algorithm?

Note that such type of bi-criteria approximation algorithms that outputs (1+ε)k centers have
been extremely useful in obtaining a constant approximation for the capacitated k-median
problem [30, 31] for which no true constant approximation is known yet.2 Therefore, the
above question is worth exploring. Note that here we are specifically aiming for a PTAS
since the k-means and k-median problems already admit a constant factor approximation
algorithm. In this work, we give a negative answer to the above question by showing that
there exists a constant ε > 0 such that an efficient (1 + ε, 1 + ε)-approximation algorithm for
the k-means and k-median problems does not exist assuming the Unique Games Conjecture.
The following two theorems state this result more formally.

▶ Theorem 4 (k-median). For any constant 1 < β < 1.015, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-median problem
in O(log k) dimensional space assuming the Unique Games Conjecture.

2 In the capacitated k-median/k-means problem there is an additional constraint on each center that it
cannot serve more than a specified number of clients (or points).

APPROX/RANDOM 2021

4:4 Hardness of Approximation for Euclidean k-Median

▶ Theorem 5 (k-means). For any constant 1 < β < 1.28, there exists a constant ε > 0 such
that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-means problem in
O(log k) dimensional space assuming the Unique Games Conjecture. Moreover, the same
result holds for any 1 < β < 1.1 under the assumption that P ̸= NP.

For simplicity, we present the proof of our results in O(n) dimensional space. However, the
results easily extend to O(log k) dimensional space using dimensionality reduction techniques
of Makarychev et al. [34].
Important note: We would like to note that assuming P ̸= NP, a similar hardness of
approximation result for the Euclidean k-median problem using different techniques has been
obtained independently by Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. We
came to know about their results through personal communication with the authors. Since
their manuscript has not been published online yet, we are not able to add a citation to their
work.

In the next subsection, we discuss the known results on hardness of approximation of the
k-means and k-median problems in more detail.

1.1 Related Works
Guha and Khuller proved a (1+ 2

e) hardness of approximation result for the discrete k-median
problem for the general metric spaces [24]. The first hardness of approximation result for the
Euclidean k-means problem was given by Awasthi et al. [7]. They obtained their result using
a reduction from Vertex Cover on triangle-free graphs of bounded degree ∆ to the Euclidean
k-means instances. Their reduction yields a (1 + ε

∆) hardness factor for the k-means problem
for some constant ε > 0. Lee et al. [29] showed the hardness of approximation of Vertex Cover
on triangle-free graphs of bounded degree four. Using ∆ = 4, they obtained a 1.0013 hardness
of approximation for the Euclidean k-means problem. Subsequently, Cohen-Addad and
Karthik [17] improved the hardness of approximation to 1.07 using a modified reduction from
the vertex coverage problem instead of a reduction from the vertex cover problem. Moreover,
they also gave several improved hardness results for the discrete k-means/k-median problems
in general and ℓp metric spaces. In their more recent work, they also improved the hardness
of approximation results for the continuous k-means/k-median problem in general metric
spaces [18].

Unlike the Euclidean k-means problem, no hardness of approximation result was known
for the Euclidean k-median problem. In this work, we give hardness of approximation result
for the Euclidean k-median problem assuming the Unique Game Conjecture. As mentioned
earlier, in an unpublished work communicated to us through personal communication, Vincent
Cohen-Addad, Karthik C. S., and Euiwoong Lee have independently obtained hardness of
approximation result for the Euclidean k-median problem using different set of techniques
and under the assumption that P ̸= NP. They also gave bi-criteria hardness of approximation
results in ℓ∞-metric for the k-means and k-median problems [18]. We would like to point
out that in the bi-criteria setting, our result is the first hardness of approximation result for
the Euclidean k-means/k-median problem to the best of our knowledge.

1.2 Technical Overview and Contributions
Awasthi et al. [7] proved the first hardness of approximation result for the Euclidean k-means
problem. Given any instance I = (X , k) for the Euclidean k-means problem, they showed
that there exists an ϵ > 0 such that obtaining (1 + ϵ)-approximation for Euclidean k-means

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:5

is NP-hard. In this work we build on their techniques to prove the inapproximability result
for the Euclidean k-median problem. First, we describe the reduction employed by Awasthi
et al. for the Euclidean k-means problem and some related results.

Construction of k-means instance: Let (G, k) be a hard Vertex Cover instance where
the graph G has bounded degree ∆. Let n and m denote respectively the number
of vertices and the number of edges in the graph. A k-means instance I := (X , k)
with X ⊂ Rn is constructed as follows. For every vertex i ∈ V , we have an n-
dimensional vector xi ∈ {0, 1}n, which has a 1 at ith coordinate and 0 everywhere
else. For each edge e = (i, j) ∈ E, a point xe := xi + xj is defined in {0, 1}n. The set
X := {xe | e ∈ E} with m points in Rn and parameter k define the k-means instance.

Awasthi et al. proved the following theorem based on the above construction [7].

▶ Theorem 6 (Theorem 4.1 [7]). There is an efficient reduction from vertex cover on bounded
degree triangle-free graphs to the Euclidean k-means problem that satisfies the following
properties:
1. If vertex cover of the instance is k, then there is a k-means clustering of cost at most

(m − k).
2. If vertex cover of the instance is at least (1 + ε)k, then the cost of optimal k-means

clustering is at least (m − k + δk).
Here, ε is some fixed constant > 0 and δ = Ω(ε).

Awasthi et al. [7] used the following hardness result for the vertex cover problem on
bounded degree triangle-free graphs.

▶ Theorem 7 (Corollary 5.3 [7]). Given any unweighted bounded degree triangle-free graph G,
it is NP-hard to approximate Vertex Cover within any factor smaller than 1.36.

Theorem 6 and Theorem 7 together imply that the Euclidean k-means problem is APX-
hard. A formal statement for the same is given as follows (see Section 4 of [7] for the proof
of this result).

▶ Corollary 8. There exists a constant ε′ > 0 such that it is NP-hard to approximate the
Euclidean k-means problem to any factor better than (1 + ε′).

We would like to obtain a similar gap-preserving reduction for the Euclidean k-median
problem. The first obstacle one encounters in this direction is that unlike the 1-mean
problem, there does not exist a closed form expression for the 1-median problem, and hence
we don’t have an exact expression for the optimal 1-median cost. We overcome this barrier
by obtaining good upper and lower bounds on the optimal 1-median cost and showing that
these bounds suffice for our purpose. More concretely, to upper bound the optimal 1-median
cost, we use the centroid as the 1-median and compute the 1-median cost with respect to the
centroid. To obtain a lower bound on the 1-median cost of a cluster, we use a decomposition
technique to break a cluster into smaller sub-clusters3 for which we can compute exact or
good approximate lower bounds on the 1-median cost. Here we use a simple observation that
the optimal 1-median cost of a cluster is at least the sum of the optimal 1-median costs of
the sub-clusters. For any sub-cluster that corresponds to a star graph, one can compute the

3 Since a set of edges in a graph form a cluster of points in the reduction, we use the terms sub-graphs
and sub-clusters interchangeably.

APPROX/RANDOM 2021

4:6 Hardness of Approximation for Euclidean k-Median

exact 1-median cost using our reduction. In order to bound the 1-median cost for sub-clusters
that correspond to non-star graphs, we use the following observation crucially: the optimal
1-median cost is preserved under any transformation that preserves the pairwise distances.
For non-star graphs, we first employ such a transformation that preserves the 1-median cost
and then compute this cost exactly in the projected space. Note that this technique does not
give exact 1-median cost for any arbitrary non-star graph, but works only for some special
families of non-star graphs. The main idea of the decomposition technique is to ensure that
only these kinds of non-star graphs are created in the decomposition process. The upper
and lower bounds on the 1-median cost, as constructed in the above manner, are used in the
completeness and soundness steps of the proof of the reduction, respectively.

The analysis for the completeness part of the reduction is relatively straightforward. If
the vertex cover of a graph is k, then the edges of the graph can be divided into k star
sub-graphs, each of which results in a star cluster in the k-median instance. The cost for
this clustering with k star clusters can be found using the reduction easily.

In the proof for the soundness part of our reduction, we prove the contrapositive statement
that assumes the k-median clustering cost to be bounded and proves that the vertex cover
of the graph is not too large. Our analysis crucially depends on the relation between the
vertex cover of a subgraph and the 1-median cost for that subgraph. More specifically, we
need to answer the following question. Given a graph with r edges having vertex cover z,
how does the optimal 1-median cost for that graph behave with respect to z. For example,
for star graphs, z = 1 and the optimal 1-median cost of a star graph on r edges is exactly√

r(r − 1). For any non-star graph with r edges, we first show that the optimal 1-median
cost of the non-star graph is at least the optimal 1-median cost of a star graph with r edges.
For any non-star graph F with r edges, we denote by δ(F) the extra cost of F , defined as the
difference of the optimal 1-median cost of F and the optimal 1-median cost of a star graph
with r edges. If we can figure out non-trivial lower bounds for δ(F) for different non-star
graphs F , then we would be done. But, figuring out these non-trivial lower bounds that work
for any non-star graph is quite a daunting prospect. The way we overcome this in our work
is as follows. We characterize the non-star graphs as having maximum matching of size two
or more than two, and for each, we relate the extra cost of 1-median clustering of that graph
with the vertex cover of that graph. We show that the extra cost of a non-star sub-graph is
proportional to the number of vertex-disjoint edges in the sub-graph. And since we assume
the k-median cost to be bounded, the number of vertex disjoint edges is also bounded, giving
a small vertex cover.

We need one more idea to finish the proof for the soundness part of the reduction. We
call a cluster “singleton” if there is only one point in the cluster. Note that any such cluster
would cost zero in a k-median clustering. If there are a large number of singleton clusters,
say t < k, then they pay zero to the cost of the solution, even though those edges have vertex
cover t. We prove a key lemma showing that for any hard instance of the vertex cover, the
vertex cover of the sub-graph spanned by t singleton edges is at most 2t

3 . We combine these
ideas to prove that if k-median clustering cost is bounded, the vertex cover of the graph
cannot be too large.

We also prove the hardness of bi-criteria approximation results for Euclidean k-means
and k-median problems. The hardness of bi-criteria approximation for Euclidean k-median
is obtained by extending the proof for the hardness of approximation for the Euclidean
k-median problem. We use the same reduction from the vertex cover problem and show that
the soundness guarantees hold even if one is allowed to use βk centers, for some β > 1. We
also show that similar techniques give the hardness of bi-criteria approximation results for
the Euclidean k-means problem.

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:7

2 Useful Facts and Inequalities

In this section, we discuss some basic facts and inequalities that we will frequently use in
our proofs. First, we note that the Fermat-Weber problem is not difficult for all 1-median
instances. We can efficiently obtain 1-median for some special instances. For example, for a
set of equidistant points, the 1-median is simply the centroid of the point set. We give a
proof of this statement in the next section. Most importantly, we use the following fact and
lemma to compute the 1-median cost.

▶ Fact 1 ([38]). For a set of non-collinear points the optimal 1-median is unique.

▶ Lemma 9. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be any two sets of n points in Rd.
If the pairwise distances between points within A is the same as pairwise distance between
points within B. That is, for all i, j ∈ {1, . . . , n}, ∥ai − aj∥ = ∥bi − bj∥. Then the optimal
1-median cost of A is the same as the optimal 1-median cost of B.

The proof of Lemma 9 is deferred to Appendix A. We use the above lemma, in vector
spaces where it is tricky to compute the optimal 1-median exactly. In such cases, we transform
the space to a different vector space, where computing the 1-median is relatively simpler.
More specifically, we employ a rigid transformation since it preserves pairwise distances.
Next, we give a simple lemma, that is used to prove various bounds related to the quantity√

m(m − 1).

▶ Lemma 10. Let m and t be any positive real numbers greater than one. If m ≥ t, the
following bound holds:

m − (t −
√

t(t − 1)) ≤
√

m(m − 1) ≤ m − 1/2.

Proof. The upper bound follows from the sequence of inequalities:
√

m(m − 1) <√
m2 − m + 1/4 =

√
(m − 1/2)2 = m − 1/2. The lower bound follows from the following

sequence of inequalities:

√
m(m − 1) = m + m ·

(√
m − 1

m
− 1
)

≥ m + t ·

(√
t − 1

t
− 1
)

= m − (t −
√

t(t − 1)).

The second inequality holds because a+1
b+1 ≥ a

b for b ≥ a. This completes the proof of the
lemma. ◀

2.1 Preliminaries
Recall that a point in X corresponds to an edge of the graph. Therefore, a sub-graph S of G

corresponds to a subset of points X (S) := {xe | e ∈ E(S)} of X . We define the 1-median
cost of X (S) with respect to a center c ∈ Rn as Φ(c, S) ≡

∑
x∈X (S) ∥x − c∥. Furthermore,

we define the optimal 1-median cost of X (S) as Φ∗(S). That is, Φ∗(S) ≡ minc∈Rn Φ(c, S).
We often use these statements interchangeably, “optimal 1-median cost of a graph S” to
mean “optimal 1-median cost of the cluster X (S)”.

3 Inapproximability of Euclidean k-Median

In this section, we show the inapproximability result of the Euclidean k-median problem.
We obtain this result by showing a gap preserving reduction from Vertex Cover on bounded
degree triangle-free graphs to the Euclidean k-median. For Vertex Cover on bounded degree
triangle-free graphs, the inapproximability result is stated in Corollary 13. The corollary
simply follows from the following two results of Austrin et al. [6] and Awasthi et al. [7].

APPROX/RANDOM 2021

4:8 Hardness of Approximation for Euclidean k-Median

▶ Theorem 11 (Austrin et al. [6]). Given any unweighted bounded degree graph G = (V, E)
of maximum degree ∆, Vertex Cover can not be approximated within any factor smaller than
2 − ε, for ε = (2 + o∆(1)) · log log ∆

log ∆ assuming the Unique Games Conjecture.

In the above theorem, ε can be set to arbitrarily small value by taking sufficiently large value
of ∆.

▶ Theorem 12 (Awasthi et al. [7]). There is a (1 + ε)-approximation-preserving reduction
from Vertex Cover on bounded degree graphs to Vertex Cover on triangle-free graphs of bounded
degree.

▶ Corollary 13. Given any unweighted triangle-free graph G of bounded degree, Vertex Cover
can not be approximated within a factor smaller than 2 − ε, for any constant ε > 0, assuming
the Unique Games Conjecture.

Earlier, in Section 1.2, we described the reduction used by Awasthi et al. [7] to construct
instances for Euclidean k-means from a Vertex Cover instance. We use the same construction
for the Euclidean k-median instances. Let G = (V, E) denote a triangle-free graph of bounded
degree ∆. Let I = (X , k) denote the Euclidean k-median instance constructed from G. We
establish the following theorem based on this construction.

▶ Theorem 14. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs with m edges to the Euclidean k-median problem that satisfies the following
properties:
1. If the graph has a vertex cover of size k, then the k-median instance has a solution of

cost at most m − k/2.
2. If the graph has no vertex cover of size at most (2 − ε) · k, then the cost of any k-median

solution on the instance is at least m − k/2 + δk.
Here, ε is some fixed constant, δ = Ω(ε), and k ≥ the size of maximum matching of the
graph.

The graphs with a vertex cover of size at most k are said to be “Yes” instances and the
graphs with no vertex cover of size at most (2 − ε)k are said to be “No” instances. Now,
the above theorem gives the following inapproximability result for the Euclidean k-median
problem.

▶ Corollary 15. There exists a constant ε′ > 0 such that the Euclidean k-median problem can
not be approximated to a factor better than (1 + ε′), assuming the Unique Games Conjecture.

Proof. Since the hard Vertex Cover instances have bounded degree ∆, the maximum matching
of such graphs is at least ⌈ m

2∆ ⌉. First, let us prove this statement. Suppose M be a matching,
that is initially empty, i.e., M = ∅. We construct M in an iterative manner. First, we pick
an arbitrary edge from the graph and add it to M . Then, we remove this edge and all the
edges incident on it. We repeat this process for the remaining graph until the graph becomes
empty. In each iteration, we remove at most 2∆ edges. Therefore, the matching size of the
graph is at least ⌈ m

2∆ ⌉.
Now, suppose k < m

2∆ . Then, the graph does not have a vertex cover of size k since
matching size is at least ⌈ m

2∆ ⌉. Therefore, such graph instances can be classified as “No”
instances in polynomial time. So, they are not the hard Vertex Cover instances. Therefore, we
can assume k ≥ m

2∆ for all the hard Vertex Cover instances. In that case, the second property
of Theorem 14, implies that the cost of k-median instance is (m− k

2)+δk ≥ (1+ δ
2∆) ·(m− k

2).
Thus, the k-median problem can not be approximated within any factor smaller than
1 + δ

2∆ = 1 + Ω(ε). ◀

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:9

3.1 Completeness
Let W = {v1, . . . , vk} be a vertex cover of G. Let Si denote the set of edges covered by vi. If
an edge is covered by two vertices vi and vj , then we arbitrarily keep the edge either in Si or
Sj . Let mi denote the number of edges in Si. We define {X (S1), . . . , X (Sk)} as a clustering
of the point set X . Now, we show that the cost of this clustering is at most m − k/2. Note
that each Si forms a star graph centered at vi. Moreover, the point set X (Si) forms a regular
simplex of side length

√
2. We compute the optimal cost of X (Si) using the following lemma.

▶ Lemma 16. For a regular simplex on r vertices and side length s, the optimal 1-median is

the centroid of the simplex. Moreover, the optimal 1-median cost is s ·
√

r(r − 1)
2 .

Proof. The statement is easy to see for r = 1. For r = 2, there are two points s distance
apart. Therefore, the optimal center lies on the line segment joining the two points and the
optimal 1-median cost is trivially s. So, for the rest of the proof, we assume that r > 2.
Suppose A = {a1, a2, . . . , ar} denote the vertex set of a regular simplex. Let s be the side
length of the simplex. Using Lemma 9, we can represent each point ai in an r-dimensional
space as follows; we use the same notation to denote the points after such transformations.

a1 :=
(

s√
2

, 0, ..., 0
)

, a2 :=
(

0,
s√
2

, ..., 0
)

, . . . , ar :=
(

0, 0, ...,
s√
2

)
Note that the distance between any ai and aj is s, which is the side length of the simplex.
Let c∗ = (c1, . . . , cr) be an optimal 1-median of point set A. Then, the 1-median cost is the
following:

Φ(c∗, A) =
r∑

i=1
∥ai − c∗∥ =

r∑
i=1

 r∑
j=1

c2
j − c2

i +
(

s√
2

− ci

)2
1/2

Suppose ci ̸= cj for any i ̸= j. Then, we can swap ci and cj to create a different median,
while keeping the 1-median cost the same. It contradicts the fact that there is only one
optimal 1-median, by Fact 1. Therefore, we can assume c∗ = (c, c, . . . , c). Now, the optimal
1-median cost is:

Φ∗(A) = Φ(c∗, A) := r ·

√(
c − s√

2

)2
+ (r − 1) · c2

The function Φ(c∗, A) is strictly convex and attains minimum at c = s

m ·
√

2
, which is the

centroid of A. The optimal 1-median clustering cost is Φ(c∗, A) = s ·
√

r(r − 1)
2 . This

completes the proof of the lemma. ◀

The following corollary establishes the cost of a star graph Si.

▶ Corollary 17. Any star graph Si with r edges has the optimal 1-median cost of
√

r(r − 1)

Using this corollary, we bound the optimal k-median cost of X as follows. Let OPT (X , k)
denote the optimal k-median cost of X . The following sequence of inequalities proves the
first property of Theorem 14.

OPT (X , k) ≤
k∑

i=1
Φ∗(Si)

(Corollary 17)=
k∑

i=1

√
mi(mi − 1)

(Lemma 10)
≤

k∑
i=1

(
mi − 1

2

)
= m− k

2 .

APPROX/RANDOM 2021

4:10 Hardness of Approximation for Euclidean k-Median

3.2 Soundness

Now, we prove the second property of Theorem 14. For this, we prove the equivalent contra-
positive statement: If the optimal k-median clustering of X has cost at most

(
m − k

2 + δk
)
,

for some constant δ > 0, then G has a vertex cover of size at most (2 − ε)k, for some constant
ε > 0. Let C denote an optimal k-median clustering of X . We classify its optimal clusters
into two categories: (1) star and (2) non-star. Let F1, F2, . . . , Ft denote the non-star clusters,
and S1, . . . , Sk−t denote the star clusters. For any star cluster, the vertex cover size is exactly
one. Moreover, using Corollary 17, the optimal 1-median cost of any star cluster with r edges
is
√

r(r − 1). On the other hand, it may be tricky to exactly compute the vertex cover or
the optimal cost of any non-star cluster. Suppose the optimal 1-median cost of a non-star
cluster F on r edges is given as

√
r(r − 1) + δ(F), where δ(F) denotes the extra-cost due to

a non-star cluster F . Using this, we define δ(F) as the following:

δ(F) ≡ Φ∗(F) −
√

|F |(|F | − 1)

The following lemmas bound the vertex cover of F in terms of δ(F).

▶ Lemma 18. Any non-star cluster F with a maximum matching of size two has a vertex
cover of size at most 1.62 +

(√
2 + 1

)
δ(F).

▶ Lemma 19. Any non-star cluster F with a maximum matching of size at least three has a
vertex cover of size at most 1.8 +

(√
2 + 1

)
δ(F).

These lemmas are the key to proving the main result. We discussed the main proof ideas
earlier in Section 1.2; however, due to page-limit, the complete proof is deferred to the full
version of the paper [9]. Now, let us see how these lemmas give a vertex cover of size at most
(2 − ε)k. Let us classify the star clusters into the following two sub-categories:
(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .
(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .
Similarly, we classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1, W2, . . . , Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be:
Y1, Y2, . . . , Yt4

Note that t1 + t2 + t3 + t4 equals k. Now, consider the following strategy of computing the
vertex cover of G. Suppose, we compute the vertex cover for every cluster separately. Let Ci

be any cluster, and |V C(Ci)| denote the vertex cover size of Ci. Then, the vertex cover of G

can be simply bounded in the following manner:

|V C(G)| ≤
t1∑

i=1
|V C(Pi)| +

t2∑
i=1

|V C(Si)| +
t3∑

i=1
|V C(Wi)| +

t4∑
i=1

|V C(Yi)|

However, we can obtain a vertex cover of smaller size using a slightly different strategy.
In this strategy, we first compute a minimum vertex cover of all the clusters except single
edge clusters P1, P2, . . . , Pt1 . Suppose that vertex cover is V C ′. Then we compute a vertex
cover for P1, P2, . . . , Pt1 . Now, let us see why this strategy gives a vertex cover of smaller
size than before. Note that some vertices in V C ′ may also cover the edges in P1, . . . , Pt1 .
Suppose there are t′

1 clusters in P1, . . . , Pt1 that remain uncovered by V C ′. Without loss of
generality, assume these clusters to be P1, . . . , Pt′

1
. Now, the vertex cover of G is bounded in

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:11

the following manner:

|V C(G)| ≤ |V C
(

∪t′
1

i=1Pi

)
| + |V C ′|

= |V C
(

∪t′
1

i=1Pi

)
| + |V C

(
(∪t2

j=1Sj) ∪ (∪t3
k=1Wk) ∪ (∪t4

l=1Yl)
)

|

≤ |V C
(

∪t′
1

i=1Pi

)
| +

t2∑
i=1

|V C(Si)| +
t3∑

i=1
|V C(Wi)| +

t4∑
i=1

|V C(Yi)|

Now, we will try to bound the size of the vertex cover of P1 ∪ ... ∪ Pt′
1
. Note that we can cover

all these single-edge clusters with t′
1 vertices by choosing one vertex per cluster. However, it

may be possible to obtain a vertex cover of smaller size if we collectively consider all these
clusters. Suppose EP denote the set of all edges in P1, . . . , Pt′

1
and VP denote the vertex

set spanned by them. We define a graph GP = (VP , EP). Further, suppose that MP is a
maximal matching of GP . Then, it is easy to see that if |MP | ≤ t′

1/3 + 4δk for some δ > 0,
we can simply pick both end-points of every edge in MP , and it would give a vertex cover
of GP of size at most 2t′

1/3 + 8δk. On the other hand, if |MP | > t′
1/3 + 4δk, we show that

the graph G admits a vertex cover of size at most (2k − 2δk). This fact is mentioned in the
following lemma. Due to page limit, the proof is deferred to the full version of the paper [9].

▶ Lemma 20. Let δ > 0 be any constant and GP be as defined above. If GP does not have a
vertex cover of size ≤ (2t′

1
3 + 8δk), then G has a vertex cover of size at most (2k − 2δk).

Based on the above lemma, we will assume that all single edge clusters can be covered with
(2t′

1
3 + 8δk) ≤ (2t1

3 + 8δk) vertices; otherwise the graph has a vertex cover of size at most
(2k − 2δk) and the soundness proof would be complete. Now, we bound the vertex cover of
the entire graph in the following manner.

|V C(G)| ≤ |V C
(

∪t′
1

i=1Pi

)
| + |V C′|

= |V C
(

∪t′
1

i=1Pi

)
| + |V C

(
(∪t2

j=1Sj) ∪ (∪t3
k=1Wk) ∪ (∪t4

l=1Yl)
)

|

≤
t′

1∑
i=1

|V C(Pi)| +
t2∑

i=1

|V C(Si)| +
t3∑

i=1

|V C(Wi)| +
t4∑

i=1

|V C(Yi)|

≤
(2t1

3 + 8δk
)

+ t2 +
t3∑

i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 18, 19, and 20)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)(t3∑

i=1

δ(Wi) +
t4∑

i=1

δ(Yi)

)

Since the optimal cost OPT (X , k) =
k∑

j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+
t4∑

i=1
δ(Yi) ≤ m−k/2+δk,

we get
t3∑

i=1
δ(Wi) +

t4∑
i=1

δ(Yi) ≤ m − k/2 + δk −
k∑

j=1

√
mj(mj − 1). We substitute this value in

the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

k∑
j=1

√
mj(mj − 1) + δk

)

APPROX/RANDOM 2021

4:12 Hardness of Approximation for Euclidean k-Median

Using Lemma 10, we obtain the following inequalities:
1. For any cluster Pj with |Pj | = 1, we have

√
|Pj | (|Pj | − 1) ≥ |Pj | − 1

2. For any cluster Sj with |Sj | ≥ 2, we have
√

|Sj | (|Sj | − 1) ≥ |Sj | − (2 −
√

2)
3. For any cluster Wj with |Wj | ≥ 2, we have

√
|Wj | (|Wj | − 1) ≥ |Wj | − (2 −

√
2)

4. For any cluster Yj with |Yj | ≥ 3, we have
√

|Yj | (|Yj | − 1) ≥ |Yj | − (3 −
√

6)
We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

t1∑
j=1

(|Pj | − 1)

−
t2∑

j=1

(
|Sj | − (2 −

√
2)
)

−
t3∑

j=1

(
|Wj | − (2 −

√
2)
)

−
t4∑

j=1

(
|Yj | − (3 −

√
6)
)

+ δk

)

Since the number of edges m =
t1∑

j=1
|Pj | +

t2∑
j=1

|Sj | +
t3∑

j=1
|Wj | +

t4∑
j=1

|Yj |, we get the following

inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

− k/2 + t1 + t2 ·
(
2 −

√
2
)

+

+ t3 ·
(
2 −

√
2
)

+ t4 ·
(
3 −

√
6
)

+ δk

)
We substitute k = t1 + t2 + t3 + t4, and obtain the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

t1

2 + t2

10 + t3

10 + 3t4

50 + δk
)

= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +
(√

2 + 9
)

δk

< (1.95)k +
(√

2 + 9
)

δk (using t3 + t4 + t1 + t2 = k)

≤ (2 − ε)k, for appropriately small constants ε, δ > 0

This proves the soundness condition and it completes the proof of Theorem 14. Note that the
result holds under the Unique Games Conjecture. To prove the result in a weaker assumtion
of P ̸= NP, it would require to show that |V C(G)| < (1.36)k instead of |V C(G)| < (1.95)k.
That would require tighter analysis of the cost of k-median instances than the one done in
this work.

In the next section, we extend the above techniques to give the bi-criteria inapproximability
results for the Euclidean k-median and k-means problems.

4 Bi-criteria Hardness of Approximation

In the previous section, we showed that the k-median problem cannot be approximated to any
factor smaller than (1 + ε), where ε is some positive constant. The next step in the beyond
worst-case discussion is to study the bi-criteria approximation algorithms. That is, we allow
the algorithm to choose more than k centers and analyse whether it produces a solution that
is close to the optimal solution with respect to k centers? Since the algorithm is allowed to
output more than k centers we can hope to get a better approximate solution. An interesting
question in this regard would be: Does there exist a PTAS (polynomial time approximation
scheme) for the k-median/k-means problem when the algorithm is allowed to choose βk

centers for some constant β > 1? In other words, is there an (1 + ε, β)-approximation
algorithm? Note that here we compare the cost of βk centers with the optimal cost with
respect to k centers. See Definition 3 in Section 1 for formal definition of (α, β) bi-criteria
approximation algorithms.

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:13

In this section, we show that even with βk centers, the k-means/k-median problems
cannot be approximated within any factor smaller than (1 + ε′), for some constant ε′ > 0.
The following theorem state this result formally.

▶ Theorem 21 (k-median). For any constant 1 < β < 1.015, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-median problem
assuming the Unique Games Conjecture.

▶ Theorem 22 (k-means). For any constant 1 < β < 1.28, there exists a constant ε > 0
such that there is no (1 + ε, β)-approximation algorithm for the Euclidean k-means problem
assuming the Unique Games Conjecture. Moreover, the same result holds for any 1 < β < 1.1
under the assumption that P ̸= NP.

First, let us prove the bi-criteria inapproximability result for the k-median problem.

4.1 Bi-criteria Inapproximability: k-Median
In this subsection, we give a proof of Theorem 21. Let us define a few notations. Suppose
I = (X , k) be some k-median instance. Then, OPT (X , k) denote the optimal k-median cost
of X . Similarly, OPT (X , βk) denote the optimal βk-median cost of X (or the optimal cost
of X with βk centers). We use the same reduction as we used in the previous section for
showing the hardness of approximation of the k-median problem. Based on the reduction,
we establish the following theorem.

▶ Theorem 23. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs G (with m edges) to Euclidean k-median instances I = (X , k) that satisfies the
following properties:
1. If G has a vertex cover of size k, then OPT (X , k) ≤ m − k/2
2. For any constant 1 < β < 1.015, there exists constants ε, δ > 0 such that if G has no

vertex cover of size ≤ (2 − ε) · k, then OPT (X , βk) ≥ m − k/2 + δk.

Proof. Since the reduction is the same as we discussed in Section 1.2 and 3, we keep all
notations the same as before. Also, note that Property 1 in this theorem is the same as
Property 1 of Theorem 14. Therefore, the proof is also the same as we did in Section 3.1.
Now, we directly move to the proof of Property 2.

The proof is almost the same as we gave in Section 3.2. However, it has some minor
differences since we consider the optimal cost with respect to βk centers instead of k centers.
Now, we prove the following contrapositive statement: “For any constants 1 < β < 1.015
and ε > 0, there exists constants ε, δ > 0 such that if OPT (X , βk) < (m − k/2 + δk) then G

has a vertex cover of size at most (2 − ε)k”. Let C denote an optimal clustering of X with
βk centers. We classify its optimal clusters into two categories: (1) star and (2) non-star.
Further, we sub-classify the star clusters into the following two sub-categories:
(a) Clusters composed of exactly one edge. Let these clusters be: P1, P2, . . . , Pt1 .
(b) Clusters composed of at least two edges. Let these clusters be: S1, S2, . . . , St2 .
Similarly, we sub-classify the non-star clusters into the following two sub-categories:

(i) Clusters with a maximum matching of size two. Let these clusters be: W1, W2, . . . , Wt3

(ii) Clusters with a maximum matching of size at least three. Let these clusters be:
Y1, Y2, . . . , Yt4

Note that t1+t2+t3+t4 equals βk. Suppose, we first compute a vertex cover of all the clusters
except the single edge clusters: P1, . . . , Pt1 . Let that vertex cover be V C ′. Now, some vertices
in V C ′ might also cover the edges in P1, . . . , Pt1 . Suppose there are t′

1 single edge clusters

APPROX/RANDOM 2021

4:14 Hardness of Approximation for Euclidean k-Median

that remain uncovered by V C ′. Without loss of generality, we assume that these clusters
are P1, . . . , Pt′

1
. By Lemma 20, we can cover these clusters with (2t′

1
3 + 8δk) ≤ (2t1

3 + 8δk)
vertices; otherwise the graph would have a vertex cover of size at most (2k − δk), and the
proof of Property 2 would be complete. Now, we bound the vertex cover of the entire graph
in the following manner.

|V C(G)| ≤
t1∑

i=1

|V C(Pi)| +
t2∑

i=1

|V C(Si)| +
t3∑

i=1

|V C(Wi)| +
t4∑

i=1

|V C(Yi)|

≤
(2t1

3 + 8δk
)

+ t2 +
t3∑

i=1

((√
2 + 1

)
δ(Wi) + 1.62

)
+

t4∑
i=1

((√
2 + 1

)
δ(Yi) + 1.8

)
,

(using Lemmas 18, 19, and 20)

= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)(t3∑

i=1

δ(Wi) +
t4∑

i=1

δ(Yi)

)

Since the optimal cost OPT (X , βk) =
βk∑

j=1

√
mj(mj − 1)+

t3∑
i=1

δ(Wi)+
t4∑

i=1
δ(Yi) ≤ m−k/2+δk,

we get
t3∑

i=1
δ(Wi) +

t4∑
i=1

δ(Yi) ≤ m − k/2 + δk −
βk∑

j=1

√
mj(mj − 1). We substitute this value in

the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

βk∑
j=1

√
mj(mj − 1) + δk

)

Using Lemma 10, we obtain the following inequalities:
1. For Pj ,

√
m(Pj) (m(Pj) − 1) ≥ m(Pj) − 1 since m(Pj) = 1

2. For Sj ,
√

m(Sj) (m(Sj) − 1) ≥ m(Sj) − (2 −
√

2) since m(Sj) ≥ 2
3. For Wj ,

√
m(Wj) (m(Wj) − 1) ≥ m(Wj) − (2 −

√
2) since m(Wj) ≥ 2

4. For Yj ,
√

m(Yj) (m(Yj) − 1) ≥ m(Yj) − (3 −
√

6) since m(Yj) ≥ 3
We substitute these values in the previous equation, and get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
m − k/2 −

t1∑
j=1

(m(Pj) − 1) +

−
t2∑

j=1

(
m(Sj) − (2 −

√
2)
)

−
t3∑

j=1

(
m(Wj) − (2 −

√
2)
)

−
t4∑

j=1

(
m(Yj) − (3 −

√
6)
)

+ δk

)

Since m =
t1∑

j=1
m(Pj)+

t2∑
j=1

m(Sj)+
t3∑

j=1
m(Wj)+

t4∑
j=1

m(Yj), we get the following inequality:

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·

(
− k/2 + t1 + t2 ·

(
2 −

√
2
)

+

+ t3 ·
(

2 −
√

2
)

+ t4 ·
(

3 −
√

6
)

+ δk

)
= (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +

(√
2 + 1

)
·

(
(β − 1)k

2
−

βk

2
+ t1 + t2 ·

(
2 −

√
2
)

+

+ t3 ·
(

2 −
√

2
)

+ t4 ·
(

3 −
√

6
)

+ δk

)
Now, we substitute βk = t1 + t2 + t3 + t4, and obtain the following inequality:

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:15

|V C(G)| ≤ (0.67)t1 + 8δk + t2 + (1.62)t3 + (1.8)t4 +
(√

2 + 1
)

·
(

(β − 1)k

2
+

t1

2
+

t2

10
+

t3

10
+

3t4

50
+ δk

)
= (1.88)t1 + (1.25)t2 + (1.87)t3 + (1.95)t4 +

(√
2 + 1

)
·

(β − 1)k

2
+
(√

2 + 9
)

δk

< (1.95)βk +
(√

2 + 1
)

·
(β − 1)k

2
+
(√

2 + 9
)

δk (using t3 + t4 + t1 + t2 = βk)

< (3.16)βk − (1.21)k +
(√

2 + 9
)

δk

≤ (2 − ε)k, for any β < 1.015 and appropriately small constants ε, δ > 0

This proves Property 2 and it completes the proof of Theorem 23. ◀

The following corollary states the main bi-criteria inapproximability result for the k-median
problem.

▶ Corollary 24. There exists a constant ε′ > 0 such that for any constant 1 < β < 1.015,
there is no (1+ε′, β)-approximation algorithm for the k-median problem assuming the Unique
Games Conjecture.

Proof. In the proof of Corollary 15, we showed that k ≥ m
2∆ for all the hard Vertex Cover

instances. Therefore, the second property of Theorem 23, implies that OPT (X , βk) ≥
(m − k

2) + δk ≥ (1 + δ
2∆) · (m − k

2). Thus, the k-median problem can not be approximated
within any factor smaller than 1 + δ

2∆ = 1 + Ω(ε), with βk centers for any β < 1.015. ◀

The proof for the bi-criteria inapproximability of the k-means problem works in a similar
manner. We deffer its proof to Appendix B.

References
1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means

clustering. In Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM
2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in
Computer Science, pages 15–28. Springer, 2009. doi:10.1007/978-3-642-03685-9_2.

2 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means
and euclidean k-median by primal-dual algorithms. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 61–72, October 2017. doi:10.1109/FOCS.
2017.15.

3 Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In
Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Neural Information Processing Systems 22, pages 10–18. Curran Associates, Inc., 2009.
URL: http://papers.nips.cc/paper/3812-streaming-k-means-approximation.pdf.

4 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of
euclidean sum-of-squares clustering. Mach. Learn., 75(2):245–248, May 2009. doi:10.1007/
s10994-009-5103-0.

5 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

6 P. Austrin, S. Khot, and M. Safra. Inapproximability of vertex cover and independent set in
bounded degree graphs. In 2009 24th Annual IEEE Conference on Computational Complexity,
pages 74–80, 2009. doi:10.1109/CCC.2009.38.

APPROX/RANDOM 2021

https://doi.org/10.1007/978-3-642-03685-9_2
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1109/FOCS.2017.15
http://papers.nips.cc/paper/3812-streaming-k-means-approximation.pdf
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.1109/CCC.2009.38

4:16 Hardness of Approximation for Euclidean k-Median

7 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In Lars Arge and János Pach, editors, 31st
International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 754–767, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SOCG.2015.754.

8 Sayan Bandyapadhyay and Kasturi Varadarajan. On Variants of k-means Clustering. In Sándor
Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geometry
(SoCG 2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs), pages
14:1–14:15, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.SoCG.2016.14.

9 Anup Bhattacharya, Dishant Goyal, and Ragesh Jaiswal. Hardness of approximation of
euclidean k-median. CoRR, abs/2011.04221, 2020. arXiv:2011.04221.

10 Mihai Bundefineddoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-
sets. In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’02, page 250–257, New York, NY, USA, 2002. Association for Computing Machinery.
doi:10.1145/509907.509947.

11 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2), 2017. doi:10.1145/2981561.

12 Ramaswamy Chandrasekaran and Arie Tamir. Open questions concerning weiszfeld’s algorithm
for the fermat-weber location problem. Math. Program., 44(1-3):293–295, 1989. doi:10.1007/
BF01587094.

13 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem (extended abstract). In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, STOC ’99, page 1–10, New
York, NY, USA, 1999. Association for Computing Machinery. doi:10.1145/301250.301257.

14 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

15 Michael B. Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
Median in Nearly Linear Time, page 9–21. Association for Computing Machinery, New York,
NY, USA, 2016. doi:10.1145/2897518.2897647.

16 Vincent Cohen-Addad. A fast approximation scheme for low-dimensional k-means. In Artur
Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 430–440. SIAM,
2018. doi:10.1137/1.9781611975031.29.

17 Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp metrics. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 519–539. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00040.

18 Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. On approximability of clustering
problems without candidate centers. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 2635–2648. SIAM, 2021. doi:10.1137/1.9781611976465.156.

19 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), 00:353–364, 2016. doi:
doi.ieeecomputersociety.org/10.1109/FOCS.2016.46.

20 Sanjoy Dasgupta. The hardness of k-means clustering. Technical Report CS2008-0916,
Department of Computer Science and Engineering, University of California San Diego, 2008.

21 Zvi Drezner and Horst W Hamacher. Facility location: applications and theory. Springer
Science & Business Media, 2001.

https://doi.org/10.4230/LIPIcs.SOCG.2015.754
https://doi.org/10.4230/LIPIcs.SoCG.2016.14
http://arxiv.org/abs/2011.04221
https://doi.org/10.1145/509907.509947
https://doi.org/10.1145/2981561
https://doi.org/10.1007/BF01587094
https://doi.org/10.1007/BF01587094
https://doi.org/10.1145/301250.301257
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
https://doi.org/10.1145/2897518.2897647
https://doi.org/10.1137/1.9781611975031.29
https://doi.org/10.1109/FOCS.2019.00040
https://doi.org/10.1137/1.9781611976465.156
https://doi.org/doi.ieeecomputersociety.org/10.1109/FOCS.2016.46
https://doi.org/doi.ieeecomputersociety.org/10.1109/FOCS.2016.46

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:17

22 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the twenty-third annual symposium on Computational
geometry, SCG ’07, pages 11–18, New York, NY, USA, 2007. ACM. doi:10.1145/1247069.
1247072.

23 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), 00:365–374, 2016. doi:doi.ieeecomputersociety.org/10.1109/
FOCS.2016.47.

24 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999. doi:10.1006/jagm.1998.0993.

25 Ragesh Jaiswal, Amit Kumar, and Sandeep Sen. A simple D2-sampling based PTAS for
k-means and other clustering problems. Algorithmica, 70(1):22–46, 2014. doi:10.1007/
s00453-013-9833-9.

26 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. In
Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, page
10–18, New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/
513400.513402.

27 J. KRARUP and S. VAJDA. On torricelli’s geometrical solution to a problem of fermat. IMA
Journal of Management Mathematics, 8(3):215–224, 1997. doi:10.1093/imaman/8.3.215.

28 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010. doi:10.1145/1667053.
1667054.

29 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017. doi:10.1016/j.ipl.2016.11.
009.

30 Shi Li. Approximating capacitated k-median with (1 + ϵ)k open facilities. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
786–796. SIAM, 2016. doi:10.1137/1.9781611974331.ch56.

31 Shi Li. On uniform capacitated k-median beyond the natural lp relaxation. ACM Trans.
Algorithms, 13(2), 2017. doi:10.1145/2983633.

32 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, page 901–910,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2488608.
2488723.

33 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem
is np-hard. Theoretical Computer Science, 442:13–21, 2012. Special Issue on the Workshop on
Algorithms and Computation (WALCOM 2009). doi:10.1016/j.tcs.2010.05.034.

34 Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson-
lindenstrauss transform for k-means and k-medians clustering. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 1027–1038, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316350.

35 Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A Bi-Criteria
Approximation Algorithm for k-Means. In Klaus Jansen, Claire Mathieu, José D. P. Rolim,
and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2016), volume 60 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1–14:20, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.14.

36 Jirí Matousek. On approximate geometric k-clustering. Discret. Comput. Geom., 24(1):61–84,
2000. doi:10.1007/s004540010019.

APPROX/RANDOM 2021

https://doi.org/10.1145/1247069.1247072
https://doi.org/10.1145/1247069.1247072
https://doi.org/doi.ieeecomputersociety.org/10.1109/FOCS.2016.47
https://doi.org/doi.ieeecomputersociety.org/10.1109/FOCS.2016.47
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1007/s00453-013-9833-9
https://doi.org/10.1145/513400.513402
https://doi.org/10.1145/513400.513402
https://doi.org/10.1093/imaman/8.3.215
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1137/1.9781611974331.ch56
https://doi.org/10.1145/2983633
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.14
https://doi.org/10.1007/s004540010019

4:18 Hardness of Approximation for Euclidean k-Median

37 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM Journal on Computing, 13(1):182–196, 1984. doi:10.1137/0213014.

38 P. Milasevic and G. R. Ducharme. Uniqueness of the spatial median. Ann. Statist., 15(3):1332–
1333, September 1987. doi:10.1214/aos/1176350511.

39 Stanislav Minsker. Geometric median and robust estimation in Banach spaces. Bernoulli,
21(4):2308–2335, 2015. doi:10.3150/14-BEJ645.

40 Andrea Vattani. The hardness of k-means clustering in the plane. Technical report, Department
of Computer Science and Engineering, University of California San Diego, 2009.

41 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-
means++. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
604–612. Curran Associates, Inc., 2016. URL: http://papers.nips.cc/paper/
6309-a-constant-factor-bi-criteria-approximation-guarantee-for-k-means.pdf.

42 E. WEISZFELD. Sur le point pour lequel la somme des distances de n points donnes est
minimum. Tohoku Mathematical Journal, First Series, 43:355–386, 1937.

A Proof of Lemma 9

▶ Lemma 25. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be any two sets of n points in Rd.
If the pairwise distances between points within A is the same as pairwise distance between
points within B. That is, for all i, j ∈ {1, . . . , n}, ∥ai − aj∥ = ∥bi − bj∥. Then the optimal
1-median cost of A is the same as the optimal 1-median cost of B.

Let co(A) and co(B) denote the convex hulls of A and B, respectively. We split the
proof of Lemma 25 in two parts. In the first part (Lemma 26), we show that there exists a
distance preserving transformation R from co(A) to co(B) such that R(ai) = bi for every
i ∈ {1, . . . , n}. By distance preserving transformation, we mean that for any two points
x, y ∈ co(A), the distance ∥x − y∥ is preserved after applying the transformation R, i.e.,
∥x − y∥ = ∥R(x) − R(y)∥. In the second part (Lemma 27), we show that applying the
transformation R preserves the optimal 1-median cost of A.

▶ Lemma 26. Given two sets of points A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} in
Rd such that ∥ai − aj∥ = ∥bi − bj∥ for all i, j ∈ {1, . . . , n}. Then there exists a distance
preserving transformation R : co(A) → co(B) such that R(ai) = bi for every i ∈ {1, . . . , n}.

Proof. Let Xi be a vector4 defined as ai − a1 for every ai ∈ A. Similarly, we define a vector
Yi := bi − b1 for every bi ∈ B. We will use these vectors to define the transformation R.
For now, note the following property of inner product of Xi and Xj .

⟨Xi, Xj⟩ = ⟨Yi, Yj⟩ for every i, j ∈ {1, . . . , n} (1)

The proof of the above property follows from the following sequence of inequalities:
2 · ⟨Xi, Xj⟩ = ∥Xi∥2 + ∥Xj∥2 − ∥Xi − Xj∥2

= ∥Yi∥2 + ∥Yj∥2 − ∥Xi − Xj∥2
, ∵ ∥Xi∥ = ∥ai − a1∥ = ∥bi − b1∥ = ∥Yi∥

for every 1 ≤ i ≤ n

= ∥Yi∥2 + ∥Yj∥2 − ∥Yi − Yj∥2
, ∵ ∥Xi − Xj∥ = ∥ai − aj∥ = ∥bi − bj∥ = ∥Yi − Yj∥

= 2 · ⟨Yi, Yj⟩

In other words, the triangles (a1, ai, aj) and (b1, bi, bj) are congruent for all i, j ∈ {1, . . . , n}.
Therefore, the inner product ⟨Xi, Xj⟩ is the same as ⟨Yi, Yj⟩.

4 For better readability, we boldfaced the vector symbols to distinguish them from any scalar quantity.

https://doi.org/10.1137/0213014
https://doi.org/10.1214/aos/1176350511
https://doi.org/10.3150/14-BEJ645
http://papers.nips.cc/paper/6309-a-constant-factor-bi-criteria-approximation-guarantee-for-k-means.pdf
http://papers.nips.cc/paper/6309-a-constant-factor-bi-criteria-approximation-guarantee-for-k-means.pdf

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:19

Now, we describe the transformation R from co(A) to co(B). By the definition of

co(A), any point x ∈ co(A) can be expressed in the form
n∑

i=1
λi · ai for some 0 ≤ λ′

is ≤ 1

and
n∑

i=1
λi = 1. Equivalently, x can be expressed as a1 +

n∑
i=2

λi · Xi. For x ∈ co(A), we

define the transformation R as R(x) :=
∑n

i=1 λi · bi. Again, R(x) can be equivalently

expressed as b1 +
n∑

i=2
λi · Yi. It is easy to see that λi · bi indeed belongs to co(B) since

0 ≤ λi ≤ 1 and
n∑

i=1
λi = 1. Now, we show that R is a distance preserving transformation.

Let x := a1 +
n∑

i=2
λi · Xi and y := a1 +

n∑
i=2

γi · Xi be any two points in co(A). The following

sequence of inequalities prove that ∥x − y∥ = ∥R(x) − R(y)∥.

∥x − y∥2 = (x − y)T (x − y)

=
(

n∑
i=2

(λi − γi) · Xi

)T

·

(
n∑

i=2
(λi − γi) · Xi

)

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Xi, Xj⟩

=
n∑

i=2

n∑
j=2

(λi − γi) · (λj − γj) · ⟨Yi, Yj⟩, (using Equation 1)

=
(

n∑
i=2

(λi − γi) · Yi

)T

·

(
n∑

i=2
(λi − γi) · Yi

)
= (R(x) − R(y))T (R(x) − R(y))
= ∥R(x) − R(y)∥2

This proves that R is a distance preserving transformation from co(A) to co(B). Moreover,
note that R is a bijective function. It is possible that a vector x ∈ co(A) has multiple forms,
say

∑n
i=1 λi · ai and

∑n
i=1 Λi · ai. Therefore, it appears that x maps to different vectors in

co(B). However, it always maps to the same vector. For the sake of contradiction, assume
that x maps to two different vectors p :=

∑n
i=1 λi · bi and q :=

∑n
i=1 Λi · bi in co(B). Then

∥p − q∥ ≠ 0. It contradicts the fact that R is a distance preserving transformation. Similarly,
we can show that any two different vectors x, y ∈ co(A) can not map to the same vector in
co(B). This proves that R is a bijective function.

Furthermore, note that R(ai) = bi for every i ∈ {1, . . . , n}. To see this, consider

λi = 1 and λj = 0 for all j ∈ {1, . . . , n} \ {i}. Then ai =
n∑

j=1
λj · aj and therefore

R(ai) =
n∑

j=1
λj · bj = bj . This completes the proof of the lemma. ◀

Similar to R, we can also define a distance preserving transformation R−1 from co(B)

to co(A). The transformation R−1 is defined such that for any x =
n∑

i=1
λi · bi ∈ co(B),

APPROX/RANDOM 2021

4:20 Hardness of Approximation for Euclidean k-Median

R−1(x) =
n∑

i=1
λi · ai ∈ co(A). Furthermore, as per this definition of R−1, R−1(bi) = ai for

every i ∈ {1, . . . , n}. Now, we show that applying the transformation R on A preserves the
optimal 1-median cost of A.

▶ Lemma 27. If there exists distance preserving transformations R : co(A) → co(B) and
R−1 : co(B) → co(A) such that R(ai) = bi and R−1(bi) = ai for every i ∈ {1, . . . , n}. Then
the optimal 1-median cost of A is the same as the optimal 1-median cost of B.

Proof. Recall that 1-median cost of an instance A with respect to a center c ∈ Rd is denoted
by Φ(c, A) ≡

∑
ai∈A ∥ai − c∥. Let c∗

1 be the optimal 1-median of A. Furthermore, we can
assume that c∗

1 ∈ co(A) since the optimal 1-median lies in the convex hull of A (see e.g.
Remark 2.1 in [39]). Similarly, let c∗

2 ∈ co(B) be the optimal 1-median of B. Now, we
show that Φ(c∗

1, A) ≥ Φ(c∗
2, B) and Φ(c∗

1, A) ≤ Φ(c∗
2, B) using the following sequence of

inequalities:

Φ(c∗
1, A) =

∑
ai∈A

∥ai − c∗
1∥

=
∑

ai∈A

∥R(ai) − R(c∗
1)∥, ∵ R preserves the pairwise distances

=
∑

bi∈B

∥bi − R(c∗
1)∥, ∵ R(ai) = bi

≥
∑

bi∈B

∥bi − c∗
2∥, ∵ c∗

2 is the optimal 1-median of B

= Φ(c∗
2, B)

Similarly, we show that Φ(c∗
2, B) ≥ Φ(c∗

1, A) as follows:

Φ(c∗
2, B) =

∑
bi∈B

∥bi − c∗
2∥

=
∑

bi∈B

∥R−1(bi) − R−1(c∗
2)∥, ∵ R−1 preserves the pairwise distances

=
∑

ai∈A

∥ai − R−1(c∗
2)∥, ∵ R−1(bi) = ai

≥
∑

ai∈A

∥ai − c∗
1∥, ∵ c∗

1 is the optimal 1-median of A

= Φ(c∗
1, A)

This proves that Φ(c∗
1, A) = Φ(c∗

2, B). Hence it proves the lemma. ◀

Therefore, Lemma 26 and 27 together proves Lemma 25.

B Bi-criteria Inapproximability: k-means

Here, we again use the same reduction that we used earlier for the k-median problem in
Sections 1.2, 3, and 4.1. Using this, we establish the following theorem.

▶ Theorem 28. There is an efficient reduction from Vertex Cover on bounded degree triangle-
free graphs G (with m edges) to Euclidean k-means instances I = (X , k) that satisfies the
following properties:

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:21

1. If G has a vertex cover of size k, then OPT (X , k) ≤ m − k

2. For any 1 < λ ≤ 2 and β <
2
7 ·
(

λ + 5
2

)
, there exists constants ε, δ > 0 such that if G

has no vertex cover of size ≤ (λ − ε) · k, then OPT (X , βk) ≥ m − k + δk.
This theorem is simply an extension of the result of Awasthi et al. [7] to the bi-criteria setting.
Now, let us prove this theorem.

B.1 Completeness
Note that the proof of completeness is already given in [7]. Therefore, we just describe the
main components of the proof for the sake of clarity. To understand the proof, let us define
some notations used in [7]. Suppose F is a subgraph of G. For a vertex v ∈ V (F), let dF (v)
denote the number of edges in F that are incident on v. Note that, the optimal center for
1-means problem is simply the centroid of the point set. Therefore, we can compute the
optimal 1-means cost of F . The following lemma states the optimal 1-means cost of F .

▶ Lemma 29 (Claim 4.3 [7]). Let F be a subgraph of G with r edges. Then, the optimal
1-means cost of F is

∑
v dF (v)

(
1 − dF (v)

r

)
The following corollary bounds the optimal 1-means cost of a star cluster. This corollary is
implicitly stated in the proof of Claim 4.4 of [7].

▶ Corollary 30. The optimal 1-means cost of a star cluster with r edges is r − 1.

Using the above corollary, we give the proof of completeness. Let V = {v1, . . . , vk} be a
vertex cover of G. Let Si denote the set of edges covered by vi. If an edge is covered by
two vertices i and j, then we arbitrarily keep the edge either in Si or Sj . Let mi denote
the number of edges in Si. We define {X (S1), . . . , X (Sk)} as a clustering of the point set X .
Now, we show that the cost of this clustering is at most m−k. Note that each Si forms a star
graph with its edges sharing the common vertex vi. The following sequence of inequalities
bound the optimal k-means cost of X .

OPT (X , k) ≤
k∑

i=1
Φ∗(Si)

(Corollary 30)=
k∑

i=1
(m(Si) − 1) = m − k.

B.2 Soundness
For the proof of soundness, we prove the following contrapositive statement: “For any
constant 1 < λ ≤ 2 and β < 2

7 ·
(
λ + 5

2
)
, there exists constants ε, δ > 0 such that if

OPT (βk) ≤ (m − k + δk) then G has a vertex cover of size at most (λ − ε)k, for ε = Ω(δ).”
Let C denote an optimal clustering of X with βk centers. We classify its optimal clusters
into two categories: (1) star and (2) non-star. Suppose there are t1 star clusters: S1, . . . , St1 ,
and t2 non-star clusters: F1, F2, . . . , Ft2 . Note that t1 + t2 equals βk. The following lemma
bounds the optimal 1-means cost of a non-star cluster.

▶ Lemma 31 (Lemma 4.8 [7]). The optimal 1-means cost of any non-star cluster F with m

edges is at least m − 1 + δ(F), where δ(F) ≥ 2
3 . Furthermore, there is an edge (u, v) ∈ E(F)

such that dF (u) + dF (v) ≥ m + 1 − δ(F).

In the original statement of the lemma in [7], the authors mentioned a weak bound of
δ(F) > 1/2. However, in the proof of their lemma they have shown δ(F) > 2/3 > 1/2.
This difference does not matter when we consider inapproximability of the k-means problem.
However, this difference improves the β value in bi-criteria inapproximability of the k-means
problem.

APPROX/RANDOM 2021

4:22 Hardness of Approximation for Euclidean k-Median

▶ Corollary 32 ([7]). Any non-star cluster F has a vertex cover of size at most 1 + 5
2 · δ(F).

Proof. Suppose (u, v) be an edge in F that satisfies the property: dF (u) + dF (v) ≥ m +
1 − δ(F), by Lemma 31. This means that u and v covers at least m(F) − δ(F) edges of F .
We pick u and v in the vertex cover, and for the remaining δ(F) edges we pick one vertex
per edge. Therefore, F has a vertex cover of size at most 2 + δ(F). Since δ(F) ≥ 2

3 , by
Lemma 31, we get 2 + δ(F) ≤ 1 + 5

2 · δ(F). Hence, F has a vertex cover of size at most
1 + 5

2 · δ(F). This proves the corollary. ◀

Now, the following sequence of inequalities bound the vertex cover size of the enire graph G.

|V C(G)| ≤
t1∑

i=1
|V C(Si)| +

t2∑
i=1

|V C(Fi)|

≤ t1 +
t2∑

i=1

(
1 + 5

2 · δ(Fi)
)

(using Corollary 32)

= t1 + t2 + 5
2 ·

t2∑
i=1

δ(Fi)

Since the optimal k-means cost OPT (X , βk) =
t1∑

i=1
(m(Si) − 1) +

t2∑
i=1

(m(Fi) − 1 + δ(Fi)) ≤

m − k + δk, and t1 + t2 = βk. Therefore,
t2∑

i=1
δ(Fi) ≤ (β − 1)k + δk. On substituting this

value in the previous equation, we get the following inequality:

|V C(G)| ≤ t1 + t2 + 5
2 · (β − 1)k + 5

2 · δk

= βk + 5
2 · (β − 1)k + 5

2 · δk, (∵ t1 + t2 = βk)

≤ (λ − ε)k, for any β <
2
7 ·
(

λ + 5
2

)
and appropriately small constants ε, δ > 0

This proves the soundness condition and thus completes the proof of Theorem 28.
Next, we state a corollary of Theorem 28 that gives the main bi-criteria inapproximability

result for the k-means problem.

▶ Corollary 33. For any constant 1 < β < 1.28, there exists a constant ε′ > 0 such that
there is no (1 + ε′, β)-approximation algorithm for the k-means problem assuming the Unique
Games Conjecture. Moreover, the same result holds for any 1 < β < 1.1 under the assumption
that P ̸= NP.

Proof. Suppose Vertex Cover can not be approximated to any factor smaller than λ − ε, for
some constants ε, λ > 0. In the proof of Corollary 15, we showed that k ≥ m

2∆ for all the
hard Vertex Cover instances. In that case, the second property of Theorem 28 implies that
OPT (X , βk) ≥ (m − k) + δk ≥ (1 + δ

2∆) · (m − k). Thus, the k-means problem can not be
approximated within any factor smaller than 1 + δ

2∆ = 1 + Ω(ε), with βk centers. Now, let
us compute the value of β using the value of λ. We know that β <

2
7 ·
(

λ + 5
2

)
. Consider

the following two cases:
By Corollary 13, Vertex Cover is hard to approximate within any factor smaller than 2 − ε

on bounded degree triangle-free graphs assuming UGC. Hence λ = 2 and thus β < 1.28
assuming UGC.

A. Bhattacharya, D. Goyal, and R. Jaiswal 4:23

By Theorem 7, Vertex Cover is hard to approximate within any factor smaller than 1.36
on bounded degree triangle-free graphs assuming P ̸= NP. Hence λ = 1.36 and thus
β < 1.1 assuming P ̸= NP.

This completes the proof of the corollary. ◀

APPROX/RANDOM 2021

Online Directed Spanners and Steiner Forests
Elena Grigorescu # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Young-San Lin1 # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Kent Quanrud # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract
We present online algorithms for directed spanners and directed Steiner forests. These are well-
studied network connectivity problems that fall under the unifying framework of online covering and
packing linear programming formulations. This framework was developed in the seminal work of
Buchbinder and Naor (Mathematics of Operations Research, 34, 2009) and is based on primal-dual
techniques. Specifically, our results include the following:

For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we
present an efficient randomized algorithm with competitive ratio Õ(n4/5) for graphs with general
edge lengths, where n is the number of vertices of the given graph. For graphs with uniform
edge lengths, we give an efficient randomized algorithm with competitive ratio Õ(n2/3+ε), and
an efficient deterministic algorithm with competitive ratio Õ(k1/2+ε), where k is the number of
terminal pairs. To the best of our knowledge, these are the first online algorithms for directed
spanners. In the offline version, the current best approximation ratio for uniform edge lengths is
Õ(n3/5+ε), due to Chlamtáč, Dinitz, Kortsarz, and Laekhanukit (SODA 2017, TALG 2020).
For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be
connected arrive online, we present an efficient randomized algorithm with competitive ratio
Õ(n2/3+ε). The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene,
Krishnaswamy, and Panigrahi (SICOMP 2018) and is Õ(k1/2+ε)-competitive. In the offline
version, the current best approximation ratio with uniform costs is Õ(n26/45+ε), due to Abboud
and Bodwin (SODA 2018).

To obtain efficient and competitive online algorithms, we observe that a small modification of
the online covering and packing framework by Buchbinder and Naor implies a polynomial-time
implementation of the primal-dual approach with separation oracles, which a priori might perform
exponentially many calls to the oracle. We convert the online spanner problem into an online
covering problem and complete the rounding-step analysis in a problem-specific fashion.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Packing and covering problems; Theory of computation → Routing and network design
problems; Theory of computation → Rounding techniques

Keywords and phrases online directed pairwise spanners, online directed Steiner forests, online
covering/packing linear programming, primal-dual approach

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.5

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2103.04543 [52]

Funding E.G and Y.L. were supported in part by NSF CCF-1910659 and NSF CCF-1910411.

Acknowledgements We thank the anonymous reviewers for comments and suggestions that helped
improve the presentation. We thank Anupam Gupta and Greg Bodwin for bringing to our attention
references that we missed in previous versions of the writeup.

1 Corresponding author

© Elena Grigorescu, Young-San Lin, and Kent Quanrud;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 5; pp. 5:1–5:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elena-g@purdue.edu
https://www.cs.purdue.edu/homes/egrigore/
https://orcid.org/0000-0001-9673-4313
mailto:lin532@purdue.edu
https://www.cs.purdue.edu/homes/lin532/
https://orcid.org/0000-0002-5719-6708
mailto:krq@purdue.edu
https://kentquanrud.com/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.5
https://arxiv.org/abs/2103.04543
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Online Directed Spanners and Steiner Forests

1 Introduction

We study online variants of directed network optimization problems. In an online problem,
the input is presented sequentially, one item at a time, and the algorithm is forced to make
irrevocable decisions in each step, without knowledge of the remaining part of the input.
The performance of the algorithm is measured by its competitive ratio, which is the ratio
between the value of the online solution and that of an optimal offline solution.

Our main results focus on directed spanners, which are sparse subgraphs that approxim-
ately preserve pairwise distances between vertices. Spanners are fundamental combinatorial
objects with a wide range of applications, such as distributed computation [9, 69], data
structures [5, 75], routing schemes [35, 67, 70, 72], approximate shorthest paths [18, 41, 42],
distance oracles [18, 31, 68], and property testing [8, 22]. For a comprehensive account of the
literature, we refer the reader to the excellent survey [2].

We also study related network connectivity problems, and in particular on directed Steiner
forests, which are sparse subgraphs that maintain connectivity between target terminal
vertex pairs. Steiner forests are ubiquitously used in a heterogeneous collection of areas,
such as multicommodity network design [49, 53], mechanism design and games [30, 63, 64, 73],
computational biology [62,71], and computational geometry [19,24].

Our approaches are based on covering and packing linear programming (LP) formulations
that fall into the unifying framework developed by Buchbinder and Naor [26], using the
powerful primal-dual technique [51]. This unifying framework extends across widely different
domains, and hence provides a general abstraction that captures the algorithmic essence of
all online covering and packing formulations. In our case, to obtain efficient competitive
algorithms for solving the LPs online, we observe that the algorithms in [26] can be slightly
modified to significantly speed up the setting of our applications, in which the algorithm
might otherwise make exponentially many calls to a separation oracle. This component
is not tailored to the applications studied here and may be of independent interest. In
particular, previous approaches solving online covering and packing problems either focus on
the competitiveness of the algorithm [4,12,16], or manage to leverage the specific structure
of the problem for better time efficiency in a somewhat ad-hoc manner [3, 11,15,21,25,59],
while here the solution may be viewed as a more unified framework that is also efficient.

1.1 Our contributions

1.1.1 Directed spanners
Let G = (V, E) be a directed simple graph with n vertices. Each edge is associated with
its length ℓ : E → R≥0. The edge lengths are uniform if ℓ(e) = 1 for all e ∈ E. In spanner
problems, the goal is to compute a minimum cardinality (number of edges) subgraph in
which the distance between terminals is preserved up to some prescribed factor. In the
most well-studied setting, called the directed s-spanner problem, there is a fixed value s ≥ 1
called the stretch, and the goal is to find a minimum cardinality subgraph in which every
pair of vertices has distance within a factor of s in the original graph. For low stretch
spanners, when s = 2, there is a tight Θ(log n)-approximation algorithm [44, 65]; when
s = 3, 4 both with uniform edge lengths, there are Õ(n1/3)-approximation algorithms [20,40].
When s > 4, the best known approximation factor is Õ(n1/2) [20]. The problem is hard to
approximate within an O(2log1−ε n) factor for 3 ≤ s = O(n1−δ) and any ε, δ ∈ (0, 1), unless
NP ⊆ DTIME(npolylog n) [45].

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:3

A more general setting, called the pairwise spanner problem [34], and the client-server
model [22, 44], considers an arbitrary set of terminals D = {(si, ti) | i ∈ [k]} ⊆ V ×
V . Each terminal pair (si, ti) has its own target distance di. The goal is to compute a
minimum cardinality subgraph in which for each i, the distance from si to ti is at most
di. For the pairwise spanner problem with uniform edge lengths, [34] obtains an Õ(n3/5+ε)-
approximation.

In the online version, the graph is known ahead of time, and the terminal pairs and the
corresponding target distances are received one by one in an online fashion. The distance
requirement of the arriving terminal pair is satisfied by irrevocably including edges. There
are no online algorithms for the pairwise spanner problem that we are aware of, even in the
simpler and long-studied case of stretch s or graphs with uniform lengths.

For graphs with uniform edge lengths, we present the proof outline of the following
theorem in Section 2 and refer the reader to the full version [52] for the complete proof.

▶ Theorem 1. For the online pairwise spanner problem with uniform edge lengths, there
exists a deterministic polynomial time algorithm with competitive ratio Õ(k1/2+δ) for any
constant δ > 0.

Next, we turn to graphs with general edge lengths and derive online algorithms with
competitive ratios in terms of n. We present a generic algorithm (Algorithm 3) used for
Theorems 2, 3, 4, 5, 6, and 7. Due to space limitations, we refer the reader to the full
version [52] for the complete proof of Theorems 3, 4, and 5.

For graphs with general edge lengths, we show the following in Section 3.1.

▶ Theorem 2. For the online pairwise spanner problem, there is a randomized polynomial
time algorithm with competitive ratio Õ(n4/5).

In one special case, the given graph might have uniform edge lengths, and the diameter
is bounded or it is guaranteed that the distances between the terminal pairs are bounded.
Let d = maxi∈[k]{di} that is known offline be the maximum allowed distance of any pair
of terminals in the input. This setting is equivalent to the d-diameter spanning subgraph
problem introduced in [22].

▶ Theorem 3. For the online pairwise spanner problem with uniform edge lengths and
maximum allowed distance d, there is a randomized polynomial time algorithm with competitive
ratio Õ(d1/3n2/3).

Another special case is where the edge lengths are quasimetric. That is, they satisfy the
following directed form of the triangle inequality. For any two edges u → v and v → w,
there is also an edge u→ w such that ℓ(u, w) ≤ ℓ(u, v) + ℓ(v, w). This setting includes the
class of transitive-closure graphs with uniform edge lengths, in which each pair or vertices
connected by a directed path is also connected by a directed edge. The offline version of the
transitive-closure spanner problem was formally defined in [22].

▶ Theorem 4. For the online pairwise spanner problem where edge lengths are quasimetric,
there is a randomized polynomial time algorithm with competitive ratio Õ(n2/3).

In a special case on graphs with uniform edge lengths, for each terminal pair (si, ti), there
is also an edge si → ti in the given graph. This setting is equivalent to the all-server spanner
problem introduced in [44].

▶ Theorem 5. For the online all-server spanner problem with uniform edge lengths, there is
a randomized polynomial time algorithm with competitive ratio Õ(n2/3).

APPROX/RANDOM 2021

5:4 Online Directed Spanners and Steiner Forests

For graphs with uniform edge lengths without further assumptions, we use Theorem 1
and the generic algorithm to prove the following theorem in Section 3.2.

▶ Theorem 6. For the online pairwise spanner problem with uniform edge lengths, there is
a randomized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant
ε ∈ (0, 1/3).

1.1.2 Directed Steiner forests
In the directed Steiner forest problem, we are given a directed graph G = (V, E) with edge
costs w : E → R≥0, and a set of terminals D = {(si, ti) | i ∈ [k]} ⊆ V × V . The goal is to
find a subgraph H = (V, E′) which includes an si ; ti path for each terminal pair (si, ti),
and the total cost

∑
e∈E′ w(e) is minimized. The costs are uniform when w(e) = 1 for all

e ∈ E.
In the offline setting with general costs, the best known approximations are O(k1/2+ε)

by Chekuri et al. [32] and O(n2/3+ε) by Berman et al. [20]. For the special case of uniform
costs, there is an improved approximation factor of Õ(n26/45+ε) by Abboud and Bodwin [1].
In the online setting, Chakrabarty et al. [28] give an Õ(k1/2+ε) approximation for general
costs. Their algorithm also extends to the more general buy-at-bulk version. We prove the
following in Section 3.3..

▶ Theorem 7. For the online directed Steiner forest problem with uniform costs, there is
a randomized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant
ε ∈ (0, 1/3).

We essentially improve the competitive ratio when the number of terminal pairs is ω(n4/3).

1.1.3 Summary
We summarize our main results for online pairwise spanners and directed Steiner forests in
Table 1 by listing the competitive ratios and contrast them with the corresponding known
competitive and approximation ratios. We note that offline Õ(n4/5)-approximate pairwise
spanners for graphs with general edge lengths and offline Õ(k1/2+ε)-approximate pairwise
spanners for graphs with uniform edge lengths can be obtained by our online algorithms.

Table 1 Summary of the competitive and approximation ratios. Here, n refers to the number of
vertices and k refers to the number of terminal pairs. We include the known results for comparison.
The text in gray refers to known results while the text in black refers to our contributions.

Setting Pairwise Spanners Directed Steiner Forests

Õ(n4/5) (implied by Thm 2) Õ(n26/45+ε) (uniform costs) [1]

Offline Õ(n3/5+ε) (uniform lengths) [34] O(n2/3+ε) [20]

Õ(k1/2+ε) (uniform lengths, implied by Thm 1) O(k1/2+ε) [32]

Õ(n4/5) (Thm 2) Õ(k1/2+ε) [28]

Online Õ(n2/3+ε) (uniform lengths, Thm 6) Õ(n2/3+ε) (uniform costs, Thm 7)

Õ(k1/2+ε) (uniform lengths, Thm 1)

1.2 An efficient online covering and packing framework
Before presenting our modification to the unified framework in [26] to obtain efficient online
covering and packing LP solvers, we give an overview of the well-known primal-dual framework

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:5

for approximating covering and packing LP’s online. This framework is the main engine of our
application and it is important to establish some context before getting into the application
for spanners and Steiner forests. We also introduce a discussion of certain technical nuances
that arise for our application, and the small modification we propose to address it. A more
formal description, including proofs and fully parameterized theorem statements, is fairly
technical and therefore deferred to Appendix C after we have used these tools in the context
of spanners and Steiner forests.

The primal-dual framework was first developed for the online set cover problem in the
seminal work of [4]. The approach was extended to network optimization problems in
undirected graphs in [3], then abstracted and generalized to a broad LP-based primal-dual
framework in [26]. Our discussion primarily centers around the abstract framework in [26].
A number of previous results in online algorithms, such as ski rental [61] and paging [16],
can be recovered from this approach and many new important applications have since been
developed, such as the k-server problem [76]. We refer the reader to the excellent survey by
Buchbinder and Naor [27].

These works develop a clean two-step approach to online algorithms based on 1) solving
the LP online, and 2) rounding the LP online. Solving the LP online can be done in a generic
fashion, while rounding tends to be problem-specific. The setting for the covering LP is the
following.

minimize ⟨c, x⟩ over x ∈ Rn
≥0 s.t. Ax ≥ b. (1)

Here A ∈ Rm×n
≥0 consists of m covering constraints, b ∈ Rn

>0 is a positive lower bound
of the covering constraints, and c ∈ Rm

>0 denotes the positive coefficients of the linear cost
function. Each constraint can be normalized, so we focus on covering LP’s in the following
form.

minimize ⟨c, x⟩ over x ∈ Rn
≥0 s.t. Ax ≥ 1 (2)

where 1 is a vector of all ones.
In the online covering problem, the cost vector c is given offline, and each of these covering

constraints is presented one by one in an online fashion, that is, m can be unknown. The
goal is to update x in a non-decreasing manner such that all the covering constraints are
satisfied and the objective value ⟨c, x⟩ is approximately optimal. An important idea in this
line of work is to simultaneously consider the dual packing problem:

maximize ⟨1, y⟩ over y ∈ Rm
≥0 s.t. AT y ≤ c (3)

where AT consists of n packing constraints with an upper bound c given offline.
In the online packing problem, the columns of AT and the corresponding variables are

presented online with value zero, one can either let the arriving variable remain zero, or
irrevocably assign a positive value to the arriving variable. The goal is to approximately
maximize the objective value ⟨1, y⟩ with each constraint approximately satisfied.

1.2.1 Separation oracles in the online setting
The primal-dual framework in [26] simultaneously solves both LP (2) and LP (3), and crucially
uses LP-duality and strong connections between the two solutions to argue that they are
both nearly optimal. Here we give a sketch of the LP solving framework for reference in the
subsequent discussion. We maintain solutions x and y for LP (2) and LP (3), respectively, in
an online fashion. The covering solution x is a function of the packing solution y. In particular,
each coordinate xj is exponential in the load of the corresponding packing constraint in LP

APPROX/RANDOM 2021

5:6 Online Directed Spanners and Steiner Forests

(3). Both x and y are monotonically increasing. The algorithm runs in phases, where each
phase corresponds to an estimate for OPT revised over time. Within a phase we have the
following. If the new covering constraint i ∈ [m], presented online, is already satisfied, then
there is nothing to be done. Otherwise, increase the corresponding coordinate yi, which
simultaneously increases the xj ’s based on the magnitude of the coordinate aij , where aij is
the i-th row j-th column entry of A. The framework in [26] increases yi until the increased
xj ’s satisfy the new constraint. This naturally extends to the setting when the problem
relies on a separation oracle to retrieve an unsatisfied covering constraint where the number
of constraints can be unbounded [26]. However, while this approach will fix all violating
constraints, each individual fix may require a diminishingly small adjustment that cannot
be charged off from a global perspective. Consequently the algorithm may have to address
exponentially many constraints.

1.2.2 A primal-dual bound on separation oracles

Our goal is to adjust the framework to ensure that we only address a polynomial number
of constraints (per phase). For many concrete problems in the literature, this issue can be
addressed directly based on the problem at hand (discussed in greater detail in Section A). In
our setting, we start with a combinatorially defined LP that is not a pure covering problem,
and convert it to a covering LP. While having a covering LP is conducive to the online LP
framework, the machinery generates a large number of covering constraints that are very
unstructured. For example, we have little control over the coefficients of these constraints.
This motivates us to develop a more generic argument to bound the number of queries to
the separation oracle, based on the online LP framework, more so than the exact problem at
hand. Here, when addressing a violated constraint i, we instead increase the dual variable
yi until the increased primal variables x (over-)satisfy the new constraint by a factor of
2. This forces at least one xj to be doubled – and in the dual, this means we used up a
substantial amount of the corresponding packing constraint. Since the packing solution is
already guaranteed to be feasible in each phase by the overall framework, this leads us to
conclude that we only ever encounter polynomially many violating constraints.

For our modified online covering and packing framework, we show that 1) the approxima-
tion guarantees are identical to those in [26], 2) the framework only encounters polynomially
many violating constraints for the online covering problem, and 3) only polynomially many
updates are needed for the online packing problem.

▶ Theorem 8 (Informal). There exists an O(log n)-competitive online algorithm for the
covering LP (2) which encounters polynomially many violating constraints.

▶ Theorem 9 (Informal). Given any parameter B > 0, there exists a 1/B-competitive
online algorithm for the packing LP (3) which updates y polynomially many times, and
each constraint is violated within an O(f(A)/B) factor (f(A) is a logarithmic function that
depends on the entries in A).

We note that the competitive ratios given in [26] are tight, which also implies the tightness
of the modified framework. The number of violating constraints depends not only on the
number of covering variables and packing constraints n, but also on the number of bits used
to present the entries in A and c. The formal proof for Theorem 8 is provided in Appendix C,
while the formal proof for Theorem 9 provided in the full version [52] is not directly relevant
to this work, but may be of independent interest.

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:7

1.3 High-level technical overview for online network optimization
problems

1.3.1 Online pairwise spanners

For this problem, a natural starting point is the flow-based LP approach for offline s-
stretch directed spanners, introduced in [38]. The results of [34] adopt a slight tweak
for this approach to achieve an Õ(n/

√
OPT)-approximation, where OPT is the size of the

optimal solution. With additional ideas, the Õ(n/
√

OPT)-approximation is converted into an
Õ(n3/5+ε)-approximation for pairwise spanners. One technical obstacle in the online setting
is the lack of a useful lower bound for OPT. Another challenge is solving the LP for the
spanner problem and rounding the solution in an online fashion, particularly as the natural
LP is not a covering LP. We address these technical obstacles as discussed below in Section 3.
Ultimately we obtain an Õ(n4/5) competitive ratio for the online setting. The strategy here
is to convert the LP for spanners into a covering LP, where the constraints are generated by
an internal LP. The covering LP previously appeared in [38] implicitly, and in [39] explicitly.

1.3.2 Online pairwise spanners with uniform edge lengths

For the special case of uniform edge lengths, [34] obtains an improved bound of Õ(n3/5+ε).
It is natural to ask if the online bound of Õ(n4/5) mentioned above can be improved as
well. Indeed, we obtain an improved bound of Õ(n2/3+ε) by replacing the greedy approach
in the small OPT regime by using the Õ(k1/2+ε)-competitive online algorithm discussed in
Section 2. This algorithm leverages ideas from [34] in reducing to label cover problems with
ideas from the online network design algorithms of [28]. Some additional ideas are required
to combine the existing tools and among others we had to formulate a new pure covering LP
that can be solved online, to facilitate the transition.

1.3.3 Online Steiner forests with uniform costs

This problem is a special case of the online pairwise spanner problem where the distance
requirement for each terminal pair is infinity and the edge lengths are uniform. The online
algorithm for this problem has a similar structure to the one for pairwise spanners and
similar obstacles to overcome. Before small value of OPT gets large, we can leverage the
Õ(k1/2+ε)-competitive online algorithm or the online buy-at-bulk framework [28] for a better
bound than a greedy approach would give, improving the competitive ratio to Õ(n2/3+ε).

1.4 Organization

Since the proof of Theorem 1 is the most involved contribution of this work, we start by
presenting the proof outline in Section 2 and refer the reader to the full version [52] for the
technical proof details. In Section 3, we prove Theorems 2, 6, and 7 by designing a generic
online algorithm, which is also used for proving Theorems 3, 4, and 5 in the full version [52].
We show the modified online covering framework in Appendix C, while the modified online
packing framework is presented in the full version [52]. We refer the reader to Appendix A for
a detailed description of related work and an exposition situating our work in the expansive
literature of directed spanners, Steiner forests, and covering and packing problems.

APPROX/RANDOM 2021

5:8 Online Directed Spanners and Steiner Forests

2 Online Pairwise Spanners with Uniform Lengths

In this section, we present the proof outline of Theorem 1, namely we design an online
algorithm for the pairwise spanner problem with uniform edge lengths with competitive ratio
Õ(k1/2+δ) for any constant δ > 0. We recall that in the pairwise spanner problem, we are
given a directed graph G = (V, E) with edge length ℓ : E → R≥0, a general set of k terminals
D = {(si, ti) | i ∈ [k]} ⊆ V × V , and a target distance di for each terminal pair (si, ti), the
goal is to output a subgraph H = (V, E′) of G such that for every pair (si, ti) ∈ D it is
the case that dH(si, ti) ≤ di, i.e. the length of a shortest si ; ti path is at most di in the
subgraph H, and we want to minimize the number of edges in E′. The edge lengths are
uniform if ℓ(e) = 1 for all e ∈ E. In the online setting, the directed graph G is given offline,
while the vertex pairs in D ⊆ V × V arrive online one at a time. In the beginning, E′ = ∅.
Suppose (si, ti) and its target distance di arrive in round i, we select some edges from E and
irrevocably add them to E′, such that in the subgraph H = (V, E′), dH(si, ti) ≤ di.

2.1 Outline of the proof of Theorem 1
We start by describing the high-level approach of our proof of Theorem 1. While the proof
combines ideas of the online buy-at-bulk framework in [28] and of the reduction from the
pairwise spanner problem to a connectivity problem in [34], implementing the details require
several new ideas. Specifically, we introduce a useful extension of the Steiner problem,
called the Steiner label cover problem, and our main contribution is an online covering
LP formulation for this problem. This approach allows us to not only capture the global
approximation property in an online setting, as in [28], but also to handle distance constraints,
as in [34]. The entire proof consists of three main ingredients:
1. We first show that there exists an O(

√
k)-approximate solution consisting of junction

trees. A junction tree is a subgraph consisting of an in-arborescence and out-arborescence
rooted at the same vertex (see also Definition 10).

2. We then show a reduction from the online pairwise spanner problem to the online Steiner
label cover problem on a forest with a loss of an O(k1/2+δ) factor. More precisely, an
O(
√

k) factor comes from the junction tree approximation and an extra O(kδ) factor
comes from the height reduction technique introduced in [32,58]. The height reduction
technique allows us to focus on low-cost trees of height O(1/δ) in order to recover a
junction tree approximation.

3. Finally, we show a reduction from the online Steiner label cover problem to the online
undirected Steiner forest problem, with a loss of a polylog(n) factor. More precisely, we
first formulate an online covering LP for the online Steiner label cover instance, then
construct an online undirected Steiner forest instance from the LP solution, with a loss
of a factor of 2. By [21], the online undirected Steiner forest problem can then be solved
deterministically with competitive ratio polylog(n).

Combining these three ingredients results in an Õ(k1/2+δ)-competitive algorithm. We
provide further intuition below. The detailed description these three ingredients are presented
in the full version [52].

2.1.1 Junction tree approximation
Many connectivity problems, including Steiner forests, buy-at-bulk, and spanner problems,
are usually solved using junction trees introduced in [33].

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:9

▶ Definition 10. A junction tree rooted at r ∈ V is a directed graph G = (V, E), by taking
the union of an in-arborescence rooted at r and an out-arborescence rooted at r2. A junction
tree solution is a collection of junction trees rooted at different vertices, that satisfies all the
terminal distance constraints.

▶ Lemma 11. There exists an O(
√

k)-approximate junction tree solution for pairwise span-
ners.

At a high level, the proof of Lemma 11 follows by a standard density argument. A
partial solution is a subgraph that connects a subset of the terminal pairs within the required
distances. The density of a partial solution is the ratio between the number of edges used and
the number of terminal pairs connected within the required distances. This argument is used
for solving offline problems including the Steiner forest problem [20,32,46], the buy-at-bulk
problem [6], the Client-Server s-spanner [22] problem, and the pairwise spanner problem [34],
by greedily removing low density partial solutions in an iterative manner. Fortunately, this
iterative approach also guarantees a nice global approximation that consists of junction trees
rooted at different vertices, which is amenable in the online setting. The online buy-at-bulk
algorithm in [28] is an online version of the junction tree framework for connectivity problems.
Our main technical contribution is further modifying the online version of the junction tree
framework for problems with distance constraints.

2.1.2 Reduction to Steiner label cover
We reduce the pairwise spanner problem to the following extension of Steiner problem termed
Steiner label cover.

▶ Definition 12. In the Steiner label cover problem, we are given a (directed or undirected)
graph G = (V, E), non-negative edge costs w : E → R≥0, and a collection of k disjoint vertex
subset pairs (Si, Ti) for i ∈ [k] where Si, Ti ⊆ V and Si ∩Ti = ∅. Each pair is associated with
a relation (set of permissible pairs) Ri ⊆ Si × Ti. The goal is to find a subgraph F = (V, E′)
of G, such that 1) for each i ∈ [k], there exists (s, t) ∈ Ri such that there is an s ; t path in
F , and 2) the cost

∑
e∈E′ w(e) is minimized.

For the online Steiner label cover problem, (Si, Ti) and Ri arrive online, and the goal is
to irrevocably select edges to satisfy the first requirement and also approximately minimize
the cost.

To reduce to the online Steiner label cover problem, we construct a directed graph G′

that consists of disjoint layered graphs from the given graph G = (V, E). Each vertex in G′

is labelled by the distance to (from) the root of a junction tree. This allows us to capture
distance constraints by a Steiner label cover instance with distance-based relations. From
G′, we further construct an undirected graph H which is a forest by the height reduction
technique [32, 58]. In H, we define the corresponding Steiner label cover instance, where the
terminal vertex sets consist of the leaves, and the solution is guaranteed to be a forest. The
Steiner label cover instance on the forest H has a nice property. For each tree in H, the
terminal vertices can be ordered in a way such that if an interval belongs to the relation,
then any subinterval also belongs to the relation.

2 A junction tree does not necessarily have a tree structure in directed graphs, i.e. edges in the in-
arborescence and edges in the out-arborescence may overlap. Nevertheless, we continue using this term
because of historical reasons. A similar notion can also be used for undirected graphs, where a junction
tree is indeed a tree.

APPROX/RANDOM 2021

5:10 Online Directed Spanners and Steiner Forests

▶ Definition 13. The ordered Steiner label cover problem on a forest is defined as a special
case of the Steiner label cover problem (see Definition 12) with the following properties.
1. G is an undirected graph consisting of disjoint union of trees H1, H2, . . . , Hn each of

which has a distinguished root vertex rj where j ∈ [n].
2. For each (Si, Ti) and Ri, and each tree Hj, the input also includes the orderings ≺i,j

such that:
a. For Sj

i := Si ∩Hj and T j
i := Ti ∩Hj, the ordering ≺i,j is defined on Sj

i ∪ T j
i .

b. The root rj separates Sj
i from T j

i .
c. If s ∈ Sj

i and t ∈ T j
i are such that (s, t) ∈ Ri, then for any s′ ∈ Sj

i and t′ ∈ T j
i such

that s ⪯i,j s′ ≺i,j t′ ⪯i,j t, we have that (s′, t′) ∈ Ri.
We note that for the online ordered Steiner label cover problem on a forest, besides

(Si, Ti) and Ri, the orderings {≻i,j}j∈[n] also arrive online.
We employ a well-defined mapping between junction trees in G and forests in H by paying

an Õ(k1/2+δ) factor for competitive online solutions. A crucial step for showing Theorem 1
is the following theorem.

▶ Theorem 14. For any constant δ > 0, an α-competitive polynomial time algorithm for
online ordered Steiner label cover on a forest implies an O(αk1/2+δ)-competitive polynomial
time algorithm for the online pairwise spanner problem on a directed graph with uniform edge
lengths.

At a high level, the online pairwise spanner problem on a directed graph G = (V, E) with
uniform edge lengths reduces to an instance of online Steiner label cover on the forest H

with the following properties.
1. H consists of disjoint trees Hr rooted at r′ for each vertex r ∈ V .
2. |V (H)| = nO(1/δ), E(H) = nO(1/δ), and each tree Hr has depth O(1/δ) with respect to

r′.
3. For each arriving terminal pair (si, ti) with distance requirement di, there is a corres-

ponding pair of terminal sets (Ŝi, T̂i) and relation R̂i with |R̂i| = nO(1/δ), where Ŝi and
T̂i are disjoint subsets of leaves in H . Furthermore, we can generate orderings ≺i,r based
on the distance-based relations R̂i such that the Steiner label cover instance is an ordered
instance on the forest H.

This technique closely follows the one for solving offline pairwise spanners in [34]. The
intermediary problem considered in [34] is the minimum density Steiner label cover problem.
In this framework, the solution is obtained by selecting the partial solution with the lowest
density among the junction trees rooted at different vertices and repeat. In the online setting,
to capture the global approximation for pairwise spanners, we construct a forest H and
consider all the possible roots simultaneously.

2.1.3 An online algorithm for Steiner label cover on H

The goal is to prove the following lemma.

▶ Lemma 15. For the online ordered Steiner label cover problem on a forest (see definition
13), there is a deterministic polynomial time algorithm with competitive ratio polylog(n).

We derive an LP formulation for the Steiner label cover instance on H. At a high level,
the LP minimizes the total edge weight by selecting edges that cover paths with endpoint
pairs which belong to the distance-based relation. We show that the LP for Steiner label cover
can be converted into an online covering problem, which is efficiently solvable by Theorem 8.

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:11

The online rounding is based on the online LP solution for Steiner label cover. Given the
online LP solution and the orderings in round i generated by the distance-based relation
R̂i, we extract the representative vertex sets S̃i and T̃i from the terminal sets Ŝi and T̂i,
respectively, according to orderings ≺i,r and the contribution of the terminal vertex to
the objective of the Steiner label cover LP. We show that the union of cross-products over
partitions of S̃i and T̃i (based on the trees in H) is a subset of the distance-based relation
R̂i. This allows us to reduce the online ordered Steiner label cover problem to the online
undirected Steiner forest problem by connecting a super source to S̃i and a super sink to T̃i.

This technique closely follows the one for solving offline pairwise spanners in [34]. The
main difference is that in the offline pairwise spanner framework, the LP formulation is
density-based and considers only one (fractional) junction tree. To globally approximate
the online pairwise spanner solution, our LP formulation is based on the forest H and its
objective is the total weight of a (fractional) forest.

The LP for the undirected Steiner forest problem is roughly in the following form.

min
x

∑
e∈E(H)

w′(e)xe

subject to x supports an S̃i-T̃i flow of value 1 ∀i ∈ [k],
xe ≥ 0 ∀e ∈ E(H).

(4)

Here w′ denotes the edge weights in H. We show that a solution of the undirected Steiner
forest LP (4) recovers a solution for the Steiner label cover LP by a factor of 2. The integrality
gap of the undirected Steiner forest LP is polylog(n) because the instance can be decomposed
into single source Steiner forest instances by the structure of H [28,50]. This implies that
the online rounding for the Steiner label cover LP can be naturally done via solving the
undirected Steiner forest instance online, by using the polylog(n)-competitive framework [21].

2.1.3.1 Putting it all together

We summarize the overall Õ(k1/2+δ)-competitive algorithm for online pairwise spanners when
the given graph has uniform edge lengths. The reduction strategy is as follows:
1. Reduce the online pairwise spanner problem on the original graph G to the online Steiner

label cover problem on the directed graph G′ which consists of disjoint layered graphs.
2. Reduce the online Steiner label cover problem on G′ to an online ordered Steiner label

cover problem on H, where H is a forest.
3. In the forest H, reduce the online ordered Steiner label cover problem to the online

undirected Steiner forest problem.

We note that G′ and H are constructed offline, while the graph for the final undirected
Steiner forest instance is partially constructed online, by adding super sources and sinks
and connecting incident edges to the representative leaf vertices online in H. The pairwise
spanner in G is O(

√
k)-approximated by junction trees according to Lemma 11. The graph

G′ preserves the same cost of the pairwise spanner (junction tree solution) in G. The solution
of the ordered Steiner label cover problem in graph H is a forest. One can map a forest in H

to junction trees in G′, via the height reduction technique by losing an O(kδ) factor. Finally,
in the forest H , we solve the undirected Steiner forest instance online and recover an ordered
Steiner label cover solution by losing a polylog(n) factor. The overall competitive ratio is
therefore Õ(k1/2+δ).

APPROX/RANDOM 2021

5:12 Online Directed Spanners and Steiner Forests

3 Online Pairwise Spanners

We recall that in the general pairwise spanner problem, we are given a directed graph
G = (V, E) with edge length ℓ : E → R≥0, a general set of k terminals D = {(si, ti) |
i ∈ [k]} ⊆ V × V , and a target distance di for each terminal pair (si, ti), the goal is to
output a subgraph H = (V, E′) of G such that for every pair (si, ti) ∈ D it is the case that
dH(si, ti) ≤ di, i.e. the length of a shortest si ; ti path is at most di in the subgraph H,
and we want to minimize the number of edges in E′.

3.1 An Õ(n4/5)-competitive online algorithm for pairwise spanners

In this section, we prove Theorem 2. Recall that in the online setting of the problem, the
directed graph G is given offline, while the vertex pairs in D ⊆ V × V arrive online one at a
time. In the beginning, E′ = ∅. Suppose (si, ti) and its target distance di arrive in round
i, we select some edges from E and irrevocably add them to E′, such that in the subgraph
H = (V, E′), dH(si, ti) ≤ di. The goal is to approximately minimize the total number of
edges added to E′.

We start with a high-level sketch of an offline algorithm, which we will build on for the
online setting. The randomized rounding framework in [20,34] has two main steps. One step
is to solve and round an LP for the spanner problem. The second is to uniformly sample
vertices and add the shortest path in-arboresences and out-arboresences rooted at each of
the sampled vertices. Terminal pairs are classified as either thin or thick and are addressed
by one of the two steps above accordingly.

In the first step, the rounding scheme based on an LP solution for spanners ensures
with high probability that for all thin terminal pairs the distance requirements are met.
The second step ensures with high probability that for all thick terminal pairs the distance
requirements are met. By selecting an appropriate threshold for classifying the thin and
thick pairs, this leads to an O(n/

√
OPT)-approximation, where OPT is the number of edges

in the optimal solution.
The main challenges in adapting this approach to the online setting are as follows: 1)

OPT can be very small, and 2) the LP for spanners is not naturally a pure covering LP, which
makes it difficult to solve online. In the previous work in the offline setting, the small-OPT
case is addressed by sophisticated strategies that appear difficult to emulate online. Instead,
we show that the optimal value (however small) is at least the square root of the number of
terminal pairs that have arrived. Thus, if OPT is small and not many pairs have arrived, we
can greedily add a path with the fewest edges subject to the distance requirement for each
pair. To overcome the second challenge, we convert the LP for spanners into an equivalent
covering LP as in [39], where exponentially many covering constraints are generated by an
auxiliary LP. Having transformed the LP into a purely covering one, we can solve the LP
online, treating the auxiliary LP as a separation oracle.

3.1.1 A simple Õ(n4/5)-approximate offline algorithm based on [34]

For ease of exposition, we first design a simpler offline algorithm (slightly weaker than the
state-of-the-art) that is more amenable to the online setting. This allows us to establish the
main ingredients governing the approximation factor in a simpler setting, and then address
the online aspects separately. The algorithm leverages the framework developed in [20,34].

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:13

Let Pi denote the collection of si ; ti paths of length at most di consisting of edges in
E. Let the local graph Gi = (V i, Ei) be the union of all vertices and edges in Pi. A pair
(si, ti) ∈ D is t-thick if |V i| ≥ t, otherwise (si, ti) is t-thin. Consider the following standard
LP relaxation (essentially the one in [38]).

min
x,y

∑
e∈E

xe

subject to
∑

P ∈Pi

yP ≥ 1 ∀i ∈ [k],

∑
P |e∈P ∈Pi

yP ≤ xe ∀e ∈ E, ∀i ∈ [k],

xe ≥ 0 ∀e ∈ E,

yP ≥ 0 ∀P ∈ Pi ∀i ∈ [k].

(5)

Herein, xe is an indicator of edge e and yP is an indicator of path P . Suppose we have an
integral feasible solution. Then the first set of constraints ensures that there is at least one
si ; ti path of length at most di selected, and the second set of constraints ensures that if a
path P is selected, then all its edges are selected.

We say that a pair (si, ti) ∈ D is settled if the selection of edges is such that there exists
an si ; ti path of length at most di. Applying a simple rounding scheme based on a solution
of LP (5) settles the thin pairs with high probability, while sampling enough vertices and
adding shortest path in-arborescences and out-arborescences rooted at each sampled vertex
ensures with high probability that thick pairs are settled. Let OPT be the optimum value
of the given pairwise spanner instance. Without loss of generality, we may assume that we
know OPT since we can guess every value of OPT in [|E|] in the offline setting. Now we are
ready to describe Algorithm 1 in [34].

▶ Lemma 16. ([34]) Algorithm 1 is Õ(n/
√

OPT)-approximate.

Algorithm 1 Offline pairwise spanner.

1: E′ ← ∅ and t← n/
√

OPT.
2: Solve LP (5) and add each edge e ∈ E to E′ with probability min{1, xet ln n} independ-

ently.
3: Obtain a vertex set W ⊆ V by sampling (3n ln n)/t vertices from V independently

and uniformly at random. Add the edges of shortest path in-arborescences and out-
arborescences rooted at w for each w ∈W .

In the all-pairs spanner problem where OPT is Ω(n), Algorithm 1 is Õ(
√

n)-approximate
which matches the state-of-the-art approximation ratio given in [20]. For the pairwise
spanner problem, the main challenge is the lack of a nice lower bound for OPT. In the offline
setting, [34] achieves an Õ(n3/5+ε)-approximate solution by a careful case analysis when
edges have uniform lengths. We give an alternative approach that is amenable to the online
setting by considering two cases, where one resolves the issue when OPT does not have a
nice lower bound, and the other uses a variant of Algorithm 1 given that OPT has a nice
lower bound. This approach relies on the following observation.

▶ Lemma 17. OPT ≥
√

k.

APPROX/RANDOM 2021

5:14 Online Directed Spanners and Steiner Forests

Proof. We observe that when the spanner has ℓ edges, there are at most ℓ source vertices
and ℓ sink vertices, so there are at most ℓ2 terminal pairs. Therefore, when the spanner has
OPT edges, there are at most OPT2 terminal pairs, so OPT ≥

√
k. ◀

Now we specify the simple offline algorithm given in Algorithm 2. In the beginning, we
set two parameters T and t (which we will describe later), and set E′ = ∅. An si ; ti path
is cheapest feasible if it meets the distance requirement di by using the minimum number of
edges from E. We note that cheapest feasible paths can be found by Bellman-Ford algorithm.

Algorithm 2 Simple offline pairwise spanner.

1: if k < T then
2: Add the edges of a cheapest feasible si ; ti path to E′ for each i ∈ [k].
3: else
4: Solve LP (5) and add each edge e ∈ E to E′ with probability min{1, xet ln n}

independently.
5: Obtain a vertex set W ⊆ V by sampling (3n ln n)/t vertices from V independently

and uniformly at random. Add the edges of shortest path in-arborescences and out-
arborescences rooted at each vertex w ∈W to E′.

▶ Lemma 18. Algorithm 2 is Õ(n4/5)-approximate when T = t = n4/5.

Proof. If k < n4/5, we add the edges of a cheapest feasible si ; ti path for each (si, ti) ∈ D.
Each cheapest feasible si ; ti path contains at most OPT edges, so the ratio between this
solution and OPT is n4/5. If k ≥ n4/5, then OPT ≥ n2/5 by Lemma 17. Let LP∗ be the
optimal objective value of LP (5). The approximation guarantee is

Õ(tLP∗) + Õ(n2/t)
OPT ≤ Õ(n4/5OPT) + Õ(n6/5)

OPT = Õ(n4/5)

since the number of edges retained from the rounding scheme is at most Õ(t)LP∗ and the
number of edges retained by adding arborescences is at most 2n · 3n ln n/t. This summarizes
the simple offline Õ(n4/5)-approximation algorithm. ◀

3.1.2 An Õ(n4/5)-competitive online algorithm
It remains to convert the simple offline algorithm to an online algorithm. We address the
two main modifications.
1. We have to (approximately) solve LP (5) online, which is not presented as a covering LP.
2. We have to round the solution of LP (5) online.

For the first modification, LP (5) is converted to an equivalent covering LP (9) (which
we show in Appendix B) and approximately solved in an online fashion. For the second
modification, we use an online version of the rounding scheme in Algorithm 2, such that the
overall probability (from round 1 to the current round) for the edge selection is consistent
with the probability based on the online solution of LP (5), by properly scaling the probability
based on a conditional argument.

The online algorithm in round i is given in Algorithm 3. The same structure is used for
other variants of the online pairwise spanner problem. In the beginning, we pick a threshold
parameter T and a thickness parameter t, and set E′ = ∅. Let xi

e denote the value of xe in the
approximate solution of LP (9) obtained in round i. Let pi

e := min{1, xi
et ln n}. Algorithm 3

is the online version of Algorithm 2. A key insight is that when we add the arborescences
in round T , it also settles the future thick terminal pairs with high probability. With the
outline structure of the online algorithm, we prove Theorem 2 in Appendix B.

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:15

▶ Theorem 2. For the online pairwise spanner problem, there is a randomized polynomial
time algorithm with competitive ratio Õ(n4/5).

Algorithm 3 Online pairwise spanner.

1: for an arriving pair (si, ti) do
2: Convert the spanner LP (5) to the covering LP (9) and solve LP (9) online.
3: if i < T then
4: Add the edges of a cheapest feasible si ; ti path to E′.
5: else if i = T then
6: Obtain a vertex set W ⊆ V by sampling (3n ln n)/t vertices from V independently

and uniformly at random. Add the edges of shortest path in-arborescences and out-
arborescences rooted at each vertex w ∈W to E′.

7: Add each edge e to E′ independently with probability pi
e for each edge e ∈ E \E′.

8: else ▷ i > T

9: Add each edge e to E′ independently with probability (pi
e − pi−1

e)/(1− pi−1
e) for

each edge e ∈ E \ E′.

3.2 Online pairwise spanners with uniform edge lengths
In this section, we prove Theorem 6.

▶ Theorem 6. For the online pairwise spanner problem with uniform edge lengths, there is
a randomized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant
ε ∈ (0, 1/3).

Proof. We employ Algorithm 3 with a slight tweak and set T = ⌊n4/3−4ε⌋ and t = n2/3+ε.
If k < T , instead of adding edges of a shortest si ; ti path, we use Theorem 1 to find an

Õ(n2/3+ε)-competitive solution.

▶ Theorem 1. For the online pairwise spanner problem with uniform edge lengths, there
exists a deterministic polynomial time algorithm with competitive ratio Õ(k1/2+δ) for any
constant δ > 0.

For any ε ∈ (0, 1/3), there exists δ such that 4δ/(9 + 12δ) = ε. By picking this δ, we have

(4
3 − 4ε)(1

2 + δ) = (4
3 −

16δ

9 + 12δ
)(1

2 + δ) = 2
3 + 4δ

3 −
8δ + 16δ2

9 + 12δ

= 2
3 + 12δ + 16δ2 − 8δ − 16δ2

9 + 12δ
= 2

3 + 4δ

9 + 12δ
= 2

3 + ε.

Hence, the ratio between the solution obtained by Theorem 1 and OPT is

k1/2+δ ≤ n(4/3−4ε)(1/2+δ) = n2/3+ε = Õ(n2/3+ε).

By Lemma 17, if k ≥ T , then OPT ⩾ n2/3−2ε. Let LP be the online integral solution of
LP (5) obtained by Algorithm 3. The approximation guarantee is

Õ(tLP) + Õ(n2/t)
OPT ≤ Õ(n2/3+εOPT) + Õ(n4/3−ε)

OPT = Õ(n2/3+ε). (6)

◀

APPROX/RANDOM 2021

5:16 Online Directed Spanners and Steiner Forests

3.3 Online directed Steiner forests with uniform costs

We recall that in this problem, we are given a directed graph G = (V, E) and a set of terminals
D = {(si, ti) | i ∈ [k]} ⊆ V × V . The goal is to find a minimum cardinality subgraph which
includes an si ; ti path for each terminal pair (si, ti). We show the following theorem.

▶ Theorem 7. For the online directed Steiner forest problem with uniform costs, there is
a randomized polynomial time algorithm with competitive ratio Õ(n2/3+ε) for any constant
ε ∈ (0, 1/3).

Proof. In this problem, for each terminal pair (si, ti), it suffices to have an si ; ti path.
Therefore, this problem reduces to the pairwise spanner problem by setting di =∞ for each
i ∈ [k]. The structure of the online algorithm is the same as that for online pairwise spanners
with uniform lengths. We employ Algorithm 3 with a slight tweak and set T = ⌊n4/3−4ε⌋
and t = n2/3+ε. If k < T , instead of adding edges of a shortest si ; ti path, we use
Theorem 1 to find an Õ(n2/3+ε) competitive solution3. If k ≥ T , then the algorithm is
Õ(n2/3+ε)-competitive by (6). ◀

4 Conclusions and Open Problems

In this work, we present the first online algorithm for pairwise spanners with competitive ratio
Õ(n4/5) for general lengths and Õ(n2/3+ε) for uniform lengths, and improve the competitive
ratio for the online directed Steiner forest problem with uniform costs to Õ(n2/3+ε) when
k = ω(n4/3). We also show an efficient modified framework for online covering and packing.
Our work raises several open questions that we state below.

An intriguing open problem is improving the competitive ratio for online pairwise span-
ners. For graphs with uniform edge lengths, there is a small polynomial gap between
the state-of-the-art offline approximation ratio Õ(n3/5+ε) and the online competitive ratio
Õ(n2/3+ε). For graphs with general edge lengths, we are not aware of any studies about the
pairwise spanner problem. Our Õ(n4/5)-competitive online algorithm intrinsically suggests
an Õ(n4/5)-approximate offline algorithm. As the approach in [34] achieves an Õ(n/

√
OPT)-

approximation, we believe that the approximation ratio can be improved for the offline
pairwise spanner problem, by judicious case analysis according to the cardinality of OPT.

The state-of-the-art online algorithm for Steiner forests with general costs is Õ(k1/2+ε)-
competitive [28]. A natural open question is designing an o(n)-competitive online algorithm
when k is large, and potentially extend this result to the more general buy-at-bulk network
design problem. The currently best known offline approximation for Steiner forests with
general costs is O(n2/3+ε) [20], by case analysis that settles thick and thin terminal pairs
separately. However, the approach in [20] for settling thin pairs is essentially a greedy
procedure which is inherently offline. Our approach utilizes the uniform cost assumption to
obtain a useful lower bound for the optimal solution, which is incompatible with general costs.
It would be interesting to resolve the aforementioned obstacles and have an o(n)-competitive
online algorithm for directed Steiner forests with general edge costs. One open problem
for uniform costs is to improve the competitive ratio, as there is a polynomial gap between
the state-of-the-art offline approximation ratio Õ(n26/45+ε) and the online competitive ratio
Õ(n2/3+ε).

3 One can also use the Õ(k1/2+δ)-competitive online algorithm for graphs with general costs in [28].

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:17

References
1 Amir Abboud and Greg Bodwin. Reachability preservers: New extremal bounds and approx-

imation algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1865–1883. SIAM, 2018.

2 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi
Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review, 2019.
arXiv:1909.03152.

3 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms (TALG),
2(4):640–660, 2006.

4 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set
cover problem. SIAM J. Comput., 39(2):361–370, 2009.

5 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries,
1987.

6 Spyridon Antonakopoulos. Approximating directed buy-at-bulk network design. In Interna-
tional Workshop on Approximation and Online Algorithms, pages 13–24. Springer, 2010.

7 Esther M Arkin, Joseph SB Mitchell, and Christine D Piatko. Bicriteria shortest path problems
in the plane. In Proc. 3rd Canad. Conf. Comput. Geom, pages 153–156. Citeseer, 1991.

8 Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Testing lipschitz
functions on hypergrid domains. Algorithmica, 74(3):1055–1081, 2016.

9 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC ’85,
page 272–276, New York, NY, USA, 1985. Association for Computing Machinery.

10 Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Proceedings 38th Annual
Symposium on Foundations of Computer Science, pages 542–547. IEEE, 1997.

11 Baruch Awerbuch, Yossi Azar, and Yair Bartal. On-line generalized steiner problem. Theoretical
Computer Science, 324(2-3):313–324, 2004.

12 Baruch Awerbuch, Yossi Azar, and Serge Plotkin. Throughput-competitive on-line routing. In
Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pages 32–40. IEEE,
1993.

13 Yossi Azar, Umang Bhaskar, Lisa Fleischer, and Debmalya Panigrahi. Online mixed packing
and covering. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete
algorithms, pages 85–100. SIAM, 2013.

14 Yossi Azar, Niv Buchbinder, TH Hubert Chan, Shahar Chen, Ilan Reuven Cohen, Anupam
Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor, et al. Online algorithms
for covering and packing problems with convex objectives. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 148–157. IEEE, 2016.

15 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. Randomized competitive algorithms for
generalized caching. In Proceedings of the fortieth annual ACM symposium on Theory of
computing, pages 235–244, 2008.

16 Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. Journal of the ACM (JACM), 59(4):1–24, 2012.

17 Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Inf. Process. Lett, 2008.

18 Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs approximate shortest
paths in undirected graphs. SIAM J. Comput., 39(7):2865–2896, 2010.

19 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting steiner
forest. Algorithmica, 62(3-4):906–929, 2012.

20 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner
forest. Information and Computation, 222:93–107, 2013.

APPROX/RANDOM 2021

http://arxiv.org/abs/1909.03152

5:18 Online Directed Spanners and Steiner Forests

21 Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 344–353, 1997.

22 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P
Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380–1425, 2012.

23 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Robert Krauthgamer, editor, SODA, pages 855–872. SIAM, 2016.

24 Glencora Borradaile, Philip N Klein, and Claire Mathieu. A polynomial-time approximation
scheme for euclidean steiner forest. ACM Transactions on Algorithms (TALG), 11(3):1–20,
2015.

25 Niv Buchbinder and Joseph Naor. Improved bounds for online routing and packing via a
primal-dual approach. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 293–304. IEEE, 2006.

26 Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research, 34(2):270–286, 2009.

27 Niv Buchbinder and Joseph Seffi Naor. The design of competitive online algorithms via a primal–
dual approach. Foundations and Trends® in Theoretical Computer Science, 3(2–3):93–263,
2009.

28 Deeparnab Chakrabarty, Alina Ene, Ravishankar Krishnaswamy, and Debmalya Panigrahi.
Online buy-at-bulk network design. SIAM J. Comput., 47(4):1505–1528, 2018.

29 Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

30 Shuchi Chawla, Tim Roughgarden, and Mukund Sundararajan. Optimal cost-sharing mech-
anisms for steiner forest problems. In International Workshop on Internet and Network
Economics, pages 112–123. Springer, 2006.

31 Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, STOC, pages 1–10. ACM, 2015.

32 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems in
undirected graphs and the directed steiner network problem. ACM Transactions on Algorithms
(TALG), 7(2):1–17, 2011.

33 Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R Salavati-
pour. Approximation algorithms for nonuniform buy-at-bulk network design. SIAM Journal
on Computing, 39(5):1772–1798, 2010.

34 Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed steiner forest: Upper and lower bounds. ACM Transactions on Algorithms
(TALG), 16(3):1–31, 2020.

35 Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed networks.
J. Algorithms, 50(1):79–95, 2004.

36 Bilel Derbel, Cyril Gavoille, and David Peleg. Deterministic distributed construction of linear
stretch spanners in polylogarithmic time. In Andrzej Pelc, editor, DISC, volume 4731 of
Lecture Notes in Computer Science, pages 179–192. Springer, 2007.

37 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distributed
sparse spanner construction. In Rida A. Bazzi and Boaz Patt-Shamir, editors, PODC, pages
273–282. ACM, 2008.

38 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In STOC, pages 323–332, 2011.

39 Michael Dinitz, Yasamin Nazari, and Zeyu Zhang. Lasserre integrality gaps for graph spanners
and related problems. arXiv preprint arXiv:1905.07468, 2019.

40 Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 821–840. SIAM,
2016.

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:19

41 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29(5):1740–1759, 2000.

42 Michael Elkin. Computing almost shortest paths. ACM Trans. Algorithms, 1(2):283–323,
2005.

43 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.

44 Michael Elkin and David Peleg. The client-server 2-spanner problem with applications
to network design. In Francesc Comellas, Josep Fàbrega, and Pierre Fraigniaud, editors,
SIROCCO 8, Proceedings of the 8th International Colloquium on Structural Information and
Communication Complexity, Vall de Núria, Girona-Barcelona, Catalonia, Spain, 27-29 June,
2001, volume 8 of Proceedings in Informatics, pages 117–132. Carleton Scientific, 2001.

45 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory
Comput. Syst., 41(4):691–729, 2007.

46 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. Journal of Computer and System Sciences, 78(1):279–292, 2012.

47 Manuel Fernandez, David P. Woodruff, and Taisuke Yasuda. Graph spanners in the message-
passing model. In Thomas Vidick, editor, ITCS, volume 151 of LIPIcs, pages 77:1–77:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

48 Arnold Filtser, Michael Kapralov, and Navid Nouri. Graph spanners by sketching in dynamic
streams and the simultaneous communication model. arXiv preprint arXiv:2007.14204, 2020.

49 Lisa Fleischer, Jochen Könemann, Stefano Leonardi, and Guido Schäfer. Simple cost sharing
schemes for multicommodity rent-or-buy and stochastic steiner tree. In Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, pages 663–670, 2006.

50 Naveen Garg, Goran Konjevod, and Ramamoorthi Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000.

51 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

52 Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online directed spanners and steiner
forests. CoRR, 2021. arXiv:2103.04543.

53 Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Approximation via cost-
sharing: a simple approximation algorithm for the multicommodity rent-or-buy problem. In
44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages
606–615. IEEE, 2003.

54 Anupam Gupta and Viswanath Nagarajan. Approximating sparse covering integer programs
online. Mathematics of Operations Research, 39(4):998–1011, 2014.

55 Anupam Gupta, R Ravi, Kunal Talwar, and Seeun William Umboh. Last but not least: Online
spanners for buy-at-bulk. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 589–599. SIAM, 2017.

56 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In International Colloquium on Automata, Languages, and
Programming, pages 563–575. Springer, 2014.

57 Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations research, 17(1):36–42, 1992.

58 Christopher S Helvig, Gabriel Robins, and Alexander Zelikovsky. An improved approximation
scheme for the group steiner problem. Networks: An International Journal, 37(1):8–20, 2001.

59 Makoto Imase and Bernard M Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991.

60 Michael Kapralov and David P. Woodruff. Spanners and sparsifiers in dynamic streams. In
Magnús M. Halldórsson and Shlomi Dolev, editors, PODC, pages 272–281. ACM, 2014.

61 Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan S. Owicki. Competitive
randomized algorithms for non-uniform problems. Algorithmica, 11(6):542–571, 1994.

APPROX/RANDOM 2021

http://arxiv.org/abs/2103.04543

5:20 Online Directed Spanners and Steiner Forests

62 Vikram Khurana, Jian Peng, Chee Yeun Chung, Pavan K Auluck, Saranna Fanning, Daniel F
Tardiff, Theresa Bartels, Martina Koeva, Stephen W Eichhorn, Hadar Benyamini, et al.
Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific
molecular pathways. Cell systems, 4(2):157–170, 2017.

63 Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan van Zwam. From primal-dual
to cost shares and back: a stronger lp relaxation for the steiner forest problem. In International
Colloquium on Automata, Languages, and Programming, pages 930–942. Springer, 2005.

64 Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan HM van Zwam. A group-
strategyproof cost sharing mechanism for the steiner forest game. SIAM Journal on Computing,
37(5):1319–1341, 2008.

65 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30:432–450, 2001.
66 Dean H Lorenz and Danny Raz. A simple efficient approximation scheme for the restricted

shortest path problem. Operations Research Letters, 28(5):213–219, 2001.
67 Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.

Approximating cycles in directed graphs: Fast algorithms for girth and roundtrip spanners. In
Artur Czumaj, editor, SODA, pages 1374–1392. SIAM, 2018.

68 Mihai Patrascu and Liam Roditty. Distance oracles beyond the Thorup-Zwick bound. SIAM
J. Comput., 43(1):300–311, 2014.

69 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

70 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.
Comput., 18(4):740–747, 1989.

71 Leila Pirhaji, Pamela Milani, Mathias Leidl, Timothy Curran, Julian Avila-Pacheco, Clary B
Clish, Forest M White, Alan Saghatelian, and Ernest Fraenkel. Revealing disease-associated
pathways by network integration of untargeted metabolomics. Nature methods, 13(9):770–776,
2016.

72 Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip routing in
directed graphs. ACM Trans. Algorithms, 4(3):29:1–29:17, 2008.

73 Tim Roughgarden and Mukund Sundararajan. Optimal efficiency guarantees for network
design mechanisms. In International Conference on Integer Programming and Combinatorial
Optimization, pages 469–483. Springer, 2007.

74 Xiangkun Shen and Viswanath Nagarajan. Online covering with lq-norm objectives and
applications to network design. Mathematical Programming, 184, 2020.

75 Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract).
In STOC ’82, 1982.

76 Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica, 11(6):525–
541, 1994.

77 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

A Additional background and related work

A model related to online algorithms is that of streaming algorithms. In the streaming model
an input is also revealed sequentially, but the algorithm is only allowed to use some small
amount of space, which is sublinear in the length of the stream, and is supposed to maintain
an approximate solution. For this model, several papers consider spanner variants, such as
undirected or weighted graphs, and additive or multiplicative stretch approximations, and
the aim is to build spanners with small size or distortion [17,48,60]. In a related direction,
spanners have also been studied in the setting of dynamic data structures, where the edges
of a graph are inserted or removed one at a time and the goal is to maintain an approximate
solution with small update time and space [23,43]. A relevant model is that of distributed

https://doi.org/10.1002/jgt.3190130114

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:21

computation where nodes in the network communicate efficiently to build a solution [36,37,47].
As mentioned earlier, the survey by Ahmed et al. [2] gives a comprehensive account of the
vast literature on spanners, and we refer the reader to the references within.

In the buy-at-bulk network design problem [10], each edge is associated with a sub-additive
cost function of its load. Given a set of terminal demands, the goal is to route integral flows
from each source to each sink concurrently to minimize the total cost of the routing. This
problem is a generalization of various single-source or multicommodity network connectivity
problems, including Steiner trees and Steiner forests, in which the cost function of each edge
is a fixed value once allocated. While most problems admit polylogarithmic approximations
in either the online or offline setting for undirected networks [11, 21, 32, 55], the problems are
much harder for directed networks. In the offline setting, the current best approximation
ratio is O(kε) for the directed Steiner tree problem [29,77], O(min{k1/2+ε, n2/3+ε}) for the
directed Steiner forest problem [20,32], and O(min{k1/2+ε, n4/5+ε}) for the directed buy-at-
bulk problem [6]. In the online setting for directed networks, [28] showed that compared
to offline, it suffices to pay an extra polylogarithmic factor, where the polylogarithmic
term was later improved by [74]. The main contribution of [28] is essentially bringing the
junction-tree-based approach into the online setting for connectivity problems. This is the
main ingredient that improves the competitive ratio of our online algorithm from Õ(n4/5+ε)
for pairwise spanners to Õ(n2/3+ε) for Steiner forests. Our approach for online pairwise
spanners with uniform edge length combines this ingredient and the offline pairwise spanner
framework [34] which tackles hard distance requirements.

As previously mentioned, generating separating constraints with an oracle in the online
setting is not new. For example, this arises implicitly in early work on network optimization [3]
and the oracle is discussed explicitly in [26]. As a recent example, [56] develops online
algorithms for the multistage matroid maintenance problem, which requires solving a covering
LP with box constraints online. [56] adjusts the separation oracle to only identify constraints
that are violated by at least some constant. Because of the {0, 1}-incidence structure of their
LP, the sum of primal variables has to increase by a constant to satisfy such a constraint.
Meanwhile the box constraints limit the total sum of primal variables to O(n). This leads to
an O(n) bound on the number of separating constraints. While there are strong similarities
to our approach, one difference is the use of the {0, 1}-structure and box constraints to obtain
their bound. Our comparably unstructured setting required us to develop an argument
independent of concrete features such as these.

Beyond linear objectives, there are other variants of online covering and packing problems,
which focus on different objectives with linear constraints. This includes optimizing convex
objectives [14] and ℓq-norm objectives [74]. Other online problem-dependent variants include
for instance mixed covering and packing programs [13], and sparse integer programs [54].
All these frameworks utilize the primal-dual technique, which updates the covering and
packing solutions simultaneously with some judiciously selected growth rate, to guarantee
nice competitive ratio. Instead, our modified framework focuses on the efficiency of online
algorithms for fundamental covering and packing problems, which is amenable to applications
with exponential or unbounded number of constraints, where a violating one can be searched
by an efficient separation oracle.

B Proof of Theorem 2

▶ Theorem 2. For the online pairwise spanner problem, there is a randomized polynomial
time algorithm with competitive ratio Õ(n4/5).

APPROX/RANDOM 2021

5:22 Online Directed Spanners and Steiner Forests

Proof. Suppose in the online setting, there are k rounds where k may be unknown. In round
i ∈ [k], the pair (si, ti) and the distance requirement di arrive and we select some new edges
from E to settle (si, ti). We run Algorithm 3 by setting T = t = ⌊n4/5⌋. It suffices to show
that 1) LP (5) can be solved online by losing a polylogarithmic factor, and 2) the overall
probability of edge selection is consistent with the probability based on the online solution of
LP (5).

B.1 Converting and solving LP (5) online
The goal is to update x in a non-decreasing manner upon the arrival of the pair (si, ti) to
satisfy all its corresponding constraints, so that the objective value is still approximately
optimal. We convert LP (5) into a covering LP as follows.

First, we check in round i, given the edge capacity x, if there is a (fractional) si ; ti path
of length at most di. This can be captured by checking the optimum of the following LPs,

max
y

∑
P ∈Pi

yP over y : Pi → R≥0 s.t.
∑

P |e∈P ∈Pi

yP ≤ xe for all e ∈ E (7)

and its dual

min
z

∑
e∈E

xeze over z : E → R≥0 s.t.
∑
e∈P

ze ≥ 1 for all P ∈ Pi. (8)

We say that x is good if the optimum of LP (7) and LP (8) is at least 1, and it is bad
otherwise. Namely, x is good if there is at least one (fractional) si ; ti path of length at
most di. In LP (8), the feasibility problem is equivalent to the following problem. Given the
local graph Gi and edge weight z, is there an si ; ti path of length at most di and weight
less than 1? We note that with uniform lengths, this problem can be solved by Bellman-Ford
algorithm with di iterations, which computes the smallest weight among all si ; ti paths of
length at most di in the local graph Gi.

Although this bicriteria path problem in general is NP-hard [7], an FPTAS is known to
exist [57,66], which gives an approximate separation oracle. We can verify in polynomial time
that if there is a path of length at most di and weight less than 1− ε. We obtain a solution
z′ for LP (8) where each constraint is satisfied by a factor of 1− ε and set z := z′/(1− ε) as
the solution.

To solve LP (5), suppose in round i, we are given x. First, we check if x is good or bad
by approximately solving LP (8). If x is good, then there exists y such that

∑
P ∈Pj

yP ≥ 1,
i.e. the solution is feasible for LP (5), so we move on to the next round. Otherwise, x is bad,
so we increment x until it becomes good, which implies

∑
e∈E xeze ≥ 1 for all feasible z in

LP (8). Let Zi be the feasible polyhedron of LP (8) in round i. We derive the following LP
(essentially the one in [38,39]) which is equivalent to LP (5), by considering all the constraints
of LP (8) from round 1 to round k.

min
x

∑
e∈E

xe over x : E → R≥0 s.t.
∑
e∈E

zexe ≥ 1 for all i ∈ [k] and z ∈ Zi. (9)

In round i ∈ [k], the subroutine that approximately solves LP (8) and checks if the
optimum is good or not, is the separation oracle used for solving LP (9) online. Here we
use Theorem 20 (the formal version of Theorem 8) to show that LP (9) can be solved online
in polynomial time by paying an O(log n) factor. This requires that both log(1/ze) and
log LP∗ are polynomial in the number of bits used for the edge lengths, where LP∗ is the

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:23

optimum of LP (9). Clearly, log LP∗ ≤ log |E| is in poly(n). For log(1/ze), the subroutine
that approximately solves LP (8) returns an approximate solution z which is represented by
polynomial number of bits used for the edge lengths [57,66]. By Theorem 20, we have the
following Lemma.

▶ Lemma 19. There exists a polynomial time O(log n)-competitive online algorithm for
LP (5).

B.2 Conditional edge selection
After having a fractional solution of LP (5) in round i where i ≥ T = ⌊n4/5⌋, we independently
pick e ∈ E \E′ with some scaled probability so that the edge selection is consistent with the
probability based on the online solution of LP (5). More specifically, let pe := min{1, xet ln n}
and let pi

e be the value of pe in round i. Let Ẽ be the set of edges where each edge is neither
selected while adding cheapest feasible paths prior to round T nor selected while adding
in-arborescences and out-arborescences in round T . We show that each edge e ∈ Ẽ has
already been selected with probability pi

e in round i. This can be proved by induction.
According to Algorithm 3, the base case is round T , where e ∈ Ẽ is selected with probability
pT

e . Now suppose i > T , if e ∈ Ẽ has been selected, it is either selected prior to round i

or in round i. For the former case, e must had already been selected in round i− 1, with
probability pi−1

e by inductive hypothesis. For the later case, conditioned on e has not been
selected in round i− 1, e is selected with probability (pi

e − pi−1
e)/(1− pi−1

e). Therefore, in
round i, e has been selected with probability pi−1

e +(1−pi−1
e) · pi

e−pi−1
e

1−pi−1
e

= pi
e, which completes

the proof. Intuitively, when i > T , conditioned on e ∈ Ẽ was not picked from round 1 to
round i− 1, we pick e with probability (pi

e − pi−1
e)/(1− pi−1

e) at round i, so that the overall
probability that e is picked from round 1 to round i is pi

e.

B.3 Summary
We conclude the proof as follows. The overall algorithm is given in Algorithm 3. For the
initialization, x is a zero vector, E′ is an empty set, and T = t = ⌊n4/5⌋. The set E′ is the
solution. We pay an extra logarithmic factor for solving LP (5) online by Lemma 19. The
competitive ratio remains Õ(n4/5). ◀

C Online Covering in Polynomial Time

This section is devoted to proving the formal version of Theorem 8. We recall that the
problem of interest is to solve the covering LP (2) online:

minimize ⟨c, x⟩ over x ∈ Rn
≥0 s.t. Ax ≥ 1

where A ∈ Rm×n
≥0 consists of m covering constraints, 1 ∈ Rm

>0 is a vector of all ones treated
as the lower bound of the covering constraints, and c ∈ Rn

>0 denotes the positive coefficients
of the linear cost function.

In the online covering problem, the cost vector c is given offline, and each of these covering
constraints is presented one by one in an online fashion, that is, m can be unknown. In
round i ∈ [m], {aij}j∈[n] (where aij denotes the i-th row j-th column entry of A) is revealed,
and we have to monotonically update x so that the constraint

∑
j∈[n] aijxj ≥ 1 is satisfied.

We always assume that there is at least one positive entry aij in each round i, otherwise
constraint i cannot be satisfied since all the row entries are zeros. The goal is to update x in
a non-decreasing manner and approximately minimize the objective value ⟨c, x⟩.

APPROX/RANDOM 2021

5:24 Online Directed Spanners and Steiner Forests

We recall that an important idea in this line of work is to simultaneously consider the
dual packing problem:

maximize ⟨1, y⟩ over y ∈ Rm
≥0 s.t. AT y ≤ c

where AT consists of n packing constraints with an upper bound c given offline.
The primal-dual framework in [26] simultaneously solves both LP (2) and LP (3), and

crucially uses LP-duality and strong connections between the two solutions to argue that
they are both nearly optimal. The modified framework closely follows the guess-and-double
scheme in [26]. Specifically, the scheme runs in phases where each phase estimates a lower
bound for the optimum. When the first constraint arrives, the scheme generates the first
lower bound

α(1)← min
j∈[n]
{ cj

a1j
| a1j > 0} ≤ OPT

where cj is the j-th entry of c and OPT is the optimal value of LP (2).
During phase r, we always assume that the lower bound of the optimum is α(r) until

the online objective ⟨c, x⟩ exceeds α(r). Once the online objective exceeds α(r), we start
the new phase r + 1 from the current violating constraint4 (let us call it constraint ir+1, in
particular, i1 = 1), and double the estimated lower bound, i.e. α(r + 1)← 2α(r). We recall
that x must be updated in a non-decreasing manner, so the algorithm maintains {xr

j}, which
denotes the value of each variable xj in each phase r, and the value of each variable xj is
actually set to maxr{xr

j}.
In Algorithm 4, we describe one round of the modified scheme in phase r. When a

covering constraint i arrives, we introduce a packing variable yi = 0. If the constraint is
violated, we increment each xj according to an exponential function of yi until the constraint
is satisfied by a factor of 2. This is the main difference between the modified framework
and [26], which increments the variables until the constraint is satisfied.

Algorithm 4 Online Covering.

1: for arriving covering constraint i do
2: yi ← 0. ▷ the packing variable yi is used for the analysis
3: if

∑n
j=1 aijxr

j < 1 then ▷ if constraint i is not satisfied
4: while

∑n
j=1 aijxr

j < 2 do ▷ update until constraint i is satisfied by a factor of 2
5: Increase yi continuously.
6: Increase each variable xr

j by the following increment function:

xr
j ←

α(r)
2ncj

exp
(

ln(2n)
cj

i∑
k=ir

akjyk

)
.

Although the augmentation is in a continuous fashion, it is not hard to implement it
in a discrete way for any desired precision by binary search. Therefore, to show that the
modified framework is efficient, it suffices to bound the number of violating constraints it
will encounter. The performance of the modified scheme is analyzed in Theorem 20 (the
formal version of Theorem 8).

4 In [26], the scheme starts all over again from the first constraint. We start from the current violating
constraint because it is more amenable when violating constraints are generated by a separation oracle.
There is no guarantee for the order of arriving violating constraints in such settings.

E. Grigorescu, Y.-S. Lin, and K. Quanrud 5:25

▶ Theorem 20. There exists an O(log n)-competitive online algorithm for the covering LP
(2) which encounters poly(n, log OPT, log(1/α(1))) violating constraints.

Proof. The proof for the O(log n)-competitiveness closely follows the one in [26]. Let X(r)
and Y (r) be the covering and packing objective values, respectively, generated during phase
r. The following claims are used to show that Algorithm 4 is O(log n)-competitive.
1. x is feasible.
2. For each finished phase r, α(r) ≤ 4 ln(2n) · Y (r).
3. y generated during phase r is feasible.
4. The sum of the covering objective generated from phase 1 to r is at most 2α(r).
5. Let r′ be the last phase, then the covering objective ⟨c, x⟩ ≤ 2α(r′).
From these five claims together with weak duality, we conclude that

⟨c, x⟩ ≤ 2α(r′) = 4α(r′ − 1) ≤ 16 ln(2n) · Y (r′ − 1) ≤ 16 ln(2n) · OPT.

Now we show that Algorithm 4 encounters poly(n, log OPT, log(1/α(1))) violating con-
straints. We first show that there are O(log log n + log OPT + log(1/α(1))) phases. The
estimated lower bound α doubles when we start a new phase. Suppose there are r′ phases,
then α(1) · 2r′−1 = O(log n)OPT because Algorithm 4 is O(log n)-competitive. This implies
that r′ = O(log log n + log OPT + log(1/α(1))).

In each phase, when a violating constraint arrives, we increment x so that the constraint
is satisfied by a factor of 2. This implies that at least one variable xj is doubled. xj =
O(log n)OPT/cj because cjxj ≤ ⟨c, x⟩ = O(log n)OPT. At the start of phase r, xj =
α(r)/(2ncj) ≥ α(1)/(2ncj). Suppose xj has been doubled t times in phase r, then

α(1)
2ncj

· 2t ≤ α(r)
2ncj

· 2t ≤ xj = O(log n)OPT
cj

which indicates that t = O(log n + log OPT + log(1/α(1))).
There are n variables and r′ phases, and in each phase, each variable is doubled at

most t times. Therefore, Algorithm 4 encounters poly(n, log OPT, log(1/α(1))) violating
constraints. ◀

APPROX/RANDOM 2021

Query Complexity of Global Minimum Cut
Arijit Bishnu #

Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India

Arijit Ghosh #

Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India

Gopinath Mishra #

Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India

Manaswi Paraashar #

Advanced Computing and Microelectronics Unit, Indian Statistical Institute, Kolkata, India

Abstract
In this work, we resolve the query complexity of global minimum cut problem for a graph by
designing a randomized algorithm for approximating the size of minimum cut in a graph, where the
graph can be accessed through local queries like Degree, Neighbor, and Adjacency queries.

Given ϵ ∈ (0, 1), the algorithm with high probability outputs an estimate t̂ satisfying the following
(1 − ϵ)t ≤ t̂ ≤ (1 + ϵ)t, where t is the size of minimum cut in the graph. The expected number
of local queries used by our algorithm is min

{
m + n, m

t

}
poly

(
log n, 1

ϵ

)
where n and m are the

number of vertices and edges in the graph, respectively. Eden and Rosenbaum showed that Ω(m/t)
local queries are required for approximating the size of minimum cut in graphs, but no local query
based algorithm was known. Our algorithmic result coupled with the lower bound of Eden and
Rosenbaum [APPROX 2018] resolve the query complexity of the problem of estimating the size of
minimum cut in graphs using local queries.

Building on the lower bound of Eden and Rosenbaum, we show that, for all t ∈ N, Ω(m) local
queries are required to decide if the size of the minimum cut in the graph is t or t − 2. Also, we
show that, for any t ∈ N, Ω(m) local queries are required to find all the minimum cut edges even if
it is promised that the input graph has a minimum cut of size t. Both of our lower bound results
are randomized, and hold even if we can make Random Edge queries in addition to local queries.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Query complexity, Global mincut

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.6

Category APPROX

Related Version Previous Version: https://arxiv.org/abs/2007.09202
Previous Version: https://eccc.weizmann.ac.il/report/2020/108/

1 Introduction

The global minimum cut (denoted MinCut) of a connected, unweighted, undirected and
simple graph G = (V, E), |V | = n and |E| = m, is a partition of the vertex set V into two
sets S and V \ S such that the number of edges between S and V \ S is minimized. Let
Cut(G) denote this edge set corresponding to a minimum cut in G, and t denote |Cut(G)|.
The problem is so fundamental that researchers keep coming back to it again and again
across different models [23, 22, 27, 25, 28, 1, 29, 14, 12, 13, 21]. The algorithmic landscape
for the minimum cut problem has been heavily influenced by Karger and Stein’s work [22, 23]
and algorithmic solutions for minimum cut across different models [27, 25, 28, 1, 29, 14, 12,

© Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arijit@isical.ac.in
mailto:arijitiitkgpster@gmail.com
mailto:gopianjan117@gmail.com
mailto:manaswi.isi@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.6
https://arxiv.org/abs/2007.09202
https://eccc.weizmann.ac.il/report/2020/108/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Query Complexity of Global Minimum Cut

13, 21] ∗ have revisited their approach [22, 23]. Fundamental graph parameter estimation
problems, like estimation of the number of edges [11, 17], triangles [7], cliques [8], stars [18],
etc. have been solved in the local and bounded query models [16, 17, 24]. Estimation of the
size of MinCut is also in the league of such fundamental problems to be solved in the model
of local queries.

In property testing [15], a graph can be accessed at different granularities – the query
oracle can answer properties about graph that are local or global in nature. Local queries
involve the relation of a vertex with its immediate neighborhood, whereas, global queries
involve the relation between sets of vertices. Recently using a global query, named Cut
Query [29], the problem of estimating and finding MinCut was solved, but the problem of
estimating or finding MinCut using local queries has not been solved. The fundamental
contribution of our work is to resolve the query complexity of MinCut using local queries.
We resolve both the estimation and finding variants of the problem. To start with, we
formally define the query oracle models we would be needing for discussions that follow.
Before proceeding further, we note that all the upper and lower bound results in this paper
are randomized unless otherwise stated.

The query oracle models. We start with the most studied local queries and the random
edge query for a graph G = (V, E) where the vertex set V is known but the edge set E is
unknown.

Local Query
Degree query: given u ∈ V , the oracle reports the degree of u in V ;
Neighbor query: given u ∈ V and a positive integer i, the oracle reports the i-th
neighbor of u, if it exists; otherwise, the oracle reports ⊥;
Adjacency query: given u, v ∈ V , the oracle reports whether {u, v} ∈ E.

Random Edge query: The query outputs an uniformly random edge of G.

Apart from the local queries mentioned, in the last few years, researchers have also used
the Random Edge query [2, 3]. Notice that the randomness will be over the probability
space of all edges, and hence, a random edge query is not a local query. This fact is also
evident from the work of Eden and Rosenbaum [10]. We use Random Edge query in
conjunction with local queries only for lower bound purposes. The other query oracle relevant
for our discussion will be a global query called the Cut Query proposed by Rubinstein et
al. [29] that was motivated by submodular function minimization. The query takes as input
a subset S of the vertex set V and returns the size of the cut between S and V \ S in the
graph G.

Prologue. Our motivation for this work is twofold – MinCut is a fundamental graph
estimation problem that needs to be solved in the local query oracle model and the lower
bound of Eden and Rosenbaum [9] who extended the seminal work of Blais et al. [5] to
develop a technique for proving query complexity lower bounds for graph properties via
reductions from communication complexity. Using those techniques, for graphs that can be
accessed by only local queries like Degree, Neighbor, Adjacency and Random Edge,
Eden and Rosenbaum [9] showed that MinCut admits a lower bound of Ω(m/t) in general
graphs, where m and t are the number of edges and the size of the minimum cut, respectively,
in the graph. However, the query complexity of estimating MinCut (in general graphs)

∗ The list is to name a few and it is not exhaustive.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:3

has remained elusive as there is no matching upper bound. It is surprising that the query
complexity of a fundamental graph problem like MinCut has not been addressed before
Eden and Rosenbaum [9].

In this work, we prove an upper bound of min{m + n, m
t }poly

(
log n, 1

ϵ

)
for estimating

MinCut using local queries only (and not Random Edge query). Observe that for t ≥ 1,
our upper bound almost matches with the lower bound given by Eden and Rosenbaum [9] if
we ignore poly

(
log n, 1

ϵ

)
term. Note that the case of t = 0 is the Connectivity problem,

where the objective is to decide whether the graph is connected. We build on the lower
bound result for estimating MinCut by Eden et al. [9] to show that Ω(m) local queries are
required if we want to determine the exact size of a MinCut or find a MinCut. This result
implies that there is a separation between the problem of estimating the size of MinCut
and the problem of finding a MinCut using local queries. On the other hand, Babai et
al. [4] showed that Connectivity testing has a randomized communication complexity of
Ω(n) †. This implies that any algorithm that solves Connectivity requires Ω(n/ log n)
local queries. This is because Alice and Bob can deterministically simulate each local query
by communicating at most log n bits. We have already discussed that Ω(m) local queries
are needed to solve Connectivity. From the lower bounds of Ω(m) and Ω(n/ log n) for
Connectivity along with the lower bound result of Eden and Rosenbaum [9] for estimating
MinCut, our upper bound result on estimating MinCut (ignoring poly

(
log n, 1

ϵ

)
term) is

tight - this settles the query complexity of MinCut using local queries.
Prior to our work, no local query based algorithm existed for MinCut. But it was

Rubinstein et al. [29] who studied MinCut for the first time using Cut Query, a global
query. They showed that there exists a randomized algorithm for finding a MinCut in G

using Õ(n)‡ Cut Query. The deterministic lower bound of Ω(n log n) by Hajnal et al. [20],
for Connectivity in communication complexity, implies that Ω(n) Cut Query are required
by any deterministic algorithm to estimate MinCut. The randomized lower bound of Ω(n)
by Babai et al. [4], for Connectivity in communication complexity, says that Ω(n/ log n)
Cut Query are necessary for any randomized algorithm to estimate MinCut §. So, if we
ignore polylogarithmic factors, the upper bound result by Rubinstein et al. for finding a
MinCut along with the above discussed lower bound result for finding a MinCut, imply
that there is no separation between the problem of estimating size of MinCut and the
problem of finding a MinCut using Cut Query. On a different note, Graur et al. [19]
showed a deterministic lower bound of 3n/2 on the number of Cut Query for estimating
MinCut.

Problem statements and results. We focus on two problems in this work.

Minimum Cut Estimation
Input: A parameter ϵ ∈ (0, 1), and access to an unknown graph G via local queries
Output: A (1 ± ϵ)-approximation to |Cut(G)|.

Minimum Cut Finding
Input: Access to an unknown graph G via local queries
Output: Find a set Cut(G) .

† Here the edge set of the graph is partitioned among Alice and Bob. The objective of Alice and Bob is
to determine whether the graph is connected by communicating.

‡ Õ(n) hides polylogarithmic terms in n.
§ We would like to thank Troy Lee for pointing us to the papers of Hajnal et al. [20] and Babai et al. [4]

APPROX/RANDOM 2021

6:4 Query Complexity of Global Minimum Cut

Our results are the following.

▶ Theorem 1.1 (Minimum cut estimation using local queries). There exists an algorithm,
with Degree and Neighbor query access to an unknown graph G = (V, E), that solves the
minimum cut estimation problem with high probability. The expected number of queries used
by the algorithm is min

{
m + n, m

t

}
poly

(
log n, 1

ϵ

)
.

Building on the lower bound construction of Eden and Rosenbaum [9], we show that no
nontrivial query algorithm exists for finding a minimum cut or even estimating the exact
size of a minimum cut in graphs.

▶ Theorem 1.2 (Lower bound for minimum cut finding, i.e., Cut(G)). Let m, n, t ∈ N with
t ≤ n − 1 and 2nt ≤ m ≤

(
n
2
) ¶. Any algorithm that has access to Degree, Neighbor,

Adjacency and Random Edge queries to an unknown graph G = (V, E) must make at
least Ω(m) queries in order to find all the edges in a minimum cut of G with probability 2/3.

▶ Theorem 1.3 (Lower bound for finding the exact size of the minimum cut, i.e., |Cut(G)|).
Let m, n, t ∈ N with 2 ≤ t ≤ n − 2 and 2nt ≤ m ≤

(
n
2
)
. Any algorithm that has access

to Degree, Neighbor, Adjacency and Random Edge queries to an unknown graph
G = (V, E) must make at least Ω(m) queries in order to decide whether |Cut(G)| = t or
|Cut(G)| = t − 2 with probability 2/3.

▶ Remark 1. Local queries show a clear separation in its power in finding MinCut as opposed
to the estimation problem. This is established by using the tight lower bound of minimum
cut estimation (viz. Ω(m/t) lower bound of Eden and Rosenbaum and our Theorem 1.1)
vis-a-vis minimum cut finding as mentioned in our Theorems 1.2 and 1.3 on lower bound
for finding Cut(G) . As noted earlier, there is no such separation between estimating and
finding MinCut when Cut Query is used.

Notations. In this paper, we denote the set {1, . . . , n} by [n]. For ease of notation, we
sometimes use [n] to denote the set of vertices of a graph. We say x ≥ 0 is an (1 ± ϵ)-
approximation to y ≥ 0 if |x − y| ≤ ϵy. V (G) and E(G) would denote the vertex and edge
sets when we want to make the graph G explicit, else we use V and E. For a graph G,
Cut(G) denotes the set of edges in a minimum cut of G. Let A1, A2 be a partition of V ,
i.e., V = A1 ∪ A2 with A1 ∩ A2 = ∅. Then, CG(A1, A2) = {{u, v} ∈ E : u ∈ A1 and v ∈ A2}.
The statement with high probability means that the probability of success is at least 1 − 1

nc ,
where c is a positive constant. Θ̃(·) and Õ(·) hides a poly

(
log n, 1

ϵ

)
term in the upper bound.

Organization of the paper. Section 2 discusses the query algorithm for estimating the
MinCut while Section 3 proves lower bounds on finding the MinCut. Section 4 concludes
with a few observations.

2 Estimation algorithm

In this Section, we will prove Theorem 1.1. In Section 2.1, we discuss about the intuitions
and give the overview of our algorithm. We formalize the intuitions in Section 2.2.

¶ As mentioned at the beginning of the introduction, n.m and t denote the number of vertices, number of
edges and the size of MinCut in G, respectively.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:5

2.1 Overview of our algorithm
We start by assuming that a lower bound t̂ on t = |Cut(G)| is known. Later, we discuss
how to remove this assumption.

We generate a random subgraph H of G by sampling each edge of the graph G inde-
pendently with probability p = Θ

(
log n/ϵ2t̂

) ‖. Using Chernoff bound, we can show that
any particular cut of size k, k ≥ t, in G is well approximated in H with probability at least
n−Ω(k/t̂). With this idea, consider the following Algorithm, stated informally, for minimum
cut estimation.

Algorithm-Sketch (works with t̂ ≤ t)

Step-1: Generate a random subgraph H of G by sampling each edge in G independently
with probability p = Θ

(
log n/ϵ2t̂

)
. Note that H can be generated by using Õ

(
m/t̂

)
Degree and Neighbor queries in expectation. We will discuss it in Algorithm 1 in
Section 2.2.

Step-2 Determine |Cut(H)| and report t̃ = |Cut(H)|
p as a (1±ϵ)-approximation of |Cut(G)|.

The number of queries made by the above algorithm is Õ
(
m/t̂

)
in expectation. But it

produces correct output only when the vertex partition corresponding to Cut(G) and
Cut(H) are the same. This is not the case always. If we can show that all cuts in G are
approximately preserved in H, then Algorithm-Sketch produces correct output with high
probability. The main bottleneck to prove it is that the total number of cuts in G can
be exponential. A result of Karger (stated in the following lemma) will help us to make
Algorithm-Sketch work.

▶ Lemma 2.1 (Karger [22]). For a given graph G the number of cuts in G of size at most
j · |Cut(G)| is at most n2j.

Using the above lemma along with Chernoff bound, we can show the following.

▶ Lemma 2.2. Let G be a graph, t̂ ≤ t = |Cut(G)| and ϵ ∈ (0, 1). If H(V (G), Ep) is a
subgraph of G where each edge in E(G) is included in Ep with probability p = min

{
200 log n

ϵ2 t̂
, 1

}
independently, then every cut of size k in G has size pk(1 ± ϵ) in H with probability at least
1 − 1

n10 .

The above lemma implies the correctness of Algorithm-Sketch, which is for minimum cut
estimation when we know a lower bound t̂ of |Cut(G)|. But in general we do not know any
such t̂. To get around the problem, we start guessing t̂ starting from n

2 each time reducing t̂

by a factor of 2. The guessing scheme gives the desired solution due to Lemma 2.2 coupled
with the following intuition when t̂ = Ω(t log n/ϵ2) – if we generate a random subgraph H of
G by sampling each edge with probability p = Θ

(
log n/ϵ2t̂

)
, then H is disconnected with at

least a constant probability. So, it boils down to a connectivity check in H. The intuition is
formalized in the following lemma that can be proved using Markov’s inequality.

▶ Lemma 2.3. Let G be a graph with |V (G)| = n, t̂ ≥ 2000 log n
ϵ2 |Cut(G)| and ϵ ∈ (0, 1). If

H(V (G), Ep) be a subgraph of G where each edge in E(G) is included in Ep independently
with probability p = min

{
200 log n

ϵ2 t̂
, 1

}
, then H is connected with probability at most 1

10 .

Before moving to the next section, we prove Lemmas 2.2 and 2.3 here.

‖ Though p can be more than 1 here, we will make it explicit in the formal description

APPROX/RANDOM 2021

6:6 Query Complexity of Global Minimum Cut

Proof of Lemma 2.2. If p = 1, we are done as the graph H is exactly the same as that of G.
So, without loss of generality assume that the graph G is connected. Otherwise, the lemma
holds trivially as |Cut(G)| = 0, i.e., t̂ = 0 and p = 1. Hence, for the rest of the proof we will
assume that p = 200 log n

ϵ2 t̂
.

Consider a cut CG(A1, A2) of size k in G. As we are sampling each edge with probability
p, the expected size of the cut CH(A1, A2) is pk. Using Chernoff bound (see Lemma B.1 in
Section B), we get

P (|CH(A1, A2) − pk| ≥ ϵpk) ≤ e−ϵ2pk/3t̂ = n− 100k
3t̂ (1)

Note that here we want to show that every cut in G is approximately preserved in H.
To do so, we will use Lemma 2.1 along with Equation (1) as follows. Let Z1, Z2, . . . , Zℓ

be the partition of the set of all cuts in G such that each cut in Zj has the number of
edges between [j · |Cut(G)| , (j + 1) |Cut(G)|], where ℓ ≤ n

|Cut(G)| and j ≤ ℓ − 1. From

Lemma 2.1, |Zj | ≤ n2j . Consider a particular Zj , j ∈ [ℓ]. Using the union bound along with
Equation 1, the probability that there exists a cut in Zj that is not approximately preserved
in H is at most 1

n11 . Taking union bound over all Zj ’s, the probability that there exists a
cut in G that is not approximately preserved is at most 1

n10 . ◀

Proof of Lemma 2.3. Let CG(A1, A2) be a minimum cut in G. Observe, E [|CH(A1, A2)|] =
p |CG(A1, A2)| = p |Cut(G)|. From Markov’s inequality, we get P (G is connected) ≤
P (|CG(A1, A2)| ≥ 1) ≤ E[|CG(A1, A2)|] ≤ 1

10 . ◀

2.2 Formal Algorithm (Proof of Theorem 1.1)

In this Section, the main algorithm for minimum cut estimation is described in Algorithm 3
(Estimator) that makes multiple calls to Algorithm 2 (Verify-Guess). The Verify-Guess
subroutine in turn calls Algorithm 1 (Sample) multiple times.

Given degree sequence of the graph G, that can be obtained using degree queries, we
will first show how to independently sample each edge of G with probability p using only
Neighbor queries.

Algorithm 1 Sample(D, p).

Input: D = {d(i) : i ∈ [n]}, where d(i) denotes the degree of the i-th vertex in the
graph G, and p ∈ (0, 1].

Output: Return a subgraph H(V, Ep) of G(V, E) where each edge in E(G) is
included in Ep with probability p.

Set q = 1 −
√

1 − p and m =
∑n

i=1
di

2 ;
for (each i ∈ [n]) do

for (each j ∈ [d(i)] with d(i) > 0) do
// Let rj be the j-th neighbor of the i-th vertex;
Add the edge (i, rj) to the set Ep with probability q;

end
end
Return the graph H(V, Ep).

The following lemma proves the correctness of the above algorithm Sample(D, p).

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:7

▶ Lemma 2.4. Sample(D, p) returns a random subgraph H(V (G), Ep) of G such that each
edge e ∈ E is included in Ep independently with probability p. Moreover, in expectation, the
number of Neighbor queries made by Sample(D, p) is at most 2pm.

Proof. From the description of Sample(D, p), it is clear that the probability that a particular
edge e ∈ E(G) is added to Ep with probability 1 − (1 − q)2 = p.

Observe, E [|Ep|] = pm. The bound on the number of Neighbor queries now follows
from the fact that Sample(D, p) makes at most 2 |Ep| many Neighbor queries. ◀

One of the core ideas behind the proof of Theorem 1.1 is that, given an estimate t̂ of t,
we want to efficiently (in terms of number of local queries used by the algorithm) decide if
t̂ ≤ t or if t̂ ≳ log n

ϵ2 × t. Using Algorithm 2, we will show that this can be done using Õ
(
m/t̂

)
many Neighbor queries in expectation. Another interesting feature of Algorithm 2 is that,
if estimate t̂ ≤ t, then Algorithm 2 outputs an estimate which is a (1 ± ϵ)-approximation of t.

Algorithm 2 Verify-Guess(D, t̂, ϵ).

Input: D = {d(i) : i ∈ [n]}, where d(i) denotes the degree of the i-th vertex in the graph G

and m = 1
2

n∑
i=1

d(i) ≥ n − 1. Also, a guess t̂, with 1 ≤ t̂ ≤ n
2 , for the size of the

global minimum cut in G, and ϵ ∈ (0, 1).
Output: The algorithm should “Accept” or “Reject” t̂, with high probability, depending

on the following
If t̂ ≤ |Cut(G)|, then Accept t̂ and also output a (1 ± ϵ)-approximation of |Cut(G)|
If t̂ ≥ 200 log n

ϵ2 |Cut(G)|, then Reject t̂

Set p = min
{

200 log2 n

ϵ2 t̂
, 1

}
;

Set Γ = 100 log n and Call Sample(D, p) Γ times;
// Let Hi(V, Ei

p) be the output of i-th call to Sample(D, p), where i ∈ [Γ]
if (at least Γ/2 many H ′

is are disconnected) then
Reject t̂

end
else if (all Hi’s are connected) then

Accept t̂, find Cut(Hi) for any i ∈ [Γ], and return t̃ = |Cut(Hi)|
p

.
end
else

Return Fail.
// When we cannot decide between “Reject” or “Accept” it will return Fail

end

The following lemma proves the correctness of Algorithm 2. The lemmas used in proof
are Lemmas 2.2, 2.3 and 2.4.

▶ Lemma 2.5. Verify-Guess(D, t̂, ϵ) in expectation makes Õ
(

m
t̂

)
many Neighbor queries

to the graph G and behaves as follows:
(i) If t̂ ≥ 2000 log n

ϵ2 |Cut(G)|, then Verify-Guess(D, t̂, ϵ) rejects t̂ with probability at least
1 − 1

n9 .
(ii) If t̂ ≤ |Cut(G)|, then Verify-Guess(D, t̂, ϵ) accepts t̂ with probability at least 1 − 1

n9 .
Moreover, in this case, Verify-Guess(D, t̂, ϵ) reports an (1 ± ϵ)-approximation to
Cut(G).

APPROX/RANDOM 2021

6:8 Query Complexity of Global Minimum Cut

Proof. Verify-Guess(D, t̂, ϵ) calls Sample(D, ϵ) for Γ = 100 log n times with p being
set to min

{
200 log n

ϵ2 t̂
, 1

}
. Recall from Lemma 2.4 that each call to Sample(D, p) makes in

expectation at most 2pm many Neighbor queries, and returns a random subgraph H(V, Ep),
where each edge in E(G) is included in Ep with probability p. So, Verify-Guess(D, t̂, ϵ)
makes in expectation O(pm log n) = Õ

(
m/t̂

)
many neighbor queries and generates Γ many

random subgraphs of G. The subgraphs are denoted by H1(V, E1
p), . . . , HΓ(V, EΓ

p).

(i) Let t̂ ≥ 2000 log n
ϵ2 |Cut(G)|. From Lemma 2.3, we have that Hi will be connected with

probability at most 1
10 . Observe that in expectation, we get that at least 9Γ

10 many
Hi’s will be disconnected. By Chernoff bound (see Lemma B.1 in Section B), the
probability that at most Γ

2 many Hi’s are disconnected is at most 1
n10 . Therefore,

Verify-Guess(D, t̂, ϵ) rejects any t̂ satisfying t̂ ≥ 2000 log n
ϵ2 |Cut(G)| with probability

at least 1 − 1
n9 .

(ii) Let t̂ ≤ |Cut(G)|. Using Lemma 2.2, we have that every cut of size k in G has size
pk(1 ± ϵ) in Hi with probability at least 1 − 1

n10 . Therefore, with probability at least
1 − Γ

n10 , for all i ∈ [Γ], every cut of size k in G has size pk(1 ± ϵ) in Hi. This implies
that if t̂ ≤ |Cut(G)| then Verify-Guess(D, t̂, ϵ) accepts any t̂ with probability at
least 1 − 1

n9 . Moreover, for any Hi, observe that |Cut(Hi)|
p is a (1 ± ϵ)-approximation

to |Cut(G)|. Hence, when t̂ ≤ |Cut(G)|, Verify-Guess(D, t̂, ϵ) also returns a (1 ± ϵ)
approximation to |Cut(G)| with probability 1 − 1

n9 . ◀

Estimator(ϵ) (Algorithm 3) will estimate the size of the minimum cut in G using
Degree and Neighbor queries. The main subroutine used by the algorithm will be
Verify-Guess(D, t̂, ϵ).

The following lemma shows that with high probability Estimator(ϵ) correctly estimates
the size of the minimum cut in the graph G, and it also bounds the expected number of
queries used by the algorithm.

▶ Lemma 2.6. Estimator(ϵ) returns a (1 ± ϵ) approximation to |Cut(G)| with probability
at least 1 − 1

n8 by making in expectation min
{

m + n, m
t

}
poly

(
log n, 1

ϵ

)
queries and each

query is either a Degree or a Neighbor query to the unknown graph G.

Proof. Without loss of generality, assume that n is a power of 2. If m < n − 1 or if there
exists a i ∈ [n] such that di = 0 then the graph G is disconnected. In this case the algorithm
Estimator(ϵ) makes n Degree queries and returns the correct answer. Thus we assume
that m ≥ n − 1.

First, we prove the correctness and query complexity when the graph is connected, that is,
t ≥ 1. Note that Estimator(ϵ) calls Verify-Guess(D, t̂, ϵ) for different values of t̂ starting
from n

2 . Recall that κ = 2000 log n
ϵ2 . For a particular t̂ with t̂ ≥ κt, Verify-Guess(D, t̂, ϵ) does

not Reject t̂ with probability at most 1
n9 by Lemma 2.5 (i). So, by the union bound, the

probability that Verify-Guess(D, t̂, ϵ) will either Accept or Fail for some t̂ with t̂ ≥ κt, is
at most log n

n9 . Hence, with probability at least 1− log n
n9 , we can say that Verify-Guess(D, t̂, ϵ)

rejects all t̂ with t̂ ≥ κt.
Observe that, from Lemma 2.5 (ii), the first time t̂ satisfies the following inequality

t
2 < t̂ ≤ t, Verify-Guess(D, t̂, ϵ) will accept t̂ with probability at least 1 − 1

n9 . Therefore,
for the first time Verify-Guess(D, t̂, ϵ) will either Accept or Fail, then t̂ satisfies the
following inequality t

2 < t̂ < κt with probability at least 1 − log n+1
n9 . Let t̂0 denote the first

time Verify-Guess returns Accept or Fail. From the description of Estimator(ϵ), note
that, we get t̂u by dividing t̂0 by κ. Note that, with probability at least 1 − 1+log n

n9 , we have

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:9

Algorithm 3 Estimator(ϵ).

Input: Degree and Neighbor query access to an unknown graph G, and a
parameter ϵ ∈ (0, 1).

Output: Either returns a (1 ± ϵ)-approximation to t = |Cut(G)| or Fail
Find the degrees of all the vertices in G by making n many degree queries;
// Let D = {d(1), . . . , d(n)}, where d(i) denotes the degree of the i-th vertex in G;
If ∃i ∈ [n] such that d(i) = 0, then return t = 0 and Quit. Otherwise, proceed as
follows.

Find m = 1
2

n∑
i=1

d(i). If m < n − 1, return t = 0 and Quit. Otherwise, proceed as

follows.
Set κ = 2000 log n

ϵ2

Initialize t̂ = n
2 .

while (t̂ ≥ 1) do
Call Verify-Guess(D, t̂, ϵ).
if (Verify-Guess(D, t̂, ϵ) returns Reject) then

set t̂ = t̂
2 and continue.

end
else

// Note that in this case Verify-Guess(D, t̂, ϵ) either returns Fail or
Accept.

Set t̂u = max
{

t̂
κ , 1

}
.

Call Verify-Guess(D, t̂u, ϵ).
if (Verify-Guess(D, t̂u, ϵ) returns Fail or Reject) then

return Fail as the output of Estimator(ϵ)
end
else

Let t̃ be the output of Verify-Guess(D, t̂u, ϵ).
Return t̃ as the output of Estimator(ϵ).

end
end

end
Output: Return that the graph G is disconnected.

t̂u < t. We then call the procedure Verify-Guess(D, t̂, ϵ) with t̂ = t̂u. By Lemma 2.5 (ii),
Verify-Guess(D, t̂u, ϵ) will Accept and report a (1±ϵ) approximation to t with probability
at least 1 − 1

n9 .
We will now analyze the number of Degree and Neighbor queries made by the algorithm.

We make an initial n many queries to construct the set D. Then at the worst case, we call
Verify-Guess(D, t̂, ϵ) for t̂ = n

2 , . . . , t′ and t̂ = t′

κ ≥ t
2κ , where t

2 < t′ < κt. It is because
Verify-Guess(D, t̂, ϵ) accepts t̂ with probability 1 − 1

n9 when the first time t̂ satisfy the
inequality t̂ ≤ t. Hence, by Lemma 2.5 and the facts that n ≤ m

t and t̂u ≥ t
2κ with probability

at least 1 − log n+1
n9 , in expectation the total number of queries made by the algorithm is at

most n + log n ·
(

1 − log n+1
n9

)
· Õ

(2κm
t

)
+ log n ·

(
log n+1

n9

)
· Õ(m) = Õ

(
m
t

)
.

Note that each query made by Estimator(ϵ) is either a Degree or a Neighbor query.
Now we analyze the case when t = 0. Observe that Verify-Guess(D, t̂, ϵ) rejects all t̂ ≥ 1

with probability 1 − log n
n9 , and therefore, Estimator(ϵ) will report t = 0. As we have called

APPROX/RANDOM 2021

6:10 Query Complexity of Global Minimum Cut

Verify-Guess(D, t̂, ϵ) for all t̂ = n
2 , . . . , 1, the number of queries made by Estimator(ϵ),

in the case when t = 0, is Õ(m) + n. Note that the additional term of n in the bound comes
from the fact that to compute D, the algorithm needs to make n many Degree queries. ◀

3 Lower bounds

In this Section, we prove Theorems 1.2 and 1.3 using reductions from suitable problems
in communication complexity. In Section 3.1, we discuss about two party communication
complexity along with the problems that will be used in our reductions. We will discuss the
proofs of Theorems 1.2 and 1.3 in Section 3.2.

3.1 Communication Complexity
In two-party communication complexity there are two parties, Alice and Bob, that wish to
compute a function Π : {0, 1}N × {0, 1}N → {0, 1} ∪ {0, 1}n ∗∗. Alice is given x ∈ {0, 1}N

and Bob is given y ∈ {0, 1}N . Let xi (yi) denotes the i-th bit of x (y). While the parties
know the function Π, Alice does not know y, and similarly Bob does not know x. Thus
they communicate bits following a pre-decided protocol P in order to compute Π(x, y).
We say a randomized protocol P computes Π if for all (x, y) ∈ {0, 1}N × {0, 1}N we have
P[P(x, y) = Π(x, y)] ≥ 2/3. The model provides the parties access to common random string
of arbitrary length. The cost of the protocol P is the maximum number of bits communicated,
where maximum is over all inputs (x, y) ∈ {0, 1}N × {0, 1}N . The communication complexity
of the function is the cost of the most efficient protocol computing Π. For more details
on communication complexity see [26]. We now define two functions k-Intersection and
Find-k-Intersection and discuss their communication complexity. Both these functions
will be used in our reductions.

▶ Definition 3.1 (Find-k-Intersection). Let k, N ∈ N such that k ≤ N . Let S =
{(x, y) ∈ {0, 1}N × {0, 1}N :

∑N
i=1 xiyi = k}. The Find-k-Intersection function on N

bits is a partial function and is defined as FIND-INTN
k : S → {0, 1}N , and is defined as

FIND-INTN
k (x, y) = z, where zi = xiyi for each i ∈ [N].

Note that the objective is that at the end of the protocol Alice and Bob know z.

▶ Definition 3.2 (k-Intersection). Let k, N ∈ N such that k ≤ N . Let S = {(x, y) :
N∑

i=1
xiyi = k or k − 1}. The k-Intersection function on N bits is a partial function denoted

by INTN
k : S → {0, 1}, and is defined as follows: INTN

k (x, y) = 1 if
∑N

i=1 xiyi = k and 0,
otherwise.

In communication complexity, the k-Intersection function on N bits when k = 1 is known
as Disjointness function on N . The following lemmas follow easily from the communication
complexity of Disjointness (see [26]).

▶ Lemma 3.3. Let k, N ∈ N such that k ≤ cN for some constant c < 1. The randomized
communication complexity of Find-k-Intersection function on N bits is Ω(N).

▶ Lemma 3.4. Let k, N ∈ N such that k ≤ cN for some constant c < 1. The randomized
communication complexity of k-Intersection function on N bits (INTN

k) is Ω (N).

∗∗ The co-domain of Π looks odd, as the the co-domain is {0, 1} usually. However, we need {0, 1} ∪ {0, 1}n

to take care of all the problems in communication complexity we discuss in this paper.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:11

3.2 Proofs of Theorems 1.2 and 1.3
The proofs of Theorems 1.2 and 1.3 are inspired from the lower bound proof of Eden and
Rosenbaum [9] for estimating MinCut ††.

Proof of Theorem 1.2. We prove by giving a reduction from Find-t/2-Intersection on
N bits. Without loss of generality assume that t is even. Let x and y be the inputs of Alice

and Bob. Note that
N∑

i=1
xiyi = t/2.

We first discuss a graph G(xy)(V, E) that can be generated from (x, y), such that |V | = n

and |E| = m ≥ 2nt, and works as the “hard” instance for our proof. Note that G(x,y) should
be such that no useful information about the MinCut can be derived by knowing only one
of x and y. Let s = t +

√
t2 + (m − nt)/2 and N = s2. In particular, 2t ≤ s ≤ 2t + 3

√
m.

Also, s ≥
√

m/2 and therefore s = Θ(
√

m).

The graph G(x,y) and its properties:
G(x,y) has the following structure.

V = SA ∪ TA ∪ SB ∪ TB ∪ C such that |SA| = |TA| = |SB | = |TB | = s and |C| = n − 4s.
Let SA = {sA

i : i ∈ [s]} and similarly TA = {tA
i : i ∈ [s]}, SB = {sB

i : i ∈ [s]} and
TB = {tB

i : i ∈ [s]}.
Each vertex in C is connected to 2t different vertices in SA.
For i, j ∈ [s]: if xij = yij = 1, then (sA

i , tB
j) ∈ E and (sB

i , tA
j) ∈ E; otherwise, (sA

i , tA
j) ∈ E

and (sB
i , tB

j) ∈ E.

▶ Observation 3.5. G(x,y) satisfies the following properties.
Property-1: The degree of every vertex in C is 2t. For any v /∈ C, the neighbors of v inside

C are fixed irrespective of x and y; and the number of neighbors outside C is s ≥ 2t.
Property-2: There are t edges between the vertex sets (C ∪ SA ∪ TA) and (SB ∪ TB), and

removing them G(x,y) becomes disconnected.
Property-3: Every pair of vertices (SA ∪ TA ∪ C) is connected by at least 3t/2 edge disjoint

paths. Also, every pair of vertices in (SB ∪ TB) is connected by at least 3t/2 edge disjoint
paths.

Property-4: The set of t edges between the vertex sets (C ∪ SA ∪ TA) and (SB ∪ TB) forms
the unique global minimum cut of G(x, y),

Property-5: xij = yij = 1 if and only if (sA
i , tB

j) and (sB
i , tA

j) are the edges in the unique
global minimum cut of G(x,y).

Proof. Property-1 and Property-2 directly follow from the construction. Now, we will prove
Property-3. We first show that every pair of vertices (SA ∪ TA ∪ C) is connected by at least
3t/2 edge disjoint paths by breaking the analysis into the following cases.

(i) Consider sA
i , sA

j ∈ SA, for i, j ∈ [s]. Under the promise that
∑N

i=1 xiyi = t/2, sA
i , sA

j

have at least s − t ≥ 3t/2 common neighbors in TA and thus there are at least 3t/2
edge disjoint paths connecting them.

(ii) Consider sA
i ∈ SA and tA

j ∈ TA, for i, j ∈ [s]. Let sA
j1

, . . . , sA
j3t/2

be 3t/2 distinct
neighbors of tA

j in SA. Since, sA
i has 3t/2 common neighbors with each sA

jr
, r ∈ [3t/2],

there is a matching of size 3t/2. Denote this matching by (tA
jr

, sA
jr

), r ∈ [3t/2]. Thus
(sA

i , tA
jr

), (tA
jr

, sA
jr

), (sA
jr

, tA
j), for r ∈ [3t/2], forms a set of edge disjoint paths of size 3t/2

†† Note that Eden and Rosenbaum [9] stated the result in terms k-Edge Connectivity.

APPROX/RANDOM 2021

6:12 Query Complexity of Global Minimum Cut

from sA
i to tA

j , each of length 3. In case sA
i is one of the neighbors of tA

j , then one of
the 3t/2 paths gets reduced to (sA

i , tA
j), a length 1 path that is edge disjoint from the

remaining paths.
(iii) Consider u, v ∈ C. Let u1, . . . , u2t ∈ SA and v1, . . . , v2t ∈ SA be the neighbors of u

and v respectively in SA. If for some i, j ∈ [2t], ui = vj then (u, ui), (ui, vj), (vj , v) is
a desired path. Thus, assume ui ≠ vj for all i, j ∈ [2t]. For all i ∈ [2t], since ui and
vi have at least 3t/2 common neighbors in TA we can find 3t/2 edge disjoint paths
(ui, tA

i), (tA
i , vi), where tA

i ∈ T A. Existence of 3t/2 edge disjoint paths from u ∈ C to
v ∈ SA can be proved as in (i). and from u ∈ C to v ∈ TA can be proved as in (ii).

Similarly, we can show that every pair of vertices in (SB ∪ TB) is connected by 3t/2 many
edge disjoint paths.

Observe that Property-4 follows from Property-3, and Property-5 follows from the
construction of G(x,y) and Property-4. ◀

Now, by contradiction assume that there exists an algorithm A that makes o(m) queries
to G(x,y) and finds all the edges of a global minimum cut with probability 2/3. Now, we
give a protocol P for Find-t/2-Intersection on N bits when the x and y are the inputs of
Alice and Bob, respectively. Note that x, y ∈ {0, 1}N such that

∑N
i=1 xiyi = t/2.

Protocol P for Find-t/2-Intersection
Alice and Bob run the query algorithm A when the unknown graph is G(x,y). Now we explain
how they simulate the local queries and random edge query on G(x,y) by communication.
We would like to note that each query can be answered deterministically.
Degree query: By Property-1, the degree of every vertex does not depend on the in-

puts of Alice and Bob, and therefore any degree query can be simulated without any
communication.

Neighbor query: For v ∈ C, the set of 2t neighbors are fixed by the construction. So, any
neighbor query involving any v ∈ C can be answered without any communication. For
i ∈ [s] and sA

i ∈ SA, let NC(sA
i) be the set of fixed neighbors of sA

i inside C. So, by
Property-1, d(sA

i) =
∣∣NC(sA

i)
∣∣ + s ‡‡. The labels of the neighbors of sA

i are such that the
first

∣∣NC(sA
i)

∣∣ many neighbors are inside C, and they are arranged in a fixed but arbitrary
order. For j ∈ [s], the (|NC(v)| + j)-th neighbor of sA

i is either tB
j or sA

j depending on
whether xij = yij = 1 or not, respectively. So, any neighbor query involving vertex in SA

can be answered by 2 bits of communication. Similar arguments also hold for the vertices
in SB ∪ TA ∪ TB .

Adjacency query: Observe that each adjacency query can be answered by at most 2 bits
of communication, and it can be argued like the Neighbor query.

Random Edge query: By Property-1, the degree of any vertex v ∈ V is independent of the
inputs of Alice and Bob. Alice and Bob use shared randomness to sample a vertex in
V proportional to its degree. Let r ∈ V be the sampled vertex. They again use shared
randomness to sample an integer j in [d(v)] uniformly at random. Then they determine
the j-th neighbor of r using Neighbor query. Observe that this procedure simulates a
Random Edge query by using at most 2 bits of communication.

Using the fact that G(x,y) satisfies Property-4 and 5, the output of algorithm A determines
the output of protocol P for Find-t/2-Intersection. As each query of A can be simulated

‡‡ d(u) denotes the degree of the vertex u in G(x,y)

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:13

by at most two bits of communication by the protocol P , the number of bits communicated
is o(m). Recall that N = s2 and s = Θ(

√
m). So, the number of bits communicated by Alice

and Bob in P is o(N). This contradicts Theorem 3.3. ◀

Proof of Theorem 1.3. The proof of this theorem uses the same construction as the one
used in the proof of Theorem 1.2. The “hard” communication problem to reduce from is
t/2-Intersection (see Definition 3.2) on N bits, where N = s2 and s = Θ(

√
m). ◀

4 Conclusion

Our work first and foremost closes a gap in the query complexity of a fundamental problem of
finding a minimum cut using local queries. The strength of our algorithm lies in its simplicity
– it uses existing ingredients in a fashion suitable for the query framework. The crucial idea
was to ensure that cuts are preserved in a sparsified graph in a query framework. We discuss
the application of our approach to other cut problems in Appendix A.

References
1 K. J. Ahn, S. Guha, and A. McGregor. Graph Sketches: Sparsification, Spanners, and

Subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS, pages 5–14, 2012.

2 M. Aliakbarpour, A. S. Biswas, T. Gouleakis, J. Peebles, R. Rubinfeld, and A. Yodpinyanee.
Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling. Algorithmica,
80(2):668–697, 2018.

3 S. Assadi, M. Kapralov, and S. Khanna. A Simple Sublinear-Time Algorithm for Counting
Arbitrary Subgraphs via Edge Sampling. In Proceedings of the 9th Innovations in Theoretical
Computer Science Conference, ITCS, pages 6:1–6:20, 2019.

4 L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory
(preliminary version). In Proceedings of the 27th Annual Symposium on Foundations of
Computer Science, FOCS, pages 337–347, 1986.

5 E. Blais, J. Brody, and K. Matulef. Property Testing Lower Bounds via Communication
Complexity. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity,
CCC, pages 210–220, 2011.

6 D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 1st edition, 2009.

7 T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately Counting Triangles in Sublinear
Time. SIAM J. Comput., 46(5):1603–1646, 2017.

8 T. Eden, D. Ron, and C. Seshadhri. On Approximating the Number of k-Cliques in Sublinear
Time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC, pages 722–734, 2018.

9 T. Eden and W. Rosenbaum. Lower Bounds for Approximating Graph Parameters via Com-
munication Complexity. In Proceedings of the 21st International Conference on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX, pages 11:1–11:18, 2018.

10 T. Eden and W. Rosenbaum. On Sampling Edges Almost Uniformly. In Proceedings of the
1st Symposium on Simplicity in Algorithms, SOSA, pages 7:1–7:9, 2018.

11 U. Feige. On Sums of Independent Random Variables with Unbounded Variance and Estimating
the Average Degree in a Graph. SIAM J. Comput., 35(4):964–984, 2006.

12 M. Ghaffari and B. Haeupler. Distributed algorithms for planar networks II: low-congestion
shortcuts, mst, and min-cut. In Proceedings of the 2016 Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 202–219. SIAM, 2016.

13 M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In Distributed Computing,
volume 8205 of Lecture Notes in Computer Science, pages 1–15, 2013.

APPROX/RANDOM 2021

6:14 Query Complexity of Global Minimum Cut

14 M. Ghaffari and K. Nowicki. Massively parallel algorithms for minimum cut. In Proceedings
of the 39th Symposium on Principles of Distributed Computing, pages 119–128. ACM, 2020.

15 O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
16 O. Goldreich, S. Goldwasser, and D. Ron. Property Testing and its Connection to Learning

and Approximation. J. ACM, 45(4):653–750, 1998.
17 O. Goldreich and D. Ron. Approximating Average Parameters of Graphs. Random Structures

& Algorithms, 32(4):473–493, 2008.
18 M. Gonen, D. Ron, and Y. Shavitt. Counting Stars and Other Small Subgraphs in Sublinear-

Time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.
19 A. Graur, T. Pollner, V. Ramaswamy, and S. M. Weinberg. New Query Lower Bounds for

Submodular Function Minimization. In Proceedings of the 11th Innovations in Theoretical
Computer Science Conference, ITCS, volume 151, pages 64:1–64:16, 2020.

20 A. Hajnal, W. Maass, and G. Turán. On the communication complexity of graph properties. In
Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
STOC, pages 186–191, 1988.

21 M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. Single pass spectral sparsification
in dynamic streams. In Proceedings of the 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 561–570, 2014.

22 D. R. Karger. Global Min-cuts in RNC, and Other Ramifications of a Simple Min-Cut
Algorithm. In Proceedings of the 4th Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, SODA, pages 21–30, 1993.

23 D. R. Karger and C. Stein. An Õ
(
n2)

Algorithm for Minimum Cuts. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing, STOC, pages 757–765, 1993.

24 T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General
Graphs. SIAM J. Comput., 33(6):1441–1483, 2004.

25 K. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear time. J.
ACM, 66(1):4:1–4:50, 2019.

26 E. Kushilevitz. Communication complexity. In Advances in Computers, volume 44, pages
331–360. Elsevier, 1997.

27 A. McGregor. Graph Stream Algorithms: A Survey. SIGMOD Rec., 43(1):9–20, 2014.
28 S. Mukhopadhyay and D. Nanongkai. Weighted Min-Cut: Sequential, Cut-Query, and

Streaming Algorithms. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pages 496–509, 2020.

29 A. Rubinstein, T. Schramm, and S. M. Weinberg. Computing Exact Minimum Cuts Without
Knowing the Graph. In Proceedings of the 9th Innovations in Theoretical Computer Science
Conference, ITCS, pages 39:1–39:16, 2018.

A Application of our approach to other cut problems

Sublinear time algorithm for Global minimum cut. For simplicity, the algorithm
(Algorithm 3) presented for estimating global minimum cut is Õ(m). But, our algorithm can
be adapted to get a sublinear time algorithm (with time complexity Õ

(
m
t

)
) for estimating

the size of the global minimum cut in the graph. We will sample Õ
(

m

t̂

)
random edges with

replacement from the graph G using Õ
(

m

t̂

)
using local queries, where t̂ is the guess for the

size of the global minimum, rather than sampling each edge with probability p = Õ
(

1
t̂

)
as

we have done in the Algorithm 2. Observe that, after finding the degrees of all the vertices,
a random edge can be generated using O(1) local queries. The rest of the algorithm and its
analysis can be adapted directly. Therefore, we have the following result.

A. Bishnu, A. Ghosh, G. Mishra, and M. Paraashar 6:15

▶ Theorem A.1 (Estimating Global minimum cut in sublinear time). There exists an algorithm,
with Degree and Neighbor query access to an unknown graph G = (V, E), that solves
the minimum cut estimation problem with high probability. With high probability, the time
complexity and the query complexity of the algorithm is min

{
m + n, m

t

}
poly

(
log n, 1

ϵ

)
.

Global minimum r-way cut. Global minimum r-cut, for a graph G = ([n], E), |V | = n and
|E| = m, is a partition of the vertex set [n] into r-sets S1, . . . , Sr such that the following is
minimized: |{{i, j} ∈ E : ∃k, ℓ (k ̸= ℓ) ∈ [r], with i ∈ Sk and j ∈ Sℓ}|.

Let Cutr(G) denote the set of edges corresponding to a minimum r-cut, i.e., the edges
that goes across different partitions, and by the size of minimum r-cut, we mean |Cutr(G)|.
The sampling and verification idea used in the proof of Theorem 1.1 can be extended directly,
together with [22, Corollary 8.2], to get the following result.

▶ Theorem A.2. There exists an algorithm, with Degree and Neighbor query access to
an unknown graph G = ([n], E), that with high probability outputs a (1 ± ϵ)-approximation of
the size of the minimum r-cut of G. The expected number of queries used by the algorithm is
min

{
m + n, m

tr

}
poly

(
r, log n, 1

ϵ

)
, where tr = |Cutr(G)|.

Minimum cuts in simple multigraphs. A graph with multiple edges between a pair of
vertices in the graph but without any self loops are called simple multigraphs. If we have
Degree and Neighbor query access ∗ to simple multigraphs then we can directly get the
following generalization of Theorem 1.1.

▶ Theorem A.3 (Minimum cut estimation in simple multigraphs using local queries). There exists
an algorithm, with Degree and Neighbor query access to an unknown simple multigraph
G = (V, E), that solves the minimum cut estimation problem with high probability. The
expected number of queries used by the algorithm is min

{
m + n, m

t

}
poly

(
log n, 1

ϵ

)
, where n

is the number of vertices in the multigraph, m is the number of edges in the multigraph and t

is the number of edges in a minimum cut.

B Probability Results

▶ Lemma B.1 (See [6]). Let X =
∑

i∈[n] Xi where Xi, i ∈ [n], are independent random
variables, Xi ∈ [0, 1] and E[X] is the expected value of X. Then

(i) For ϵ > 0
Pr[|X − E[X]| > ϵE[X]] ≤ exp

(
− ϵ2

3 E[X]
)

.

(ii) Suppose µL ≤ E[X] ≤ µH , then for 0 < ϵ < 1
(a) Pr[X > (1 + ϵ)µH] ≤ exp

(
− ϵ2

3 µH

)
.

(b) Pr[X < (1 − ϵ)µL] ≤ exp
(

− ϵ2

2 µL

)
.

∗ For simple multigraphs, we will assume that the neighbors of a vertex are stored with multiplicities.

APPROX/RANDOM 2021

A Constant-Factor Approximation for
Weighted Bond Cover
Eun Jung Kim #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France

Euiwoong Lee1 #

University of Michigan, Ann Arbor, MI, USA

Dimitrios M. Thilikos #

LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Abstract
The Weighted F-Vertex Deletion for a class F of graphs asks, weighted graph G, for a minimum
weight vertex set S such that G − S ∈ F . The case when F is minor-closed and excludes some graph
as a minor has received particular attention but a constant-factor approximation remained elusive
for Weighted F-Vertex Deletion. Only three cases of minor-closed F are known to admit
constant-factor approximations, namely Vertex Cover, Feedback Vertex Set and Diamond
Hitting Set. We study the problem for the class F of θc-minor-free graphs, under the equivalent
setting of the Weighted c-Bond Cover problem, and present a constant-factor approximation
algorithm using the primal-dual method. For this, we leverage a structure theorem implicit in
[Joret et al., SIDMA’14] which states the following: any graph G containing a θc-minor-model
either contains a large two-terminal protrusion, or contains a constant-size θc-minor-model, or a
collection of pairwise disjoint constant-sized connected sets that can be contracted simultaneously
to yield a dense graph. In the first case, we tame the graph by replacing the protrusion with a
special-purpose weighted gadget. For the second and third case, we provide a weighting scheme
which guarantees a local approximation ratio. Besides making an important step in the quest of
(dis)proving a constant-factor approximation for Weighted F-Vertex Deletion, our result may
be useful as a template for algorithms for other minor-closed families.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Math-
ematics of computing → Combinatorial algorithms; Theory of computation → Approximation
algorithms analysis; Theory of computation → Graph algorithms analysis

Keywords and phrases Constant-factor approximation algorithms, Primal-dual method, Bonds in
graphs, Graph minors, Graph modification problems

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.7

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2105.00857

Funding Eun Jung Kim: Supported by the ANR projects ASSK (ANR-18-CE40-0025-01) and
ESIGMA (ANR-17-CE23-0010) from French National Research Agency.
Dimitrios M. Thilikos: Supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028),
ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA
(ANR-20-CE92-0027).

1 Part of this work was done when the second author was a postdoc at New York University and supported
by Simons Collaboration on Algorithms and Geometry.

© Eun Jung Kim, Euiwoong Lee, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eun-jung.kim@dauphine.fr
mailto:euiwoong@umich.edu
mailto:euiwoong@umich.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.7
https://arxiv.org/abs/2105.00857
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Approximation for Weighted Bond Cover

1 Introduction and main ideas of our results

For a class F of graphs, the problem Weighted F -Vertex Deletion asks, given weighted
graph G = (V, E, w), for a vertex set S ⊆ V of minimum weight such that G− S belongs to
the class F . The Weighted F -Vertex Deletion captures classic graph problems such as
Weighted Vertex Cover and Weighted Feedback Vertex Set, which corresponds to
F being the classes of edgeless and acyclic graphs, respectively. A vast literature is devoted
to the study of (Weighted) F -Vertex Deletion for various instantiations of F , both in
approximation algorithms and in parameterized complexity. Much of the work considers a
class F that is characterized by a set of forbidden (induced) subgraphs [41, 33, 14, 1, 28,
3, 4, 5, 6, 37] or that is minor-closed [22, 16, 18, 20, 31, 19, 30, 8, 2, 23, 21, 44, 11], thus
characterized by a (finite) set of forbidden minors.

Lewis and Yannakakis [35] showed that F -Vertex Deletion, the unweighted version of
Weighted F -Vertex Deletion, is NP-hard whenever F is nontrivial (there are infinitely
many graphs in and outside of F) and hereditary (is closed under taking induced subgraphs).
It was also long known that F -Vertex Deletion is APX-hard for every non-trivial hereditary
class F [39]. So, the natural question is for which class F , (Weighted) F -Vertex Deletion
admits constant-factor approximation algorithms.

When F is characterized by a finite set of forbidden induced subgraphs, a constant-factor
approximation for Weighted F-Vertex Deletion is readily derived with LP-rounding
technique. Lund and Yannakakis [39] conjectured that for F characterized by a set of
minimal forbidden induced subgraphs, the finiteness of F defines the borderline between
approximability and inapproximability with constant ratio of F-Vertex Deletion. This
conjecture was refuted due to the existence of 2-approximation for Weighted Feedback
Vertex Set [7, 12, 16]. Since then, a few more classes with an infinite set of forbidden induced
subgraphs are known to allow constant-factor approximations for F-Vertex Deletion,
such as block graphs [1], 3-leaf power graphs [5], interval graphs [14], ptolemaic graphs [6],
and bounded treewidth graphs [20, 23]. That is, we are only in the nascent stage when
it comes to charting the landscape of (Weighted) F-Vertex Deletion as to constant-
factor approximability. In the remainder of this section, we focus on the case where F is a
minor-closed class.

Known results on (Weighted) F-Vertex Deletion. According to Robertson and
Seymour theorem, every non-trivial minor-closed graph class F is characterized by a finite set,
called (minor) obstruction set, of minimal forbidden minors, called (minor) obstructions [43].
It is also well-known that F has bounded treewidth if and only if one of the obstructions is
planar [42]. Therefore, the F -Vertex Deletion for F excluding at least one planar graph as
a minor can be deemed a natural extension of Feedback Vertex Set. In this context, it is
not surprising that F -Vertex Deletion, for minor-closed F , attracted particular attention
in parameterized complexity, where Feedback Vertex Set was considered the flagship problem
serving as an igniter and a testbed for new techniques.

For every minor-closed F , the class of yes-instances to the decision version of F -Vertex
Deletion is minor-closed again (for every fixed size of a solution), thus there exists a finite
obstruction set for the set of its yes-instances. With a minor-membership test algorithm [26],
this implies that F-Vertex Deletion is fixed-parameter tractable. The caveat is, such a
fixed-parameter algorithm is non-uniform and non-constructive, and the exponential term in
the running time is gigantic. Much endeavour was made to reduce the parametric dependence
of such algorithms for F-Vertex Deletion. The case when F has bounded treewidth is

E. J. Kim, E. Lee, and D. M. Thilikos 7:3

now understood well. The corresponding F-Vertex Deletion is known to be solvable in
time 2O(k) · nO(1) [20, 31] and the single-exponential dependency on k is asymptotically
optimal under the Exponential Time Hypothesis2 [31]. (See also [44] for recent parameterized
algorithms for general minor-closed F ’s).

Turning to approximability, the (unweighted) F -Vertex Deletion can be approximated
within a constant-factor when F has bounded treewidth, say t, or equivalently when the
obstruction set of F contains some planar graph. The first general result in this direction
was the randomized f(t)-approximation of Fomin et al. [20]. Gupta et al. [23] made a further
progress with an O(log t)-approximation algorithm. Unfortunately, such approximation
algorithms whose approximation ratio depends only on F are not known when the input
is weighted. A principal reason for this is that most of the techniques developed for the
unweighted case do not extend to the weighted setting. In this direction, Agrawal et
al. [2] presented a randomized O(log1.5 n)-approximation algorithm and a deterministic
O(log2 n)-approximation algorithm which run in time nO(t) when F has treewidth at most
t. It is reported in [2] that an O(log n · log log n)-approximation can be deduced from the
approximation algorithm of Bansal et al. [8] for the edge deletion variant of Weighted
F -Vertex Deletion. For the class F of planar graphs, Kawarabayashi and Sidiropoulos [30]
presented an algorithm for F -Vertex Deletion with polylogarithmic approximation ratio
running in quasi-polynomial time. Beyond this work, no nontrivial approximation algorithm
is known for F of unbounded treewidth.

Regarding constant-factor approximability for Weighted F-Vertex Deletion with
minor-closed F , only three results are known till now. For the Weighted Vertex Cover,
it was observed early that a 2-approximation can be instantly derived from the half-integrality
of LP [40]. The local-ratio algorithm by Bar-Yehuda and Even [10] was presumably the first
primal-dual algorithm and laid the groundwork for subsequent development of the primal-
dual method.3 For the Weighted Feedback Vertex Set, 2-approximation algorithms
were proposed using the primal-dual method [7, 12, 16]. Furthermore, a constant-factor
approximation algorithm was given for Weighted Diamond Hitting Set by Fiorini,
Joret, and Pietropaoli [18] in 2010. To the best of our knowledge, no progress is made on
approximation with constant ratio for minor-closed F since then.

For minor-closed F with graphs of bounded treewidth, the known approximation al-
gorithms for (Weighted) F-Vertex Deletion take one of the following two avenues.
First, the algorithms in [8, 2, 23] draw on the fact that a graph of constant treewidth has
a constant-size separator which breaks down the graph into smaller pieces. The measure
for smallness is an important design feature of these algorithms. Regardless of the design
specification, however, it seems there is an inherent bottleneck to extend these algorithmic
strategy to handle weights while achieving a constant approximation ratio; the above results
either use an algorithm for the Balanced Separator problem that does not admit a
constant-factor approximation ratio, under the Small Set Expansion Hypothesis [38], or use
a relationship between the size of the separator and the size of resulting pieces that do not
hold for weighted graphs.

The second direction is the primal-dual method [10, 7, 12, 16, 18]. The constant-factor
approximation of [20] for F -Vertex Deletion is also based on the same core observation
of the primal-dual algorithm such as [12]. The 2-approximation for Weighted Feedback

2 The ETH states that 3-SAT on n variables cannot be solved in time 2o(n), see [27] for more details.
3 In this paper, we consider local-ratio and primal-dual as the same algorithms design paradigm and use

the word primal-dual throughout the paper even when the underlying LP is not explicitly given. We
refer the reader to the classic survey of Bar-Yehuda et al. [9] for the equivalence.

APPROX/RANDOM 2021

7:4 Approximation for Weighted Bond Cover

Vertex Set became available by introducing a new LP formulation which translates the
property “G − X is a forest” in terms of the sum of degree contribution of X. The idea
of expressing the sparsity condition of G − X in terms of the degree contribution of X

again played the key role in [18] for Weighted Diamond Hitting Set. However, the
(extended) sparsity inequality of [18] is highly intricate as the LP constraint describes the
precise structure of diamond-minor-free graphs (after taming the graph via some special
protrusion replacer). Therefore, expressing the sparsity condition for other classes F with
tailor-made LP constraints is likely to be prohibitively convoluted. This implies that a radical
simplification of the known algorithm for, say, Weighted Diamond Hitting Set will be
necessary if one intends to apply the primal-dual method for broader classes.

Our result and the key ideas. Let θc be the graph on two vertices joined by c parallel
edges. The central problem we study is the Weighted F-Vertex Deletion where F is
the class of θc-minor-free graphs: a weighted graph G = (V, E, w) is given as input, and the
goal is to find a vertex set S of minimum weight such that G− S is θc-minor-free. We call
this particular problem the Weighted c-Bond Cover problem, as we believe that this
nomenclature is more adequate for reasons to be clear in Section 2. Our main result is the
following.

▶ Theorem 1. There is a constant-factor approximation algorithm for Weighted c-Bond
Cover running in uniformly4 polynomial time.

Let us briefly recall the classic 2-approximation algorithms for Weighted Feedback
Vertex Set [7, 12]. These algorithms repeatedly delineate a vertex subset S on which the
induced subgraph contains an obstruction (a cycle), and “peel off” a weighted graph on S

from the current weighted graph so that the weight of at least one vertex of the current
graph drops to zero. The crux of this approach is to create a weighted graph to peel off
(or design a weighting scheme) on which every (minimal) feasible solution is consistently an
α-approximate solution. We remark that peeling-off of a weighted graph on S can be viewed
as increasing the dual variable (from zero) corresponding to S until some dual constraint
becomes tight, as articulated in [16].

If one aims to capitalize on the power of the primal-dual method for other minor-closed
classes and ultimately for arbitrary F with graphs of bounded treewidth, more sophisticated
weighting scheme is needed. As we already mentioned, this was successfully done by Fiorini,
Joret and Pietropaoli [18] for Weighted Diamond Hitting Set, where their primal-dual
algorithm is based on an intricate LP formulation. Our primal-dual algorithm diverges from
such tactics, and instead use the next structural theorem as a guide for the weighting scheme.
Before we present it, we need to define some basic concepts.

Given two disjoint subsets X, Y of V (G), the edges crossing X and Y is the set of edges
with one endpoint in X and the other in Y. Notice that θc is a minor of G iff G contains two
disjoint connected sets X and Y crossed by c edges of G. We call the union M := X ∪ Y

θc-model in G.

Given a positive integer c, a c-outgrowth of a graph G is a triple K = (K, u, v) where u, v

are distinct vertices of G, K is a component of G\{u, v}, NG(V (K)) = {u, v}, and the graph,
denoted by K(x,y), obtained from G[V (K) ∪ {u, v}] if we remove all edges with endpoints u

and v is θc-minor free. The size of a c-outgrowth of G is the size of K. A cluster collection

4 We use the term “unformly polynomial” in order to indicate that a constructive algorithm exists that,
for every c, runs in f(c) · nO(1) time for some constructible function f .

E. J. Kim, E. Lee, and D. M. Thilikos 7:5

of a graph G is a non-empty collection C = {C1, . . . , Cr} of pairwise disjoint non-empty
connected subsets of V (G). In case

⋃
C∈C C = V (G) we say that C is a cluster partition of

G. The capacity of a cluster collection C is the maximum number of vertices of a cluster in
C. We use the notation G/C for the multigraph obtained from G[

⋃
C∈C C] by contracting5

all edges in G[Ci] for each i ∈ {1, . . . , r}.

▶ Theorem 2. There is a function f1 : N2 → N such that, for every two positive integers c

and t, there is a uniformly polynomial time algorithm that, given as input a graph G, outputs
one of the following:
1. a c-outgrowth of size at least c, or
2. a θc-model M of G of size at most f1(c, t), or
3. a cluster collection C of G of capacity at most f1(c, t) such that δ(G/C) ≥ t, or
4. a report that G is θc-minor free.

(By δ(G) we denote the minimum edge-degree of a vertex in G. The edge-degree of a vertex
v of G, denoted by edegG(v), is the number of edges that are incident to v.) A variant of
Theorem 2 was originally proved by Joret et al. [29] without the capacity condition on a
cluster collection in Case 3. It turns out that imposing the capacity condition of Case 3 is
crucial for designing a weighting scheme.

At each iteration, our primal-dual algorithm invokes Theorem 2. Depending on the
outcome, the algorithm either runs a replacer (defined in Section 2) and reduces the size of
a c-outgrowth, or computes a suitable weighted graph which we call α-thin layer (defined
in Section 3), using a suitable weighting scheme, thus reducing the current weight. In both
cases, we convert the current weighted graph G = (V, E, w) into a new weighted graph
G′ = (V ′, E′, w′) on a strictly smaller number of vertices so that an α-approximate solution
for G′ implies an α-approximate solution for G for some particular value of α.

We stress that the replacer is compatible with any approximation ratio in the sense
that the optimal weight of a solution is unchanged and every solution after the replacement
can be transformed to a solution that is at least as good. When Theorem 2 reports a
constant-sized θc-model, it is easy to see that a uniformly weighted α-thin layer suffices.
The gist of Theorem 2 is in the third case, which promises a collection of pairwise disjoint
constant-sized connected sets.

Let us first consider the simplest such case where all connected sets are singletons, namely
when δ(G) ≥ t. It is not difficult to see that, if we consider t := 6c and under the edge-degree-
proportional weight function, that is for every v ∈ V (G), w(v) := edegG(v), any feasible
solution to Weighted c-Bond Cover is a 4-approximate solution.

In the general case where we have a collection of pairwise disjoint connected sets, each
of size at most r, the critical observation (Lemma 3) is that if the contraction of these sets
yields a graph of minimum edge-degree at least t := 8c, then a weighting scheme akin to the
simple case also works. That is, any feasible solution to Weighted c-Bond Cover is a
4r-approximate solution. The overall primal-dual framework is summarized in Section 3.

2 Preliminary definitions and results

We use N for the set of non-negative integers and R≥0 for the set of non-negative reals. Given
some r ∈ N, we define [r] = {1, . . . , r}. Given some collection A of objects on which the union
operation can be defined, we define

⋃⋃⋃⋃⋃⋃⋃⋃⋃
A =

⋃
A∈A A. All graphs we consider are multigraphs

5 When considering edge contractions we sum up edge multiplicities of multiple edges that are created
during the contraction. However, when a loop appears after a contraction, then we suppress it.

APPROX/RANDOM 2021

7:6 Approximation for Weighted Bond Cover

without loops. We denote a graph by G = (V, E) where V and E are its vertex and edge set
respectively. A vertex-weighted graph is denoted by G = (V, E, w) where w : V (G)→ R≥0
and we say that G is a w-weighted graph. We use V (G) and E(G) for the vertex set and
the edge multiset of G. We also refer to |V (G)| as the size of G. If X ⊆ V (G), we denote
by G[X] the subgraph of G induced by X and by G −X the graph G[V (G) \X]. We say
that X is connected in G if G[X] is connected. A graph H is a minor of a graph G if H can
be obtained from a subgraph of G after contracting edges. Given a graph H, we say that
G is H-minor free if G does not contain H as a minor. We denote by NG(v) the set of all
neighbors of v in G.

Covering bonds. Let G be a graph. Given a bipartition {V1, V2} of V (G), the set of edges
crossing V1 and V2 is called the cut of {V1, V2} and an edge set is a cut if it is a cut of some
vertex bipartition. A minimal non-empty cut is known as a bond in the literature. We
remark that the bonds of G are precisely the circuits of the cographic matroid of G. Given
a positive integer c, a c-bond of a graph G is any minimal cut of G of size at least c. The
problem of finding the maximum c for which a graph G contains a c-bond has been examined
both from the approximation [25, 15] and the parameterized point of view [17]. Given a set
S ⊆ V (G), we say that S is a c-bond cover of G if G− S is θc-minor free. Notice that S is
a c-bond cover iff G \ S does not contain a c-bond. Given a weighted graph G = (V, E, w)
with w : V (G)→ R≥0, a minimum weight c-bond cover of G is a c-bond cover S where the
weight of S, defined as w(S) :=

∑
v∈S w(v), is minimized.

It is easy to prove that, for every c ∈ N, a graph G contains θc as a minor iff it has
a c-bond. This means that when F is the class of θc-minor-free graphs, then Weighted
F -Vertex Deletion can be restated as follows.

Weighted c-Bond Cover
Input: a vertex weighted graph G = (V, E, w).
Solution: a minimum weight c-bond cover of G.

The weighting scheme. Let G be a graph and let C be a cluster partition of G of capacity
at most r. Given a cluster C ∈ C we denote by extC(C) (or simply ext(C)) the set of edges
with one endpoint in C and the other not in C.

Let now G be an instance of Weighted c-Bond Cover for some positive integer c. We
define the vertex weighting function wC : V (G)→ R≥0 so that if v ∈ C ∈ C, then

wC(v) = |ext(C)|
|C|

. (1)

When C is clear from the context, we simply write w instead wC . The main result of this
section is that, with respect to the weight function w in Equation 1, every c-bond cover of G

is a 4r-approximation.

▶ Lemma 3. Let c be a non negative integer, G be a graph, r be a positive integer, C be a
cluster partition of G of capacity at most r and such that δ(G/C) ≥ 8c, and w : V (G)→ R≥0
be a vertex weighting function as in Equation 1. Then for every c-bond cover X of G, it
holds that 1

2r · |E(G/C)| ≤
∑

v∈X w(v) ≤ 2 · |E(G/C)|.

Proof. For the upper bound, note that
∑

v∈X w(v) =
∑

v∈X
|ext(C)|

|C| ≤
∑

C∈C
∑

v∈C
|ext(C)|

|C| =∑
C∈C |ext(C)| =

∑
x∈V (G/C) edegG/C(x) = 2 · |E(G/C)|.

E. J. Kim, E. Lee, and D. M. Thilikos 7:7

For the lower bound, let X be a c-bond cover of G and let F = V (G) \X, CX = {C ∈
C | C ∩ X ̸= ∅}, and CF = C \ CX . Since δ(G/C) ≥ 8c, we obtain that |E(G/C)|/2 ≥
2c · |V (G/C)| = 2c · |C|. We claim that

∑
C∈CX

|ext(C)| ≥ |E(G/C)|/2. Indeed, if this is not
the case then, by the fact that |E(G/C)| ≤ |E(G[F]/CF)|+

∑
C∈CX

|ext(C)|, we have that
|E(G[F]/CF)| > |E(G/C)|/2 ≥ 2c · |C| ≥ 2c · |CF | and this last inequality, gives that θc is
a minor of G/CF which is a minor of G[F], a contradiction. Here we use the fact that for
every θc-minor free multigraph G, it holds that |E(G)| ≤ 2c · |V (G)| (following from the main
combinatorial result of [36]). Therefore, since each set in CX contains at least one vertex
of X, we obtain

∑
v∈X w(v) ≥

∑
C∈CX

|ext(C)|
|C| ≥ 1

r

∑
C∈CX

|ext(C)| ≥ |E(G/C)|
2r , which proves

the lower bound. ◀

Replacing outgrowths. A c-outgrowth replacer (hereinafter replacer) is a uniformly
polynomial-time algorithm which, given a weighted graph G = (V, E, w) and a c-outgrowth
K = (K, u, v) of size at least c, outputs a weighted graph G′ = (V ′, E′, w′) with the following
property.

1. K is replaced by another c-outgrowth K′ = (K ′, u, v) of size at most c− 1.

2. opt(G) = opt(G′).
3. Given a c-bond cover S′ ⊆ V (G′), one can construct in polynomial time a c-bond cover

S ⊆ V (G) such that w(S) ≤ w(S′).

We now present our c-outgrowth replacer. Given a w-weighted graph G, we denote by
opt(G) the weight of an optimal solution for Weighted c-Bond Cover on G.

▶ Lemma 4. For every positive c ∈ N, there is a c-outgrowth replacer. In particular, an
α-approximate solution for G′ implies an α-approximate solution for G.

Proof. For i ∈ {0, . . . , c− 1}, let K
(u,v)
i be the graph obtained from K(u,v) by adding i edges

connecting u and v. Obviously K
(u,v)
0 equals K(u,v). Let also Ti ⊆ V (K) be a minimum weight

set contained in V (K) such that K
(u,v)
i − Ti is θc-minor-free, and wi = w(Ti). Note that

Ti ⊆ V (K) implies that Ti contains neither u nor v. For example, Tc−1 is a minimum (internal)
vertex cut separating u and v in K(u,v), and wc−1 = w(Tc−1) is finite since there is no edge
between u and v in K(u,v). By definition, it holds that 0 = w0 ≤ w1 ≤ · · · ≤ wc−1 <∞, and
these values can be computed in uniformly polynomial time by using dynamic programming
on θc-minor free graphs (that is bounded treewidth graphs). We also remark that Tj is a
c-bond cover of K

(u,v)
i for all i ≤ j. We construct the c-outgrowth K′ = (K ′, u, v) so that

K ′(u,v) is as follows (see Figure 1).

V (K ′(u,v)) = {u, v, x1, . . . , xc−1} where K ′ = {x1, . . . , xc−1}. For each 1 ≤ i ≤ c− 1, the
weight of xi is wi.

There are edges (u, x1), (x1, x2), . . . , (xc−2, xc−1), (xc−1, v). Additionally for each 2 ≤ i ≤
c− 1, there is an edge (xi, u).

u v

x3
x2

x1

x4 x5

xc−1
· ··

Figure 1 The construction of the replacement c-outgrowth K′ = (K′, u, v).

We observe that for each i ∈ {0, . . . , c− 1}, the set {xi} is the minimum weight c-bond
cover of K

′(u,v)
i . The next claims are handy (the proof is omitted in this extended abstract).

APPROX/RANDOM 2021

7:8 Approximation for Weighted Bond Cover

▷ Claim 5. Let (K, u, v) be a c-outgrowth in G and let M = (X, Y) be a minimal θc-model
in G. If M does not contain u, then we have (X ∪ Y) ∩ V (K) = ∅. Furthermore, if S is a
minimal c-bond cover of G and if S contains u or v, say u, then S ∩ V (K) = ∅.

▷ Claim 6. Let Z be a c-bond cover of G− V (K) and let ℓ be the maximum integer6 such
that G− (K ∪ Z) contains a θℓ-model with u and v in different sets. Then Z ′ = Z ∪ Tℓ is a
c-bond cover of G.

We begin with proving the third condition of the replacer. Let G′ be the graph where
K(u,v) is replaced by K ′(u,v). It suffices to prove the second statement for an arbitrary
minimal c-bond cover S′ ⊆ V (G′) of G′.

First, assume that S′ contains u or v, say u. Claim 5 is applied to G′ verbatim with
G ← G′, K ← K ′, K(u,v) ← K ′(u,v), and we deduce that S′ ∩ V (K ′) = ∅. Now we take
S ← S′, and let us argue that S is a c-bond cover of G. Again Claim 5 implies that if G− S

contains a θc-model, then one can find one disjoint from V (K). This is not possible because
S = S′ is a c-bond cover of G−K = G′ −K ′.

Secondly, let us assume that S′ ∩ {u, v} = ∅. Let ℓ be the maximum integer such that
G′− (K ′ ∪S′) contains a θℓ-model M = (X, Y) with u and v in different sets, say u ∈ X and
v ∈ Y. Clearly ℓ is strictly smaller than c because S′ is a c-bond cover of G′ −K ′. Note that
K

′(u,v)
ℓ is obtained from G′[X ∪ Y ∪ V (K ′)] by contracting X and Y. Because S′ ∩ V (K ′) is

a c-bond cover of G′[X ∪ Y ∪ V (K ′)], it is also a c-bond cover of K
′(u,v)
ℓ . Therefore we have

wℓ ≤ w(S′ ∩ V (K ′)).
Let S = (S′ \V (K ′))∪Tℓ be a vertex set of G and note that w(S) ≤ w(S′). Now applying

Claim 6 to G with Z ← S′\V (K ′) (as a vertex set of G), we conclude that S is a c-bond cover
of G. This proves the third condition of the replacer, which also establishes opt(G) ≤ opt(G′)
in the second condition of the replacer.

It remains to show opt(G) ≥ opt(G′). Consider an optimal c-bond cover S of G, and let p

be the maximum integer such that G−(K∪S) contains a θp-model M = (X, Y) with u and v

in different sets. Again we apply Claim 6 with G← G′, Z ← S \V (K) (as a vertex set of G′),
K ← K ′ and Tℓ ← {xp}, and derive that (S \ V (K)) ∪ {xp} is a c-bond cover of G′. Lastly,
observe that K

(u,v)
p is a minor of G[X∪Y ∪V (K)], and because S∩V (K) is a c-bond cover of

the latter, it is also a c-bond cover of the former. Therefore, we have w(S∩V (K)) ≥ wp, from
which we have opt(G) = w(S) ≥ w(S \ V (K)) + wp = w((S \ V (K)) ∪ {xp}) ≥ opt(G′). ◀

3 The primal-dual approach

We begin the section by formalizing the notion of α-thin layer. An α-thin layer of a weighted
graph G = (V, E, w) is a weighted graph H = (V, E, wo) such that the following holds.

wo(v) ≤ w(v) for every v ∈ V,

wo(v) = w(v) for some v ∈ V, and
wo(S) ≥ (1/α) · wo(V) for any c-bond cover S ⊆ V of H.

We are now ready to prove our main approximation result.

▶ Theorem 7. There is a uniformly polynomial-time algorithm which, given a positive integer
c and a weighted graph G = (V, E, w), computes a c-bond cover of weight at most α · opt(G)
for some α = α(c).

6 If u and v are not connected in G − (K ∪ Z), we let ℓ = 0.

E. J. Kim, E. Lee, and D. M. Thilikos 7:9

Proof. The algorithm initially sets G1 = G, and iteratively constructs a sequence of weighted
graphs Gi = (Vi, Ei, wi) for i = 0, 1, At i-th iteration, we run the algorithm A of
Theorem 2 for t = 8c. If A detects a c-outgrowth of size at least c, then we call the algorithm
of Lemma 4, which is clearly a replacer. We run the replacer on Gi and set Gi+1 to be the
output of the replacer. If a θc-model M of Gi of size at most f1(c, t) is detected by A, then
let ϵ := min{wi(v) : v ∈ M} and consider the weighted graph Hi = (Vi, Ei, wo

i) with the
weight function w as follows:

wo
i (v) =

{
ϵ if v ∈M

0 otherwise.

It is obvious that Hi is an α-thin layer with α = f1(c, t).
In the third case, note that the cluster collection C forms a cluster partition of

Gi[
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C]. Consider the weight function w :

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C → R≥0 as in Equation 1 of Gi[

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C]. Let

ϵ := min{wi(v)/w(v) : v ∈
⋃⋃⋃⋃⋃⋃⋃⋃⋃
C} and Hi = (Vi, Ei, wo

i) be the weighted graph, where

wo
i (v) =

{
ϵ · w(v) if v ∈

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C

0 otherwise.

Let us verify that Hi is an α-thin layer of Gi for α = 4r, where r = f1(c, t). It is straightforward
to see that the first two requirement of α-thin layer are met due to the choice of ϵ. To check
the last requirement, consider an arbitrary c-bond cover S ⊆ Vi of Hi. By Lemma 3, it holds
that

ϵ

2r
· |E(Gi[

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C]/C)| ≤

∑
v∈S

wo
i (v) ≤

∑
v∈Vi

wo
i (v) ≤ 2ϵ · |E(Gi[

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C]/C)|,

and therefore,∑
v∈S

wo
i (v) ≥ ϵ

2r
· |E(Gi[

⋃⋃⋃⋃⋃⋃⋃⋃⋃
C]/C)| ≥ 1

4r
·

∑
v∈Vi

wo
i (v).

In both the second and the third cases, we set Gi+1 to be the weighted graph (Vi, Ei, wi−wo
i)

after removing all vertices of weight zero.
Finally, if A reports that Gi is θc-minor free, then we terminate the iteration. Let

G = G1, G2, . . . , Gℓ be the constructed sequence of weighted graph at the end, with Gℓ being
a θc-minor-free graph. Observe that our algorithm strictly decrease the number of vertices
before the ℓ-th iteration, and thus ℓ ≤ n.

To establish the main statement, it suffices show that there is a polynomial-time algorithm
which produces an 4r-approximate solution for Gi given an 4r-approximate solution Ti+1
for Gi+1, where r = f1(c, t) and t = 8c. This trivially holds if the execution of A at i-th
iteration calls the replacer.

Suppose that i-th iteration produces an α-thin layer Hi = (Vi, Ei, wo
i), and recall that

every α-thin layer produced in our algorithm satisfies α ≤ 4r. As Ti+1 is an 4r-approximate
solution for Gi+1, we have

opt(Gi+1) ≥ (1/4r) · wi+1(Ti+1), (2)

▷ Claim 8. Ti := Ti+1 ∪ (Vi \ Vi+1) is an 4r-approximate solution for Gi.

Proof. Let Di = Vi \ Vi+1, namely the vertices deleted from Gi to obtain Gi+1. It is
obvious that Ti+1 ∪Di is a feasible solution for Gi, that is, a c-bond cover of Gi because
Gi+1−Ti+1 = Gi− (Ti+1∪Di) and Ti+1 is a c-bond cover of Gi+1. Let Q ⊆ Vi be an optimal

APPROX/RANDOM 2021

7:10 Approximation for Weighted Bond Cover

solution for Gi. Then Q is a feasible solution for Hi and Q ∩ Vi+1 is a feasible solution for
Gi+1, therefore

wo
i (Q) ≥ (1/4r) · wo

i (Vi) and (3)
wi+1(Q ∩ Vi+1) ≥ opt(Gi+1), (4)

where the inequality 3 is due to the third requirement of α-thin layer. Furthermore, it holds
that

wi(v) = wo
i (v) + wi+1(v) for each v ∈ Vi+1 and (5)

wi(v) = wo
i (v) for each v ∈ Di. (6)

Therefore,

wi(Q) = wo
i (Q) + wi+1(Q ∩ Vi+1) ∵ (5), (6)

≥ (1/4r) · wo
i (Vi) + opt(Gi+1) ∵ (3), (4)

≥ (1/4r) · wo
i (Ti+1 ∪Di) + (1/4r) · wi+1(Ti+1) ∵ (2)

= (1/4r) · (wo
i (Ti+1) + wi+1(Ti+1)) + (1/4r) · wo

i (Di)
= (1/4r) · wi(Ti+1 ∪Di) ∵ (5), (6)

and the claim follows. ◁

We inductively obtain a 4r-approximate solution for Gi, and finally for the graph G1 = G.

This finishes the proof. ◀

4 Discussion

In this paper we construct a polynomial-time constant-factor approximation algorithm for the
Weighted F -Vertex Deletion problem in the case F is the class of graphs not containing
a c-bond or, alternatively, the θc-minor free graphs. The constant-factor of our approximation
algorithm is a (constructible) function of c and the running time is uniformly polynomial. Our
results, in case c = 2, yield a constant-factor approximation for the Weighted Feedback
Vertex Set. Also, a constant-factor approximation for Weighted Diamond Hitting
Set can easily be derived for the case where c = 3. For this we apply our results on simple
graphs and observe that each time a θ3-minor-model appears, this model, under the absence
of multiple edges, should contain 4 vertices and therefore is a minor-model of the diamond
K−

4 (that is K4 without an edge).

Certainly the general open question is whether Weighted F -Vertex Deletion admits
a constant-factor approximation for more general instantiations of the minor-closed class F .

In this direction, the challenge is to use our approach when the graphs in F have bounded
treewidth (or, equivalently, if the minor obstruction of F contains some planar graph). For
this, one needs to extend the structural result of Theorem 2 and, based on this to build a
replacer as in Lemma 4.

Given an r ∈ N, an r-protrusion of a graph G is a set X ⊆ V (G) such that G[X] has
treewidth at most t and |∂G(X)| ≤ t, were ∂G(X) is the set of vertices of X that are incident
to edges not in G[X]. We conjecture that a possible extension of Theorem 2 might be the
following.

▶ Conjecture 9. There are functions f2 : N2 → N and f3 : N3 → N such that, for every
h-vertex planar graph H and every two positive integers t, p, there is a uniformly polynomial
time algorithm that, given as input a graph G, outputs one of the following:

E. J. Kim, E. Lee, and D. M. Thilikos 7:11

1. an f2(h, t)-protrusion X of size at least p, or
2. a minor-model of H of of size at most f3(h, t, p), or
3. a cluster collection C of G of capacity at most f3(h, t, p) such that δ(G/C) ≥ t, or
4. a report that G is H-minor free.

Given a proof of some suitable version of Conjecture 9 at hand, cases 1,2, and 3 above
can be treated using the method proposed in this paper. In the first case, we need to find
a weighted prorusion replacer that can replace, in the weighed graph G = (V, E, w), the
subgraph G[X] by another one (glued on the same boundary) and create a new weighted
graph G′ = (V ′, E′, w′) so that an optimal solution has the same weight in both instances.
In our case, the role of a protrusion is played by the c-outgrowth, where X is the vertex set
of K(u,v) that has treewidth at most 2c and |∂G(X)| ≤ 2, i.e., V (K(u,v)) is a 2c-protrusion of
G. In the case of θc, the the replacer is given in Lemma 4. The existence of such a replacer in
the general case is wide open, first because the boundary ∂G(X) has bigger size (depending
on h but perhaps also on t) and second, and most important, because we now must deal
with weights which does not permit us to use any protrusion replacement machinery such
as the one used in [20, 19] unweighted version of the problem (based on the, so called,
FII-property [13] for more details).

We believe that a possible way to prove Conjecture 9 is to use as departure the proof of
the main combinatorial result in [45]. However, in our opinion, the most challenging step is
to design a weighted protrusion replacer (or, on the negative side, to provide instantiations
of H where such a replacer does not exist). As such a replacer needs to work on the presence
of weights, we suggest that its design might use techniques related to mimicking networks
technology [24, 34].

Finally, since our algorithm is based on the primal-dual framework and proceeds by
constructing suitable weights for the second and third case where every feasible solution is
O(1)-approximate, one can ask whether it is possible to bypass the need for a replacer and
construct suitable weights for the first case. Indeed, the previous approximation algorithms
for Weighted Feedback Vertex Set [7, 12, 16] designed suitable weights even for the
case 1 where every minimal solution is O(1)-approximate. (And used the additional “reverse
delete” step at the end to ensure that the final solution remains minimal, for every weighted
graph constructed.) In the full version of the paper [32], we show that such weights cannot
exist for a simple planar graph H, which suggests that replacers are inherently needed for
this class of algorithms for Weighted F -Vertex Deletion.

References
1 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT

algorithm and a smaller kernel for block graph vertex deletion. In LATIN 2016: theoretical
informatics, volume 9644 of Lecture Notes in Comput. Sci., pages 1–13. Springer, Berlin, 2016.
doi:10.1007/978-3-662-49529-2_1.

2 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav
Zehavi. Polylogarithmic approximation algorithms for weighted-F-deletion problems. In
Approximation, randomization, and combinatorial optimization. Algorithms and techniques,
volume 116 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 1, 15. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2018.

3 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms,
15(1):Art. 11, 28, 2019. doi:10.1145/3284356.

APPROX/RANDOM 2021

https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1145/3284356

7:12 Approximation for Weighted Bond Cover

4 Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex
deletion admits a polynomial kernel. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1711–1730. SIAM, Philadelphia, PA, 2019. doi:
10.1137/1.9781611975482.103.

5 Jungho Ahn, Eduard Eiben, O-joung Kwon, and Sang-il Oum. A polynomial kernel for 3-leaf
power deletion. In 45th International Symposium on Mathematical Foundations of Computer
Science, volume 170 of LIPIcs. Leibniz Int. Proc. Inform., pages 5:1–5:14. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2020.

6 Jungho Ahn, Eun Jung Kim, and Euiwoong Lee. Towards constant-factor approximation for
chordal / distance-hereditary vertex deletion. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
62:1–62:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.62.

7 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM J. Discret. Math., 12(3):289–297, 1999. doi:
10.1137/S0895480196305124.

8 Nikhil Bansal, Daniel Reichman, and Seeun William Umboh. LP-based robust algorithms for
noisy minor-free and bounded treewidth graphs. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1964–1979. SIAM, Philadelphia, PA,
2017. doi:10.1137/1.9781611974782.128.

9 Reuven Bar-Yehuda, Keren Bendel, Ari Freund, and Dror Rawitz. Local ratio: A unified
framework for approximation algorithms. in memoriam: Shimon even 1935-2004. ACM
Computing Surveys (CSUR), 36(4):422–463, 2004.

10 Reuven Bar-Yehuda and Simon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. In G. Ausiello and M. Lucertini, editors, Analysis and Design of
Algorithms for Combinatorial Problems, volume 109 of North-Holland Mathematics Studies,
pages 27–45. North-Holland, 1985. doi:10.1016/S0304-0208(08)73101-3.

11 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951–970. SIAM, 2020.
doi:10.1137/1.9781611975994.57.

12 Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial Intelligence,
83(1):167–188, 1996. doi:10.1016/0004-3702(95)00004-6.

13 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

14 Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1096–1115. ACM, New York,
2016. doi:10.1137/1.9781611974331.ch77.

15 Robert D. Carr, Lisa Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening
integrality gaps for capacitated network design and covering problems. In David B. Shmoys,
editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA, pages 106–115. ACM/SIAM, 2000. URL:
http://dl.acm.org/citation.cfm?id=338219.338241.

16 Fabián A. Chudak, Michel X. Goemans, Dorit S. Hochbaum, and David P. Williamson.
A primal-dual interpretation of two 2-approximation algorithms for the feedback vertex
set problem in undirected graphs. Oper. Res. Lett., 22(4-5):111–118, 1998. doi:10.1016/
S0167-6377(98)00021-2.

https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.4230/LIPIcs.ISAAC.2020.62
https://doi.org/10.4230/LIPIcs.ISAAC.2020.62
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1137/1.9781611974782.128
https://doi.org/10.1016/S0304-0208(08)73101-3
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/0004-3702(95)00004-6
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1137/1.9781611974331.ch77
http://dl.acm.org/citation.cfm?id=338219.338241
https://doi.org/10.1016/S0167-6377(98)00021-2
https://doi.org/10.1016/S0167-6377(98)00021-2

E. J. Kim, E. Lee, and D. M. Thilikos 7:13

17 Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, and Yusuke Kobayashi. Parameterized
algorithms for maximum cut with connectivity constraints. In Bart M. P. Jansen and Jan Arne
Telle, editors, 14th International Symposium on Parameterized and Exact Computation, IPEC
2019, September 11-13, 2019, Munich, Germany, volume 148 of LIPIcs, pages 13:1–13:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.13.

18 Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds and growing cacti. In In-
teger Programming and Combinatorial Optimization – IPCO 2010, volume 6080 of Lecture Notes
in Comput. Sci., pages 191–204. Springer, Berlin, 2010. doi:10.1007/978-3-642-13036-6_15.

19 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Hitting forbidden minors: Approximation and kernelization. SIAM J. Discret. Math., 30(1):383–
410, 2016. doi:10.1137/140997889.

20 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
approximation, kernelization and optimal FPT algorithms. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science – FOCS 2012, pages 470–479. IEEE Computer
Soc., Los Alamitos, CA, 2012.

21 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 1317–1326. ACM, 2020. doi:10.1145/3357713.3384318.

22 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Approximation
schemes via width/weight trade-offs on minor-free graphs. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2299–2318. SIAM, 2020. doi:10.1137/1.9781611975994.141.

23 Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and MichałWł odarczyk. Losing
treewidth by separating subsets. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1731–1749. SIAM, Philadelphia, PA, 2019. doi:10.1137/1.
9781611975482.104.

24 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Characterizing
multiterminal flow networks and computing flows in networks of small treewidth. J. Comput.
Syst. Sci., 57(3):366–375, 1998. doi:10.1006/jcss.1998.1592.

25 David J. Haglin and Shankar M. Venkatesan. Approximation and intractability results for
the maximum cut problem and its variants. IEEE Trans. Computers, 40(1):110–113, 1991.
doi:10.1109/12.67327.

26 Ken ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/j.jctb.2011.07.004.

27 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

28 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discrete Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

29 Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan Thomassé. Hitting
and harvesting pumpkins. SIAM J. Discret. Math., 28(3):1363–1390, 2014. doi:10.1137/
120883736.

30 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for
minimum planarization (almost). In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 779–788. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.77.

31 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Trans. Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/2797140.

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.IPEC.2019.13
https://doi.org/10.1007/978-3-642-13036-6_15
https://doi.org/10.1137/140997889
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1137/1.9781611975994.141
https://doi.org/10.1137/1.9781611975482.104
https://doi.org/10.1137/1.9781611975482.104
https://doi.org/10.1006/jcss.1998.1592
https://doi.org/10.1109/12.67327
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/17M112035X
https://doi.org/10.1137/120883736
https://doi.org/10.1137/120883736
https://doi.org/10.1109/FOCS.2017.77
https://doi.org/10.1145/2797140

7:14 Approximation for Weighted Bond Cover

32 Eun Jung Kim, Euiwoong Lee, and Dimitrios M. Thilikos. A constant-factor approximation
for weighted bond cover, 2021. arXiv:2105.00857.

33 Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):Art. 20, 15, 2014. doi:
10.1145/2635810.

34 Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations
of terminal cuts. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1789–1799. SIAM, 2013. doi:10.1137/1.9781611973105.128.

35 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. System Sci., 20(2):219–230, 1980. ACM-SIGACT Symposium on
the Theory of Computing (San Diego, Calif., 1978).

36 Stratis Limnios, Christophe Paul, Joanny Perret, and Dimitrios M. Thilikos. Edge degeneracy:
Algorithmic and structural results. Theor. Comput. Sci., 839:164–175, 2020. doi:10.1016/j.
tcs.2020.06.006.

37 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, Geevarghese Philip, and Saket Saurabh.
A (2 + ϵ)-factor approximation algorithm for split vertex deletion. In Artur Czumaj, Anuj
Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 80:1–80:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.80.

38 Anand Louis, Prasad Raghavendra, and Santosh Vempala. The complexity of approximating
vertex expansion. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 360–369. IEEE, 2013.

39 Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph problems.
In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, Automata, Languages
and Programming, 20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993,
Proceedings, volume 700 of Lecture Notes in Computer Science, pages 40–51. Springer, 1993.
doi:10.1007/3-540-56939-1_60.

40 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independence
system polyhedra. Math. Program., 6(1):48–61, 1974. doi:10.1007/BF01580222.

41 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

42 Neil Robertson and Paul D. Seymour. Graph minors. V. excluding a planar graph. J. Comb.
Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

43 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

44 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. An fpt-algorithm for recognizing
k-apices of minor-closed graph classes. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 95:1–95:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.95.

45 Wouter Cames van Batenburg, Tony Huynh, Gwenaël Joret, and Jean-Florent Raymond.
A tight erdős-pósa function for planar minors. In Timothy M. Chan, editor, Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1485–1500. SIAM, 2019. doi:10.1137/1.
9781611975482.90.

http://arxiv.org/abs/2105.00857
https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1137/1.9781611973105.128
https://doi.org/10.1016/j.tcs.2020.06.006
https://doi.org/10.1016/j.tcs.2020.06.006
https://doi.org/10.4230/LIPIcs.ICALP.2020.80
https://doi.org/10.1007/3-540-56939-1_60
https://doi.org/10.1007/BF01580222
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.4230/LIPIcs.ICALP.2020.95
https://doi.org/10.4230/LIPIcs.ICALP.2020.95
https://doi.org/10.1137/1.9781611975482.90
https://doi.org/10.1137/1.9781611975482.90

Truly Asymptotic Lower Bounds for Online Vector
Bin Packing
János Balogh #

Institute of Informatics, University of Szeged, Hungary

Ilan Reuven Cohen #

Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel

Leah Epstein #

Department of Mathematics, University of Haifa, Israel

Asaf Levin #

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel

Abstract
In this work, we consider online d-dimensional vector bin packing. It is known that no algorithm can
have a competitive ratio of o(d/ log2 d) in the absolute sense, although upper bounds for this problem
have always been presented in the asymptotic sense. Since variants of bin packing are traditionally
studied with respect to the asymptotic measure, and since the two measures are different, we focus
on the asymptotic measure and prove new lower bounds of the asymptotic competitive ratio. The
existing lower bounds prior to this work were known to be smaller than 3, even for very large d.
Here, we significantly improved on the best known lower bounds of the asymptotic competitive
ratio (and as a byproduct, on the absolute competitive ratio) for online vector packing of vectors
with d ≥ 3 dimensions, for every dimension d. To obtain these results, we use several different
constructions, one of which is an adaptive construction with a lower bound of Ω(

√
d). Our main

result is that the lower bound of Ω(d/ log2 d) on the competitive ratio holds also in the asymptotic
sense. This result holds also against randomized algorithms, and requires a careful adaptation of
constructions for online coloring, rather than simple black-box reductions.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Math-
ematics of computing

Keywords and phrases Bin packing, online algorithms, approximation algorithms, vector packing

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.8

Category APPROX

Related Version Previous Version: https://arxiv.org/abs/2008.00811
Previous Version: https://arxiv.org/abs/2007.15709

Funding The research of J. Balogh was supported by the project “Extending the activities of the
HU-MATHS-IN Hungarian Industrial and Innovation Mathematical Service Network” EFOP-3.6.2-
16-2017-00015, and the project “Integrated program for training new generation of scientists in the
fields of computer science,” EFOP-3.6.3-VEKOP-16-2017-00002, supported by the European Union
and co-funded by the European Social Fund. The research of A. Levin was partially supported by
ISF - Israeli Science Foundation grant number 308/18.

Acknowledgements The results of this paper are based on the arxiv versions [9, 11]. Part of the
work in [11] has been done while Ilan Reuven Cohen was a postdoctoral fellow at CWI Amsterdam
and TU Eindhoven, he would like to thank Nikhil Bansal for discussions and suggestions related to
fractional coloring and ideas from [27].

© János Balogh, Ilan Reuven Cohen, Leah Epstein, and Asaf Levin;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baloghj@inf.u-szeged.hu
mailto:ilan-reuven.cohen@biu.ac.il
mailto:lea@math.haifa.ac.il
mailto:levinas@ie.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.8
https://arxiv.org/abs/2008.00811
https://arxiv.org/abs/2007.15709
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Lower Bounds for Online Vector Bin Packing

1 Introduction

We study the classical vector packing problem (VP) [21, 20, 2, 1, 3]. In VP with dimension
d ≥ 2, a set of items is given, where every item is a non-zero d-dimensional vector, whose
components are rational numbers in [0, 1]. This set is to be partitioned into subsets called
bins, such that the vector sum of every subset does not exceed 1 in any component. Here,
we consider lower bounds on the worst-case performance guarantees of online algorithms for
VP. Online algorithms obtain input items one by one, and pack each new item irrevocably
before the next item is presented, into an empty (new), or non-empty bin. Such algorithms
receive an input as a sequence, while offline algorithms receive an input as a set. An arbitrary
optimal offline algorithm, which uses the minimum number of bins for packing the items
of the input or instance, is denoted by OPT . For an input L and algorithm A, we let A(L)
denote the number of bins that A uses to pack L, also termed the cost of algorithm A on input
L. For a randomized algorithm we denote the expected value of the cost of the algorithm A

on input L as E[A(L)]. We also let OPT (L) denote the number of bins that OPT uses for a
given input L. The absolute competitive ratio of an algorithm A is defined as the supremum
ratio over the following ratios. These are the ratios for all inputs L, where the ratio for L

is the ratio between the number of its bins A(L) and OPT (L), the number of the bins of
OPT . The asymptotic competitive ratio is the limit of absolute competitive ratios RK when
K tends to infinity, and RK takes into account only inputs for which OPT uses at least K

bins. That is, the asymptotic competitive ratio of A is:

lim
K→∞

sup
OP T (L)≥K

A(L)
OPT (L) .

For randomized online algorithms the definition for the asymptotic competitive ratio and for
the absolute competitive ratio is the same, except that we consider E[A(L)] instead of A(L).
In this paper, we focus mostly on the asymptotic competitive ratio, which is the most natural
measure for bin packing algorithms, and we sometimes refer to it by the term competitive
ratio. When we discuss the absolute competitive ratio, we use this last term explicitly.

Note that VP is defined as a distinct optimization problem for every fixed value of d.
For each such value (which is a dimension), there might be an online algorithm that is the
best possible with respect to the absolute competitive ratio (the algorithm whose absolute
competitive ratio is minimized), and there might be an online algorithm that is the best
possible with respect to the asymptotic competitive ratio. These algorithms may be different.
Denote by Abs(d) the best possible absolute competitive ratio of a deterministic online
algorithm for VP with dimension d, and let Asym(d) denote the best possible asymptotic
competitive ratio of a deterministic online algorithm for VP with dimension d. If there
are values of d for which such best possible online algorithms do not exist, we define the
corresponding values of Abs(d) and Asym(d) as the infimums of the corresponding ratios,
where the infimum is taken over all online algorithms for VP with d dimensions. Thus, these
values are well-defined for all d even though we currently do not know their values. It is
known that these values are mostly linear in d (see below).

Observe that both Abs(d) and Asym(d) are monotone non-decreasing functions of d, as
we can use the online algorithm with larger dimension in order to pack the lower dimension
vectors by simulating a higher dimension input using additional components, which are
always set to 0. Furthermore, by the definitions of the asymptotic competitive ratio and the
absolute competitive ratio, we conclude that for every d, we have Asym(d) ≤ Abs(d).

In this work, we improve on the known lower bounds of the asymptotic competitive ratio
for all fixed values of d that are at least 3 for online VP. We focus mostly on deterministic

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:3

online algorithms, while our main result uses an oblivious adversary and holds also against
randomized online algorithm. This also improves the known results for the absolute ratios,
that is, we improve upon the state of the art of lower bounding Asym(d) for all d ≥ 3. Our
main result is that the order of growth of the asymptotic competitive ratio is Ω(d

(log d)2).
Recall that the term asymptotic here, does not refer to the asymptotic growth of d, but to
the asymptotic definition of the competitive ratio, which is the most common measure for
bin packing problems. To do that, we present four constructions leading to different lower
bounds on Asym(d). For every specific value of d, one may use the construction that leads
to the largest possible lower bound. In Section 2, we present our results for very large values
of d. That is, we show that for d > 16, there is a lower bound of d−1

8(log2 d)3 on Asym(d), and
for sufficiently large and fixed values of d, the lower bound determined for the asymptotic
competitive ratio for online VP is d

211·(log2 d)2 . The lower bounds presented in Section 2 are
based on an oblivious adversary. An elaborate explanation for using values of d that are
sufficiently large is also provided in Section 2.

Next, we present the improved lower bounds for relatively small values of d against
deterministic online algorithms. In Section 3, we show a lower bound of at least ⌊

√
d−1⌋+2

2
that applies for all fixed values of d ≥ 2. For example, in the case d = 14 we obtain a lower
bound of 2.5 on the asymptotic competitive ratio. Then, in Section 4 we show a lower bound
of 9

4 = 2.25 on Asym(3). Finally, in Section 5, we introduce a lower bound of 76
29 ≈ 2.62 on

Asym(8). The last three constructions, presented in Sections 3, 4, and 5, are based on a
technique called adaptive constructions for packing problems, explained in detail below. We
note that our lower bound of ⌊

√
d−1⌋+2

2 is the largest lower bound that we establish for a
large variety of values of d. This holds even for extremely large values of d like d = 230, for
which the value of this lower bound is at least 214 > 16000. Comparing this result to the
values of lower bounds presented in Section 2, we find that they are much smaller, and in
fact the values resulting from the constructions of that section are not larger than 4972 and
583. Thus, for any reasonable value of d, the lower bounds obtained based on the adaptive
construction method are much better than the ones in Section 2.

The lower bounds on Abs(d) established in Azar et al. [2] were not computed explicitly,
in the sense that they are only stated as Ω(d1−ε) for every ε > 0. These lower bounds hold
only in the absolute sense, and their order of growth is Ω

(
d

(log2 d)2

)
. In order to compare

their bounds to our lower bounds on Asym(d), we examined their proofs. Their lower bounds
are basically the deterministic lower bounds on node coloring of graphs where the nodes
arrive in an online fashion, thus they are using black-box reductions from the (deterministic)
lower bounds of Halldórsson and Szegedy [22]. These black-box reductions are the main
reason that lower bounds cannot be obtained on the asymptotic competitive ratio, but only
on the absolute competitive ratio, which may be larger (and it is not the standard tool to
analyze bin packing problems). Note that we improve the known absolute lower bound for
a large number of values of d. For example, the deterministic lower bound resulting from
the construction of [22] for d = 60 is 3.75, while our results imply a lower bound above 4.8
(which holds even in the asymptotic case, and for a slightly lower dimension of 57).

In the work of [22], the part of randomized lower bounds consists of two constructions.
In the first one, the value of d is relatively large, thus we can use Stirling’s formula to
approximate ⌈log2 d⌉! with a constant multiplicative error, while the second one holds for
all dimensions d. In Section 2, we use the ideas of Halldórsson and Szegedy [22] to obtain
similar lower bounds on the asymptotic competitive ratio of VP. Unlike the work of [2], we
do not apply black-box reduction from node coloring. The main motivation for that is that
we need a lower bound with respect to a different coloring problem in which we are interested

APPROX/RANDOM 2021

8:4 Lower Bounds for Online Vector Bin Packing

in fractional coloring. Since this variant was not studied before, we cannot use an existing
result for it, nor can we use a black-box reduction from it. Instead, we present the lower
bound construction for VP. The transition to this fractional coloring is the main tool that
we use in order to lift the construction of [2], so that it will allow us to prove a lower bound
on the asymptotic competitive ratio for VP. We refer to [11] for a different approach that is
based on a black-box reduction from fractional coloring to randomized coloring together with
a black-box reduction from the randomized lower bound of [22]. This alternative approach
of [11] leads to inferior lower bounds, therefore, we base our result on the approach of [9]
instead.

Next, we survey the literature for the bounds of Asym(d). The special case of d = 1 of
VP is simply the bin packing problem (BP), which has been studied for half a century [23, 24].
The current best bounds on Asym(1) (for the online version) are a lower bound of 1.54278
[7] and an upper bound of 1.57829 [5], while Abs(1) = 5

3 [8]. In [4, 6], the authors considered
a generalization of BP, known as the Cardinality Constrained Bin Packing (CCBP). CCBP
is defined as follows; each item has a scalar size in [0, 1] (one-dimensional), and in addition ,
the constraint that the sum of items sizes in each bin does not exceed 1, there is an integer
parameter k ≥ 2, such that no bin can have more than k items. Note that CCBP is a special
case of VP with d ≥ 2, by defining a vector for each item, where its first component is the
item’s size and its second component is 1

k (the other components are zeros). In [6], the
authors consider the case of VP with d = 2, and present its difference from CCBP. They
demonstrated that Asym(2) ≥ 2.03731129 with respect to VP in two dimensions, and thus
for all d ≥ 2 it was established that Asym(d) ≥ 2.03731129, whereas for CCBP there is a
2-competitive algorithm. In [3] it is shown that when d grows to infinity there is a lower
bound that tends to e, thus limd→∞ Asym(d) ≥ e. It is interesting to note that the lower
bound in [3] applies even if all components of all vectors are small. That is, for every small
ε > 0, where all components are smaller than ε, the lower bound of [3] holds, and it holds
even when ε tends to 0. This matches the upper bound for the very specific case of VP (of
small components) established by [1]. Prior to the publications of [3, 6], the lower bounds on
Asym(d) were weaker [20, 14, 13].

As for upper bounds on Asym(d), the best known result [21] is (still) that the First-Fit
algorithm has an asymptotic competitive ratio of d + 0.7 for VP in d dimensions. Prior to
that work, there was a slightly weaker bound of d+1 established by Kou and Markowsky [26].
For the absolute competitive ratio, the resulting bound is also d + O(1) [21, 26] (an upper
bound of O(d) follows from the simple property that for greedy algorithms, no two bins of
the output have a sum of at most 1 in all components). With respect to the literature on VP
regarding oblivious adversary, all known upper bounds are using deterministic algorithms,
while the lower bound of [3] is the unique lower bound larger than 2 that holds also using
oblivious adversary (by applying standard adaptation). The lower bound of [6] is stated only
for deterministic algorithms, and the means for adjusting it for use of an oblivious adversary
are unknown.

We stress that prior to our work it was unknown whether there is an online algorithm A

for VP for any dimension d (or for sufficiently large dimensions) such that for every input L,
its cost A(L) satisfies A(L) ≤ 3 · OPT (L) + d (where d is the dimension of the input). This
is due to the fact that the known lower bound of e holds for any additive term, while the
non-constant known lower bound uses only d items for dimension d.

Vast literature is available on the offline versions of all the problems mentioned above
[16, 10, 12, 15, 18, 19, 25, 28]. In particular, similar lower bounds to those of [1] on the
absolute approximation ratio for VP (under a certain standard complexity assumption, that

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:5

NP ̸=ZPP) were observed for the offline scenario [16, 12], also by reductions from coloring
problems. The lower bounds are for the absolute measures, since for every dimension d,
the number of items is simply d. The other bin packing problems discussed here (BP and
CCBP) admit polynomial time asymptotic approximation schemes [15, 18, 19, 25], but one
can show that unless P=NP, such schemes cannot exist for the absolute cases, and the
absolute approximation ratio is at least 1.5. This can serve as evidence that lower bounds
for the absolute approximation ratio or the absolute competitive ratio are not sufficient for
the analysis of the asymptotic approximation ratio or the asymptotic competitive ratio. In
fact, it is true also for online bin packing problems that the absolute measure is different
from the asymptotic one. For example, for BP, the best possible absolute competitive ratio
is 5

3 [8], while the asymptotic competitive ratio is significantly smaller [5]. For CCBP, one
example is the parameter k = 4, for which the best possible absolute competitive ratio is 2
[4, 6], while an improved asymptotic competitive ratio below 2 is known [17].

Omitted proofs will appear in the full version of this work.

2 The lower bound for large values of d

In this section we consider the cases of very large dimensions. We will prove a lower bound
of Ω(d

log2 d
) for sufficiently large dimensions d. Our lower bounds are not smaller than the

weaker results of Azar et al. [2], which were established only for the absolute competitive
ratio measure (as a function of the dimension, for large enough values of d). Here, we consider
the stronger measure of the asymptotic competitive ratio, and even prove these lower bounds
for randomized algorithms.

The input’s sequence presented by the adversary is constructed in d phases, where each
phase consists of N identical items. The construction uses integer parameter ν (which will
be chosen later as a function of the number of dimensions), and maintains ν classes and S, a
subset of the ν class sets, S ⊆ X = 2[ν] \ ∅ where [ν] = {1, 2, . . . , ν}, let 0 < ε ≤ 1

Nd . The
adversary examines the online algorithm’s expected values, and associates a class and a set
for each phase, which will determine the items’ phase components. We denote cj ∈ [ν], and
Sj ∈ S as the class and the set of the phase j, respectively.

Formally, at the beginning of phase j ∈ [d], the adversary examines the algorithm’s
expected assignment and chooses a set Sj ∈ S. The adversary presents N identical items,
where each item component is defined as follows: the items have 1 as their jth component,
all components of indexes larger than j are 0, while a component of index i < j is ε if ci /∈ Sj

and 0 otherwise. Note that the previous phases classes c1, . . . cj−1 have been already set.
Finally, after examining the expected assignment of these vectors the adversary associates a
class cj ∈ Sj for the phase.

First, observe that the non zero components’ values are either 1 or ϵ ≤ 1
Nd . Since the

number of items is Nd, a subset of the items cannot be assigned to the same bin, only if exists
a component for which there is an item with a value of 1 and another item with a non-zero
value. In addition, a construction of this form satisfies that any solution has a cost of at
least N (and of at most Nd), regardless of its specific details. Therefore, by letting N grow
to infinity by proving a lower bound for these instances a lower bound on the asymptotic
competitive ratio follows. Next, consider a bin B with a fixed realization of the random bits
of the online algorithm (at some point during the lower bound construction). We associate
the subset S(B) ⊆ [ν] of classes with every such bin, where S(B) contains the classes of
items that are packed into B, that is, ℓ ∈ S(B) if there exists at least one phase j such that
ℓ = cj and an item of phase j is packed into B. The set S(B), named the associated set of

APPROX/RANDOM 2021

8:6 Lower Bounds for Online Vector Bin Packing

B may be extended later. Intuitively, the adversary chooses a set Sj and a class cj in each
phase, in order to increase the (expected) cardinality of the associated set (|S(B)|) of the
online algorithm bins. Then, by using a corresponding potential function, we will obtain
the lower bound of the expected number of bins of the online algorithm. Full details of the
adversary’s choices are presented later. First, we introduce several properties, which hold for
any choice of adversary. The following claim characterizes the possible associated set that an
algorithm may pack the items of phase j.

▷ Claim 1. Any algorithm may pack an item of phase j in bin B, if and only if it does not
contain another item of phase j, and before the item is added it holds that S(B) ⊆ Sj .

Proof. Two items of the phase j cannot fit into a common bin, since there is 1 in the j’th
component of the items. The number of items is N · d, hence a collection of items fit into a
bin, if and only if, no item in the collection has an ε component when another item of the
collection has a value of 1 at the same component.

Given a bin B, for any ℓ ∈ S(B) there exists at least one value j′, such that an item of
phase j′ is assigned to B, and the class of phase j′ is ℓ. By the construction definition, the
j′ component of this item (and the bin B) is 1, and if ℓ /∈ Sj the j′th component of items of
phase j is ε. Hence, if item of phase j can be assigned to bin B then ℓ ∈ Sj . On the other
hand, if S(B) ⊆ Sj then for any component i < j of B which is 1, we have ci ∈ S(B) ⊆ Sj ,
and by definition the j’th phase vector value at component i is 0. ◁

We observe that there exists a solution which uses at most ν · N bins.

▷ Claim 2. For any choice of cj , Sj there exists an offline solution which uses at most ν · N

bins.

Proof. A solution that opens N bins for each class and assigns the phase’s vector according
to the class is a feasible assignment by Claim 1, since for a bin we use to pack in phase j we
have S(B) ⊆ {cj} and cj ∈ Sj by the algorithm’s definition. ◁

Next, we will present an important characterization of the set S necessary for the analysis.
The set S in the construction will depend on a parameters pair (α, β), and will require that
(α, β) would be satisfiable.

▶ Definition 3. Given ν, (α, β) is satisfiable if there exists a set of subsets S ⊆ X such
that |S| ≥ α, and for every pair S, S′ ∈ S such that S ̸= S′ we have that their symmetric
difference S△S′ satisfies |S△S′| ≥ β.

The next claim characterizes two satisfiable pairs, which will be used in our lower bound
construction.

▷ Claim 4. For any ν, (α, β) = (2ν − 1, 1) is satisfiable, and if ν is sufficiently large then
(α, β) = (2ν/4, 0.3ν) is satisfiable.

Proof. For the first part, consider S to be the set X, which has 2ν − 1 elements, as required.
Each pair of distinct elements represents non-equal subsets of [ν], so that they differ by at
least one element. We fix the value of β to 1, in this case.

The second part was proven by [22], which demonstrated that if we pick a random
sub-collection of subsets of [ν] with 2⌈ν/4⌉ subsets, each consisting of exactly ⌈ν/2⌉ elements
of [ν] (chosen independently and uniformly at random), then with some positive probability
(for large enough value of ν) each pair of these selected subsets satisfies the condition on
their symmetric difference. Using the probabilistic method, they were able to prove our claim
(deterministically) for large enough values of ν (that they have not specified). ◁

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:7

For a specific satisfiable pair (α, β) and their corresponding set S, and for any associated
set S(B) ⊆ [ν], we denote a subset in S ∈ S that represents B, (where S is represented by
B) if |S△S(B)| ≤ β

5 . We will prove that any set is represented by at most a single set in S.

▷ Claim 5. If for every pair S, S′ ∈ S such that S ̸= S′ we have |S△S′| ≥ β and β ≥ 1,
then any bin B is represented by at most one set S ∈ S.

Proof. Assume for contradiction that a bin B is represented by two sets S1, S2 ∈ S. Recall
that |S1△S2| ≥ β (by assumption), but |S(B)△Si| ≤ β

5 for i = 1, 2 (by the definition of
representation). First, consider the elements of S1 \ S2. Some of these elements belong to
S(B), while other do not. Observe that (S1 \S2)∩S(B) ⊆ S(B)△S2 so |(S1 \S2)∩S(B)| ≤ β

5 .
Since (S1 \ S2) \ S(B) ⊆ S(B)△S1, we conclude that |(S1 \ S2) \ S(B)| ≤ β

5 . Therefore,
|S1 \S2| ≤ 2β

5 . Similarly (by changing the roles of S1 and S2) we conclude that |S2 \S1| ≤ 2β
5 .

Thus, |S1△S2| ≤ 4β
5 , contradicting our assumption about S. ◁

We are ready to prove our main lemma, which achieves a lower bound on the expected
number of bins opened. We will demonstrate that the adversary may choose a set and a class
that will increase the cardinality of the associated sets of the algorithm’s bins in every step,
which we will capture by using a potential function. Our potential function is the expected
value of the sum of |S(B)| over all bins B of the algorithm. That is, Φ = E[

∑
B |S(B)|].

Observe that the expected value of the cost of the online algorithm is at most Φ and not
smaller than Φ

ν , since for any B it holds that |S(B)| ≤ ν. Let γ = ⌈ β
5 ⌉, this parameter is

chosen to ensure that each associated set of a bin is represented by at most one set S ∈ S.

▶ Lemma 6. For a satisfiable pair (α, β) there exists an adversary strategy, such that the
expected number of bins opened by the online algorithm is at least min{α · N/2, d · γ

ν2 · N
2 }.

Proof. We will show that if the expected number of bins before phase j is less than α · N/2,
then there exists Sj , cj , which will increase the potential Φ by at least γ

ν · N
2 . The lemma

holds since we can perform d phases, and since the number of bins opened is at least Φ
ν .

Prior to phase j, we let n(S) for a set S ∈ S be the expected value of the number of bins
(of the online algorithm) that it represents. After the assignment of the j’th phase items, we
denote by ñj(S) for a set S ∈ 2[ν] the expected number of bins associated with S and a j’th
phase item assigned into it. Note that the adversary may use n(S), ñj(S) when determining
Sj , cj , respectively, and that these values do not depend on the realization of the random
bits used by the algorithm.

Determining Sj. We obtained
∑

S∈S n(S) ≤ α· N
2 through the assumption that the expected

number of bins is less than α · N/2, and since every bin of the algorithm is represented by at
most one set. The adversary sets Sj ∈ S such that n(Sj) is below N

2 , and the existence of
Sj can be guaranteed by the pigeonhole principle.

Determining cj. The algorithm assigns each item of phase j to a distinct bin; by linearity
of expectation we have,

N =
∑

S

ñj(S) =
∑

|S△Sj |<γ

ñj(S) +
∑

|S△Sj |≥γ

ñj(S) ≤ N

2 +
∑

|S△Sj |≥γ

ñj(S),

where the first inequality is obtained by our choice of Sj . Therefore, we have

N/2 ≤
∑

|S△Sj |≥γ

ñj(S) ≤
∑
ℓ∈Sj

∑
S:ℓ/∈S ñj(S)

γ
,

APPROX/RANDOM 2021

8:8 Lower Bounds for Online Vector Bin Packing

where the second inequality follows, since ñj(S) > 0 only if S ⊆ Sj by Claim 1, so the same
S will appear at least γ times in the inner summation on the right hand side. The adversary
set cj ∈ Sj such that

∑
S:cj /∈S ñj(S) is above γ

ν · N
2 , the existence of cj can be guaranteed by

the pigeonhole principle since |Sj | ≤ ν. Note that the increase in the potential function is
exactly

∑
S:cj /∈S ñj(S), as required. ◀

2.1 Assembling the pieces together

Recall that by Claim 2 the cost of the optimal solution is at most ν · N . By Lemma 6 any
online algorithm will use at least min{α · N/2, d · γ

ν2 · N
2 } number of bins. This value is

maximized if d · γ
ν2 · N

2 ≈ αN
2 . Thus, we need a method for selecting ν, if the dimension d is

given. We will use a value ν for which the corresponding pair (α, β) satisfies d ≥ ν2α
γ (where

γ is determined by β), and consequently the resulting lower bound would be α
2ν .

First, consider the case where d is relatively small and we use (α, β) = (2ν − 1, 1) and
thus γ = 1, and ν is an integer such that ν2 · (2ν − 1) ≤ d. It is sufficient to require
that ν2 · 2ν ≤ d, that is satisfied by letting ν = ⌊log2 d − 2 log2 log2 d⌋, as for this choice
ν22ν ≤ (log2 d)2 · d

(log2 d)2 = d. The resulting lower bound is not smaller than

α

2ν
≥ 2log2 d−2 log2 log2 d − 1

4 · (log2 d − 2 log2 log2 d) ≥ d − 1
8(log2 d)3 ,

where the last inequality holds for d > 16, as for these values of d we have that 8 log2 log2 d <

4 log2 d.
Next, consider the case where the dimension is higher, and we could use (α, β) =

(2ν/4, 0.3ν), and thus γ = 0.06ν. We pick ν as the largest integer such that αν2

γ ≤ d that
is, αν = ν2ν/4 ≤ 0.06 · d. Letting ν′ = ν

4 we will require ν′ · 2ν′ ≤ 0.015d. This condition is
satisfied, e.g. for ν′ = ⌊log2 d − log2 log2 d − 7⌋, as for this choice of ν′ we have

ν′ · 2ν′
≤ (log2 d) · 2log2 d−log2 log2 d−7 = (log2 d) · d

log2 d · 27 = d

27 ≤ 0.015d

and ν′ is an integer and thus also ν = 4ν′ is integer. The resulting lower bound is

α

2ν
= 2ν′

8ν′ ≥ 2log2 d−log2 log2 d−8

8 · (log2 d − log2 log2 d − 7) ≥
d

log2 d

211 · log2 d
= d

211 · (log2 d)2 ,

that holds for large enough values of d.
Thus, we conclude the construction of this section by the following theorem.

▶ Theorem 7. For every fixed dimension d > 16, there is a lower bound of

d − 1
8(log2 d)3 ,

on the asymptotic competitive ratio of online randomized algorithms for VP. For sufficiently
large and fixed values of d the lower bound on the asymptotic competitive ratio is

d

211 · (log2 d)2 .

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:9

3 A lower bound for medium sized dimensions

Let α, β ≥ 2 be the two positive integers such that d ≥ 2 + α(β − 2). Next we show a lower
bound of α·β

α+β−2 for the corresponding special case. Note that choosing the values α = β

results in a lower bound of Ω(
√

d) so for very large dimension this result is inferior to the
general lower bound we considered earlier. However, the hidden constants in the Ω notation
are smaller for the current construction leading to better lower bounds for medium sized
dimensions.

Let N > d be a large integer such that N
α is an integer. Our sequence of items may

have up to N3 items, and we let ε < 1
N3 . We will use the adaptive construction method

to generate a sequence of scalar values where ai is the value associated with the ith item,
such that all values are smaller than ε, and furthermore the following condition holds. If an
item is large, then its value is at least N3 times larger than the value of a small item. The
logical condition that we will use to define small and large items is that a d-dimensional item
is large if it is packed into an empty bin and otherwise it is small. We stress the property
that every item of the construction will have a one-dimensional associated value, and we will
explain how this value is used in the definition of the d-dimensional item.

During the adaptive construction, after packing the current item, there will be a value
µ < 1

N < 1
2 . The value of µ may decrease (but cannot increase) after assigning an item.

The value µ will satisfy the property that the value of every large item that appeared up to
(and including) the current iteration is strictly larger than µ while for any subset of items S

where S contains only small items that appear in the instance (both during the prefix and
later on) or large items that appear later on in the input sequence, the total value of S is
strictly smaller than µ. This is obtained by letting µ be the current upper bound on values
of items that can still be either small or large at termination, and reducing the length of
the interval of possible values in the adaptive construction by a multiplicative factor of N3

after each item. This is done by using the scheme of [6], and setting the predefined constant
mentioned earlier (k) to N3, this ensure that all such subsets S, whose number of elements
will be less than N3 (as this will be a valid upper bound on the number of items in the entire
construction), will satisfy the requirement. Note that, in the construction all the successive
items to a large item must be at least N3 smaller than this large item since those items could
be eventually small.

Our construction will have β phases, and it will be useful to denote by µi the current
value of µ at the end of phase i (i.e., after packing the last item of phase i and modifying
the current interval according to the rules of the adaptive construction). Furthermore, phase
i uses the value µi−1.

The first and last phase have special properties while the intermediate phases (β − 2
phases) are all similar. Each phase lasts until the first point in time in which the algorithm
has opened N new bins during this phase. Thus, we will ensure that the total cost of the
algorithm is N · β. We also maintain an integer value π denoting the current component that
is being dealt with, and it has a special role in the construction. We will show later that π

will always be an index of a component (i.e., π ≤ d), even though it is increased frequently.
The value π is an index of a component such that items have a very big (and close to 1)
component of this index. By increasing π, we change (and increase) the position of this very
big component in the construction. This value is initially set as π = 2 (while the very first
component has a special role during the first phase), and it increases gradually, each time
by 1, and it never decreases, as items are being presented. We will see that the value of π

never exceeds d, and during the presentation of items of intermediate phases it will hold that
π ≤ d − 1.

APPROX/RANDOM 2021

8:10 Lower Bounds for Online Vector Bin Packing

The first phase
We construct a sequence of items, where the first component of every vector is 1

N while every
other component equals to the value of the current item. Note that this phase ends after at
most N2 items, since any phase ends after the algorithm used N new bins, every new bin
can contain at most N items of this phase, and there are no bins of previous phases which
can be used.

The β − 2 intermediate phases
Every such phase will contain at most α · N items. We keep a counter j of the index of the
phase, where j is initialized to 2. At the end of phase j − 1 ≥ 1 we set µj−1 as we described
above and we start presenting new items of the jth phase.

Each item of these β − 2 intermediate phases will consist of the following components.
All components with indexes smaller than π are equal to 0, the current component with
index π is set to 1 − µj−1 > 1

2 , and all other components (of larger indexes) are equal to
the value of the current item (of the adaptive construction). Recall that a new phase starts
whenever the number of new bins during the current phase is N , and just before starting a
new phase we also increase π by 1 (for j = 2, π is not increased but it is initialized). However,
there are other events where we decide to increase the value of π by 1. These additional
events are stated as follows. Whenever the number of large items (according to the adaptive
construction) that were packed while the value of π is its current value, is N

α , we increase
the value of π by 1. This is done since the number of large items whose πth component
is very big is the maximum possible number. We will show that an increase in the value
of π will happen after at most N consecutive items for which we used the same value of π.
This happens either due to the latter rule or due to the end of the phase (since π is always
increased due to that event). Before presenting the vectors of the last phase, we prove the
main correctness claims regarding the intermediate phases that allow our construction to
have the required structure and allow us to prove the claimed lower bound on the asymptotic
competitive ratio.

▶ Lemma 8. The items of phase j (where 2 ≤ j ≤ β − 1) cannot be packed into bins that
were opened in an earlier phase, that is, bins used first for an item of an earlier phase.
Additionally, the value of π remains constant without being increased for at most N items.

▶ Lemma 9. During an intermediate phase, the value of π is increased at most α times by 1
(including the increase due to the end of the phase).

We consider the value of π at the beginning of the last phase. By the last lemma, we
conclude that just before the moment when phase β − 1 ends (the last intermediate phase),
we have π ≤ 2 + (β − 2) · α + (β − 1) ≤ d − 1 and π is increased to a value of at most d once
that phase ends. This final value (of at most d) for π was not used as the value of π in the
definition of items of any phase (after the very last time that π was increased, no items are
defined so it was not used to define an item).

The last phase
In the last phase we present exactly N identical items that are defined as follows. In
component d they are equal to 1 − µβ−1 and all other components are 0. Observe that every
bin that the algorithm has opened in one of the earlier phases has one large item whose dth
component is larger than µβ−1, and thus the algorithm needs to open N new bins for these
N items of the last phase.

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:11

Proving the resulting lower bound
Since there are β phases and the algorithm is forced to open N new bins in every phase,
we conclude that the cost of the algorithm is exactly N · β. Since N could be an arbitrary
large integer, in order to prove the lower bound on the asymptotic competitive ratio of the
algorithm, it suffices to show that the optimal offline cost is at most N · (1 + β−2

α) + 1. In
order to present this proof, we will consider all items of the last phase as small items. We
present an offline solution of cost at most N · (1 + β−2

α) + 1. This offline solution will pack
all large items into N · (β−2

α) + 1 bins, and all small items into a disjoint set of N bins, and
in total we will use at most N · (1 + β−2

α) + 1 bins. First, we consider the large items.

▶ Lemma 10. There is an offline solution that packs all large items into at most N ·(β−2
α)+1

bins.

Next, we consider packing of the small items into N bins.

▶ Lemma 11. There is an offline solution that packs all small items into N bins.

Thus, we conclude the following result.

▶ Theorem 12. If d ≥ α(β − 2) + 2, then there is no online algorithm for VP whose
asymptotic competitive ratio is smaller than β

1+ β−2
α

= α·β
α+β−2 .

For large values of d, we can use α = β = ⌊
√

d − 1⌋+1 ≥ ⌈
√

d − 1⌉ for which α(β−2)+2 ≤
(
√

d − 1 + 1) · (
√

d − 1 − 1) + 2 = d − 1 − 1 + 2 = d and this lower bound on the asymptotic
competitive ratio is α·β

α+β−2 = α2

2α−2 = α+1
2 + 1

2(α−1) > ⌊
√

d−1⌋
2 + 1 ≥

√
d−1+1

2 >
√

d
2 . However,

for small dimensions we could do better. For example for d = 98, we could pick α = 12, β = 10
and the lower bound on the asymptotic competitive ratio is 120

20 = 6 whereas using α = β = 10
the lower bound is 100

18 ≈ 5.555.
For small dimensions, namely d = 6, 7, 9, 10 and 11, the next estimation can be used.

Letting β = 3 and α = d − 2, the lower bound is greater or equal to 3α
α+1 = 3

1+ 1
α

= 3
1+ 1

d−2
.

It gives a lower bound of 2.4, 2.5, 2.625, 2.666, and 2.7 for the cases of d = 6, 7, 9, 10, 11,
respectively. We mention several other small values of d. For d = 12, we can use α = 5 and
β = 4 to obtain a lower bound of 20

7 ≈ 2.857. For d = 14, we can use α = 6 and β = 4 to
obtain a lower bound of 3. For d = 16, we can use α = 7 and β = 4 to obtain a lower bound
of 28

9 ≈ 3.111. Improved bounds for the cases d = 3, 4, 5, 8 are presented in the next sections.

4 The case d = 3

Recall that the known lower bound on the asymptotic competitive ratio for d = 2 is just
slightly above 2, and this was the best known constant lower bound for any small value of d

till now. We prove here a lower bound of 2.25 for the case d = 3, and explain how it can be
slightly improved.

We will use an adaptive construction as explained earlier. The construction is based on
that of [6].

Let K > 1000 be a large integer, and let ε > 0 be a small constant (in particular,
ε < 1

K < 0.001). The input consists of three parts and we describe the parts one by one.

The first part of the input
Using an adaptive construction of values, we define a sequence of values in (0, ε) such that
any large value is strictly larger by a multiplicative factor larger than 10K from any small
value. The binary condition is that the item is packed into an empty bin by the online
algorithm.

APPROX/RANDOM 2021

8:12 Lower Bounds for Online Vector Bin Packing

Thus, an item packed into an empty bin is large, and otherwise the item is small. The
number of items will be 2 · K · N for a large integer N > 0. Letting a1, a2, . . . , a2KN be the
sequence of values, the vector for item i is defined as follows. The first component is 1

K , and
each one of the two other components is equal to ai. Let γ be a threshold such that if the
ith constructed value is small, it holds that 0 < ai < γ

10K and otherwise γ < ai < ε. The
input up to this point is denoted by I0.

▶ Lemma 13. The optimal cost for packing I0 is 2N .

Let X denote the number of bins used by the algorithm for the first part of the input
and by definition this is also the number of large items. Let µ = γ

10 . Thus, every K small
values have total value below µ.

The second part of the input
For the value of µ that is based on the action of the algorithm, we define the next part of the
input. There are N items of each one of the two types: (0, 1 − 4 · µ, µ) and (0, µ, 1 − 4 · µ).
So, in total there are 2N items of these types. The input at this time is called I1, i.e. I1 is
the input consisting of the first two parts of the input together.

Two offline packings of I1

We define two offline packings, for which the first part of the input is packed in a fixed
manner. For each possibility of the third part of the input, we will use one of those offline
packings that we present here. Consider the first part of the input (the items of I0), and
separate small items from large items. Large items are packed such that every bin has K

of them (where one such bin may have a smaller number of these items). The large items
require ⌈ X

K ⌉ bins. These are feasible bins because none of the components of the sum of any
bin is above 1, since no component of any item of the first part is above 1

K . Small items are
also packed K in each bin, and there are at most 2N such bins since the total number of
items for the first part is 2KN . The total number of small items is 2KN − X. The first
component of the bin has load 1, but the other components have loads below µ. Every such
bin can also receive one item of each type of the second part. In one packing, we partition
the items of the second part into pairs where every pair consists of items of different types.
In this offline packing each pair is packed together, these pairs are first packed into bins
with K small items of the first part, and if there are any unpacked items of the second part,
they are packed into new bins (also in pairs). In the second packing, every bin gets just one
such item of the second part. For both offline packings, the numbers of bins do not exceed
X
K + 1 + 2N .

The third part of the input
The third part of the input may contain two alternative sets of items. In the first case,
leading to the input I21, there are N items of the type (0, 1 − µ, 1 − µ). Every such item is
packed into a different bin by any algorithm. In the offline packing, these items are packed
first into bins with (at most) K small items of the first part (but without large items of the
first part and without any items of the second part) and then into new bins. The online
algorithm cannot combine such items with any item into the same bin, as we will see.

In the second case, leading to the input I22, there are N items of each of the types:
(0, 3µ, 1 − 2µ), (0, 1 − 2µ, 3µ). No pair of such items can be packed into one bin, but it can

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:13

join a bin with (at most) K small items of the first part and one item of the second part (of
the suitable type) but without large items of the first part. It also cannot be packed with an
item of the other type of the second part.

This concludes the description of the input construction. Next, we turn our attention to
proving the resulting lower bound on the asymptotic competitive ratio for the case d = 3.

Proving the resulting lower bound
Here, we prove the following result.

▶ Theorem 14. There is no online algorithm for the case d = 3 whose asymptotic competitive
ratio is smaller than 9

4 .

A very slight improvement over the lower bound which we proved above in Theorem 14
can be obtained as follows, similarly to the known construction for d = 2 [6]. An alternative
second part of the input will contain items whose first component is not zero but some
multiple of 1

K . The second component will be slightly larger than 1
3 , where there will be

large items and small items (small items are those that are packed by the algorithm into a
bin that cannot receive another item), and all these items have second components larger
than 1

3 . There may be a third part of the input (in this alternative input), similarly to the
construction of [6]. We omit the details as the idea is similar and the improvement is very
small. We note that this value of 2.25 is a valid lower bound for the cases d ≥ 4 as well. For
the case d = 5 we could get the same lower bound by another method in Section 3 as well,
where we proved significantly larger values for larger dimensions.

5 The case d = 8

We consider this special case as well, in order to demonstrate that the asymptotic competitive
ratio grows relatively fast with the dimension. We picked the value of d = 8 as for this
dimension we are able to exhibit new properties of instances leading to improved lower
bounds. Once again the lower bound construction consists of three parts.

The first part of the input
The first part of the construction is identical to that of the case d = 3, including the property
that the values of K and ε are the same, with the only change that the components equal to
ai are not just the second and third components, but all components with indexes 2, 3, . . . , 7
are equal to ai. The first component is still 1

K , while the 8th component is equal to zero.
The values γ and µ are defined as in the first part of the construction for the case d = 3.

The second part of the input
The second part of the input consists of 6N items consisting of six groups each of which
has N vectors, where every N vectors of a common group are identical. All these vectors
have 8th components equal to 1

3 and first components equal to zero. The other components
are equal to either 0 or to 1 − 3µ, where every item has exactly one component equal to
1 − 3µ, and we will call it the large component of the item. We will have the items of group
j (for j = 1, 2, . . . , 6) having component j + 1 equal to 1 − 3µ while all other components
(excluding the 8th component) are zero.

APPROX/RANDOM 2021

8:14 Lower Bounds for Online Vector Bin Packing

Analyzing the packing of the algorithm at the end of the second part
Before describing the third part of the input, we introduce some notation and properties
of the packing of the algorithm at the end of the second part of the input. The items of
the second part are defined so that no bin can have more than three such items by the
constraint on the 8th component, and all (at most three) items of one bin have distinct large
components since 1 − 3µ > 1

2 . We will distinguish the cases where a bin contains three, two,
or just one item of the second part of the input, introducing notation for their corresponding
bin numbers.

For j1, j2, j3 ∈ {2, 3, 4, 5, 6, 7}, where j1 < j2 < j3, let Xj1,j2,j3 be the number of bins
with (exactly) three items of the second part of the input, whose large components are j1, j2,
and j3. There are 20 such variables. For j4, j5 ∈ {2, 3, 4, 5, 6, 7}, where j4 < j5, let Yj4,j5 be
the number of bins with (exactly) two items of the second part of the input, whose large
components are j4 and j5. There are 15 such variables. For j6 ∈ {2, 3, 4, 5, 6, 7}, let Zj6 be
the number of bins with (exactly) one item of the second part of the input, whose large
component is j6. There are six such variables. Since every bin opened by the algorithm for
the first part of the input has a sum of components of items above γ = 10µ in components
2, 3, . . . , 7, all these bins of the algorithm are new.

The number of bins opened by the algorithm for the first part of the input is denoted by
Q and it satisfies

Q ≥ 2N .

The sum of variables of the form Xj1,j2,j3 is denoted by X, the sum of variables of the form
Yj4,j5 is denoted by Y , and the sum of variables of the form Zj6 is denoted by Z. That is,
X =

∑
j1,j2,j3

Xj1,j2,j3 , Y =
∑

j4,j5
Yj4,j5 , and Z =

∑
j6

Zj6 . By counting the number of
items of the second part, we have

3X + 2Y + Z = 6N .

The third part of the input
The third part has one of ten possible sets of items, of similar structures. These items have
six non-zero components, which are components 2, 3, . . . , 7. Every item has three components
whose values are 2µ, and three components whose values are 1 − µ. No two such items
can be packed into the same bin since the sum of such a component for two items is either
2µ + 1 − µ > 1 or 2(1 − µ) > 1. For a triple {2, j7, j8} where j7, j8 ∈ {3, 4, 5, 6, 7} are fixed
component indexes, and j7 < j8, the input consists of N items whose components 2, j7, j8 are
equal to 1 − µ and the components {2, 3, 4, 5, 6, 7} \ {2, j7, j8} are equal to 2µ, and N items
whose components 2, j7, j8 are equal to 2µ and the components {2, 3, 4, 5, 6, 7} \ {2, j7, j8} are
equal to 1 − µ. This completes the construction of the input. Next, we prove the resulting
lower bound.

Proving the resulting lower bound
Recall the decision variables X, Y, Z, Q whose values are determined by the algorithm but
they satisfies the conditions Q ≥ 2N and 3X + 2Y + Z = 6N established above. We first
upper bound the optimal offline cost after the third part of the input and then present a lower
bound on the maximum cost of the algorithm on these 10 inputs that can be constructed in
the third part of the input. As in the proof for d = 3 we can assume Q

K ≤ 6.

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:15

▶ Lemma 15. For each of the ten inputs that can be created at the end of the third part,
there is an offline solution whose cost is at most 2N + 7.

The algorithm can combine into a common bin some items of the third part with items of
the second part but it cannot use bins that were used for items of the first part for packing
items of the second or third parts. We describe only bins without any items of the first part
because any bin of the algorithm containing an item of the first part cannot receive any
additional items. We discuss such bins with two or three items of the second part (since bins
with just one item can always receive additional items). For a set {2, j7, j8}, there may be
bins with two items of the second part, where one of the items has a large component in the
set {2, j7, j8} and the other one has a large component in the set {2, 3, 4, 5, 6, 7} \ {2, j7, j8}.
In addition, there may be bins with three items of the second part, where the set of large
components is none of the sets {2, j7, j8} and {2, 3, 4, 5, 6, 7} \ {2, j7, j8} (comparing them as
sets and not as ordered tuples).

By Lemma 15, for large values of N we find for the asymptotic competitive ratio R that

Q + X + Y + Z ≤ 2RN .

We introduce two new variables Y ′, X ′ where Y ′ is the number of bins of the algorithm
with two items of the second part that cannot receive an item of the third part, and X ′

is the number of bins of the algorithm with three items of the second part that cannot
receive an item of the third part (for the choice of third part, that is, we fix the third part
temporarily). Then, by considering this input using the fact that the third part of the input
requires packing items into at least 2N bins and we cannot use Q + Y ′ + X ′ of the bins
which were opened for the first or second parts, we conclude that

Q + Y ′ + X ′ + 2N ≤ 2RN .

We take the sum of the last inequality for all ten options of j7, j8, where the right hand side
is 20RN , and the multiplier of N on the left hand side is 20N . Since we consider all options
for the third part of the input, the values X ′ and Y ′ can have different values, and more
precisely, each one has up to ten different values.

We count the multiplier of each variable as follows. Variables of the form Xj1,j2,j3 are
included in all variables X ′ except for the option where j1, j2, j3 are components of equal
values, (the algorithm chose exactly the same subset as the one chosen for the third part
of the input) which is just one case of the third part. Thus, the multiplier of Xj1,j2,j3

is 9. Variables of the form Yj4,j5 are included in all variables Y ′ except for cases where
j4 and j5 are components of equal values, which is the case if {j4, j5} ⊆ {2, j7, j8} or
{j4, j5} ⊆ {2, 3, 4, 5, 6, 7} \ {2, j7, j8}. Out of the 15 variables, there are nine such options
that are included (in the sense that the bins cannot be used for items of the third part of
the input) and six that are not included. Thus, every variable is included in six of the ten
partitions, and in this sum of constraints every variable Yj4,j5 has a multiplier of 6. We get

10Q + 6Y + 9X + 20N ≤ 20RN . (1)

Using 3X + 2Y + Z = 6N and Q + X + Y + Z ≤ 2RN , we find by subtraction that
2X + Y − Q ≥ 6N − 2RN or alternatively

9X + 4.5Y − 4.5Q ≥ 27N − 9RN .

By subtracting the last inequality from (1), we have 1.5Y + 14.5Q + 47N ≤ 29RN . Since
Y ≥ 0 and Q ≥ 2N hold, we establish that 76N ≤ 29RN and therefore R ≥ 76

29 ≈ 2.620689655
as we summarize in the following theorem.

APPROX/RANDOM 2021

8:16 Lower Bounds for Online Vector Bin Packing

▶ Theorem 16. There is no online algorithm for the case d = 8 whose asymptotic competitive
ratio is smaller than 76

29 ≈ 2.620689655.

References
1 Y. Azar, I. R. Cohen, A. Fiat, and A. Roytman. Packing small vectors. In Proc. of the 27th

Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’16), pages 1511–1525, 2016.
2 Y. Azar, I. R. Cohen, S. Kamara, and F. B. Shepherd. Tight bounds for online vector bin

packing. In Proc. of the 45th ACM Symposium on Theory of Computing (STOC’13), pages
961–970, 2013.

3 Y. Azar, I. R. Cohen, and A. Roytman. Online lower bounds via duality. In Proc. of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’17), pages 1038–1050, 2017.

4 L. Babel, B. Chen, H. Kellerer, and V. Kotov. Algorithms for on-line bin-packing problems
with cardinality constraints. Discrete Applied Mathematics, 143(1-3):238–251, 2004.

5 J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. A new and improved algorithm for
online bin packing. In Proc. of the 26th European Symposium on Algorithms (ESA’18), pages
5:1–5:14, 2018.

6 J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. Online bin packing with cardinality
constraints resolved. Journal of Computer and System Sciences, 112:34–49, 2020.

7 J. Balogh, J. Békési, Gy. Dósa, L. Epstein, and A. Levin. A new lower bound for classic online
bin packing. Algorithmica, 83(7):2047–2062, 2021.

8 J. Balogh, J. Békési, Gy. Dósa, J. Sgall, and R. van Stee. The optimal absolute ratio for online
bin packing. Journal of Computer and System Sciences, 102:1–17, 2019.

9 J. Balogh, L. Epstein, and A. Levin. Truly asymptotic lower bounds for online vector bin
packing. CoRR, abs/2008.00811, 2020. arXiv:2008.00811.

10 N. Bansal, A. Caprara, and M. Sviridenko. A new approximation method for set covering
problems, with applications to multidimensional bin packing. SIAM Journal on Computing,
39(4):1256–1278, 2009.

11 N. Bansal and I. R. Cohen. An asymptotic lower bound for online vector bin packing. CoRR,
abs/2007.15709, 2020. arXiv:2007.15709.

12 N. Bansal, M. Eliás, and A. Khan. Improved approximation for vector bin packing. In Proc. of
the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA’16), pages 1561–1579,
2016.

13 D. Blitz. Lower bounds on the asymptotic worst-case ratios of on-line bin packing algorithms.
Technical Report 114682, University of Rotterdam, 1996. M.Sc. thesis.

14 D. Blitz, A. van Vliet, and G. J. Woeginger. Lower bounds on the asymptotic worst-case ratio
of online bin packing algorithms. Unpublished manuscript, 1996.

15 A. Caprara, H. Kellerer, and U. Pferschy. Approximation schemes for ordered vector packing
problems. Naval Research Logistics, 92:58–69, 2003.

16 C. Chekuri and S. Khanna. On multidimensional packing problems. SIAM Journal on
Computing, 33(4):837–851, 2004.

17 L. Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete
Mathematics, 20(4):1015–1030, 2006.

18 L. Epstein and A. Levin. AFPTAS results for common variants of bin packing: A new method
for handling the small items. SIAM Journal on Optimization, 20(6):3121–3145, 2010.

19 W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1(4):349–355, 1981.

20 G. Galambos, H. Kellerer, and G. J. Woeginger. A lower bound for online vector packing
algorithms. Acta Cybernetica, 10:23–34, 1994.

21 M. R. Garey, R. L. Graham, and D. S. Johnson. Resource constrained scheduling as generalized
bin packing. Journal of Combinatorial Theory Series A, 21(3):257–298, 1976.

http://arxiv.org/abs/2008.00811
http://arxiv.org/abs/2007.15709

J. Balogh, I. R. Cohen, L. Epstein, and A. Levin 8:17

22 M. M. Halldórsson and M. Szegedy. Lower bounds for on-line graph coloring. Theoretical
Computer Science, 130(1):163–174, 1994.

23 D. S. Johnson. Fast algorithms for bin packing. Journal of Computer and System Sciences,
8:272–314, 1974.

24 D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-case perform-
ance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing,
3:256–278, 1974.

25 N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional bin-
packing problem. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS’82), pages 312–320, 1982.

26 L. T. Kou and G. Markowsky. Multidimensional bin packing algorithms. IBM Journal of
Research and Development, 21(5):443–448, 1977. doi:10.1147/rd.215.0443.

27 L. Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

28 S. Sandeep. Almost optimal inapproximability of multidimensional packing problems. CoRR,
abs/2101.02854, 2021. arXiv:2101.02854.

A Adaptive constructions for deterministic algorithms

In addition to the lower bound for a general d, we present lower bounds that achieve better
guarantees for relatively small values of d versus deterministic algorithms. The lower bounds
are based on a method that produces a sequence of values with several important properties,
and are produced by an adversary according to the algorithm’s behavior. Specifically, we
define inputs using a method presented in the past [6]. In this method, a binary condition on
the assignment of every item is defined (e.g., whether the item is assigned into a new bin),
and it is used by the adversary (who presents the input) for the definition of the properties
of the following item. More precisely, the adversary keeps an active interval of (scalar) values
(contained in (0, 1)), and it modifies the interval after the assignment of every input item by
the algorithm. These values are not necessarily the actual sizes of the input items, even in
the one-dimensional case, although item sizes are based on them in a simple pre-specified
way. This means that the generated value is not necessarily the size of the new input item,
nor will it always be equal to a component of its vector. Nevertheless, this generated value is
used in the definition of the new item, for example, it may be subtracted from some fixed
value, or added to a fixed size.

The number of required items is decided in advance, or (in some cases) an upper bound
on the number of required items is provided in advance in cases where the exact number of
required items is revealed later on. This number is used to decide upon the initial interval of
the values, as well. The initial interval is also based on the required sizes and properties of
the values. The initial interval is always defined such that the smallest size is strictly positive
and the largest size is sufficiently small.

Input items are presented one by one. After the assignment of an item by the algorithm,
the validity of the condition is tested for that item. During the process of input construction,
it is ensured (via a process resembling binary search, or geometric binary search) that values
corresponding to items satisfying the binary condition are larger by a pre-specified (constant)
multiplicative factor than the value of any item not satisfying the binary condition. In this
way, the process determines two regions, as explained below. We will call the resulting ranges
of values large and small, where the two ranges are disjointed. Items with large values, i.e.,
from the large range, are called large, and items with small values, i.e., from the small range,
are called small.

APPROX/RANDOM 2021

https://doi.org/10.1147/rd.215.0443
http://arxiv.org/abs/2101.02854

8:18 Lower Bounds for Online Vector Bin Packing

Note that when an item is presented, its size is defined without any prior knowledge of
the assignment, so it is still unknown at that moment whether the binary condition holds
for this item. Thus, its value is defined without any knowledge of its dimensions. That
knowledge is gained based on the action of the algorithm once the item is packed. Based on
the packing, if its value is required to be large, future values will be much smaller, and if its
value is required to be small, future values will be much larger.

The construction allows us to define positive values smaller than a given value ε > 0,
such that for a pre-defined (constant) multiplicative factor k, any large value is more than k

times larger than any small value. Thus, there is a value γ < ε such that every small value is
smaller than γ

k and every large value is larger than γ. If items are one dimensional, and their
sizes are simply these values, it would imply that, for example, an item of size 1 − γ can be
packed with k small items, but cannot be packed with one large item into the same bin. Note
that in this case large items are also quite small, although not as small as the small items. It
is possible to define items differently in one dimension, i.e., not only in the way that their
sizes are equal to the values. One option is to use the values as complements of sizes (to 1).
Another option is to use an additive term, for example, items can have sizes of 1

3 plus the
defined value. In this case, one can define a value of ε such that 1

3 + ε < 1
2 , for example. For

items that are vectors, one can define a part of the components to be determined based on
the corresponding value. For example, it is possible in the case d = 5 that two components
will be equal to the value, while three other components are equal to zero.

Fine-Grained Completeness for Optimization in P
Karl Bringmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Alejandro Cassis
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Nick Fischer
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Marvin Künnemann
Institute for Theoretical Studies, ETH Zürich, Switzerland

Abstract
We initiate the study of fine-grained completeness theorems for exact and approximate optimization
in the polynomial-time regime.

Inspired by the first completeness results for decision problems in P (Gao, Impagliazzo, Kolokolova,
Williams, TALG 2019) as well as the classic class MaxSNP and MaxSNP-completeness for NP
optimization problems (Papadimitriou, Yannakakis, JCSS 1991), we define polynomial-time analogues
MaxSP and MinSP, which contain a number of natural optimization problems in P, including
Maximum Inner Product, general forms of nearest neighbor search and optimization variants
of the k-XOR problem. Specifically, we define MaxSP as the class of problems definable as
maxx1,...,xk #{(y1, . . . , yℓ) : ϕ(x1, . . . , xk, y1, . . . , yℓ)}, where ϕ is a quantifier-free first-order property
over a given relational structure (with MinSP defined analogously). On m-sized structures, we can
solve each such problem in time O(mk+ℓ−1). Our results are:

We determine (a sparse variant of) the Maximum/Minimum Inner Product problem as com-
plete under deterministic fine-grained reductions: A strongly subquadratic algorithm for Max-
imum/Minimum Inner Product would beat the baseline running time of O(mk+ℓ−1) for all
problems in MaxSP/MinSP by a polynomial factor.
This completeness transfers to approximation: Maximum/Minimum Inner Product is also
complete in the sense that a strongly subquadratic c-approximation would give a (c + ε)-
approximation for all MaxSP/MinSP problems in time O(mk+ℓ−1−δ), where ε > 0 can be
chosen arbitrarily small. Combining our completeness with (Chen, Williams, SODA 2019), we
obtain the perhaps surprising consequence that refuting the OV Hypothesis is equivalent to
giving a O(1)-approximation for all MinSP problems in faster-than-O(mk+ℓ−1) time.
By fine-tuning our reductions, we obtain mild algorithmic improvements for solving and ap-
proximating all problems in MaxSP and MinSP, using the fastest known algorithms for
Maximum/Minimum Inner Product.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Fine-grained Complexity & Algorithm Design, Completeness, Hardness of
Approximation in P, Dimensionality Reductions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.9

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2107.01721

Funding Karl Bringmann, Alejandro Cassis, Nick Fischer: This work is part of the project TIPEA
that has received funding from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme (grant agreement No. 850979). Marvin Künnemann:
Research supported by Dr. Max Rössler, by the Walter Haefner Foundation, and by the ETH Zürich
Foundation. Part of this research was performed while the author was employed at MPI Informatics.

© Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 9; pp. 9:1–9:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.9
https://arxiv.org/abs/2107.01721
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Fine-Grained Completeness for Optimization in P

1 Introduction

For decades, increasingly strong hardness of approximation techniques have been developed
to pinpoint the best approximation guarantees achievable in polynomial time. Among the
early successes of the field, we find the MaxSNP completeness theorems by Papadimitriou
and Yannakakis [24], giving the first strong evidence against PTASes for Max-SAT and
related problems. Such completeness theorems constitute valuable tools in complexity theory:
Generally speaking, proving a problem A to be complete for a class C shows that A is the
representing problem for C. The precise notion of completeness is typically chosen such that
a certain algorithm for A would yield unexpected algorithms for the whole class C – thus
establishing that A is unlikely to admit such an algorithm. However, a completeness result
may also open up algorithmic uses. Namely, since any problem in C can be reduced to its
complete problem A, we may find (possibly mildly) improved algorithms for all problems
in C by making algorithmic progress on the single problem A.

Given this usefulness, it may be surprising that there are currently no completeness results
for studying optimization barriers within the polynomial-time regime, e.g., for approximability
in strongly subquadratic time (in fact, even for studying decision problems, completeness
results are an exception rather than the norm, see [29] for a recent survey of the field). Thus,
this work sets out to initiate the quest for completeness results for optimization in P, which
corresponds to studying the (in-)approximability of problems on large data sets.

Previous Completeness Results in P

The essentially only known completeness result in fine-grained complexity theory in P is a
recent result by Gao, Impagliazzo, Kolokolova, and Williams [18]: The orthogonal vectors
problem (OV)1 is established as complete problem for the class of model-checking first-order
properties2 under fine-grained reductions3. From this completeness, they derive in particular:

Hardness: If there are γ, δ > 0 such that OV with moderate dimension d = nγ can
be solved in time O(n2−δ), then there is some δ′ > 0 such that all (k + 1)-quantifier
first-order properties can be model-checked in time O(mk−δ′) for k ≥ 2. The negation
of this statement’s premise is known as the moderate-dimensional OV Hypothesis; the
consequence would be very surprising, as model-checking first-order properties is a very
general class of problems for which no O(mk−δ)-time algorithm is known. This result
can be seen as support for the moderate-dimensional OV Hypothesis.
Algorithms: Using a stronger notion than fine-grained reductions, Gao et al. also prove
that mildly subquadratic algorithms for OV have algorithmic consequences for model-
checking first-order properties. Specifically, by combining their reductions with the
fastest known algorithm for OV [4, 12], they obtain an mk/2Ω(

√
log m)-time algorithm for

model-checking any (k + 1)-quantifier first-order property.

1 Given two sets of n vectors in {0, 1}d, determine whether there exists a pair of vectors, one of each set,
that are orthogonal.

2 Let ϕ be a first-order property (in prenex normal form) over a relational structure of size m. Given the
structure, determine whether ϕ holds. See Section 2 for details.

3 For a formal definition of fine-grained reductions, see [11, 18]. For this paper, the reader may think of
the following slightly simpler notion: A fine-grained reduction from a problem P1 with presumed time
complexity T1 to a problem P2 with presumed time complexity T2 is an algorithm A for P1 that has
oracle access to P2 and whenever we use an O(T2(n)1−δ) algorithm for the calls to the P2-oracle (for
some δ > 0), there is a δ′ > 0 such that A runs in time O(T1(n)1−δ′

).

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:3

No comparable fine-grained completeness results are known for polynomial-time optimization
problems, raising the question: Can we give completeness theorems also for a general class of
optimization problems in P, both for exact and approximate computation?

Hardness of Approximation in P

Studying the fine-grained approximability of polynomial-time optimization problems (hard-
ness of approximation in P), is a recent and influential trend: After a breakthrough result
by Abboud, Rubinstein, and Williams [3] establishing the Distributed PCP in P frame-
work, a number of works gave strong conditional lower bounds, including results for nearest
neighbor search [28] or a tight characterization of the approximability of maximum inner prod-
uct [13, 15]. Further results include work on approximating graph problems [25, 6, 10, 22], the
Fréchet distance [7], LCS [1, 2], monochromatic inner product [23], earth mover distance [26],
as well as equivalences for fine-grained approximation in P [15, 14, 10]. Related work studies
the inapproximability of parameterized problems, ruling out certain approximation guarantees
within running time f(k)ng(k) under parameter k (such as FPT time f(k) poly(n), or no(k)),
see [17] for a recent survey.4

An Optimization Class: Polynomial-Time Analogues of MaxSNP

We define a natural and interesting class of polynomial-time optimization problems, inspired
by the approach of Gao et al. [18] as well as the classic class MaxSNP introduced by
Papadimitriou and Yannakakis [24] to study the approximability of NP optimization problems.

The definition of MaxSNP is motivated by Fagin’s theorem (see, e.g., [20, 19]), which
characterizes NP as the family of problems expressible as ∃S ∀ȳ ∃z̄ ϕ(ȳ, z̄, G, S) where G is
a given relational structure, ∃S ranges over a relational structure S and ∀ȳ ∃z̄ ϕ(ȳ, z̄, G, S)
is a ∀∗∃∗-quantified first-order property. A subclass of this is SNP, which consists of those
problems expressible without the ∃z̄-part. Its natural optimization variant is MaxSNP,
defined as the set of problems expressible as maxS #{ȳ : ϕ(ȳ, G, S)}. Notably, this class
of problems contains central optimization problems (Max-3-SAT, Max-Cut, etc.), all
of which admit a constant-factor approximation in polynomial time. Using a notion of
MaxSNP-completeness, Papadimitriou and Yannakakis identified several problems (including
Max-3-SAT and Max-Cut) as hardest-to-approximate in this class, giving a justification
for the lack of a PTAS for these problems.5

To study the same type of questions in the polynomial-time regime, the perhaps most
natural approach is to restrict the syntax defining MaxSNP problems such that it solely
contains polynomial-time problems. Specifically, we replace maxS by a maximization over
a bounded number of k variables x1, . . . , xk and restrict the counting operator to tuples
ȳ = (y1, . . . , yℓ) of bounded length ℓ. The resulting formula maxx1,...,xk

#{(y1, . . . , yℓ) :
ϕ(x1, . . . , xk, y1, . . . , yℓ)} can be easily seen (see the full version of the paper [8, Appendix A])
to be solvable in time O(mk+ℓ−1), where m denotes the problem size. We define MaxSPk,ℓ

to denote the class of these optimization problems and let MaxSP =
⋃

k≥2,ℓ≥1 MaxSPk,ℓ.
Note that here, “SP” stands for “strict P” in analogy to the name “strict NP” of SNP. We
refer to Section 2 for more details.

4 Note that these parameterized inapproximability results do not necessarily apply to the case of a fixed
parameter k, which would correspond to our setting. See [22] for an interesting exception.

5 A stronger justification was later given by the PCP theorem, establishing inapproximability even
under P ̸= NP. In general, these two approaches (approximation-preserving completeness theorems as
well as proving inapproximability under established assumptions on exact computation) can result in
incomparable hardness of approximation results.

APPROX/RANDOM 2021

9:4 Fine-Grained Completeness for Optimization in P

We obtain an analogous minimization class MinSP by replacing max by min everywhere.
These classes include interesting problems:

Vector-definable problems: Let Σ = {0, . . . , c} be a fixed alphabet and f : Σk → {0, 1}
be an arbitrary Boolean function. Then we can express the following problem: Given
sets X1, . . . , Xk in Σd of vectors, maximize (or minimize)

∑d
i=1 f(x1[i], . . . , xk[i]) over all

x1 ∈ X1, . . . , xk ∈ Xk. Each such problem is definable in MaxSPk,1/MinSPk,1, e.g.:
Maximum Inner Product (MaxIP): Given sets X1, X2 ⊆ {0, 1}d, maximize the inner
product x1 · x2 over x1 ∈ X1, x2 ∈ X2. To see that this problem is in MaxSP2,1,
consider the formula maxx1∈X1,x2∈X2 #{y ∈ Y : E(x1, y) ∧ E(x2, y)}, where E(x, y)
indicates that the y-th coordinate of x is equal to 1.
Consider minimization with k = 2 and view f : Σ2 → {0, 1} as classifying pairs of
characters as similar (0) or dissimilar (1). This expresses the following problem that
generalizes the nearest-neighbor problem over the Hamming metric: Given a set of
length-d strings over Σ, determine the most similar pair of strings by minimizing the
number of dissimilar characters.
View Σ as the finite field Fq and let f(z1, . . . , zk) = 1 iff

∑k
i=1 zi ≡ 0 (mod q). This

gives optimization variants of the k-XOR problem [21, 16], generalized to arbitrary
finite fields.

Beyond vector-definable problems, in MaxSP2,ℓ−2 we can express the graph problem of
computing, over all edges e, the maximum number of length-ℓ circuits containing e:

max
x1,x2

#{(y1, . . . , yℓ−2) : E(x1, x2) ∧ E(x2, y1) ∧ · · · ∧ E(yℓ−3, yℓ−2) ∧ E(yℓ−2, x1)}.

In fact, MaxSP also contains generalizations of this problem to other pattern graphs
than length-ℓ circuits (e.g., length-ℓ cycles or ℓ-cliques), even arbitrary fixed patterns in
hypergraphs.

We let m denote the size of the relational structure, that is, the number of tuples in an explicit
representation of all relations. For vector-definable examples, the input can be represented
as a relational structure of size m = O(nd log |Σ|), which is the natural input size. Note,
however, that the relational structure also allows us to succinctly encode sparse vectors in
very large dimension (such as d = Θ(n)), which is why we often refer to MaxSP and MinSP
as describing a sparse setting. It is easy to see that each MaxSP or MinSP formula ψ can
be solved in time O(mk+ℓ−1) (see [8, Appendix A] in the full version); note that for a fixed
ψ, k and ℓ always denote the number of maximization/minimization and counting variables,
respectively. Can we obtain completeness results with respect to improvements over this
baseline running time?

(Sparse) Maximum Inner Product

Our results prove the Maximum Inner Product problem (MaxIP) as representative for the
class MaxSP. We will formally introduce two important variants of this problem.

▶ Problem 1 (MaxIP). Given two sets of n vectors X1, X2 ⊆ {0, 1}d, the task is to compute
the maximum inner product ⟨x1, x2⟩ =

∑
j x1[j] · x2[j] for x1 ∈ X1, x2 ∈ X2.

When d = nγ for some (small) γ > 0, we speak of the moderate-dimensional MaxIP
problem. In this paper, we also use MaxIP in another context, depending on the input
format. To make the distinction explicit, let us formally introduce the Sparse Maximum
Inner Product problem (Sparse MaxIP):

▶ Problem 2 (Sparse MaxIP). Given two sets of n vectors X1, X2 ⊆ {0, 1}d, sparsely
represented as a list of pairs (xi, j) which represent the one-coordinates xi[j] = 1, the task is
to compute the maximum inner product ⟨x1, x2⟩ for x1 ∈ X1, x2 ∈ X2.

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:5

For moderate-dimensional MaxIP we measure the complexity in n and for Sparse
MaxIP we measure the complexity in m, the total number of one-coordinates. We note that
Sparse MaxIP is also special in our setting as this problem can be seen as a member of
MaxSP2,1. Indeed, Sparse MaxIP is the same problem as maximizing the formula

ψ = max
x1∈X1,x2∈X2

#{y ∈ [d] : E(x1, y) ∧ E(x2, y)},

where E(xi, y) indicates that the y-th coordinate of xi is equal to 1. We also define the
(Sparse) Minimum Inner Product problems (MinIP, Sparse MinIP) as the analogous
problems with the task to minimize ⟨x1, x2⟩.

1.1 Our Results
Our first main result is a completeness theorem for exact optimization, establishing Maximum
Inner Product as complete for MaxSP (and Minimum Inner Product for MinSP).

▶ Theorem 3 (Sparse MaxIP is MaxSP-complete). Sparse MaxIP is complete for the
class MaxSP under fine-grained reductions: If there is some δ > 0 such that Sparse MaxIP
can be solved in time O(m2−δ), then for every MaxSPk,ℓ formula ψ, there is some δ′ > 0
such that ψ can be solved in time O(mk+ℓ−1−δ′).

The analogous statement holds for minimization, if we replace Sparse MaxIP and
MaxSP by Sparse MinIP and MinSP, respectively.

Turning to the approximability of MaxSP and MinSP, we show how to obtain a fine-
grained completeness that even preserves approximation factors (up to an arbitrarily small
blow-up). Here and throughout the paper, we say that an algorithm gives a c-approximation
for a maximization problem if it outputs a value in the interval [c−1 · OPT,OPT], where
OPT is the optimal value. For minimization, the algorithm computes a value in the interval
[OPT, c · OPT].

▶ Theorem 4 (Sparse MaxIP is MaxSP-complete, (almost) approximation preserving). Let
c ≥ 1 and ε > 0. If there is some δ > 0 such that Sparse MaxIP can be c-approximated in
time O(m2−δ), then for every MaxSPk,ℓ formula ψ, there is some δ′ > 0 such that ψ can be
(c+ ε)-approximated in time O(mk+ℓ−1−δ′).

The analogous statement for minimization holds for Sparse MinIP and MinSP.

As a key technical step to obtain Theorems 3 and 4, we prove a universe reduction for
MaxSP/MinSP formulas (detailed in Sections 3 and 4.3). Along the way, this universe
reduction establishes the following fine-grained equivalence between the sparse and moderate-
dimensional settings of MaxIP/MinIP.

▶ Theorem 5 (Equivalence between MaxIP and Sparse MaxIP).
There are some γ, δ > 0 such that MaxIP with dimension d = nγ can be solved in time
O(n2−δ) if and only if there is some δ′ > 0 such that Sparse MaxIP can be solved in
time O(m2−δ′).
Let c > 1 and ε > 0. If there are some γ, δ > 0 such that MaxIP with dimension d = nγ

can be c-approximated in time O(n2−δ) then there is some δ′ > 0 such that Sparse
MaxIP can be (c + ε)-approximated in time O(m2−δ′). Conversely, if there is some
δ > 0 such that Sparse MaxIP can be c-approximated in time O(m2−δ) then there are
some γ, δ′ > 0 such that MaxIP with dimension d = nγ can be c-approximated in time
O(n2−δ′).

The analogous statements for minimization hold for MinIP.

We prove Theorems 3, 4 and 5 in Section 4.1.

APPROX/RANDOM 2021

9:6 Fine-Grained Completeness for Optimization in P

Consequences for Hardness of Approximation

As a consequence of the above completeness results and dimension reduction, we obtain the
following statements.

Since Maximum Inner Product and Minimum Inner Product are subquadratic equivalent
in moderate dimensions [15, Theorem 1.6], we obtain from Theorems 3 and 5 that a
strongly subquadratic algorithm solving moderate-dimensional Maximum Inner Product
exactly would give a polynomial-factor improvement over the O(mk+ℓ−1) running time for
all MaxSP and MinSP formulas. This adds an additional surprising consequence of fast
Maximum Inner Product algorithms, besides refuting the Orthogonal Vectors Hypothesis.
There is a O(1)-approximation beating the quadratic baseline for moderate-dimensional
Maximum Inner Product if and only if there is a O(1)-approximation beating the
O(mk+ℓ−1) time baseline for all MaxSP formulas. To obtain this result combine the
fine-grained equivalence of O(1)-approximation of moderate-dimensional MaxIP and
Sparse MaxIP (Theorem 5) with the completeness of Sparse MaxIP (Theorem 4).
This adds an additional consequence of fast Maximum Inner Product approximation,
besides refuting SETH [3, 13].
In the minimization world, we obtain a tight connection between approximating MinSP
formulas and OV: The (moderate-dimensional) OV hypothesis is equivalent to the non-
existence of a O(1)-approximation for all MinSP formulas in time O(mk+ℓ−1). To obtain
this result, combine the equivalence of moderate-dimensional OV Hypothesis and non-
existence of a O(1)-approximation for moderate-dimensional MinIP [15, Theorem 1.5]
with the equivalence of O(1)-approximation algorithms for moderate-dimensional MinIP
and MinSP (Theorem 4 and Theorem 5). Interestingly, this can be seen as additional
support for the Orthogonal Vectors Hypothesis.

Algorithms: Lower-Order Improvements

Since Maximum Inner Product has received significant interest for improved algorithms (see
particularly [13, 15]), we turn to the question whether our completeness result also yields
lower-order algorithmic improvements for all problems in the class. Indeed, by combining the
best known Maximum/Minimum Inner Product algorithms with our reductions, we obtain
the following general results for MaxSP and MinSP. We give the proofs for both theorems
in Section 4.1.

▶ Theorem 6 (Lower-Order Improvement for Exact MaxSP and MinSP). We can exactly
optimize any MaxSPk,ℓ and MinSPk,ℓ formula in randomized time mk+ℓ−1/ logΩ(1) m.

Interestingly, for constant-factor approximations, a complete shave of logarithmic factors
is possible.

▶ Theorem 7 (Lower-Order Improvement for Approximate MaxSP and MinSP). For every
constant c > 1, we can c-approximate every MaxSPk,ℓ and MinSPk,ℓ formula in time
mk+ℓ−1/2Ω(

√
log m). For MaxSPk,ℓ the algorithm is deterministic; for MinSPk,ℓ it uses

randomization.

2 Preliminaries

For an integer k ≥ 1, we set [k] = {1, . . . , k}. Moreover, we write Õ(T) = T logO(1) T .

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:7

First-Order Model-Checking

A relational structure (X,R1, . . . , Rr) consists of n objects X and relations Rj ⊆ Xaj (of
arbitrary arities aj) between these objects. A first-order formula is a quantified formula of
the form

ψ = (Q1x1) . . . (Qkxk)ϕ(x1, . . . , xk),

where Qi ∈ {∃, ∀} and ϕ is a Boolean formula over the predicates Rj(xi1 , . . . , xiaj
). Given a

relational structure, the model-checking problem (or query evaluation problem) is to check
whether ψ holds on the given structure, that is, for x1, . . . , xk ranging over X and by
instantiating the predicates Rj(xi1 , . . . , xiaj

) in ϕ according to the structure, ψ is valid.
Following previous work in this line of research [18, 9], we assume that the input is

represented sparsely – that is, we assume that the relational structure is written down as
an exhaustive enumeration of all records in all relations; let m denote the total number of
such entries. This convention is reasonable as this data format is common in the context of
database theory and also for the representation of graphs (where it is called the adjacency
list representation). By ignoring objects not occurring in any relation, we may always assume
that n ≤ O(m).

It is often convenient to assume that each variable xi ranges over a separate set Xi. We
can make this assumption without loss generality, by introducing some additional unary
predicates.

MaxSPk,ℓ and MinSPk,ℓ

In analogy to first-order properties with quantifier structure ∃k∀ℓ (with maximization instead
of ∃ and counting instead of ∀), we now define a class of optimization problems: Let MaxSPk,ℓ

be the class containing all formulas of the form

ψ = max
x1,...,xk

#
y1,...,yℓ

ϕ(x1, . . . , xk, y1, . . . , yℓ), (1)

where, as before, ϕ is a Boolean formula over some predicates of arbitrary arities. We
similarly define MinSPk,ℓ with “min” in place of “max”. Occasionally, we write OptSPk,ℓ

to refer to both of these classes simultaneously, and we write “opt” as a placeholder for
either “max” or “min”. In analogy to the model-checking problem for first-order properties,
we associate to each formula ψ ∈ OptSPk,ℓ an algorithmic problem:

▶ Definition 8 (Max(ψ) and Min(ψ)). Let ψ ∈ MaxSPk,ℓ be as in (1). Given a relational
structure on objects X, the Max(ψ) problem is to compute

OPT = max
x1,...,xk∈X

#
y1,...,yℓ∈X

ϕ(x1, . . . , xk, y1, . . . , yℓ).

We similarly define Min(ψ) for ψ ∈ MinSPk,ℓ. Occasionally, for ψ ∈ OptSPk,ℓ, we write
Opt(ψ) to refer to both problems simultaneously.

As before, we usually assume (without loss of generality) that each variable ranges over a
separate set: xi ∈ Xi, yi ∈ Yi. In particular, as claimed before we can express the Sparse
MaxIP formula

ψ = max
x1∈X1,x2∈X2

#{y ∈ [d] : E(x1, y) ∧ E(x2, y)}

APPROX/RANDOM 2021

9:8 Fine-Grained Completeness for Optimization in P

in a way which is consistent with Definition 8 by introducing three unary predicates for
X1, X2 and [d]. For convenience, we introduce some further notation: For objects x1 ∈
X1, . . . , xk ∈ Xk, we denote by Val(x1, . . . , xk) = #y1,...,yℓ

ϕ(x1, . . . , xk, y1, . . . , yℓ) the value
of (x1, . . . , xk).

Definition 8 introduces Max(ψ) and Min(ψ) as exact optimization problems (i.e., OPT is
required to be computed exactly). We say that an algorithm computes a c-approximation for
Max(ψ) if it computes any value in the interval [c−1·OPT,OPT]. Similarly, a c-approximation
for Min(ψ) computes any value in [OPT, c · OPT].

The problem Opt(ψ) can be solved in time O(mk+ℓ−1) for all OptSPk,ℓ formulas ψ, by
a straightforward extension of the model-checking baseline algorithm; see the full version of
our paper [8, Appendix A] for details. As this is clearly optimal for k + ℓ = 2, we will often
implicitly assume that k + ℓ ≥ 3 in the following.

As we show in the full version of the paper [8, Appendix B], we can exactly solve OptSPk,ℓ

in time O(mk+ℓ−3/2) when ℓ ≥ 2. Thus, in the remaining sections we will be working with
the hardest case ℓ = 1. For convenience we write MaxSPk := MaxSPk,1, and similarly
for MinSPk and OptSPk. Since for a fixed formula ψ ∈ OptSP, k and ℓ are constants,
f(k, ℓ)-factors are hidden in the O-notation throughout the paper.

3 Technical Overview

In this section we give an overview of the main technical ideas used to give our completeness
result (Theorem 3). Let ψ be a MaxSPk,ℓ formula. We will outline the reduction from
Max(ψ) to Sparse MaxIP. Since for ℓ ≥ 2 we can solve Max(ψ) in time O(mk+ℓ−3/2)
(see the full version of our paper [8, Appendix B]) we focus on the case of ℓ = 1. The
reduction consists of two phases. In the first phase (Appendix A), we reduce ψ to an
intermediate problem called the Hybrid Problem which captures the core hardness, but is
more restricted. For now, the reader can think of the Hybrid Problem as a vector-definable
problem (as introduced in the introduction) maxx1∈X1,...,xk∈Xk

∑d
i=1 f(x1[i], ..., xk[i]) with

X1, . . . , Xk ⊆ {0, 1}d; we define it formally in Section 4.2. Since a Hybrid Problem is more
restricted than the general problem Max(ψ), the first phase consists of the following 4 steps
in which we progressively restrict the shape of ψ:
1. Remove all hyperedges, that is, ψ no longer contains predicates of arity ≥ 3 so an instance

of Max(ψ) can be thought of as a graph with parallel (or alternatively, colored) edges.
2. Remove all edges between vertices xi and xj that we maximize over. We will call these

cross edges. After this step the only remaining edges are between vertices xi and the
counting variable y.

3. Remove all parallel edges (or alternatively, colored edges), that is, we combine parallel
edges into simple edges.

4. Remove unary predicates, finally turning the Max(ψ) instances into graphs. At this
point it becomes simple to rewrite Max(ψ) as a Hybrid Problem.

The second phase of the reduction is to reduce the Hybrid Problem to a Sparse MaxIP
instance (Section 4.3). The general idea of this step seems straightforward: For simplicity
again let us focus on a vector-definable problem maxx1∈X1,...,xk∈Xk

∑d
i=1 f(x1[i], ..., xk[i])

with X1, . . . , Xk ⊆ {0, 1}d. We can precisely “cover” each f(x1[i], . . . , xk[i]) by at most 2k

summands expressing∑
α1,...,αk∈{0,1}
f(α1,...,αk)=1

[(x1[i], . . . , xk[i]) = (α1, . . . , αk)],

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:9

where the outer [·] denotes the Iverson brackets. Observe that each such summand is
equivalent to the MaxIP function, up to complementing some xj [i]’s (i.e. each summand can
be expressed as MaxIP by setting xj [i] := 1 − xj [i] whenever αj = 0). The issue, however, is
that complementing xj [i]’s means complementing a binary relation of size O(m) (between n

vectors and d coordinates). Since complementing a sparse relation generally produces a dense
relation (here: of size Ω(nd)), this will produce a prohibitively large problem size for the
Sparse MaxIP formulation if d is large.

The natural approach to overcome this issue is to reduce the dimension of the Hybrid
Problem, so that we can afford the complementation step. One challenge in this is that
MaxSP formula might have its optimal objective value anywhere in {0, . . . ,mℓ}, but reducing
the dimension from d ≤ mℓ to, say, d = mγ also reduces the range of possible objective values
to {0, . . . ,mγ}. It appears counter-intuitive that such a “compression” of objective values
should be possible while allowing us to reconstruct the optimum value exactly. Perhaps
surprisingly, we are able to achieve this by a simple deterministic dimension reduction.

The idea of our dimension reduction is as follows. For concreteness, focus on the Sparse
MaxIP problem. Starting from a Sparse MaxIP instance X1, X2 ⊆ {0, 1}d, we construct a
hash function h : {0, 1}d 7→ {0, 1}d′ with d′ ≪ d, which maps every one-entry to t coordinates
in [d′]. More precisely, for every coordinate i ∈ [d], we deterministically choose an auxiliary
vector wi ∈ {0, 1}d′ with exactly t one-entries for some parameter t. Then, the hash function
is defined as h(x) =

∨
i:x[i]=1 wi (here the OR is applied coordinate-wise).

We say that there is a collision between two vectors x1, x2 if there are distinct i, j ∈ [d]
such that x1[i] = x2[j] = 1 and the auxiliary vectors wi and wj share a common one-
entry. Ideally, every pair of vectors x1 ∈ X1, x2 ∈ X2 is hashed perfectly, meaning that no
collision takes place. In that case, it holds that ⟨h(x1), h(x2)⟩ = t · ⟨x1, x2⟩ and thus also
OPT′ = t · OPT, where OPT and OPT′ are the objective values of the original and the
hashed instance, respectively. However, in reality we cannot expect the hashing to be perfect.
Note that nevertheless the difference |⟨h(x1), h(x2)⟩ − t · ⟨x1, x2⟩| is at most the number of
collisions between x1 and x2.

We will construct h in such a way that for all pairs x1, x2, the number of collisions is
small, say at most C. Then by setting t > 2C, we ensure that |t · OPT − OPT′| < t/2 so
we can recover t · OPT by computing OPT′ and rounding to the closest multiple of t. In
particular, the optimal pair of vectors in the hashed instance correspond to the pair with
maximum inner product in the original instance. Note that we crucially use the fact that
MaxIP is expressive enough to compute the value of the inner product, which allows us to
get rid of the small additive error introduced by the hashing (after rounding).

In Section 4.3 we show that the desired hash function exists and is in fact deterministic:
Pick any t primes p1, . . . , pt of size Θ(t log t) and let d′ = p1 + · · · + pt. We identify [d′]
with {(i, pj) : 1 ≤ j ≤ t, 0 ≤ i < pj} and assign the auxiliary vector wi to have one-entries
exactly at all coordinates (i mod pj , pj), 1 ≤ j ≤ t. A simple calculation shows that with
this construction the number of collisions between x1 and x2 is at most ∥x1∥1 · ∥x2∥1 · log d,
see Lemma 15. With some additional tricks, we can control this quantity.

Our analysis allows us to even maintain c-approximate solutions, albeit with an arbitrarily
small blow-up due to the small error introduced by rounding. Finding a fully approximation-
preserving reduction remains a challenge for future work. Additionally, we need to take
great care that our reductions are efficient enough to even transfer log0.1 n-improvements, to
obtain our speed-up for exact optimization (Theorem 6).

APPROX/RANDOM 2021

9:10 Fine-Grained Completeness for Optimization in P

Comparison to Gao et al.’s Work

Our reduction is similar to the work of Gao, Impagliazzo, Kolokolova and Williams [18],
showing that the sparse version of Orthogonal Vectors is complete for model checking
first-order properties. Here we discuss the key differences.

This first phase of our reduction follows the same structure as in Gao et al., but we
simplify the proof significantly: One major difference is that they define a more complicated
version of the Hybrid Problem including cross predicates [18, Section 5.2]. Borrowing ideas
from [9], we remove the cross predicates at an earlier stage of the reduction (Step 2), which
simplifies the remaining Steps 3 and 4. The absence of cross predicates also simplifies the
baseline algorithm (see [8, Appendix A] in the full version). More generally, by splitting
the reduction into a chain of four steps we cleanly separate the main technical ideas used in
the first phase; see Appendix A for more details. In the same spirit we simplify Gao et al.’s
improved algorithm [18, Section 9.2] for all problems with more than 1 counting quantifier
avoiding their case distinction of 9 different cases by using a simple basis to represent all
Boolean functions ϕ : {0, 1}3 → {0, 1}; see [8, Appendix B] in the full version.

In the second phase of the reduction, their work faces the same main challenge as ours.
Specifically, reducing their Hybrid Problem to OV naively requires complementing a sparse
binary relation, possibly resulting in a large dense complement. They solve this issue
by designing a similar dimension reduction as ours using a Bloom filter. Naturally their
dimension reduction is randomized, but they also provide a derandomization. However, note
that there is a crucial difference: They reduce to OV which is a decision problem, while
we reduce to the optimization problem MaxIP. For this reason, the dimension reductions
differ in nature: One the one hand, we exploit that MaxIP is more expressive than OV –
namely that MaxIP can handle a small number of errors if we round the result, while for
OV any introduced error would result in vectors that are not orthogonal anymore. On the
other hand, by reducing to OV, Gao et al. do not have to worry about “compressing” the
range of possible optimal values, or making the reduction approximation-preserving. For
these reasons, their dimension reduction would be unsuitable in our work, and ours would be
unsuitable in their work.

4 The Reduction

In this section we give the proofs of our main results. The following lemma captures
our reduction in all generality. Let k-MaxIP denote the generalization of the MaxIP
problem with the objective to compute maxx1∈X1,...,xk∈Xk

⟨x1, . . . , xk⟩, where ⟨x1, . . . , xk⟩ =∑
y x1[y] · . . . · xk[y]. We define k-MinIP analogously.

▶ Lemma 9. Let s(n) ≤ n1/6 be a nondecreasing function and let c ≥ 1 be constant. Assume
that k-MaxIP in dimension d = Õ(s(n)4 log2 n) can be c-approximated in time O(nk/s(n)),
and let ψ be an arbitrary MaxSPk formula.

If c = 1 (i.e., we are in the case of exact computation), then Max(ψ) can be exactly
solved in time O(mk/s(k+1

√
m)).

If c > 1, then Max(ψ) can be (c + ε)-approximated in time O(mk/s(k+1
√
m)), for any

constant ε > 0.
The analogous statement holds for k-MinIP and MinSPk.

The outline for this section is as follows. First we show how to derive the completeness
result (Theorems 3 and 4) and the lower-order improvements (Theorems 6 and 7) from
Lemma 9 in Section 4.1. Then we present the proof of Lemma 9, which is carried out in

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:11

two phases as explained in the technical overview. In Section 4.2 we formally introduce
the intermediate problem called the Hybrid Problem. In Section 4.3 we give a fine-grained
reduction from the Hybrid Problem to Maximum or Minimum Inner Product (Lemma 14).
Finally, in Appendix A we reduce any Optk,ℓ formula to the Hybrid Problem (Lemma 17),
thus finishing the proof of Lemma 9. We will pay particularly close attention to the exact
savings s in every step.

4.1 Consequences
First we derive the completeness Theorems 3 and 4 from Lemma 9.

Proof of Theorems 3 and 4. Let c ≥ 1 denote the approximation ratio (that is, c = 1 for
Theorem 3 and c ≥ 1 for Theorem 4). Assuming that Sparse MaxIP can be c-approximated
in time O(m2−δ) for some δ > 0, we obtain an algorithm for c-approximating MaxIP in
dimension d = n4δ/9 in time O((nd)2−δ) = O(n2−δd2) = O(n2−δ/9). We also obtain an
algorithm for c-approximating k-MaxIP in the same dimension in time O(nk−δ/9) (brute-
force all options for the first k − 2 vectors, then use the 2-MaxIP algorithm). We can
now plug this improved algorithm into our reduction: Setting s(n) = nδ/9/ polylog(n)
we have that k-MaxIP in dimension d = Õ(s(n)4 log2 n) can be c-approximated in time
O(nk/s(n)). Thus, if c = 1 we obtain by Lemma 9 that Opt(ψ) can be exactly solved in time
O(mk/s(k+1

√
m)) = O(mk−β) for β = δ

9(k+1) > 0. If c > 1, we obtain that Opt(ψ) can be
(c+ ε)-approximated in the same running time, for an arbitrarily small constant ε > 0. ◀

Next, we prove Theorem 5.

Proof of Theorem 5. The reductions from Sparse MaxIP to MaxIP and from Sparse
MinIP to MinIP for both the exact and approximate settings are a direct consequence
of Lemma 9.

For the other direction, assume there exists some δ > 0 such that Sparse MaxIP can
be c-approximated in time O(m2−δ). Set γ := δ/2 and observe that any MaxIP instance
with d = nγ yields a Sparse MaxIP instance of size m = O(nd) = O(n1+γ). Since we can
solve this instance in time O(m2−δ) = O(n(1+γ)(2−δ)) = O(n(1+δ/2)(2−δ)) = O(n2−δ2/2), we
obtain a O(n2−δ′)-algorithm for MaxIP with d = nγ and δ′ = δ2/2. Note that this works
for both the exact (c = 1) and approximate (c > 1) settings. The proof for the minimization
case is analogous. ◀

To prove Theorems 6 and 7, we make use of the following state-of-the-art algorithms for
MaxIP and MinIP, established in three previous papers [5, 13, 15].

▶ Theorem 10 (Improved Algorithms for MaxIP and MinIP [5, 13, 15]).
k-MaxIP and k-MinIP in dimension d = O(log2.9 n) can be exactly solved in randomized
time O(nk/ log100 n) [5].
For any constant c > 1, k-MaxIP in dimension d = 2O(

√
log n) can be c-approximated in

deterministic time nk/2Ω(
√

log n) [13, Theorem 1.5].
For any constant c > 1, k-MinIP in dimension d = 2O(

√
log n) can be c-approximated in

randomized time nk/2Ω(
√

log n) [15, Theorem 1.7].

Proof of Theorems 6 and 7. To prove Theorem 6, we plug in the first algorithm from
Theorem 10 into Lemma 9 and choose s(n) = log0.1 n. We obtain an exact OptSPk

algorithm in time mk/ logΩ(1) m.
For Theorem 7, we plug the second and third algorithms from Theorem 10 into Lemma 9

and choose s(n) = 2O(
√

log n). We get a c-approximation for OptSPk in time mk/2Ω(
√

log m),
for any constant c > 1. ◀

APPROX/RANDOM 2021

9:12 Fine-Grained Completeness for Optimization in P

Note that only one of these algorithms is deterministic; other known deterministic
algorithms are not efficient enough for our reduction6.

4.2 The Hybrid Problem
We start with another problem definition.

▶ Definition 11 (Basic Problem). Given set families S1, . . . ,Sk over a universe U , the Basic
Maximization Problem of type τ ∈ {0, 1}k is to to compute

OPT = max
S1∈S1,...,Sk∈Sk

∣∣∣∣∣
(⋂

i:τ [i]=1

Si

)
\

(⋃
i:τ [i]=0

Si

)∣∣∣∣∣.
For example, the Basic Problem of type τ = 11 is to maximize the common intersection of

two sets S1 and S2, the Basic Problem of type τ = 10 is to maximize the number of elements
in S1 not contained in S2 and the Basic Problem of type τ = 00 is to maximize the number
of universe elements contained in neither S1 nor S2.

Note that every Basic Problem can be seen as an OptSPk formula: We introduce objects
for all sets Si and all universe elements u, and connect Si to u via an edge E(Si, u) if and
only if u ∈ Si. Consistent with this analogy, we define n as the total number of sets Si and
m as the total cardinality of all sets Si and, as before, study the Basic Problem with respect
to the sparsity m.

▶ Definition 12 (Hybrid Problem). Given set families S1, . . . ,Sk over a universe U , which is
partitioned into 2k parts U =

⋃
τ∈{0,1}k Uτ , the Hybrid Maximization Problem is to compute

OPT = max
S1∈S1,...,Sk∈Sk

∑
τ∈{0,1}k

∣∣∣∣∣Uτ ∩

(⋂
i:τ [i]=1

Si

)
\

(⋃
i:τ [i]=0

Si

)∣∣∣∣∣.
We similarly define Basic Minimization Problems and define c-approximations of Ba-

sic Problems in the obvious way. For any S1, . . . , Sk and τ ∈ {0, 1}k we denote by
Valτ (S1, . . . , Sk) the value of the Basic Problem constraint of type τ :

Valτ (S1, . . . , Sk) :=

∣∣∣∣∣Uτ ∩

(⋂
i:τ [i]=1

Si

)
\

(⋃
i:τ [i]=0

Si

)∣∣∣∣∣.
And we use Val(S1, . . . , Sk) :=

∑
τ Valτ (S1, . . . , Sk) to denote the total value of the sets

S1, . . . , Sk in a Hybrid Problem instance.
Intuitively, the Hybrid Problem simultaneously optimizes Basic Problem constraints of

different types. If we could afford to complement (parts of) the sets Si, then there is a
straightforward reduction from the Hybrid Problem to a Basic Problem of arbitrary type τ :
For each constraint of type τ ′ ≠ τ , we simply complement all sets Si with τ [i] ̸= τ ′[i] (more
precisely, construct sets S′

i such that Uτ ′ ∩ S′
i = Uτ ′ \ Si) and reinterpret the τ ′-constraint as

type τ . In summary:

6 Focus on exact MaxSPk for illustration: To obtain the same savings as in Theorem 6, we would need
a deterministic algorithm for MaxIP in dimension d = O(log2.9 n) running in time O(n2/ log100 n).
However, for this speed-up the current best algorithm [5] requires d = O(log1.9 n), so one needs to either
improve the algorithm or improve our dimension reduction (Lemma 9) to dimension d = poly(s(n)) log n,
say.

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:13

▶ Observation 13. In time O(n|U |), any Hybrid Problem instance can be converted into
an equivalent Basic Problem instance of arbitrary type τ . The sparsity of the constructed
instance is up to n|U |.

However, being in the sparse setup we cannot tolerate the blow-up in the sparsity.
Therefore, in order to efficiently apply Observation 13, we first have to control the universe
size |U |.

4.3 Universe Reduction
The goal of this section is to reduce the Hybrid Problem to k-MaxIP. We give a reduc-
tion which closely preserves the savings s(n) achieved by exact or approximate k-MaxIP
algorithms (losing only polynomial factors in s(n)). As a drawback, the reduction slightly
worsens the approximation factor, turning a c-approximation into a (c+ ε)-approximation.

▶ Lemma 14. Let s(n) ≤ n1/6 be a nondecreasing function and assume that k-MaxIP in
dimension d = Õ(s(n)4 log2 n) can be c-approximated in time O(nk/s(n)).

If c = 1 (i.e., we are in the case of exact computation), then the Hybrid Problem can be
exactly solved in time O(mk/s(m)).
If c > 1, then the Hybrid Problem can be (c+ ε)-approximated in time O(mk/s(m)), for
any constant ε > 0.

The analogous statement holds for k-MinIP and MinSPk.

On a high level, we prove Lemma 14 by first using a deterministic construction to reduce
the universe size, and then reducing further to k-MaxIP as in Observation 13. The following
lemma provides our universe reduction in the form of a hash-like function h.

▶ Lemma 15. Let U be a universe and let t be a parameter. There exists a universe U ′ of
size at most 4t2 log t and a function h mapping elements in U to size-t subsets of U ′, such
that the following properties hold. By abuse of notation, we write h(S) =

⋃
u∈S h(u) for sets

S ⊆ U .
1. (Hashing.) For all sets S ⊆ U , it holds that |h(S)| ≥ t|S| − |S|2 log |U |.
2. (Efficiency.) Evaluating h(u) takes time Õ(t).

Proof. We start with the construction of h. By the Prime Number Theorem, there exist t
primes p1, . . . , pt in the interval [2t log t, 4t log t] (for large enough t, see [27, Corollary 3]
for the quantitative version). Let U ′ = {(i, j) : 1 ≤ i ≤ t, 0 ≤ j < pi}, then |U ′| ≤ 4t2 log t.
We identify U with [|U |] in an arbitrary way and define h(u) = {(i, u mod pi) : 1 ≤ i ≤ t}
for u ∈ U .

In order to prove the first property, let us define the collision number of two distinct
elements u, u′ ∈ U as |h(u) ∩ h(u′)|. It is easy to see that the collision number of any such
pair is at most log |U |: For any prime pi, we have that u mod pi = u′ mod pi if and only if pi

divides u−u′. Since u−u′ has absolute value at most U , there can be at most log |U | distinct
prime factors pi of u−u′. It follows that t|S| − |h(S)| ≤

∑
u,u′∈S |h(u) ∩h(u′)| ≤ |S|2 log |U |.

Finally, the function can be efficiently evaluated: Computing the primes p1, . . . , pt takes
time O(t log t log log t) using Eratosthenes’ sieve, for example. After this precomputation,
evaluating h(u) in time O(t) is straightforward. ◀

▶ Lemma 16 (Universe Reduction). Let S1, . . . ,Sk over the universe U =
⋃

τ Uτ be a Hybrid
Problem instance of maximum set size s = maxSi∈Si

|Si|, and let t be a parameter. In time
Õ(mt) we can compute a number ∆ ≥ 0 and a new Hybrid Problem instance S ′

1, . . . ,S ′
k over

a small universe U ′ =
⋃

τ U
′
τ of size |U ′| = O(t2 log t) such that:

APPROX/RANDOM 2021

9:14 Fine-Grained Completeness for Optimization in P

1. The sets Si ∈ Si and the sets S′
i ∈ S ′

i stand in one-to-one correspondence.
2. For all S1 ∈ S1, . . . , Sk ∈ Sk, it holds that:

|t · Val(S1, . . . , Sk) − Val(S′
1, . . . , S

′
k) − ∆| = O(s2 log |U |).

Proof. We first describe how to construct the new instance. The first goal is to design
individual universe reductions for all subuniverses Uτ , that is, we construct new universes U ′

τ

and functions hτ mapping Uτ to size-t subsets of Uτ . We distinguish two cases:
If |Uτ | ≤ 4t log t, then we simply take U ′

τ as t copies of Uτ and let hτ be the function
which maps any element to its t copies in Uτ . It holds that |U ′

τ | = t · |Uτ | ≤ 4t2 log t.
If |Uτ | > 4t log t, then we apply Lemma 15 with parameter t to obtain U ′

τ and hτ . The
lemma guarantees that |U ′

τ | ≤ 4t2 log t.
Next, we assemble these individual reductions into one. Set U ′ =

⋃
τ U

′
τ , where we treat

the sets U ′
τ as disjoint. Since in both of the previous two cases we have |Uτ | = O(t2 log t) it

follows that |U | =
∑

τ |Uτ | = O(t2 log t). Let h be the function which is piece-wise defined
by the hτ ’s, that is, h returns hτ (u) on input u ∈ Uτ . Recall the notation h(S) =

⋃
u∈S h(u).

The new Hybrid Problem instance is constructed by hashing every set Si ∈ Si into the smaller
universe, that is, we set S′

i := h(Si) ∈ S ′
i. Property 1 is immediate from this construction,

and the computation takes time Õ(mt).
It remains to prove Property 2. For the remainder of the proof fix some sets S1, . . . , Sk

and let S = S1 ∪· · ·∪Sk (clearly, S has size O(s)). We start with the (unrealistic) assumption
that S is hashed perfectly, that is, |h(S)| = t|S|. In this case we claim that:

t · Valτ (S1, . . . , Sk) = Valτ (h(S1), . . . , h(Sk)) for all τ ̸= 0k,
t · Valτ (S1, . . . , Sk) = Valτ (h(S1), . . . , h(Sk)) + ∆ for τ = 0k, where ∆ := t · |U0k | − |U ′

0k |.
Indeed, if S is hashed perfectly then we exactly scale the number of satisfying elements by
a factor of t for every type τ ̸= 0k. This holds because a satisfying assignment for τ ̸= 0k

corresponds to some element of the universe u ∈ Uτ for which u ∈ Si for all i’s such that
τ [i] = 1. The perfect hashing implies that the element u in these sets Si gets mapped to t
different elements in the new universe, and since there are no collisions these form t satisfying
assignments in the hashed instance. The type τ = 0k is exceptional because each satisfying
assignment does not correspond to any u ∈ U0k . Instead, the hashing scales the number
of falsifying elements of type 0k, |U0k ∩ S|. The number of satisfying elements of type 0k,
|U0k \ S|, is preserved up to an additive error of exactly ∆.

We will now remove the unrealistic assumption that h is hashed perfectly. The strategy
is to define another function h∗ obtained from h by artificially making the hashing with S

perfect. To that end, we list the elements in S in an arbitrary order s1, . . . , s|S|, and start
with the assignment h∗(sj) = h(sj). As long as there exist indices i < j such that h∗(si)
and h∗(sj) share a common element z, we reassign h∗(sj) := h∗(sj) \ {z} ∪ {z′} for some
unused universe element z′ ∈ U ′. The function h∗ obtained in this way also maps elements
of U to size-t subsets of U ′ and hashes S perfectly. Let Z be the set of all pairs of elements
z and z′ that occurred in the process; since there are exactly t|S| − |h(S)| iterations we have
|Z| ≤ 2t|S| − 2|h(S)| and by Lemma 15 it follows that |Z| = O(s2 log |U |). By the definition
of h∗, it is clear that |Val(h(S1), . . . , h(Sk)) − Val(h∗(S1), . . . , h∗(Sk))| ≤ |Z|. Therefore, by
the previous paragraph (applied with h∗) and by an application of the triangle inequality,
we obtain:

|t · Valτ (S1, . . . , Sk) − Valτ (h(S1), . . . , h(Sk))| = O(s2 log |U |) for all τ ̸= 0k,
|t · Valτ (S1, . . . , Sk) − Valτ (h(S1), . . . , h(Sk)) − ∆| = O(s2 log |U |) for τ = 0k.

The claimed Property 2 is now immediate by summing over all types τ and by another
application of the triangle inequality.

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:15

Finally, it remains to prove that ∆ ≥ 0. There are two cases depending on how the set U ′
0k

was constructed: In the first case of the construction we have t · |U0k | = |U ′
0k | and thus ∆ = 0.

In the second case we have |U ′
τ | ≤ 4t2 log t < t · |Uτ | and thus ∆ = t · |U0k | − |U ′

0k | > 0. ◀

Having established the universe reduction, we can finally prove Lemma 14.

Proof of Lemma 14. The algorithm consists of three steps, which are implemented in
the same way for all combinations of maximization versus minimization and exact versus
approximate computation.

1. (Eliminating heavy sets.) We say that a set Si ∈ Si is heavy if |Si| > s(m), and light
otherwise. Our first goal is to eliminate all heavy sets. Since the total cardinality of all
sets Si is bounded by m, there can be at most O(m/s(m)) heavy sets. Therefore, we can
brute-force over every such set Si and solve the remaining Hybrid Problem on k − 1 set
families using the baseline algorithm in time O(mk−1). Afterwards, we can safely remove
all heavy sets. Overall, this step takes time O(mk/s(m)).

2. (Reduction to k-MaxIP or k-MinIP.) In the remaining instance we have that |Si| ≤ s(m)
for all sets Si. Therefore, we can apply the universe reduction from Lemma 16 (with
some parameter t to be specified in the next step) to obtain an instance S ′

1, . . . ,S ′
k over a

smaller universe U ′ =
⋃

τ U
′
τ of size O(t2 log t), and an offset ∆ ≥ 0.

The Hybrid Maximization Problem instance S ′
1, . . . ,S ′

k reduces to k-MaxIP in the natural
way: Recall that k-MaxIP is the same as the Basic Problem of type τ = 1k. Hence, we
can apply Observation 13 to reduce to an instance of k-MaxIP with n = O(m) vectors
in dimension O(t2 log t) in time O(n|U ′|) = O(nt2 log t). An analogous reduction works
for Hybrid Minimization Problems and k-MinIP.

3. (Recovering the optimal value.) Solve (or approximate) the constructed k-MaxIP instance
and let ALG′ denote the output. Then compute ALG := (ALG′ +∆)/t and return ALG
rounded to an integer. The precise way of rounding depends on maximization versus
minimization and exact versus approximate, see the following analysis.

Let ε > 0 be a constant which we will specify later, and set t = Cs(m)2 logm for some
sufficiently large constant C = C(ε). Then by Property 2 of Lemma 16 we have∣∣∣∣Val(S1, . . . , Sk) − Val(S′

1, . . . , S
′
k) + ∆

t

∣∣∣∣ = O

(
s(m)2 logm

t

)
< ε.

In particular, it holds that∣∣∣∣OPT − OPT′ + ∆
t

∣∣∣∣ < ε, (2)

where OPT and OPT′ are the optimal values of the original and the reduced instance,
respectively. As the new universe has size O(t2 log t) = Õ(s(m)4 logm2) as claimed, we can
indeed use the efficient O(mk/s(m))-time k-MaxIP or k-MinIP algorithm in the third step.
The total running time is as stated: Recall that s(m) ≤ m1/6 and thus all previous steps run
in time O(mk/s(m)). It remains to argue about the guarantees of the reduction; we need to
consider three cases:

(Exact maximization or minimization: c = 1.) It suffices to set ε < 1
2 . Since we can

exactly compute ALG′ = OPT′, by rounding ALG = (ALG′ +∆)/t to the nearest integer,
we obtain the only integer in the interval ((OPT′ + ∆)/t− 1

2 , (OPT′ + ∆)/t+ 1
2), and

thus we output OPT.

APPROX/RANDOM 2021

9:16 Fine-Grained Completeness for Optimization in P

(Approximate maximization: c > 1.) We have c−1OPT′ ≤ ALG′ ≤ OPT′ and therefore

ALG = ALG′ +∆
t

≤ OPT′ + ∆
t

(2)
≤ OPT + ε,

ALG = ALG′ +∆
t

≥ c−1(OPT′ + ∆)
t

(2)
≥ c−1(OPT − ε) ≥ c−1OPT − ε,

where in the first inequality of the second line we used both ALG′ ≥ c−1OPT′ and c > 1.
From these bounds we derive that the algorithm should return ⌈ALG −ε⌉. Indeed, as
⌈ALG −ε⌉ ≤ OPT this is always a feasible solution. Moreover, the solution is c

1−2ε -
approximate: If OPT = 0, then ⌈ALG −ε⌉ = 0 (if we set ε < 1

2). If OPT ≥ 1, then
⌈ALG −ε⌉ ≥ 1

c OPT − 2ε ≥ 1−2ε
c OPT. Setting ε small enough yields approximation ratio

c+ ε′, for any ε′ > 0.
(Approximate minimization: c > 1.) We have OPT′ ≤ ALG′ ≤ c · OPT′ and therefore

ALG = ALG′ +∆
t

≤ c · OPT′ + ∆
t

≤ c · (OPT + ∆)
t

(2)
≤ c · OPT + c · ε,

ALG = ALG′ +∆
t

≥ OPT′ + ∆
t

(2)
≥ OPT − ε.

In this case the algorithm should return ⌊ALG +ε⌋. This solution is always feasible as
OPT ≤ ⌊ALG +ε⌋. Moreover, the solution is c(1 + 2ε)-approximate: If OPT = 0, then
⌊ALG +ε⌋ = 0 (if we set ε < 1

2). If OPT ≥ 1, then ⌊ALG +ε⌋ ≤ c · OPT + (c + 1)ε ≤
c(1 + 2ε)OPT. We may again set ε small enough to obtain approximation ratio c+ ε′,
for any ε′ > 0. ◀

References
1 Amir Abboud and Arturs Backurs. Towards hardness of approximation for polynomial time

problems. In Proceedings of the 8th Conference on Innovations in Theoretical Computer
Science, volume 67 of ITCS ’17, pages 11:1–11:26. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

2 Amir Abboud and Aviad Rubinstein. Fast and deterministic constant factor approximation
algorithms for LCS imply new circuit lower bounds. In Proceedings of the 9th Conference
on Innovations in Theoretical Computer Science, volume 94 of ITCS ’18, pages 35:1–35:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

3 Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP theorems for hardness
of approximation in P. In Proceedings of the 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS ’17, pages 25–36. IEEE Computer Society, 2017.

4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method
to algorithm design. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 218–230. SIAM, 2015.

5 Josh Alman, Timothy Chan, and Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In Proceedings of the 57th IEEE Annual Symposium on
Foundations of Computer Science, FOCS ’16, pages 467–476. IEEE Computer Society, 2016.

6 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Towards tight approximation bounds for graph diameter and eccentricities. In Proceedings of
the 50th Annual ACM Symposium on Theory of Computing, STOC ’18, pages 267–280. ACM,
2018.

7 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proceedings of the 55th IEEE Annual Symposium
on Foundations of Computer Science, FOCS ’15, pages 661–670. IEEE Computer Society,
2014.

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:17

8 Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. Fine-grained
completeness for optimization in P. CoRR, abs/2107.01721, 2021. URL: http://arxiv.org/
abs/2107.01721.

9 Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of Schaefer’s
theorem in P: Dichotomy of ∃k∀-quantified first-order graph properties. In Proceedings of the
34th Computational Complexity Conference, volume 137 of CCC ’19, pages 31:1–31:27. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

10 Karl Bringmann, Marvin Künnemann, and Karol Wegrzycki. Approximating APSP without
scaling: Equivalence of approximate min-plus and exact min-max. In Proceedings of the 51st
Annual ACM Symposium on Theory of Computing, STOC ’19, pages 943–954. ACM, 2019.

11 Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the 7th ACM Conference on Innovations
in Theoretical Computer Science, ITCS ’16, pages 261–270. ACM, 2016.

12 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’16, pages 1246–1255. SIAM, 2016.

13 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product.
Theory of Computing, 16(4):1–50, 2020. doi:10.4086/toc.2020.v016a004.

14 Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubinstein. Fine-
grained complexity meets IP = PSPACE. In Proceedings of the 30th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’19, pages 1–20. SIAM, 2019.

15 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 21–40.
SIAM, 2019.

16 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A subquadratic algorithm for 3XOR.
In Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer
Science, volume 117 of MFCS ’18, pages 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

17 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/a13060146.

18 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. ACM Trans.
Algorithms, 15(2):23:1–23:35, 2019.

19 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Springer
Berlin Heidelberg, 2007.

20 Neil Immerman. Descriptive Complexity. Springer New York, 1999.
21 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–343,

2016.
22 C. S. Karthik, Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity

of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019.
23 Karthik C. S. and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic is

as hard as bichromatic. In Proceedings of the 10th Conference on Innovations in Theoretical
Computer Science, volume 124 of ITCS ’19, pages 17:1–17:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019.

24 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

25 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, STOC ’13, pages 515–524. ACM, 2013.

APPROX/RANDOM 2021

http://arxiv.org/abs/2107.01721
http://arxiv.org/abs/2107.01721
https://doi.org/10.4086/toc.2020.v016a004
https://doi.org/10.3390/a13060146

9:18 Fine-Grained Completeness for Optimization in P

26 Dhruv Rohatgi. Conditional hardness of earth mover distance. In Dimitris Achlioptas and
László A. Végh, editors, Proceedings of Approximation, Randomization, and Combinatorial
Optimization (APPROX/RANDOM’19), volume 145 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.
12.

27 J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois J. Math., 6(1):64–94, March 1962. doi:10.1215/ijm/1255631807.

28 Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing, STOC ’18, pages 1260–1268. ACM,
2018.

29 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the International Congress of Mathematicians, ICM ’18, pages 3447–3487,
2018.

A Reducing OptSPk Formulas to the Hybrid Problem

In this section we give the first phase of the reduction, where we reduce Opt(ψ) to the Hybrid
Problem. The main lemma is the following. As before, let s(m) ≤ m1/6 be a nondecreasing
function and let c ≥ 1 be constant.

▶ Lemma 17. Let k ≥ 2. If the Hybrid Problem can be c-approximated in time O(mk/s(m)),
then Opt(ψ) can be c-approximated in time O(mk/s(k+1

√
m)), for any OptSPk formula ψ.

Recall that we only have to deal with OptSPk = OptSPk,1 formulas, as any OptSPk,ℓ

problem with ℓ > 1 directly admits an improved algorithm; see [8, Appendix B] in the full
version. As explained in Section 3, we prove Lemma 17 by progressively simplifying Opt(ψ)
in four steps:
1. Remove all hyperedges, that is, ψ no longer contains predicates of arity ≥ 3 so an instance

of Opt(ψ) can be thought of as a (colored) graph.
2. Remove all cross edges, that is, edges between vertices xi and xj that we maximize over.
3. Remove all parallel edges (or alternatively, colored edges), that is, we combine parallel

edges into simple edges.
4. Remove unary predicates, finally turning the Opt(ψ) instances into graphs. At this point

it becomes simple to rewrite Opt(ψ) as a Hybrid Problem.

Step 1: Removing Hyperedges

As a first step, we eliminate all hyperpredicates, that is, predicates of arity ≥ 3. Formally, we
prove the following lemma.

▶ Lemma 18. Suppose that, for any OptSPk formula ψ not containing hyperpredicates,
Opt(ψ) can be c-approximated in time O(mk/s(m)). Then Opt(ψ) can be c-approximated
in time O(mk/s(m)) for any OptSPk formula ψ.

The proof is quite similar to [18, Section 7]. We start with a technical lemma:

▶ Lemma 19. Let

ψ = opt
x1,...,xk

#
y

(
E(xi, xj) ∧ ϕ(x1, . . . , xk, y)

)
,

for some i, j ∈ [k], i ̸= j and arbitrary ϕ. Then Opt(ψ) can be solved exactly in time
O(mk−1/2).

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12
https://doi.org/10.1215/ijm/1255631807

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:19

Proof. Let us begin with the simplest case k = 2. For a vertex x in the given instance, let
deg(x) denote the total number of records containing x over all relations. We distinguish the
following three cases:
Case 1: deg(x1) ≥

√
m. We explicitly list all vertices x1 with deg(x1) ≥

√
m; note that

there can be at most O(
√
m) such elements since the sparsity of the Max(ψ) instance is

bounded by O(m). The remaining MaxSP1 formula can be solved in time O(m) using
the baseline algorithm. In total, this step takes time O(

√
mm) = O(m3/2).

Case 2: deg(x2) ≥
√

m. By exchanging the roles of x1 and x2, we deal with this case in
the same way as case 1.

Case 3: deg(x1) <
√

m and deg(x2) <
√

m. Assuming that the previous two cases were
executed, we can assume that deg(x1) <

√
m and deg(x2) <

√
m for all remaining ob-

jects x1, x2. We exploit that any non-zero solution (x1, x2) of Max(ψ) satisfies E(x1, x2):
It suffices to maximize over all O(m) edges E(x1, x2), counting the number of y’s satisfy-
ing ϕ. Since deg(x1) <

√
m and deg(x2) <

√
m, we can enumerate and test all objects y

which are connected to either x1 or x2 by some relation in time O(
√
m). What remains

are objects y not connected to either x1 or x2 by any relation. To account for these
missing objects, we can substitute false for all non-unary predicates in ϕ; what remains is
a Boolean function over unary predicates over y. We can precompute the number of y’s
satisfying that function in linear time, so again the total time is O(m+m

√
m) = O(m3/2).

It remains to lift this proof to the general case k > 2. We brute-force over all x-variables
except for xi and xj . This amounts for a factor O(mk−2) in the running time. What remains
is a MaxSP2 formula in the shape as before which can be solved exactly in time O(m3/2) by
the previous case analysis. In total this takes time O(mk−2m3/2) = O(mk−1/2). The proof
works in exactly the same way for minimization problems. ◀

Proof of Lemma 18. Let ψ = maxx1,...,xk
#y ϕ(x1, . . . , xk, y) be a MaxSPk formula possi-

bly containing some hyperpredicates. We introduce a new binary relation N(xi, xj) defined
as follows: For any xi, xj ∈ V it holds that N(xi, xj) = true if and only if xi and xj are
connected by some (hyper-)edge. Observe that any (hyper-)edge contributes to at most a
constant number of records N(xi, xj), so we can construct N in time O(m) and the sparsity
blows up only by a constant factor. We can now rewrite ψ via

ψ0 = max
x1,...,xk

#
y

((∧
i̸=j

N(xi, xj)
)

∧ ϕ0(x1, . . . , xk, y)
)

and

ψi,j = max
x1,...,xk

#
y

(
N(xi, xj) ∧ ϕ(x1, . . . , xk, y)

)
,

where ϕ0 is obtained from ϕ by replacing all occurrences of hyperpredicates by false. It
follows that we can express

OPT = max{OPT0,max
i̸=j

OPTi,j},

where OPT0 is the optimal value of ψ0, and OPTi,j is the optimal value of ψi,j . Observe
that ψ0 is a MaxSPk formula not involving any hyperpredicates, so we can by assumption
c-approximate OPT0 in time T (m). Moreover, the formulas ψi,j are precisely in the shape
to apply Lemma 19, so we can compute OPTi,j exactly in time O(mk−1/2). ◀

APPROX/RANDOM 2021

9:20 Fine-Grained Completeness for Optimization in P

Step 2: Removing Cross Edges

Next, the goal is to remove all binary predicates E(xi, xj) between two x-variables. Let us
call these predicates E(xi, xj) cross predicates and the associated entries (xi, xj) cross edges.

▶ Lemma 20. Suppose that, for any OptSPk formula ψ not containing hyperpredicates
and cross predicates, Opt(ψ) can be c-approximated in time O(mk/s(m)). Then Opt(ψ)
can be c-approximated in time O(mk/s(k+1

√
m)) for any OptSPk formula ψ not containing

hyperpredicates.

Proof. Let ψ = maxx1,...,xk
#y ϕ(x1, . . . , xk, y) and let E1, . . . , Er denote the cross predicates

in the given instance. We define

ψ0 := max
x1,...,xk

#
y

((∧
ℓ,i,j

Eℓ(xi, xj)
)

∧ ϕ0(x1, . . . , xk, y)
)

and

ψℓ,i,j := max
x1,...,xk

#
y

(
Eℓ(xi, xj) ∧ ϕ(x1, . . . , xk, y)

)
,

where ℓ ∈ [r] and i ̸= j ∈ [k] and ϕ0 is the propositional formula obtained from ϕ by
substituting all predicates Eℓ(xi, xj) by false. It is easy to verify that

OPT = max{OPT0,max
ℓ,i,j

OPTℓ,i,j},

where OPT0 and OPTℓ,i,j are the optimal values of Max(ψ0) and Max(ψℓ,i,j), respectively.
Using Lemma 19, we can compute OPTℓ,i,j exactly in time O(mk−1/2) for all ℓ, i, j. It
remains to efficiently solve Max(ψ0) to compute OPT0.

As described before, we can always assume that each variable ranges over a separate set:
xi ∈ Xi, y ∈ Y . We call a vertex xi heavy if it has degree at least k+1

√
m, and light otherwise.

The first step is to eliminate all heavy vertices; there can exist at most O(m/k+1
√
m) many

such vertices xi. Fixing xi, we can solve the remaining problem in time O(mk−1) using
the baseline algorithm. We keep track of the optimal solution detected in this way. This
precomputation step takes time O(mk/k+1

√
m) and afterwards we can safely remove all heavy

vertices.
Next, partition each set Xi into several groups Xi,1, . . . , Xi,g such that the total degree

of all vertices in a group is O(k+1
√
m), and the number of groups is g = O(m/k+1

√
m). This is

implemented by greedily inserting vertices into Xi,j until its total degree exceeds k+1
√
m. As

each vertex inserted in that way is light, we can overshoot by at most k+1
√
m.

Let ψ1 := maxx1,...,xk
#y ϕ0(x1, . . . , xk, y); note that ψ1 equals ψ0 except that it disregards

the cross predicates. Therefore, by assumption we can c-approximate Max(ψ1) in time
O(mk/s(m)). The algorithm continues as follows:
1. For all combinations (j1, . . . , jk) ∈ [g]k, compute a c-approximation of Max(ψ1) on the

input X1,j1 , . . . , Xk,jk
. We keep track of the

(
k
2
)
mnk−2 + 1 combinations with largest

values (breaking ties arbitrarily).
2. For any of the top-most

(
k
2
)
mnk−2 + 1 combinations (j1, . . . , jk), solve Max(ψ0) exactly

on X1,j1 , . . . , Xk,jk
using the baseline algorithm. Return the best solution detected in

this step or the precomputation phase.
We begin with the correctness of the algorithm. First, the value of any solution (x1, . . . , xk)
in Max(ψ0) is at least as large as its value in Max(ψ1). In particular, the optimal solution
of Max(ψ0) has value at least OPT0 in Max(ψ1). We next establish an upper bound on

K. Bringmann, A. Cassis, N. Fischer, and M. Künnemann 9:21

the number false positives, that is, tuples (x1, . . . , xk) of different value in Max(ψ0) than
in Max(ψ1). Observe that any such false positive contains at least one edge (xi, xj) and
since there are at most m edges, at most

(
k
2
)

choices of i, j and at most nk−2 choices for
the remaining vertices xℓ, ℓ ̸= i, j, we can indeed bound the number of false positives by(

k
2
)
mnk−2. Thus, if we witness the top-most

(
k
2
)
mnk−2 + 1 solutions of Max(ψ1) in step 1,

among these there exists at least one solution of value ≥ OPT0/c in Max(ψ0).
Finally, let us bound the running time of the above algorithm. Recall that removing heavy

vertices accounts for O(mk/k+1
√
m) time. In step 1, the Max(ψ1) algorithm is applied gk

times on instances of size O(k+1
√
m), which takes time O((m/k+1

√
m)k · (k+1

√
m)k/s(k+1

√
m)) =

O(mk/s(k+1
√
m)). Step 2 runs the baseline algorithm mnk−2 = O(mk−1) times on instances

of size O(k+1
√
m), which takes time O(mk−1(k+1

√
m)k) = O(mk/k+1

√
m). Thus, the total

running time is O(mk/k+1
√
m+mk/s(k+1

√
m)). As s(m) ≤ m, this is as claimed. The proof

for the maximization variant is complete and there are only minor adaptions necessary for
minimization. ◀

Step 3: Removing Parallel Edges

After applying the previous steps we can assume that ψ is an OptSPk formula not containing
hyperedges or cross edges. Let E1, . . . , Er be the binary relations featured in ψ. We say
that ψ does not have parallel edges if r = 1. In an instance of Opt(ψ) with parallel edges,
any pair of vertices (xi, y) may be connected by up to r parallel edges, or equivalently by
an edge of 2r possible colors. We adopt the second viewpoint for this step: Let χ(xi, y) :=
(E1(xi, y), . . . , Er(xi, y)) ∈ {0, 1}r be the color of the edge (xi, y) and let χ(x1, . . . , xk, y) :=
(χ(x1, y), . . . , χ(xk, y)) ∈ ({0, 1}r)k be the color of the tuple (x1, . . . , xk, y).

▶ Lemma 21. Suppose that, for any OptSPk formula ψ not containing hyperedges, cross
edges and parallel edges, Opt(ψ) can be c-approximated in time O(mk/s(m)). Then Opt(ψ)
can be c-approximated in time O(mk/s(m)) for any OptSPk formula ψ not containing
hyperedges and cross edges.

Proof. Let E1, . . . , Er denote the binary relations featured in the given instance; our goal
is to construct a new instance with only a single edge predicate E. We leave the vertex
sets Xi unchanged and construct Y ′ = {yα : y ∈ Y, α ∈ ({0, 1}r)k}, i.e., each vertex
y ∈ Y is copied 2rk = O(1) times and each copy yα is indexed by a k-tuple of colors
α = (α1, . . . , αk) ∈ ({0, 1}r)k. For every α we also introduce a new unary predicate Cα and
assign Cα(yα′) if and only if α = α′.

Now let i ∈ [k] and let xi ∈ Xi and y ∈ Y be arbitrary vertices in the original instance.
We assign the edges in the constructed instance as follows. If χ(xi, y) = 0 = (0, . . . , 0),
then xi and y are not connected and we do not introduce new edges. So suppose that
χ(xi, y) ̸= 0. Then we add 2 · 2r(k−1) edges

E(xi, yβ), for all β ∈ ({0, 1}r)k with βi = χ(xi, y), and
E(xi, yγ), for all γ ∈ ({0, 1}r)k with γi = 0.

Clearly the sparsity of the new instance is bounded by 2 · 2r(k−1)m = O(m) plus the
contribution of the new unary predicates which is also O(m).

Now let ψ = optx1,...,xk
#y ϕ(x1, . . . , xk). To define an equivalent MaxSPk formula ψ′,

for any α ∈ ({0, 1}r)k let ϕα denote the formula obtained from ϕ by substituting Ej(xi, y)
by true if αi,j = 1 and by false otherwise. We define ψ′ = maxx1,...,xk

#y ϕ
′(x1, . . . , xk, y),

APPROX/RANDOM 2021

9:22 Fine-Grained Completeness for Optimization in P

where ϕ′(x1, . . . , xk, y) is∨
α∈({0,1}r)k

(
Cα(y)︸ ︷︷ ︸

(i)

∧

(∧
i∈[k]

(E(xi, y) ⇐⇒ αi ̸= 0)
)

︸ ︷︷ ︸
(ii)

∧ϕα(x1, . . . , xk, y)︸ ︷︷ ︸
(iii)

)
.

As desired, the constructed instance contains only a single binary predicate and no cross or
hyperedges. It remains to argue that the value of any tuple (x1, . . . , xk) is not changed by
the reduction. Indeed, for all y ∈ Y we prove the following two conditions and thereby the
claim.

ϕ′(x1, . . . , xk, yα) = ϕ(x1, . . . , xk, y) for α = χ(x1, . . . , xk, y),
ϕ′(x1, . . . , xk, yα) = false for all α ̸= χ(x1, . . . , xk, y).

The first bullet is simple to verify: In the evaluation of ϕ′(x1, . . . , xk, yα) we only have to focus
on the α-disjunct by the constraint (i). The constraint (ii) is satisfied by our construction of E
and therefore only (iii) is decisive: ϕ′(x1, . . . , xk, yα) = ϕα(x1, . . . , xk, yα) = ϕ(x1, . . . , xk, y).
Next, focus on the second bullet. For α ̸= χ(x1, . . . , xk, y) there exists some index i such
that αi ̸= χ(xi, y). By (i), we again only need to consider the α-disjunct. We now prove that
E(xi, y) ⇐⇒ αi = 0 which falsifies (ii) and shows ϕ′(x1, . . . , xk, yα) = false. On the one
hand, if αi ̸= 0 then there is no edge E(xi, yα), since 0 ̸= αi ̸= χ(xi, y). On the other hand,
if αi = 0 then we added an edge E(xi, yα). ◀

Step 4: Removing Unary Predicates

As the final simplification, we eliminate unary predicates and show that the resulting problem
can be reduced to the Hybrid Problem.

Proof of Lemma 17. By applying the reductions in Lemmas 18, 20 and 21, it suffices to
show that any OptSPk property ψ not containing hyperpredicates, cross edge predicates and
parallel edge predicates can be reduced to the Hybrid Problem. The shape of ψ is significantly
restricted and contains only the following three types of relations: Unary predicates on
X1, . . . , Xk, unary predicates on Y and binary predicates of the form E(xi, y) for i ∈ [k].

We can assume that there are no unary predicates on X1, . . . , Xk as follows: By enumerat-
ing all possible assignments of these unary predicates, and by restricting the sets X1, . . . , Xk

to those vertices matching the current assignment, we create a constant number of instances
each without unary predicates on X1, . . . , Xk.

This leaves only unary predicates on Y and the edge predicates E(xi, y). Let ψ =
optx1,...,xk

#y ϕ(x1, . . . , xk, y). Another way to view this problem is associate a Boolean
function ϕy : {0, 1}k → {0, 1} to every vertex y ∈ Y , which takes as input E(xi, y) and does
no longer depend on the unary predicates of y. In that way, we can rewrite the objective as

opt
x1,...,xk

#
y
ϕy(E(x1, y), . . . , E(xk, y)).

Our goal is now to reinterpret this problem as an instance of the Hybrid Problem. As the
universe, we assign

U =
{

(y, τ) : y ∈ Y, τ ∈ {0, 1}k is a satisfying assignment of ϕy

}
,

along with the partition U =
⋃

τ∈{0,1}k Uτ , Uτ = U ∩ (Y × {τ}). For every vertex xi ∈ Xi,
we construct a set Si ∈ Si as Si = {(y, τ) : E(xi, y)} ∩ U . It is easy to check that the value
of every solution is preserved in this way: Val(S1, . . . , Sk) = Val(x1, . . . , xk). The overhead
of this rewriting step is O(m) and thus negligible in the running time bound. ◀

An Estimator for Matching Size in Low Arboricity
Graphs with Two Applications
Hossein Jowhari # Ñ

Department of Computer Science and Statistics, Faculty of Mathematics, K. N. Toosi University of
Technology, Tehran, Iran

Abstract
In this paper, we present a new degree-based estimator for the size of maximum matching in bounded
arboricity graphs. When the arboricity of the graph is bounded by α, the estimator gives a α + 2
factor approximation of the matching size. For planar graphs, we show the estimator does better
and returns a 3.5 approximation of the matching size. Using this estimator, we get new results
for approximating the matching size of planar graphs in the streaming and distributed models of
computation. In particular, in the vertex-arrival streams, we get a randomized O(

√
n

ε2 log n) space
algorithm for approximating the matching size of a planar graph on n vertices within (3.5 + ε)
factor. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating
the matching size within (3.5 + ε) factor using O(n2/3

ε2 log n) communication from each player. In
comparison with the previous estimators, the estimator in this paper does not need to know the
arboricity of the input graph and improves the approximation factor in the case of planar graphs.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Data Stream Algorithms, Maximum Matching, Planar Graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.10

Category APPROX

Related Version Previous Version: https://arxiv.org/pdf/2011.11706.pdf

Funding Hossein Jowhari: This work is supported by the Iranian Institute for Research in Funda-
mental Sciences (IPM), Project Number 98050014.

1 Introduction

A matching in a graph G = (V, E) is a subset of edges M ⊆ E where no two edges in M

share an endpoint. A maximum matching of G has the maximum number of edges among
all possible matchings. Let m(G) denote the matching size of G, in other words the size of
a maximum matching in G. In this paper, we present algorithms for approximating m(G)
in the sublinear models of computation. In particular, our results are for the vertex-arrival
stream model (also known as the adjacency list streams). In the vertex-arrival model, the
input stream is an arbitrary ordering of vertex set V . Additionally, followed by each u ∈ V

in the stream, the algorithm also gets the list of the neighbors of u. This is in contrast with
the edge-arrival version where the input stream is an arbitrary ordering of the edge set E.

The problem of estimating m(G) or computing an approximate maximum matching of
G in the data stream model has been studied in several works [14, 13, 10, 6, 17]. Here we
focus on algorithms for graphs with bounded arboricity. A graph G = (V, E) has arboricity
bounded by α if the edge set E can be partitioned into at most α forests. A well-known fact
(known as the Nash-William theorem [19]) states that a graph has arboricity α, if and only if
every induced subgraph on t vertices has at most α(t − 1) number of edges. Graphs with low
arboricity cover a wide range of graphs such as graphs with constant degree, planar graphs,
and graphs with small tree-widths. In particular planar graphs have arboricity bounded by 3.

© Hossein Jowhari;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jowhari@kntu.ac.ir
https://wp.kntu.ac.ir/jowhari/
https://orcid.org/0000-0001-9032-9958
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.10
https://arxiv.org/pdf/2011.11706.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

A simple reduction from counting distinct elements implies that the exact computation
of m(G) in the data stream model has Ω(n) space complexity even for trees and randomized
algorithms (see [1] for the lower bound on distinct elements problem.) This negative result
has inspired a growing interest in finding estimators for m(G) that take sublinear space
to compute. Specially when the input graph G has low arboricity, it has been shown by
Esfandiari et al. [9], and the subsequent works [16, 7, 18, 4], that it is possible to compute
m(G) approximately in o(n) space by only checking the degree information and the immediate
local neighborhood of the vertices (and the edges). This line of research has led to the invent
of several degree-based estimators for the matching size. In this paper, we design another
degree-based estimator for m(G) in low arboricity graphs that has certain advantages in
comparison with the previous works and leads to new algorithmic results. Before describing
our estimator we briefly review the previous ideas.

1.1 Previous Works
In the following we assume G has arboricity bounded by α. Also, unless explicitly stated, all
the algorithms mentioned below are randomized.

Shallow edges, high degree vertices

Esfandiari et al. [9] were first to observe that one can approximately characterize the
matching size of low arboricity graphs based on the degree information of the vertices and
the local neighborhood of the edges. Let H denote the set of vertices with degree more than
h = 2α + 3 and let F denote the set of edges with both endpoints having degree at most
h. Esfandiari et al. have shown that m(G) ≤ |H| + |F | ≤ (5α + 9)m(G). Based on this
estimator, the authors in [9] have designed a Õ(ε−2αn2/3) space algorithm for approximating
m(G) within 5α + 9 + ε factor in the edge-arrival model.

Fractional matchings

By establishing an interesting connection with fractional matchings and the Edmonds
Polytope theorem, Mcgregor and Vorotnikova [16] have shown that the following quantity
approximates m(G) within (α + 2) factor.

(α + 1)
∑

(u,v)∈E

min{ 1
deg(u) ,

1
deg(v) ,

1
α + 1}.

Based on this estimator, the authors in [16] have given a Õ(ε−2n2/3) space streaming
algorithm (in the edge-arrival model) that approximate m(G) within α + 2 + ε factor. Also
in the same work, another degree-based estimator is given that returns a (α+2)2

2 factor
approximation of m(G). A notable property of this estimator is that it can be implemented
deterministically in the vertex-arrival model using only O(log n) bits of space.

α-Last edges

Cormode et al. [7] (later revised by Mcgregor and Vorotnikova [18]) have designed an
improved estimator for m(G) that also depends on a given ordering of the edges. Given a
stream of edges S = e1, . . . , em, let Eα(S) denote a subset of edges where (u, v) ∈ Eα(S)
iff the vertices u and v both appear at most α times in S after the edge (u, v). It is shown
that m(G) ≤ |Eα(S)| ≤ (α + 2)m(G). Moreover a O(1

ε2 log2 n) space streaming algorithm is
shown that approximates |Eα(S)| within 1 + ε factor in the edge-arrival model.

H. Jowhari 10:3

1.2 The estimator in this paper
The new estimator is purely based on the degree of the vertices in the graph without any
need to have a pre-knowledge of α. To estimate the matching size, we count the number of
what we call locally superior vertices in the graph. Consider the following definition.

▶ Definition 1. In graph G = (V, E), we call u ∈ V a locally superior vertex if u has a
neighbor v such that deg(u) ≥ deg(v). We let ℓ(G) denote the number of locally superior
vertices in G.

We show when the arboricity of G is bounded by α, ℓ(G) approximates m(G) within
(α + 2) factor (Lemma 2.) This repeats the same bound obtained by the estimators in [16]
and [7], however for planar graphs, we prove the approximation factor is at most 3.5 which
beats the previous bounds (Lemma 5). This result is the main technical contribution of the
paper. As an evidence on the improved approximation quality, consider the 4-regular planar
graph on 9 vertices. Both of the estimators in [16] and [7], report 18 as the estimation for
m(G) while the exact answer is 4. It follows their approximation factor is at least 4.5.

As a first application of Lemma 5, we obtain a randomized O(
√

n
ε2 log n) space streaming

algorithm for approximating m(G) within (3.5 + ε) factor in the vertex-arrival model. In
terms of approximation factor, this improves over existing sub-linear algorithms [16, 18].

As another application of our estimator, we get a sublinear simultaneous protocol in the
vertex-partition model for approximating m(G) when G is planar. In this model, the vertex set
V is partitioned into t subsets V1, . . . , Vt where each subset is given to a player. Additionally
the i-th player knows the edges on Vi. The players do not communicate with each other.
They only send one message to a referee whom at the end computes an approximation of the
matching size. (The referee does not get any part of the input.) We assume the referee and
the players have a shared source of randomness. Within this setting, we design a protocol
that approximates m(G) within 3.5 + ε factor using O(n2/3

ε2 log n) communication from each
player. Note that for t > 3 and t = o(n1/3), this result is non-trivial. The best previous
result, implicit in the works of [5, 16] computes a 5 + ε factor approximation using Õ(n4/5)
communication from each player. Also we should mention that, using the the estimator in
[16], one can get a deterministic simultaneous protocol where each player sends only O(log n)
bits to the referee. However this protocol computes a 12.5 factor approximation of m(G).

1.3 Related Works
Kapralov et al. [13] have given an estimator for m(G) when G is a general graph. Their
estimator gives an approximation of m(G) by looking at the degree information of the vertices
in a series of nested subgraphs of G. The main challenge is implementing the estimator
in sublinear space. Based on this estimator, Kapralov et al. has shown one can obtain a
poly(log n) approximation of m(G) in poly(log n) space assuming the input edge stream is
randomly ordered. There are subsequent works with improved results and analysis [14]. As
far as we know, there is no similar result for arbitrarily ordered streams.

There is a large body of works that addresses the problem of finding a matching of near
optimal size using O(n.poly(log n)) space. This falls within the category of semi-streaming
model. See the recent works [12, 3] for the latest results on this.

Maximum matching has also been studied within the context of distributed local algorithms
[15] and massively parallel computations [2]. The main objective of these works is to find
a large matching of near optimal size in a distributed manner using small number of
communication rounds. See the works [8, 11] for related results on graphs with bounded
arboricity.

APPROX/RANDOM 2021

10:4 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

2 Graph properties

In the following proofs, we let M ⊆ E denote a maximum matching in graph G. When the
underlying graph is clear from the context, for the vertex set S, we use N(S) to denote the
neighbors of the vertices in S excluding S itself. For vertex u, we simply use N(x) to denote
the neighbors of u. The vertex v is a neighbor of the edge (x, y) if v is adjacent with x or y.
When x is paired with y in the matching M , abusing the notation, we define M(x) = y.

▶ Lemma 2. Let G = (V, E) be a graph with arboricity α. We have

m(G) ≤ ℓ(G) ≤ (α + 2)m(G).

Proof. The left hand side of the inequality is easy to show. For every edge in E, at least
one of the endpoints is locally superior. Since edges in M are disjoint, at least |M | number
of endpoints must be locally superior. This proves m(G) ≤ ℓ(G).

To show the right hand side, we use a charging argument. Let L denote the locally
superior vertices in G. Our goal is to show an upper bound on |L| in terms of |M | and α.
Let X ⊆ L be the set of locally superior vertices that are NOT endpoints of a matching edge.
The challenge is to prove an upper on |X|.

The vertices in X do not contribute to the maximum matching. However all the vertices
in N(X) must be endpoints of matching edges (otherwise M would not be maximal.) For
the same reason, there cannot be an edge between the vertices in X. To prove an upper
bound on |X|, in the first step, we assign a subset of vertices in X to edges in M in a way
any target edge gets at most α − 1 locally superior vertices. We do the assignments in the
following way.

The Assignment Procedure

If we find a y ∈ N(X) with at most α − 1 neighbors in X, we assign all the neighbors of y in
X to the matching edge (y, M(y)). We repeat this process, every time picking a vertex in
N(X) with less than α neighbors in X and do the assignment that we just described, until
we cannot find such a vertex in N(X). Note that when we assign a locally superior vertex x,
we remove the edges on x before continuing the procedure.

Here we emphasize the fact that if y has a neighbor x ∈ X, then M(y) cannot have
neighbors in X \ {x} (otherwise it would create an augmenting path and contradict with the
optimality of M .)

Let X1 ⊆ X be the assigned locally superior vertices and M1 ⊆ M be the used matching
edges in the assignment procedure. We have

|X1| ≤ (α − 1)|M1|. (1)

Let X2 = X \ X1 be the unassigned vertices in X. Now we try to prove an upper bound on
|X2|. For this, we need to make a few observations.

▶ Observation 3. Let Y2 = N(X2). The pair y and M(y) cannot be both in Y2.

Proof. Suppose y and M(y) are both in N(X2). Let B and C be the neighbors of y and
M(y) in X2 respectively. If |B ∪ C| > 1, then one can find an augmenting path of length 3
(with respect to M .) A contradiction.

On the other hand, if |B ∪ C| = 1, then y and M(y) have only a shared neighbor x ∈ X2
which means the edge e = (y, M(y)) should have been used by the assignment procedure
and as result x ∈ X1. Another contradiction. ◀

H. Jowhari 10:5

▶ Observation 4. Every vertex x ∈ X2 has degree at least α + 1.

Proof. Consider x ∈ X2. Suppose, for the sake of contradiction, deg(x) is k where k ≤ α.
Since x is a locally superior vertex, there must be a y ∈ N(x) with degree at most k in G.
We know that y is an endpoint of a matching edge. In the assignments procedure, whenever
we used an edge e ∈ M all the neighbors of its endpoints (in X) were assigned. Since x is
not assigned yet, it means the edge (y, M(y)) has not been used. Consequently y must have
at least α neighbors in X2. Counting the edge (y, M(y)), we should have deg(y) ≥ α + 1. A
contradiction. ◀

Let G′ = (X2 ∪ Y2, E′) be a bipartite graph where E′ is the set of edges between X2 and
Y2. From Observation 4, we have

(α + 1)|X2| ≤ |E′|. (2)

Since G′ is a subgraph of G, its arboricity is bounded by α. As result,

|E′| ≤ α(|X2| + |Y2|). (3)

Recall that Y2 are endpoints of matching edges. Let M2 be those matching edges.
Observation 3 implies that |Y2| = |M2|. As result, combining (2) and (3), we get the
following.

|X2| ≤ α|Y2| = α|M2|. (4)

To prove an upper bound on |L|, we also need to count the locally superior vertices that are
endpoints of matching edges. Let Z = L \ X. We have |Z| ≤ 2|M |. Summing up, we get

|L| = |X1| + |X2| + |Z|
≤ (α − 1)|M1| + α|M2| + 2|M |
= α(|M1| + |M2|) + 2|M | − |M1|
≤ (α + 2)|M | − |M1|
≤ (α + 2)|M |

This proves the lemma. ◀

▶ Lemma 5. Let G = (V, E) be a planar graph. We have ℓ(G) ≤ 3.5m(G).

Proof. For planar graphs, similar to what we did in the proof of Lemma 2, we first try to
assign some of the vertices in X to the matching edges using a simple assignment procedure.
(Recall that X is the set of vertices in L that are not endpoints of edges in M .)

The Assignment Procedure

Let Y1 = ∅. If we find a y ∈ N(X) with only 1 neighbor x ∈ X, we assign x to the matching
edge (y, M(y)). Also we add y to Y1. We continue the procedure until we cannot find such a
vertex in N(X). Note that when we assign a locally superior vertex x, we remove the edges
on x.

Let X1 ⊆ X be the assigned locally superior vertices and M1 ⊆ M be the used matching
edges in the assignment procedure. Note that |Y1| = |M1|. We have

|X1| ≤ |M1|. (5)

APPROX/RANDOM 2021

10:6 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

Let X2 = X \ X1. Using a similar argument that we used for proving Observation 4, we
can show every vertex in X2 has degree at least 3. Also letting Y2 = N(X2), we observe that
y ∈ Y2 and M(y) cannot be both in Y2 as we noticed in the Observation 3. Let M2 ⊆ M be
the matching edges with one endpoint in Y2. We have |Y2| = |M2|.

Now consider the bipartite graph G′ = (X2 ∪ Y2, E′) where E′ is the set of edges between
X2 and Y2. Every planar bipartite graph with n vertices has at most 2n − 4 edges 1. Since
G′ is a bipartite planar graph, it follows,

3|X2| ≤ |E′| < 2(|X2| + |Y2|) = 2(|X2| + |M2|). (6)

This shows |X2| < 2|M2|. Letting Z = L \ X and M3 = M \ (M1 ∪ M2), we get

|L| = |X1| + |X2| + |Z| ≤ |M1| + 2|M2| + 2|M | ≤ 3|M | + |M2| − |M3|. (7)

This already proves |L| is bounded by 4|M |. To prove the bound claimed in the lemma,
we also show that |L| ≤ 3|M | + |M1| + |M3|. Combined with the inequality (7), this proves
the lemma.

Let Y = Y1 ∪ Y2. Note that Y are one side of the matching edges in M1 ∪ M2. Let
Y ′ = {M(y) | y ∈ Y }. We use a special subset of Y ′, named Y ′′ which is defined as follows.
We let Y ′′ denote the locally superior vertices in Y ′ that have degree 2 or they are adjacent
with both endpoints of an edge in M3. We make the following observation regarding the
vertices in Y ′′.

▶ Observation 6. We can assign each vertex y′ ∈ Y ′′ to a distinct e ∈ Y1 ∪ M3 where e has
no neighbor in Y ′ \ {y′}.

Proof. Consider y′ ∈ Y ′′. If y′ is adjacent with both endpoints of an edge e = (z, z′) ∈ M3,
we assign y′ to e (when there are multiple edges with this condition we pick one of them
arbitrarily.) Note that z and z′ cannot have neighbors in Y ′ other than y′ because otherwise
it would create an augmenting path.

Now suppose y′ has degree 2. Since y′ is a locally superior vertex, it must have a neighbor
z of degree at most 2. The neighbor z cannot be in Y2 ∪ X2 because the vertices in Y2 ∪ X2
have degree at least 3. We distinguish between two cases.

M(y′) ∈ Y2. In this case, z cannot be in Y1 either because the vertices in Y1 are already
of degree 2 without y′. Also z /∈ X1 because otherwise it would create an augmenting
path. The only possibility is that z is an endpoint of a matching edge in M3. We assign
y′ to the matching edge (z, z′) ∈ M3. Note that z′ cannot have a neighbor in Y ′ \ {y′}
because it would create an augmenting path.
M(y′) ∈ Y1. Here z could be in X1. If this is the case, then M(y′) cannot have a neighbor
in Y ′ \ {y′} because it would create an augmenting path. In this case, we assign y′ to
M(y′). If z = M(y′), then again we assign y′ to M(y′). The only remaining possibility is
that z an endpoint of a matching edge in M3 which we handle it similar to the previous
case. ◀

Now, assume we assign the vertices in Y ′′ to the elements in Y1 ∪ M3 according to
the above observation. Let Y ′

1 ⊆ Y1 and M ′
3 ⊆ M3 be the vertices and edges that were

used in the assignment. Let Y ′′′ be the remaining locally superior vertices in Y ′. Namely,
Y ′′′ = (L ∩ Y ′) \ Y ′′. Before making the final point, we observe that only one endpoint of the

1 For a short proof of this, combine the Euler’s formula |V | − |E| + |F | = 2 with the inequality 2|E| ≥ 4|F |
caused by each face having at least 4 sides (since there are no odd cycles) and we get |E| ≤ 2|V | − 4.

H. Jowhari 10:7

Y2 Y1

Y ′

X2 X1

M3

Figure 1 A demonstration of the construction in the proof of lemmas 2 and 5. Thick edges
represent matching edges. The unfilled vertices belong to the set Y ′′.

edges in M3 are adjacent with vertices in Y ′′′. Let Y3 be the endpoint of edges in M3 \ M ′
3

that have neighbors in Y ′′′. Consider the bipartite graph G′′(V ′′, E′′) where

V ′′ = (X2 ∪ Y ′′′) ∪
(
Y2 ∪ (Y1 \ Y ′

1) ∪ Y3
)

and E′′ is the set of edges between X2 and Y2, and the edges between Y ′′′ and Y2∪(Y1\Y ′
1)∪Y3.

Relying on the facts that G′′ is a planar bipartite graph, Y ′′′ is composed of vertices with
degree at least 3, and the edges on Y ′′′ are all in E′′, we have

3|X2| + 3|Y ′′′| ≤ |E′′| ≤ 2(|X2| + |Y2| + |Y1 \ Y ′
1 | + |Y ′′′| + |Y3|).

It follows,

|X2| + |Y ′′′| ≤ 2(|Y2| + |Y1 \ Y ′
1 | + |Y3|)

≤ 2(|M2| + |M1| − |Y ′
1 | + |M3| − |M ′

3|)
= 2(|M | − |Y ′

1 | − |M ′
3|)

Since |Y ′′| = |Y ′
1 | + |M ′

3|, we get

|X2| + |Y ′′′| ≤ 2|M | − 2|Y ′′| (8)

Let Z1, Z2 and Z3 denote the locally superior vertices that are endpoints of matching
edges in M1, M2 and M3 respectively. From the definition of Y ′′ and Y ′′′, we have

|Z1| + |Z2| ≤ |M1| + |M2| + |Y ′′| + |Y ′′′| (9)

From (8) and (9), we get

|L| = |X1| + |X2| + |Z1| + |Z2| + |Z3|
≤ |M1| + |X2| + (|M1| + |M2| + |Y ′′| + |Y ′′′|) + 2|M3|
= 2|M1| + (|X2| + |Y ′′′|) + |M2| + |Y ′′| + 2|M3|
≤ 2|M1| + |M2| + 2|M | − |Y ′′| + 2|M3|
= 3|M | + |M1| + |M3| − |Y ′′|
≤ 3|M | + |M1| + |M3|

This finishes the proof of the lemma. ◀

APPROX/RANDOM 2021

10:8 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

3 Algorithms

We first present a high-level sampling-based estimator for ℓ(G). Then we show how this
estimator can be implemented in the streaming and distributed settings using small space
and communication. For our streaming result, we use a combination of the estimator for
ℓ(G) and the greedy maximal matching algorithm. For the simultaneous protocol, we use the
estimator for ℓ(G) in combination with the edge-sampling primitive in [5] and an estimator
in [16].

The high-level estimator (described in Algorithm 1) samples a subset of vertices S ⊆ V

and computes the locally superior vertices in S. The quantity ℓ(G) is estimated from the
scaled ratio of the locally superior vertices in the sample set.

Algorithm 1 The high-level description of the estimator for ℓ(G).

Run the following estimator r = ⌈ 8
ϵ2 ⌉ number of times in parallel. In the end, report

the average of the outcomes.

1. Sample s vertices (uniformly at random) from V without replacement.
2. Let S be the set of sampled vertices.
3. Compute S′ where S′ is the set of locally superior vertices in S.
4. Return n

s |S′| as an estimation for ℓ(G).

▶ Lemma 7. Assuming s ≥ n
ℓ(G) , the high-level estimator in Algoirthm 1 returns a 1 + ε

factor approximation of ℓ(G) with probability at least 7/8.

Proof. Fix a parallel repetition of the algorithm and let X denote the outcome of the
associated estimator. Assuming an arbitrary ordering on the locally superior vertices, let
Xi denote the random variable associated with i-th locally superior vertex. We define
Xi = 1 if the i-th locally superior vertex has been sampled, otherwise Xi = 0. We have
X = n

s

∑ℓ(G)
i=1 Xi. Since Pr(Xi = 1) = s

n , we get E[X] = ℓ(G). Further we have

E[X2] = n2

s2 E
[ℓ(G)∑

i,j

XiXj

]
= n2

s2

[ℓ(G)∑
i

E[X2
i] +

ℓ(G)∑
i̸=j

E[XiXj]
]

= n2

s2

[s

n
ℓ(G) +

(
ℓ(G)

2

)
s(s − 1)
n(n − 1)

]
= n

s
ℓ(G) +

(
ℓ(G)

2

)
n(s − 1)
s(n − 1)

<
n

s
ℓ(G) + ℓ2(G)

Consequently, V ar[X] = E[X2] − E2[X] < n
s ℓ(G).

Let Y be the average of the outcomes of r parallel and independent repetitions of the basic
estimator. We have E[Y] = ℓ(G) and V ar[Y] < n

sr ℓ(G). Using the Chebyshev’s inequality,

Pr(|Y − E[Y]| ≥ εE[Y]) ≤ V ar[Y]
ε2E2[X] <

n/s

rε2ℓ(G) .

Setting r = 8
ε2 and s ≥ n

ℓ(G) , the above probability will be less than 1/8. ◀

H. Jowhari 10:9

3.1 The streaming algorithm
We first note that we can implement the high-level estimator of Algorithm 1 in the vertex-
arrival stream model using O(s

ε2 log n) space. Consider a single repetition of the estimator.
The sampled set S is selected in the beginning of the algorithm (before the stream.) This can
be done using a reservoir sampling strategy [20] in O(|S| log n) space. To decide if u ∈ S is
locally superior or not, we just need to store deg(u) and the minimum degree of the neighbors
that are visited so far. Note that when processing a vertex v ∈ V and its neighbors, we know
if v is a neighbor of u or not. Consequently, checking if u is a locally superior or not takes
O(log n) bits of space. Therefore the whole space needed to implement a single repetition is
O(s log n) bits.

The streaming algorithm runs two threads in parallel. In one thread it runs the streaming
implementation of Algorithm 1 after setting s = ⌈

√
n ⌉. In the other thread, it runs a greedy

algorithm to find a maximal matching in the input graph. We stop the greedy algorithm
whenever the size of the discovered matching F exceeds

√
n. In the end, if |F | <

√
n, we

output |F | as an approximation for m(G), otherwise we report the outcome of the first
thread.

Note that if |F | <
√

n, F is a maximal matching in G. Hence |F | ≥ 1
2 m(G). Assume

|F | ≥
√

n. In this case the algorithm outputs the result of first thread. In this case, by
Lemma 2, we know ℓ(G) ≥

√
n. Consequently, by Lemma 7, the first thread returns a

1 + O(ε) approximation of ℓ(G) and hence it returns a 3.5 + O(ε) approximation of m(G).
Since the greedy algorithm takes at most O(

√
n) space, the space complexity of the algorithm

is dominated by the space usage of the first thread. We get the following result.

▶ Theorem 8. Let G be a planar graph. There is a randomized streaming algorithm in the
vertex-arrival model that returns a 3.5 + ϵ factor approximation of m(G) using O(

√
n

ϵ2) space.

3.2 A simultaneous communication protocol
In this section we describe a communication protocol for approximating m(G) in the vertex-
partition model. Recall that in this model the vertex set V is partitioned into t subsets
V1, . . . , Vt where the subset Vi is given to the i-th player. Additionally the i-th player knows
the edges on the vertices in Vi. The players do not communicate with each other. They only
send one message to a referee whom at the end computes an approximation of the matching
size. Also we emphasize the assumption that the referee and the players have a shared source
of randomness.

To describe the simultaneous protocol, we consider two cases separately: (a) when the
matching size is low; to be precise, when it is smaller than some fixed value k = n1/3, and
(b) when the matching size is high, i.e. at least Ω(k). For each case, we describe a separate
solution. The overall protocol will be the parallel run of these two solutions along with a
sub-protocol to distinguish between the cases.

Graphs with large matching size

In the case when matching size is large, similar to what was done in the streaming model,
we run an implementation of Algorithm 1 in the given simultaneous model. To see how this
is implemented, in the simultaneous model all the players (including the referee) know the
sampled set S. This results from access to the shared randomness. For each u ∈ S, the
players send the minimum degree of the neighbors of u in his input to the referee. The player
that owns u, also sends deg(u) to the referee. Having received this information, the referee
can decide if u is a locally superior vertex or not. As result, we can implement Algorithm 1
in the simultaneous model using a protocol with O(s

ε2 log n) message size.

APPROX/RANDOM 2021

10:10 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

Graphs with small matching size

In the case where the matching size is small, we use the edge-sampling method of [5]. Here
we review their basic sampling primitive in its general form. Given a graph G(V, E), let
c : V → [b] be a totally random function that assigns each vertex in V a random number
(color) in [b] = {1, . . . , b}. The set Sampleb,d,1 is a random subset of E picked in the following
way. Given a subset K ⊆ [b] of size d ∈ {1, 2}, let EK be the edges of G where the color of
their endpoints matches K. For example when K = {3, 4}, the set E{3,4} contains all edges
(u, v) such that {c(u), c(v)} = {3, 4}. For all K ⊆ [b] of size d, the set Sampleb,d,1 picks a
random edge from EK . Finally, the random set Sampleb,d,r is the union of r independent
instances of Sampleb,d,1. We have the following lemma from [5] (see Theorems 4 in the
reference.)

▶ Lemma 9. Let G = (V, E) be a graph. Assuming m(G) ≤ k, with probability 1 − 1/poly(k),
the random set Sample100k,2,O(log k) contains a matching of size m(G).

Note that, in the simultaneous vertex-partition model, the referee can obtain an instance
of Sampleb,d,1 via a protocol with O(bd log n) message size. To see this, using the shared
randomness, the players pick the random function c : V → [b]. Let E(i) be the subset of edges
owned by the i-th player. We have E =

⋃t
i=1 E(i). To pick a random edge from EK for a

given K ⊆ [b], the i-th player randomly picks an edge e ∈ EK ∩ E(i) and sends it along with
|EK ∩ E(i)| to the referee. After receiving this information from all the players, the referee
can generate a random element of EK . Since there are O(bd) different d-subsets of [b], the
size of the message from a player to the referee is bounded by O(bd log n) bits. Consequently,
the referee can produce a rightful instance of Sampleb,d,r using O(rbd log n) communication
from each player.

How to distinguish between the cases?

For this task, we use a degree-based estimator by Mcgregor and Vorotnikova [16] described
in the following lemma.

▶ Lemma 10. Let G = (V, E) be a planar graph. Let A′(G) =
∑

u∈V min{deg(u)/2, 4 −
deg(u)/2}. We have

m(G) ≤ A′(G) ≤ 12.5 m(G).

It is easy to see that, in the simultaneous vertex-partition model, we can implement this
estimator with O(log n) bits communication from each player.

The final protocol

Let k = ⌈n1/3⌉. We run the following threads in parallel.
1. A protocol that implements the high-level estimator (Algorithm 1) with s = ⌈12.5n/k⌉

as its input parameter according to the discussions above. Let z1 be the output of this
protocol.

2. A protocol to compute an instance of Sampleb,d,r for b = 100k and d = 2 and r = O(log k).
Let z2 be the size of maximum matching in the sampled set.

3. A protocol to compute A′(G). Let z3 be the output of this thread.

In the end, if z3 ≥ k
12.5 , the referee outputs z1 as an approximation for m(G), otherwise

the referee reports z2 as the final answer.

H. Jowhari 10:11

▶ Theorem 11. Let G be a planar graph on n vertices. The above simultaneous protocol,
with probability 3/4, returns a 3.5 + O(ε) approximation of m(G) where each player sends
O(n2/3

ε2) bits to the referee.

Proof. First we note that by choosing the constants large enough, we can assume the thread
(2) errs with probability at most 1/8. If z3 ≥ k

12.5 , then we know m(G) ≥ k
12.5 . This follows

from Lemma 10. Consequently by Lemma 2, we have ℓ(G) ≥ k
12.5 . Therefore from Lemma

7, we have |z1 − ℓ(G)| ≤ εℓ(G) with probability at least 7/8. It follows from Lemma 5 that
(1 − ε)m(G) ≤ z1 ≤ (3.5 + 3.5ε)m(G).

On the other hand, if z3 < k
12.5 , by Lemma 10 we know that m(G) must be less than k.

Having this, from Lemma 9, with probability at least 7/8, we get z2 = m(G). In this case
the protocol computes the exact matching size of the graph.

The message size of each player is dominated by the cost of the first thread which is
O(n2/3ε−2 log n). The total error probability is bounded by 1/4. This finishes the proof. ◀

4 Conclusion

In this paper we presented a degree-based estimator for the size of maximum matching in
planar graphs. We showed our estimator gives a 3.5 factor approximation of the matching
size. This improves the approximation factor of the previous degree-based estimators. We
do not have tight examples for our analysis. In fact, we conjecture that ℓ(G) approximates
m(G) within 3 factor when G is planar.

Using our estimator, we obtained an improved sublinear space algorithm for estimating
the matching size in the vertex-arrival streams. We also showed a more efficient simultaneous
protocol for estimating the matching size in planar graphs. Unfortunately, the new estimator,
in spite of its simplicity, does not immediately lead to one-pass sublinear algorithm in the
edge-arrival model. To decide if a vertex is locally superior, we need to know its neighbors
and learn their degrees which becomes burdensome in one pass. However, given an extra
pass over the stream the same space bound and approximation factor is achievable for the
edge-arrival streams as well. It would be interesting to do this without the extra pass.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

2 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially faster
massively parallel maximal matching. In David Zuckerman, editor, 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 1637–1649. IEEE Computer Society, 2019. doi:10.1109/FOCS.
2019.00096.

3 Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.12.

4 Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegel-
shohn, Sofya Vorotnikova, and Samson Zhou. Structural results on matching estimation with ap-
plications to streaming. Algorithmica, 81(1):367–392, 2019. doi:10.1007/s00453-018-0449-y.

5 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with

APPROX/RANDOM 2021

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1007/s00453-018-0449-y

10:12 An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016. doi:10.1137/1.9781611974331.ch92.

6 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Piotr
Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1234–1251. SIAM,
2015. doi:10.1137/1.9781611973730.82.

7 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
pages 29:1–29:15, 2017. doi:10.4230/LIPIcs.ESA.2017.29.

8 Andrzej Czygrinow, Michal Hanckowiak, and Edyta Szymanska. Fast distributed approximation
algorithm for the maximum matching problem in bounded arboricity graphs. In Yingfei Dong,
Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Computation, 20th International
Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings, volume
5878 of Lecture Notes in Computer Science, pages 668–678. Springer, 2009. doi:10.1007/
978-3-642-10631-6_68.

9 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,
and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 1217–1233. SIAM, 2015. doi:10.1137/1.9781611973730.81.

10 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016. doi:10.1109/ICDMW.
2016.0092.

11 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC algorithms for mis, matching,
and coloring on trees and beyond. In Hagit Attiya, editor, 34th International Symposium
on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference, volume
179 of LIPIcs, pages 34:1–34:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.DISC.2020.34.

12 Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+epsilon)-
approximate matching. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA,
volume 69 of OASICS, pages 13:1–13:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/OASIcs.SOSA.2019.13.

13 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7,
2014, pages 734–751. SIAM, 2014. doi:10.1137/1.9781611973402.55.

14 Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space
efficient approximation to maximum matching size from uniform edge samples. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1753–1772. SIAM, 2020.
doi:10.1137/1.9781611975994.107.

15 Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
J. ACM, 62(5):38:1–38:17, 2015. doi:10.1145/2786753.

https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.1137/1.9781611973730.82
https://doi.org/10.4230/LIPIcs.ESA.2017.29
https://doi.org/10.1007/978-3-642-10631-6_68
https://doi.org/10.1007/978-3-642-10631-6_68
https://doi.org/10.1137/1.9781611973730.81
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.4230/LIPIcs.DISC.2020.34
https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1137/1.9781611975994.107
https://doi.org/10.1145/2786753

H. Jowhari 10:13

16 A. McGregor and S. Vorotnikova. Planar matching in streams revisited. In Proceedings of
the 19th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), 2016.

17 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. doi:10.1007/11538462_15.

18 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm
for matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 14:1–14:4, 2018. doi:
10.4230/OASIcs.SOSA.2018.14.

19 C. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc., 39(12),
1964.

20 Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57,
1985. doi:10.1145/3147.3165.

APPROX/RANDOM 2021

https://doi.org/10.1007/11538462_15
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.4230/OASIcs.SOSA.2018.14
https://doi.org/10.1145/3147.3165

An Optimal Algorithm for Triangle Counting in the
Stream
Rajesh Jayaram #

Carnegie Mellon University, Pittsburgh, PA, USA

John Kallaugher #

The University of Texas at Austin, Austin, TX, USA

Abstract
We present a new algorithm for approximating the number of triangles in a graph G whose edges
arrive as an arbitrary order stream. If m is the number of edges in G, T the number of triangles,
∆E the maximum number of triangles which share a single edge, and ∆V the maximum number of
triangles which share a single vertex, then our algorithm requires space:

Õ
(

m

T
·
(

∆E +
√

∆V

))
Taken with the Ω

(
m∆E

T

)
lower bound of Braverman, Ostrovsky, and Vilenchik (ICALP 2013), and

the Ω
(

m
√

∆V

T

)
lower bound of Kallaugher and Price (SODA 2017), our algorithm is optimal up to

log factors, resolving the complexity of a classic problem in graph streaming.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Triangle Counting, Streaming, Graph Algorithms, Sampling, Sketching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.11

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2105.01785

Funding Rajesh Jayaram: Rajesh Jayaram would like to acknowledge partial support from the
Office of Naval Research (ONR) under grant Number N00014-18-1-2562, and the National Science
Foundation (NSF) under Grant Number CCF-1815840.
John Kallaugher : John Kallaugher would like to acknowledge support from the National Science
Foundation (NSF) under Grant Number CCF-1751040 (CAREER).

1 Introduction

Triangle counting is a fundamental problem in the study of graph algorithms, and one of the
best studied in the field of graph streams. It arises in the analysis of social networks [5], web
graphs [11], and spam detection [3], among other applications. From a theoretical perspective,
it is of particular interest as the simplest subgraph counting problem that cannot be solved
by considering only local information about individual vertices. In other words, counting
triangles requires one to aggregate information between pairs of non-incident edges.

In this paper, we present an optimal algorithm for counting triangles in the graph streaming
setting, settling a long line of work on this problem.

© Rajesh Jayaram and John Kallaugher;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 11; pp. 11:1–11:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rkjayara@cs.cmu.edu
mailto:jmgk@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.11
https://arxiv.org/abs/2105.01785
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 An Optimal Algorithm for Triangle Counting in the Stream

1.1 Graph Streaming

In the (insertion-only) graph streaming setting, a graph G = (V, E) is received as a stream
of edges (σt)m

t=1 from its edge set E in an arbitrary order, and an algorithm is required to
output the answer to some problem at the end of the stream, using as little space as possible1.
Variants on this model include turnstile streaming (in which edges may be deleted as well as
inserted), and models that restrict what kind of state the algorithm may maintain.

1.2 Triangle Counting in Graph Streams

The theoretical study of graph streaming was initiated by [2], who studied the problem of
triangle counting – the problem of estimating the number of three-cliques in a graph. They
demonstrated that, in general, sublinear space algorithms cannot exist for this problem;
namely, in the worst case any algorithm for triangle counting in a stream must use Ω

(
n2)

bits of space. On the other hand, they also showed that, if one parameterizes in terms of the
number of triangles T , one can often beat this pessimistic lower bound. In particular, they
gave an algorithm that uses Õ

(
(mn

T)3)
space to count triangles in a graph with m edges,

n vertices, and T triangles, based on streaming algorithms for approximating frequency
moments.2 Of course, it is unreasonable to assume that an algorithm knows the number of
triangles T in advance, as this would make counting superfluous. Instead, it will suffice to
have constant factor bounds on the parameters in question.3

Several years later, the upper bound for this problem was improved to Õ
(

mn
T

)
by [7],

while [14] gave a (non-comparable) algorithm that samples edges and stores neighborhoods of
their endpoints in order to find triangles, achieving Õ

(
md2

T

)
space in graphs with maximum

degree d. Both algorithms were later subsumed by the Õ
(

md
T

)
space algorithm of [23].

1.3 Additional Graph Parameters for Triangle Counting

Despite the large strides made by the aforementioned algorithms, none of them can achieve
sublinear space, even for graphs guaranteed to have as many as Ω(m) triangles, without
bounding parameters of the graph other than m and T . This feature was shown to be
necessary by [6], who constructed a family of graphs with either 0 or Ω(m) triangles such
that distinguishing between the two requires Ω(m) space. However, this “hard instance” is
an unusual graph – every triangle in it shares a single edge. This motivated the introduction
of a new graph parameter ∆E , defined as the maximum number of triangles which share a
single edge in G. When one parameterizes in terms of ∆E , the lower bound of [6] becomes
Ω

(
m∆E

T

)
. As it happens, the maximum degree of graphs in this family is also ∆E , so in

particular this proves [23] to be optimal among algorithms parametrized by only m, d, and T .

1 Other properties, such as update time, are also of interest, but space has been the primary object of
study in the theory of streaming.

2 Here we assume the desired approximation is a multiplicative (1 ± ε) with success probability δ for some
positive constants ε, δ. For most algorithms mentioned here, including our own, the dependence on
non-constant ε, δ will go as ε−2 log δ−1. We use Õ(·) to suppress logarithmic or polylogarithmic factors
in the argument.

3 One might hope to use these parameters adaptively, giving an algorithm that uses more space the
smaller T is without needing a lower bound at the start. However, this is in general impossible, as a
graph stream with few triangles and a graph stream with many triangles may be indistinguishable until
the last few updates.

R. Jayaram and J. Kallaugher 11:3

The first algorithm to directly take advantage of the new parameter ∆E was given
by [24]. Their algorithm is simple: keep each edge in the stream independently with
probability p, count the number of triangles T ′ in the resulting graph, and output T ′p−3.
They show that setting p = O

(1
T 1/3 + ∆E

T

)
suffices for an accurate count, and thereby achieve

Õ
(
m

(1
T 1/3 + ∆E

T

))
space.

This algorithm has another important feature: it is a non-adaptive sampling algorithm –
whether it keeps an edge it sees does not depend on the contents of the stream before the
edge arrives. This means it can naturally handle turnstile streams, streams in which edges
may be deleted as well as inserted. In fact, through the use of sketches for ℓ0 sampling (see
e.g. [10]) such algorithms may be converted into linear sketches, which are algorithms that
store only a linear function of their input (when considered as a vector in {0, 1}(

|V |
2)).

An improved non-adaptive sampling algorithm was given in [22], which used the technique
of coloring vertices with one of k colors, and keeping all monochromatic edges. This improved
the space usage of the algorithm to Õ

(
m

(
1√
T

+ ∆E

T

))
. In [17], it was shown (in combination

with the existing lower bound of [6]) that this is optimal, even for insertion-only algorithms –
for every T up to Ω(m), a family of graphs exist with ∆E ≤ 1 and either 0 or T triangles,
such that Ω

(
m√

T

)
space is required to distinguish the two.

However, as with the lower bound of [6], the hard instance from [17] is a rather strange
graph: this time every triangle shares a single vertex. Also similarly to the lower bound
of [6], the bound from [17] weakens as the maximum number of triangles sharing a single
vertex, a parameter denoted by ∆V , is restricted. In this case, when parameterized by ∆V ,
the lower bound becomes Ω

(
m

√
∆V

T

)
. This was accompanied in [17] by an algorithm that

achieves Õ
(

m
(

1
T 2/3 +

√
∆V

T + ∆E

T

))
space, improving on [22] for graphs with ∆V = o(T).

Subsequently, it was shown in [15] that any linear sketching algorithm for counting
triangles requires Ω

(
m

T 2/3

)
space, even if every triangle is disjoint from every other and

therefore ∆E = ∆V ≤ 1, and so the [17] algorithm is optimal among linear sketches. By the
turnstile streaming-linear sketching equivalence of [20], this suggests that [17] is also optimal
among turnstile streaming algorithms.4

However, this leaves open the question of how hard triangle counting is for algorithms
that are not required to handle deletions (i.e., the standard “insertion-only” model). We
resolve this question (up to a log factor, as with previous optimality results), by giving an
optimal algorithm for triangle counting in insertion-only streams.

1.4 Our Algorithm
We give a new algorithm for counting triangles in insertion-only graph streams. For every
ε, δ ∈ (0, 1), there is an algorithm for insertion-only graph streams that approximates the
number of triangles in a graph G to εT accuracy with probability 1− δ, using

O
(

m

T

(
∆E +

√
∆V

)
log n

log 1
δ

ε2

)
bits of space, where m is the number of edges in G, T the number of triangles, ∆E the
maximum number of triangles which share a single edge, and ∆V the maximum number of
triangles which share a single vertex.

4 However, the [20] equivalence depends on rather stringent conditions that a turnstile algorithm must
satisfy. In [18], it was shown that relaxing these conditions allows turnstile streaming algorithms for
triangle counting that are closer to the result of [14].

APPROX/RANDOM 2021

11:4 An Optimal Algorithm for Triangle Counting in the Stream

Table 1 Best known upper and lower bounds for triangle counting for insertion-only and linear
sketching algorithms. m is the number of edges, T the number of triangles, d the maximum degree,
and ∆E , ∆V are the maximum number of triangles sharing an edge or a vertex respectively. Note
that linear sketching upper bounds imply insertion-only upper bounds, while lower bounds are the
opposite.

Paper Space Model

[23] Õ
(

md
T

)
Insertion-only

[6] Ω
(

m∆E
T

)
Insertion-only

[17] Ω
(

m
√

∆V

T

)
Insertion-only

[22] Õ
(

m
(

1√
T

+ ∆E
T

))
Linear Sketching

[17] Õ
(

m
(

1
T 2/3 +

√
∆V

T
+ ∆E

T

))
Linear Sketching

[15] Ω
(

m

T 2/3

)
Linear Sketching

This work Õ
(

m
T

(
√

∆V + ∆E)
)

Insertion-only

This matches, up to a log factor (and for constant ε, δ), the lower bounds of [6] and [17]. It
subsumes both the algorithm of [17] and the Õ

(
md
T

)
algorithm of [23], as in any graph with

max degree d, we have ∆E ≤ d and ∆V ≤
(

d
2
)
. This closes the line of work discussed above

on the complexity of triangle counting in insertion-only streams.

1.5 Other Related Work
In the multi-pass streaming setting, an algorithm is allowed to pass over the input stream
more than once. [9] shows multipass algorithms take Θ̃

(
m/
√

T
)

space for arbitrary graphs,
giving an algorithm for two passes and a lower bound for a constant number of passes. [19]
shows a three pass streaming algorithm using O(

√
m+m3/2/T) space. [4] gave a O

(
m3/2/T

)
four pass algorithm.

In the adjacency-list model, in which each vertex’s list of neighbors is received as a
block (and so in particular every edge is seen twice), [21] gave a O

(
m/
√

T
)

space one-pass
algorithm, while [16] gave O

(
m/T 2/3)

space 2-pass algorithm, as well as tight (but conditional
on open communication complexity conjectures) lower bounds for both.

The problem has also been studied in the query model, in which case rather than space
the concern is minimizing time or query count. While this is a very different setting, similar
concerns around mitigating the impact of “heavy” vertices or edges arise. [12] considered
triangle counting in this setting, which was extended by [13] to general cliques and [1] to
arbitrary constant-size subgraphs.

2 Overview of the Algorithm

At a high-level, many triangle counting algorithms in the literature adhere to the following
template: (1) design a sampling scheme to sample triangles, (2) count the number of triangles
which survive after this sampling process, (3) rescale the number of empirically sampled
triangles by the expected fraction of surviving triangles to obtain an unbiased estimator
for T .

R. Jayaram and J. Kallaugher 11:5

As an example, one could sample each edge uniformly with probability q (this is the
approach taken in [24]). Since for a triangle to survive all three of its edges must be
sampled, the expected number of triangles that survive is Tq3. Thus, rescaling the number
of empirically sampled triangles by 1/q3 yields an unbiased estimator. How large must q be
to make this estimator accurate? In order to sample even a single triangle we need Tq3 ≥ 1,
so clearly q must be at least 1/T 1/3. Moreover, if ∆E is the largest number of triangles that
share an edge, there might be as few as T/∆E “heavy” edges such that sampling a triangle
requires sampling at least one of them, and so q must be at least ∆E/T . It turns out that,
up to constant factors, this is also sufficient, and so the space needed by this algorithm is
Õ

(
m

(1
T 1/3 + ∆E

T

))
bits.

The starting point for our algorithm is the following simple observation, which can be
seen as an optimization to the sampling algorithm above. Given three edges uv, vw, wu ∈ E

arriving in a stream in that order, once the first two edges uv, vw have been sampled and
stored, upon seeing the “completing” edge wu, we will know that the triangle uvw exists
in G, and may count it immediately – we get the closing edge of each triangle “for free”.
Now for a single triangle to be sampled, we only need to sample the first two edges, and so
the probability of finding any given triangle improves to q2, allowing a space complexity of
Õ

(
m

(
1√
T

+ m∆E

T

))
. However, when ∆V = o(T), this is still weaker than allowed by the

Ω
(

m
T (
√

∆V + ∆E)
)

lower bound that results from combining the results of [6, 17].
While the aforementioned algorithm is sub-optimal in general, notice that it does match

the lower bounds in the extreme case when ∆V = T , and all triangles share a single vertex.
On the other hand, when ∆V is smaller, there are more “fully disjoint” triangles in the graph.
Consequentially, we can afford to subsample by vertices, as now dropping a single vertex
cannot lose too large a fraction of our triangles. We may sample vertices uniformly with
some probability p, and deterministically store all edges adjacent to at least one sampled
vertex, again counting a triangle whenever we observe an edge wu closing a sampled pair
uv, vw. Each such triangle will be counted iff the “first” vertex v of the triangle is sampled,
and these may be divided among as few as T/∆V “heavy” vertices, so p must be at least
∆V /T . This again turns out to be sufficient, for a space usage of Õ

(
m∆V

T

)
(note that any

pair of edges sharing an edge also share a vertex, so ∆E ≤ ∆V , and thus this does not violate
the known lower bounds). While this is an improvement on the aforementioned adaptive
edge-sampling scheme for small ∆V , it becomes worse once ∆V >

√
T .

The crucial insight behind our algorithm is to merge the two aforementioned algorithms
with a careful choice of parameterization. Specifically, we sample both edges and vertices,
before counting triangles that we see closing our sampled wedges. Specifically, we sample
vertices v ∈ V in the graph with probability p ∈ (0, 1], and then “activate” each edge e ∈ E

with probability q ∈ (0, 1]. When an edge uv ∈ E arrives in the stream, we store it iff uv is
active and at least one of the vertices u or v was sampled. We denote by S the set of all edges
stored by the algorithm. Finally, when a closing edge wu arrives that completes a triangle
with edges uv, vw that were previously added to S, we check if the vertex v at the center of
the wedge uv, vw was sampled, and if so we deterministically increment a counter C.

Now observe that, for any given triangle uvw, the probability that uvw causes C to be
incremented is exactly pq2. Thus, if we output the quantity C/(pq2) at the end of the stream,
we obtain an unbiased estimator for the number of triangles in G.

Notice that when p = 1 our algorithm reduces to the simpler edge-sampling algorithm
stated above. At the other extreme, when q = 1 our algorithm reduces to the vertex
sampling algorithm. Intuitively, our choice of the parameters p and q are subject to the same
constraints faced by the aforementioned edge- and vertex-sampling algorithms. Firstly, p

APPROX/RANDOM 2021

11:6 An Optimal Algorithm for Triangle Counting in the Stream

must be at least ∆V /T , otherwise the algorithm could miss a “heavy” vertex. Furthermore,
the product pq must be at least ∆E/T , to avoid missing “heavy” edges, and pq2 must be at
least 1/T to find any triangles at all. Putting these bounds together, it follows that q must
be at least max

{
∆E

∆V
, 1√

∆V

}
.

As with all the algorithms discussed so far, this turns out to also be sufficient – we
demonstrate that by fixing the sampling parameters5

p = ∆V

T
, q ≥ max

{
∆E

∆V
,

1√
∆V

}
we obtain an algorithm using space O

(
m
T

(
∆E +

√
∆V

)
log n

)
which yields an O

(
T 2)

variance
estimator. We may therefore obtain a (1± ε) multiplicative estimate with probability 1− δ

by using O
(1

ε2 log 1
δ

)
copies of this algorithm.

Consequentially one obtains an algorithm matching, up to a log factor, the lower bounds
of [6, 17], with optimal space usage in terms of m, T, ∆E , ∆V .

3 The Triangle Counting Algorithm

Let G = (V, E) be a graph on n vertices, received as a stream of undirected edges, adversarially
ordered. Let m be the number of edges in the stream. We write the stream as σ = (σi)m

i=1,
with each σi ∈ E. We use T to refer to the number of triangles in G, ∆E to refer to the
maximum number of them sharing a single edge, and ∆V the maximum number sharing a
single vertex.
▶ Remark 1. As with all streaming triangle counting algorithms, our algorithm will need to
be parametrized by statistics of the graph that cannot be known exactly without trivializing
the problem – in our case T , ∆E , and ∆V . However, it will not be necessary to know
these exactly – an upper bound on ∆E , ∆V and a lower bound on T will be sufficient. If
these bounds are tight up to a constant, the complexity of our algorithm will be unchanged,
otherwise replace the parameters T , ∆E , ∆V with the respective upper and lower bounds.

3.1 Description of the Algorithm
We begin by choosing two hash functions f : V → {0, 1} and g : E → {0, 1}, which will serve
as our “vertex sampling” and “edge sampling” functions, respectively. We choose f to be
pair-wise independent. g will only be evaluated at most once for each edge, and so we may
choose it to be fully independent. We pick the two functions f , g such that

E[f(v)] = p

for each v ∈ V and

E[g(e)] = q

for each e ∈ E, where p, q are parameters to be set later. Such a hash function f can be
generated by taking a two-wise independent function h : V → [M], where M = poly(n)
is a sufficiently large multiple of 1/p, and setting f(v) = 1 whenever h(v) ≤ pM (one can
construct g similarly using a four-wise independent hash function). Such functions can be
generated and stored in at most O(log n) bits of space [8].

5 As mentioned earlier, ∆E ≤ ∆V , while ∆V ≤ T holds trivially. Thus p, q are valid probabilities.

R. Jayaram and J. Kallaugher 11:7

The algorithm will be simple: sample vertices with probability p, sample incident edges
with probability q. The formal description is given below in Algorithm 1.

Algorithm 1 Triangle Counting Algorithm.

1: procedure TriangleCounting(p, q)
2: S ← ∅
3: T← 0
4: for each update wv do
5: for u ∈ V do
6: if f(u) > 0 ∧ uv, uw ∈ S then
7: T += 1/pq2

8: end if
9: end for

10: if g(wv)(f(w) + f(v)) > 0 then
11: S ← S ∪ {wv}
12: end if
13: end for
14: return T.
15: end procedure

3.2 Analysis of the Algorithm

▶ Lemma 2. This algorithm uses O(mpq log n) bits of space.

Proof. Besides an O(log n) sized counter and the hash function f (g is never evaluated more
than once for an edge and thus does not need to be stored), the algorithm maintains a set
of edges. Each edge will be kept with probability at most 2pq and takes O(log n) space to
store, so the result follows. ◀

We will write Tuvw for the variable that is 1 if uvw is a triangle in G with its edges
arriving in the order (uv, uw, vw), and 0 otherwise, and so

T =
∑

(u,v,w)∈V 3

Tuvw.

We will write Tuvw for the random variable that is 1/pq2 if Tuvw = 1 and f(u)g(uv)g(uw) = 1,
and 0 otherwise. We will therefore have

T =
∑

(u,v,w)∈V 3

Tuvw.

▶ Lemma 3.

E
[
T

]
= T .

APPROX/RANDOM 2021

11:8 An Optimal Algorithm for Triangle Counting in the Stream

Proof. For any (u, v, w), f(u)g(uv)g(uw) = 1 with probability pq2, so E
[
Tuvw

]
= Tuvw.

Therefore,

E
[
T

]
=

∑
(u,v,w)∈V 3

E
[
Tuvw

]
=

∑
(u,v,w)∈V 3

Tuvw

= T ◀

▶ Lemma 4.

Var
(
T

)
≤ T/pq2 + T∆E/pq + T∆V /p.

Proof. Consider any (ordered) pair of triples (u, v, w), (x, y, z) ∈ V 3 such that TuvwTxyz = 1.
If (u, v, w) = (x, y, z), TuvwTxyz = 1/p2q4 with probability pq2 and 0 otherwise, so

E
[
TuvwTxyz

]
= E

[
T2

uvw

]
= 1/pq2.

At most T such pairs of triples can exist.
Now, if |{uv, uw} ∩ {xy, xz}| = 1, then u = x and so TuvwTxyz = 1/p2q4 iff f(u) = 1

and g(e) = 1 for all e in the size-3 set {uv, uw, xy, xz}, which happens with probability pq3,
and so

E
[
TuvwTxyz

]
= 1/pq.

Each triangle has at most ∆E other triangles it shares an edge with, so there are at most
T∆E such pairs.

If {uv, uw} ∩ {xy, xz} = ∅ but u = x, then TuvwTxyz = 1/p2q4 iff f(u) = 1 and g(e) = 1
for all e in the size-4 set {uv, uw, xy, xz}, which happens with probability pq4, and so

E
[
TuvwTxyz

]
= 1/p.

Each triangle has at most ∆V other triangles it shares a vertex with, so there are at most
T∆V such pairs.

Finally, if {u, v, w} ∩ {x, y, z} = ∅, then TuvwTxyz = 1/p2q4 iff f(u) = 1, f(x) = 1, and
g(e) = 1 for all e in the size-4 set {uv, uw, xy, xz}, which happens with probability p2q4,
and so

E
[
TuvwTxyz

]
= 1.

At most T 2 such pairs can exist. Therefore,

E
[
T2]

=
∑

(u,v,w)∈V 3

∑
(x,y,z)∈V 3

E
[
TuvwTxyz

]

=
∑

(u,v,w)∈V 3

E
[
T2

uvw

]
+

∑
(u,v,w)∈V 3

 ∑
(x,y,z)∈V 3

|{uv,uw}∩{xy,xz}|=1

E
[
TuvwTxyz

]
+

∑
(x,y,z)∈V 3

{uv,uw}∩{xy,xz}=∅
u=x

E
[
TuvwTxyz

]
+

∑
(x,y,z)∈V 3

{u,v,w}∩{x,y,z}=∅

E
[
TuvwTxyz

]

≤ T/pq2 + T∆E/pq + T∆V /p + T 2

R. Jayaram and J. Kallaugher 11:9

by adding the previously established bounds for all four kinds of pair. The lemma then
follows from the fact that Var

(
T

)
= E

[
T2]
− E

[
T

]2 = E
[
T2]
− T 2. ◀

We may now prove Theorem 1.4. For every ε, δ ∈ (0, 1), there is an algorithm for
insertion-only graph streams that approximates the number of triangles in a graph G to εT

accuracy with probability 1− δ, using

O
(

m

T

(
∆E +

√
∆V

)
log n

log 1
δ

ε2

)
bits of space, where m is the number of edges in G, T the number of triangles, ∆E the
maximum number of triangles which share a single edge, and ∆V the maximum number of
triangles which share a single vertex.

Proof. We may assume ∆V (more specifically, the upper bound we have on it) is at least
1, as otherwise we already know G to be triangle-free. By Lemmas 3 and 4, we can set
p = ∆V /T , q = max

{
∆E/∆V , 1/

√
∆V

}
and run Algorithm 1 to obtain an estimator with

expectation T and variance at most 3T 2. (These will give valid probabilities, as ∆V ≤ T

by definition, and ∆E is at least ∆V , as any pair of triangles sharing an edge also share a
vertex.) By Lemma 2, this will take O

(
m
T

(
∆E +

√
∆V

)
log n

)
space.

Repeating this 36/ε2 times and taking the mean will give an estimator with expectation
T and variance at most εT 2/2. We can then repeat this O

(
log 1

δ

)
times and take the median

to get an estimator that will be within εT of T with probability 1− δ. ◀

4 Conclusion

We resolve the complexity of triangle counting in the insertion-only streaming model, in
terms of the well-studied natural graph parameters m, T, ∆E , ∆V . The results of [15] resolved
this problem for the linear sketching model, and a result of [20] states that, under certain
conditions, turnstile streaming algorithms are equivalent to linear sketches, suggesting that
the algorithm of [17] is optimal for turnstile streams as well. However, [18] showed that
an insertion-only algorithm of [14] can be converted into a turnstile streaming algorithm
provided that, for instance, the length of the stream is reasonably constrained (with the
number of insertions and deletions no more than O(1) times the final size of the graph).
It remains open whether this algorithm can be converted into a turnstile algorithm under
such constraints, or whether the bounded-stream turnstile complexity of triangle counting is
somewhere between insertion-only and linear sketching.

Another natural question is about the choice of parameters – the algorithm of [22] is
optimal in terms of m, T , and ∆E , but not when the parameter ∆V is considered. Are there
natural extensions of the parametrization that allow for better results? The results of [17]
include a proof of instance-optimality for a restricted subclass of non-adaptive sampling
algorithms, but for more general algorithms it is clear that there are at least unnatural
extensions of the parametrization that help. For instance, if all the edges of a graph are
guaranteed to belong to high-degree vertices, but all the triangles belong to low-degree
vertices, a simple filtering strategy allows an improvement.

In particular, the lower bound instances of [6, 17] are both sparse graphs, and so cannot
be constructed if n is constrained to be small relative to m or T . For the most dense
graphs (with Θ

(
n2)

edges and Θ
(
n3)

triangles) our algorithm and the algorithm of [17] are
already trivially optimal up to log factors, since they use only polylog(n) bits. However, the
complexity landscape for more general dense graphs remains open.

APPROX/RANDOM 2021

11:10 An Optimal Algorithm for Triangle Counting in the Stream

References
1 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm

for counting arbitrary subgraphs via edge sampling. In Avrim Blum, editor, 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, volume 124 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

2 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 623–632, Philadelphia,
PA, USA, 2002. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=545381.545464.

3 Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, pages
16–24, New York, NY, USA, 2008. ACM. doi:10.1145/1401890.1401898.

4 Suman K. Bera and Amit Chakrabarti. Towards Tighter Space Bounds for Counting Triangles
and Other Substructures in Graph Streams. In 34th Symposium on Theoretical Aspects of
Computer Science (STACS 2017), volume 66 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 11:1–11:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

5 Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips.
Tolerating the community detection resolution limit with edge weighting. Phys. Rev. E,
83:056119, May 2011. doi:10.1103/PhysRevE.83.056119.

6 Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in
the streaming model? In Automata, Languages, and Programming, pages 244–254. Springer,
2013.

7 Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 253–262.
ACM, 2006.

8 J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. Journal of
computer and system sciences, 18(2):143–154, 1979.

9 Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph streams.
Theoretical Computer Science, 552:44–51, 2014.

10 Graham Cormode and Hossein Jowhari. Lp samplers and their applications: A survey. ACM
Comput. Surv., 52(1), 2019. doi:10.1145/3297715.

11 Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers
in the world wide web. Proceedings of the National Academy of Sciences, 99(9):5825–5829,
2002. doi:10.1073/pnas.032093399.

12 Talya Eden, Amit Levi, Dana Ron, and C. Seshadhri. Approximately counting triangles in
sublinear time. In Proceedings of the 56th FOCS, pages 614–633. IEEE, 2015.

13 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in
sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, page 722–734, New York, NY, USA, 2018. Association for Computing
Machinery.

14 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Computing and Combinatorics, pages 710–716. Springer, 2005.

15 John Kallaugher, Michael K10.1145/3188745.3188810oapralov, and Eric Price. The sketching
complexity of graph and hypergraph counting. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 556–567. IEEE, 2018.

http://dl.acm.org/citation.cfm?id=545381.545464
http://dl.acm.org/citation.cfm?id=545381.545464
https://doi.org/10.1145/1401890.1401898
https://doi.org/10.1103/PhysRevE.83.056119
https://doi.org/10.1145/3297715
https://doi.org/10.1073/pnas.032093399

R. Jayaram and J. Kallaugher 11:11

16 John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity of
counting cycles in the adjacency list streaming model. In Dan Suciu, Sebastian Skritek, and
Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, pages 119–133. ACM, 2019. doi:10.1145/3294052.3319706.

17 John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1778–1797.
SIAM, 2017.

18 John Kallaugher and Eric Price. Separations and equivalences between turnstile streaming
and linear sketching. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1223–1236. ACM,
2020. doi:10.1145/3357713.3384278.

19 Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E Tsourakakis. Efficient
triangle counting in large graphs via degree-based vertex partitioning. Internet Mathematics,
8(1-2):161–185, 2012.

20 Yi Li, Huy L. Nguyễn, and David P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 174–183, 2014. doi:10.1145/2591796.2591812.

21 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting triangles
in data streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS ’16, pages 401–411, New York, NY, USA, 2016. ACM.
doi:10.1145/2902251.2902283.

22 Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012.

23 A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
sampling triangles from a graph stream. Proc. VLDB Endow., 6(14):1870–1881, 2013. doi:
10.14778/2556549.2556569.

24 Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion: counting
triangles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 837–846. ACM, 2009.

APPROX/RANDOM 2021

https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1145/3357713.3384278
https://doi.org/10.1145/2591796.2591812
https://doi.org/10.1145/2902251.2902283
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569

Matching Drivers to Riders: A Two-Stage Robust
Approach
Omar El Housni #

School of Operations Research and Information Engineering, Cornell Tech, New York, NY, USA

Vineet Goyal #

Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

Oussama Hanguir #

Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

Clifford Stein #

Industrial Engineering and Operations Research, Columbia University, New York, NY, USA

Abstract
Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing
platforms who need to match the riders (almost) as soon as the request arrives with only partial
knowledge about future ride requests. A myopic approach that computes an optimal matching for
current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a
two-stage robust optimization framework for this matching problem where future demand uncertainty
is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match
the current request to drivers (in the first stage) so that the cost of first stage matching and the
worst-case cost over all scenarios for the second stage matching is minimized. We show that this
two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We
present constant approximation algorithms for both models of uncertainty under different settings
and show they improve significantly over standard greedy approaches.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases matching, robust optimization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.12

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2011.03624

Funding Clifford Stein: Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

1 Introduction

Matching demand (riders) with supply (drivers) is a fundamental problem for ride-hailing
platforms such as Uber, Lyft and DiDi. These platforms need to continually make efficient
matching decisions with only partial knowledge of future ride requests. A common approach
in practice is batched matching: instead of matching each request sequentially as it arrives,
aggregate the requests for a short amount of time (typically one to two minutes) and match
the aggregated requests to available drivers in one batch [42, 33, 44]. However, computing
this batch matching myopically without considering future requests can lead to a highly
sub-optimal outcome for some subsequent drivers and riders.

Motivated by this shortcoming, and by the possibility of using historical data to hedge
against future uncertainty, we study a two-stage framework for matching problems where
the future demand uncertainty is modeled as a set of scenarios that are specified explicitly or
implicitly. The goal is to compute a matching between the available drivers and the first
batch of riders such that the total worst-case cost of first stage and second stage matching

© Omar El Housni, Vineet Goyal, Oussama Hanguir, and Clifford Stein;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oe46@cornell.edu
mailto:vg2277@columbia.edu
mailto:oh2204@columbia.edu
mailto:cs2035@columbia.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.12
https://arxiv.org/abs/2011.03624
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Matching Drivers to Riders: A Two-Stage Robust Approach

is minimized. More specifically, we consider an adversarial model of uncertainty where the
adversary observes the first stage matching of our algorithms and presents a worst-case
scenario from the list of specified scenarios in the second stage. We focus on the case where
the first stage cost is the average weight of the first stage matching, and the second stage
cost is the highest edge weight in the second stage matching. This is motivated by the goal of
computing a low-cost first stage matching while also minimizing the worst case waiting time
for any rider in any second stage. All the results of this paper hold when the first stage cost
is the highest edge weight of the first stage matching. We also study several other metrics in
the full version. We consider two common models to describe the uncertainty in the second
stage: an explicit list of all possible scenarios and an implicit description of the scenarios
using a cardinality constraint. Two-stage robust optimization is a popular model for hedging
against uncertainty [8, 19]. Several combinatorial optimization problems have been studied
in this model, including Set Cover, Capacity Planning [7, 11] and Facility Location [22].
While online matching is a classical problem in graph theory, two-stage matching problems
with uncertainty, have not been studied extensively. We present related work in Section 1.2.

1.1 Our Contributions
Problem definition. We consider the following Two-stage Robust Matching Problem. We
are given a set of drivers D, a set of first stage riders R1, a universe of potential second stage
riders R2 and a set of second stage scenarios S ⊆ P(R2)1. We are given a metric distance d

on V = R1 ∪ R2 ∪ D. The goal is to find a subset of drivers D1 ⊆ D (|D1| = |R1|) to match
all the first stage riders R1 such that the sum of cost of first stage matching and worst-case
cost of second stage matching (between D \ D1 and the riders in the second stage scenario)
is minimized. More specifically,

min
D1⊂D

{
cost1(D1, R1) + max

S∈S
cost2(D \ D1, S)

}
.

The first-stage decision is denoted D1 and its cost is cost1(D1, R1). Similarly, the second
stage cost for scenario S is denoted cost2(D \ D1, S), and max{cost2(D \ D1, S) | S ∈ S}
is the worst-case cost over all possible scenarios. Let |R1| = m, |R2| = n. We denote the
objective function for a feasible solution D1 by

f(D1) = cost1(D1, R1) + max
S∈S

cost2(D \ D1, S).

We assume that there are sufficiently many drivers to satisfy both first and second stage
demand. Given an optimal first-stage solution D∗

1 , we denote

OPT1 = cost1(D∗
1 , R1), OPT2 = max{cost2(D \ D∗

1 , S) | S ∈ S},

OPT = OPT1 + OPT2.

We consider the setting where the first stage cost is the average weight of the matching
between D1 and R1, and the second stage cost is the bottleneck matching cost between
D \ D1 and S. The bottleneck matching is the matching that minimizes the longest edge
in a maximum cardinality matching between D \ D1 and S. We refer to this variant as
the Two-Stage Robust Matching Bottleneck Problem (TSRMB). Formally, let M1 be the
minimum weight perfect matching between R1 and D1, and given a scenario S, let MS

2 be

1 P(R2) is the power set of R2, the set of all subsets of R2.

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:3

Figure 1 Bipartite graph of drivers and riders in our two-stage matching problem.

the bottleneck matching between the scenario S and the available drivers D \ D1, then the
cost functions for the TSRMB are:

cost1(D1, R1) = 1
m

∑
(i,j)∈M1

d(i, j), and cost2(D \ D1, S) = max
(i,j)∈MS

2

d(i, j).

The difference between the first and second stage metrics is motivated by the fact that
the platform has access to the current requests and can exactly compute the cost of the
matching. On the other hand, to ensure the robustness of the solution, we require all
second stage assignments to have low waiting times by accounting for the maximum wait
time in every scenario. We choose the first stage cost to be the average matching weight
instead of the total weight for homogeneity reasons, so that first and second stage costs have
comparable magnitudes. The bottleneck objective, i.e., finding a subgraph of a certain kind
that minimizes the maximum edge cost in the subgraph, has been considered extensively in
the literature [21, 16, 17]. While the main body of this paper will focus on studying TSRMB,
we note that all our results hold when the first (resp. second) stage cost is equal to the
highest edge weight in the first (resp. second) stage matching. In the full version, we study
other variants of cost metrics, including a stochastic variant of TSRMB, and the case where
both first and second stage costs are simply the total matching weights.

Hardness. We show that TSRMB is NP-hard even for two scenarios and NP-hard to
approximate within a factor better than 2 for three scenarios. We also show that even when
the scenarios are singletons, the problem is NP-hard to approximate within a factor better
than 2. Given these hardness results, we focus on approximation algorithms for the TSRMB
problem. A natural candidate is the greedy approach that minimizes only the first stage cost
without considering the uncertainty in the second stage. However, we show that this myopic
approach can be bad as Ω(m) · OPT (See Figure 2.)

Approximations algorithms. We consider both explicit and implicit models of uncertainty.
For the case of explicit model with two scenarios, we give a constant factor approximation
algorithm for TSRMB (Theorem 4). We further generalize the ideas of this algorithm to a

APPROX/RANDOM 2021

12:4 Matching Drivers to Riders: A Two-Stage Robust Approach

Table 1 Summary of our results, where surplus ℓ = |D| − |R1| − k.

Uncertainty Approx Hardness
Explicit (2 scenarios) 5 NP-Hard
Explicit (p scenarios) O(p1.59) 2

Implicit (surplus ℓ = 0) 3 -
Implicit (ℓ < k and k ≤

√
n/2) 17 2

constant approximation for any fixed number of scenarios (Theorem 6). Our approximation
does not depend on the number of first stage riders or the size of scenarios but depends on
the number of scenarios. The main idea is to reduce the problem with multiple scenarios
to an instance with a single representative scenario while losing only a small factor. We
then solve the single scenario instance (in polynomial time) to get an approximation for our
original problem. The challenge in constructing the representative scenario is to find the
right trade-off between capturing the demand of all second stage riders and keeping the cost
of this scenario close to the optimal cost of the original instance.

For the implicit model of uncertainty, we consider the setting where we are given a
universe of second stage riders R2 and an integer k, and any subset of size less than k can
be a scenario. Therefore, S = {S ⊂ R2 s.t. |S| ≤ k}. The scenarios can be exponentially
many in k, which makes even the evaluation of the cost of a feasible solution challenging
and not necessarily achievable in polynomial time. Our analysis depends on the imbalance
between supply and demand. In fact, when the number of drivers is very large compared to
riders, the problem is less interesting in practice. However, it becomes interesting when the
supply and demand are comparable. In this case, drivers might need to be shared between
different scenarios. This leads us to define the notion of surplus ℓ = |D| − |R1| − k, which is
the maximum number of drivers that we can afford not to use in a solution. As a warm-up,
we first show that if the surplus is equal to zero (all the drivers are used), using any scenario as
a representative scenario gives a 3-approximation. The problem becomes significantly more
challenging even with a small surplus. We show that under a reasonable assumption on
the size of scenarios, there is a constant approximation in the regime when the surplus ℓ is
smaller than the demand k (Theorem 9). Our algorithm is based on finding a clustering of
drivers and riders that yields a simplified instance of TSRMB which can be solved within
a constant factor. We show that we can cluster the riders into a ball (riders close to each
others) and a set of outliers (riders far from each others) and apply ideas from the explicit
scenario analysis. Finally, since the number of scenarios can be exponential, we construct a
set of a polynomial number of proxy scenarios on which we evaluate any feasible solution within
a constant approximation. Table 1 summarizes our results. Due to space constraints, we defer
some of the proofs to the appendix.

1.2 Related Work

Online bipartite matching. Finding a maximum cardinality bipartite matching has received a
considerable amount of attention over the years. Online matching was first studied by Karp
et al. [27] in the adversarial model. Since then, many online variants have been studied [37].
This includes AdWords [4, 5, 38], vertex-weighted [1, 6], edge-weighted [20, 31], stochastic
matching [12, 35, 39, 13], random vertex arrival [18, 26, 34, 23], and batch arrivals [32, 14, 44].
In the online bipartite metric matching variant, servers and clients correspond to points
from a metric space, and the objective is to find the minimum weight maximum cardinality

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:5

matching. Khullet et al. [29] and Kalyanasundaram and Pruhs [24] provided deterministic
algorithms in the adversarial model. In the random arrival model, Meyerson, et al. [40] and
Bansal et al. [2] provided poly-logarithmic competitive algorithms. Recently, Raghvendra
[41] presented a O(log n)-competitive algorithm.
Two-stage stochastic combinatorial optimization. Within two-stage stochastic optimization,
matching has been studied under various models. Kong and Schaefer [30] and Escoffier et al.
[9] studied the stochastic two-stage maximum matching problem. Katriel et al. [28] studied
the two-stage stochastic minimum weight maximum matching. Feng and Niazadeh [14] study
K-stage variants of vertex weighted bipartite b-matching and AdWords problems, where
online vertices arrive in K batches. More recently, Feng et al. [15] initiate the study and
present online competitive algorithms for vertex-weighted two-stage stochastic matching as
well as two-stage joint matching and pricing.
Two-stage robust combinatorial optimization. Within two-stage robust optimization, match-
ings have not been studied extensively. Matuschke et al. proposed a two-stage robust model
for minimum weight matching with recourse [36]. Our model for TSRMB is different in
three main aspects: i) We use a general class of uncertainty sets to describe the second stage
scenarios while in [36] the only information given is the number of second stage vertices. ii)
We do not allow any recourse and our first stage matching is irrevocable. iii) Our second
stage cost is the bottleneck weight instead of the total weight.

2 Preliminaries

2.1 NP-hardness
We show that TSRMB is NP-hard under both the implicit and explicit models. In the explicit
model, it is NP-hard even for two scenarios and NP-hard to approximate within a factor
better than 2 even for three scenarios.

In the explicit model with a polynomial number of scenarios, it is clear that the problem
is in NP. However, in the implicit model, the problem can be described with a polynomial
size input, but it is not clear that we can compute the total cost in polynomial time since
there could be exponentially many scenarios. We show that it is NP-hard to approximate
TSRMB in the implicit model within a factor better than 2 even when k = 1. The proof is
presented in Appendix A.

▶ Theorem 1. In the explicit model of uncertainty, TSRMB is NP-hard even with two
scenarios. Furthermore, when the number of scenarios is ≥ 3, there is no (2−ϵ)-approximation
algorithm for any fixed ϵ > 0, unless P = NP. In the implicit model of uncertainty, even
when k = 1, there is no (2 − ϵ)-approximation algorithm for TSRMB for any fixed ϵ > 0,
unless P = NP .

2.2 Greedy Approach
A natural greedy approach is to choose the optimal matching for the first stage riders R1
without considering the second stage uncertainty. It can lead to a solution with a total
cost that scales linearly with m (cardinality of R1) while OPT is a constant, even with one
scenario. Consider the line example in Figure 2. We have m first stage riders and m + 1
drivers alternating on a line with distances 1 and 1 − ϵ. There is one second stage rider at
the right endpoint of the line. The greedy matching minimizes the first stage cost and incurs
a total cost of (2 − ϵ)(m + 1), while the optimal cost is equal to 2. Therefore any attempt to
have a good approximation needs to consider the second stage riders.

APPROX/RANDOM 2021

12:6 Matching Drivers to Riders: A Two-Stage Robust Approach

Figure 2 Riders in first stage are depicted as black dots and drivers as black triangles. The
second stage rider is depicted as a blue cross.

▶ Lemma 2. The cost of the Greedy algorithm can be Ω(m) · OPT .

2.3 Single Scenario
The deterministic version of the TSRMB problem, i.e., when there is only a single scenario
in the second stage, can be solved exactly in polynomial time. This is a simple preliminary
result which we need for the general case. Denote S a single second stage scenario. The
instance (R1, S, D) of TSRMB is then simply given by

min
D1⊂D

{
cost1(D1, R1) + cost2(D \ D1, S)

}
.

Since the second stage problem is a bottleneck problem [21], the value of the optimal second
stage cost w is one of the edge weights between D and S. We iterate over all possible values
of w (at most |S| · |D| values), delete all edges between R2 and D with weights strictly higher
than w and set the weight of the remaining edges between S and D to zero. This reduces
the problem to finding a minimum weight maximum cardinality matching. We can also use
binary search to iterate over the edge weights. We present the details of this algorithm below
and refer to it as TSRMB-1-Scenario in the rest of this paper.

We define the bottleneck graph of w to be BOTTLENECKG(w) = (R1 ∪S ∪D, E1 ∪E2)
where E2 = {(i, j) ∈ D×S, d(i, j) ≤ w} and E1 = {(i, j) ∈ D×R1}. Furthermore, we assume
that there are q edges {e1, . . . , eq} between S and D with weights w1 ≤ w2 ≤ . . . ≤ wq.

Algorithm 1 TSRMB-1-Scenario(R1, S, D).

Input: First stage riders R1, scenario S and drivers D.
Output: First stage decision D1.

1: for i ∈ {1, . . . , q} do
2: Gi := BOTTLENECKG(wi).
3: Set all weights between D and S in Gi to be 0.
4: Mi := minimum weight maximum cardinality matching on Gi.
5: if R1 ∪ S is not completely matched in Mi then
6: output certificate of failure.
7: else
8: Di

1 := first stage drivers in Mi.
9: end if

10: end for
11: return D1 = arg min

Di
1:1≤i≤q

{
cost1(Di

1, R1) + cost2(D \ Di
1, S)

}
.

Note that the arg min in the last step of Algorithm 1 is only taken over values of i for
which there was no certificate of failure.

▶ Lemma 3. TSRMB-1-Scenario gives an optimal solution for the single scenario case.

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:7

Proof of Lemma 3. Let OPT1 and OPT2 be the first and second stage cost of an optimal
solution, and i ∈ {1, . . . , q} such that wi = OPT2. In this case, Gi contains all the edges of
this optimal solution. By setting all the edges in E2 to 0, we are able to compute a minimum
weight maximum cardinality matching between R1 ∪ S and D that matches both R1 and S

and minimizes the weight of the edges matching R1. The first stage cost of this matching is
less than OPT1, the second stage cost is clearly less than OPT2 because we only allowed
edges with weight less than OPT2 in Gi. ◀

We also observe that we can use binary search in Algorithm 1 to iterate over the edge
weights. For an iteration i, a failure to find a minimum weight maximum cardinality matching
on Gi that matches both R1 and S implies that we need to try an edge weight higher than
wi. On the other hand, if Mi matches R1 and S such that Di

1 gives a smaller total cost, then
the optimal bottleneck value is lower than wi.

3 Explicit Scenarios

3.1 Two scenarios
Our main contribution in this section is a constant approximation algorithm for TSRMB
with two scenarios. Our analysis shows that we can reduce the problem to an instance with
a single representative scenario by losing a small factor. We then use TSRMB-1-Scenario to
solve the single representative scenario case.

Consider two scenarios S = {S1, S2}. First, we can assume without loss of generality
that we know the exact value of OPT2 which corresponds to one of the edges connecting
second stage riders R2 to drivers D (we can iterate over all the weights of second stage edges).
We construct a representative scenario that serves as a proxy for S1 and S2 as follows. In
the second stage, if a pair of riders i ∈ S1 and j ∈ S2 is served by the same driver in the
optimal solution, then they should be close to each other. Therefore, we can consider a single
representative rider for each such pair. While it is not easy to guess all such pairs, we can
approximately compute the representative riders by solving a maximum matching on S1 ∪ S2
with edges less than 2OPT2. More formally, let GI be the induced bipartite subgraph of
G on S1 ∪ S2 containing only edges between S1 and S2 with weight less than or equal to
2OPT2. We compute a maximum cardinality matching M between S1 and S2 in GI , and
construct a representative scenario containing S1 as well as the unmatched riders of S2. We
solve the single scenario problem on this representative scenario and return its optimal first
stage solution. We show in Theorem 4 that this solution leads to a 5-approximation.

Algorithm 2 Two explicit scenarios.

Input: First stage riders R1, two scenarios S1 and S2, drivers D and value of OPT2.
Output: First stage decision D1.

1: Let GI be the induced subgraph of G on S1 ∪ S2 with only the edges between S1 and S2
of weights less than 2OPT2 .

2: Set M := maximum cardinality matching between S1 and S2 in GI .
3: Set SMatch

2 := {r ∈ S2 | ∃ s ∈ S1 s.t (s, r) ∈ M} and SUnmatch
2 = S2 \ SMatch

2 .
4: return D1 := TSRMB-1-Scenario(R1, S1 ∪ SUnmatch

2 , D).

▶ Theorem 4. Algorithm 2 yields a solution with total cost less than OPT1 + 5OPT2 for
TSRMB with 2 scenarios.

APPROX/RANDOM 2021

12:8 Matching Drivers to Riders: A Two-Stage Robust Approach

The proof of Theorem 4 relies on the following structural lemma where we show that the
set D1 returned by Algorithm 2 yields a total cost at most (OPT1 + 3OPT2) when evaluated
only on the single representative scenario S1 ∪ SUnmatch

2 .

▶ Lemma 5. Let D1 be the set of first stage drivers returned by Algorithm 2. Then
cost1(D1, R1) + cost2(D \ D1, S1 ∪ SUnmatch

2) ≤ OPT1 + 3OPT2.

Proof. It is sufficient to show the existence of a matching Ma between R1 ∪ S1 ∪ SUnmatch
2

and D with a total cost less than OPT1 +3OPT2. This would imply that the optimal solution
D1 of TSRMB-1-Scenario(R1, S1 ∪ SUnmatch

2 , D) has a total cost less than OPT1 + 3OPT2
and concludes the proof. We show the existence of Ma by construction.
Step 1. We first match R1 with their mates in the optimal solution of TSRMB. Hence, the

first stage cost of our constructed matching Ma is OPT1.
Step 2. Now, we focus on SUnmatch

2 . Let SUnmatch
2 = S12 ∪ S22 be a partition of SUnmatch

2
where S12 contains riders with a distance less than 2OPT2 from S1 and S22 contains
riders with a distance strictly bigger than 2OPT2 from S1, where the distance from a
set is the minimum distance to any element of the set. A rider in S22 cannot share any
driver with a rider from S1 in the optimal solution of TSRMB, because otherwise, the
distance between these riders will be less than 2OPT2 by using the triangle inequality.
Therefore we can match S22 to their mates in the optimal solution and add them to Ma,
without using the optimal drivers of S1. We pay less than OPT2 for matching S22.

Step 3. We still need to simultaneously match riders in S1 and S12 to finish the construction
of Ma. Notice that some riders in S12 might share their optimal drivers with riders in
S1. We can assume without loss of generality that all riders in S12 share their optimal
drivers with S1 (otherwise we can match them to their optimal drivers without affecting
S1). Denote S12 = {r1, . . . , rq} and S1 = {s1, . . . , sk}. For each i ∈ [q] let’s say si ∈ S1
is the rider that shares its optimal driver with ri. We show that q ≤ |M |. In fact, every
rider in S12 shares its optimal driver with a different rider in S1, and is therefore within
a distance 2OPT2 from S1 by the triangle inequality. But since S12 is not covered by
the maximum cardinality matching M , this implies by the maximality of M that there
are q other riders from SMatch

2 that are covered by M . Hence q ≤ |M |. Finally, let
{t1, . . . , tq} ⊂ SMatch

2 be the mates of {s1, . . . , sq} in M , i.e., (si, ti) ∈ M for all i ∈ [q].
Recall that d(si, ti) ≤ 2OPT2 for all i ∈ [q]. In what follows, we describe how to match
S12 and S1:

(i) For i ∈ [q], we match ri to its optimal driver and si to the optimal driver of ti. This
is possible because the optimal driver of ti cannot be the same as the optimal driver
of ri since both ri and ti are part of the same scenario S2. Therefore, we pay a cost
OPT2 for the riders ri and a cost 3OPT2 (follows from the triangle inequality) for the
riders si where i ∈ [q].

(ii) We still need to match {sq+1, . . . , sk}. Consider a rider sj with j ∈ {q + 1, . . . , k}. If
the optimal driver of sj is not shared with any ti ∈ {t1, . . . , tq}, then this optimal
driver is still available and can be matched to sj with a cost less than OPT2. If the
optimal driver of sj is shared with some ti ∈ {t1, . . . tq}, then sj is also covered by
M . Otherwise M can be augmented by deleting (si, ti) and adding (ri, si) and (sj , ti).
Therefore sj is covered by M and has a mate t̃j ∈ SMatch

2 \ {t1, . . . , tq}. Furthermore,
the driver assigned to t̃j is still available. We can then match sj to the optimal driver
of t̃j . Similarly if the optimal driver of some sj′ ∈ {sq+1, . . . , sk} \ {sj} is shared with
t̃j , then sj′ is covered by M . Otherwise (ri, si, ti, sj , t̃j , sj′) is an augmenting path in
M . Therefore sj′ has a mate in M and we can match sj′ to the optimal driver of its

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:9

mate. We keep extending these augmenting paths until all the riders in {sq+1, . . . , sk}
are matched. Furthermore, the augmenting paths (ri, si, ti, sj , t̃j , sj′ . . .) starting from
two different riders ri ∈ S12 are vertex disjoint. This ensures that every driver is used
at most once. Again, by the triangle inequality, the edges that match {sq+1, . . . , sk}
in our solution have weights less then 3OPT2.

Putting it all together, we have constructed a matching Ma where the first stage cost is
exactly OPT1 and the second-stage cost is less than 3OPT2 since the edges used for matching
S1 ∪ SUnmatch

2 in Ma have a weight less than 3OPT2. Therefore, the total cost of Ma is less
than OPT1 + 3OPT2. ◀

Proof of Theorem 4. Let D1 be the drivers returned by Algorithm 2. Lemma 5 implies

cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + 3OPT2 (1)

and

cost1(D1, R1) + cost2(D \ D1, SUnmatch
2) ≤ OPT1 + 3OPT2.

We have S2 = SMatch
2 ∪ SUnmatch

2 . If the scenario S2 is realized, we use the drivers that were
assigned to S1 in the matching constructed in Lemma 5 to match SMatch

2 . This is possible
with edges of weights less than cost2(D \ D1, S1) + 2OPT2 because SMatch

2 is matched to S1
with edges of weight less than 2OPT2. Hence,

cost2(D \ D1, S2) ≤ max
{

cost2(D \ D1, SUnmatch
2), cost2(D \ D1, S1) + 2OPT2

}
,

and therefore

cost1(D1, R1) + cost2(D \ D1, S2) ≤ OPT1 + 5OPT2. (2)

From (1) and (2), cost1(D1, R1) + max
S∈{S1,S2}

cost2(D \ D1, S) ≤ OPT1 + 5OPT2. ◀

Algorithm 3 p explicit scenarios.

Input: First-stage riders R1, scenarios {S1, S2, . . . , Sp}, drivers D and value of OPT2.
Output: First stage decision D1.

1: Initialize Ŝj := Sj for j = 1, . . . , p.
2: for i = 1, . . . , log2 p do
3: for j = 1, 2, . . . , p

2i do
4: σ(j) = j + p

2i

5: Mj := maximum cardinality matching between Ŝj and Ŝσ(j) with edges of weight
less than 2 · 3i−1 · OPT2.

6: ŜMatch
σ(j) := {r ∈ Ŝσ(j) | ∃ s ∈ Ŝj s.t (s, r) ∈ Mj}.

7: ŜUnmatch
σ(j) := Ŝσ(j) \ ŜMatch

σ(j)

8: Ŝj = Ŝj ∪ ŜUnmatch
σ(j) .

9: end for
10: end for
11: return D1 := TSRMB-1-Scenario(R1, Ŝ1, D).

APPROX/RANDOM 2021

12:10 Matching Drivers to Riders: A Two-Stage Robust Approach

3.2 Constant number of scenarios
We now consider the case of explicit list of p scenarios, i.e., S = {S1, S2, . . . , Sp}. Building
upon the ideas from Algorithm 2, we present a O(p1.59)-approximation in this case. The
idea is to construct the representative scenario recursively by processing pairs of “scenarios”
at each step. Hence, we need O(log2 p) iterations to reduce the problem to an instance of a
single scenario. At each iteration, we show that we only lose a multiplicative factor of 3 so
that the final approximation ratio is O(3log2 p) = O(p1.59). We present details in Algorithm 3.

The approximation guarantee of our algorithm grows sub-quadratically with p and it is
an interesting question if there exists an approximation that does not depend on the number
of scenarios.

▶ Theorem 6. Algorithm 3 yields a solution with total cost of O(p1.59) · OPT for TSRMB
with an explicit list of p scenarios.

Proof of Theorem 6. The algorithm reduces the number of considered “scenarios” by half
in every iteration, until only one scenario remains. In iteration i, we have p

2i−1 scenarios
that we aggregate in p

2i pairs, namely (Ŝj , Ŝσ(j)) for j ∈ {1, 2, . . . , p
2i }. For each pair, we

construct a single representative scenario which plays the role of the new Ŝj at the start of
the next iteration i + 1.

▷ Claim. There exists a first stage decision D∗
1 , such that at every iteration i ∈ {1, . . . , log2 p},

we have for all j ∈ {1, 2, . . . , p
2i }:

(i) R1 can be matched to D∗
1 with a first stage cost of OPT1.

(ii) Ŝj ∪ ŜUnmatch
σ(j) can be matched to D \ D∗

1 with a second stage cost less than 3i · OPT2.
(iii) There exists a matching between ŜMatch

σ(j) and Ŝj with edge weights less than 2 · 3i−1 ·
OPT2.

Proof of the claim. Statement (iii) follows from the definition of ŜMatch
σ(j) in Algorithm 3. Let’s

show (i) and (ii) by induction over i.
Initialization: for i = 1, let’s take any two scenarios Ŝj = Sj and Ŝσ(j) = Sσ(j). We
know that these two scenarios can be matched to drivers of the optimal solution in the
original problem with a cost less than OPT2. In the proof of Lemma 5, we show that if
we use the optimal first stage decision D∗

1 of the original problem, then we can match Ŝj

and ŜUnmatch
σ(j) simultaneously to D \ D∗

1 with a cost less than 3OPT2.

Maintenance. Assume the claim is true for all values less than i ≤ log2 p − 1. We
show it is true for i + 1. Since the claim is true for iteration i, we know that at the
start of iteration i + 1, for j ∈ {1, . . . , p

2i }, Ŝj can be matched to D \ D∗
1 with a cost less

than 3i · OPT2. We can therefore consider a new TSRMB problem with p
2i scenarios,

where using D∗
1 as a first stage decision ensures a second stage optimal value less than

ÔPT 2 = 3i · OPT2. By the proof of Lemma 5, and by using D∗
1 as a first stage decision in

this problem, we ensure that for j ∈ {1, . . . , p
2i+1 }, Ŝj and ŜUnmatch

σ(j) can be simultaneously
matched to D \ D∗

1 with a cost less than 3ÔPT 2 = 3i+1 · OPT2. ◁
Our claim implies that in the last iteration i = log2 p:

R1 can be matched to D∗
1 with a first stage cost of OPT1.

Ŝ1 can be matched to D \ D∗
1 with a second stage cost less than 3log2 p · OPT2.

Computing the single scenario solution for Ŝ1 will therefore yield a first stage decision D1
that gives a total cost less than OPT1 + 3log2 p · OPT2 when the second stage is evaluated
on the scenario Ŝ1. We now bound the cost of D1 on the original scenarios {S1, . . . , Sp}.
Consider a scenario S ∈ {S1, . . . , Sp}. The riders in S ∩ Ŝ1 can be matched to some drivers

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:11

in D \ D1 with a cost less than OPT1 + 3log2 p · OPT2. As for other riders of S \ Ŝ1, they
are not part of Ŝ1 because they have been matched and deleted at some iteration i < log2 p.
Consider riders r in S \ Ŝ1 that were matched and deleted from a representative scenario at
some iteration, then by statement (iii) in our claim, each r can be connected to a different
rider in Ŝ1 \ (Ŝ1 ∩ S) within a path of length at most

log2 p∑
t=1

2 · 3t−1 · OPT2 = (3log2 p − 1) · OPT2.

We know that R1 and Ŝ1 can be matched respectively to D1 and D \ D1 with a total cost
less than OPT1 + 3log2 p · OPT2. Therefore, we can match R1 and S respectively to D1 and
D \ D1 with a total cost less than

OPT1 + 3log2 p · OPT2 + (3log2 p − 1) · OPT2 = O(3log2 p) · OPT ≃ O(p1.59) · OPT.

Therefore, the worst-case total cost of the solution returned by Algorithm 3 is O(p1.59) ·
OPT . ◀

4 Implicit Scenarios

Consider an implicit model of scenarios S = {S ⊂ R2 s.t. |S| ≤ k}. While this model is widely
used, it poses a challenge because the number of scenarios can be exponential. Therefore,
even computing the worst-case second stage cost, for a given first stage solution, might not
be possible in polynomial time and we can no longer assume that we can guess OPT2. Note
that the worst-case scenarios have size exactly k. Our analysis for this model depends on the
balance between supply (drivers) and demand (riders). We define the surplus ℓ as the excess
in the number of available drivers for matching first-stage riders and a second-stage scenario:
ℓ = |D| − |R1| − k. As a warm-up, we study the case of no surplus (ℓ = 0). Then, we address
the more general case with a small surplus of drivers.

4.1 Warm-up: no surplus
When the number of drivers equals the number of first stage riders plus the size of scenarios
(i.e., ℓ = 0), we show a 3-approximation by simply solving a single scenario TSRMB with
any of the scenarios. In fact, since ℓ = 0, all scenarios are matched to the same set of drivers
in the optimal solution. Hence, between any two scenarios, there exists a matching where all
edge weights are less than 2OPT2. So by solving TSRMB with only one of these scenarios,
we can recover a solution and bound the cost of the other scenarios within OPT1 + 3OPT2
using the triangle inequality. The algorithm and proof are presented below.

Algorithm 4 Implicit scenarios with no surplus.

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: S1 := a second stage scenario of size k.
2: D1 := TSRMB-1-Scenario(R1, S1, D).
3: return D1.

▶ Lemma 7. Algorithm 4 yields a solution with total cost less than OPT1 + 3OPT2 for
TSRMB with implicit scenarios and no surplus.

APPROX/RANDOM 2021

12:12 Matching Drivers to Riders: A Two-Stage Robust Approach

Proof of Lemma 7. Let OPT1 and OPT2 be the first and second stage cost of the optimal
solution. Let f(D1) be the total cost of the solution returned by the algorithm. We claim that
f(D1) ≤ OPT1 + 3OPT2. It is clear that cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + OPT2.
Let S ∈ S be another scenario. Because |D| = |R1| + k, the optimal solution uses exactly
the same k drivers to match all the second stage scenarios. This implies that we can use
the triangular inequality to find a matching between S and S1 of bottleneck cost less than
2OPT2. Hence for any scenario S,

cost1(D1, R1) + cost2(D \ D1, S) ≤ cost1(D1, R1) + cost2(D \ D1, S1) + 2OPT2

≤ OPT1 + 3OPT2. ◀

If the surplus is strictly greater than 0, the above procedure can have an approximation
ratio of Ω(m). Consider the example in Figure 3, with k = 1 and two second stage riders.
The single scenario solution for S1 uses the optimal second stage driver of S2. Hence, if S2 is
realized, the cost of matching S2 to the closest available driver is Ω(m). Similarly, the single
scenario problem for S2 yields a Ω(m) cost for S1.

Figure 3 First stage riders are depicted as black dots and drivers as black triangles. The two
second stage riders are depicted as blue crosses. Second stage optimum are depicted as solid green
edges. S = {S1, S2}, k = 1 and ℓ = 1.

4.2 Small surplus

The TSRMB problem becomes challenging even with a unit surplus. Motivated by this,
we focus on the case of a small surplus ℓ. In particular, we assume that ℓ < k, i.e., the
excess in the total available drivers is smaller than the size of any scenario. We present a
constant approximation algorithm in this regime for the implicit model of uncertainty where
the size of scenarios is relatively small with respect to the size of the universe (k = O(

√
n)).

This technical assumption is needed for our analysis but it is not too restrictive and still
captures the regime where the number of scenarios can be exponential. Our algorithm
attempts to cluster the second stage riders in different groups (a ball and a set of outliers) in
order to reduce the number of possible worst-case configurations. We then solve a sequence
of instances with representative riders from each group. In what follows, we present our
construction for these groups of riders.

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:13

Our construction. First, we show that many riders are contained in a ball with radius
3OPT2. The center of this ball, δ, can be found by selecting the driver with the least
maximum distance to its closest k second-stage riders, i.e.,

δ = arg min
δ′∈D

max
r∈Rk(δ′)

d(δ′, r), (3)

where Rk(δ′) is the set of the k closest second stage riders to δ′. Formally, we have the
following lemma. We present the proof in Appendix B.

▶ Lemma 8. Suppose k ≤
√

n
2 and ℓ < k and let δ be the driver given by (3). Then, the

ball B centered at δ with radius 3OPT2 contains at least n − ℓ second stage riders. Moreover,
the distance between any of these riders and any rider in Rk(δ) is less than 4OPT2.

Now, we focus on the rest of second stage riders. We say that a rider r ∈ R2 is
an outlier if d(δ, r) > 3OPT2. Denote {o1, o2, . . . , oℓ} the farthest ℓ riders from δ with
d(δ, o1) ≥ d(δ, o2) ≥ . . . ≥ d(δ, oℓ). By Lemma 8, the n − ℓ riders in B are not outliers
and the only potential outliers can be in {o1, o2, . . . , oℓ}. Let j∗ be the threshold such that
o1, o2, . . . , oj∗ are outliers and oj∗+1, . . . , oℓ are not, with the convention that j∗ = 0 if there
is no outlier. There are ℓ + 1 possible values for j∗. We call each of these possibilities
a configuration. For j = 0, . . . , ℓ, let Cj be the configuration corresponding to threshold
candidate j. C0 is the configuration where there is no outlier and Cj∗ is the correct
configuration.

Algorithm 5 Implicit scenarios with small surplus and k ≤
√

n
2 .

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: Set δ := driver given by (3).
2: Set S1:= the closest k second stage riders to δ.
3: Set S2 := {o1, . . . , oℓ} the farthest ℓ second stage riders from δ (o1 being the farthest).
4: for j = 0, . . . , ℓ do
5: D1(j) := TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).
6: end for
7: return D1 = arg min

D1(j): j∈{0,...,ℓ}
cost1

(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
.

Recall that Rk(δ) are the closest k second-stage riders to δ. For the sake of simplicity,
we denote S1 = Rk(δ) and S2 = {o1 . . . oℓ}. S2 is a feasible scenario since ℓ < k. For
every configuration Cj , we form a representative scenario using S1 and {o1 . . . oj}. We
solve TSRMB with this single representative scenario S1 ∪ {o1 . . . oj} and denote D1(j) the
corresponding optimal solution, i.e.,

D1(j) = TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).

Since we can not evaluate the cost of D1(j) on all scenarios, we use the two proxy scenarios
S1 and S2. We show that the candidate D1(j) with minimum cost over S1 and S2 gives a
constant approximation to our original problem. The details are presented in Algorithm 5.
We state the result in the next theorem.

▶ Theorem 9. Algorithm 5 yields a solution with total cost less than 3OPT1 + 17OPT2 for
TSRMB with implicit scenarios when k ≤

√
n
2 and ℓ < k.

APPROX/RANDOM 2021

12:14 Matching Drivers to Riders: A Two-Stage Robust Approach

Before proving the theorem, we first introduce some notation. For all j ∈ {0, . . . , ℓ},
denote

Ωj = cost1
(
D1(j), R1

)
∆j = cost2

(
D \ D1(j), S1 ∪ {o1, . . . , oj}

)
βj = cost1

(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
Recall that f the objective function of TSRMB. In particular,

f
(
D1(j)

)
= cost1

(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
Our proof is based on the following two claims. Claim 10 establishes a bound on the cost

of D1(j∗) when evaluated on the proxy scenarios S1 and S2 and on all the scenarios in S.
Recall that j∗ is the threshold index for the outliers as defined earlier in our construction.
Claim 11 bounds the cost of f(D1(j)) for any j.

▷ Claim 10. Ωj∗ + ∆j∗ ≤ OPT1 + OPT2. and f(D1(j∗)) ≤ OPT1 + 5OPT2.

Proof of Claim 10.
1. In the optimal solution of the original problem, R1 is matched to a subset D∗

1 of drivers.
The scenario S1 is matched to a set of drivers DS1 where D∗

1 ∩ DS1 = ∅. Let Do be the
set of drivers that are matched to o1, . . . , o∗

j in a scenario that contains o1, . . . , o∗
j . It is

clear that D∗
1 ∩ Do = ∅. We claim that Do ∩ DS1 = ∅. In fact, suppose there is a driver

ρ ∈ Do∩DS1 . This implies the existence of some oj with j ≤ j∗ and some rider r ∈ S1 such
that d(ρ, oj) ≤ OPT2 and d(ρ, r) ≤ OPT2. But then d(δ, oj) ≤ d(δ, r)+d(ρ, r)+d(ρ, oj) ≤
3OPT2 which contradicts the fact the oj is an outlier. Therefore Do ∩ DS1 = ∅. We show
that D∗

1 is a feasible first stage solution to the single scenario problem of S1 ∪ {o1, . . . o∗
j }

with a cost less than OPT1 + OPT2. In fact, D∗
1 can be matched to R1 with a cost less

than OPT1, DS1 to S1 and Do to {o1, . . . , o∗
j } with a cost less than OPT2. Therefore

Ωj∗ + ∆j∗ ≤ OPT1 + OPT2.

2. Recall that cost1
(
D1(j∗), R1

)
= Ωj∗ . Consider a scenario S and a rider r ∈ S. Let B′ be

the set of the n − ℓ closest second stage riders to δ. Let DS1(j∗) be set of second stage
drivers matched to S1 in the single scenario problem for scenario S1 ∪ {o1, . . . , oj∗}. Let
Do(j∗) be the set of second stage drivers matched to {o1, . . . , oj∗} in the single scenario
problem for scenario S1 ∪ {o1, . . . , oj∗}. Recall that the second stage cost for this single
scenario problem is ∆j∗ . We distinguish three cases:
a. If r ∈ B′, then by Lemma 8, r is connected to every driver in DS1(j∗) within a distance

less than ∆j∗ + 4OPT2.
b. If r ∈ {oj∗+1, . . . , oℓ}, then r is connected to every driver in DS1(j∗) within a distance

less than 3OPT2 + OPT2 + ∆∗
j .

c. If r ∈ {o1, . . . , oj∗} (i.e., r an outlier), then r can be matched to a different driver in
Do(j∗) within a distance less than OPT2.

This means that in every case, we can match r to a driver in D \ D1(j∗) with a cost less
than 4OPT2 + ∆j∗ . This implies that

max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ 4OPT2 + ∆j∗

and therefore

Ωj∗ + max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ Ωj∗ + ∆j∗ + 4OPT2 ≤ OPT1 + 5OPT2. ◁

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:15

▷ Claim 11. For all j ∈ {0, . . . , l} we have, βj ≤ f(D1(j)) ≤ max{βj+4OPT2, 3βj+2OPT2}.

Proof of Claim 11. Let αj be the second stage cost of D1(j) on the TSRBM instance with
scenarios S1 and S2. Formally, αj = max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
. Therefore βj = Ωj + αj .

Let’s consider the two sets

O1 = {r ∈ {o1, . . . , oℓ} | d(r, δ) > 2αj + OPT2}.

O2 = {o1, . . . , oℓ} \ O1.

Consider D1(j) as a first stage decision to TSRMB with scenarios S1 and S2. Let D̃1 ⊂
D \ D1(j) be the set of drivers that are matched to O1 when the scenario S2 = {o1, . . . , oℓ}
is realized. Similarly, let D̃2 ⊂ D \ D1(j) be the drivers matched to scenario S1. We claim
that D̃1 ∩ D̃2 = ∅. Suppose that there exists some driver ρ ∈ D̃1 ∩ D̃2, this implies the
existence of some o ∈ O1 and r ∈ S1 such that d(ρ, o) ≤ αj and d(ρ, r) ≤ αj . And since
d(r, δ) ≤ OPT2 by definition of δ we would have

d(o, δ) ≤ d(ρ, o) + d(ρ, r) + d(r, δ) ≤ 2αj + OPT2,

which contradicts the definition of O1. Therefore D̃1 ∩ D̃2 = ∅.

Now consider a scenario S ∈ S. The riders of S ∩ O1 can be matched to D̃1 with a
bottleneck cost less than αj . Recall that by Lemma 8, any rider in R2 \ {o1, . . . , oℓ} is within
a distance less than 4OPT2 from any rider in S1. The riders r ∈ S \{o1, . . . , oℓ} can therefore
be matched to any driver ρ ∈ D̃2 within a distance less than

d(r, ρ) ≤ d(r, S1) + d(S1, ρ) ≤ 4OPT2 + αj .

As for riders r ∈ S ∩ O2, they can also be matched to any driver ρ of D̃2 within a distance
less than

d(r, ρ) ≤ d(r, δ) + d(δ, S1) + d(S1, ρ) ≤ 2αj + OPT2 + OPT2 + αj = 3αj + 2OPT2.

Therefore we can bound the second stage cost

max
S∈S

cost2
(
D \ D1(j), S

)
≤ max{αj + 4OPT2, 3αj + 2OPT2}

and we get that

cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
≤ max{βj + 4OPT2, 3βj + 2OPT2}

The other inequality βj ≤ cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j)

)
is trivial. ◁

We are now ready to prove the theorem.

Proof of Theorem 9. Suppose Algorithm 5 returns D1(j̃) for some j̃. From Claim 11 and
the minimality of βj̃ :

f
(
D1(j̃)

)
≤ max{βj̃ + 4OPT2, 3βj̃ + 2OPT2} ≤ max{βj∗ + 4OPT2, 3βj∗ + 2OPT2}.

From Claim 10 and Claim 11, we have βj∗ ≤ f
(
D1(j∗)

)
≤ OPT1 + 5OPT2. We conclude

that,

f
(
D1(j̃)

)
≤ max

{
OPT1 + 9OPT2, 3OPT1 + 17OPT2

}
= 3OPT1 + 17OPT2. ◀

APPROX/RANDOM 2021

12:16 Matching Drivers to Riders: A Two-Stage Robust Approach

5 Conclusion

In this paper, we present a new two-stage robust optimization framework for matching
problems under both explicit and implicit models of uncertainty. Our problem is motivated
by real-life applications in the ride-hailing industry. We study the Two-Stage Robust Matching
Bottleneck problem, prove its hardness, and design approximation algorithms under different
settings. Our algorithms give a constant approximation if the number of scenarios is fixed,
but require additional assumptions when there are polynomially or exponentially many
scenarios. It is an interesting question if there exists a constant approximation in the general
case that does not depend on the number of scenarios.

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted

bipartite matching and single-bid budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264. SIAM, 2011.

2 Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Seffi Naor. An o(log k2)-
competitive algorithm for metric bipartite matching. In European Symposium on Algorithms,
pages 522–533. Springer, 2007.

3 Piotr Berman, Bhaskar DasGupta, and Eduardo Sontag. Randomized approximation al-
gorithms for set multicover problems with applications to reverse engineering of protein and
gene networks. Discrete Applied Mathematics, 155(6-7):733–749, 2007.

4 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–264.
Springer, 2007.

5 Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword matching with
budgeted bidders under random permutations. In Proceedings of the 10th ACM conference on
Electronic commerce, pages 71–78, 2009.

6 Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis of
ranking for online bipartite matching. In Proceedings of the twenty-fourth annual ACM-SIAM
symposium on Discrete algorithms, pages 101–107. SIAM, 2013.

7 Kedar Dhamdhere, Vineet Goyal, R Ravi, and Mohit Singh. How to pay, come what may:
Approximation algorithms for demand-robust covering problems. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 367–376. IEEE, 2005.

8 Omar El Housni and Vineet Goyal. Beyond worst-case: A probabilistic analysis of affine
policies in dynamic optimization. In Advances in neural information processing systems, pages
4756–4764, 2017.

9 Bruno Escoffier, Laurent Gourvès, Jérôme Monnot, and Olivier Spanjaard. Two-stage stochastic
matching and spanning tree problems: Polynomial instances and approximation. European
Journal of Operational Research, 205(1):19–30, 2010.

10 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

11 Uriel Feige, Kamal Jain, Mohammad Mahdian, and Vahab Mirrokni. Robust combinatorial
optimization with exponential scenarios. In International Conference on Integer Programming
and Combinatorial Optimization, pages 439–453. Springer, 2007.

12 Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online stochastic
matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Foundations of Computer
Science, pages 117–126. IEEE, 2009.

13 Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution schemes.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 1014–1033. SIAM, 2016.

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:17

14 Yiding Feng and Rad Niazadeh. Batching and optimal multi-stage bipartite allocations. In
12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

15 Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application
to ride hailing. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2862–2877. SIAM, 2021.

16 Harold N Gabow and Robert E Tarjan. Algorithms for two bottleneck optimization problems.
Journal of Algorithms, 9(3):411–417, 1988.

17 Robert S Garfinkel and KC Gilbert. The bottleneck traveling salesman problem: Algorithms
and probabilistic analysis. Journal of the ACM (JACM), 25(3):435–448, 1978.

18 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA, volume 8, pages 982–991, 2008.

19 Anupam Gupta, Viswanath Nagarajan, and Ramamoorthi Ravi. Thresholded covering al-
gorithms for robust and max-min optimization. In International Colloquium on Automata,
Languages, and Programming, pages 262–274. Springer, 2010.

20 Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. Online stochastic
weighted matching: Improved approximation algorithms. In International workshop on internet
and network economics, pages 170–181. Springer, 2011.

21 Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM (JACM), 33(3):533–550, 1986.

22 Omar El Housni, Vineet Goyal, and David Shmoys. On the power of static assignment policies
for robust facility location problems. arXiv preprint arXiv:2011.04925, 2020.

23 Patrick Jaillet and Xin Lu. Online stochastic matching: New algorithms with better bounds.
Mathematics of Operations Research, 39(3):624–646, 2014.

24 Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. Journal of Algorithms,
14(3):478–488, 1993.

25 Viggo Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information
Processing Letters, 37(1):27–35, 1991.

26 Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In Proceedings of the forty-third annual ACM symposium on Theory
of computing, pages 587–596, 2011.

27 Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory
of computing, pages 352–358, 1990.

28 Irit Katriel, Claire Kenyon-Mathieu, and Eli Upfal. Commitment under uncertainty: Two-stage
stochastic matching problems. Theoretical Computer Science, 408(2-3):213–223, 2008.

29 Samir Khuller, Stephen G Mitchell, and Vijay V Vazirani. On-line algorithms for weighted
bipartite matching and stable marriages. Theoretical Computer Science, 127(2):255–267, 1994.

30 Nan Kong and Andrew J Schaefer. A factor 12 approximation algorithm for two-stage stochastic
matching problems. European Journal of Operational Research, 172(3):740–746, 2006.

31 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.
In International Colloquium on Automata, Languages, and Programming, pages 508–520.
Springer, 2009.

32 Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival model. In
International Conference on Integer Programming and Combinatorial Optimization, pages
355–367. Springer, 2017.

33 Lyft. Matchmaking in lyft line - part 1. https://eng.lyft.com/
matchmaking-in-lyft-line-9c2635fe62c4, 2016.

34 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 597–606, 2011.

APPROX/RANDOM 2021

https://eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4
https://eng.lyft.com/matchmaking-in-lyft-line-9c2635fe62c4

12:18 Matching Drivers to Riders: A Two-Stage Robust Approach

35 Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
Online actions based on offline statistics. Mathematics of Operations Research, 37(4):559–573,
2012.

36 Jannik Matuschke, Ulrike Schmidt-Kraepelin, and José Verschae. Maintaining perfect match-
ings at low cost. arXiv preprint arXiv:1811.10580, 2018.

37 Aranyak Mehta. Online matching and ad allocation. Theoretical Computer Science, 8(4):265–
368, 2012.

38 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

39 Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghaddam. Online stochastic matching
with unequal probabilities. In Proceedings of the twenty-sixth annual ACM-SIAM symposium
on Discrete algorithms, pages 1388–1404. SIAM, 2014.

40 Adam Meyerson, Akash Nanavati, and Laura Poplawski. Randomized online algorithms
for minimum metric bipartite matching. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 954–959. Society for Industrial and Applied
Mathematics, 2006.

41 Sharath Raghvendra. A robust and optimal online algorithm for minimum metric bipartite
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

42 Uber. Uber marketplace and matching. https://marketplace.uber.com/matching, 2020.
43 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.
44 Lingyu Zhang, Tao Hu, Yue Min, Guobin Wu, Junying Zhang, Pengcheng Feng, Pinghua

Gong, and Jieping Ye. A taxi order dispatch model based on combinatorial optimization. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 2151–2159, 2017.

A NP-Hardness proofs for TSRMB

We start by presenting the 3-Dimensional Matching (3-DM) and Set Cover problems, that we
use in our reductions to show Theorem 1. Both problems are known to be strongly NP-hard
[10, 25].

title3-Dimensional Matching (3-DM). Given three sets U , V , and W of equal cardinality
n, and a subset T of U × V × W , is there a subset M of T with |M | = n such that whenever
(u, v, w) and (u′, v′, w′) are distinct triples in M , u ̸= u′, v ̸= v′, and w ̸= w′ ?

Set Cover Problem. Given a set of elements U = {1, 2, ..., n} (called the universe), a
collection S1, . . . , Sm of m sets whose union equals the universe and an integer p.
Question: Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and

⋃
i∈C

Si = U ?

Proof of Theorem 1.

Explicit uncertainty. Consider an instance of the 3-Dimensional Matching Problem. We can
use it to construct (in polynomial time) an instance of TSRMB with 2 scenarios as follows:

Create two scenarios of size n: S1 = U and S2 = V .
Set D = T , every driver corresponds to a triple in T .
For every w ∈ W , let dT (w) be the number of sets in T that contain w. We create
dT (w) − 1 first stage riders, that are all copies of w. The total number of first stage riders
is therefore |R1| = |T | − n.

https:// marketplace.uber.com/ matching

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:19

For (w, e) ∈ R1 × D, d(w, e) =
{

1 if w ∈ e

3 otherwise.

For (u, e) ∈ S1 ∪ S2 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.
For u, v ∈ R1 ∪ S1 ∪ S2, d(u, v) = min

e∈D
d(u, e) + d(v, e).

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2

d(u, e) + d(u, f).
This choice of distances induces a metric graph. We claim that there exists a 3-dimensional
matching if and only if there exists a solution to this TSRMB instance with total cost equal
to 2. Suppose that M = {e1, . . . , en} ⊂ T is a 3-Dimensional matching. Let e1, . . . , en

be the drivers that correspond to M in the TSRMB instance. We show that by using
D1 = D \ {e1, . . . , en} as a first stage decision, we ensure that the total cost for the TSRMB
instance is equal to 2. For any rider u in scenario S1, by definition of M , there exits a unique
edge ei ∈ M that covers u. The corresponding driver ei ̸∈ D1 can be matched to u with
a distance equal to 1. Furthermore, ei cannot be matched to any other rider in S1 with a
cost less than 1. Similarly, for any rider v in scenario S2, since there exits a unique edge
ej ∈ M that covers v, the corresponding driver can be matched to v with a cost of 1. The
second stage cost is therefore equal to 1. As for the first stage cost, we know by definition of
M , that every element w ∈ W is covered exactly once. Therefore, for every w ∈ W , there
exists dT (w) − 1 edges that contain w in T \ M . This means that every 1st stage rider can
be matched to a driver in D1 with a cost equal to 1. Hence the total cost of this two-stage
matching is equal to 2.

Suppose now that there exists a solution to the TSRMB instance with a cost equal to 2.
This means that the first and second stage costs are both equal to 1. Let M = {e1, . . . , en} be
the set of drivers used in the second stage of this solution. We show that M is a 3-dimensional
matching. Let ei = (u, v, w) and ej = (u′, v′, w′) be distinct triples in M . Since the second
stage cost is equal to 1, the driver ei (resp. ej) must be matched to u (resp. u′) in S1. Since
we have exactly n second stage drivers and n riders in S1, this means that ei and ej have to
be matched to different second stage riders in S1. Therefore we get u′ ≠ u. Similarly we
see that v′ ̸= v. Assume now that w = w′, this means that the TSRMB solution has used
two drivers (triples) ei and ej that contain w in the second stage. It is therefore impossible
to match all the dT (w) − 1 copies of w in the first stage with a cost equal to 1. Therefore
w ̸= w′. The above construction can be performed in polynomial time of the 3-DM input,
and therefore shows that TSRMB with two scenarios is NP-hard.

Now, to show that TSRMB is hard to approximate within a factor better than 2, we
consider three scenarios. Consider an instance of 3-DM. We can use it to construct an
instance of TSRMB with 3 scenarios as follows:

Create 3 scenarios of size n: S1 = U , S2 = V and S3 = W .
Set D = T .
Create |R1| = |T | − n first stage riders.
For (w, e) ∈ R1 × D, d(w, e) = 1.

For (u, e) ∈ S1 ∪ S2 ∪ S3 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.
For u, v ∈ R1 ∪ S1 ∪ S2 ∪ S3, d(u, v) = min

e∈D
d(u, e) + d(v, e).

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2∪S3

d(u, e) + d(u, f).
This choice of distances induces a metric graph. Similarly to the proof of 2 scenarios, we
can show that there exists a 3-dimensional matching if and only if there exists a TSRMB
solution with cost equal to 2. Furthermore, any solution for this TSRMB instance has

APPROX/RANDOM 2021

12:20 Matching Drivers to Riders: A Two-Stage Robust Approach

either a total cost of 2 or 4 (the first stage cost is always equal to 1). We show that if a
(2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then 3-Dimensional Matching is
decidable. We know that this instance of TSRMB has a solution with total cost equal to 2
if and only if there is a 3-dimensional matching. Furthermore, if there is no 3-dimensional
matching, the cost of the optimal solution to TSRMB must be 4. Therefore, if an algorithm
guarantees a ratio of (2 − ϵ) and a 3-dimensional matching exists, the algorithm delivers a
solution with total cost equal to 2. If there is no 3-dimensional matching, then the solution
produced by the algorithm has a total cost of 4.

Implicit uncertainty. We prove the hardness for k = 1. We start from an instance of the Set
Cover problem and construct an instance of the TSRMB problem. Consider an instance of
the decision problem of set cover. We can use it to construct the following TSRMB instance:

Create m drivers D = {1, . . . , m}. For each j ∈ {1, . . . , m}, driver j corresponds to set
Sj .
Create m − p first stage riders, R1 = {1, . . . , m − p}.
Create n second stage riders, R2 = {1, . . . , n}.
Set S = {{1}, . . . , {n}}. Every scenario is of size 1.

As for the distances between riders and drivers, we define them as follows:
For (i, j) ∈ R1 × D, d(i, j) = 1.

For (i, j) ∈ R2 × D, d(i, j) =
{

1 if i ∈ Sj

3 otherwise.
For i, i′ ∈ R1 ∪ R2, d(i, i′) = min

j∈D
d(i, j) + d(i′, j).

For j, j′ ∈ D, d(j, j′) = min
i∈R1∪R2

d(i, j) + d(i, j′).

This choice of distances induces a metric graph. Moreover, every feasible solution to this
TSRMB instance has a first stage cost of exactly 1. We show that a set cover of size ≤ p

exists if and only if there is a TSRMB solution with total cost equal to 2. Suppose without
loss of generality that S1, . . . , Sp is a set cover. Then by using the drivers {1, . . . , p} in the
second stage, we ensure that every scenario is matched with a cost of 1. This implies the
existence of a solution with total cost equal to 2. Now suppose there is a solution to the
TSRMB problem with cost equal to 2. Let D2 be the set of second stage drivers of this
solution, then we have |D2| = p. We claim that the sets corresponding to drivers in D2 form
a set cover. In fact, since the total cost of the TSRMB solution is equal to 2, the second
stage cost is equal to 1. This means that for every scenario i ∈ {1, . . . , n}, there is a driver
j ∈ D2 within a distance 1 from i. Therefore i ∈ Sj and {Sj : j ∈ D2} is a set cover.

Next we show that if (2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then
Set Cover is decidable. We know that the TSRMB problem has a solution of cost 2 if and
only if there is a set cover of size less than p. Furthermore, if there is no such set cover, the
cost of the optimal solution must be 4. Therefore, if the algorithm guarantees a ratio of
(2 − ϵ) and there is a set cover of size less than p, the algorithm delivers a solution with a
total cost of 2. If there is no set cover, then clearly the solution produced by the algorithm
has a cost of 4. ◀

▶ Remark 12. For k ≥ 2, we can use a generalization of Set Cover to show that the problem
is hard for any k. We use a reduction from the Set MultiCover Problem ([3, 43]) defined
below.

O. E. Housni, V. Goyal, O. Hanguir, and C. Stein 12:21

Set MultiCover Problem. Given a set of elements U = {1, 2, ..., n} (called the universe)
and a collection S1, . . . , Sm of m sets whose union equals the universe. A “coverage factor”
(positive integer) k and an integer p. Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and for
each element x ∈ U , |j ∈ C : x ∈ Sj | ≥ k ?

We can create an instance of TSRMB from a Set MultiCover instance similarly to Set
Cover with the exception that S = {S ⊂ R2 s.t. |S| = k}. The hardness result follows
similarly.

B Implicit scenarios: small surplus

Proof of Lemma 8. Let δ be the driver given by (3). We claim that the k closest riders
to δ are all within a distance less than OPT2 from δ. Consider D∗

2 to be the k + ℓ drivers
left for the second stage in the optimal solution. Every driver in D∗

2 can be matched to a
set of different second stage riders over different scenarios. Let us rank the drivers in D∗

2
according to how many different second stage riders they are matched to over all scenarios,
in descending order. Formally, let D∗

2 = {δ1, δ2, . . . , δk+ℓ} and let R∗(δi) be the second stage
riders that are matched to δi in the optimal solution in some scenario, such that

|R∗(δ1)| ≥ . . . ≥ |R∗(δk+ℓ)|.

We claim that |R∗(δ1)| ≥ k. In fact, we have
k+ℓ∑
i=1

|R∗(δi)| ≥ n because every second stage

rider is matched to at least one driver in some scenario. Therefore

|R∗(δ1)| ≥ n

k + ℓ
≥ n

2k
≥ k.

We know that all the second stage riders in R∗(δ1) are within a distance less than OPT2
from δ1. Therefore max

r∈Rk(δ1)
d(δ1, r) ≤ OPT2. But we know that by definition of δ,

max
r∈Rk(δ)

d(δ, r) ≤ max
r∈Rk(δ1)

d(δ1, r) ≤ OPT2

This proves that the k closest second stage riders to δ are within a distance less than
OPT2. Let R(δ) be the set of all second stage riders that are within a distance less than
OPT2 from δ. Recall that Rk(δ) is the set of the k closest second stage riders to δ. In
the optimal solution, the scenario Rk(δ) is matched to a set of at least new k − 1 drivers
{δi1 , . . . δik−1} ⊂ D∗

2 \ {δ}. We show a lower bound on the size of R(δ) and the number of
riders matched to {δi1 , . . . δik−1} over all scenarios in the optimal solution.

▷ Claim 13.
∣∣R(δ)

k−1⋃
j=1

R∗(δij
)
∣∣ ≥ n − ℓ

Proof. Suppose the opposite, suppose that at least ℓ + 1 riders from R2 are not in the union.
Let F be the set of these ℓ + 1 riders. Since ℓ + 1 ≤ k, we can construct a scenario S that
includes F . In the optimal solution, and in particular, in the second stage matching of S,
at least one rider from F needs to be matched to a driver from {δ, δi1 , . . . δik−1}. Otherwise
there are only ℓ second stage drivers left to match all of F . Therefore there exists r ∈ F such
that either r ∈ R(δ) or there exists j ∈ {1, . . . , k − 1} such that r ∈ R∗(δij). This shows that

r ∈ R(δ)
k−1⋃
j=1

R∗(δij
), which is a contradiction. Therefore, at most ℓ second stage riders are

not in the union. ◁

APPROX/RANDOM 2021

12:22 Matching Drivers to Riders: A Two-Stage Robust Approach

▷ Claim 14. For any rider r ∈ R(δ)
k−1⋃
j=1

R∗(δij), we have d(r, δ) ≤ 3OPT2.

Proof. If r ∈ R(δ) then by definition we have d(r, δ) ≤ OPT2. Now suppose r ∈ R∗(δij
) for

j ∈ [k − 1]. Let r′ be the rider from scenario Rk(δ) that was matched to δij
in the optimal

solution. Then by the triangular inequality

d(r, δ) ≤ d(r, δij
) + d(δij

, r′) + d(r′, δ) ≤ 3OPT2. ◁

From Claim 14, we see that the ball centered at δ, with radius 3OPT2, contains at least

n − ℓ second stage riders in R(δ)
k−1⋃
j=1

R∗(δij
). This proves the first part of the lemma. The

second part is proved in the next claim.

▷ Claim 15. For r1 ∈ Rk(δ) and r2 ∈ R(δ)
k−1⋃
j=1

R∗(δij
), we have d(r1, r2) ≤ 4OPT2.

Proof. Let r1 ∈ Rk(δ). If r2 ∈ R(δ) then d(r1, r2) ≤ d(r1, δ) + d(δ, r2) ≤ 2OPT2. If
r2 ∈ R∗(δij) for some j, and r′ is the rider from scenario Rk(δ) that was matched to δij

d(r1, r2) ≤ d(r1, δ) + d(δ, r′) + d(r′, δij) + d(δij , r2) ≤ 4OPT2. ◁

Claim 13 shows that the number of riders included in R(δ)
k−1⋃
j=1

R∗(δij) is at least n− ℓ. Claim

14 shows that each one of this rider has distance less than 3OPT2 from δ. Finally, Claim 15
shows that the distance between any one of this riders and any rider in Rk(δ) is less than
3OPT2. This concludes the proof of Lemma 8. ◀

Secretary Matching Meets Probing with
Commitment
Allan Borodin #

Department of Computer Science, University of Toronto, Canada

Calum MacRury #

Department of Computer Science, University of Toronto, Canada

Akash Rakheja #

Department of Computer Science, University of Toronto, Canada

Abstract
We consider the online bipartite matching problem within the context of stochastic probing with
commitment. This is the one-sided online bipartite matching problem where edges adjacent to an
online node must be probed to determine if they exist based on edge probabilities that become
known when an online vertex arrives. If a probed edge exists, it must be used in the matching. We
consider the competitiveness of online algorithms in the adversarial order model (AOM) and the
secretary/random order model (ROM). More specifically, we consider an unknown bipartite stochastic
graph G = (U, V, E) where U is the known set of offline vertices, V is the set of online vertices, G has
edge probabilities (pe)e∈E , and G has edge weights (we)e∈E or vertex weights (wu)u∈U . Additionally,
G has a downward-closed set of probing constraints (Cv)v∈V , where Cv indicates which sequences of
edges adjacent to an online vertex v can be probed. This model generalizes the various settings of
the classical bipartite matching problem (i.e. with and without probing). Our contributions include
the introduction and analysis of probing within the random order model, and our generalization
of probing constraints which includes budget (i.e. knapsack) constraints. Our algorithms run in
polynomial time assuming access to a membership oracle for each Cv.

In the vertex weighted setting, for adversarial order arrivals, we generalize the known 1
2 competit-

ive ratio to our setting of Cv constraints. For random order arrivals, we show that the same algorithm
attains an asymptotic competitive ratio of 1 − 1/e, provided the edge probabilities vanish to 0
sufficiently fast. We also obtain a strict competitive ratio for non-vanishing edge probabilities when
the probing constraints are sufficiently simple. For example, if each Cv corresponds to a patience
constraint ℓv (i.e., ℓv is the maximum number of probes of edges adjacent to v), and any one of
following three conditions is satisfied (each studied in previous papers), then there is a conceptually
simple greedy algorithm whose competitive ratio is 1 − 1

e
.

When the offline vertices are unweighted.
When the online vertex probabilities are “vertex uniform”; i.e., pu,v = pv for all (u, v) ∈ E.
When the patience constraint ℓv satisfies ℓv ∈ {[1, |U |} for every online vertex; i.e., every online
vertex either has unit or full patience.

Finally, in the edge weighted case, we match the known optimal 1
e

asymptotic competitive ratio for
the classic (i.e. without probing) secretary matching problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Stochastic probing, Online algorithms, Bipartite matching, Optimization
under uncertainty

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.13

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2008.09260 [4]

Acknowledgements We would like to thank Denis Pankratov, Rajan Udwani, and David Wajc for
their very constructive comments on this paper.

© Allan Borodin, Calum MacRury, and Akash Rakheja;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 13; pp. 13:1–13:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bor@cs.toronto.edu
mailto:cmacrury@cs.toronto.edu
mailto:rakhejaakash@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.13
https://arxiv.org/abs/2008.09260
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Secretary Matching Meets Probing with Commitment

1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty
and more specifically, stochastic optimization. Unlike more standard forms of stochastic
optimization, it is not just that there is some possible stochastic uncertainty in the set
of inputs, stochastic probing problems involve inputs that cannot be determined without
probing (at some cost and/or within some constraint) so as to reveal the inputs. Applications
of stochastic probing occur naturally in many settings, such as in matching problems where
compatibility (for example, in online dating and kidney exchange applications) or legality
(for example, a financial transaction that must be authorized before it can be completed)
cannot be determined without some trial or investigation. Amongst other applications, the
online bipartite stochastic matching problem notably models online advertising where the
probability of an edge can correspond to the probability of a purchase in online stores or
to pay-per-click revenue in online searching. Commitment reflects the fact that one usually
chooses the next probe based on some concept of expected value but in many applications
(e.g. kidney exchanges) the cost or invasiveness of probing makes it practically necessary
to commit. In some applications, there may be a legal requirement to commit (e.g., if a
contract is possibly being offered and commitment is required).

The (offline) stochastic matching problem was introduced by Chen et al. [9]. In this
problem, the input is an adversarially generated stochastic graph G = (V, E) with a probability
pe associated with each edge e and a patience (or time-out) parameter ℓv associated with
each vertex v. An algorithm probes edges in E within the constraint that at most ℓv edges
are probed incident to any particular vertex v ∈ V . Also, when an edge e is probed, it is
guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, it is added
to the matching and then u and v are no longer available. The goal is to maximize the
expected size of a matching constructed in this way. Chen et al. showed that by probing
edges in non-increasing order of edge probability, one attains an approximation ratio of 1/4.
The analysis was later improved by Adamczyk [1], who showed that this algorithm in fact
attains an approximation ratio of 1/2. This problem can be generalized to vertices or edges
having weights.

Mehta and Panigrahi [22] adapted the offline stochastic matching model to online bipartite
matching as originally studied in the classical (non-stochastic) adversarial order online model.
That is, they consider the setting where the stochastic graph is unknown and online vertices
are determined by an adversary. More specifically, they studied the problem in the case of
an unweighted stochastic graph G = (U, V, E) where U is the set of known offline vertices
and the vertices in V arrive online without knowledge of future online node arrivals. They
considered the special case of uniform edge probabilities (i.e, pe = p for all e ∈ E) and unit
patience values, that is ℓv = 1 for all v ∈ V . They considered a greedy algorithm which
attains a competitive ratio of 1

2 (1 + (1− p)2/p), which limits to 1
2 (1 + e−2) ≈ .567 as p→ 0.

Mehta et al. [23] considered the unweighted online stochastic bipartite setting with arbitrary
edge probabilities, attaining a competitive ratio of 0.534, and recently, Huang and Zhang [16]
additionally handled the case of arbitrary offline vertex weights, while improving this ratio
to 0.572. However, as in [22], both [23] and [16] are restricted to unit patience values, and
moreover require edge probabilities which are vanishingly small1. Goyal and Udwani [12]
improved on both of these works by showing a 0.596 competitive ratio in the same setting.

1 Vanishingly small edge probabilities must satisfy maxe∈E pe → 0, where the asymptotics are with
respect to the size of G.

A. Borodin, C. MacRury, and A. Rakheja 13:3

In all our results we will assume commitment; that is, when an edge is probed and found
to exist, it must be included in the matching (if possible without violating the matching
constraint). The patience constraint can be viewed as a simple form of a budget (equivalently,
knapsack) constraint for the online vertices. We generalize patience and budget constraints
by associating a downward-closed set Cv of probing sequences for each online node v where
Cv indicates which sequences of edges adjacent to vertex v can be probed. In the general
query and commit framework of Gupta and Nagarajan [14], the Cv constraints are the outer
constraints.

1.1 Preliminaries

An input to the (online) stochastic matching problem is a (bipartite) stochastic
graph, specified in the following way. Let G = (U, V, E) be a bipartite graph with edge
weights (we)e∈E and edge probabilities (pe)e∈E . We draw an independent Bernoulli random
variable of parameter pe for each e ∈ E. We refer to this Bernoulli as the state of the edge e,
and denote it by st(e). If st(e) = 1, then we say that e is active, and otherwise we say that
e is inactive. For each v ∈ V , denote ∂(v) as the edges of G which include v. Define ∂(v)(∗)

as the collection of strings (tuples) formed from the edges of ∂(v) whose characters (entries)
are all distinct. Note that we use string/tuple notation and terminology interchangeably.
Each v ∈ V has an online probing constraint Cv ⊆ ∂(v)(∗) which is downward-closed.
That is, Cv has the property that if e ∈ Cv, then so is any substring or permutation of e.
Thus, in particular, our setting encodes the case when v has a patience value ℓv, and more
generally, when Cv corresponds to a matroid or budgetary constraint2 on ∂(v). Note that we
will often assume w.l.o.g. that E = U × V , as we can always set pu,v := 0.

A solution to the online stochastic matching problem is an online probing algorithm.
An online probing algorithm is initially only aware of the identity of the offline vertices
U of G. We think of G, as well as the relevant edges probabilities, weights, and probing
constraints, as being generated by an adversary. An ordering on V is then generated either
through an adversarial process or uniformly at random. We refer to the former case as
the adversarial order model (AOM) and the latter case as the random order model
(ROM).

Based on whichever ordering is generated on V , the nodes are then presented to the
online probing algorithm one by one. When an online node v ∈ V arrives, the online
probing algorithm sees all the adjacent edges and their associated probabilities, as well as
Cv. However, the edge states (st(e))e∈∂(v) remain hidden to the algorithm. Instead, the
algorithm must perform a probing operation on an adjacent edge e to reveal/expose its
state, st(e). Moreover, the online probing algorithm must respect commitment. That is, if
an edge e = (u, v) is probed and turns out to be active, then e must be added to the current
matching, provided u and v are both currently unmatched. The probing constraint Cv of the
online node then restricts which sequences of probes can be made to ∂(v). As in the classical
problem, an online probing algorithm must decide on a possible match for an online node v

before seeing the next online node. The goal of the online probing algorithm is to return a
matching whose expected weight is as large as possible. Since Cv may be exponentially large
in the size of U , in order to discuss the efficiency of an online probing algorithm, we work
in the membership oracle model. That is, upon receiving the online vertex v ∈ V , we

2 In the case of a budget Bv and edge probing costs (be)e∈∂(v), any subset of ∂(v) may be probed, provided
its cumulative cost does not exceed Bv.

APPROX/RANDOM 2021

13:4 Secretary Matching Meets Probing with Commitment

assume the online probing algorithm has access to a membership oracle. The algorithm
may query any string e ∈ ∂(v)(∗), thus determining in a single operation whether or not
e ∈ ∂(v)(∗) is in Cv.

It is easy to see we cannot hope to obtain a non-trivial competitive ratio against the
expected value of an optimal matching of the stochastic graph. Consider a single online vertex
with patience 1, and k ≥ 1 offline (unweighted) vertices where each edge e has probability 1

k

of being present. The expectation of an online probing algorithm will be at most 1
k while the

expected size of an optimal matching will be 1−(1− 1
k)k → 1− 1

e . This example clearly shows
that no constant ratio is possible if the patience is sublinear in k = |U |. Thus, the standard in
the literature is to instead benchmark the performance of an online probing algorithm against
an optimal offline probing algorithm. An offline probing algorithm knows G = (U, V, E),
but initially the edge states (st(e))e∈E are hidden. It can adaptively probe the edges of E in
any order, but must satisfy the probing constraints (Cv)v∈V at each step of its execution3,
while respecting commitment; that is, if a probed edge e = (u, v) turns out to be active,
then e is added to the matching (if possible). The goal of an offline probing algorithm is
to construct a matching with optimal weight in expectation. We define the committal
benchmark OPT(G) for G as the value of an optimal offline probing algorithm. We abuse
notation slightly, and also use OPT(G) to refer to the strategy of the committal benchmark
on G. In the arXiv version of the paper [4], we introduce the stronger non-committal
benchmark, and indicate which of our results hold against it.

1.2 Our Results
We first consider the case when the stochastic graph G = (U, V, E) has (offline) vertex
weights – i.e., there exists (wu)u∈U such that wu,v = wu for each v ∈ N(u), and arbitrary
downward-closed probing constraints (Cv)v∈V . We consider a greedy online probing algorithm.
That is, upon the arrival of v, the probes to ∂(v) are made in such a way that v gains as much
value as possible (in expectation), provided the currently unmatched nodes of U are equal to
R ⊆ U . As such, we must follow the probing strategy of the committal benchmark when
restricted to the induced stochastic graph4 G[{v} ∪R], which we denote by OPT(R, v)
for convenience.

Observe that if v has unit patience, then OPT(R, v) reduces to probing the adjacent edge
(u, v) ∈ R × {v} such that the value wu · pu,v is maximized. Moreover, if v has unlimited
patience, then OPT(R, v) corresponds to probing the adjacent edges of R × {v} in non-
increasing order of the associated vertex weights. Building on a result in Purohit et al. [24],
Brubach et al. [8] showed how to devise an efficient probing strategy for v whose expected
value matches OPT(R, v), for any patience value. Using this probing strategy, they devised
an online probing algorithm which achieves a competitive ratio of 1/2 for arbitrary patience
values. The challenge in extending this competitive ratio to more general probing constraints
comes from the fact that it is unclear how to compute OPT(R, v) efficiently. We show that
this is possible to do when the probing constraints are downward-closed, and provide a
primal-dual proof of the following theorem:

3 Edges e ∈ E(∗) may be probed in the order specified by e, provided ev ∈ Cv for each v ∈ V , where ev

is the substring of e restricted to edges of ∂(v).
4 Given R ⊆ U, V ′ ⊆ V , the induced stochastic graph G[R ∪ V ′] is formed by restricting the edges weights

and probabilities of G to those edges within R × V ′. Similarly, each probing constraint Cv is restricted
to those strings whose entries lie entirely in R × {v}.

A. Borodin, C. MacRury, and A. Rakheja 13:5

▶ Theorem 1.1. Suppose the adversary presents a vertex weighted stochastic graph G =
(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned
by Algorithm 1 when executing on G, then

E[w(M)] ≥ 1
2 ·OPT(G),

provided the vertices of V arrive in adversarial order. Moreover, Algorithm 1 can be
implemented efficiently in the membership oracle model.

Since Algorithm 1 is deterministic, the 1/2 competitive ratio is best possible for determ-
inistic algorithms in the adversarial arrival setting. One direction is thus to instead consider
what can be done if the online probing algorithm is allowed randomization, which has received
much attention in the case of unit patience [22, 23, 12, 16]. We instead make partial progress
to understanding the performance of Algorithm 1 for downward-closed probing constraints in
the ROM setting. However, unlike the adversarial setting, the complexity of the constraints
greatly impacts what we are able to prove. The first part of our result is asymptotic in
that it yields a good competitive ratio when applied to a stochastic graph whose maximum
edge probability pv := maxe∈∂(v) pe vanishes sufficiently fast relevant to the maximum string
length of Cv, namely cv := maxe∈Cv

|e|, for each v ∈ V . Note that the vanishing probability
setting is similar in spirit to the small bid to budget assumption in the Adwords problem
(see Goyal and Udwani [12] for details). The second part of our result applies to stochastic
graphs which we refer to as rankable. Roughly speaking, a vertex v ∈ V of G is rankable,
provided there exists a fixed/non-adaptive ranking πv of ∂(v) which can be used to specify
the greedy strategy OPT(v, R) of v, no matter which vertices R ⊆ U are available when
v is processed. For example, this includes the well-studied unit patience setting, in which
case v ranks its adjacent edges in non-increasing order of (wupu,v)u∈U , as well as when G

is unweighted and has arbitrary patience values, in which case v ranks its adjacent edges
in non-increasing order of edge probability. A stochastic graph is rankable if all its online
vertices are rankable. We defer the precise definition to Section 2.

▶ Theorem 1.2. Suppose Algorithm 1 returns the matching M when executing on the vertex
weighted stochastic graph G = (U, V, E) with downward-closed constraints (Cv)v∈V , and the
vertices of V arrive u.a.r.. We then have the following two results:
1. If cv := maxe∈Cv

|e| and pv := maxe∈∂(v) pe, then

E[w(M)] ≥ min
v∈V

(1− pv)cv ·
(

1− 1
e

)
·OPT(G).

Thus, if cv · pv → 0 (as |G| → ∞) for each v ∈ V , then E[w(M)] ≥ (1− o(1)) (1− 1/e) ·
OPT(G).

2. If G is rankable (which includes the specific cases outlined in the abstract), then

E[w(M)] ≥
(

1− 1
e

)
·OPT(G).

▶ Remark 1.3. The analysis of Algorithm 1 is tight, as an execution of Algorithm 1 corresponds
to the seminal Karp et al. [17] Ranking algorithm for unweighted non-stochastic (i.e.,
pe ∈ {0, 1} for all e ∈ E) bipartite matching.

In the unit patience setting of [22], Mehta and Panigrahi showed that .621 < 1 − 1
e is

a randomized inapproximation with regard to guarantees made against LP-std-unit, the
LP introduced by [22] to upper bound/relax the committal benchmark in the unit patience

APPROX/RANDOM 2021

13:6 Secretary Matching Meets Probing with Commitment

setting. This hardness result led Goyal and Udwani [12] to consider a new unit patience
LP that is a tighter relaxation of OPT(G) than LP-std-unit, thereby allowing them to
prove a 1− 1/e competitive ratio for the case of vertex-decomposable5 edge probabilities.
However, they also discuss the difficulty of extending this result to the case of arbitrary edge
probabilities in the context of the Adwords problem with arbitrary budget to bid ratios. It
remains open whether a randomized algorithm can attain a competitive ratio of 1 − 1/e

against the committal benchmark for adversarial arrivals and arbitrary edge probabilities. A
corollary of Theorem 1.2 is that in the ROM setting these difficulties do not arise.

▶ Corollary 1.4. Suppose the adversary presents a vertex weighted stochastic graph G =
(U, V, E), with unit patience values. If M is the matching returned by Algorithm 1 when
executing on G, then

E[w(M)] ≥
(

1− 1
e

)
OPT(G),

provided the vertices of V arrive in random order.

▶ Remark 1.5. The guarantee of Theorem 1.2 is proven against a new LP relaxation (LP-DP)
whose optimum value we denote by LPOPTDP(G). In the special case when G has unit
patience, LPOPTstd(G) ≤ LPOPTDP(G). Thus, the 0.621 inapproximation of Mehta and
Panigraphi against LP-std-unit does not apply (even for deterministic probing algorithms) to
the ROM setting. Corollary 1.4 therefore implies that deterministic probing algorithms in the
ROM setting have strictly more power than randomized probing algorithms in the adversarial
order model. This contrasts with the classic ROM setting where it is unknown whether a
deterministic algorithm can improve upon 1− 1/e, the optimal competitive attainable by
randomized algorithms in the adversarial setting.
We next consider the unknown stochastic matching problem in the most general setting
of arbitrary edge weights, and downward-closed probing constraints. Since no non-trivial
competitive ratio can be proven in the case of adversarial arrivals, even in the classical setting,
we work in the ROM setting. We generalize the matching algorithm of Kesselheim et al. [18]
so as to apply to the stochastic probing setting.

▶ Theorem 1.6. Suppose the adversary presents an edge-weighted stochastic graph G =
(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned
by Algorithm 2 when executing on G, then

E[w(M)] ≥
(

1
e
− 1
|V |

)
·OPT(G),

provided the vertices of V arrive uniformly at random (u.a.r.). Moreover, Algorithm 2 can
be implemented efficiently in the membership oracle model.

▶ Remark 1.7. For context, the previous best known approximation ratio known for the
offline bipartite stochastic matching problem with two-sided or one-sided patience is 0.352
due to Adamczyk et al. [3]. Since 1/e > 0.352, Theorem 1.6 in fact improves on this result
for the case of one-sided patience, despite the fact that Algorithm 2 works in the unknown
graph setting and for more general one-sided probing constraints. Very recently, Brubach et
al. [7] proved an approximation ratio of 0.382 for general stochastic graphs.

5 Vertex-decomposable means that there exists probabilities (pu)u∈U and (pv)v∈V , such that p(u,v) = pu·pv

for each (u, v) ∈ E.

A. Borodin, C. MacRury, and A. Rakheja 13:7

1.3 Our Technical Contributions
In the vertex weighted setting, the first challenge is to establish a greedy strategy for a single
online vertex which runs efficiently for general probing constraints. We provide a dynamic
programming based algorithm (DP-OPT) for solving this problem, which builds upon the
work of Brubach et al. [8], and before that, Purohit et al. [24] (see Theorem 2.1). In the
adversarial arrival setting, we prove a competitive ratio of 1/2 by comparing the performance
of Algorithm 1 to the dual of LP-DP, an extension of the LP considered by Brubach et al.
[8] from patience values to general probing constraints.

We next move to the ROM/secretary setting. In the unit patience setting of Corollary 1.4,
DP-OPT reduces to probing a single edge which yields the largest value in expectation, and
LP-DP is a relaxation of LP-std-unit (upper bounds its optimum value). While we do not
show this, one could work directly with LP-std-unit and follow the primal-dual argument of
Devanur et al. [10]. In contrast, Theorem 1.2 applies to downward-closed probing constraints
which comes with two main technical challenges. First, Brubach et al. [8] showed that even
the offline committal benchmark has a 0.544 inapproximation against the generalization of
LP-std-unit to arbitrary patience (LP-std). Moreover, this inapproximation applies to a
stochastic graph which is both rankable and has vanishingly small edge probabilities. Thus,
Theorem 1.2 cannot be proven by comparing the performance of Algorithm 1 to LP-std
and its dual, even for patience values. Our solution is to instead work with LP-DP and
its dual, LP-dual-DP. When a match between u ∈ U and v ∈ V is successfully made, we
apply the well-studied cost sharing function g(z) := exp(z − 1) to split the weight of u, as in
[10]. However, LP-dual-DP contains variables which do not have an analogue in the classical
setting. Specifically, the online vertices are associated with exponentially many variables, and
we cost share with the offline vertices which were available when v was matched to u, opposed
to just v itself. The second main technical challenge is that when moving away from the unit
patience setting, the executions of Algorithm 1 become non-monotonic. Specifically, while
v may get matched to u, if a new online vertex v∗ is added to the graph ahead of v, then u

may not be matched at all. This complicates the analysis, and is the reason the competitive
ratio of Theorem 1.2 does not hold unconditionally, as we explain in Section 2.

In the edge weighted setting, upon receiving the online vertices Vt := {v1, . . . , vt}, in
order to generalize the matching algorithm of Kesselheim et al. [18], Algorithm 2 would
ideally probe the edges of ∂(vt) suggested by OPT(Gt), where Gt := G[U ∪Vt] is the induced
stochastic graph on U ∪ Vt. However, since we wish for our algorithms to be efficient in
addition to attaining optimal competitive ratios, this strategy is not feasible. We instead
make use of a new LP (LP-config) recently introduced by the authors in [5] and independently
by Brubach et al. in [6, 13] for the special case of patience values, an updated version of [8].
This LP has exponentially many variables which accounts for the many probing strategies
available to an arriving vertex v with probing constraint Cv. We solve this LP efficiently by
using DP-OPT as a deterministic separation oracle for LP-config-dual, the dual of LP-config,
in conjunction with the ellipsoid algorithm [26, 11]. This LP closely resembles what the
committal benchmark is capable of doing, and thus leads to a probing algorithm with an
optimum competitive ratio.

2 Vertex Weights

In this section, we define Algorithm 1 and introduce the techniques needed to prove Theorems
1.1 and 1.2. However, for space considerations, we defer the dual-fitting argument used in
the adversarial arrival setting of Theorem 1.1 to Appendix B.

APPROX/RANDOM 2021

13:8 Secretary Matching Meets Probing with Commitment

Suppose that G = (U, V, E) is a vertex weighted stochastic graph with weights (wu)u∈U .
Let us now fix s ∈ V , and define val(e) to be the expected weight of the edge matched,
provided the edges of e are probed in order, where e ∈ Cs. Observe then the following claim:

▶ Theorem 2.1. There exists a dynamic programming (DP) based algorithm DP-OPT,
which given access to G[{s} ∪ U], computes a tuple e′ ∈ Cs, such that OPT(s, U) = val(e′).
Moreover, DP-OPT executes in time O(|U |2), assuming access to a membership oracle for
the downward-closed constraint Cs.

Proof of Theorem 2.1. It will be convenient to denote wu,s := wu for each u ∈ U such that
(u, s) ∈ ∂(s). We first must show that there exists some e′ ∈ Cs such that val(e′) = OPT(s, U),
where

val(e) :=
|e|∑
i=1

pei
wei

i−1∏
j=1

(1− pei
), (2.1)

for e ∈ Cs, and OPT(s, U) is the value of the committal benchmark on G[{s} ∪ U]. Since
the committal benchmark must respect commitment – i.e., match the first edge to s which it
reveals to be active – it is clear that e′ exists.

Our goal is to now show that e′ can be computed efficiently. Now, for any e ∈ Cs, let
er be the rearrangement of e, based on the non-increasing order of the weights (we)e∈e.
Since Cs is downward-closed, we know that er is also in Cs. Moreover, val(er) ≥ val(e)
(following observations in [24, 8]). Hence, let us order the edges of ∂(s) as e1, . . . , em, such
that we1 ≥ . . . ≥ wem

, where m := |∂(s)|. Observe then that it suffices to maximize (2.1) over
those strings within Cs which respect this ordering on ∂(s). Stated differently, let us denote Is

as the family of subsets of ∂(s) induced by Cs, and define the set function f : 2∂(s) → [0,∞),
where f(B) := val(b) for B = {b1, . . . , b|B|} ⊆ ∂(s), such that b = (b1, . . . , b|B|) and
wb1 ≥ . . . ≥ wb|B| . Our goal is then to efficiently maximize f over the set-system (∂(s), Is).
Observe that Is is downward-closed and that we can simulate oracle access to Is, based on
our oracle access to Cs.

For each i = 0, . . . , m− 1, denote ∂(s)>i := {ei+1, . . . , em}, and ∂(s)>m := ∅. Moreover,
define the family of subsets I>i

s := {B ⊆ ∂(s)>i : B ∪ {ei} ∈ Is} for each 1 ≤ i ≤ m,
and I>0

s := Is. Observe then that (∂(s)>i, I>i
s) is a downward-closed set system, as Is is

downward-closed. Moreover, we may simulate oracle access to I>i
s based on our oracle access

to Is.
Denote OPT(I>i

s) as the maximum value of f over constraints I>i
s . Observe then that

for each 0 ≤ i ≤ m− 1, the following recursion holds:

OPT(I>i
s) := max

j∈{i+1,...,m}
(pej
· wej

+ (1− pej
) ·OPT(I>j

s)) (2.2)

Hence, given access to the values OPT(I>i+1
s), . . . , OPT(I>m

s), we can compute OPT(I>i
s)

efficiently. Moreover, OPT(I>m
s) = 0 by definition. Thus, it is clear that we can use (2.2)

to recover an optimal solution to f . We can define DP-OPT to be a memoization based
implementation of (2.2). It is clear DP-OPT can be implemented in the claimed time
complexity. ◀

Given R ⊆ U , consider the induced stochastic graph, G[{s} ∪ R] for R ⊆ U which has
probing constraint CR

s ⊆ Cv, constructed by restricting Cs to those strings whose entries
all lie in R × {s}. Moreover, denote the output of executing DP-OPT on G[{s} ∪ R] by
DP-OPT(s, R). Consider now the following online probing algorithm:

A. Borodin, C. MacRury, and A. Rakheja 13:9

Algorithm 1 Greedy-DP.

Input: offline vertices U with vertex weights (wu)u∈U .
Output: a matching M of active edges of the unknown stochastic graph G = (U, V, E).

1: M← ∅.
2: R← U .
3: for t = 1, . . . , n do
4: Let vt be the current online arrival node, with constraint Cvt

.
5: Set e← DP-OPT(vt, R)
6: for i = 1, . . . , |e| do
7: Probe ei.
8: if st(ei) = 1 then
9: Add ei to M, and update R← R \ {ui}, where ei = (ui, vt).

10: return M.

In general, the behaviour of the committal benchmark, namely OPT(s, R), can change
very much, even for minor changes to R. For instance, if R = U , then OPT(s, U) may
probe the edge (u, s) first – thus giving it highest priority – whereas if u∗ ∈ U is removed
from U (where u∗ ̸= u), OPT(s, U \ {u∗}) may not probe (u, v) at all (see Example B.1 for
an explicit instance of this behaviour). As a result, it is easy to consider an execution of
Algorithm 1 on G where v is matched to u, but if a new vertex v∗ is added to G ahead of v,
u is never matched. We thus refer to Algorithm 1 as being non-monotonic. This contrasts
with the classical setting, in which the deterministic greedy algorithm in the ROM setting
does not exhibit this behaviour, and thus is monotonic. The absence of monotonicity isn’t
problematic in the adversarial setting of Theorem 1.1 because our primal-dual charging
assignment does not depend on the order of the online vertex arrivals (see Appendix B). This
contrasts with the ROM setting, in which Example B.1 can be extended to show that the
cost sharing rule g(z) := exp(z− 1) will not work in general. Our approach is thus to restrict
our attention to stochastic graphs in which executions of Algorithm 1 are either monotonic,
or monotonic with high probability. This leads us to the definition of rankability, which
characterizes a large number of settings in which Algorithm 1 is monotonic.

Given a vertex v ∈ V , and an ordering πv on ∂(v), if R ⊆ U , then define πv(R) to be the
longest string constructible by iteratively appending the edges of R × {v} via πv, subject
to respecting constraint CR

v . More precisely, given e′ after processing e1, . . . , ei of R× {v}
ordered according to πv, if (e′, ei+1) ∈ CR

v , then update e′ by appending ei+1 to its end,
otherwise move to the next edge ei+2 in the ordering πv, assuming i + 2 ≤ |R|. If i + 2 > |R|,
return the current string e′ as πv(R). We say that v is rankable, provided there exists
a choice of πv which depends solely on (pe)e∈∂(v), (we)e∈∂(v) and Cv, such that for every
R ⊆ U , the strings DP-OPT(v, R) and πv(R) are equal. Crucially, if v is rankable, then
when vertex v arrives while executing Algorithm 1, one can compute the ranking πv on
∂(v) and probe the adjacent edges of R× {v} based on this order, subject to not violating
the constraint CR

v . By following this probing strategy, the optimality of DP-OPT ensures
that the expected weight of the match made to v will be OPT(v, R). We consider three
(non-exhaustive) examples of rankability:

▶ Proposition 2.2. Let G = (U, V, E) be a stochastic graph, and suppose that v ∈ V . If v

satisfies either of the following conditions, then v is rankable:
1. v has unit patience or unlimited patience; that is, ℓv ∈ {1, |U |}.
2. v has patience ℓv, and for each u1, u2 ∈ U , if pu1,v ≤ pu2,v then wu1 ≤ wu2 .
3. G is unweighted, and v has a budget Bv with edge probing costs (bu,v)u∈U , and for each

u1, u2 ∈ U , if pu1,v ≤ pu2,v then bu1,v ≥ bu2,v.

APPROX/RANDOM 2021

13:10 Secretary Matching Meets Probing with Commitment

▶ Remark 2.3. Note that the cases of Proposition 2.2 subsume all the settings listed in the
abstract. The rankable assumption is similar to assumptions referred to as laminar, agreeable
and compatible in other applications.

We refer to the stochastic graph G as rankable, provided all of its vertices are themselves
rankable. We emphasize that distinct vertices of V may each use their own separate rankings
of their adjacent edges.

As discussed in Subsection 1.3, the 0.544 inapproximation against LP-std [8] prevents us
from proving a performance guarantee against LP-std, even for patience values. We instead
upper bound OPT(G) using a tighter LP relaxation that comes with the additional benefit
of applying to downward-closed probing constraints. For each u ∈ U and v ∈ V , let xu,v be
a decision variable corresponding to the probability that OPT(G) probes the edge (u, v).

maximize
∑
u∈U

∑
v∈V

wu · pu,v · xu,v (LP-DP)

subject to
∑
v∈V

pu,v · xu,v ≤ 1 ∀u ∈ U (2.3)∑
u∈R

wu · pu,v · xu,v ≤ OPT(v, R) ∀v ∈ V, R ⊆ U (2.4)

xu,v ≥ 0 ∀u ∈ U, v ∈ V (2.5)

Denote LPOPTDP(G) as the optimal value of this LP. Constraint (2.3) can be viewed as
ensuring that the expected number of matches made to u ∈ U is at most 1. Similarly,
(2.4) can be interpreted as ensuring that expected stochastic reward of v, suggested by
the solution (xu,v)u∈U,v∈V , is actually attainable by the committal benchmark. Thus,
OPT(G) ≤ LPOPTDP(G) (a formal proof specific to patience values is proven in [8]).

2.0.1 Defining the Primal-Dual Charging Schemes
In order to prove Theorems 1.1 and 1.2, we employ primal-dual charging arguments based
on the dual of LP-DP. For each u ∈ U , define the variable αu. Moreover, for each R ⊆ U

and v ∈ V , define the variable ϕv,R (these latter variables correspond to constraint (2.4)).

minimize
∑
u∈U

αu +
∑
v∈V

∑
R⊆U

OPT(v, R) · ϕv,R (LP-dual-DP)

subject to pu,v · αu +
∑

R⊆U :
u∈R

wu · pu,v · ϕv,R ≥ wu · pu,v ∀u ∈ U, v ∈ V (2.6)

αu ≥ 0 ∀u ∈ U (2.7)
ϕv,R ≥ 0 ∀v ∈ V, R ⊆ U (2.8)

The dual-fitting argument used to prove Theorem 1.2 has an initial set-up which proceeds
similarly to the argument in Devanur et al. [10]. Specifically, first define g : [0, 1] → [0, 1]
where g(z) := exp(z − 1) for z ∈ [0, 1]. We shall use g to perform our charging/cost sharing.
Moreover, recall that given v ∈ V , we defined cv := maxe∈Cv

|e| and pv := maxe∈∂(v) pe.
Using these definitions, we define F = F (G), where

F (G) :=
{

1− 1
e G is rankable(

1− 1
e

)
·minv∈V (1− pv)cv otherwise

(2.9)

A. Borodin, C. MacRury, and A. Rakheja 13:11

In order to prove Theorem 1.2, we shall prove that Algorithm 1 returns a matching of
expected weight at least F (G) · LPOPTDP(G) when executing on the stochastic graph G in
the ROM setting. Clearly, we may assume F (G) > 0, as otherwise there is nothing to prove,
so we shall make this assumption for the rest of the section. Note that F (G) ≤ 1− 1/e no
matter the stochastic graph G.

For each v ∈ V , draw Yv ∈ [0, 1] independently and uniformly at random. We assume
that the vertices of V are presented to Algorithm 1 in a non-decreasing order, based on the
values of (Yv)v∈V . We now describe how the charging assignments are made while Algorithm
1 executes on G. First, we initialize a dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U) where all the
variables are set equal to 0. Next, we take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If
R consists of the unmatched vertices of v when it arrives at time Yv, then suppose that
Algorithm 1 matches v to u while making its probes to a subset of the edges of R × {v}.
In this case, we charge wu · (1 − g(Yv))/F to αu and wu · g(Yv)/(F · OPT(v, R)) to ϕv,R.
Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,

E[w(M)] = F ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (2.10)

where the expectation is over the random variables (Yv)v∈V and (st(e))e∈E . If we now set
α∗

u := E[αu] and ϕ∗
v,R := E[ϕv,R] for u ∈ U, v ∈ V and R ⊆ U , then (2.10) implies the

following lemma:

▶ Lemma 2.4. Suppose G = (U, V, E) is a stochastic graph for which Algorithm 1 returns the
matching M when presented V based on (Yv)v∈V generated u.a.r. from [0, 1]. In this case, if
the variables ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U) are defined through the above charging scheme, then

E[w(M)] = F ·

∑
u∈U

α∗
u +

∑
v∈V

∑
R⊆U

OPT(v, R) · ϕ∗
v,R

 .

We claim the following regarding ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U):

▶ Lemma 2.5. If the online nodes of G = (U, V, E) are presented to Algorithm 1 based on
(Yv)v∈V generated u.a.r. from [0, 1], then the solution ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U) is a feasible

solution to LP-dual-DP.

Since LP-DP is a relaxation of the committal benchmark, Theorem 1.2 follows from Lemmas
2.4 and 2.5 in conjunction with weak duality.

2.0.2 Proving Dual Feasibility: Lemma 2.5
Let us suppose that the variables ((αu)u∈U , (ϕv,R)v∈V,R⊆U) are defined as in the charging
scheme of Section 2.0.1. In order to prove Lemma 2.5, we must show that for each fixed
u0 ∈ U and v0 ∈ V , we have that

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (2.11)

Our strategy for proving (2.11) first involves the same approach as used in Devanur et al.
[10]. Specifically, we define the stochastic graph G̃ := (U, Ṽ , Ẽ), where Ṽ := V \ {v0} and
G̃ := G[U ∪ Ṽ]. We wish to compare the execution of the algorithm on the instance G̃ to its
execution on the instance G. It will be convenient to couple the randomness between these
two executions by making the following assumptions:

APPROX/RANDOM 2021

13:12 Secretary Matching Meets Probing with Commitment

1. For each e ∈ Ẽ, e is active in G̃ if and only if it is active in G.
2. The same random variables, (Yv)

v∈Ṽ
, are used in both executions.

If we now focus on the execution of G̃, then define the random variable Ỹc where Ỹc := Yvc
if

u0 is matched to some vc ∈ Ṽ , and Ỹc := 1 if u0 remains unmatched after the execution on
G̃. We refer to the random variable Ỹc as the critical time of vertex u0 with respect to v0.
We claim the following lower bounds on αu0 in terms of the critical time Ỹc.

▶ Proposition 2.6.
If G is rankable, then αu0 ≥

(
1− 1

e

)−1
wu0(1− g(Ỹc)).

Otherwise, E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(
1− 1

e

)−1
wu0(1− g(Ỹc)).

▶ Remark 2.7. Note that Proposition 2.6 is the only part of the proof of Theorem 1.2
which is affected by whether or not G is rankable. We defer the proof of Proposition 2.6 to
Appendix B.
By taking the appropriate conditional expectation, we can also lower bound the random
variables (ϕv0,R)R⊆U :

u0∈R
.

▶ Proposition 2.8.

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz.

Proof of Proposition 2.8. We first define Rv0 as the unmatched vertices of U when v0
arrives (this is a random subset of U). We also once again use M to denote the matching
returned by Algorithm 1 when executing on G. If we now take a fixed subset R ⊆ U , then
the charging assignment to ϕv0,R ensures that

ϕv0,R = w(M(v0)) · g(Yv0)
F ·OPT(v0, R) · 1[Rv0 =R],

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if
v0 remains unmatched after the execution on G). In order to make use of this relation, let
us first condition on the values of (Yv)v∈V , as well as the states of the edges of Ẽ; that is,
(st(e))

e∈Ẽ
. Observe that once we condition on this information, we can determine g(Yv0), as

well as Rv0 . As such,

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F ·OPT(v0, R) E[w(M(v0)) | (Yv)v∈V , (st(e))

e∈Ẽ
]·1[Rv0 =R].

On the other hand, the only randomness which remains in the conditional expectation
involving w(M(v0)) is over the states of the edges adjacent to v0. Observe now that since
Algorithm 1 behaves optimally on G[{v0} ∪Rv0], we get that

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (2.12)

and so for the fixed subset R ⊆ U ,

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]

after multiplying each side of (2.12) by the indicator random variable 1[Rv0 =R]. Thus,

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

1[Rv0 =R],

A. Borodin, C. MacRury, and A. Rakheja 13:13

after cancellation. We therefore get that

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

∑
R⊆U :
u0∈R

1[Rv0 =R].

Let us now focus on the case when v0 arrives before the critical time; that is, 0 ≤ Yv0 < Ỹc.
Up until the arrival of v0, the executions of the algorithm on G̃ and G proceed identically,
thanks to the coupling between the executions. As such, u0 must be available when v0 arrives.
We interpret this observation in the above notation as saying the following:

1[Yv0 <Ỹc] ≤
∑

R⊆U :
u0∈R

1[Rv0 =R].

As a result,

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥ g(Yv0)
F

1[Yv0 <Ỹc].

Now, if we take expectation over Yv0 , while still conditioning on the random variables (Yv)
v∈Ṽ

,
then we get that

E[g(Yv0) · 1[Yv0 <Ỹc] | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] =
∫ Ỹc

0
g(z) dz,

as Yv0 is drawn uniformly from [0, 1], independently from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

. Thus,
after applying the law of iterated expectations,

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz,

and so the claim holds. ◀

With Propositions 2.6 and 2.8, the proof of Lemma 2.5 follows easily (see Appendix B),
and so Theorem 1.2 is proven.

3 Edge Weights

Let us suppose that G = (U, V, E) is a stochastic graph with arbitrary edge weights,
probabilities and downward-closed probing constraints (Cv)v∈V . For each k ≥ 1 and e =
(e1, . . . , ek) ∈ E(k), define g(e) :=

∏k
i=1(1 − pei

). Notice that g(e) corresponds to the
probability that all the edges of e are inactive, where g(λ) := 1 for the empty string λ. We
also define e<ei := (e1, . . . , ei−1) for each 2 ≤ i ≤ k, which we denote by e<i when clear. By
convention, e<1 := λ. Observe then that val(e) :=

∑|e|
i=1 pei

wei
· g(e<i) corresponds to the

expected weight of the first active edge if e is probed in order of its indices, where val(λ) := 0.
For each v ∈ V , we introduce a decision variable denoted xv(e), which may loosely be

interpreted as the likelihood the committal benchmark probes the edges in the order specified

APPROX/RANDOM 2021

13:14 Secretary Matching Meets Probing with Commitment

by e = (e1, . . . , ek) 6. With this notation, we express the following LP:

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑
v∈V

∑
e∈Cv :

(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (3.1)

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (3.2)

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (3.3)

Denote LPOPTconf(G) as the optimal value of LP-config. This LP was developed from
insights relevant to both the secretary and prophet settings. Specifically, the DP-OPT
algorithm of Theorem 2.1 can be used as a (deterministic) polynomial time separation oracle
for the dual of LP-config. This ensures that LP-config can be solved in polynomial time as a
consequence of how the ellipsoid algorithm [26, 11] executes (see Theorem A.1 in Appendix
A for details). In [5], we prove that LP-config is a relaxation of the committal benchmark.
Unlike previous LP relaxations of the committal benchmark, we are not aware of an easy
proof of this fact, and we consider it to be a technical contribution.

We now define a fixed vertex probing algorithm, called VertexProbe, which is applied
to an online vertex s of an arbitrary stochastic graph (potentially distinct from G) with
probing constraints Cs on ∂(s). Specifically, given non-negative values (z(e))e∈Cs

which
satisfy

∑
e∈Cs

z(e) = 1, draw e′ with probability z(e′). If e′ = (e′
1, . . . , e′

k) for k := |e′| ≥ 1,
then probe the edges of e′ in order, and match s to the first edge revealed to be active. If no
such edge exists, or e′ = λ, then return ∅.

▶ Lemma 3.1. Suppose VertexProbe is passed a fixed online node s of a stochastic graph,
and values (z(e))e∈Cs

which satisfy
∑

e∈Cs
z(e) = 1. If for each e ∈ ∂(s),

z̃e :=
∑

e′∈Cv :
e∈e′

g(e′
<e) · zv(e′),

then e is probed with probability z̃e, and returned by the algorithm with probability pe · z̃e.

▶ Remark 3.2. If VertexProbe outputs the edge e = (u, s) when executing on the fixed
node s, then we say that s commits to the edge e = (u, s), or that s commits to u.
Returning to the problem of designing an online probing algorithm for G, let us assume that
n := |V |, and that the online nodes of V are denoted v1, . . . , vn, where the order is generated
u.a.r. Denote Vt as the set of first t arrivals of V ; that is, Vt := {v1, . . . , vt}. Moreover, set
Gt := G[U ∪ Vt], and LPOPTconf(Gt) as the value of an optimal solution to LP-config (this
is a random variable, as Vt is a random subset of V). The following inequality then holds:

▶ Lemma 3.3. For each t ≥ 1, E[LPOPTconf (Gt)] ≥ t
n LPOPTconf (G).

In light of this observation, we design an online probing algorithm which makes use of Vt,
the currently known nodes, to derive an optimal LP solution with respect to Gt. As such,
each time an online node arrives, we must compute an optimal solution for the LP associated
to Gt, distinct from the solution computed for that of Gt−1.

6 While this is the natural interpretation of the decision variables of LP-config, to the best of our
knowledge, formally defining the variables in this way does not lead to a proof that LP-config relaxes
the committal benchmark. We discuss this in detail in [5].

A. Borodin, C. MacRury, and A. Rakheja 13:15

Algorithm 2 Unknown Stochastic Graph ROM.

Input: U and n := |V |.
Output: a matching M from the (unknown) stochastic graph G = (U, V, E) of active edges.

1: Set M← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . , n do
4: Input vt, with (we)e∈∂(vt), (pe)e∈∂(vt) and Cvt

.
5: Compute Gt, by updating Gt−1 to contain vt (and its relevant information).
6: if t < ⌊n/e⌋ then
7: Pass on vt.
8: else
9: Solve LP-config for Gt and find an optimal solution (xv(e))v∈Vt,e∈Cv

.
10: Set et ← VertexProbe(vt, ∂(vt), (xv(e))e∈Cvt

).
11: if et = (ut, vt) ̸= ∅ and ut is unmatched then
12: Add et to M.
13: return M.

▶ Remark 3.4. Unlike the algorithm of Kesselheim et al., our algorithm is randomized,
and we do not know whether the polytope LP-config always admits an optimum integral
solution. We leave it as an interesting open question as to whether or not Algorithm 2 can
be derandomized.

Let us consider the matching M returned by the algorithm, as well as its weight, which
we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉. For each αn ≤ t ≤ n,
define Rt as the unmatched vertices of U when vertex vt arrives. Note that committing to
et = (ut, vt) is necessary, but not sufficient, for vt to match to ut. With this notation, we
have that E[w(M)] =

∑n
t=αn E[w(ut, vt) · 1[ut∈Rt]]. Moreover, we claim the following:

▶ Lemma 3.5. For each t ≥ ⌈αn⌉, E[w(et)] ≥ LPOPTconf (G)/n.

▶ Lemma 3.6. For each t ≥ ⌈αn⌉, define f(t, n) := ⌊αn⌋/(t − 1). In this case, P[ut ∈
Rt |Vt, vt] ≥ f(t, n), where Vt = {v1, . . . , vt} and vt is the tth arriving node of V 7.

The proofs of Lemmas 3.5 and 3.6 mostly follow the analogous claims as proven by Kesselheim
et al. in the classic secretary matching problem. We present formal proofs in the arXiv
version [4]. With these lemmas, together with the efficient solvability of LP-config, the proof
of Theorem 1.6 follows easily (see Appendix C).

4 Conclusion and Open Problems

We considered the online stochastic bipartite matching with commitment in a number of
different settings establishing several competitive bounds against the committal benchmark.
Our work leaves open a number of challenging problems. For context we note that currently,
even for the classical (i.e., non-probing) setting, 1− 1

e is the best known ratio for deterministic
algorithms operating on unweighted or vertex weighted graphs with random order vertex
arrivals. The best known ROM inapproximation of 0.823 (due to Manshadi et al. [21]) comes
from the classical i.i.d. unweighted graph setting for a known distribution and applies to
randomized as well as deterministic algorithms.

7 Note that since Vt is a set, conditioning on Vt only reveals which vertices of V encompass the first t
arrivals, not the order they arrived in. Hence, conditioning on vt as well reveals strictly more information.

APPROX/RANDOM 2021

13:16 Secretary Matching Meets Probing with Commitment

What is the best ratio that a deterministic or randomized online algorithm can obtain for
all vertex weighted stochastic graphs in the ROM setting? That is, what competitive ratio
can be achieved without the rankable assumption? Is there an online probing algorithm
which can surpass the 1− 1/e “barrier” with or without the rankable assumption? Here
we note that in the classical ROM setting, the Ranking algorithm achieves a 0.696 ratio
for unweighted graphs (due to Mahdian and Yan [20]) and a 0.6534 ratio (due to Huang
et al. [15]) for vertex weighted graphs. Thus, randomization seems to significantly help
in the classical ROM setting.
What is the best ratio that a randomized online algorithm can obtain for stochastic graphs
in the adversarial arrival model? The Mehta and Panigraphi [22] 0.621 inapproximation
shows that randomized probing algorithms (even for unweighted graphs and unit patience)
cannot achieve a 1− 1/e performance guarantee against LP-std-unit, however the work of
Goyal and Udwani [12] suggests that this is because LP-std-unit is too loose a relaxation
of the committal benchmark.
For edge weighted graphs, can we achieve a 1

e competitive ratio (or any constant ratio)
by a combinatorial (and more efficient) algorithm? Our vertex weighted algorithm can be
viewed as a truthful online (or random order) posted price mechanism. Can we modify
the edge weighted algorithm to be a truthful mechanism thereby generalizing the truthful
mechanism of Reiffenhauser [25]? Note that unlike the vertex weighted algorithm, our
algorithm for edge weights does not necessarily make an optimal social welfare decision
for each online node.

References
1 Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Inf.

Process. Lett., 111(15):731–737, 2011.
2 Marek Adamczyk, Fabrizio Grandoni, Stefano Leonardi, and Michal Wlodarczyk. When the

optimum is also blind: a new perspective on universal optimization. In ICALP, 2017.
3 Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. Improved approximation

algorithms for stochastic matching. CoRR, abs/1505.01439, 2015. arXiv:1505.01439.
4 Allan Borodin, Calum MacRury, and Akash Rakheja. Greedy approaches to online stochastic

matching. CoRR, abs/2008.09260, 2020. URL: https://arxiv.org/abs/2008.09260.
5 Allan Borodin, Calum MacRury, and Akash Rakheja. Prophet inequality matching meets

probing with commitment. CoRR, abs/2102.04325, 2021. URL: https://arxiv.org/abs/
2102.04325.

6 Brian Brubach, Nathaniel Grammel, Will Ma, and Aravind Srinivasan. Follow your star:
New frameworks for online stochastic matching with known and unknown patience. CoRR,
abs/1907.03963, 2021.

7 Brian Brubach, Nathaniel Grammel, Will Ma, and Aravind Srinivasan. Improved guaran-
tees for offline stochastic matching via new ordered contention resolution schemes. CoRR,
abs/2106.06892, 2021. arXiv:2106.06892.

8 Brian Brubach, Nathaniel Grammel, and Aravind Srinivasan. Vertex-weighted online stochastic
matching with patience constraints. 2019, 1907.03963, 2019. arXiv:1907.03963.

9 Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra. Ap-
proximating matches made in heaven. In Proceedings of the 36th International Colloquium on
Automata, Languages and Programming: Part I, ICALP ’09, pages 266–278, 2009.

10 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis of
ranking for online bipartite matching. In Proceedings of the Twenty-fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, pages 101–107, Philadelphia, PA, USA, 2013.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=2627817.2627824.

http://arxiv.org/abs/1505.01439
https://arxiv.org/abs/2008.09260
https://arxiv.org/abs/2102.04325
https://arxiv.org/abs/2102.04325
http://arxiv.org/abs/2106.06892
http://arxiv.org/abs/1907.03963
http://dl.acm.org/citation.cfm?id=2627817.2627824
http://dl.acm.org/citation.cfm?id=2627817.2627824

A. Borodin, C. MacRury, and A. Rakheja 13:17

11 Bernd Gärtner and Jirí Matousek. Understanding and using linear programming. Universitext.
Springer, 2007.

12 Vineet Goyal and R. Udwani. Online matching with stochastic rewards: Optimal competitive
ratio via path based formulation. Proceedings of the 21st ACM Conference on Economics and
Computation, 2020.

13 Nathaniel Grammel, Brian Brubach, Will Ma, and Aravind Srinivasan. Follow your star: New
frameworks for online stochastic matching with known and unknown patience. In The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15,
2021, Virtual Event, pages 2872–2880, 2021.

14 Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.
In Michel X. Goemans and José R. Correa, editors, Integer Programming and Combinatorial
Optimization - 16th International Conference, IPCO 2013, Valparaíso, Chile, March 18-20,
2013. Proceedings, volume 7801 of Lecture Notes in Computer Science, pages 205–216. Springer,
2013.

15 Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online vertex-weighted
bipartite matching: Beating 1-1/e with random arrivals, 2018. arXiv:1804.07458.

16 Zhiyi Huang and Qiankun Zhang. Online primal dual meets online matching with stochastic
rewards: Configuration lp to the rescue. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, page 1153–1164, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3357713.3384294.

17 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 352–358, 1990.

18 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions. In Hans L.
Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA 2013, pages 589–600, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

19 Euiwoong Lee and Sahil Singla. Optimal Online Contention Resolution Schemes via Ex-Ante
Prophet Inequalities. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th
Annual European Symposium on Algorithms (ESA 2018), volume 112 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 57:1–57:14, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2018.57.

20 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: An
approach based on strongly factor-revealing lps. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 597–606, New York, NY, USA,
2011. ACM. doi:10.1145/1993636.1993716.

21 Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching:
Online actions based on offline statistics. Math. Oper. Res., 37(4):559–573, 2012.

22 Aranyak Mehta and Debmalya Panigrahi. Online matching with stochastic rewards. In
53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 728–737. IEEE Computer Society, 2012.
doi:10.1109/FOCS.2012.65.

23 Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghaddam. Online stochastic matching
with unequal probabilities. In SODA, pages 1388–1404, 2015.

24 Manish Purohit, Sreenivas Gollapudi, and Manish Raghavan. Hiring under uncertainty. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 5181–5189. PMLR, June 09–15 2019.

25 Rebecca Reiffenhäuser. An optimal truthful mechanism for the online weighted bipartite
matching problem. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 1982–1993. SIAM, 2019.

APPROX/RANDOM 2021

http://arxiv.org/abs/1804.07458
https://doi.org/10.1145/3357713.3384294
https://doi.org/10.4230/LIPIcs.ESA.2018.57
https://doi.org/10.1145/1993636.1993716
https://doi.org/10.1109/FOCS.2012.65

13:18 Secretary Matching Meets Probing with Commitment

26 D. Seese. Groetschel, m., l. lovasz, a. schrijver: Geometric algorithms and combinatorial
optimization. (algorithms and combinatorics. eds.: R. l. graham, b. korte, l. lovasz. vol. 2),
springer-verlag 1988, xii, 362 pp., 23 figs., dm 148,-. isbn 3–540–13624-x. Biometrical Journal,
32(8):930–930, 1990. doi:10.1002/bimj.4710320805.

27 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings of the Forty-Third
Annual ACM Symposium on Theory of Computing, STOC ’11, page 783–792, New York, NY,
USA, 2011. Association for Computing Machinery. doi:10.1145/1993636.1993740.

28 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, USA, 1st edition, 2011.

A Solving LP-config Efficiently

Suppose that we are given an arbitrary stochastic graph G = (U, V, E). We contrast LP-config
with LP-std, which is defined only when G has patience values (ℓv)v∈V :

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑

e∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.1)

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (A.2)

∑
e∈∂(v)

xe ≤ ℓv ∀v ∈ V (A.3)

0 ≤ xe ≤ 1 ∀e ∈ E. (A.4)

Observe that LP-config and LP-std are the same LP in the case of unit patience:

maximize
∑
v∈V

∑
e∈∂(v)

we · pe · xe (LP-std-unit)

subject to
∑

e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.5)

∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (A.6)

xe ≥ 0 ∀e ∈ E (A.7)

A.1 Solving LP-config Efficiently

We now show how LP-config be solved efficiently under the assumptions of Theorem 1.6.

▶ Theorem A.1. Suppose that G = (U, V, E) in a stochastic graph with downward-closed
probing constraints (Cv)v∈V . In the membership oracle model, LP-config is efficiently solvable
in |G|.

https://doi.org/10.1002/bimj.4710320805
https://doi.org/10.1145/1993636.1993740

A. Borodin, C. MacRury, and A. Rakheja 13:19

We prove Theorem A.1 by first considering the dual of LP-config. Note, that in the below LP
formulation, if e = (e1, . . . , ek) ∈ Cv, then we set ei = (ui, v) for i = 1, . . . , k for convenience.

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-config-dual)

subject to βv +
|e|∑

j=1
pej
· g(e<j) · αuj

≥
|e|∑

j=1
pej
· wej

· g(e<j) ∀v ∈ V, e ∈ Cv

αu ≥ 0 ∀u ∈ U

βv ∈ R ∀v ∈ V

Observe that to prove Theorem A.1, it suffices to show that LP-config-dual has a
(deterministic) polynomial time separation oracle, as a consequence of how the ellipsoid
algorithm [26, 11] executes (see [28, 27, 2, 19] for more detail).

Suppose that we are presented a particular selection of dual variables, say (αu)u∈U and
(βv)v∈V , which may or may not be a feasible solution to LP-config-dual. Our separation oracle
must determine efficiently whether these variables satisfy all the constraints of LP-config-dual.
In the case in which the solution is infeasible, the oracle must additionally return a constraint
which is violated.

It is clear that we can accomplish this for the non-negativity constraints, so let us
fix a particular v ∈ V in what follows. We wish to determine whether there exists some
e = (e1, . . . , e|e|) ∈ Cv, such that if ei = (ui, v) for i = 1, . . . , k, then

f(e) :=
|e|∑

j=1
(wej

− αuj
) · pej

· g(e<j) > βv, (A.8)

where f(e) := 0 if e = λ.

▶ Lemma A.2. In the membership oracle model, DP-OPT of Proposition 2.1 can be used
to efficiently check whether f(e′) > βv for some e′ ∈ Cv, provided Cv is downward-closed.
Moreover, if such a tuple exists, then it can be found efficiently.

Proof. In order to make this statement, it suffices to show how one can use DP-OPT to
maximize the function f efficiently.

Compute w̃e := we − αu for each e = (u, v) ∈ ∂(v), and define P := {e ∈ ∂(v) : w̃e ≥ 0}.
First observe that if P = ∅, then (A.8) is maximized by the empty-string λ. Thus, for now on
assume that P ̸= ∅. Since Cv is downward-closed, it suffices to consider those e ∈ Cv whose
edges all lie in P . As such, for notational convenience, let us hereby assume that ∂(v) = P .
Observe then that maximizing f corresponds to executing DP-OPT on the stochastic graph
G[U ∪ {v}], with edge weights replaced by (w̃e)e∈∂(v). ◀

B Proofs and Additions to Section 2

Proof of Theorem 1.1. Let G = (U, V, E) be a vertex weighted stochastic graph, and assume
that Algorithm 1 returns the matching M when the online vertices of G are presented to the
algorithm in adversarial order.

We now define a charging assignment as Algorithm 1 executes on G. First, initialize a
dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U) where all the variables are set equal to 0. Let us
now take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If R consists of the unmatched vertices
when v it arrives, then suppose that Algorithm 1 matches v to u while making its probes to

APPROX/RANDOM 2021

13:20 Secretary Matching Meets Probing with Commitment

a subset of the edges of R× {v}. In this case, we charge wu to αu and wu/OPT(v, R) to
ϕv,R. Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,

E[w(M)] = 1
2 ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (B.1)

where the expectation is over (st(e))e∈E . Let us now set α∗
u := E[αu] and ϕ∗

v,R := E[ϕv,R]
for u ∈ U, v ∈ V and R ⊆ U . We claim that ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U) is a feasible solution

to LP-dual-DP. To show this, we must prove that for each fixed u0 ∈ U and v0 ∈ V , we have
that

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (B.2)

We first define Rv0 as the unmatched vertices of U when v0 arrives (this is a random subset
of U). Moreover, define Ẽ := E \ ∂(v0). We claim the following inequality:∑

R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[u0∈Rv0].

To see this, observe that if we take a fixed subset R ⊆ U , then the charging assignment to
ϕv0,R ensures that

ϕv0,R = w(M(v0)) · 1
OPT(v0, R) · 1[Rv0 =R],

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if v0
remains unmatched after the execution on G). In order to make use of this relation, let us
first condition on (st(e))

e∈Ẽ
. Observe that once we condition on this information, we can

determine Rv0 . As such,

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1
OPT(v0, R) E[w(M(v0)) | (st(e))

e∈Ẽ
] · 1[Rv0 =R].

On the other hand, the only randomness which remains in the conditional expectation
involving w(M(v0)) is over (st(e))e∈∂(v0). However, since Algorithm 1 behaves optimally on
G[{v0} ∪Rv0], we get that

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (B.3)

and so for the fixed subset R ⊆ U ,

E[w(M(v0)) | (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]

after multiplying each side of (B.3) by the indicator random variable 1[Rv0 =R]. Thus,

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[Rv0 =R],

after cancellation. We therefore get that∑
R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] =
∑

R⊆U :
u0∈R

1[Rv0 =R] = 1[u0∈Rv0],

A. Borodin, C. MacRury, and A. Rakheja 13:21

as claimed. On the other hand, if we focus on the vertex u0, then observe that if u0 /∈ Rv0 ,
then αu0 must have been charged wu. In other words, αu0 ≥ wu · 1[u0 /∈Rv0]. As a result,

E[pu0,v0αu0 +wu0pu0,v0

∑
R⊆U :
u0∈R

ϕv,R | (st(e))
e∈Ẽ

] ≥ wu0pu0,v0 ·1[u0 /∈Rv0] +wu0pu0,v0 ·1[u0∈Rv0],

and so (B.2) follows after taking expectations. The solution ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U) is
therefore feasible, and so since OPT(G) ≤ LPOPTDP(G), the proof is complete after applying
weak duality and (B.1). ◀

▶ Example B.1. Let G = (U, V, E) be a bipartite graph with U = {u1, u2, u3, u4}, V = {v}
and ℓv = 2. Set pu1,v = 1/3, pu2,v = 1, pu3,v = 1/2, pu4,v = 2/3. Fix ε > 0, and let the
weights of offline vertices be wu1 = 1 + ε, wu2 = 1 + ε/2, wu3 = wu4 = 1. We assume that ε

is sufficiently small – concretely, ε ≤ 1/12. If R1 := U , then OPT(v, R1) probes (u1, v) and
then (u2, v) in order. On the other hand, if R2 = R1 \ {v2}, then OPT(v, R2) does not probe
(u1, v). Specifically, OPT(v, R2) probes (u3, v) and then (u4, v).

Proof of Proposition 2.6. For each v ∈ V , denote Raf
v (G) as the unmatched (remaining)

vertices of U right after v is processed (attempts its probes) in the execution on G. We
emphasize that if a probe of v yields an active edge, thus matching v, then this match is
excluded from Raf

v (G). Similarly, define Raf
v (G̃) in the same way for the execution on G̃

(where v is now restricted to Ṽ).
We first consider the case when G is rankable, and so F (G) = 1 − 1/e. Observe that

since the constraints (Cv)v∈V are substring-closed, we can use the coupling between the two
executions to inductively prove that

Raf
v (G) ⊆ Raf

v (G̃), (B.4)

for each v ∈ Ṽ 8. Now, since g(1) = 1 (by assumption), there is nothing to prove if Ỹc = 1.
Thus, we may assume that Ỹc < 1, and as a consequence, that there exists some vertex
vc ∈ V which matches to u0 at time Ỹc in the execution on G̃.

On the other hand, by assumption we know that u0 /∈ Raf
vc

(G̃) and thus by (B.4), that
u0 /∈ Raf

vc
(G). As such, there exists some v′ ∈ V which probes (u0, v′) and succeeds in

matching to u0 at time Yv′ ≤ Ỹc. Thus, since g is monotone,

αu0 ≥
(

1− 1
e

)−1
wu0 · (1− g(Yv′)) · 1[Ỹc<1] ≥

(
1− 1

e

)−1
wu0 · (1− g(Ỹc)),

and so the rankable case is complete.
We now consider the case when G is not rankable. Suppose that M(v0) is the vertex

matched to v0 when the algorithm executes on G, where M(v0) := ∅ provided no match is
made. Observe then that if no match is made to v0 in this execution, then the execution
proceeds identically to the execution on G̃. As a result, we get the following relation:

αu0 ≥
wu0

F
(1− g(Ỹc)) · 1[M(v0)=∅].

Now, let us condition on (st(e))
e∈Ẽ

and (Yv)v∈V , and recall the definitions of pv0 :=
maxe∂(v0) pe and cv0 := maxe∈Cv0

|e|. Observe that if every probe involving an edge of

8 Example B.1 shows why (B.4) will not hold if G is not rankable.

APPROX/RANDOM 2021

13:22 Secretary Matching Meets Probing with Commitment

∂(v0) is inactive, then M(v0) = ∅. On the other hand, each probe independently fails with
probability at least (1− pv0), and there are at most cv0 probes made to ∂(v0). Thus,

P[M(v0) = ∅ | (st(e))
e∈Ẽ

, (Yv)v∈V] ≥ (1− pv0)cv0

Now, since F (G) = (1− 1/e) ·minv∈V (1− pv)cv , we get that

E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0(1− g(Ỹc)),

and so the proof is complete. ◀

Proof of Lemma 2.5. We first observe that by taking the appropriate conditional expecta-
tion, Proposition 2.6 ensures that

E[αu0 | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0 · (1− g(Ỹc)),

where the right-hand side follows since Ỹc is entirely determined from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

.
Thus, combined with Proposition 2.8,

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

], (B.5)

is lower bounded by(
1− 1

e

)−1
wu0 · pu0,v0 · (1− g(Ỹc)) + wu0 pu0,v0

F

∫ Ỹc

0
g(z) dz. (B.6)

However, g(z) := exp(z − 1) for z ∈ [0, 1] by assumption, so

(1− g(Ỹc)) +
∫ Ỹc

0
g(z) dz =

(
1− 1

e

)
,

no matter the value of the critical time Ỹc. Thus,(
1− 1

e

)−1
(

(1− g(Ỹc)) + 1− 1/e

F

∫ Ỹc

0
g(z) dz

)
≥ 1, (B.7)

as F ≤ 1− 1/e by definition (see (2.9)). If we now lower bound (B.6) using (B.7) and take
expectations over (B.5), it follows that

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R] ≥ wu0 · pu0,v0 .

As the vertices u0 ∈ U and v0 ∈ V were chosen arbitrarily, the proposed dual solution of
Lemma 2.5 is feasible, and so the proof is complete. ◀

C Proofs and Additions to Section 3

Proof of Theorem 1.6. Clearly, Algorithm 2 can be implemented efficiently, since LP-config
is efficiently solvable. Thus, we focus on proving the algorithm attains the desired asymptotic
competitive ratio.

A. Borodin, C. MacRury, and A. Rakheja 13:23

Let us consider the matching M returned by the algorithm, as well as its weight, which
we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉, where we define Rt to
be the unmatched vertices of U when vertex vt arrives. Moreover, define et as the edge vt

commits to, which is the empty-set by definition if no such commitment is made. Observe
that

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) · 1[ut∈Rt]]. (C.1)

Fix ⌈αn⌉ ≤ t ≤ n, and first observe that w(ut, vt) and {ut ∈ Rt} are conditionally independent
given (Vt, vt), as the probes involving ∂(vt) are independent from those of v1, . . . , vt−1. Thus,

E[w(ut, vt) · 1[ut∈Rt] |Vt, vt] = E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt].

Moreover, Lemma 3.6 implies that

E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt] ≥ E[w(ut, vt) |Vt, vt]f(t, n),

and so E[w(ut, vt) 1[ut∈Rt] |Vt, vt] ≥ E[w(ut, vt) |Vt, vt] f(t, n). Thus, by the law of iterated
expectations9

E[w(ut, vt) · 1[ut∈Rt]] = E[E[w(ut, vt) · 1[ut∈Rt] |Vt, vt]]
≥ E[E[w(ut, vt) |Vt, vt]f(t, n)] = f(t, n)E[w(ut, vt)].

As a result, using (C.1), we get that

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) 1[ut∈Rt]] ≥
n∑

t=⌈αn⌉

f(t, n)E[w(ut, vt)].

We may thus conclude that

E[w(M)] ≥ LPOPTconf (G)
n∑

t=⌈αn⌉

f(t, n)
n

,

after applying Lemma 3.5. As
∑n

t=⌈αn⌉ f(t, n)/n ≥ (1/e− 1/n), the result holds. ◀

9 E[w(ut, vt)·1[ut∈Rt] | Vt, vt] is a random variable which depends on Vt and vt, and so the outer expectation
is over the randomness in Vt and vt.

APPROX/RANDOM 2021

Semi-Streaming Algorithms for Submodular
Function Maximization Under b-Matching
Constraint
Chien-Chung Huang #

CNRS, DI ENS, École normale supérieure, Université PSL, France

François Sellier #

École polytechnique, Institut Polytechnique de Paris, France

Abstract
We consider the problem of maximizing a submodular function under the b-matching constraint, in
the semi-streaming model. Our main results can be summarized as follows.

When the function is linear, i.e. for the maximum weight b-matching problem, we obtain a 2 + ε

approximation. This improves the previous best bound of 3 + ε [12].
When the function is a non-negative monotone submodular function, we obtain a 3+2

√
2 ≈ 5.828

approximation. This matches the currently best ratio [12].
When the function is a non-negative non-monotone submodular function, we obtain a 4 + 2

√
3 ≈

7.464 approximation. This ratio is also achieved in [12], but only under the simple matching
constraint, while we can deal with the more general b-matching constraint.

We also consider a generalized problem, where a k-uniform hypergraph is given with an extra
matroid constraint imposed on the edges, with the same goal of finding a b-matching that maximizes
a submodular function. We extend our technique to this case to obtain an algorithm with an
approximation of 8

3 k + O(1).
Our algorithms build on the ideas of the recent works of Levin and Wajc [12] and of Garg, Jordan,

and Svensson [9]. Our main technical innovation is to introduce a data structure and associate it
with each vertex and the matroid, to record the extra information of the stored edges. After the
streaming phase, these data structures guide the greedy algorithm to make better choices.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Approximation algorithms analysis

Keywords and phrases Maximum Weight Matching, Submodular Function Maximization, Streaming,
Matroid

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.14

Category APPROX

Funding This work was funded by the grants ANR-19-CE48-0016 and ANR-18-CE40-0025-01 from
the French National Research Agency (ANR).

Acknowledgements The authors thank David Wajc and the anonymous reviewers for their helpful
comments.

1 Introduction

Let G = (V, E) be a multi-graph (with no self-loop) where each vertex v ∈ V is associated
with a capacity bv ∈ Z+. A b-matching is a subset of edges M ⊆ E where each vertex v has
at most bv incident edges contained in M .

In the maximum weight b-matching problem, edges are given weights w : E → R+ and we
need to compute a b-matching M so that w(M) =

∑
e∈M w(e) is maximized. A generalization

of the problem is that of maximizing a non-negative submodular function f : 2E → R+ under
© Chien-Chung Huang and François Sellier;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chien-chung.huang@ens.fr
mailto:francois.sellier@polytechnique.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

the b-matching constraint, namely, we look for a b-matching M so that f(M) is maximized.
Here we recall the definition of a submodular function:

∀X ⊆ Y ⊊ E, ∀e ∈ E\Y, f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y).

Additionally f is monotone if ∀X ⊆ Y ⊆ E, f(X) ≤ f(Y), otherwise it is non-monotone.
Observe that the maximum weight matching is the special case where f is a linear sum of
the weights associated with the edges.

In the traditional offline setting, both problems are extensively studied. The maximum
weight b-matching can be solved in polynomial time [16]; maximizing a non-negative monotone
submodular function under b-matching constraint is NP-hard and the best approximation
ratios so far are 2 + ε and 4 + ε, for the monotone and non-monotone case, respectively [8].

In this work, we consider the problem in the semi-streaming model [14]. Here the edges
in E arrive over time but we have only limited space (ideally proportional to the output size)
and cannot afford to store all edges in E – this rules out the possibility of applying known
offline algorithms.

1.1 Our Contribution
We start with the maximum weight (b-)matching. For this problem, a long series of papers [4,
5, 6, 10, 12, 13, 15, 17] have proposed semi-streaming algorithms, with progressively improved
approximation ratios, culminating in the work of Paz and Schwartzman [15], where 2 + ε

approximation is attained, for the simple matching. For the general b-matching, very recently,
Levin and Wajc [12] gave a 3 + ε approximation algorithm. We close the gap between the
simple matching and the general b-matching.

▶ Theorem 1. For the maximum weight b-matching problem, we obtain a 2 + ε approx-
imation algorithm using O

(
log1+ε(W/ε) · |Mmax|

)
variables in memory, and another using

O
(
log1+ε(1/ε) · |Mmax|+

∑
v∈V bv

)
variables, where Mmax denotes the maximum cardinality

b-matching and W denotes the maximum ratio between two non-zero weights.

Next we consider the general case of submodular functions, for whom approximation
algorithms have been proposed in [2, 3, 12, 7]. The current best ratios obtained by Levin and
Wajc [12] are 3 + 2

√
2 ≈ 5.828 and 4 + 2

√
3 ≈ 7.464, for the monotone and non-monotone

functions respectively. We propose an alternative algorithm to achieve the same bounds.

▶ Theorem 2. To maximize a non-negative submodular function under b-matching constraint,
we obtain algorithms providing a 3 + 2

√
2 ≈ 5.828 approximation for monotone functions

and a 4 + 2
√

3 ≈ 7.464 approximation for non-monotone functions, using O(log W · |Mmax|)
variables, where Mmax denotes the maximum cardinality b-matching and W denotes the
maximum quotient f(e | Y)

f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

It should be pointed out that in [12], for the case of non-monotone functions, their
algorithm only works for the simple matching, and it is unclear how to generalize it to the
general b-matching [11], while our algorithm lifts this restriction1. Another interesting thing
to observe is that even though the achieved ratios are the same and our analysis borrows
ideas from [12], our algorithm is not really just the same algorithm disguised under a different
form. See Appendix B for a concrete example where the two algorithms behave differently.

1 However, when the graph is bipartite, this ratio of 4 + 2
√

3 ≈ 7.464 is already obtained by Garg et
al. [9], even for the general b-matching constraint.

C.-C. Huang and F. Sellier 14:3

We also consider an extension, where a matroid2 is imposed on the edges. Specifically,
here G = (V, E) is a k-uniform hypergraph, where each edge e ∈ E contains k vertices in V .
In addition to the capacities bv, a matroid M = (E, I) is given. A b-matching M is feasible
only if M is an independent set in I. The objective here is to find a feasible b-matching M

that maximizes f(M) for f a non-negative submodular function3.
To see our problem in a larger context, observe that it is a particular case of the (k + 1)-

matchoid4. Using the current best algorithm of Chekuri et al. [3] and Feldman et al. [7], one
can obtain 4(k + 1) and 2(k + 1) + 2

√
(k + 1)(k + 2) + 1 for monotone and non-monotone

functions, respectively. We obtain the following.

▶ Theorem 3. To maximize a non-negative submodular function under the b-matching
constraint along with an additional matroid constraint, we design an algorithm providing an
approximation ratio bounded by 8

3 k + O(1) for both monotone and non-monotone functions,
using O(log W ·k·min{(rM, |Mmax|}) variables in memory, where Mmax denotes the maximum
cardinality b-matching, rM is the rank of the matroid and W denotes the maximum quotient
f(e | Y)
f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

The exact expressions for the approximation ratios are formally stated in Theorems 27
and 29. Given k = 2, 3, and 4, we obtain the approximation ratios of 13.055, 15.283, and
17.325 for the monotone function. Our ratio is in general better when k ≥ 3 compared to the
known technique of [3, 7]. When the function is non-monotone, given k = 2, 3, and 4, we
obtain the ratios of 14.857, 17.012, and 18.999, respectively. Our ratio is better when k ≥ 4
compared to the known technique of [7].

1.2 Our Technique
We use a local-ratio technique to choose to retain or discard a newly arrived edge during the
streaming phase. After this phase, a greedy algorithm, according to the reverse edge arrival
order, is then applied to add edges one by one into the solution while guaranteeing feasibility.

This is in fact the same framework used in [12, 15]. Our main technical innovation is to
introduce a data structure, which takes the form of a set of queues. Such a set of queues is
associated with each vertex (and with the imposed matroid). Every edge, if retained, will
appear as an element5 in one of these queues for each of its endpoints (and for the imposed
matroid). These queues will guide the greedy algorithm to make better choices and are
critical in our improvement over previous results. Here we give some intuition behind these
queues. Consider the maximum weight b-matching problem. Similar to [9], we compute, for
every edge, a gain. The sum of the gains of the retained edges can be shown to be at least
half of the real weight of the unknown optimal matching. The question then boils down

2 Recall that M = (E, I) is a matroid if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I,
then X ∈ I, and (3) if X, Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The
sets in I are the independent sets and the rank rM of the matroid M is defined as maxX∈I |X|.

3 It is natural to ask what if the submodular function is just a linear function. We observe that in this
case, our problem reduces to maximizing a weighted rank function (recall that a weighted rank function
over a matroid M is a function f : 2E → R+ that such that for X ⊆ E, f(X) = maxY ⊆X,Y ∈I w(Y)),
a special case of a monotone submodular function, under the b-matching constraint. Our algorithm
mentioned in Theorem 2 can be trivially generalized to give an approximation ratio of k + 1 + 2

√
k for

this.
4 Recall that a p-matchoid M is a collection (Mi = (Ei, Ii))s

i=1 of matroids, each defined on some
(possibly distinct) subset Ei ⊆ E, in which each element e ∈ E appears in at most p of the sets Ei. To
see our problem is a (k + 1)-matchoid, observe that we can define a uniform matroid on each vertex to
replace the capacity constraint; as each edge appears in k vertices, in total it appears in k + 1 matroids.

5 In this article, we will often use “edge” and “element” interchangeably.

APPROX/RANDOM 2021

14:4 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

to how to “extract” a matching whose real weight is large compared to these gains of the
retained edges. In our queues, the elements are stacked in such a way that the weight of an
element e is the sum of the gains of all the elements preceding e in any queue containing e.
This suggests that if e is taken by the greedy algorithm, we can as well ignore all elements
that are underneath e in the queues, as their gains are already “paid for” by e.

2 Maximum Weight b-Matching

2.1 Description of the Algorithm
For ease of description, we explain how to achieve 2 approximation, ignoring the issue of
space complexity for the moment. We will explain how a slight modification can ensure the
desired space complexity, at the expense of an extra ε term in the approximation ratio (see
Appendix A).

The formal algorithm for the streaming phase is shown in Algorithm 1. We give an
informal description here. Let S, initially empty, be the set of edges that have been stored
so far. For each vertex v ∈ V , a set Qv = {Qv,1, · · · , Qv,bv} of queues are maintained. These
queues contain the edges incident to v that are stored in S and respect the arrival order
of edges (newer edges are higher up in the queues). Each time a new edge e arrives, we
compute its gain g(e) (see Lines 5 and 8). Edge e is added into S only if its gain is strictly
positive. If this is the case, for each endpoint u of e, we put e in one of u’s queues (see Lines
6 and 13) and define a reduced weight wu(e) (Line 11). It should be noted that wu(e) will
be exactly the sum of the gains of the edges preceding (and including) e in the queue. We
refer to the last element inserted in a queue Q as the top element of that queue, denoted
Q.top(). To insert an element e on top of a queue Q, we use the instruction Q.push(e). By
convention, for an empty queue Q we have Q.top() = ⊥. We also set wu(⊥) = 0. Notice that
each element e also has, for each endpoint v ∈ e, a pointer rv(e) to indicate its immediate
predecessor in the queue of v, where it appears.

Algorithm 1 Streaming phase for weighted matching.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv = ∅) ▷ bv queues for a vertex v

3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if w(e) >

∑
u∈e w∗

u(e) then
8: g(e)← w(e)−

∑
u∈e w∗

u(e)
9: S ← S ∪ {e}

10: for u ∈ e do
11: wu(e)← w∗

u(e) + g(e)
12: ru(e)← Qu,qu(e).top() ▷ ru(e) is the element below e in the queue
13: Qu,qu(e).push(e) ▷ add e on the top of the smallest queue

After the streaming phase, our greedy algorithm, formally described in Algorithm 2,
constructs a b-matching based on the stored set S.

The greedy proceeds based on the reverse edge arrival order – but with an important
modification. Once an edge e is taken as part of the b-matching, all edges preceding e that
are stored in the same queue as e will be subsequently ignored by the greedy algorithm. The
variables ze are used to mark this fact.

C.-C. Huang and F. Sellier 14:5

Algorithm 2 Greedy construction phase.

1: M ← ∅
2: ∀e ∈ S : ze ← 1
3: for e ∈ S in reverse order do
4: if ze = 0 then continue ▷ skip edge e if it is marked
5: M ←M ∪ {e}
6: for u ∈ e do
7: c← e

8: while c ̸= ⊥ do
9: zc ← 0 ▷ mark elements below e in each queue

10: c← ru(c)
11: return M

2.2 Analysis for Maximum Weight b-Matching
For analysis, for each discarded element e ∈ E\S, we set g(e) = 0 and wu(e) = w∗

u(e) for
each u ∈ e. The weight of a queue, wu(Qu,i), is defined as the reduced weight of its top
element, namely, wu(Qu,i.top()). Let wu(Qu) =

∑bu

i=1 wu(Qu,i). We write S(t) as the value
of S at the end of the iteration t of the streaming phase, and by convention S(0) = ∅. This
notation (t) will also be used for other sets such as Qu and Qu,i. Through this paper, Mopt

will always refer to the best solution for the considered problem.
The following proposition follows easily by induction.

▶ Proposition 4.
(i) For all v ∈ V we have g(δ(v)) = g(δ(v) ∩ S) = wv(Qv).
(ii) The set {Qv,q.top() : 1 ≤ q ≤ bv} contains the bv heaviest elements of S ∩ δ(v) in terms

of reduced weights.

▶ Lemma 5. At the end of Algorithm 1, for all b-matching M ′ and for all v ∈ V , we have
wv(Qv) ≥ wv(M ′ ∩ δ(v)).

Proof. By Proposition 4(ii), wv(Qv) is exactly the sum of the reduced weights of the bv

heaviest elements in S ∩ δ(v) (which are on top of the queues of Qv). If we can show that
for each element e = et ∈ M ′\S, wu(et) ≤ min{wv(Q|E|

v,q) : 1 ≤ q ≤ bv}, the proof will
follow. Indeed, as et is discarded, we know that wv(et) = min{wv(Q(t−1)

v,q) : 1 ≤ q ≤ bv} ≤
min{wv(Q|E|

v,q) : 1 ≤ q ≤ bv}, where the inequality holds because the weight of a queue is
monotonically increasing. ◀

▶ Lemma 6. 2g(S) ≥ w(Mopt).

Proof. It is clear that for e = {u, v} we have wu(e) + wv(e) ≥ w(e). Therefore

w(Mopt) ≤
∑

e={u,v}∈Mopt

wu(e) + wv(e) =
∑
u∈V

wu(Mopt ∩ δ(u))

≤
∑
u∈V

wu(Qu) =
∑
u∈V

g(S ∩ δ(u)) = 2g(S),

where the second inequality follows from Lemma 5 and the subsequent equality from Propos-
ition 4(i). The last equality comes from the fact that an edge is incident to 2 vertices. ◀

Recall that qv(e) refers to the index of the particular queue in Qv where a new edge e

will be inserted (Line 6 of Algorithm 1).

APPROX/RANDOM 2021

14:6 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

▶ Lemma 7. Algorithm 2 outputs a feasible b-matching M with weight w(M) ≥ g(S).

Proof. By an easy induction, we know that for a given e = et ∈ S and v ∈ e, we have:

wv(e) = w∗
v(e) + g(e) =

∑
e′∈Q

(t)
v,qv(e)

g(e′) and w(e) = g(e) +
∑
u∈e

∑
e′∈Q

(t−1)
u,qu(e)

g(e′). (1)

Moreover, observe that S ∩ δ(v) can be written as a disjoint union of the Qv,q for
1 ≤ q ≤ bv: S ∩ δ(v) =

⋃
1≤q≤bv

Qv,q. One can also observe that Algorithm 2 takes at most
one element in each queue Qv,i. In fact, an element can be added only if no element above
it in any of the queues where it appears has already been added into M ; and no element
below it in the queues can be already part of M because S is read in the reverse arrival order.
Consequently M respects the capacity constraint and is thus a feasible b-matching. We now
make a critical claim from which the correctness of the lemma follows easily.

▷ Claim 8. Given an edge e ∈ S, either e ∈M , or there exists another edge e′ arriving later
than e, such that e′ ∈M and there exists a queue belonging to a common endpoint of e and
e′, which contains both of them.

Observe that if the claim holds, by (1), the gain g(e) of any edge e ∈ S will be “paid” for
by some edge e′ ∈M and the proof will follow.

To prove the claim, let e = {u, v} and assume that e ̸∈ M . Consider the two queues
Qu,qu(e) and Qv,qv(e). The edges stored above e in these two queues must have arrived later
than e in S and have thus already been considered by Algorithm 2. The only reason that
e ̸∈M must be that ze = 0 when e is processed, implying that one of these edges was already
part of M . Hence the claim follows. ◀

Lemmas 6 and 7 give the following theorem:

▶ Theorem 9. Algorithms 1 and 2 provide a 2 approximation for the maximum weight
b-matching problem.

We refer the readers to Appendix A for the details on how to handle the memory
consumption of the algorithm.
▶ Remark 10. It is straightforward to extend our algorithm to a k-uniform hypergraph, where
we can get an approximation ratio of k. Notice that if the k-uniform hypergraph is also
k-partite, then the problem becomes that of finding a maximum weight intersection of k

partition matroids. It can be shown that our stored edge set is exactly identical to the one
stored by the algorithm of Garg et al. [9]. They have conjectured that for k arbitrary general
matroids, their stored edge set always contains a k approximation. Our result thus proves
their conjecture to be true when all matroids are partition matroids.

3 Submodular Function Maximization

3.1 Description of the Algorithm
For submodular function maximization, the streaming algorithm, formally described in
Algorithm 3, is quite similar to the one for the weighted b-matching in the preceding section.
Here notice that the element weight w(e) is replaced by the marginal value f(e |S) (see
Lines 7 and 10). We use a similar randomization method to that of Levin and Wajc [12] for
non-monotone functions (adding an element to S only with probability p, see Lines 8-9), and
our analysis will bear much similarity to theirs. The greedy algorithm to build a solution M

from S is still Algorithm 2.

C.-C. Huang and F. Sellier 14:7

Algorithm 3 Streaming phase for submodular function maximization.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv

= ∅)
3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if f(e |S) > α

∑
u∈e w∗

u(e) then
8: π ← a random variable equal to 1 with probability p and 0 otherwise
9: if π = 0 then continue ▷ skip edge e with probability 1− p

10: g(e)← f(e |S)−
∑

u∈e w∗
u(e)

11: S ← S ∪ {e}
12: for u ∈ e do
13: wu(e)← w∗

u(e) + g(e)
14: ru(e)← Qu,qu(e).top()
15: Qu,qu(e).push(e)

Algorithm 3 uses, for α = 1 + ε, O(log1+ε(W/ε) · |Mmax|) variables, where Mmax denotes
the maximum cardinality b-matching and W denotes the maximum quotient f(e | Y)

f(e′ | X) , for
X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0 (in Appendix A we explain how to guarantee such
space complexity when f is linear – the general case of a submodular function follows similar
ideas).

3.2 Analysis for Monotone Submodular Function Maximization
Let α = 1 + ε. In this section, p = 1 (so we have actually a deterministic algorithm for the
monotone case). The following two lemmas relate the total gain g(S) with the marginal
values f(S | ∅) and f(Mopt |S).

▶ Lemma 11. It holds that g(S) ≥ ε
1+ε f(S | ∅).

Proof. For an element e = et ∈ S we have f
(
e |S(t−1)) ≥ (1 + ε)

∑
u∈e w∗

u(e) so

g(e) = f
(

e |S(t−1)
)
−
∑
u∈e

w∗
u(e) ≥ f

(
e |S(t−1)

)(
1− 1

1 + ε

)
,

implying that

g(S) =
∑
e∈S

g(e) ≥
∑

e=et∈S

f
(

e |S(t−1)
)(

1− 1
1 + ε

)
= ε

1 + ε
f(S | ∅). ◀

As in the previous section, if an edge e is discarded, we assume that w∗
v(e) = wv(e) for

each v ∈ e.

▶ Lemma 12. It holds that 2(1 + ε)g(S) ≥ f(Mopt |S).

Proof. The only elements e = et missing in S are the ones satisfying the inequality
f(e |S(t−1)) ≤ (1 + ε)

∑
u∈e w∗

u(e). So by submodularity,

f(Mopt |S) ≤
∑

e∈Mopt\S

f(e |S) ≤
∑

e=et∈Mopt\S

f(e |S(t−1))

≤
∑

e∈Mopt\S

(1 + ε)
∑
u∈e

w∗
u(e) = (1 + ε)

∑
e∈Mopt\S

∑
u∈e

wu(e)

APPROX/RANDOM 2021

14:8 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

= (1 + ε)
∑
u∈V

wu((Mopt\S) ∩ δ(u)) ≤ (1 + ε)
∑
u∈V

wu(Qu)

≤ 2(1 + ε)g(S),

similar to the proof of Lemma 6. ◀

▶ Lemma 13. Algorithm 2 outputs a feasible b-matching with f(M) ≥ g(S) + f(∅).

Proof. As argued in the proof of Lemma 7, M respects the capacities and so is feasible.
Now, suppose that M = {et1 , · · · , et|M|} , t1 < · · · < t|M |. Then

f(M) = f(∅) +
|M |∑
i=1

f(eti | {et1 , · · · , eti−1}) ≥ f(∅) +
|M |∑
i=1

f(eti |S(ti−1)) ≥ f(∅) + g(S),

as the values f(eti
|S(ti−1)) play the same role as the weights in Lemma 7. ◀

▶ Theorem 14. Algorithms 3 and 2 provide a 3 + 2
√

2 approximation if we set ε = 1√
2 .

Proof. By Lemmas 11 and 12, we derive
(
2 + 2ε + 1+ε

ε

)
g(S) ≥ f(Mopt |S) + f(S | ∅) =

f(Mopt ∪ S | ∅) ≥ f(Mopt | ∅), where the last inequality is due to the monotonicity of f . By
Lemma 13, the output b-matching M guarantees that f(M) ≥ g(S) + f(∅). As a result,(
3 + 2ε + 1

ε

)
f(M) ≥ f(Mopt | ∅) + f(∅) = f(Mopt). Setting ε = 1√

2 gives the result. ◀

▶ Remark 15. When bv = 1 for all v ∈ V (i.e. simple matching), our algorithm behaves
exactly the same as the algorithm of Levin and Wajc [12]. Therefore their tight example also
applies to our algorithm. In other words, our analysis of approximation ratio is tight.

3.3 Analysis for Non-Monotone Submodular Function Maximization
In this section, we suppose that 1

3+2ε ≤ p ≤ 1
2 .

▶ Lemma 16. It holds that(
2(1 + ε) + 1 + ε

ε

)
E[g(S)] ≥ E[f(S ∪Mopt | ∅).]

Proof. From Lemma 11 we have that for any execution of the algorithm (a realization
of randomness), the inequality 1+ε

ε g(S) ≥ f(S | ∅) holds, so it is also true in expectation.
We will try to prove in the following that 2(1 + ε)E[g(S)] ≥ E[f(Mopt |S)], which is the
counterpart of Lemma 12.

First, we show that for any e ∈Mopt:

(1 + ε)E
[∑

u∈e

wu(e)
]
≥ E[f(e |S)] (2)

We will use a conditioning similar to the one used in [12]. Let e = et ∈Mopt. We consider
the event Ae = [f(e |S(t−1)) ≤ (1 + ε)

∑
u∈e w∗

u(e)]. Notice that if Ae holds, e is not part of
S and w∗

v(e) = wv(e) for each v ∈ e. Now by submodularity,

E[f(e |S) |Ae] ≤ E[f(e |S(t−1)) |Ae] ≤ E

[
(1 + ε)

∑
u∈e

w∗
u(e) |Ae

]

= (1 + ε)E
[∑

u∈e

wu(e) |Ae

]

C.-C. Huang and F. Sellier 14:9

Next we consider the condition Ae (where the edge e should be added into S with probability
p). As p ≤ 1

2 , and for e = et = {u, v} we have wu(e) + wv(e) = 2f(e |S(t−1))−w∗
u(e)−w∗

v(e)
when e is added to S, we get

E

[∑
u∈e

wu(e) |Ae

]
= p · E

[
2f(e |S(t−1))−

∑
u∈e

w∗
u(e) |Ae

]
+ (1− p) · E

[∑
u∈e

w∗
u(e) |Ae

]

= 2p · E
[
f(e |S(t−1)) |Ae

]
+ (1− 2p) · E

[∑
u∈e

w∗
u(e) |Ae

]
≥ 2p · E

[
f(e |S(t−1)) |Ae

]
.

As a result, for p ≥ 1
3+2ε ,

(1 + ε)E
[∑

u∈e

wu(e) |Ae

]
≥ 2p(1 + ε) · E

[
f(e |S(t−1)) |Ae

]
≥ (1− p) · E

[
f(e |S(t−1)) |Ae

]
≥ E

[
f(e |S) |Ae

]
,

where the last inequality holds because with probability p we have f(e |S) = 0 (as e ∈ S)
and with probability 1− p, f(e |S) ≤ f(e |S(t−1)) (by submodularity).

So we have proven inequality (2) and it follows that

E
[
f(Mopt |S)

]
≤

∑
e∈Mopt

E [f(e |S)] ≤ (1 + ε)
∑

e∈Mopt

E

[∑
u∈e

wu(e)
]

= (1 + ε)
∑
u∈V

∑
e∈Mopt∩δ(u)

E [wu(e)] ≤ (1 + ε)
∑
u∈V

E [wu(Qu)]

= 2(1 + ε)E[g(S)],

where in the last inequality we use the fact that Lemma 5 holds for every realization of
randomness.

Now the bounds on E [f(Mopt |S)] and the bound on E [f(S | ∅)] argued in the beginning
give the proof of the lemma. ◀

Then we will use the following lemma, due to due to Buchbinder et al. [1]:

▶ Lemma 17 (Lemma 2.2 in [1]). Let h : 2N → R+ be a non-negative submodular function,
and let B be a random subset of N containing every element of N with probability at most p

(not necessarily independently), then E[h(B)] ≥ (1− p)h(∅).

▶ Theorem 18. Algorithm 3 run with p = 1
3+2ε provides a set S, upon which Algorithm 2

outputs a b-matching M satisfying:(
4ε2 + 8ε + 3

2ε

)
E[f(M)] ≥ f(Mopt).

This ratio is optimized when ε =
√

3
2 , which gives a 4 + 2

√
3 approximation.

Proof. Combining Lemma 13 and Lemma 16,(
2(1 + ε) + 1 + ε

ε

)
E[f(M)] ≥ E[f(S ∪Mopt)].

APPROX/RANDOM 2021

14:10 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

Now we can apply Lemma 17 by defining h : 2E → R+ as, for any X ⊆ E, h(X) = f(X ∪
Mopt) (trivially h is non-negative and submodular). As any element of E has the probability of
at most p to appear in S, we derive E[f(S∪Mopt)] = E[h(S)] ≥ (1−p)h(∅) = (1−p)f(Mopt).
Therefore,(

3 + 2ε + 1
ε

)
E[f(M)] ≥ E[f(S ∪Mopt)] ≥ (1− p)f(Mopt).

As p = 1
3+2ϵ , we have(

4ε2 + 8ε + 3
2ε

)
· E[f(M)] ≥ f(Mopt).

This ratio is optimized when ε =
√

3
2 , which gives a 4 + 2

√
3 ≈ 7.464 approximation. ◀

4 Matroid-constrained Maximum Submodular b-Matching

In this section we consider the more general case of a b-matching on a k-uniform hypergraph
and we impose a matroid constraint M = (E, I). A matching M ⊆ E is feasible only if it
respects the capacities of the vertices and is an independent set in M.

4.1 Description of the Algorithm
For the streaming phase, our algorithm, formally described in Algorithm 4, is a further
generalization of Algorithm 3 in the last section.

We let α = 1 + ε and γ > 1. For the matroid M, we maintain a set QM =
{QM,1, · · · , QM,rM}, where rM is the rank of M, to store the elements (so if an edge
e is part of S, it appears in a total of k + 1 queues, k of them corresponding to the vertices
in e, and the remaining one corresponding to the matroid).

To facilitate the presentation, we write Top(QM) to denote the set of the elements on
top of the queues of QM. Lines 8-13 will guarantee that Top(QM) is an independent set (in
fact a maximum weight base among all elements arrived so far, according to the reduced
weights – see Lemma 20). In the end of the algorithm (Lines 26-27), we erase all elements
that are not part of Top(QM) and let the final output Sf be simply Top(QM). Sf is then
fed into the greedy, Algorithm 2, to produce the b-matching. The pointers rv are updated
(Line 27), so that the queues could be regarded as if they contained only elements of Sf .

Here we give some intuition. We retain only the elements Top(QM) because they are
independent (hence any subset of them chosen by the Greedy algorithm), releasing us from
the worry that the output is not independent. We set γ > 1 to ensure that the gain of new
edges in the same queue of QM grows quickly. By doing this, Top(QM), by itself, contributes
to a significant fraction of all gains in g(S) (see Lemma 24). However, an overly large γ

causes us to throw away too many edges (see Line 14), thus hurting the final approximation
ratio. To optimize, we thus need to choose γ carefully.

The number of variables used by this algorithm is O(min{k · logγ·(1+ε)(W/ε) · rM, k ·
log1+ε(W/ε)·|Mmax|}), where Mmax denotes the maximum-cardinality b-matching W denotes
the maximum quotient f(e | Y)

f(e′ | X) , for X ⊆ Y ⊆ E, e, e′ ∈ E, f(e′ |X) > 0.

4.2 Analysis for Monotone Submodular Function Maximization
In this section, p = 1. For each discarded elements e ∈ E\S, similarly as before, we set
wM(e) = w∗

M(e).

C.-C. Huang and F. Sellier 14:11

Algorithm 4 Streaming phase for Matroid-constrained Maximum Submodular b-Matching.

1: S ← ∅
2: QM ← (QM,1 = ∅, · · · , QM,rM = ∅)
3: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv = ∅)
4: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
5: for u ∈ e do
6: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
7: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
8: if Top(QM) ∪ {e} ∈ I then
9: w∗

M(e)← 0
10: qM(e)← q such that QM,q is empty
11: if Top(QM) ∪ {e} contains a circuit C then
12: w∗

M(e)← mine′∈C\{e} wM(e′)
13: qM(e) ← q such that wM(QM,q.top()) is equal to mine′∈C\{e} wM(e′) and

QM,q.top() ∈ C

14: if f(e |S) > α(
∑

u∈e w∗
u(e) + γ · w∗

M(e)) then
15: π ← a random variable equal to 1 with probability p and 0 otherwise
16: if π = 0 then continue ▷ skip edge e with probability 1− p

17: g(e)← f(e |S)−
∑

u∈e w∗
u(e)− w∗

M(e)
18: S ← S ∪ {e}
19: for u ∈ e do
20: wu(e)← w∗

u(e) + g(e)
21: ru(e)← Qu,qu(e).top()
22: Qu,qu(e).push(e)
23: wM(e)← w∗

M(e) + g(e)
24: rM(e)← QM,qM(e).top()
25: QM,qM(e).push(e)
26: Sf ← Top(QM)
27: update the values of rv for v ∈ V as necessary so that only the elements in Sf are

considered as present in the queues (elements not in Sf are skipped in the sequences of
recursive values of rv)

We introduce some basic facts in matroid theory, e.g., see [16].

▶ Proposition 19. Given a matroid M = (E, I) with weight w : E → R+, then

(i) An independent set I ∈ I is a maximum weight base if and only if, for every element
e ∈ E\I, I ∪ {e} contains a circuit and w(e) ≤ mine′∈C\{e} w(e′).

(ii) If I ∈ I, I ∪{e} contains a circuit C1 and I ∪{e′} contains a circuit C2 and C1 and C2
contain a common element e′′ ∈ I, then there exists another circuit C3 ⊆ (C1∪C2)\{e′′}.

▶ Lemma 20. Let {e1, · · · , et} be the set of edges arrived so far. Then Top(QM) = Top(Q(t)
M)

forms a maximum weight base in {e1, · · · , et} with regard to the reduced weight wM.

Proof. This can be easily proved by induction on the number of edges arrived so far and
Proposition 19. ◀

▶ Corollary 21. At the end of the algorithm, wM(QM) ≥ wM(Mopt).

APPROX/RANDOM 2021

14:12 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

The next two lemmas relate the total gain g(S) with f(S | ∅) and f(Mopt |S).

▶ Lemma 22. It holds that g(S) ≥ ε
1+ε f(S | ∅).

Proof. Same proof as for Lemma 11. ◀

▶ Lemma 23. It holds that (1 + ε)(k + γ)g(S) ≥ f(Mopt |S).

Proof. By the same argument as in the proof of Lemma 12, we have∑
e∈Mopt\S

(1 + ε)
∑
u∈e

w∗
u(e) ≤ (1 + ε)k · g(S).

Moreover, Corollary 21 shows that g(S) = wM(QM) ≥ wM(Mopt) and we know that

wM(Mopt) ≥
∑

e∈Mopt\S

wM(e) =
∑

e∈Mopt\S

w∗
M(e).

As a result, we obtain

f(Mopt |S) ≤
∑

e∈Mopt\S

f(e |S) ≤
∑

e=et∈Mopt\S

f(e |S(t−1))

≤ (1 + ε)
∑

e∈Mopt\S

∑
u∈e

w∗
u(e) + γ · w∗

M(e)

≤ (1 + ε)(k + γ)g(S). ◀

The following lemma states that Sf retains a reasonably large fraction of the gains
compared to S.

▶ Lemma 24. It holds that
(

1 + 1
γ·(1+ε)−1

)
g(Sf) ≥ g(S).

Proof. We have, for all element e = et ∈ Sf ,

g(e) = f(e |S(t−1))−
∑
u∈e

w∗
u(e)− w∗

M(e)

≥ (1 + ε− 1)
∑
u∈e

w∗
u(e) + (γ · (1 + ε)− 1)w∗

M(e)

≥ (γ · (1 + ε)− 1)w∗
M(e) = (γ · (1 + ε)− 1)

∑
e′∈Q

(t−1)
M,qM(e)

g(e′).

Recalling that qM(e) is the index of the queues in QM where e is put (see Lines 13 and
25 of Algorithm 4),

g(S) =
∑

e=et∈Sf

g(e) +
∑

e′∈Q
(t−1)
M,qM(e)

g(e′)

 ≤ ∑
e∈Sf

(
1 + 1

γ · (1 + ε)− 1

)
g(e),

and the proof follows. ◀

▶ Lemma 25. It holds that
(

1 + 1
γ·(1+ε)−1

) (
(1 + ε)(k + γ) + 1 + 1

ε

)
g(Sf) ≥ f(Mopt | ∅).

Proof. By Lemmas 22 and 23, we have that
(
(1 + ε)(k + γ) + 1 + 1

ε

)
g(S) ≥ f(Mopt |S) +

f(S | ∅) = f(Mopt ∪ S | ∅) ≥ f(Mopt | ∅) because f is monotone. Then we use Lemma 24. ◀

C.-C. Huang and F. Sellier 14:13

▶ Lemma 26. With Sf as input, Algorithm 2 returns a feasible b-matching M with f(M) ≥
g(Sf) + f(∅).

Proof. As argued in Lemma 7, M respects the capacities. Furthermore, as Sf is by con-
struction an independent set in M and M ⊆ Sf ∈ I, we have M ∈ I. So M is a feasible
b-matching. Finally, using an analysis similar to the one in the proof of Lemma 13, we have
f(M) ≥ g(Sf) + f(∅) (the only difference being that now the “weight” f(et |S(t−1)) of an
element can be larger than the sum of the gains of the elements below it in the queues, which
is not an issue for the analysis). ◀

As a result, we get the following theorem (the same way we obtained Theorem 14):

▶ Theorem 27. For non-negative monotone submodular functions, Algorithm 4 with p = 1
combined with Algorithm 2 provides a feasible b-matching such that(

1 + 1
γ · (1 + ε)− 1

)(
(1 + ε)(k + γ) + 1 + 1

ε

)
f(M) ≥ f(Mopt).

By setting ε = 1 and γ = 2, we attain the approximation ratio of 4
3 (2k + 6) for all k.

It is possible to obtain better ratios for a fixed k by a more careful choice of the parameters
ε and γ. For instance when k = 2, 3, and 4, we have the respective ratios of 13.055, 15.283,

and 17.325.

4.3 Analysis for Non-Monotone Submodular Function Maximization
In this section, we assume 1

1+(k+γ)(1+ε) ≤ p ≤ 1
k+γ . The following lemma is the counterpart

of Lemma 16, whose proof again uses the technique of conditioning (in a more general form).

▶ Lemma 28. It holds that
(
(1 + ε)(k + γ) + 1+ε

ε

)
E[g(S)] ≥ E[f(S ∪Mopt | ∅)].

Proof. By Lemma 22, for any realization on randomness, we have 1+ε
ε g(S) ≥ f(S | ∅), so

the inequality also holds in expectation.
We next show that, for any e ∈Mopt we have

E[f(e |S)] ≤ (1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e)
]

. (3)

Let e ∈ Mopt. Conditioning on Ae = [f(e |S(t−1)) ≤ (1 + ε)(
∑

u∈e w∗
u(e) + γ · w∗

M(e))]
(i.e. e cannot be part of S), we have

E[f(e |S) |Ae] ≤ E[f(e |S(t−1)) |Ae]

≤ E

[
(1 + ε)(

∑
u∈e

w∗
u(e) + γ · w∗

M(e)) |Ae

]

= (1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e) |Ae

]
.

For the condition Ae, recall that it means that with probability p, the edge is added into
S and with probability 1− p, it is not. So

E

[∑
u∈e

wu(e) + γ · wM(e) |Ae

]

APPROX/RANDOM 2021

14:14 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

= p · E

[
(k + γ)f(e |S(t−1))− (k + γ − 1)

(∑
u∈e

w∗
u(e)

)
− kw∗

M(e) |Ae

]

+ (1− p) · E
[∑

u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]

≥ p · E

[
(k + γ)f(e |S(t−1))− (k + γ − 1)

(∑
u∈e

w∗
u(e)

)
− (k + γ − 1)γ · w∗

M(e) |Ae

]

+ (1− p) · E
[∑

u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]

= (k + γ) · p · E
[
f(e |S(t−1)) |Ae

]
+ (1− (k + γ) · p) · E

[∑
u∈e

w∗
u(e) + γ · w∗

M(e) |Ae

]
≥ (k + γ) · p · E

[
f(e |S(t−1)) |Ae

]
,

where in the second step we use the fact that γ > 1 and in the last inequality that p ≤ 1
k+γ .

Now as p ≥ 1
1+(k+γ)(1+ε) , we have

(1 + ε)E
[∑

u∈e

wu(e) + γ · wM(e) |Ae

]
≥ (1 + ε)(k + γ) · p · E

[
f(e |S(t−1)) |Ae

]
≥ (1− p) · E

[
f(e |S(t−1)) |Ae

]
≥ E

[
f(e |S) |Ae

]
,

and we have established (3).
Similar to the proof of Lemma 16 we get

E
[
f(Mopt |S)

]
≤

∑
e∈Mopt

E [f(e |S)]

≤ (1 + ε)
∑

e∈Mopt

E

[∑
u∈e

wu(e)
]

+ (1 + ε)γ · E[wM(Mopt)]

≤ k(1 + ε)E[g(S)] + (1 + ε)γ · E[wM(Mopt)].

By Lemma 21 we know that for any realization of randomness, wM(Mopt) ≤ wM(Sf) = g(S).
Thus we get E [f(Mopt |S)] ≤ (k + γ)(1 + ε)E[g(S)].

Now the bound on E [f(Mopt |S)] and the bound on E [f(S | ∅)] (argued in the beginning
of the proof) give us the lemma. ◀

Finally, using Lemma 17 we obtain:

▶ Theorem 29. For non-negative submodular functions, Algorithm 4 with p = 1
1+(k+γ)(1+ε)

combined with Algorithm 2 provides a b-matching M independent in M such that:

1 + (k + γ)(1 + ε)
(k + γ)(1 + ε)

(
1 + 1

γ · (1 + ε)− 1

)(
(1 + ε)(k + γ) + 1 + 1

ε

)
E[f(M)] ≥ f(Mopt).

Setting ε = 1 and γ = 2 we obtain the ratio of 2k+5
2k+4 ·

4
3 · (2k + 6) for all k.

As in the last section, it is possible to obtain better ratios for a fixed k by a more careful
choice of the parameters ε and γ. For instance when k = 2, 3, and 4, we have the respective
ratios of 14.857, 17.012, and 18.999.

C.-C. Huang and F. Sellier 14:15

References
1 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization

with cardinality constraints. In Proc. 25th SODA, pages 1433–1452, 2014.
2 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,

matroids, and more. Math. Program., 154(1-2):225–247, 2015.
3 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodular

function maximization. In Proc. 42nd ICALP, pages 318–330, 2015.
4 Michael Crouch and D.M. Stubbs. Improved streaming algorithms for weighted matching, via

unweighted matching. Leibniz International Proceedings in Informatics, LIPIcs, 28:96–104,
September 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

5 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathematics,
25, July 2009. doi:10.4230/LIPIcs.STACS.2010.2476.

6 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theoretical Computer Science, 348:207–216,
December 2005. doi:10.1016/j.tcs.2005.09.013.

7 Moran Feldman, Amin Karbasi, and Ehsan Kazemi. Do less, get more: Streaming submodular
maximization with subsampling. In NeurIPS, pages 730–740, 2018.

8 Moran Feldman, Joseph (Seffi) Naor, Roy Schwartz, and Justin Ward. Im-
proved approximations for k-exchange systems. In Proc. 19th ESA, pages 784–798,
2011. URL: http://portal.acm.org/citation.cfm?id=2040572.2040658&coll=DL&dl=
GUIDE&CFID=95852163&CFTOKEN=76709828.

9 Paritosh Garg, Linus Jordan, and Ola Svensson. Semi-streaming algorithms for submodular
matroid intersection. In IPCO, 2021.

10 Mohsen Ghaffari and David Wajc. Space-optimal semi-streaming for (2 + ε)-approximate
matching, 2019.

11 Roie Levin and David Wajc, 2021. private communication.
12 Roie Levin and David Wajc. Streaming submodular matching meets the primal-dual method.

In SODA, pages 1914–1933, 2021.
13 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-

tion and Combinatorial Optimization. Algorithms and Techniques. APPROX 2005, RANDOM
2005., pages 170–181, 2005. doi:10.1007/11538462_15.

14 S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Foundations and Trends,
2005. doi:10.1561/9781933019604.

15 Ami Paz and Gregory Schwartzman. A (2 + ε)-approximation for maximum weight matching
in the semi-streaming model. In Proceedings of the 2017 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2153–2161, 2017. doi:10.1137/1.9781611974782.140.

16 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
17 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62:1–20,

February 2008. doi:10.1007/s00453-010-9438-5.

A Making Algorithm 1 Memory-Efficient

We explain how to guarantee the space requirement promised in Theorem 1. In this section,
wmin denotes the minimum non-zero value of the weight of an edge, and wmax the maximum
weight of an edge. Moreover, we set W = wmax/wmin. We also define Mmax as a given
maximum cardinality b-matching.

Let α = (1 + ε) > 1. In Algorithm 5 we add an edge e to S only if w(e) > α
∑

u∈e w∗
u(e)

(Line 7). For the moment we set d = 0 in our analysis, ignoring Lines 14-16 of the algorithm.

▶ Lemma 30. The set S obtained at the end of algorithm 5 when d = 0 guarantees that
2αg(S) ≥ w(Mopt).

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.4230/LIPIcs.STACS.2010.2476
https://doi.org/10.1016/j.tcs.2005.09.013
http://portal.acm.org/citation.cfm?id=2040572.2040658&coll=DL&dl=GUIDE&CFID=95852163&CFTOKEN=76709828
http://portal.acm.org/citation.cfm?id=2040572.2040658&coll=DL&dl=GUIDE&CFID=95852163&CFTOKEN=76709828
https://doi.org/10.1007/11538462_15
https://doi.org/10.1561/9781933019604
https://doi.org/10.1137/1.9781611974782.140
https://doi.org/10.1007/s00453-010-9438-5

14:16 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

Algorithm 5 Streaming phase for weighted matching, memory-efficient.

1: S ← ∅
2: ∀v ∈ V : Qv ← (Qv,1 = ∅, · · · , Qv,bv

= ∅)
3: for e = et, 1 ≤ t ≤ |E| an edge from the stream do
4: for u ∈ e do
5: w∗

u(e)← min{wu(Qu,q.top()) : 1 ≤ q ≤ bu}
6: qu(e)← q such that wu(Qu,q.top()) = w∗

u(e)
7: if w(e) > α

∑
u∈e w∗

u(e) then ▷ stricter condition here
8: g(e)← w(e)−

∑
u∈e w∗

u(e)
9: S ← S ∪ {e}

10: for u ∈ e do
11: wu(e)← w∗

u(e) + g(e)
12: ru(e)← Qu,qu(e).top()
13: Qu,qu(e).push(e)
14: if d = 1 and Qu,qu(e).length() > β then ▷ remove some small element
15: let e′ be the β + 1-th element from the top of Qu,qu(e)
16: mark e′ as erasable, so that when it will no longer be on the top of any

queue, it will be removed from S and from all the queues it appears in

Proof. We proceed as in [9]. Let wα : E → R such that wα(e) = w(e) for e ∈ S and
wα(e) = w(e)

α for e ∈ E\S. We can observe that with the weights wα, Algorithm 1 gives the
same set S as Algorithm 5 with the weights w. We deduce that wα(Mopt) ≤ 2g(S) and then,
as w ≤ αwα, we get 2αg(S) ≥ w(Mopt). ◀

Hence, using same arguments as in [10, 12] we obtain the following:

▶ Theorem 31. Algorithm 5 (with d = 0) combined with Algorithm 2 gives a 2 + ε approx-
imation algorithm by using O

(
log1+ε(W/ε) · |Mmax|

)
variables.

Proof. In a given queue, the minimum non-zero value that can be attained is ε
1+ε wmin and

the maximum value that can be attained is wmax. As the value of the top element of the
queue increases at least by a factor 1 + ε for each inserted element, a given queue contains
at most log1+ε(W/ε) + 1 edges. Hence, a vertex v ∈ V contains at most min{|δ(v)|, bv ·
(log1+ε(W/ε) + 1)} elements of S at the end of the algorithm.

Then let U ⊆ V be the set of saturated vertices of V by Mmax, i.e. the set of vertices
v ∈ V such that |δ(v) ∩Mmax| = min{|δ(v)|, bv}. By construction, U is a vertex cover and∑

v∈U min{|δ(v)|, bv} ≤ 2|Mmax|. As all edges of S have at least one endpoint in U , we get:

|S| ≤
∑
v∈U

|δ(v) ∩ S| ≤
∑
v∈U

min{|δ(v)|, bv · (log1+ε(W/ε) + 1)}

≤
∑
v∈U

min{|δ(v)|, bv} · (log1+ε(W/ε) + 1) ≤ 2(log1+ε(W/ε) + 1) · |Mmax|,

so the memory consumption of the algorithm is O(log1+ε(W/ε) · |Mmax|) ◀

Modifying an idea from Ghaffari and Wajc [10] we can further improve the memory
consumption of the algorithm, especially if W is not bounded. For that, set β = 1+ 2 log(1/ε)

log(1+ε) =
1 + log1+ε(1/ε2) in Algorithm 5 as the maximum size of a queue, and set d = 1 (so that we
now consider the whole code).

C.-C. Huang and F. Sellier 14:17

Consider an endpoint u of the newly-inserted edge e. If the queue Qu,qu(e) becomes too
long (more than β elements), it means the gain g(e′) of the β + 1-th element from the top
of the queue (we will call that element e′) is very small compared to g(e), so we then can
“potentially” remove e′ from S and from the queues without hurting too much g(S). In the
code, we will mark this edge e′ as erasable, so that when e′ will no longer be on top of any
queue, it will be removed from S and all the queues it appears in. To be able to do these
eviction operations, the queues have to be implemented with doubly linked lists.

If an edge e = {u, v} is marked as erasable by Algorithm 5 (d = 1) because an edge
e′ = {u, v′} is added to S, then we say that e′ evicted e (and that e was evicted by e′).

▶ Lemma 32. If e = {u, v} is evicted by e′ = {u, v′}, then g(e′) ≥ g(e)/ε.

Proof. We have g(e′) ≥ ε(w∗
u(e′) + w∗

v′(e′)) ≥ εw∗
u(e′) ≥ ε(1 + ε)β−1g(e) ≥ g(e)/ε because

after e = et is added to Qu,qu(e) we have wu(Q(t)
u,qu(e)) ≥ g(e) and each time an element is

added to Qu,qu(e) the value wu(Qu,qu(e)) is multiplied at least by (1 + ε). ◀

▶ Theorem 33. For ε ≤ 1
4 , Algorithm 5 with d = 1 combined with Algorithm 2 gives a 2 + ε

approximation algorithm by using O
(
log1+ε(1/ε) · |Mmax|+

∑
v∈V bv

)
variables.

Proof. For an element e that was not evicted from S in Algorithm 5, denote by Ee the
elements that were evicted by e directly or indirectly (in a chain of evictions). This set Ee

contains at most 2 elements that were directly evicted when e was inserted in S, and their
associated gain is at most εg(e) for each, and at most 4 elements indirectly evicted by e

when these 2 evicted elements were inserted in S, and their associated gain is at most equal
to ε2g(e) for each, and so on. Then, as ε ≤ 1

4 ,

∑
e′∈Ee

g(e′) ≤
∞∑

i=1
(2ε)ig(e) ≤ 2εg(e)

∞∑
i=0

(1/2)i = 4εg(e)

Therefore, if S0 denotes the set S obtained by Algorithm 5 when d = 0 and S1 denotes
the set S obtained by Algorithm 5 when d = 1, we get:

g(S0)− g(S1) ≤ 4εg(S1)

because the elements inserted in S are exactly the same for the two algorithms, the only
difference being that some elements are missing in S1 (but these elements were removed
when they no longer had any influence on the values of w∗ and thereby no influence on the
choice of the elements inserted in S afterwards). We have then:

w(Mopt) ≤ 2(1 + ε)g(S0) ≤ 2(1 + ε)(1 + 4ε)g(S1) ≤ 2(1 + 6ε)g(S1)

and Algorithm 2 will provide a 2(1 + 6ε) approximation of the optimal b-matching. In fact,
the analysis of Algorithm 2 with S1 as input is almost the same as in the proof of Lemma 7,
the only difference being that now the weight of an element is no longer necessarily equal to
the sum of the gains of elements below it but can be higher (which is not an issue).

Regarding the memory consumption of the algorithm, one can notice that, using the
same notation U for the set of the elements saturated by Mmax as previously, and because
there are only up to

∑
v∈V bv elements on top of the queues that cannot be deleted (and

thus these edges are the ones making some queues in U exceed the limit β), we obtain:

|S| ≤
∑
v∈V

bv +
∑
v∈U

β ·min{|δ(v)|, bv} ≤
∑
v∈V

bv + 2β · |Mmax|,

and therefore the algorithm uses O
(∑

v∈V bv + log1+ε(1/ε) · |Mmax|
)

variables. ◀

APPROX/RANDOM 2021

14:18 Semi-Streaming Submodular Function Maximization Under b-Matching Constraint

▶ Remark 34. Ideas presented here for the maximum weight b-matching can be easily extended
to submodular function maximization and for hypergraphs under a matroid constraint, namely
for the algorithms presented in Sections 3 and 4.

B Example of Different Behavior Compared to [12]

Here is an example to show the difference of behavior between our algorithm and the one
proposed in [12]. Consider a set of four vertices V = {v1, v2, v3, v4}. We set bv1 = 2 and
bvi

= 1 for 2 ≤ i ≤ 4. Let E = {e1, e2, e3} with e1 = {v1, v2} and w(e1) = 2, e2 = {v1, v3}
and w(e2) = 7, e3 = {v1, e4} and w(e3) = 4. Using only one dual variable for each vertex, the
algorithm of Levin and Wajc [12] takes e1 and e2 but discards e3 because the dual variable
ϕv1 is equal to 4 when e3 is processed. On the other hand, our algorithm, when processing e3,
compares w(e3) with wv1(e1) = 2. Therefore, e3 is added into S and our algorithm provides
a b-matching of weight 11 instead of 9.

General Knapsack Problems in a Dynamic Setting
Yaron Fairstein #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

Computer Science Department, Technion, Haifa, Israel

Joseph (Seffi) Naor #

Computer Science Department, Technion, Haifa, Israel

Danny Raz #

Computer Science Department, Technion, Haifa, Israel

Abstract
The world is dynamic and changes over time, thus any optimization problem used to model real life
problems must address this dynamic nature, taking into account the cost of changes to a solution
over time. The multistage model was introduced with this goal in mind. In this model we are given
a series of instances of an optimization problem, corresponding to different times, and a solution is
provided for each instance. The strive for obtaining near-optimal solutions for each instance on one
hand, while maintaining similar solutions for consecutive time units on the other hand, is quantified
and integrated into the objective function. In this paper we consider the Generalized Multistage
d-Knapsack problem, a generalization of the multistage variants of the Multiple Knapsack problem,
as well as the d-Dimensional Knapsack problem. We present a PTAS for Generalized Multistage
d-Knapsack.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Problems, reductions and completeness

Keywords and phrases Multistage, Multiple-Knapsacks, Multidimensional Knapsack

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.15

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2105.00882

1 Introduction

In many optimization settings, the problem of interest is defined over a time horizon in which
the actual setting evolves, resulting in changes over time to the problem constraints and the
objective function. Thus, even if the optimization problem at hand can be solved efficiently
for a single time unit, it may not be clear how to extend this solution to a time-evolving
setting.

An example of such a setting comes from the world of cloud management. A cloud provider
maintains a data center with servers and offers clients virtual machines having different
processing capabilities. Each client demands a virtual machine (with certain properties),
and if provided it must pay for it. It would be naïve to assume that the demand of clients is
static over time. Factors, such as peak vs. off-hours, and the day of the week, might affect
client demand. Also, the cloud provider might either turn off servers to reduce hardware
deterioration and electricity usage, or open more servers to meet higher demand. Thus,
the optimization problem is partitioned into multiple stages, where in each stage there are
different constraints and possibly a different optimization goal.

© Yaron Fairstein, Ariel Kulik, Joseph Naor, and Danny Raz;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yyfairstein@gmail.com
mailto:Kulik@cs.technion.ac.il
mailto:Naor@cs.technion.ac.il
mailto:danny@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.15
https://arxiv.org/abs/2105.00882
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 General Knapsack Problems in a Dynamic Setting

A simple solution is to ignore the dynamicity of the problem, and solve each stage
separately and independently of other stages. Thus, profit at each stage is maximized,
ignoring the solutions computed for the other stages. Such a solution may result in disgruntled
clients, as it can lead to intermittent service between stages. Instead, we will aim for a
multistage solution that balances between the optimum of each stage, while preserving some
continuity between consecutive stages. This will be achieved by incorporating the continuity
of the solution into the overall profit.

The multistage model was first introduced by Gupta et al. [18] and Eisenstat et al. [9]
to address dynamic environments. Since its introduction, it has received growing attention
(examples include [1, 12, 2, 4, 15, 8]). In the multistage model we are given a sequence of
instances of an optimization problem. A solution constitutes of a series of solutions, one for
each instance.

Two different ideas were used to enforce a balance between single stage optimality and
continuity. In [9, 18] a change cost is charged for the dissimilarity of consecutive solutions,
while in [4] additional gains were given for their similarity. In the aforementioned cloud
management problem, the change cost can be interpreted as installation costs and eviction
costs charged when a client is initially served, and then its service is discontinued. The gains
can be modeled as increased costs the client is charged to guarantee the continuity of its
service.

The cloud management problem described above can be viewed as a multistage problem
where the underlying optimization problem is the Multiple Knapsack problem (MKP). In
MKP we are given a set of items, each associated with a weight and a profit. Also, we are
given a set of bins, each one having a capacity. A feasible solution for MKP is an assignment
of items to bins such that the total weight of the items assigned to each bin does not exceed
its capacity. The objective is to find a feasible solution maximizing the profit accrued from
the assigned items. In the context of the cloud management setting, the items are the virtual
machine demands of the clients and the bins are the available servers.

1.1 Problem Definition
We study the Generalized Multistage d-Knapsack problem. We begin with an informal
description of the problem. An instance of the problem consists of T stages, where in each
stage we are given an instance of a generalization of the classic knapsack problem. While
the instances differ between stages, in all stages the same set of items I can be packed. The
continuity of the solution is enforced by quantifying the similarity of consecutive solutions
and integrating it into the objective function.

We quantify continuity by four types of values. The first two values specify gains earned
for the similarity of solutions. For example, if an item i is packed in stages t − 1 and t, gain
g+

i,t is awarded. Similarly, g−
i,t is awarded if i is not packed in t − 1 and t. The other two

values define the cost of changes between consecutive solutions. For example, if an item i

was not packed in stage t − 1, and it is decided to pack it in stage t, a change cost of c+
i,t is

charged. Similarly, c−
i,t is charged if i is packed in t, but not in t + 1.

The packing problem at each stage generalizes the Multiple Knapsack problem, as well as
the d-Dimensional Knapsack problem. In each instance of the problem we are given d sets of
bins, and the weight an item occupies in a bin depends on the set to which the bin belongs
to. The profit of an item is accrued once it is assigned to some bin in all d sets of bins. This
problem is called d-Multiple Knapsack Constraints Problem and is formally defined below.

A Multiple Knapsack Constraint (MKC) is a tuple K = (w, B, W) defined over a set
of items I. The function w : I → R+ defines the weight of the items, B is a set of bins,
each equipped with a capacity defined by the function W : B → R+. An assignment is a

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:3

function A : B → 2I , defining which items are assigned to each of the bins. An assignment
is feasible if w(A(b)) =

∑
i∈A(b) wi ≤ W (b) for each bin b ∈ B. Similarly, given a tuple of

MKCs K = (Kj)d
j=1 over I, a tuple of d assignments A = (Aj)d

j=1 is feasible for K if for each
j = 1, . . . , d assignment Aj is a feasible assignment for Kj . We say A is an assignment of set
S ⊆ I if S = ∪b∈BAb.

In d-Multiple Knapsack Constraints Problem (d-MKCP), a problem first introduced in
[11], we are given a tuple (I, K, p), where I is a set of items, K is a tuple of d MKCs and
p : I → R≥0 defines the profit of each item. A feasible solution for d-MKCP is a set S ⊆ I

and a tuple of feasible assignments A (w.r.t K) of S. The goal is to find a feasible solution
that maximizes p(S) =

∑
i∈S p(i). We note that if there exists an item with negative profit

it can be discarded in advance. This fact is used later on, in Section 2.1.
The Generalized Multistage d-Knapsack problem (d-GMK), is the multistage model of

d-MKCP. The problem is defined over a time horizon of T stages as follows. An instance of
the problem is a tuple

(
(Pt)T

t=1, g+, g−, c+, c−), where Pt = (I, Kt, pt) is a dt-MKCP instance
with dt ≤ d for t ∈ [T], g+, g− ∈ RI×[2,T]

+ are the gain vectors and c+, c− ∈ RI×[1,T]
+ are the

change cost vectors.1 We use g+
i,t and g−

i,t to denote the gain of item i at stage t. Similarly,
we use c+

i,t and c−
i,t to denote the change cost of item i at stage t.

A feasible solution for d-GMK is a tuple (St, At)T
t=1, where (St, At) is a feasible solution

for Pt (note that At is a tuple of assignments of St). Throughout the paper we assume
S0 = ST +1 = ∅ and denote the objective function of instance Q by fQ : IT → R, where

fQ
(
(St)T

t=1
)

=
T∑

t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−

T∑
t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 .

The goal is to find a feasible solution that maximizes the objective function fQ.
A study of d-GMK reveals it does not admit a constant factor approximation algorithm

(see Section 3). We found that in hard instances the change costs are much larger than the
profits. Thus we consider an important parameter of the problem, the profit-cost ratio. It is
defined as the maximum ratio, over all items, between the change cost (c+, c−) and the profit
of an item over all stages. It is denoted by ϕQ for any instance Q, and is formally defined as

ϕQ = min
({

∞
}⋃{

r ≥ 0
∣∣∣ ∀i ∈ I, t1, t2 ∈ [T] : max

{
c+

i,t1
, c−

i,t1

}
≤ r · pt2(i)

})
We show that d-GMK instances where the profit-cost ratio is bounded by a constant admit a
PTAS.

We also consider Subdmodular d-GMK, a submodular variant of d-GMK where the profit
functions are replaced with monotone submodular set functions. A set function p : 2I → R
is submodular if for every A ⊆ B ⊆ I and i ∈ I \ B it holds that p(A ∪ {i}) − p(A) ≥
p(B ∪ {i}) − p(B). Submodular functions appear naturally in many settings such as coverage
[13], matroid rank [5] and cut functions [14]. We use similar techniques to develop the
algorithms for d-GMK and Submodular d-GMK. Thus, we focus on d-GMK and defer the
formal definition as well as the algorithm for Submoduar d-GMK to the full version of this
paper [10].

1 We use the notations [n, m] = {i ∈ N | n ≤ i ≤ m} and [n] = [1, n] for n, m ∈ N.

APPROX/RANDOM 2021

15:4 General Knapsack Problems in a Dynamic Setting

Both d-GMK and Submodular d-GMK generalize the Multistage Knapsack problem
recently considered by Bampis et al. [4]. There are several aspects by which it is generalized.
First, handling multiple knapsack constraints as well as d-dimensional knapsack vs a single
knapsack in [4]. Second, the profit earned from assigning items can be described as a
submodular function, not only by a modular function. Third, [4] considered only symmetric
gains, i.e., the same gain is earned whether an item is assigned or not assigned in consecutive
stages. Lastly, change costs were not considered in [4].

1.2 Our Results
Our main result is stated in the following theorem.

▶ Theorem 1. For any fixed d ∈ N and ϕ ≥ 1 there exists a randomized PTAS for d-GMK
with a profit-cost ratio bounded by ϕ.

The result uses the general framework of [4], in which the authors first presented an algorithm
for instances with bounded time horizon, and then showed how it can be scaled for general
instances. To handle bounded time horizons we show an approximation factor preserving
reduction (as defined in [22]2) from d-GMK to a generalization of q-MKCP. The reduction
illuminates the relationship between d-GMK and q-MKCP. As q-MKCP admits a PTAS [11],
this results in a PTAS for d-GMK instances with a bounded time horizon.

We note the reduction can be applied to the problem considered in [4] as well. In this
case the target optimization problem is d-dimensional knapsack with a matroid constraint.
As the latter problem is known to admit a PTAS [17], this suggest a simpler solution for
bounded time horizon in comparison to the one given in [4].

To generalize the result to unbounded time horizon we use an approach similar to
[4], though a more sophisticated analysis was required to handle the change costs. The
generalization is achieved by cutting the time horizon into sub-instances with a fixed time
horizon. Each sub-instance is solved separately, and then the solutions are combined to
create a solution for the full instance. Handling change costs is trickier as cutting an instance
may lead to an excessive charge of change costs at the cut points. We must compensate for
these additional costs, or we will not be able to bound the value of the solution.

The results for the modular variant generalizes the PTAS for Multistage Knapsack [4].
For d ≥ 2, we cannot expect better results as even d-KP, also generalized by d-GMK, does
not admit an efficient PTAS (EPTAS). Theorem 2 shows an EPTAS cannot be obtained for
1-GMK as well

▶ Theorem 2. Unless W [1] = FPT , there is no EPTAS for 1-GMK, even if the length of
the time horizon is T = 2, the set of bins in each MKC contains one bin and there are no
change costs.

The theorem is proved using a simple reduction from 2-dimensional knapsack. Bampis et
al. [4] considered a similar withered down instance and proved that even if the gains are
symmetric (i.e., g+

i,t = g−
i,t) a Fully PTAS (FPTAS) does not exist for the problem.

Using a reduction from multidimensional knapsack we show that 1-GMK, in its general
form, cannot be approximated to any constant factor.

▶ Theorem 3. For any d ≥ 1, there is no polynomial time approximation algorithm for
d-GMK with a constant approximation ratio, unless NP = ZPP .

2 A formal definition is provided in Appendix A for completeness

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:5

This result justifies our study of the special cases of d-GMK in which the profit-cost ratio is
bounded by a constant.

The techniques used to develop the algorithm for d-GMK can be adjusted slightly to
produce an approximation algorithm for Submodular d-GMK. The complete details are given
in the full version of this paper [10].

▶ Theorem 4. For any fixed d ∈ N and ϵ > 0 there exists a randomized
(
1 − 1

e − ϵ
)
-

approximation algorithm for Submodular d-GMK.

In the submodular variant one cannot hope for vast improvement over our results as the
algorithm is almost tight. This is due to the hardness results for submodular maximization
subject to a cardinality constraint presented by Nemhauser and Wolsey [20].

1.3 Related Work

In the multistage model we are given a series of instances of an optimization problem, and we
search for a solution which optimizes each instance while maintains some similarity between
solutions. Many optimization problem were considered under this framework. These include
matching [2, 7], clustering [8], subset sum [3], vertex cover [15] and minimum s − t path [16].

The multistage model was first presented by both Eisenstat et al. [9] and Gupta et al.
[18]. In [9] the Multistage Facility Location problem was considered, where the underlying
metric in which clients and facility reside changes over time. A logarithmic approximation
algorithm was presented for two variants of the problem; the hourly opening costs where the
opening cost of a facility is charged at each stage in which it is open, and the fixed opening
costs where a facility is open at all stages after its opening costs is paid. A logarithmic
hardness result was also presented for the fixed opening costs variant. An et al. [1] improved
the result for the hourly opening costs variant and presented a constant factor approximation.
Fairstein et al. [12] proved that the logarithmic hardness result does not hold if only the
client locations change over time and the facilities are static.

As mentioned, the multistage model was also introduced by Gupta et al. [18], where the
Multistage Matroid Maintenance (MMM) problem was considered. In MMM we are given
a set of elements equipped with costs that change over time. In addition, we are given a
matroid. The goal is to select a base of minimum costs at each stage whilst minimizing the
cost of the difference of bases selected for consecutive stages. Gupta et al. [18] presented a
logarithmic approximation algorithm for the problem, as well as fitting lower bound, proving
this result is tight.

Organization

Section 2 provides the approximation schemes from Theorem 1. Hardness results are presented
in Section 3.

2 Approximation Scheme for d-GMK

In this section we derive the approximation scheme for d-GMK with bounded profit-cost
ratio. In Section 2.1 we show how a PTAS for instances with bounded time horizon can be
obtain via a reduction to a variant of d-MKCP. Subsequently, in Section 2.2 we show how
the algorithm for bounded time horizon can be used to approximate general instance.

APPROX/RANDOM 2021

15:6 General Knapsack Problems in a Dynamic Setting

2.1 Bounded Time Horizon
In this section we provide a reduction from an instance of q-GMK to a generalization of
d-MKCP (for specific values of d and q). The generalization was presented in [11] and is called
d-MKCP With A Matroid Constraint (d-MKCP+) and is defined by a tuple (I, K, p, I), where
(I, K, p) forms an instance of d-MKCP. Also, the set I ⊆ 2I defines a matroid3 constraint. A
feasible solution for d-MKCP+ is a set S ∈ I and a tuple of feasible assignments A (w.r.t
K) of S. The goal is to find a feasible solution which maximizes

∑
i∈S p(i). The following

definition presents the construction of the reduction.

▶ Definition 5. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt =
(I, Kt, pt) and Kt = (Kt,j)dt

j=1. Define R(Q) =
(
E, K̃, p̃, I

)
where

E = I × 2[T]

I =
{

S ⊆ E
∣∣ ∀i ∈ I :

∣∣S ∩
(
{i} × 2[T])∣∣ ≤ 1

}
For t ∈ [T], j ≤ dt set MKC K̃t,j = (w̃t,j , Bt,j , Wt,j) over E,
where Kt,j = (wt,j , Bt,j , Wt,j) and

w̃t,j((i, D)) =
{

wt,j(i) t ∈ D

0 otherwise

For t = 1, ..., T, dt < j ≤ d set MKC K̃t,j = (w0, {b}, W0) over E, where w0 : 2E → {0},
W0(b) = 0 and b is an arbitrary bin (object).
K̃ =

(
K̃t,j

)
t∈[T],j∈[d].

The objective function p̃ is defined as follows.

p̃(S) =
∑

(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D:t−1∈D

g+
i,t +

∑
t/∈D:t−1/∈D

g−
i,t −

∑
t∈D:t−1/∈D

c+
i,t −

∑
t∈D:t+1/∈D

c−
i,t

)
Each element (i, D) ∈ E states the subset of stages in which item i is assigned. I.e., i is

only assigned in stages t ∈ D. Thus any solution should include at most one element (i, D)
for each i ∈ I. This constraint is fully captured by the partition matroid constraint defined
by the set of independent sets I. Finally, if an element (i, D) is selected, we must assign i in
each MKC Kt,j for j ∈ [dt], t ∈ D. This is captured by the weight function w̃, as an element
(i, D) weighs wt,j(i) if and only if t ∈ D (otherwise its weight is zero and it can be assigned
for “free”).

▶ Lemma 6. For any d-GMK instance Q with time horizon T , it holds that R(Q) is a
dT -MKCP+ instance.

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt = (I, Kt, pt)
and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance of Q as defined in

Definition 5. It is easy to see that the set I is the independent sets of a partition matroid, as
for each item i at most one element (i, D) can be chosen. Thus, I is the family of independent
sets of a matroid as required.

Next, K defines a tuple of MKCs, so all that is left to prove is that p̃ is non-negative and
modular. For each element (i, D) ∈ E we can define a fixed value

v((i, D)) =
∑
t∈D

pt(i) +
∑

t∈D: t−1∈D

g+
i,t +

∑
t/∈D: t−1/∈D

g−
i,t −

∑
t∈D: t−1/∈D

c+
i,t +

∑
t∈D: t+1/∈D

c−
i,t

It immediately follows that p̃(S) =
∑

e∈S v(e) and that p̃ is modular. As stated in Section 1.1,
elements with negative values are discarded in advance such that p̃ is also non-negative. ◀

3 A formal definition for matroid can be found in [21]

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:7

▶ Lemma 7. Let Q be an instance of d-GMK with time horizon T . For any feasible
solution (St, At)T

t=1 of Q there exists a feasible solution
(
S, (Ãt,j)t∈[T],j∈[d]

)
of R(Q) such

that fQ
(
(St)T

t=1
)

= p̃(S).

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt = (I, Kt, pt)
and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance of Q, where

K̃ =
(
K̃t,j

)
t∈[T],j∈[d] and K̃t,j = (w̃, Bt,j , Wt,j) (see Definition 5). Consider some feasible

solution (St, At)T
t=1 for Q, where At = (At,j)dt

j=1. In the following we define a solution(
S,
(
Ãt,j

)
t∈[T], j∈[d]

)
for R(Q). Let

S = {(i, D) | i ∈ I, D = {t ∈ [T] | i ∈ St}}

It can be easily verified that S ∈ I. The value of the subset S is

p̃(S) =∑
(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D: t−1∈D

g+
i,t +

∑
t/∈D: t−1/∈D

g−
i,t −

∑
t∈D: t−1/∈D

c+
i,t −

∑
t∈D: t+1/∈D

c−
i,t

)
=

T∑
t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 =

fQ
(
(St)T

t=1
)

.

Next, for each t ∈ [T], j ∈ [d] we present an assignment Ãt,j of S. Consider the following
two cases:
1. If j > dt, recall K̃t,j = (w0, {b}, W0) where w0(i, D) = 0 for all (i, D) ∈ E and W0(b) = 0.

We define Ãt,j by Ãt,j(b) = S. It thus holds that w0(Ãt,j(b)) = 0 = W0. That is, Ãt,j is
feasible.

2. If j ≤ dt, let b∗ ∈ Bt,j be some unique bin in Bt,j and define assignment Ãt,j : Bt,j → 2E

by

Ãt,j(b) =
(

At,j(b) × 2[T]
)

∩ S ∀b ∈ Bt,j \ {b∗}

Ãt,j(b∗) =
((

At,j(b∗) × 2[T]
)

∩ S
)

∪ {(i, D) ∈ S | t ̸∈ D}
(1)

The assignment Ãt,j is a feasible assignment w.r.t K̃t,j since for each bin b ∈ Bt,j it holds
that ∑

(i,D)∈Ãt,j(b)

w̃t,j((i, D)) =
∑

i∈At,j(b)

wt,j(i) ≤ Wt,j(b)

Let (i, D) ∈ S. If i ∈ St there is b ∈ Bt,j such that i ∈ At,j(b), hence (i, D) ∈ Ãt,j(b) by
(1). If i ̸∈ St then t /∈ D and thus (i, D) ∈ Ãt,j(b∗). Overall, we have S ⊆

⋃
b∈Bt,j

Ãt,j(b).
By (1) it follows that S ⊇

⋃
b∈Bt,j

Ãt,j(b) as well, thus S =
⋃

b∈Bt,j
Ãt,j(b). I.e, Ãt,j is

an assignment of S.
Note that the assignments can be constructed in polynomial time. We can conclude that(

S,
(
Ãt,j

)
t∈[A],j∈[d]

)
is a feasible solution for R(Q), and its value is fQ

(
(St)T

t=1
)
. ◀

▶ Lemma 8. Let Q be an instance of d-GMK (with arbitrary time horizon T). For any
feasible solution

(
S, (Ãt,j)t∈[T],j∈[d]

)
for R(Q) a feasible solution (St, At)T

t=1 for Q such that
fQ
(
(St)T

t=1
)

= f̃(S) can be constructed in polynomial time.

APPROX/RANDOM 2021

15:8 General Knapsack Problems in a Dynamic Setting

The proof of Lemma 8 is similar to the proof of Lemma 7, thus it is deferred to Appendix A.
For any d-GMK instance with a fixed time horizon T , the reduction R(Q) can be

constructed in polynomial (as |E| = |I|·2|T |). The next corollary follows from this observation
and lemmas 7 and 8.

▶ Corollary 9. For any fixed T ∈ N, there exists an approximation factor preserving reduction
from d-GMK with a time horizon bounded by T to dT -MKCP+.

In [11] a PTAS for d-MKCP+ is presented. Thus, the next lemma follows from the above
corollary.

▶ Lemma 10. For any fixed T ∈ N there exists a randomized PTAS for d-GMK with a time
horizon bounded by T .

2.2 General Time Horizon
In this section we present an algorithm for d-GMK with a general time horizon T . This is
done by cutting the time horizon at several stages into sub-instances. Each sub-instance is
optimized independently and then the solutions are combined to create a solution for the
complete instance. A somewhat similar technique was used in [4]. However, they considered
a model without change costs which is much simpler. Our analysis is more delicate as it
requires local consideration of the assignment of each item to ensure that any additional
costs charged are covered by profit and gains earned.

Given an instance Q =
(
(Pt)T

t=1, g+, g−, c+, c−) we define a sub-instance for the sub-
range [t1, t2], denoted throughout this section by

(
(Pt)t2

t=t1
, g+, g−, c+, c−) without shifting

or truncating the gain and change costs vectors. For example, for t ∈ [t1, t2] gain g+
i,t is

earned for assigning item i in stages t and t + 1. Also, observe that stages t1 − 1 and t2 + 1
are outside the scope of the instance. Thus, when evaluating a solution for the sub-instance
it is assumed that St1−1 = St2+1 = ∅.

Given an integer T ∈ N, a set of cut points U = {u0, ..., uk} of T is a set of integers such
that for every j = 0, ..., k − 1 it holds that uj < uj+1 and 1 = u0 < uk = T + 1.

▶ Definition 11. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where Pt =
(I, Kt, pt). Also, let U = {u0, . . . , uk} be a set of cut points. The tuple of d-GMK instances

QU =
(

(Pt)
uj+1−1
t=uj

, g+, g−, c+, c−
)k−1

j=0
is defined as the cut instances of Q w.r.t U .

▶ Definition 12. Let Q be an instance of d-GMK, U = {u0, ..., uk} be a set of cut points

and QU be the respective cut instances. Also, let
(

(St, At)uj+1−1
t=uj

)k−1

j=0
be a tuple of feasible

solutions for the tuple of cut instances QU . Then, the solution (St, At)T
t=1 for Q is called a

cut solution.

The next corollary elaborates on the relationship between a cut solution and the cut
instance solutions from which it is constructed.

▶ Corollary 13. Given any d-GMK instance Q, cut points U , cut instances QU and feasible
solutions for the cut instances, the respective cut solution is a feasible solution for Q, and its
value is at least the sum of values of the solutions for the cut instances.

The proof of the corollary is fairly simple, and is defered to Appendix A. We are now ready
to present the algorithm for d-GMK with general time horizon length.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:9

Algorithm 1 General Time Horizon.

Input : 0 < ϵ < 1
4 , ϕ ≥ 1, a d-GMK instance Q with time horizon T such that ϕQ ≤ ϕ,

and α-approximation algorithm A for d-GMK with time horizon T ≤ 2ϕ
ϵ2 .

1 Set µ = ϵ2

ϕ .
2 for j = 1, ..., 1

µ do
3 Set Uj =

{
a
µ + j − 1

∣∣∣ a ∈ N, a ≥ 1, a
µ + j − 1 ≤ T − 1

µ

}
∪ {1, T + 1}.

4 Find a solution for each cut instance in QUj
using algorithm A and set Sj as the

respective cut solution.
5 Return the solution Sj which maximizes the objective function fQ.

Before analysing the algorithm we present several definitions and lemmas that are
essential for the proof. First, we start by reformulating the solution. Instead of describing the
assignment of items by the tuple (St)T

t=1, we define a new set of elements E = I × [T] × [T],
where each element (i, t1, t2) ∈ E states that item i is assigned in the interval [t1, t2]. Given
a feasible solution (St, At)T

t=1 for Q we denote the representation of (St)T
t=1 as a subset of E

by E
(
(St)T

t=1
)

and it is equal to

E
(
(St)T

t=1
)

= {(i, t1, t2) ∈ E | ∀t ∈ [t1, t2] : i ∈ St and i /∈ St1−1 ∪ St2+1} .

If S̃ = E
(
(St)T

t=1
)
, we define the reverse mapping as S̃(t) = {i ∈ I | ∃(i, t1, t2) ∈ S : t ∈

[t1, t2]} = St. Now, we can define a solution for d-GMK using our new representation as
(S̃, At)T

t=1.

▶ Definition 14. The value, v(e), of element e = (i, t1, t2) is defined as the total value
earned from assigning i in the range [t1, t2] minus the change costs charge for assigning and
discarding it. Formally,

v(e) =
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,t2

The value of solution S̃ ⊆ E for d-GMK instance Q is
∑

e∈S̃ v(e) +
∑T

t=2
∑

i/∈S̃(t−1)∪S̃(t) g−
i,t

and it is equal to fQ
(
(S̃(t))T

t=1
)
.

In Algorithm 1 we consider a solution for a tuple of cut instances created by cutting an
instance at a set of cut points. Here we consider the opposite action, the effect of cutting a
solution at these cut points. We start by considering a single cut point.

▶ Definition 15. Given an element e = (i, t1, t2) and a cut point u ∈ (t1, t2] we define the
outcome of cutting e at u as the set of intervals u(e) = {(i, t1, u − 1), (i, u, t2)}. Also, the loss
caused by cutting e at u is defined as the difference between the value of e and the sum of
value of elements in u(e). It is denoted by ℓ(e, u) and is equal to

ℓ(e, u) = v(e) −
∑

e′∈u(e)

v(e′) = g+
i,u + c+

i,u + c−
i,u−1 (2)

We can similarly extend the definition to include more than one cut point as follows.

▶ Definition 16. Given a set of cut points U = {u0, u1, . . . , uk} and an element e = (i, t1, t2)
define U(e) as the set of elements created by cutting the e at all cut points in U . Formally,

U ((i, t1, t2)) =
{

(i, max{t1, ur−1}, min{ur − 1, t2})
∣∣∣r ∈ [k] and [ur−1, ur − 1] ∩ [t1, t2] ̸= ∅

}

APPROX/RANDOM 2021

15:10 General Knapsack Problems in a Dynamic Setting

Consider the following example as a demonstration of the above definition. If e = (i, t1, t2)
and (t1, t2] ∩ Uj = {u2, u3}, then Uj(e) = {(i, t1, u2 − 1), (i, u2, u3 − 1), (i, u3, t2)}.

The definition of loss caused by cutting an element can be extended to a set of cut points
U . If element e = (i, t1, t2) is cut by a of cut points U the loss is

ℓ(e, U) = v(e) −
∑

e′∈U(e)

v(e′) =
∑

u∈U∩(t1,t2]

(
g+

i,u + c+
i,u + c−

i,u−1
)

=
∑

u∈U∩(t1,t2]

ℓ(e, u) (3)

since only gains g+ are lost due to cutting as well as change cost for splitting an assignment
into two intervals. This means that even if an element is cut multiple times, the loss due to
each cut point can be considered separately.

▶ Lemma 17. Let 0 < ϵ < 1
4 , ϕ ≥ 1 and A be an α-approximation algorithm for d-GMK with

time horizon T ≤ 2ϕ
ϵ2 . Also, let Q be an instance of d-GMK such that ϕQ ≤ ϕ. Algorithm 1

approximates Q within a factor of (1 − ϵ)α.

Proof. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK with time horizon T

and profit-cost ratio ϕQ ≤ ϕ. We assume for simplicity ϕ is integral. Let 0 < ϵ < 1
4

and µ = ϵ2

ϕ . Also, let A be an α-approximation algorithm for d-GMK with time horizon
T ′ ≤ 2ϕ

ϵ2 = 2
µ . Note, if T ≤ 2

µ , the cut points set U0 is an empty set, and in this case A

returns an α-approximation solution for Q as required.
Let Uj = {uj

1, . . . , uj
kj

} for j = 1, . . . 1
µ . We show that there exists a set of cut points Uj

and a tuple of solutions
(

(St, At)
uj

r+1−1
t=uj

r

)kj−1

r=0
for each cut instance in QUj = (qr

j)kj−1
r=0 , such

that the sum of values of the solutions,
∑kj−1

r=0 fqr
j

(
(St)ur+1−1

t=ur

)
, is sufficiently large. From

Corollary 13 it follows that the value of a cut solution is larger than the sum of its parts
(due to lost gains and change costs saved if an item is assigned in adjacent instances). Thus,
this also proves that the maximum cut solution found is sufficiently large as well.

Let (S∗
t , A∗

t)T
t=1 be an optimal solution for Q, and let S̃∗ = E

(
(S∗

t)T
t=1
)
. We par-

tition S̃∗ into two subsets by the length of the interval they describe. Formally, X ={
(i, t1, t2) ∈ S̃∗ | t2 − t1 < ϕ

ϵ

}
and Y = S̃∗ \ X. So X contains short intervals, and Y

contains long intervals.
Define S̃j as the subset of elements longer than ϕ in ∪e∈Y Uj(e) as well as short elements

e ∈ X that are not cut by Uj . I.e.,

S̃j = {e ∈ X | Uj(e) = {e}} ∪
⋃

e∈Y

{(i, t1, t2) ∈ Uj(e) | t2 − t1 ≥ ϕ}

At each stage t ∈ [T] it holds that S̃j(t) ⊆ S∗
t . Thus there exists a tuple of assign-

ments, denoted by Aj
t , such that (S̃j , Aj

t)T
t=1 is a feasible solution for Q. We partition

set S̃j as follows. Let S̃j,r =
{

(i, t1, t2) ∈ S̃j | [t1, t2] ⊆ [uj
r, uj

r+1 − 1]
}

. It holds that

S̃j = ∪kj−1
r=0 S̃j,r as each element (i, t1, t2) is contained in exactly one interval [uj

r, uj
r+1 − 1].

Thus
(

(S̃j,r, Aj
t)uj

r+1−1
t=uj

r

)kj−1

r=0
is a tuple of feasible solutions for the cut instances in QUj

such

that (S̃j,r, Aj
t)uj

r+1−1
t=uj

r
is a solution for the r-th instance. The value of all elements in the

defined solutions for the cut instances is
kj−1∑
r=0

∑
e∈S̃j,r

v(e) =
∑
e∈S̃j

v(e) =
∑

e∈X:Uj(e)={e}

v(e) +
∑
e∈Y

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′)

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:11

Thus, after including the value of gains g− earned by solutions S̃j,r, we can bound the total
value of optimal solutions for all cut instances QUj

by∑
e∈X:Uj(e)={e}

v(e)+
∑
e∈Y

∑
e′=(i,t1,t2)∈Uj(e):

t2−t1≥ϕ

v(e′)+
∑

t∈[uj
r+1,uj

r+1−1]:

uj
r∈Uj

∑
i/∈S̃j,r(t−1)∪S̃j,r(t)

g−
i,t (4)

We define B as the total sum of values of optimal solutions for the cut instances
(
QUj

) 1
µ

j=1.
By utilizing Equation (4) we can bound B as follows.

B ≥

1
µ∑

j=1

kj−1∑
r=0

 ∑
e∈S̃j,r

v(e) +
∑

t∈[uj
r+1,uj

r+1−1]:uj
r∈Uj

∑
i/∈S̃j,r(t−1)∪S̃j,r(t)

g−
i,t

=

1
µ∑

j=1

∑
e∈S̃j

v(e) +

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∪S̃j(t)

g−
i,t

=
∑
e∈X

∑
j∈[1

µ]:Uj(e)={e}

v(e) +
∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′)

+

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∪S̃j(t)

g−
i,t

(5)

We bound the value of each of the three terms separately by comparing it to the value of the
optimal solution.

Consider the first term, value earned from short elements, i.e., elements e = (i, t1, t2) ∈ X.
It holds that e ∈ S̃j if and only if Uj(e) = {e} which means that (t1, t2] ∩ Uj = ∅. Since for
every j1 ̸= j2 it holds that Uj1 ∩ Uj2 = {1, T + 1} and since there are 1

µ sets of cut point, for
each element e ∈ X it holds that e ∈ S̃j for at least 1

µ − ϕ
ϵ values of j ∈ [1

µ]. Thus,

∑
e∈X

∑
j∈[1

µ]:Uj(e)={e}

v(e) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈X

v(e) = 1
µ

(1 − ϵ)
∑
e∈X

v(e) (6)

Next, we bound the second term, the value earned from long elements, e ∈ Y . Consider
the set of cut points Uj . Two operators are applied to each long element. First, it is cut and
the subset Uj(e) is defined. Second, short elements are discarded from Uj(e). The resulting
subset is {(i, t1, t2) ∈ Uj(e) | t2 − t1 ≥ ϕ} and therefore we would like to bound the difference

∑
e∈Y

v(e) −
∑

e′∈{(i,t1,t2)∈Uj(e) | t2−t1≥ϕ}

v(e′)

Consider an element e = (i, t1, t2) ∈ Y cut by cut points set Uj . As shown in Equation (3),
the loss caused by cutting e at cut point u ∈ (t1, t2] is independent of other cuts that are
applied to e and is equal to ℓ(e, u). Thus we can consider each cut point separately.

As mentioned above, if e = (i, t1, t2) ∈ Y , the second operator discards elements e′ ∈ Uj(e)
that are short. Since the distance between each pair of cut points in Uj is at least 1

µ = ϕ
ϵ2 > ϕ,

each such short element e′ is either (i, t1, u) or (i, u, t2) for some unique cut point u ∈ Uj . In
addition, it must hold that either u − t1 < ϕ or t2 − u < ϕ. We associate the value lost by
discarding e′ to this unique cut point u.

APPROX/RANDOM 2021

15:12 General Knapsack Problems in a Dynamic Setting

Let e = (i, t1, t2) ∈ Y and u ∈ Uj be a cut point such that u ∈ (t1, t2], i.e., u cuts e.
There are three cases to consider.
1. If u−t1 < ϕ, element e′ = (i, t1, u−1) ∈ Uj(e) is discarded and a loss of v(e′) is associated

with u in addition to ℓ(e, u). Thus the total loss is at most

v(e′) + ℓ(e, u) =
u−1∑
t=t1

pt(i) +
u−1∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,u−1 + g+

i,u + c+
i,u + c−

i,u−1 ≤

≤
u−1∑
t=t1

pt(i) +
u∑

t=t1+1
g+

i,t + c+
i,u−1 ≤

u+ϕ−1∑
t=t1

pt(i) +
u+ϕ−1∑
t=t1+1

g+
i,t

where the equality is due to Equation (2) and the last inequality is due to the profit-cost
ratio.

2. If t2 − u < ϕ, element e′ = (i, u, t2) ∈ Uj(e) is discarded and a loss of v(e′) is associated
with u in addition to ℓ(e, u). Thus the total loss is at most

v(e′) + ℓ(e, u) =
t2∑

t=u

pt(i) +
t2∑

t=u+1
g+

i,t − c+
i,u − c−

i,t2
+ g+

i,u + c+
i,u + c−

i,u−1 ≤

≤
t2∑

t=u

pt(i) +
t2∑

t=u

g+
i,t + c−

i,u−1 ≤
t2∑

t=u−ϕ

pt(i) +
t2∑

t=u−ϕ+1
g+

i,t

where the equality is due to Equation (2) and the last inequality is due to the profit-cost
ratio.

3. If t2 − u ≥ ϕ and u − t1 ≥ ϕ, no elements are discarded from Uj(e). Thus the only loss is
ℓ(e, u) and can be bounded by

ℓ(e, u) = g+
i,u + c+

i,u + c−
i,u−1 ≤

u+ϕ−1∑
t=u−ϕ

pt(i) +
u+ϕ−1∑

t=u−ϕ+1
g+

i,t

Overall we can bound the loss induced by cutting long elements at cut points Uj (due to loss
ℓ(e, u) and discarded short elements) by

∑
(i,t1,t2)∈Y

∑
u∈(t1,t2]∩Uj

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

This means that the total value gained from elements that were originally in Y is

∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈u(e,Uj):t2−t1≥ϕ

v(e′) ≥

1
µ

∑
e∈Y

v(e) −

1
µ∑

j=1

∑
(i,t1,t2)∈Y

∑
u∈[t1+1,t2]∩Uj

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

 ≥

1
µ

∑
e∈Y

v(e) −
∑

(i,t1,t2)∈Y

∑
u∈[t1+1,t2]

min{t2,u+ϕ−1}∑
t=max{t1,u−ϕ}

pt(i) +
min{t2,u+ϕ−1}∑

t=max{t1+1,u−ϕ+1}

g+
i,t

 ≥

1
µ

∑
e∈Y

v(e) − 2ϕ
∑

(i,t1,t2)∈Y

 ∑
t∈[t1,t2]

pt(i) +
∑

t∈[t1+1,t2]

g+
i,t

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:13

where the second inequality follows from the fact that for every j1 ̸= j2 it holds that
Uj1 ∩ Uj2 = {1, T + 1}. The last inequality is due to the fact that the profit and gains of
element (i, t1, t2) is lost at stage t ∈ [t1, t2] if it is cut by a cut point u such that |u − t| ≤ ϕ.
Thus, its value is lost in at most 2ϕ instances. Due to the profit-cost ratio, for each long
element e = (i, t1, t2) ∈ Y it holds that

c+
i,t1

+ c−
i,t2

≤ 2ϕ ·
∑t2

t=t1
pt(i) +

∑t2
t=t1+1 g+

i,t

t2 − t1
≤ ϵ ·

t2∑
t=t1

pt(i) + ϵ ·
t2∑

t=t1+1
g+

i,t

By substituting 4ϕ(c+
i,t1

+ c−
i,t2

) ≤ 4ϕϵ
(∑t2

t=t1
pt(i) +

∑t2
t=t1+1 g+

i,t

)
we get that

1
µ

∑
e∈Y

v(e) − 2ϕ
∑

(i,t1,t2)∈Y

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

)
=

∑
(i,t1,t2)∈Y

(
1
µ

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t − c+
i,t1

− c−
i,t2

)
− 2ϕ

(
t2∑

t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

))
≥

∑
(i,t1,t2)∈Y

((
1
µ

− 2ϕ − 4ϕϵ

)(t2∑
t=t1

pt(i) +
t2∑

t=t1+1
g+

i,t

)
−
(

1
µ

− 4ϕ

)(
c+

i,t1
+ c−

i,t2

))
≥

(
1
µ

− 2ϕ − 4ϕϵ

)∑
e∈Y

v(e) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈Y

v(e)

where the last inequality follows the fact that ϵ < 1
4 . Overall, we get that

∑
e∈Y

1
µ∑

j=1

∑
e′=(i,t1,t2)∈Uj(e):t2−t1≥ϕ

v(e′) ≥
(

1
µ

− ϕ

ϵ

)∑
e∈Y

v(e) (7)

Lastly, we bound the third term, gains g− earned in all cut instance solutions. Consider
a cut point set Uj and gain g−

i,t earned in solution S̃∗, i.e., i /∈ S∗
t−1 ∪ S∗

t . Therefore, any
element (i, t1, t2) such that t ∈ [t1, t2] or t − 1 ∈ [t1, t2] is not in S̃j . Thus, unless t ∈ Uj , gain
g−

i,t is earned in S̃j and in some solution S̃j,r ⊆ S̃j such that t ∈ [uj
r, uj

r+1 − 1] and uj
r ∈ Uj .

Again, we can use the fact that for every j1 ̸= j2 it holds that Uj1 ∩ Uj2 = {1, T + 1} and get
that

1
µ∑

j=1

∑
t∈[2,T]\Uj

∑
i/∈S̃j(t−1)∩S̃j(t)

g−
i,t ≥

(
1
µ

− 1
) T∑

t=1

∑
i/∈S̃∗(t−1)∩S̃∗(t)

g−
i,t (8)

By substituting inequalities (6),(7) and (8) in Inequality (5) we get that

B ≥
(

1
µ

− ϕ

ϵ

)∑
e∈S̃∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃∗(t−1)∩S̃∗(t)

g−
i,t

 =
(

1
µ

− ϕ

ϵ

)
fQ((S∗

t)T
t=1)

For each set of values, their average is smaller or equal to their maximum value. Thus
there must exist at least one set of cut points Uj∗ such that the sum of values of the solutions(
S̃j∗,r

)kj−1
r=0 for its cut instances, QU∗

j
, is at least µ · B, the average value of a set of solutions

for a set of cut instance QUj (for j = 1, . . . , 1
µ). We get that∑

e∈S̃j∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃j∗ (t−1)∩S̃j∗ (t)

g−
i,t ≥ µB = (1 − ϵ) fQ

(
(S∗

t)T
t=1
)

APPROX/RANDOM 2021

15:14 General Knapsack Problems in a Dynamic Setting

At iteration j∗, in which Algorithm 1 considers the cut instances QUj∗ , algorithm A provides
an approximate solution for each cut instance. Thus the value of the solution returned by A

for the r-th cut instance is at least

α ·

 ∑
e∈S̃j∗,r

v(e) +
∑

t∈[uj
r+1,uj

r+1−1]:uj
r∈Uj

∑
i/∈S̃j∗,r(t−1)∪S̃j∗,r(t)

g−
i,t

Summing over all cut instances in QUj∗ provides a solution with value at least

α ·

 ∑
e∈S̃j∗

v(e) +
∑

t∈[2,T]

∑
i/∈S̃j∗ (t−1)∩S̃j∗ (t)

g−
i,t

 ≥ (1 − ϵ) · α · fQ
(
(S∗

t)T
t=1
)

◀

The correctness of Theorem 1 follows immediately from Theorem 17 and Lemma 10.

3 Hardness Results

In this section we present two hardness results for 1-GMK. First, we show no constant
approximation ratio exists for 1-GMK (with unbounded profit-cost ratio), even if there is
only one bin per stage. Then, we show that even if we wither down the model by removing
the change costs, limiting the time horizon length to T = 2, and only having a single bin per
stage, the problem still does not admit an EPTAS.

The above results are proved by showing an approximation preserving reduction from
d-Dimensional Knapsack (d-KP) and Multidimensional Knapsack. For d ∈ N, in d-KP we
are given a set of items I, each equipped with a profit pi, as well as a d-dimensional weight
vector w̄i ∈ [0, 1]d. We denote j-th coordinate of w̄i by w̄i

j . In addition, we are given a single
bin equipped with a d-dimensional capacity vector W̄ ∈ Rd

≥0. A subset S ⊆ I is a feasible
solution if

∑
i∈S w̄i ≤ W̄ . The objective is to find a feasible solution S which maximizes∑

i∈S pi.
The Multidimensional Knapsack problem is the generalization of d-KP in which d is not

fixed. That is, the input for the problem is a d-KP instance for some d ∈ N. The solutions
and their values are the solution and values of the d-KP instance.

Note that d-KP is a special case of d-MKCP, where the set of MKCs is K = (Kj)d
j=1.

The j-th MKC is Kj = (wj , Bj , Wj), where wj(i) = w̄i
j , Bj = {b} and Wj(b) = W̄j , where

W̄j is the j-th coordinate of the capacity vector W̄ . Finally, the profit function p : I → R≥0
is defined as p(i) = pi for any i ∈ I. For simplicity we will use this notation for d-KP and
Multidimensional Knapsack throughout this section.

▶ Lemma 18. There is an approximation preserving reduction from the Multidimensional
Knapsack problem to 1-GMK with a single bin in each stage.

Proof. Let Q = (I, K, p) be an instance of Multidimensional Knapsack, where K = (Kj)d
j=1.

We define an instance of 1-GMK as follows. Define T = d, and for j = 1, . . . , d define
Pj = (I, (Kj), h) with h(i) = p(i)

d for all i ∈ I. The gains vectors are defined as zero vectors,
g+ = g− = #»0 . Finally, we define the change cost vectors. For all i ∈ I we set

c+
i,t =

{
p(i) t ∈ [2, d]
0 otherwise.

, c−
i,t =

{
p(i) t ∈ [1, d − 1]
0 otherwise.

The tuple Q̃ =
(
(Pt)d

t=1, g+, g−, c+, c−) is a 1-GMK instance with time horizon T = d.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:15

Let (S, A) be a feasible solution for Q, where A = (Aj)d
j=1. We can easily construct a

solution for Q̃ by setting Aj = (Aj) for j = 1, . . . , d. Then, (St, At)d
t=1, where Sj = S for

j = 1, . . . , d, is a solution for Q̃. Note that all items are either assigned or not assigned in all
stages. Thus the value of the solution is

fQ̃((St)d
t=1) =

d∑
t=1

h(St) −
T∑

t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 = d · h(S) = p(S)

The solution is also feasible as for every j ∈ [d] it holds that Aj is a feasible assignments for
MKC Kj .

Next, let (St, At)d
t=1 be a feasible solution for Q̃, where Aj = (Ãj) for j = 1, . . . , d. For

j = 1, . . . , d let Bj = {bj}. We define the selected items set as S =
⋂

j∈[d] Sj and define
the assignments accordingly, Aj(bj) = S for j = 1, . . . , d and A = (Aj)d

j=1. Consider some
j ∈ [s], the assignment Aj is feasible as Aj(bj) ⊆ Ãj(bj) and∑

i∈Aj(bj)

wj(i) ≤
∑

i∈Ãj(bj)

wj(i) ≤ Wj(bj)

The value of the solution is

p(S) = d · h(S) ≥
d∑

t=1
h(St) −

T∑
t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 = fQ̃((St)d
t=1)

where the inequality follows from the construction of Q̃. Furthermore, note that S can be
constructed in polynomial time, which concludes the proof. ◀

In [6] Chekuri and Kahanna showed that Multidimensional Knapsack does not admit any
constant approximation ratio unless NP = ZPP . Theorem 3 follows immediately from the
hardness result of [6] and Lemma 18.

We now proceed to the second hardness result.

▶ Lemma 19. There is an approximation preserving reduction from 2-Dimensional Knapsack
problem to 1-GMK with time horizon T = 2, no change costs and a single bin per stage.

Proof. Let Q = (I, K, p) be an instance of 2-dimensional knapsack, where K = (K1, K2).
Also, since p is modular, it holds that p(S) =

∑
i∈S pi.

We define an instance of 1-GMK as follows. Set T = 2, P1 = (I, (K1), h) and P2 =
(I, (K2), h), where h is the zero function, i.e., h : I → {0} such that ∀i ∈ I it holds that
h(i) = 0. Since there are only two stages, gains exists only for stage for t = 2. Set g+

i,2 = p(i)
and g−

i,2 = 0 for each item i ∈ I. Finally, we set the change cost vectors as c+ = c− = #»0 .
The tuple Q̃ = ((P1, P2), g+, g−, c+, c−) is a 1-GMK instance with time horizon T = 2. Note
that since all profits, change costs and gains g− are zero we can write the objective function
as

fQ̃ ((S1, S2)) =
∑

i∈S1∩S2

g+
i,2.

Let (S, A) be a feasible solution for Q, where A = (A1, A2). We can easily construct
a solution for the Q̃ by setting A1 = (A1) and A2 = (A2). Then, (St, At)2

t=1, where
S1 = S2 = S, is a solution for Q̃. Note that all items are either assigned in both stages or
not assigned in both stages. Thus the value of the solution is

fQ̃((S, S)) =
∑

i∈S1∩S2

g+
i,2 =

∑
i∈S

g+
i,2 =

∑
i∈S

pi = p(S)

APPROX/RANDOM 2021

15:16 General Knapsack Problems in a Dynamic Setting

The solution is also feasible as A1 and A2 are feasible assignments of K1 and K2 (respectively).
Next, let (St, At)2

t=1 be a feasible solution for Q̃, where A1 = (Ã1) and A2 = (Ã2). Let
B1 = {b1} and B2 = {b2}. We define the selected items set as S = S1 ∩ S2 and define the
assignments accordingly, A1(b1) = A2(b2) = S and A = (A1, A2). Assignment A1 is feasible
as A1(b1) ⊆ Ã1(b1) and∑

i∈A1(b1)

w1(i) ≤
∑

i∈Ã1(b1)

w1(i) ≤ W1(b1)

A similar statement shows that assignment A2 is feasible as well. The value of the solution is

p(S) =
∑
i∈S

p(i) =
∑
i∈S

g+
i,2 =

∑
i∈S1∩S2

g+
i,2 = fQ̃((S, S))

which concludes the proof. ◀

In [19] Kulik and Shachnai showed that there is no EPTAS for 2-KP unless W [1] = FPT .
Theorem 2 follows immediately from the hardness result of [19] and Lemma 19.

References
1 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via

exponential clocks. ACM Transactions on Algorithms (TALG), 13(2):1–20, 2017.
2 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th Paschos. Multistage

matchings. In 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2018), volume 101, pages 7–1, 2018.

3 Evripidis Bampis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. Online multistage
subset maximization problems. In European Symposium on Algorithms (ESA), volume 144.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

4 Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Mathemat-
ical Foundations of Computer Science (MFCS), volume 138, pages 22–1. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019.

5 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In International Conference on Integer Programming
and Combinatorial Optimization, pages 182–196. Springer, 2007.

6 Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal
on computing, 33(4):837–851, 2004.

7 Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage matching
problems. arXiv preprint arXiv:2002.06887, 2020.

8 Shichuan Deng, Jian Li, and Yuval Rabani. Approximation algorithms for clustering with
dynamic points. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

9 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics.
In International Colloquium on Automata, Languages, and Programming, pages 459–470.
Springer, 2014.

10 Yaron Fairstein, Ariel Kulik, Danny Raz, et al. General knapsack problems in a dynamic
setting. arXiv preprint arXiv:2105.00882, 2021.

11 Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium
on Algorithms (ESA 2021), 2021. (To appear).

12 Yaron Fairstein, Seffi Joseph Naor, and Danny Raz. Algorithms for dynamic nfv workload. In
International Workshop on Approximation and Online Algorithms, pages 238–258. Springer,
2018.

Y. Fairstein, A. Kulik, J. Naor, and D. Raz 15:17

13 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

14 Uriel Feige and Michel Goemans. Approximating the value of two power proof systems, with
applications to max 2sat and max dicut. In Proceedings Third Israel Symposium on the Theory
of Computing and Systems, pages 182–189. IEEE, 1995.

15 Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex
cover. In 14th International Symposium on Parameterized and Exact Computation (IPEC
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

16 Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage st
path: Confronting similarity with dissimilarity in temporal graphs. In 31st International
Symposium on Algorithms and Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

17 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independ-
ence systems. In European Symposium on Algorithms, pages 536–548. Springer, 2010.

18 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization
for matroids and matchings. In International Colloquium on Automata, Languages, and
Programming, pages 563–575. Springer, 2014.

19 Ariel Kulik and Hadas Shachnai. There is no eptas for two-dimensional knapsack. Information
Processing Letters, 110(16):707–710, 2010.

20 George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

21 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

22 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

A Omitted Proofs and Definition

▶ Definition 20. Let Π1, Π2 be two maximization problems. An approximation factor
preserving reduction from Π1 to Π2 consists of two polynomial time algorithms f, g such that
for any two instances I1 of problem Π1 and I2 = f(I1) of problem Π2 it holds that

I2 ∈ Π2 and OPTΠ2(I2) ≥ OPTΠ1(I1).
for any solution s2 for I2, solution s1 = g(I1, s2) is a solution for I1 and objΠ1(I1, s1) ≥
objΠ2(I2, s2).

where OPTΠ(I) is the value of an optimal solution for instance I of problem Π, and objΠ(I, s)
is the value of solution s for instance I of problem Π.

Proof of Lemma 8. Let Q =
(
(Pt)T

t=1, g+, g−, c+, c−) be an instance of d-GMK, where
Pt = (I, Kt, pt) and Kt = (Kt,j)dt

j=1. Also, let R(Q) =
(
E, K̃, p̃, I

)
be the reduced instance

of Q. and
(

S,
(
Ãt,j

)
t∈[T], j∈[d]

)
be a feasible solution for R(Q). We define the solution

(St, At)T
t=1 for Q as follows. For every stage t we set St = {i ∈ I | ∃(i, D) ∈ S : t ∈ D}.

For every t = 1, . . . , T , j = 1, . . . , dt and bin b ∈ Bt,j (the set of bins in MKC Kt,j) let
At,j(b) = {i ∈ I | ∃(i, D) ∈ Ãt,j(b) : t ∈ D}. Observe that the sets (St)T

t=1 and assignments
(At,j)t∈[T], j∈[dt] can be constructed in polynomial time as at most |I| elements can be chosen
due to the matroid constraint. The assignment At,j is an assignment of St since

St = {i ∈ I | ∃(i, D) ∈ S : t ∈ D} =
⋃

b∈Bt,j

{i ∈ I | (i, D) ∈ Ãt,j(b) : t ∈ D} =
⋃

b∈Bt,j

At,j(b),

where the second equality follows the feasibility of the solution for R(Q). In addition, At,j is

APPROX/RANDOM 2021

15:18 General Knapsack Problems in a Dynamic Setting

a feasible assignment for MKC Kt,j since for every bin b ∈ Bt,j it holds that∑
i∈At,j(b)

wt,j(i) =
∑

(i,D)∈Ãt,j(b):t∈D

w̃t,j((i, D)) =
∑

(i,D)∈Ãt,j(b)

w̃t,j((i, D)) ≤ Wt,j(b)

Thus (St, At)T
t=1 is a feasible solution for Q.

Lastly, consider the value of the solution for Q. It holds that

fQ
(
(St)T

t=1
)

=

T∑
t=1

∑
i∈St

pt(i) +
T∑

t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St−1

c+
i,t +

∑
i∈St\St+1

c−
i,t

 =

∑
(i,D)∈S

(∑
t∈D

pt(i) +
∑

t∈D:t−1∈D

g+
i,t +

∑
t/∈D:t−1/∈D

g−
i,t −

∑
t∈D:t−1/∈D

c+
i,t −

∑
t∈D:t+1/∈D

c−
i,t

)
=

p̃(S)

◀

Proof of Corollary 13. Let Q be an instance of d-GMK, U be a set of cut points. Also, let
QU = (qj)k−1

j=0 =
(

(Pt)
uj+1−1
t=uj

, g+, g−, c+, c−
)k−1

j=0
be the corresponding tuple of cut instances,

and
(

(St, At)
uj+1−1
t=uj

)k−1

j=0
be a tuple of feasible solutions for the cut instances.

We define the solution (St, At)T
t=1 for Q. It is easy to see that the assignments At to Kt

are all feasible assignments of St. In addition, it holds that

fQ
(
(St)T

t=1
)

=
T∑

t=1
pt(St) +

T∑
t=2

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−
T∑

t=1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

 ≥

k−1∑
j=0

uj+1−1∑
t=uj

pt(St) +
uj+1−1∑
t=uj+1

 ∑
i∈St−1∩St

g+
i,t +

∑
i/∈St−1∪St

g−
i,t

−

uj+1−1∑
t=uj+1

 ∑
i∈St\St+1

c−
i,t +

∑
i∈St\St−1

c+
i,t

−
∑

i∈Suj+1−1

c−
i,uj+1

−
∑

i∈Suj

c+
i,uj

 =

k−1∑
j=0

fqj

(
(St)

uj+1−1
t=uj

)
where fqj

is the objective functions of cut instance qj . This proves that a cut solution has a
higher value than the sum of solutions for cut instance from which it was created. ◀

Min-Sum Clustering (With Outliers)
Sandip Banerjee #

The Hebrew University of Jerusalem, Israel

Rafail Ostrovsky #

University of California, Los Angeles, CA, USA

Yuval Rabani #

The Hebrew University of Jerusalem, Israel

Abstract
We give a constant factor polynomial time pseudo-approximation algorithm for min-sum clustering
with or without outliers. The algorithm is allowed to exclude an arbitrarily small constant fraction
of the points. For instance, we show how to compute a solution that clusters 98% of the input data
points and pays no more than a constant factor times the optimal solution that clusters 99% of the
input data points. More generally, we give the following bicriteria approximation: For any ϵ > 0, for
any instance with n input points and for any positive integer n′ ≤ n, we compute in polynomial
time a clustering of at least (1 − ϵ)n′ points of cost at most a constant factor greater than the
optimal cost of clustering n′ points. The approximation guarantee grows with 1

ϵ
. Our results apply

to instances of points in real space endowed with squared Euclidean distance, as well as to points in
a metric space, where the number of clusters, and also the dimension if relevant, is arbitrary (part
of the input, not an absolute constant).

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering, approximation algorithms, primal-dual

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.16

Category APPROX

Funding Sandip Banerjee: Research supported in part by Yuval Rabani’s NSFC-ISF grant 2553-17.
Rafail Ostrovsky: Supported in part by DARPA under Cooperative Agreement No: HR0011-20-2-
0025, NSF Grant CNS-2001096, US-Israel BSF grant 2015782, Google Faculty Award, JP Morgan
Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award, OKAWA Foundation
Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-
Martin Corporation Research Award. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of DARPA, the Department of Defense, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes not withstanding any
copyright annotation therein.
Yuval Rabani: Research supported in part by NSFC-ISF grant 2553-17 and by NSF-BSF grant
2018687.

1 Introduction

We consider min-sum k-clustering. This is the problem of partitioning an input dataset of
n points into k clusters with the objective of minimizing the sum of intra-cluster pairwise
distances. We consider primarily the prevalent setting of instances of points in Rd endowed
with a distance function equal to the squared Euclidean distance (henceforth referred to as
the ℓ2

2 case). Our results apply also to the case of instances of points endowed with an explicit
metric (henceforth refered to as the metric case). Note that we consider k (and d, if relevant)
to be part of the input, rather than an absolute constant. In these and similar cases we give
polynomial time approximation algorithms that cluster all but a negligible constant fraction

© Sandip Banerjee, Rafail Ostrovsky, and Yuval Rabani;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sandip.ndp@gmail.com
mailto:rafail@cs.ucla.edu
mailto:yrabani@cs.huji.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Min-Sum Clustering (With Outliers)

of outliers at a cost that is at most a constant factor larger than the optimum clustering.
More specifically, for any ϵ > 0, if the optimum we compete against is required to cluster
any number n′ ≤ n of points, our algorithm clusters at least (1− ϵ)n′ points and at most
n′ points, and pays a constant factor more than the optimum for n′ points. The constant
depends on ϵ.

Clustering in general is a fundamental question in unsupervised learning. The question
originated in the social sciences and now is widely applicable in data analysis and machine
learning, in areas including bioinformatics, computer vision, pattern recognition, signal
processing, fraud/spam/fake news filtering, and market/population segmentation. Clustering
is also a list of fundamental discrete optimization problems in computational geometry that
have been studied for decades by theoreticians, in particular (but not exclusively) as simple
non-convex targets of machine learning. Some clustering problems, notably centroid-based
criteria such as k-means, have been studied extensively. We currently have a fairly tight
analysis of their complexity in the worst case (e.g. [4, 42, 1, 20]) and under a wide range
of restrictive conditions: low dimension (e.g., [33, 21, 30]) fixed k (e.g. [41, 27, 17, 26]),
various notions of stability (e.g. [44, 7, 40, 5, 22]), restrictive models of computation (e.g., [16,
3, 15, 14]), etc., as well as practically appealing heuristics (e.g., Lloyd’s iteration, local
search) and supportive theoretical justification (e.g., some of the afore-mentioned papers and
also [6, 38]). Theoretical understanding of density-based clustering criteria, and in particular
min-sum clustering, is far less developed. There are clearly cases in practice where, for
instance, min-sum clustering coincides far better with the intuitive clustering objective than
standard centroid-based criteria. A simple illustrative example is the case of separating
two concentric dense rings of points in the plane. Moreover, min-sum clustering satisfies
Kleinberg’s consistency axiom, whereas a fairly large class of centroid-based criteria including
k-means and k-median do not satisfy this axiom [39, 47]. However, the state-of-the-art
for computing min-sum clustering remains inferior to alternatives. Min-sum k-clustering
is NP-hard in the ℓ2

2 case (e.g., using arguments from [4]), and also for the metric case
(see [29]), even for k = 2. In the ℓ2

2 case, it can be solved in polynomial time if both
d and k are absolute constants [35]. In the metric case with arbitrary k, approximating
min-sum clustering to within a factor better than 1.415 is NP-hard [31, 19]. If k is a fixed
constant, the problem admits a PTAS, both in the ℓ2

2 case and in the metric case [28];
see also [32, 36, 43, 45] for previous work in this vein. Hassin and Or [34] gave a 2-factor
approximation algorithm for the metric penalized k-min-sum problem where k is a constant.
If k = o(log n/ log log n), then there is a constant factor approximation algorithm for the ℓ2

2
case [23]. In the metric case, assuming that k = o(log n/ log log n) and the instance satisfies
a certain clusterability/stability condition, a partition close to optimal can be computed in
polynomial time [8, 9] (see also [46] for some applications and experimental results in this
vein). We note that practical applications often require the number of clusters i.e., k too many,
so the above restrictions on k are unrealistic in those cases. In the worst case, and under no
restrictions on the instance, the best known approximation guarantee known is an O(log n)
approximation algorithm [13] for the metric case. This improves upon a slightly worse and
much earlier guarantee [12]. In both papers, the factor is derived from representing the input
metric space approximately as a convex combination of hierarchically separated tree (HST)
metrics [10, 11, 25]. This incurs logarithmic distortion, which is asymptotically tight in the
worst case. In HST metrics, min-sum clustering can be approximated to within a constant
factor. Thus, a fundamental challenge of the study of min-sum clustering is to eliminate the
gap between the hardness of approximation lower bound of 1.415 and the approximation
guarantee upper bound of O(log n). We show that a constant factor approximation is possible,
if one is willing to regard as outliers a small fraction of the input dataset. For the ℓ2

2 case,
we are not aware of any previous non-trivial guarantee for k ≫ log n/ log log n.

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:3

Our results are derived using a reduction from min-sum clustering to a centroid-based
criterion with (soft) capacity constraints. This can be done exactly in the ℓ2

2 case, and
approximately in the metric case, though to get polynomial time algorithms we use an
approximation in both cases. This reduction underlies also some of the above-mentioned
previous results on min-sum clustering. The outcome of this reduction is a k-median
or k-means problem with non-uniform capacities. If we are aiming for a constant factor
approximation then we can afford to violate the capacities by a constant factor. There
are nice results on approximating k-median with non-uniform capacities, for instance [24].
Unfortunately, these results do not seem applicable here, because their input is a metric space.
The reduction, even for the metric case, does not generate a metric instance of capacitated
k-median (the triangle inequality is violated unboundedly). Nevertheless, we do draw some
ideas from this literature. Our min-sum clustering algorithm is based on the well-trodden
path of using the primal-dual schema repeatedly to search for a good Lagrange multiplier
in lagrangian relaxation of the problem (see [37] for the origin of this method). The dual
program has a variable for every data point, and a constraint for every possible cluster. The
dual ascent process requires detection of constraints that become tight. In our case, this is a
non-trivial problem, which we solve only approximately. As usual, the dual values are used
to “buy” the opening of the clusters that become tight, and we have to contend with points
contributing simultaneously to multiple clusters. This is done, as usual, by creating a conflict
graph among the tight clusters and choosing an independent set in this graph. However, in
our case there are unsual complications. The connection cost is a distance (not a metric
in the ℓ2

2 case, but this is a minor concern) multiplied by the cardinality of the cluster. If
there is a conflict between a large cluster and some small clusters, we have the following
dilemma. If we open the large cluster, the unclustered points in the small clusters may lack
dual “money” to connect to the large cluster; they can only afford the distance multiplied
by the cardinality of their small cluster. If, on the other hand, we open (some or all of) the
small clusters, assigning the unclustered points in the large cluster to those small clusters
might inflate their cardinality by a super-constant factor, leaving all points with insufficient
funds to connect to the inflated clusters.

We resolve this dilemma as follows (using in part some ideas from [18]). We open larger
clusters first, so if a cluster is not opened, it is smaller than the conflicting cluster that
blocked it. Unclustered points are not assigned to the blocking cluster, but rather aggregated
around each blocking cluster to form their own clusters of appropriate cardinality. We use
approximate cardinality, in scales which are powers of a constant b. As we require the
Lagrange multiplier preserving (LMP) property, we must have sufficient “funds” to pay the
opening costs in full (but can setttle for paying just a fraction of the connection cost). This
is possible if in a scale of, say, bp we have, say, at least b2+p unclustered points in clusters of
scaled cardinality bp (each set of roughly this size can afford to open its own cluster). If a
blocking cluster is blocking fewer points in this scale, we can’t afford to cluster them and
must discard them as outliers. This is the primary source of the excess outliers.

As usual, the search for a good Lagrange multiplier may end with two integer primal
solutions, one with fewer than k clusters and one with more than k clusters, whose convex
combination is a feasible fractional bipoint solution to the k-clustering problem. In our case,
as we already may have to give up on some outliers, we can simply output either the < k

solution or the k largest clusters in the > k solution. We point out that these extra outliers
can be avoided by using a more sophisticated “rounding” of the bipoint solution, but given
our loss in the primal-dual phase, it would not improve meaningfully our guarantees.

APPROX/RANDOM 2021

16:4 Min-Sum Clustering (With Outliers)

The above description sums up the algorithm in the case that n′ = n. Our result also
extends to the case that the optimal solution is also allowed to discard some outliers (we
may have to discard some more). The main additional issue in the case n′ < n is that in the
primal-dual phase we may open a cluster that brings the number of clustered points from
below n′ to above n′. In this case, some points in this last cluster need to be discarded, but
then the remaining clustered points might have insufficient “funds” to open the last cluster.
If we have many clusters, we can afford to eliminate the smallest cluster, declaring its points
as outliers, and use the dual values of the points in that cluster to pay for opening the last
one. If there is a small number of clusters, we may assume that the primal-dual phase opened
less than k clusters (to ensure this property, if k is a small constant, we employ the known
PTAS; thus we can assume that k is large). Our approach in this case draws from [2], where
a similar issue is addressed in the case of the sum-of-radii k-clustering problem. Though the
questions are quite different, we use a similar idea of computing a (slightly) non-Lagrange
multiplier preserving approximation to the lagrangian relaxation. The LMP property is
regularly used in the argument that the bipoint solution is both feasible and cheap; the
approach we adopt requires an extra argument to bound the cost of a bipoint solution that
incorporates a non-LMP solution.

The rest of the paper is organized as follows. Section 2 introduces some basic definitions
and claims. Section 3 describes the algorithm. Section 4 analyzes the algorithm. For
conciseness, the paper presents the ℓ2

2 case. Our main result is Theorem 8. The metric case
is essentially identical, and is briefly explained in Theorem 9. We note that we made no
effort to optimize the constant factor guarantees, throughout the paper.

2 Definitions and Preliminary Claims

Consider an instance of min-sum clustering that is defined by a set of points X ⊂ Rd and a
target number of clusters k ∈ N. Let n = |X|. The cost of a cluster Y ⊂ X is

cost(Y) = 1
2 ·

∑
x,y∈Y

∥x− y∥2
2.

The center of mass (or mean) of Y is cm(Y) = 1
|Y | ·

∑
x∈Y x. The following proposition is a

well-known fact (for instance, see [35]).

▶ Proposition 1. The following assertions hold for every finite set Y ⊂ Rd.
1. The center of mass cm(Y) is the unique minimizer of

∑
x∈Y ∥x− y∥2

2 over y ∈ Rd.
2. cost(Y) = |Y | ·

∑
x∈Y ∥x− cm(Y)∥2

2.

A min-sum k-clustering of X is a partition of X into k disjoint subsets X1, X2, . . . , Xk

that minimizes over all possible partitions

k∑
i=1

cost(Xi) =
k∑

i=1
|Xi| ·

∑
x∈Xi

∥x− cm(Xi)∥2
2.

In the version allowing outliers, we are given a target n′ ≤ n of the number of points to
cluster, and we are required that

∣∣∣⋃k
i=1 Xi

∣∣∣ ≥ n′. Clearly, the version without outliers is a
special case of the version with outliers with n′ = n. Let opt(X, n′, k) denote the optimal
min-sum cost of clustering n′ points in X into k clusters. Formally, we can express the goal

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:5

as a problem of optimizing an exponential size integer program:

minimize
∑

Y⊂X cost(Y) · zY

s.t.
∑

Y ∋x zY + wx ≥ 1 ∀x ∈ X∑
Y⊂X zY ≤ k∑
x∈X wx ≤ n− n′

zY ∈ {0, 1} ∀Y ⊂ X

wx ∈ {0, 1} ∀x ∈ X.

(1)

Fix b ∈ N, b > 1. For i ∈ N, let floorb(i) = b⌊logb i⌋. For Y ⊂ X, let ctr(Y) be a reference
point that we set for now as ctr(Y) = cm(Y). Define

costb(Y) = floorb(|Y |) ·
∑
y∈Y

∥y − ctr(Y)∥2
2.

In other words, (assuming ctr(Y) = cm(Y)) we revise cost(Y) by rounding |Y | down to the
nearest power of b. Thus, 1

b ·cost(Y) < costb(Y) ≤ cost(Y). We relax the integer program (1)
as follows (b to be determined later):

minimize
∑

Y⊂X costb(Y) · zY

s.t.
∑

Y ∋x zY + wx ≥ 1 ∀x ∈ X∑
Y⊂X zY ≤ k∑
x∈X wx ≤ n− n′

zY ≥ 0 ∀Y ⊂ X

wx ≥ 0 ∀x ∈ X.

(2)

Then, following a well-traveled path, we lagrangify the constraint on the number of clusters
to get the following lagrangian relaxation (λ denotes the unknown Lagrange multiplier).

minimize
∑

Y⊂X costb(Y) · zY + λ ·
(∑

Y⊂X zY − k
)

s.t.
∑

Y ∋x zY + wx ≥ 1 ∀x ∈ X∑
x∈X wx ≤ n− n′

zY ≥ 0 ∀Y ⊂ X

wx ≥ 0 ∀x ∈ X.

(3)

For fixed λ, this is a linear program, and its dual is:

maximize
∑

x∈X αx − γ · (n− n′)− λ · k
s.t.

∑
x∈Y αx ≤ λ + costb(Y) ∀Y ⊂ X

0 ≤ αx ≤ γ ∀x ∈ X.

(4)

Notice that the linear program (3) can be interpreted as a relaxation of the “facility location”
version of the problem, with λ-uniform cluster opening costs.

▶ Lemma 2. For any λ, the optimal value of the linear program (4) is a lower bound on the
optimal value of the integer program (1).

Proof. Consider any optimal solution (z, w) to the integer program (1). Notice that we may
assume that

∑
Y⊂X zY = k, otherwise we can split some clusters to get exactly k of them.

Splitting clusters cannot increase the cost of the solution. This is also a feasible solution
to the linear program (3). Moreover, the Lagrange term λ ·

(∑
Y⊂X zY − k

)
zeroes out,

and
∑

Y⊂X costb(Y) · zY ≤
∑

Y⊂X cost(Y) · zY . By weak duality, the value of any feasible
solution to the dual program (4) is a lower bound on the value of any feasible solution to the
linear program (3). ◀

APPROX/RANDOM 2021

16:6 Min-Sum Clustering (With Outliers)

An obvious issue with the dual program (4) is that the number of constraints is exponential
in n. We want to construct a dual solution by growing the dual variables, however, it is not
clear how to detect new tight dual constraints without enumerating over the exp(n) number
of constraints. We now address this issue. First consider the following fact.

▶ Proposition 3. Let Y be a finite set of points in Rd. There exists y ∈ Y such that∑
x∈Y ∥x− y∥2

2 ≤ 2 ·
∑

x∈Y ∥x− cm(Y)∥2
2. (We note that the factor of 2 can be improved to

1 + ϵ, for any ϵ > 0, using the center of mass of O(1/ϵ2) points in Y , e.g. [35, 28].)

Proof sketch. Notice that for every y ∈ Rd,∑
x∈Y

∥x− y∥2
2 ≤

∑
x∈Y

∥x− cm(Y)∥2
2 + |Y | · ∥y − cm(Y)∥2

2

(see [44]). Thus, by picking y ∈ Y that minimizes ∥y− cm(Y)∥2
2, the proposition follows. ◀

An immediate consequence of Proposition 3 is that F = X is a set of n points in Rd,
such that for every Y ⊂ X there exists a point cY ∈ F such that∑

x∈Y

∥x− cm(Y)∥2
2 ≤

∑
x∈Y

∥x− cY ∥2
2 ≤ 2 ·

∑
x∈Y

∥x− cm(Y)∥2
2. (5)

(We can improve the factor of 2 to any constant 1 + ϵ by increasing the size of F to
nO(1/ϵ2).) Now, given F , set initially ctr(Y) = cY for all Y ⊂ X. Notice that this puts
costb(Y) = floorb(|Y |) ·

∑
y∈Y ∥y − cY ∥2

2. We consider the following revised dual program.

maximize
∑

x∈X αx − γ · (n− n′)− λ · k
s.t.

∑
x∈Y αx ≤ λ + floorb(|Y |) ·

∑
x∈Y ∥x− y∥2

2 ∀Y ⊂ X, ∀y ∈ Y

0 ≤ αx ≤ γ ∀x ∈ X.

(6)

▶ Lemma 4. For any λ, the optimal value of the linear program (6) is at most twice the
optimal value of the integer program (1).

Proof. The dual of the linear program (6) is

min
{∑

Y⊂X

∑
y∈Y floorb(|Y |) ·

∑
x∈Y ∥x− y∥2

2 · zY,y + λ ·
(∑

Y⊂X

∑
y∈Y zY,y − k

)
:

∀x ∈ X,
∑

Y ∋x

∑
y∈Y zY,y + wx ≥ 1 ∧

∑
x∈X wx ≤ n− n′ ∧ z, w ≥ 0

}
(7)

Consider an optimal clustering of any n′ points in X into k disjoint clusters Y1, Y2, . . . , Yk.
For all Y ⊂ X, set zY,y to be the indicator that Y is a cluster in this list and y = cY . Also,
for all x ∈ X set wx to be the indicator that x is not clustered. Clearly, this is a feasible
solution to the linear program (7), so its value is an upper bound on the optimal value of
the linear program (6). The Lagrange term vanishes as there are exactly k non-zero values
ZY,y. Thus, the upper bound is

k∑
j=1

floorb(|Yj |) ·
∑
x∈Yj

∥x− cYj∥2
2 ≤ 2 ·

k∑
j=1

floorb(|Yj |) ·
∑
x∈Yj

∥x− cm(Yj)∥2
2 ≤ 2 ·

k∑
j=1

cost(Yj),

where the first inequality uses Equation (5). ◀

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:7

In the primal-dual procedure, there is an active set active ⊂ X of points for which it is safe
to raise the dual variable αx for all x ∈ active. We need to detect when a new dual constraint
becomes tight and requires the removal of the points that are involved from active. This can
be done in polynomial time for the revised dual program (6) as follows. For every y ∈ X

and for every j ∈ {0, 1, 2, . . . , logb floorb(n)}, we check if there exists Y ⊂ X that satisfies (i)
y ∈ Y ; (ii) Y ∩ active ̸= ∅; (iii) logb floorb(|Y |) = j; (iv)

∑
x∈Y αx ≥ λ + bj ·

∑
x∈Y ∥x− y∥2

2.
In order to do this, consider the set of points Cy,j = {x ∈ X : αx ≥ bj · ∥x− y∥2

2}, and sort
Cy,j by nonincreasing order of αx − bj · ∥x− y∥2

2.

▶ Lemma 5. There exists a choice of Y, y, j that satisfies (i)–(iv) iff there exists a choice of
y, j such that |Cy,j | ≥ bj and Cy,j ∩ active ̸= ∅ and first min{|Cy,j |, bj+1 − 1} points in the
above order that include y and at least one point from active are a set satisfying (i)–(iv).

Proof. Clearly the existence of y, j such that Cy,j has the listed properties implies the
existence of Y, y, j that satisfy (i)–(iv). As for the other direction, consider Y, y, j that satisfy
(i)–(iv). Clearly y ∈ Cy,j . Suppose that there exists a point x ∈ Y \ Cy,j . Then, putting
Y ′ = Y \ {x} and j′ = logb floorb(|Y ′|) ≤ j, we have that Y ′, y, j′ also satisfy (i)–(iv). Thus,
we may assume that Y ⊂ Cy,j . Now, choice in lemma of a subset of Cy,j subject to conditions
(i)-(iii) maximizes

∑
x∈Y

(
αx − bj · ∥x− y∥2

2
)
. Thus, this subset also satisfies (iv). ◀

There are O(n log n) pairs y, j. Listing and sorting each Cy,j takes at most O(n log n)
operations. Listing the candidate Y ⊂ Cy,j and checking it takes O(|Cy,j |) operations. Thus,
finding a new tight constraint can be done in polynomial time. (Trivially, we can discretize
the increase of the dual variables and/or use binary search to find the increase that causes
a new constraint to become tight. As we’re dealing with squared Euclidean distance, if
the input consists of finite precision rational numbers, then all computed values are finite
precision rational numbers.)

3 The Algorithm

We now describe the following three-phase primal-dual algorithm (Algorithm 1: Primal-
Dual, refer page 9) that can be used to solve the facility location version of min-sum
clustering. In addition to the pointset X, the cluster opening cost λ, and the target number
of points n′, the algorithm also gets a (sufficiently large, TBD) parameter b that governs the
excess number of discarded outliers in its output. Throughout the algorithm, sets of points
Y ⊂ X will maintain values cardb(Y) and ctr(Y). Clearly, we cannot do this explicitly and
efficiently for every set Y ⊂ X. We use Lemma 5 and its consequences to implement the
operations that we need, without storing explicitly these values for more than n sets. This
affects only the first phase of the algorithm. For x ∈ X and Y ⊂ X, we denote throughout
the paper d(x, Y) = bcardb(Y) · ∥x− ctr(Y)∥2

2. This is interpreted according to the relevant
values of cardb(Y) and ctr(Y).

Phase 1 constructs a dual solution and collects candidate clusters. During phase 1, a
point x is either active or inactive. Initially, for all x ∈ X, we set αx to 0, and we set x to be
active. The set of candidate clusters preclusters is empty. We raise all active x at a uniform
rate, and pause to change the status of points and clusters if one of the following events
happens.

There exists an active x ∈ X and a cluster Y ∈ preclusters such that αx ≥ d(x, Y). In
this case, replace Y by Y ∪{x} in preclusters. The new cluster in preclusters inherits the
cardb and ctr values from Y . Also set x to be inactive.

APPROX/RANDOM 2021

16:8 Min-Sum Clustering (With Outliers)

There exists Y ⊂ X that contains an active point and y ∈ Y such that the dual constraint
associated with the pair Y, y is tight. Explicitly,∑

x∈Y

αx ≥ λ + costb(Y),

where we set cardb(Y) = logb floorb(|Y |) and ctr(Y) = y. In this case, add an inclusion-
wise minimal such Y to preclusters and set all x ∈ Y to be inactive (and set cardb(Y)
and ctr(Y) as stated above).

The first phase ends as soon as the number of active x ∈ X drops to n− n′ or lower. If this
number drops below n− n′, we do not add the last cluster Ylast to preclusters, but keep it
separately. Note that each new tight constraint causes at least one point x ∈ X to become
inactive, hence the number of sets Y that require storing explicitly their parameters cardb(Y)
and ctr(Y) is at most n′ ≤ n.

In phase 2, we trim the set of candidate clusters and assign points uniquely to the clusters
in the trimmed list, as follows. Note that we need the parameters cardb and ctr only for
clusters for which these values were stored explicitly in phase 1. Define a conflict graph
on the clusters in preclusters. Two clusters Y1, Y2 ∈ preclusters are connected by an edge
in the conflict graph iff there exists x ∈ Y1 ∩ Y2 such that αx > max{d(x, Y1), d(x, Y2)}. In
other words, the edge {Y1, Y2} indicates that there is x ∈ Y1 ∩ Y2 that contributes to the
opening cost λ of both Y1 and Y2. Next, take a lexicographically maximal independent set
I in the conflict graph, ordering preclusters by non-increasing order of cardb(Y), breaking
ties arbitrarily. We group the points clustered in preclusters into meta-clusters of the form
(Y, Y ′), where Y ∈ I indicates the meta-cluster, and Y ′ is a set of points. (Thus, the entire
meta-cluster associated with Y is ∪(Y,Y ′)∈metaclustersY

′.) In particular, for Y ∈ I, we put
(Y, Y) ∈ metaclusters. Any remaining points in preclusters are added as follows. If Y ′ ̸∈ I,
then let Y ′′ be the set of remaining points in {x ∈ Y ′ : αx = maxy∈Y ′ αy}, and let Y ∈ I
be such that Y precedes Y ′ in the order on preclusters and {Y, Y ′} is an edge. Add (Y, Y ′′)
to metaclusters, with cardb(Y ′′) = cardb(Y ′) and ctr(Y ′′) = ctr(Y). Finally, if the number
of assigned points to metaclusters is less than n′, then we add (Ylast, Y) to metaclusters,
where Y is a set of previously unclustered points from Ylast of the cardinality needed to
complete the number of clustered point to n′. (Notice that at least n′ points are clustered in
preclusters∪{Ylast}, so this is possible.)

Phase 3 determines the final output clustering of the points. For every meta-cluster (Y, ·)
and for every integer p ≤ cardb(Y), let nY,p denote the number of points x ∈ X such that
there exists (Y, Y ′) ∈ metaclusters with Y ′ ∋ x and cardb(Y ′) = p. We open clusters as
follows. For p = cardb(Y), we open max{1,

⌊
nY,p−2+nY,p−1+nY,p

b2+p

⌋
} clusters and assign all the

points counted in nY,p−2, nY,p−1, nY,p to these clusters, as evenly as possible.

▶ Lemma 6. The number of points in each such cluster is at most 2b2+p, and if Y ̸= Ylast
then this number is at least bp.

Proof. If we open one cluster, then clearly nY,p−2 + nY,p−1 + nY,p < 2b2+p. If we open s > 1
clusters, then we must have sb2+p ≤ nY,p−2 + nY,p−1 + nY,p < (s + 1)b2+p. Thus, the number
of points in each cluster is between b2+p and (1 + 1/s)b2+p. Clearly for every set Y ̸= Ylast,
(Y, Y) ∈ metaclusters, and by the definition of p = cardb(Y), it holds that |Y | ≥ bp. ◀

For p < cardb(Y)− 2, we open
⌊nY,p

b2+p

⌋
clusters. If this number is at least 1, we assign all

the points counted in nY,p to these clusters, as evenly as possible. If this number is 0, we
discard all the points counted in nY,p as outliers.

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:9

▶ Lemma 7. In this step, if no cluster is opened then number of points that are discarded is
less than b2+p, else the number of points in each cluster is at least b2+p and less than 2b2+p.

Proof. The assertion is trivial. ◀

Algorithm 1 Algorithm Primal-Dual.
1: procedure PrimalDual(X, λ, n′, b)
2: α, preclusters, Ylast ←PrimalDualPhase1(X, λ, n′, b)
3: metaclusters←PrimalDualPhase2(X, n′, b, α, preclusters, Ylast)
4: clusters←PrimalDualPhase3(X, b, metaclusters)
5: return clusters
6: end procedure
7:
8: procedure PrimalDualPhase1(X, λ, n′, b)
9: active, preclusters← X, ∅

10: αx ← 0 for all x ∈ X
11: while | active | > n− n′ do
12: raise αx at a uniform rate for all x ∈ active▷ stop raising when one of the following two cases happens
13: if ∃x ∈ active and Y ∈ preclusters such that αx ≥ d(x, Y) then
14: cardb(Y ∪ {x}), ctr(Y ∪ {x})← cardb(Y), ctr(Y)
15: preclusters, active← preclusters \{Y } ∪ {Y ∪ {x}}, active \{x}
16: else if ∃Y ⊂ X and y ∈ Y such that Y ∩ active ̸= ∅ the dual constraint for Y, y is tight then
17: cardb(Y), ctr(Y)← logb floorb(|Y |), y
18: if | active \Y | < n− n′ then ▷ use an inclusion-wise minimal such Y
19: return α, preclusters, Y
20: else
21: preclusters, active← preclusters∪{Y }, active \Y
22: end if
23: end if
24: end while
25: return α, preclusters, ∅
26: end procedure
27:
28: procedure PrimalDualPhase2(X, n′, b, α, preclusters, Ylast)
29: active, metaclusters← {x ∈ X : x ∈ Y ∈ preclusters∨x ∈ Ylast}, ∅
30: for Y ∈ preclusters, by order of nonicreasing cardb(Y) do
31: if ∃(Y ′, Y ′) ∈ metaclusters with x ∈ Y ∩ Y ′ and αx > max

{
d(x, Y), d(x, Y ′)

}
then

32: Y ′′, cardb(Y ′′), ctr(Y ′′)← {x ∈ Y ∩ active : αx = maxy∈Y αy}, cardb(Y), ctr(Y ′)
33: metaclusters← metaclusters∪{(Y ′, Y ′′)}
34: active← active \Y ′′

35: else
36: remove each x ∈ Y from any Y ′′ ∋ x with (Y ′, Y ′′) ∈ metaclusters ▷ αx ≤ d(x, Y ′′);

cardb(Y ′′), ctr(Y ′′) don’t change
37: metaclusters← metaclusters∪{(Y, Y)}
38: active← active \Y
39: end if
40: end for
41: Y, cardb(Y), ctr(Y)← {| active | − n + n′ points in Ylast ∩ active}, cardb(Ylast), ctr(Ylast)
42: if Y ̸= ∅ then
43: metaclusters← metaclusters∪{(Ylast, Y)}
44: end if
45: return metaclusters
46: end procedure
47:
48: procedure PrimalDualPhase3(X, b, metaclusters)
49: clusters← ∅
50: for (Y, ·) ∈ metaclusters do
51: Ymax ← {x ∈ X : ∃Y ′ ∋ x such that (Y, Y ′) ∈ metaclusters∧ cardb(Y ′) ≥ cardb(Y)− 2}
52: clusters← clusters∪ Partition(Ymax, max{1,

⌊
|Ymax|/b2+cardb(Y)

⌋
})

53: for p < cardb(Y)− 2 do
54: Yp ← {x ∈ X : ∃Y ′ ∋ x such that (Y, Y ′) ∈ metaclusters∧ cardb(Y ′) = p}
55: if |Yp| ≥ b2+p then
56: clusters← clusters∪ Partition(Yp,

⌊
|Yp|/b2+p

⌋
)

57: end if
58: end for
59: end for
60: return clusters
61: end procedure
62:
63: procedure Partition(S, m) ▷ m ≥ 1
64: partition S as evenly as possible into m disjoint subsets S1, S2, . . . , Sm

65: return {S1, S2, . . . , Sm}
66: end procedure

APPROX/RANDOM 2021

16:10 Min-Sum Clustering (With Outliers)

We are now ready to define our min-sum k-clustering algorithm (Algorithm 2: MIN-
SUM-CLUSTERING refer page 10). If k ≤ 4

ϵ , we can run a PTAS or a constant factor
approximation for fixed k (for instance [28, 23]).1 Otherwise, our algorithm follows the
general schema of the lagrangian relaxation method. Let δ > 0 be determined later. We run
the procedure PrimalDual on various values of λ, and if the smallest returned cluster for a
particular value of λ which is denoted as Ymin,λ has at most ϵ

3 · n
′ points, we remove this

cluster. Using binary search on the Lagrange multiplier λ, we find two values λ1 < λ2, with
λ2 − λ1 < δ, that satisfy the following property. The above process (running PrimalDual,
then removing the smallest cluster if it’s sufficiently small) returns k1 > k clusters (denoted as
clusters2) for λ = λ1, and k2 ≤ k clusters (denoted as clusters2)for λ = λ2. If k−k2

k1−k2
≥ 1− ϵ

4 ,
we output the k largest clusters in the solution for λ1 (i.e. from clusters1), and otherwise we
output the solution for λ2 (i.e. from clusters2).

Algorithm 2 Algorithm Min-Sum-Clustering.
1: procedure MinSumClustering(X, k, n′, ϵ)
2: λ1 ← 0, λ2 ←

∑
x,y∈X ∥x− y∥2

2
3: clusters1 ← {{x} : x ∈ X}, clusters2 ← X

4: b← 1+ϵ
ϵ

5: δ ← 2
(n+k)λ2

▷ we need δ ≤ 2
(n+k) opt(X,n′,k)

6: while λ2 − λ1 > δ do
7: λ = 1

2 · (λ1 + λ2)
8: clusters← PrimalDual(X, λ, n′, b)
9: Ymin,λ ← smallest cluster in clusters

10: k′ ← | clusters | − 1
11: if |Ymin,λ| ≤ ϵ

3 · n
′ then

12: clusters← clusters \{Ymin,λ}
13: end if
14: if k′ > k then
15: λ1, clusters1, k1 ← λ, clusters, k′

16: else ▷ k′ ≤ k

17: λ2, clusters2, k2 ← λ, clusters, k′

18: end if
19: end while
20: ρ1 ← k−k2

k1−k2
▷ k1 > k ≥ k2 ≥ 0

21: if ρ1 ≥ 1− ϵ
4 then

22: return {k largest sets in clusters1}
23: else
24: return clusters2 ▷ If | clusters2 | < k, split clusters arbitrarily to get exactly k

25: end if
26: end procedure

1 These papers consider only the case without outliers. The PTAS in [28] enumerates over cluster sizes and
approximate cluster centers, then computes an optimal assignment of the data points to the approximate
centers, given the corresponding cluster sizes. Clearly, the algorithm can be adapted trivially to handle
the case with outliers by modifying the target sum of cluster sizes.

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:11

▶ Theorem 8. The execution of procedure MinSumClustering(X, k, n′, ϵ) computes a
clustering of X ′ ⊂ X into k clusters such that |X ′| ∈ [(1− ϵ)n′, n′], and the total cost of the
clustering of X ′ is at most O

(1
ϵ3

)
· opt(X, n′, k). The time complexity of this computation is

poly(n, log(1/ϵ), log ∆), where ∆ is ratio of largest to non-zero smallest ∥ · ∥2
2 distance in X.

Proof. The performance guarantee is an immediate consequence of Corollary 11 below. The
running time is a straightforward analysis of the code. ◀

▶ Theorem 9. The same claim applies to instances of points in a metric space (X, dist),
with dist replacing ∥ · ∥2

2 in the code and in the claim.

Proof sketch. The ∥ · ∥2
2 distance can be replaced by any metric distance dist in all claims

starting from Proposition 3. The proofs sometime require minor changes. In particular, in
Lemma 13, the factor 1

9 can be improved to 1
3 on account of the triangle inequality, and this

improves all the other constants that depend on it. ◀

4 Proofs

In this section we analyze the min-sum k-clustering algorithm. The analysis builds on the
following guarantees of the primal-dual schema.

▶ Theorem 10. For every ϵ ∈ (0, 1] there exists a constant c = cϵ such that the following
holds. Let clusters be the output of procedure PrimalDual(X, λ, n′, b), and let α be the
dual solution computed during the execution of this procedure. Set γ = maxx∈X αx. Then,
1. (α, γ) is a feasible solution to the dual program (6).
2.
∑

Y ∈clusters |Y | ∈ [(1− ϵ
3)n′, n′].

3. c · (| clusters | − 1) · λ +
∑

Y ∈clusters cost(Y) ≤ c ·
∑

Y ∈clusters
∑

x∈Y αx.

▶ Corollary 11. Let clusters be the output of procedure MinSumClustering. Then, the
following assertions hold:
1. | clusters | ≤ k.
2.
∑

Y ∈clusters |Y | ∈ [(1− ϵ)n′, n′].
3.
∑

Y ∈clusters cost(Y) ≤ 8(c+1)
ϵ · opt(X, n′, k).

Proof. The first assertion follows directly from the definition of the procedure.
For the second assertion, let λi, clustersi (where i = 1, 2) be the values that determine

the output of the procedure. By Theorem 10,
∑

Y ∈clustersi
|Y | ≥ (1 − ϵ

3)n′. If Ymin,λi
is

removed from clustersi, then |Ymin,λi
| ≤ ϵ

3 ·n
′. Thus, if i = 2 then clearly the assertion holds.

If i = 1, then ρ1 ≥ 1− ϵ
4 . Therefore,

k1 ≤
1
ρ1
· k ≤

(
1 + ϵ

4− ϵ

)
· k ≤

(
1 + ϵ

3

)
· k.

Thus, the procedure removes from the output at most a fraction of ϵ
3 of the clusters in

clusters1. As the removed clusters are the smallest, they contain at most ϵ
3 · n

′ points.
As for the third assertion, consider the two solutions clusters1, clusters2 that are used

to determine the procedure’s output. For i = 1, 2, let αi, preclustersi be the output of
PrimalDualPhase1 during the computation of clustersi. Put γi = maxx∈X αi,x. Let

(α, γ) = ρ1(α1, γ1) + (1− ρ1)(α2, γ2).

Clearly, (α, γ) is a feasible solution to the dual LP (6) with the constant λ = ρ1λ1 +(1−ρ1)λ2.
Notice that there are exactly n− n′ points that are not included in preclustersi. Each point

APPROX/RANDOM 2021

16:12 Min-Sum Clustering (With Outliers)

x ∈ X which is not included in preclustersi has αi,x = γi. (Notice that all the points that
are excluded are active. This is true even for points that are discarded from the last tight
cluster that gets included in preclustersi.) So, the value of the solution (α, γ) is

2 · opt(X, n′, k) ≥
∑
x∈X

αx − (n − n′)γ − λk

= ρ1 ·

(∑
x∈X

α1,x − (n − n′)γ1 − λk1

)
+ (1 − ρ1) ·

(∑
x∈X

α2,x − (n − n′)γ2 − λk2

)

= ρ1 ·

(∑
Y ∈preclusters1

∑
x∈Y

α1,x − λk1

)
+ (1 − ρ1) ·

(∑
Y ∈preclusters2

∑
x∈Y

α2,x − λk2

)

≥ ρ1 ·

(∑
Y ∈preclusters1

∑
x∈Y

α1,x − λ1k1

)
+ (1 − ρ1) ·

(∑
Y ∈preclusters2

∑
x∈Y

α2,x − λ2k2

)
− δ · (k1 + k2),

where the first inequality follows from Lemma 4, and the first equality uses the fact that
k = ρ1k1 + (1− ρ1)k2.

For i = 1, 2 consider the final value of clustersi. By definition, ki is one less than the
number of clusters returned from procedure PrimalDual, so by Theorem 10,

∑
Y ∈clustersi

cost(Y) ≤ c ·

(∑
Y ∈clustersi

∑
x∈Y

αx − ki · λi

)
.

In particular, the right-hand side is non-negative. Notice that if ρ1 ≥ 1− ϵ
4 , then clearly ρ1 > ϵ

4
and the cost of the output clustering is at most

∑
Y ∈clusters1

cost(Y). Similarly, if ρ1 < 1− ϵ
4 ,

then 1− ρ1 > ϵ
4 and the cost of the output clustering is at most

∑
Y ∈clusters2

cost(Y). Either
way, we get that the cost of the clustering is at most 8c

ϵ · opt(X, n′, k) + 4δ
ϵ · (k1 + k2) ≤

8(c+1)
ϵ · opt(X, n′, k). ◀

Next we analyze primal-dual algorithm and prove Theorem 10. The notation follows
Algorithm 1.

▶ Lemma 12. At the end of executing procedure PrimalDualPhase1, for every Y ∈
preclusters and for every x ∈ Y , we have that αx ≥ d(x, Y).

Proof. When Y is added to preclusters then there exists y ∈ Y and j = logb floorb(|Y |) such
that Y ⊂ Cy,j . We set cardb(Y) = j and ctr(Y) = y, so by the definition of Cy,j the lemma
holds. If a point x is later added to Y , the condition for doing it is that αx ≥ d(x, Y). ◀

▶ Lemma 13. At the end of executing procedure PrimalDualPhase2, the following
assertions hold:
1.
∑

(Y,Y ′)∈metaclusters |Y ′| = n′.
2. For every (Y, Y ′) ∈ metaclusters and for every x ∈ Y ′, we have that αx ≥ 1

9 · d(x, Y ′).

Proof. The first assertion holds as the points that are clustered in metaclusters are all the
points that are clustered in preclusters plus some of the points clustered in Ylast. The number
of such points is at most n′ without Ylast, and at least n′ with Ylast. The algorithm takes
from Ylast exactly the number of points needed to complete the number in preclusters to n′.

For the second assertion, consider (Y, Y ′) ∈ metaclusters and x ∈ Y ′. If Y = Y ′, then
Lemma 12 guarantees the assertion. Otherwise, consider Y ′′ ∈ preclusters that caused (Y, Y ′)
to be added to metaclusters. In particuar, Y ′ ⊂ Y ′′, cardb(Y ′) = cardb(Y ′′) ≤ cardb(Y), and

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:13

there exists z ∈ Y ∩ Y ′′ such that αz > max{d(z, Y), d(z, Y ′′)}. By the choice of Y ′ in the
algorithm, αx = maxx′∈Y ′′ αx′ , so it must be that αz ≤ αx. Notice that by Lemma 12,

αx ≥ d(x, Y ′′) = bcardb(Y ′) · ∥x− ctr(Y ′′)∥2
2.

Also, αz > max{bcardb(Y) · ∥z − ctr(Y)∥2
2, bcardb(Y ′′) · ∥z − ctr(Y ′′)∥2

2}

≥ bcardb(Y ′) ·max{∥z − ctr(Y)∥2
2, ∥z − ctr(Y ′′)∥2

2}.

Thus, d(x, Y ′) = bcardb(Y ′) · ∥x− ctr(Y)∥2
2

≤ bcardb(Y ′) · (∥x− ctr(Y ′′)∥2 + ∥z − ctr(Y ′′)∥2 + ∥z − ctr(Y)∥2)2

≤ 9 · αx. ◀

Let clusters be the output of procedure PrimalDualPhase3. Recall that every cluster
Z ∈ clusters is derived in some iteration indexed by (Y, ·) ∈ metaclusters. It holds that either
Z ⊂ Ymax or Z ⊂ Yp for some p < cardb(Y) − 2. Notice that in the latter case, Y ̸= Ylast.
We will set implicitly cardb(Z) as follows.

cardb(Z) =
{

cardb(Y) Z ⊂ Ymax,

p Z ⊂ Yp, p < cardb(Y)− 2.

We will also set implicitly ctr(Z) = ctr(Y).

▶ Lemma 14. If Z ⊂ Yp for some p < cardb(Y) − 2, then
∑

x∈Z αx ≥ b · λ. The same is
true if Z ⊂ Ymax, Y ̸= Ylast, and |Ymax| ≥ b2+cardb(Y).

Proof. Consider x ∈ Z ⊂ Yp, p < cardb(Y)− 2. There is a pair (Y, Y ′) ∈ metaclusters such
that p = cardb(Y ′) < cardb(Y) − 2, and x ∈ Y ′. Moreover, there is Y ′′ ∈ preclusters such
that Y ′ ⊂ Y ′′ and cardb(Y ′′) = p and αx = maxy∈Y ′′ αy. By the definition of cardb, we have
that |Y ′′| < b1+p. Therefore, αx > λ

b1+p . By Lemma 7, |Z| ≥ b2+p, hence the conclusion.
A similar argument applies to Z ⊂ Ymax, assuming that |Ymax| ≥ b2+cardb(Y). In this

case, if Z ⊃ Y then we have
∑

x∈Y αx ≥ λ. As |Y | < b1+cardb(Y), Z also contains more
than b2+cardb(Y)−b1+cardb(Y) = b2+cardb(Y) ·

(
1− 1

b

)
points from pairs (Y, Y ′) ∈ metaclusters,

Y ′ ≠ Y . By the argument for Yp, for each such point x we have αx > λ

b1+cardb(Y ′) > λ
b1+cardb(Y) .

Overall, we get that
∑

x∈Z αx > λ + b2+cardb(Y) ·
(
1− 1

b

)
· λ

b1+cardb(Y) = b · λ. If Z does not
contain Y , then the argument for Yp holds. ◀

▶ Lemma 15. For every Z ∈ clusters, cost(Z) ≤ 2b2 ·
∑

x∈Z d(x, Z).

Proof. We have cost(Z) = |Z|·
∑

x∈Z ∥x−cm(Z)∥2
2 ≤ |Z|·

∑
x∈Z ∥x−ctr(Y)∥2

2. By Lemmas 6
and 7, |Z| ≤ 2b2 · cardb(Z). ◀

Proof of Theorem 10. First, consider the feasibility of (α, γ). Clearly, γ is set in the theorem
to satisfy the constraints that include it. Regarding the constraints that involve only α, we
prove that they are satisfied throughout the execution of procedure PrimalDualPhase1.
The proof is by induction on the number of inactive points. Clearly, the initial α is feasible.
Now, suppose that α is feasible for some number of inactive points, and consider the next step
when this number increases and a set A ⊂ active is removed from active (we will use active
here to denote the set before the removal of A). Let α′ denote the values of the dual variables
just before A is removed from active. If there exist Y ⊂ X and y ∈ Y such that the constraint
for the pair Y, y is violated, then clearly Y ∩ active ̸= ∅, otherwise the same constraint would

APPROX/RANDOM 2021

16:14 Min-Sum Clustering (With Outliers)

have been violated by the solution α, as α and α′ differ only on active. But then there is
some intermediate value α′′ such that α′′x = αx for all x ̸∈ active and αx ≤ α′′x < α′x for all
x ∈ active, which causes this constraint (or another constraint involving active points) to
become tight. Therefore, at least one point would have been removed from active before
we reach the values α′, in contradiction with our assumptions. Next, consider number of
points clustered in the output clusters of procedure PrimalDual. Clearly, procedure
PrimalDualPhase2 clusters in metaclusters exactly n′ points. Some of these points are
discarded by procedure PrimalDualPhase3. Consider some (Y, ·) ∈ metaclusters. By
Lemma 7, number of points discarded from these clusters is less than∑

p<cardb(Y)−2

b2+p = bcardb(Y) − b2

b− 1 .

On the other hand, all the points in Ymax are clustered in clusters, as Y ̸= Ylast in this
case. Clearly, the number of points in Ymax is at least |Y | ≥ bcardb(Y). Thus, less than

1
b−1 · n

′ ≤ ϵ · n′ points get discarded. Finally, let’s consider the cost of the clustering. Let
Z ∈ clusters be a cluster that satisfies the conditions of Lemma 14. Then,∑

x∈Z

αx − λ >
b− 1

b
·
∑
x∈Z

αx

≥ b− 1
9b
·
∑
x∈Z

d(x, Z)

≥ b− 1
18b3 · cost(Z),

where the first inequality follows from Lemma 14, the second inequality follows from Lemma 13,
and the third inequality follows from Lemma 15. The remaining clusters are sets Ymax with
|Ymax| < b2+cardb(Y) and a subset of Ylast. Consider a cluster Ymax ∈ clusters. We have that∑

x∈Ymax

αx −λ =
∑
x∈Y

αx −λ+
∑

x∈Ymax\Y

αx ≥
∑
x∈Y

d(x, Y)+ 1
9 ·

∑
x∈Ymax\Y

d(x, Y) ≥ 1
18b2 ·cost(Ymax).

Finally, if there’s a cluster Z ⊂ Ylast, then∑
x∈Z

αx ≥
1
9 ·
∑
x∈Z

d(x, Ymax) ≥ 1
18b2 · cost(Z).

Thus, we can set c = cϵ = 18b3

b−1 = 18(1+ϵ)3

ϵ2 . ◀

References
1 S. Ahmadian, A. Norouzi-Fard, O. Svensson, and J. Ward. Better guarantees for k-means

and Euclidean k-median by primal-dual algorithms. Proc. of the 58th Ann. IEEE Symp. on
Foundations of Computer Science, pages 61–72, 2017.

2 S. Ahmadian and C. Swamy. Approximation algorithms for clustering problems with lower
bounds and outliers. In Proc. of the 43rd Int’l Colloq. on Automata, Languages, and Program-
ming, pages 69:1–69:15, 2016.

3 N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In Proc. of the
23rd Ann. Conf. on Neural Information Processing Systems, pages 10–18, 2009.

4 D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares
clustering. Machine Learning, 75(2):245–248, May 2009.

5 D. Arthur, B. Manthey, and H. Röglin. Smoothed analysis of the k-means method. J. ACM,
58(5):19:1–19:31, 2011.

S. Banerjee, R. Ostrovsky, and Y. Rabani 16:15

6 D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proc. of the
18th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 1027–1035, 2007.

7 P. Awasthi, A. Blum, and O. Sheffet. Stability yields a PTAS for k-median and k-means
clustering. In Proc. of the 51st Ann. IEEE Symp. on Foundations of Computer Science, pages
309–318, 2010.

8 M.-F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the approximation.
In Proc. of the 20th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 1068–1077, 2009.

9 M.-F. Balcan and M. Braverman. Finding low error clusterings. In COLT 2009 - The 22nd
Conference on Learning Theory, 2009.

10 Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Proc. of the 37th Ann. IEEE Symp. on Foundations of Computer Science, page 184, 1996.

11 Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proc. of the 30th Ann.
ACM Symp. on Theory of Computing, pages 161–168, 1998.

12 Y. Bartal, M. Charikar, and D. Raz. Approximating min-sum k-clustering in metric spaces.
In Proc. of the 33rd Ann. ACM Symp. on Theory of Computing, pages 11–20, 2001.

13 B. Behsaz, Z. Friggstad, M. R. Salavatipour, and R. Sivakumar. Approximation algorithms
for min-sum k-clustering and balanced k-median. Algorithmica, 81(3):1006–1030, 2019.

14 V. Braverman, D. Feldman, and H. Lang. New frameworks for offline and streaming coreset
constructions. CoRR, abs/1612.00889, 2016.

15 V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and B. Tagiku. Streaming
k-means on well-clusterable data. In Proc. of the 22nd Ann. ACM-SIAM Symp. on Discrete
Algorithms, pages 26–40, 2011.

16 P. Bunn and R. Ostrovsky. Secure two-party k-means clustering. In Proc. of the 14th Ann.
ACM Conf. on Computer and Communications Security, pages 486–497, 2007.

17 K. Chen. On coresets for k-median and k-means clustering in metric and Euclidean spaces
and their applications. SIAM J. Comput., 39:923–947, 2009.

18 J. Chuzhoy and Y. Rabani. Approximating k-median with non-uniform capacities. In Proc. of
the 16th Ann. ACM-SIAM Symp. on Discrete Algorithms, page 952–958, 2005.

19 V. Cohen-Addad, Karthik C. S., and E. Lee. On approximability of k-means, k-median, and
k-minsum clustering, 2019.

20 V. Cohen-Addad and Karthik C.S. Inapproximability of clustering in lp metrics. In Proc. of
the 60th Ann. IEEE Symp. on Foundations of Computer Science, pages 519–539, 2019.

21 V. Cohen-Addad, P. N. Klein, and C. Mathieu. Local search yields approximation schemes
for k-means and k-median in Euclidean and minor-free metrics. Proc. of the 57th Ann. IEEE
Symp. on Foundations of Computer Science, pages 353–364, 2016.

22 Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017, pages 49–60. IEEE Computer Society, 2017.
doi:10.1109/FOCS.2017.14.

23 A. Czumaj and C. Sohler. Small space representations for metric min-sum k-clustering and
their applications. In Proc. of the 24th Ann. Conf. on Theoretical Aspects of Computer Science,
pages 536–548, 2007.

24 H. G. Demirci and S. Li. Constant approximation for capacitated k-median with (1+ϵ)-capacity
violation. ArXiv, abs/1603.02324, 2016.

25 J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In Proc. of the 35th Ann. ACM Symp. on Theory of Computing, pages 448–455,
2003.

26 D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In
Proc. of the 43rd Ann. ACM Symp. on Theory of Computing, pages 569–578, 2011.

27 D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering based on weak
coresets. In Proc. of the 23rd Ann. Symp. on Computational Geometry, pages 11–18, 2007.

APPROX/RANDOM 2021

https://doi.org/10.1109/FOCS.2017.14

16:16 Min-Sum Clustering (With Outliers)

28 W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes
for clustering problems. In Proc. of the 35th Ann. ACM Symp. on Theory of Computing, pages
50–58, 2003.

29 W. Fernandez de la Vega and C. Kenyon. A randomized approximation scheme for metric
MAX-CUT. Journal of Computer and System Sciences, 63(4):531–541, 2001.

30 Z. Friggstad, M. Rezapour, and M. R. Salavatipour. Local search yields a PTAS for k-means
in doubling metrics. Proc. of the 57th Ann. IEEE Symp. on Foundations of Computer Science,
pages 365–374, 2016.

31 V. Guruswami and P. Indyk. Embeddings and non-approximability of geometric problems. In
Proc. of the 14th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 537–538, 2003.

32 N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-sum p-clustering. Discret.
Appl. Math., 89(1-3):125–142, 1998.

33 S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete
Comput. Geom., 37(1):3–19, 2007.

34 R. Hassin and E. Or. Min sum clustering with penalties. European Journal of Operational
Research, 206(3):547–554, 2010.

35 M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and random-
ization to variance-based k-clustering. In Proc. of the 10th Ann. Symp. on Computational
Geometry, pages 332–339, 1994.

36 P. Indyk. A sublinear time approximation scheme for clustering in metric spaces. In Proc. of
th 40th Ann. IEEE Symp. on Foundations of Computer Science, pages 154–159, 1999.

37 K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and Lagrangian relaxation. J. ACM, 48(2):274–296,
2001.

38 R. Jaiswal and N. Garg. Analysis of k-means++ for separable data. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 591–602,
2012.

39 J. Kleinberg. An impossibility theorem for clustering. In Proc. of the 15th Int’l Conf. on
Neural Information Processing Systems, pages 463–470, 2002.

40 A. Kumar and R. Kannan. Clustering with spectral norm and the k-means algorithm. In Proc.
of the 51st Ann. IEEE Symp. on Foundations of Computer Science, pages 299–308, 2010.

41 A. Kumar, Y. Sabharwal, and S. Sen. Linear time algorithms for clustering problems in any
dimensions. In Proc. of the 32nd Int’l Conf. on Automata, Languages and Programming, pages
1374–1385, 2005.

42 M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-hard.
In Proc. of the 3rd Int’l Workshop on Algorithms and Computation, pages 274–285, 2009.

43 J. Matoušek. On approximate geometric k-clustering. Discrete & Computational Geometry,
24(1):61–84, January 2000.

44 R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of Lloyd-type
methods for the k-means problem. In Proc. of the 47th Ann. IEEE Symp. on Foundations of
Computer Science, pages 165–176, 2006.

45 L. J. Schulman. Clustering for edge-cost minimization. In Proc. of the 32nd Ann. ACM Symp.
on Theory of Computing, pages 547–555, 2000.

46 K. Voevodski, M.-F. Balcan, H. Röglin, S.-H. Teng, and Y. Xia. Min-sum clustering of protein
sequences with limited distance information. In Proc. of the 1st Int’l Conf. on Similarity-Based
Pattern Recognition, pages 192–206, 2011.

47 R. B. Zadeh and S. Ben-David. A uniqueness theorem for clustering. In Proc. of the 25th Ann.
Conf. on Uncertainty in Artificial Intelligence, pages 639–646, 2009.

Streaming Approximation Resistance of Every
Ordering CSP
Noah Singer #

Harvard College, Cambridge, MA, USA

Madhu Sudan #

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Santhoshini Velusamy #

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Abstract
An ordering constraint satisfaction problem (OCSP) is given by a positive integer k and a constraint
predicate Π mapping permutations on {1, . . . , k} to {0, 1}. Given an instance of OCSP(Π) on n

variables and m constraints, the goal is to find an ordering of the n variables that maximizes the
number of constraints that are satisfied, where a constraint specifies a sequence of k distinct variables
and the constraint is satisfied by an ordering on the n variables if the ordering induced on the k

variables in the constraint satisfies Π. Ordering constraint satisfaction problems capture natural
problems including “Maximum acyclic subgraph (MAS)” and “Betweenness”.

In this work we consider the task of approximating the maximum number of satisfiable constraints
in the (single-pass) streaming setting, where an instance is presented as a stream of constraints. We
show that for every Π, OCSP(Π) is approximation-resistant to o(n)-space streaming algorithms, i.e.,
algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable
from streams where no ordering beats the random ordering by a noticeable amount. This space
bound is tight up to polylogarithmic factors. In the case of MAS our result shows that for every
ϵ > 0, MAS is not 1/2 + ϵ-approximable in o(n) space. The previous best inapproximability result
only ruled out a 3/4-approximation in o(

√
n) space.

Our results build on recent works of Chou, Golovnev, Sudan, Velingker, and Velusamy who show
tight, linear-space inapproximability results for a broad class of (non-ordering) constraint satisfaction
problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of
appropriate CSPs (one for every q) from any given OCSP, and applying their work to this family
of CSPs. To convert the resulting hardness results for CSPs back to our OCSP, we show that the
hard instances from this earlier work have the following “small-set expansion” property: If the CSP
instance is viewed as a hypergraph in the natural way, then for every partition of the hypergraph
into small blocks most of the hyperedges are incident on vertices from distinct blocks. By exploiting
this combinatorial property, in combination with the hardness results of the resulting families of
CSPs, we give optimal inapproximability results for all OCSPs.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms; Theory
of computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Discrete optimization

Keywords and phrases Streaming approximations, approximation resistance, constraint satisfaction
problems, ordering constraint satisfaction problems

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.17

Category APPROX

Related Version Full Version including all proofs: arXiv:2105.01782 [22]

Funding M. Sudan and S. Velusamy supported in part by a Simons Investigator Award and NSF
Award CCF 1715187.

© Noah Singer, Madhu Sudan, and Santhoshini Velusamy;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 17; pp. 17:1–17:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noahsinger@college.harvard.edu
https://orcid.org/0000-0002-0076-521X
mailto:madhu@cs.harvard.edu
mailto:svelusamy@g.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.17
https://arxiv.org/abs/2105.01782v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Streaming Approximation Resistance of Every Ordering CSP

1 Introduction

In this work we consider the complexity of “approximating” “ordering constraint satisfaction
problems (OCSPs)” in the “streaming setting”. We introduce these notions below before
describing our results.

1.1 Orderings and Constraint Satisfaction Problems
In this work we consider optimization problems where the solution space is all possible
orderings of n variables. The Travelling Salesperson Problem and most forms of scheduling
fit this framework, though our work considers a more restricted class of problems, namely
ordering constraint satisfaction problems (OCSPs). OCSPs as a class were first defined by
Guruswami, Håstad, Manokaran, Raghavendra, and Charikar [10]. To describe them here,
we first set up some notation and terminology, and then give some examples.

We let [n] denote the set {0, . . . , n − 1} and Sn denote the set of permutations on [n],
i.e., the set of bijections σ : [n] → [n]. We sometimes use [σ(0) σ(1) · · · σ(n − 1)] to denote
σ : [n] → [n]. The solution space of ordering problems is Sn, i.e., an assignment to n variables
is given by σ ∈ Sn. Given k distinct integers a0, . . . , ak−1 we define ord(a0, . . . , ak−1) to be
the unique permutation in Sk which sorts a0, . . . , ak−1. In other words, ord(a0, . . . , ak−1) is
the unique permutation π ∈ Sk such that aπ(0) < · · · < aπ(k−1). A k-ary ordering constraint
function is given by a predicate Π : Sk → {0, 1}. An ordering constraint application on
n variables is given by a constraint function Π and a k-tuple j = (j0, j1, . . . , jk−1) ∈ [n]k
where the ji’s are distinct. In the interest of brevity we will often skip the term “ordering”
below and further refer to constraint functions as “functions” and constraint applications
as “constraints”. A constraint (Π, j) is satisfied by an assignment σ ∈ Sn if Π(ord(σ|j)) = 1,
where σ|j is the k-tuple (σ(j0), . . . , σ(jk−1)) ∈ [n]k.

A maximum ordering constraint satisfaction problem, Max-OCSP(Π), is specified by
a single ordering constraint function Π : Sk → {0, 1}, for some positive integer arity k.
An instance of Max-OCSP(Π) on n variables is given by m constraints C0, . . . , Cm−1 where
Ci = (Π, j(i)), i.e., the application of the function Π to the variables j(i) = (j(i)0, . . . , j(i)k−1).
(We omit Π from the description of a constraint Ci when clear from context.) The value of
an ordering σ ∈ Sn on an instance Ψ = (C0, . . . , Cm−1), denoted valΨ(σ), is the fraction of
constraints satisfied by σ, i.e., valΨ(σ) = 1

m

∑
i∈[m] Π(ord(σ|j(i))). The optimal value of Ψ is

defined as valΨ = maxσ∈Sn
{valΨ(σ)}.

The simplest, and arguably most interesting, problem which fits the Max-OCSP framework
is the maximum acyclic subgraph (MAS) problem. In this problem, the input is a directed
graph on n vertices, and the goal is to find an ordering of the vertices which maximize the
number of forward edges. A simple depth-first search algorithm can decide whether a given
graph G has a perfect ordering (i.e., one which has no back edges); however, Karp [17], in his
famous list of 21 NP-complete problems, proved the NP-completeness of deciding whether,
given a graph G and a parameter k, there exists an ordering of the vertices such that at least
k edges are forward. For our purposes, MAS can be viewed as a 2-ary Max-OCSP problem, by
defining the ordering constraint predicate ΠMAS : S2 → {0, 1} given by ΠMAS([0 1]) = 1 and
ΠMAS([1; 0]) = 0, and associating vertices with variables and edges with constraints. Indeed,
an edge/constraint (u, v) (where u, v ∈ [n] are distinct variables/vertices) will be satisfied by
an assignment/ordering σ ∈ Sn iff ΠMAS(ord(σ|(u,v))) = 1, or equivalently, iff σ(u) < σ(v).

A second natural Max-OCSP problem is the maximum betweenness (MaxBtwn) problem.
This is a 3-ary OCSP in which an ordering σ satisfies a constraint (u, v, w) iff σ(v) is between
σ(u) and σ(w), i.e., iff σ(u) < σ(v) < σ(w) or σ(u) > σ(v) > σ(w), and the goal is again

N. Singer, M. Sudan, and S. Velusamy 17:3

to find the maximum number of satisfiable constraints. This is given by the constraint
satisfaction function ΠBtwn : S3 → {0, 1} given by ΠBtwn([0 1 2]) = 1, ΠBtwn([2 1 0]) = 1, and
ΠBtwn(π) = 0 for all other π ∈ S3. The complexity of maximizing betweenness was originally
studied by Opatrny [21], who proved that even deciding whether a set of betweenness
constraints is perfectly satisfiable is NP-complete.

1.2 Approximability
In this work we consider the approximability of ordering constraint satisfaction problems.
We say that a (randomized) algorithm A is an α-approximation algorithm for Max-OCSP(Π)
if for every instance Ψ, α · valΨ ≤ A(Ψ) ≤ valΨ with probability at least 2/3 over the internal
coin tosses of A. Thus our approximation factors α are numbers in the interval [0, 1].

Given Π : Sk → {0, 1} let ρ(Π) = |{π∈Sk|Π(π)=1}|
k! denote the probability that Π is

satisfied by a random ordering. Every instance Ψ of Max-OCSP(Π) satisfies valΨ ≥ ρ(Π) and
thus the trivial algorithm that always outputs ρ(Π) is a ρ(Π)-approximation algorithm for
Max-OCSP(Π). Under what conditions it is possible to beat this trivial approximation is a
major open question.

For MaxBtwn, the trivial algorithm is a 1
3 -approximation. Chor and Sudan [4] showed

that (47
48 + ϵ)-approximating MaxBtwn is NP-hard, for every ϵ > 0. The 47

48 factor was
improved to 1

2 by Austrin, Manokaran, and Wenner [1]. For MAS, the trivial algorithm is a
1
2 -approximation. Newman [20] showed that (65

66 + ϵ)-approximating MAS is NP-hard, for
every ϵ > 0. [1] improved the 65

66 to 14
15 , and Bhangale and Khot [2] further improved the

factor to 2
3 .

We could hope that for every nontrivial nontrivial Max-OCSP(Π), it is NP-hard to even
(ρ(Π) + ϵ)-approximate Max-OCSP(Π) for any constant factor ϵ > 0. This property is
called approximation resistance (and we define it more carefully in the setting of streaming
algorithms below). Approximation resistance based on NP-hardness is known for certain
constraint satisfaction problems which do not fall under the Max-OCSP framework; this
includes the seminal result of Håstad [13] that it is NP-hard to (7

8 +ϵ)-approximate Max3AND
for any ϵ > 0. But as far as we know, such results are lacking for any Max-OCSP problem.

Given this situation, Guruswami, Håstad, Manokaran, Raghavendra, and Charikar [10]
proved the “next best thing”: assuming the unique games conjecture (UGC) of Khot [18],
every Max-OCSP(Π) is approximation-resistant. But the question of proving approximation
resistance for polynomial-time algorithms without relying on unproven assumptions such
as UGC and P ̸= NP remains unsolved. Towards this goal, in this work, we consider the
approximability of Max-OCSP’s in the (single-pass) streaming model, which we define below.

1.3 Streaming algorithms
A (single-pass) streaming algorithm is defined as follows. An instance Ψ = (C0, . . . , Cm−1)
of Max-OCSP(Π) is presented as a stream of constraints with the ith element of the stream
being j(i) where Ci = (Π, j(i)). A streaming algorithm A updates its state with each element
of the stream and at the end produces the output A(Ψ) ∈ [0, 1] (which is supposed to estimate
valΨ). The measure of complexity of interest to us is the space used by A and in particular
we distinguish between algorithms that use space polylogarithmic in the input length and
space that grows polynomially (Ω(nδ) for δ > 0) in the input length.

We say that a problem Max-OCSP(Π) is approximable (in the streaming setting) if we
can beat the trivial ρ(Π)-approximation algorithm by a positive constant factor. Specifically
Max-OCSP(Π) is said to be approximable if for every δ > 0 there exists ϵ > 0 and a space
O(nδ) algorithm A that is a (ρ(Π) + ϵ)-approximation algorithm for Max-OCSP(Π), We say
Max-OCSP(Π) is approximation-resistant (in the streaming setting) otherwise.

APPROX/RANDOM 2021

17:4 Streaming Approximation Resistance of Every Ordering CSP

In recent years, investigations into CSP approximability in the streaming model have been
strikingly successful, resulting in tight characterizations of streaming approximability for
many problems [19, 14, 15, 12, 11, 16, 8, 6, 7, 5]. Most of these papers studied approximability,
not of ordering CSPs, but of “non-ordering CSPs” where the variables can take values in a
finite alphabet. ([12] and [11] are the exceptions, and we will discuss them below.) While
single-pass streaming algorithms are a weaker model than general polynomial-time algorithms,
we do remark that nontrivial approximations for many problems are possible in the streaming
setting. In particular, the Max2AND problem is (roughly) 4

9 -approximable in the streaming
setting (whereas the trivial approximation is a 1

4 -approximation) [8].

1.4 Main result and comparison to prior and related works
▶ Theorem 1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ϵ > 0,
every (ρ(Π) + ϵ)-approximation algorithm A for Max-OCSP(Π) requires Ω(n) space.

In particular our theorem implies that MAS is not 1/2 + ϵ-approximable in o(n) space for
every ϵ > 0, and MaxBtwn is not 1/3 + ϵ-approximable. Theorem 1 is restated in Section 3
along with several necessary lemmas; it follows readily from these lemmas and its proof is
omitted.

Theorem 1 parallels the classical result of [10], who prove that Max-OCSP(Π) is approx-
imation resistant with respect to polynomial-time algorithms, for every Π, assuming the
unique games conjecture. In our setting of streaming algorithms, the only problem that
seems to have been previously explored in the literature was MAS, and even in this case a
tight approximability result was not known.

In the case of MAS, Guruswami, Velingker, and Velusamy [12] proved that for every ϵ > 0,
MAS is not (7

8 + ϵ)-approximable in o(
√

n) space using a gadget reduction from the Boolean
hidden matching problem [9]. A stronger o(

√
n)-space, 3/4-approximation hardness for MAS

is indicated in the work of Guruswami and Tao [11], who prove streaming bounds for unique
games, an “non-ordering” CSP problem, and suggest a reduction from unique games to MAS.

As far as we know, our result is the first tight approximability result for Max-OCSP(Π) for
any non-constant Π in Ω(nδ) space for any δ > 0, and it yields tight approximability results
for every Π in linear space. We remark that this linear space bound is also optimal (up to
logarithmic factors); similarly to the observation in [5] for non-ordering CSPs, Max-OCSP(Π)
values can be approximated arbitrarily well in Õ(n) space by subsampling O(n) constraints
from the input instance and then solving the Max-OCSP(Π) problem on this subinstance
exactly.1

Chakrabarti, Ghosh, McGregor, and Vorotnikova [3] recently also studied directed graph
ordering problems (e.g., acyclicity testing, (s, t)-connectivity, topological sorting) in the
streaming setting. For the problems that considered in [3], their work gives super-linear
space lower bounds even for multi-pass streaming algorithms. Note that for our problems
an Õ(n) upper bound holds, suggesting that their problems are not OCSPs. Indeed this is
true, but one of the problems considered is close enough to MAS to allow a more detailed
comparison. The specific problem is the minimum feedback arc set (MFAS) problem, the
goal of which is to output the fractional size of the smallest set of edges whose removal

1 This assumes a definition of streaming complexity which makes no restriction on time complexity. Of
course, if we restrict to polynomial time, then assuming the unique games conjecture, no nontrivial
approximation will be possible.

N. Singer, M. Sudan, and S. Velusamy 17:5

produces an acyclic subgraph. In other words, the sum of MFAS value of a graph and the
MAS value of the graph is exactly one. [3] proved that for every κ > 1, κ-approximating2

the MFAS value requires Ω(n2) space in the streaming setting (for a single pass, and more
generally Ω(n1+Ω(1/p)/pO(1)) space for p passes). Note that such lower bounds are obtained
using instances with optimum MFAS values that are o(1). Thus the MAS values in the same
graph are 1 − o(1) (even in the NO instances) and thus these results usually do not imply
any hardness of approximation for MAS.

1.5 Techniques
Our general approach is to start with a hardness result for CSPs over alphabets of size q (i.e.,
constraint satisfaction problems where the variables take values in [q]), and then to reduce
these CSPs to the OCSP at hand. While this general approach is not new, the optimality of
our results seems to come from the fact that we choose the CSP problem carefully, and are
able to get optimal hardness results for problems of our choice thanks to a general result
of Chou, Golovnev, Sudan, Velingker and Velusamy [5]. Thus whereas previous approaches
towards proving hardness of MAS, for example, were unable to get optimal hardness results
for MAS despite starting with optimal hardness results of the source (unique games), by
choosing our source problem more carefully we manage to get optimal hardness results. In
the remainder of this section, we describe and motivate this approach towards proving the
approximation-resistance of Max-OCSP’s.

1.5.1 Special case: The intuition for MAS
We start by describing our proof technique for the special case of the MAS problem. In this
section, for readability, we (mostly) use the language of graphs, edges, and vertices instead
of instances, constraints, and variables.

Similarly to earlier work in the setting of streaming approximability (e.g., [14]), we prove
inapproximability of MAS by exhibiting a pair of distributions, which we denote GY and GN ,
satisfying the following two properties:
1. GY and GN are “indistinguishable” to streaming algorithms (to be defined formally

below).
2. (With high probability) GY has high MAS values (≈ 1) and GN has low MAS values

(≈ 1
2).

The existence of such distributions would suffice to establish the theorem: there cannot be
any streaming approximation for MAS, since any such algorithm would be able to distinguish
these distributions. But how are we to actually construct distributions GY and GN satisfying
these properties?

The strategy which has proved successful in past work for proving streaming approximation
resistance of other varieties of CSPs was roughly to let the GN graphs be completely random,
while GY graphs are sampled with “hidden structure”, which is essentially a very good
assignment. Then, one would show that streaming algorithms cannot detect the existence
of such hidden structure, via a reduction to a communication game (typically a variant of
Boolean hidden matching [9, 24]). In our setting, we might hope that the hidden structure
could simply be an ordering; that is, we could hope to define GY by first sampling a random
ordering of the vertices, then sampling edges which go forward with respect to this ordering,
and then perhaps adding some noise. But unfortunately, we lack the techniques to prove
communication lower bounds when orderings are the hidden structure.

2 For minimization problems a κ approximation is one whose value is at least the minimum value and at
most κ times larger than the minimum. Thus approximation factors are larger than 1.

APPROX/RANDOM 2021

17:6 Streaming Approximation Resistance of Every Ordering CSP

Hence, instead of seeking a direct proof of an indistinguishability result, in this paper, we
turn back to earlier indistinguishability results proven in the context of non-ordering CSPs.
In this setting, variables take on values in an alphabet [q], and constraints specify allowed
values of subsets of the variables. In particular, two distinct variables may take on the same
value in [q], whereas in the ordering setting, every variable in [n] must get a distinct value
in [n]. (See Subsection 4.1 for a formal definition.) We will set q to be a large constant,
carefully design a non-ordering CSP function, employ past results (i.e., [5]) to characterize
its streaming inapproximability, examine the GY and GN graphs created in the reduction,
and then show that GN graphs have low MAS values while the hidden structure in the GY

graphs – even if it isn’t an ordering per se – guarantees high MAS values.
Why would we expect such an idea to work out, and how do we properly choose the non-

ordering CSP constraint function? To begin, this constraint function will be a 2-ary function
f : [q]2 → {0, 1}. Let Max-CSP(f) denote the non-ordering CSP problem of maximizing the
number of f constraints satisfied by an assignment b ∈ [q]n. We will view an input graph
G simultaneously as an instance of MAS and as an instance of Max-CSP(f), with the same
underlying set of edges/constraints. For a graph G, let valG denote its MAS value and valG
its value in Max-CSP(f). We will choose f so that the indistinguishable hard distributions
GY and GN (originating from the reduction of [5]) have the following four properties:
1. With high probability over G ∼ GY , valG ≈ 1.
2. With high probability over G ∼ GN , valG ≈ 1

2 .
3. For all G, valG ≥ valG.
4. With high probability over G ∼ GN , valG is not much larger than valG.

Together, these items will suffice to prove the theorem since item 2 and item 4 together
imply that with high probability over G ∼ GN , valG ≈ 1

2 , while item 1 and item 3 together
imply that with high probability over G ∼ GY , valG ≈ 1.

Concretely, we setup the non-ordering CSP function as follows. Recall that ΠMAS([0 1]) = 1
while ΠMAS([1 0]) = 0. We define the constraint function fq

MAS : [q]2 → {0, 1} by fq
MAS(x, y) =

1 iff x < y. Note that fq
MAS is supported on q(q−1)

2 ≈ 1
2 pairs in [q]2. We first show that

[5]’s results imply that Max-CSP(fq
MAS) is approximation-resistant, and pick GY and GN as

the YES and NO distributions witnessing this result. This immediately yields item 1 and
item 2 above. It remains to prove item 4 and item 3. In the remainder of this subsection, we
sketch the proofs; see Figure 1 for a visual depiction, and Section 4 for the formal proofs.

Towards item 3, we take advantage of the fact that Max-CSP(fq
MAS) captures a “q-

coarsening” of MAS. We consider an arbitrary Max-CSP(fq
MAS)-assignment b ∈ [q]n for a

graph G, which assigns to the i-th vertex a value bi ∈ [q]. We construct an ordering of G’s
vertices by first placing the “block” of vertices assigned value 0, then the block of vertices
assigned 1, etc., finally placing the vertices assigned value q − 1. (Within any particular
block, the vertices may be ordered arbitrarily.) Now whenever an edge (u, v) is satisfied by b
when viewing G as an instance of Max-CSP(fq

MAS) – that is, whenever bv > bu – the same
edge will be satisfied by our constructed ordering when viewing G as an instance of MAS.
Hence valG ≥ valG.

Towards item 4, we can no longer use the results of [5] as a black box. Instead, we
show that the graphs GN are “small partition expanders” in a specific sense: any partition
of the constraint graph into q roughly equal sized blocks has very few edges, specifically a
o(1) fraction, which lie within the blocks. Now, we think of an ordering σ ∈ Sn variables
as dividing the n variables into q blocks with variables σ(0), . . . , σ(n/q − 1) being in the
first block, σ(n/q), . . . , σ(2n/q − 1) being in the second block and so on. Whenever an edge
(u, v) is satisfied by σ when viewing G as an instance of MAS, it will also be satisfied by our

N. Singer, M. Sudan, and S. Velusamy 17:7

constructed ordering when viewing G as an instance of Max-CSP(fq
MAS), unless u and v end

up in the same block; but by the small partition expansion condition, this happens only for
o(1) fraction of the edges. Hence valG ≤ valG + o(1).

We remark in passing that our notion of coarsening is somewhat similar to, but not
the same as, that used in previous works, notably [10]. In particular the techniques used
to compare the OCSP value (before coarsening) with the non-ordering CSP value (after
coarsening) are somewhat different: Their analysis involves more sophisticated tools such
as influence of variables and Gaussian noise stability. The proof of item 4 in our setting, in
contrast, uses a more elementary analysis of the type common with random graphs. Finally,
we remark that in the rest of the paper, in the interest of self-containedness, our construction
will “forget” about Max-CSP(fq

MAS), define the distributions GY and GN explicitly, and treat
valG simply as an artifact of the analysis which calculates the MAS values of GY and GN ,
but we hope that this discussion has motivated the construction.

1.5.2 Extending to general ordering CSPs
Extending the idea to other OCSPs involves two additional steps. Given the constraint
function Π (of arity k) and positive integer q, we define fq

Π analogously to fq
MAS. We then

explicitly describe the YES and NO distributions of Max-CSP(fq
Π) which the general theorem

of [5] shows are indistinguishable to o(n) space algorithms. Crucial to this application is
the observation that fq

Π is an “1 − k − 1/q-wide” function, where fq
Π is ω-wide if there

exists a vector v = (v0, . . . , vk−1) ∈ [q]k such that for an ω-fraction of a ∈ [q], we have
fq

Π(v0 + a, . . . , vk−1 + a) = 1. This would allow us to conclude that Max-CSP(fq
Π) is hard

to approximate to within factor of roughly ρ/ω, though as in the special case of MAS we
do not use this result explicitly.3 Instead, the second step of our proof replicates item 4
above. We give an analysis of the partition expansion in the NO instances arising from the
construction in [5]. Specifically we show that the constraint hypergraph is now a “small
partition hypergraph expander”, in the sense that any partition into q roughly equal sized
blocks would have very few hyperedges that contain even two vertices from the same block.
With these two additional ingredients in place, and following the same template as in the
hardness for MAS, we immediately get the approximation resistance of Max-OCSP(Π) for
general Π.

1.5.2.1 This version

Our current results improve on a previous version of this paper [23] that gave only Ω(
√

n)
space lower bounds for all OCSPs. Our improvement to Ω(n) space lower bounds comes by
invoking the more recent results of [5], whereas our previous version used the strongest lower
bounds for CSPs that were available at the time from an earlier work of Chou, Golovnev,
Sudan, and Velusamy [7]. The results of [7] are quantitatively weaker for the problems
considered in [5], though their results apply to a broader collection of problems. Interestingly
for our application, which covers all OCSPs, the narrower set of problems considered in [5]
suffices. We also note that the proof in this version of our paper is more streamlined thanks
to the notion of “wide” constraints introduced and used in [5].

We omit some proofs in this conference version due to space constraints; see the relevant
sections in our full version [22].

3 Indeed, the “width” observation is involved in the proof of item 1 and item 2 even in the MAS case
(with k = 2).

APPROX/RANDOM 2021

17:8 Streaming Approximation Resistance of Every Ordering CSP

1.5.2.2 Organization of the rest of the paper

In Section 2 we introduce some notation we use and background material. In Section 3 we
prove our main theorem, Theorem 1. In this section we also introduce two distributions on
Max-OCSP(Π) instances, the YES distribution and the NO distribution, and state lemmas
asserting that these distributions are concentrated on instances with high, and respectively
low, OCSP value; and that these distributions are indistinguishable to single-pass small space
streaming algorithms. We prove the lemmas on the OCSP values in Section 4, and describe
the indistinguishability lemma in Section 5.

2 Preliminaries and definitions

2.1 Basic notation
Some of the notation we use is already introduced in Subsection 1.1. Here we introduce some
more notation we use.

The support of an ordering constraint function Π : Sk → {0, 1} is the set supp(Π) = {π ∈
Sk|Π(π) = 1}.

Addition of elements in [q] is implicitly taken modulo q.
Throughout this paper we will be working with k-uniform ordered hypergraphs, or simply

k-hypergraphs, defined in the sequel. Given a finite set V , an (ordered, self-loop-free) k-
hyperedge e = (v1, . . . , vk) is a sequence of k distinct elements v1, . . . , vk ∈ V . We stress that
the ordering of vertices within an edge is important to us. An (ordered, self-loop-free, multi-)
k-hypergraph G = (V, E) is given by a set of vertices V and a multiset E = E(G) ⊆ V k of
k-hyperedges A k-hyperedge e is incident on a vertex v if v appears in e. Let Γ(e) ⊆ V

denote the set of vertices to which a k-hyperedge e is incident, and let m = m(G) denote the
number of k-hyperedges in G.

A k-hypergraph is a k-hypermatching if it has the property that no pair of (distinct)
k-hyperedges is incident on the same vertex. For α ≤ 1

k , an α-partial k-hypermatching
is a k-hypermatching which contains αn k-hyperedges. We let Hk,n,α denote the uniform
distribution over all α-partial k-hypermatchings on [n].

A vector b = (b0, . . . , bn−1) ∈ [q]n may be viewed as a q-partition of [n] into blocks
b−1(0), . . . , b−1(q − 1), where the i-th block b−1(i) is defined as the set of indices {j ∈ [n] :
bj = i}. Given b = (b0, . . . , bn−1) ∈ [q]n and an indexing vector j = (j0, . . . , jk−1) ∈ [n]k, we
define b|j = (bj0 , . . . , bjk−1).

Given an instance Ψ of Max-OCSP(Π) on n variables, we define the constraint hypergraph
G(Ψ) to be the k-hypergraph on [n], where each k-hyperedge corresponds to a constraint
(given by the exact same k-tuple). We also let m(Ψ) denote the number of constraints in Ψ
(equiv., the number of k-hyperedges in G(Ψ)).

2.2 Concentration bound
We also require the following form of Azuma’s inequality, a concentration inequality for
submartingales. For us the following form, for Boolean-valued random variables with bounded
conditional expectations taken from Kapralov and Krachun [16], is particularly convenient.

▶ Lemma 2 ([16, Lemma 2.5]). Let X0, . . . , Xm−1 be (not necessarily independent) {0, 1}-
valued random variables, such that for some p ∈ (0, 1), E[Xi | X0, . . . , Xi−1] ≤ p for every
i ∈ [m]. Then if µ := pm, for every ν > 0,

Pr[X0 + · · · + Xm−1 ≥ µ + ν] ≤ exp
(

−1
2 · ν2

µ + ν

)
.

N. Singer, M. Sudan, and S. Velusamy 17:9

3 The streaming space lower bound

In this section we restate our main theorem, and state the lemmas which are necessary for
its proof.

▶ Theorem 1 (Main theorem). For every k ∈ N and every Π : Sk → {0, 1}, Max-OCSP(Π) is
approximation resistant in the (single-pass) streaming setting. In particular for every ϵ > 0,
every (ρ(Π) + ϵ)-approximation algorithm A for Max-OCSP(Π) requires Ω(n) space.

Our lower bound is proved, as is usual for such statements, by showing that no small
space algorithm can “distinguish” YES instances with OCSP value at least 1 − ϵ/2, from
NO instances with OCSP value at most ρ(Π) + ϵ/2. Such a statement is in turn proved by
exhibiting two families of distributions, the YES distributions and the NO distributions,
and showing these are indistinguishable. Specifically we choose some parameters q, T, α

and a permutation π ∈ Sk carefully and define two distributions GY = GY,π
q,n,α,T (Π) and

GN = GN
q,n,α,T (Π). We claim that for our choice of parameters GY is supported on instances

with value at least 1 − ϵ/2 – this is asserted in Lemma 5. Similarly we claim that GN is
mostly supported (with probability 1 − o(1)) on instances with value at most ρ(Π) + ϵ/2 (see
Lemma 6). Finally we assert in Lemma 7 that any algorithm that distinguishes GY from GN

with “advantage” at least 1/8 (i.e., accepts Ψ ∼ GY with probability 1/8 more than Ψ ∼ GN)
requires Ω(n) space.

3.1 Distribution of hard instances
For ℓ, k ∈ [q], define the k-tuple of “contiguous” values v(ℓ)

q = (ℓ, . . . , ℓ + k − 1) ∈ [q]k.
Crucially, since the addition here is taken modulo q, we may have ℓ + k − 1 < ℓ and in
particular ord(v(ℓ)

q) may not be the identity.
For a k-tuple a = (a0, . . . , ak−1) and a permutation π ∈ Sk, define the permuted k-tuple aπ

as (aπ−1(0), . . . , aπ−1(k−1)). In particular, we have (v(ℓ)
q)π = (π−1(0) + ℓ, . . . , π−1(k − 1) + ℓ).

We define aπ in this way because:

▶ Proposition 3. If a is a k-tuple of distinct integers, then ord(aπ) = ord(a) ◦ π (where ◦
denotes composition of permutations).

Proof. Recall that ord(a) is the unique permutation τ such that aτ (0) < · · · < aτ (k−1).
Let τ = ord(a), and let σ = ord(aπ), so that σ is the unique permutation such that
aσ(π−1(0)) < · · · < aσ(π−1(k−1)). Then τ = σ ◦ π−1. Hence τ ◦ π = σ, as desired. ◀

We now formally define our YES and NO distributions for Max-OCSP(Π).

▶ Definition 4 (GY,π
q,n,α,T (Π) and GN

q,n,α,T (Π)). For k ∈ N and Π : Sk → {0, 1}, let q, n, T ∈ N,
α > 0, and let B = N or B = (Y, π) for some π ∈ supp(Π). We define the distribution
GB

q,n,α,T , over n-variable Max-OCSP(Π) instances, as follows:
1. Sample a uniformly random q-partition b = (b0, . . . , bn−1) ∈ [q]n.
2. Sample T hypermatchings independently G̃0, . . . , G̃T −1 ∼ Hk,n,α.
3. For each t ∈ [T], do the following:

Let Gt be an empty k-hypergraph on [n].
For each k-hyperedge ẽ = (j0, . . . , jk−1) ∈ E(G̃t):

(YES) If B = (Y, π), and there exists ℓ ∈ [q] such that b|j = (v(ℓ)
q)π, add ẽ to Gt

with probability 1
q .

(NO) If B = N , add ẽ to Gt with probability 1
qk .

APPROX/RANDOM 2021

17:10 Streaming Approximation Resistance of Every Ordering CSP

4. Let G := G0 ∪ · · · ∪ GT −1.
5. Return the Max-OCSP(Π) instance Ψ on n variables given by the constraint hypergraph

G.
We say that an algorithm ALG achieves advantage δ in distinguishing GY,π

q,n,α,T (Π) from
GN

q,n,α,T (Π) if there exists an n0 such that for all n ≥ n0, we have∣∣∣∣∣ Pr
Ψ∼GY,π

q,n,α,T
(Π)

[ALG(Ψ) = 1] − Pr
Ψ∼GN

q,n,α,T
(Π)

[ALG(Ψ) = 1]

∣∣∣∣∣ ≥ δ.

We make several remarks on this definition. Firstly, note that the constraints within
GY,π

q,n,α,T (Π) and GN
q,n,α,T (Π) do not directly depend on Π. We still parameterize the distri-

butions by Π, since they are formally distributions over Max-OCSP(Π) instances; Π also
determines the set of allowed permutations π in the YES case as well as the underlying
arity k. However, we will omit the parameterization (Π) when clear from context. Secondly,
we note that when sampling an instance from GN

q,n,α,T , the partition b has no effect, and
so GN

q,n,α,T is completely random. Hence these instances fit into the standard paradigm
for streaming lower bounds of “random graphs vs. random graphs with hidden structure”.
Finally, we observe that the number of constraints in both distributions is distributed as a
sum of m = nαT independent Bernoulli(1

qk) random variables.
In the following section we state lemmas which highlight the main properties of the

distributions above. See Figure 1 in Appendix A for a visual interpretation of the distributions
in the case of MAS.

3.2 Statement of key lemmas
Our first lemma shows that GY is supported on instances of high value.

▶ Lemma 5 (GY has high Max-OCSP(Π) values). For every ordering constraint satisfaction
function Π, every π ∈ supp(Π) and Ψ ∼ GY,π

q,n,α,T , we have valΨ ≥ 1 − k−1
q (i.e., this occurs

with probability 1).

We sketch the proof of Lemma 5 in Subsection 4.2. Next we assert that GN is supported
mostly on instances of low value.

▶ Lemma 6 (GN has low Max-OCSP(Π) values). For every k-ary ordering constraint function
Π : Sk → {0, 1}, and every ϵ > 0, there exists q0 ∈ N and α0 ≥ 0 such that for all q ≥ q0 and
α ≤ α0, there exists T0 ∈ N such that for all T ≥ T0, for sufficiently large n, we have

Pr
Ψ∼GN

q,n,α,T

[
valΨ ≥ ρ(Π) + ϵ

2

]
≤ 0.01.

We discuss, and partially prove, Lemma 6 in Subsection 4.3. We note that this lemma
is more technically involved than Lemma 5 and this is the proof that needs the notion of
“small partition expanders”. Finally the following lemma asserts the indistinguishability of
GY and GN to small space streaming algorithms and is discussed in Section 5. We remark
that this lemma follows directly from the work of [5].

▶ Lemma 7. For every q, k ∈ N there exists α0(k) > 0 such that for every T ∈ N, α ∈
(0, α0(k)] the following holds: For every Π : Sk → {0, 1} and π ∈ supp(Π), every streaming
algorithm ALG distinguishing GY,π

q,n,α,T from GN
q,n,α,T with advantage 1/8 for all lengths n

uses space Ω(n).

Assuming Lemma 5, Lemma 6, and Lemma 7 the proof of Theorem 1 is straightforward
and is omitted.

N. Singer, M. Sudan, and S. Velusamy 17:11

4 Bounds on Max-OCSP(Π) values of GY and GN

The goal of this section is to discuss, and at least partially prove, our technical lemmas
which lower bound the Max-OCSP(Π) values of GY,π

q,n,α,T (Lemma 5) and upper bound the
Max-OCSP(Π) values of GN

q,n,α,T (Lemma 6).

4.1 CSPs and coarsening
In preparation for proving the lemmas, we recall the definition of (non-ordering) constraint
satisfaction problems (CSPs), whose solution spaces are [q]n (as opposed to Sn), and define
an operation called q-coarsening on Max-OCSP’s, which restricts the solution space from Sn

to [q]n.
A maximum constraint satisfaction problem, Max-CSP(f), is specified by a single constraint

function f : [q]k → {0, 1}, for some positive integer k. An instance of Max-CSP(f) on n

variables is given by m constraints C0, . . . , Cm−1 where Ci = (f, j(i)), i.e., the application of
the function f to the variables j(i) = (j(i)0, . . . , j(i)k−1). (Again, f is omitted when clear
from context.) The value of an assignment b ∈ [q]n on an instance Φ = (C0, . . . , Cm−1),
denoted valqΦ(b), is the fraction of constraints satisfied by b, i.e., valqΦ(b) = 1

m

∑
i∈[m] f(b|j(i)),

where (recall) b|j = (bj0 , . . . , bjk−1) for b = (b0, . . . , bn−1), j = (j0, . . . , jk−1). The optimal
value of Φ is defined as valqΦ = maxb∈[q]n{valqΦ(b)}.

▶ Definition 8 (q-coarsening). Let Π be a k-ary Max-OCSP and let q ∈ N. The q-coarsening
of Π is the k-ary Max-CSP problem Max-CSP(fq

Π) where we define fq
Π : [q]k → {0, 1} as

follows: For a ∈ [q]k, fq
Π(a) = 1 iff the entries in a are all distinct and Π(ord(a)) = 1. The

q-coarsening of an instance Ψ of Max-OCSP(Π) is the instance Φ of Max-CSP(fq
Π) given by

the identical collection of constraints.

The following lemma captures the idea that coarsening restricts the space of possible
solutions; compare to Lemma 15 below.

▶ Lemma 9. If q ∈ N, Ψ is an instance of Max-OCSP(Π), and Φ is the q-coarsening of Ψ,
then valΨ ≥ valqΦ.

Proof. We will show that for every assignment b ∈ [q]n to Φ, we can construct an assignment
σ ∈ Sn to Ψ such that valΨ(σ) ≥ valqΦ(b). Consider an assignment b ∈ [q]n. Let σ be the
ordering on [n] given by placing the blocks b−1(0), . . . , b−1(q − 1) in order (within each
block, we enumerate the indices arbitrarily). Consider any constraint C = j = (j0, . . . , jk−1)
in Φ which is satisfied by b in Φ. Since fq

Π(b|j) = 1, by definition of fq
Π we have that

Π(ord(b|j)) = 1 and bj0 , . . . , bjk−1 are distinct. The latter implies, by construction of σ,
that ord(b|j) = ord(σ|j). Hence Π(ord(σ|j)) = 1, so σ satisfies C in Ψ. Hence valΨ(σ) ≥
valqΦ(b). ◀

4.2 GY has high Max-OCSP(Π) values
In this section, we prove Lemma 5, which states that the Max-OCSP(Π) values of instances
Ψ drawn from GY,π

q,n,α,T are large. Note that we prove a bound for every instance Ψ in the
support of GY,π

q,n,α,T , although it would suffice for our application to prove that such a bound
holds with high probability over the choice of Ψ.

To prove Lemma 5, if Φ is the q-coarsening of Ψ, by Lemma 9, it suffices to show that
valqΦ ≥ 1 − k−1

q . One natural approach is to consider the q-partition b = (b0, . . . , bn−1) ∈ [q]n
sampled when sampling Ψ and view b as an assignment to Φ. Consider any constraint

APPROX/RANDOM 2021

17:12 Streaming Approximation Resistance of Every Ordering CSP

C = j = (j0, . . . , jk−1) in Ψ; by the definition of GY,π (Definition 4), we have b|j = (v(ℓ)
q)π

for some (unique) ℓ ∈ [q], which we term the identifier of C (recall, we defined v(ℓ)
q as the

k-tuple (ℓ, . . . , ℓ + k − 1) ∈ [q]k). In other words, b|j = (v(ℓ)
q)π. Hence, C is satisfied by b iff

Π(ord((v(ℓ)
q)π)) = 1. By Proposition 3 above, ord((v(ℓ)

q)π) = ord(v(ℓ)
q) ◦ π. Hence a sufficient

condition for b to satisfy C (which is in fact necessary in the case |supp(Π)| = 1) is that
ord(v(ℓ)

q) = [0 · · · k − 1] (since then ord((v(ℓ)
q)π) = π); this happens iff C’s identifier ℓ ∈

{0, . . . , q − k}. Unfortunately, when sampling the constraints C, we might get “unlucky” and
get a sample which over-represents the constraints C with identifier ℓ ∈ {q − k + 1, . . . , q − 1}.
We can resolve this issue using “shifted” versions of b;4 the proof is omitted here.

4.3 GN has low Max-OCSP(Π) values
In this section, we prove Lemma 6, which states that the Max-OCSP(Π) value of an instance
drawn from GN does not significantly exceed the random ordering threshold ρ(Π), with high
probability.

Using concentration bounds (i.e., Lemma 2), one could show that a fixed solution σ ∈ Sn

satisfies more than ρ(Π) + 1
q constraints with probability which is exponentially small in n.

However, taking a union bound over all n! permutations σ would cause an unacceptable
blowup in the probability. Instead, to prove Lemma 6, we take an indirect approach, involving
bounding the Max-CSP value of the q-coarsening of a random instance and bounding the gap
between the Max-OCSP value and the q-coarsenened Max-CSP value. To do this, we define
the following notions of small set expansion for k-hypergraphs:

▶ Definition 10 (Lying on a set). Let G = (V, E) be a k-hypergraph. Given a set S ⊆ V ,
a k-hyperedge e ∈ E lies on S if it is incident on two (distinct) vertices in S (i.e., if
|Γ(e) ∩ S| ≥ 2).

▶ Definition 11 (Congregating on a partition). Let G = (V, E) be a k-hypergraph. Given a
q-partition b ∈ [q]n, a k-hyperedge e ∈ E congregates on b if it lies on one of the blocks
b−1(i).

We denote by N(G, S) the number of k-hyperedges of G which lie on S.

▶ Definition 12 (Small set hypergraph expansion (SSHE) property). A k-hypergraph G = (V, E)
is a (γ, δ)-small set hypergraph expander (SSHE) if it has the following property: For every
subset S ⊆ V of size at most γ|V |, N(G, S) ≤ δ|E| (i.e., the number of k-hyperedges in E

which lie on S is at most δ|E|).

▶ Definition 13 (Small partition hypergraph expansion (SPHE) property). A k-hypergraph
G = (V, E) is a (γ, δ)-small partition hypergraph expander (SPHE) if it has the following
property: For every partition b ∈ [q]n where each block b−1(i) has size at most γ|V |, the
number of k-hyperedges in E which congregate on b is at most δ|E|.

In the context of Figure 1 in Appendix A, the SPHE property says that for any partition
with small blocks, there cannot be too many “orange” edges.

Having defined the SSHE and SPHE properties, we now sketch the proof of Lemma 6.
The full proof is omitted.

4 Alternatively, in expectation, valqΦ(b) = 1 − k−1
q . Hence with probability at least 99

100 , valqΦ(b) ≥
1 − 100(k−1)

q by Markov’s inequality; this suffices for a “with-high-probability” statement.

N. Singer, M. Sudan, and S. Velusamy 17:13

Proof sketch of Lemma 6. For sufficiently large q, with high probability, the Max-CSP value
of the q-coarsening of a random Max-OCSP(Π) instance drawn from GN

q is not much larger
than ρ(Π) (Lemma 20 below). The constraint hypergraph for a random Max-OCSP(Π) in-
stance drawn from GN

q is a good SSHE with high probability (Lemma 18 below). Hypergraphs
which are good SSHEs are also (slightly worse) SPHEs (Lemma 14 below). Finally, if the
constraint hypergraph of a Max-OCSP(Π) instance is a good SPHE, its Max-OCSP(Π) value
cannot be much larger than its q-coarsened Max-CSP value (Lemma 15 below); intuitively,
this is because if we “coarsen” an optimal ordering σ for the Max-OCSP by lumping vertices
together in small groups to get an assignment b for the coarsened Max-CSP, we can view
this assignment b as a partition on V , and for every k-hyperedge in G(Ψ) which does not
congregate on this partition, the corresponding constraint in Ψ is satisfied. ◀

We remark that the bounds on Max-CSP values of coarsened random instances (Lemma 20
below) and on SSHE in random instances (Lemma 18 below) both use concentration inequal-
ities (i.e., Lemma 2) and union bound over a space of size only (Oϵ(1))n (the space of all
solutions to the coarsened Max-CSP and the space of all small subsets of [n], respectively);
this lets us avoid the issue of union-bounding over the entire space Sn directly.

In the remainder of this section, we describe the necessary lemmas.

▶ Lemma 14 (Good SSHEs are good SPHEs). For every γ, δ > 0, if a k-hypergraph G = (V, E)
a (γ, δ)-SSHE, then it is a

(
γ, δ(2

γ + 1)
)

-SPHE.

Proof. Omitted. ◀

▶ Lemma 15 (Coarsening roughly preserves value in SPHEs). Let Ψ be a Max-OCSP(Π)
instance on n variables. Suppose that the constraint hypergraph of Ψ is a (γ, δ)-SPHE. Let Φ
be the q-coarsening of Ψ. Then for sufficiently large n, if q ≥ 2

γ ,

valΨ ≤ valqΦ + δ.

Proof. We will show that for every assignment σ ∈ Sn to Ψ, we can construct an assignment
b = (b0, . . . , bn−1) ∈ [q]n to Φ such that valΨ(σ) ≤ valqΦ(b) + δ. Fix σ ∈ Sn. Define
b ∈ [q]n by bi = ⌊σ(i)/⌊γn⌋⌋ for each i ∈ [n]. Observe that since σ(i) ≤ n − 1, we have
bi ≤ ⌊(n − 1)/⌊γn⌋⌋ < q, hence b is a valid assignment to Φ. Also, b has the property that
for every i, j ∈ [n], if σ(i) < σ(j) then bi ≤ bj ; we call this monotonicity of b.

View b as a q-partition and consider the constraint hypergraph of Ψ (which is the same
as the constraint hypergraph of Φ). Call a constraint C = (j0, . . . , jk−1) good if it is both
satisfied by σ, and the k-hyperedge corresponding to it does not congregate on b. If C is
good, then bj0 , . . . , bjk−1 are all distinct; together with monotonicity of b, we conclude that
if C is good, then ord(b|j) = ord(σ(j0), . . . , σ(jk−1)).

Finally, we note that each block in b has size at most γn by definition; hence by the
SPHE property of the constraint hypergraph of Ψ, at most δ-fraction of the constraints of Ψ
correspond to k-hyperedges which congregate on b. Since valΨ(σ) fraction of the constraints
of Ψ are satisfied by σ, at least (valΨ(σ) − δ)-fraction of the constraints of Ψ are good, and
hence b satisfies at least (valΨ(σ) − δ)-fraction of the constraints of Φ, as desired. ◀

The construction in this lemma was called coarsening the assignment σ by [10] (cf. [10,
Definition 4.1]).

We also include the following helpful lemma, which lets us restrict to the case where our
sampled Max-OCSP(Π) instance has many constraints.

APPROX/RANDOM 2021

17:14 Streaming Approximation Resistance of Every Ordering CSP

▶ Lemma 16 (Most instances in GN have many constraints). For every n, α, γ > 0, and
q ∈ N,

Pr
Ψ∼GN

q,n,α,T

[
m(Ψ) ≤ nαT

2qk

]
≤ exp

(
−nαT

8qk

)
.

Proof. The number of constraints in Ψ is distributed as the sum of nαT independent
Bernoulli(1/qk) random variables. The desired bound follows by applying the Chernoff
bound. ◀

4.3.1 GN is a good SSHE with high probability

Recall that for a k-hypergraph G = (V, E) and S ⊆ V (G), we define N(G, S) to be the
number of k-hyperedges in G that lie on S, and for an k-hyperedge e ∈ E, we define Γ(e) ⊆ V

as the set of vertices incident on e.

▶ Lemma 17 (Random hypermatchings barely lie on small sets). For every n and α, γ > 0
with α ≤ 1

2k , and every subset S ⊆ [n] of at most γn vertices, we have

Pr
G∼Hk,n,α

[N(G, S) ≥ 8k2γ2αn] ≤ exp
(
−γ2αn

)
.

Proof. Label the hyperedges of G as e0, . . . , eαn−1. For i ∈ [αn], let Xi be the indicator for
the event that ei lies on S. We have N(G, S) = X0 + · · · + Xαn−1.

We first bound E[Xi | X0, . . . , Xi−1] for each i. Conditioned on e0, . . . , ei−1, the k-
hyperedge ei is uniformly distributed over the set of all k-hyperedges on [n] \ (Γ(e0) ∪ · · · ∪
Γ(ei−1)). It suffices to union-bound, over distinct pairs j1 < j2 ∈

([k]
2

)
, the probability that

the j1-st and j2-nd vertices of ei are in S (conditioned on X0, . . . , Xi−1). We can sample
the j1-st and j2-nd vertices of ei first (uniformly over remaining vertices outside of S) and
then sample the remaining vertices (uniformly over remaining vertices). Hence we have the
upper-bound

E[Xi | X0, . . . , Xi−1] ≤
(

k

2

)
· |S|(|S| − 1)

(n − ki)(n − ki − 1) ≤
(

|S|
n − kαn

)2
≤ 4k2γ2,

since α ≤ 1
2k .

Now, we apply the concentration bound in Lemma 2 to conclude that:

Pr
G∼Hk,n,α

[
X0 + · · · + Xαn−1 ≥ 8k2γ2αn

]
≤ exp

(
−2k2γ2αn

)
≤ exp(−γ2αn). ◀

▶ Lemma 18. For every n, α, γ > 0, and q ∈ N with α ≤ 1
2k ,

Pr
Ψ∼GN

q,n,α,T

[
G(Ψ) is not a (γ, 8k2γ2)-SSHE

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−

(
γ2αT

2qk
− ln 2

)
n

)
.

Proof. Let α0, . . . , αT −1 ≥ 0 be such that αT
2qk ≤ α0 + · · · + αT −1 ≤ αT . It suffices to prove

the bound, for every such sequence α0, . . . , αT −1, conditioned on the event that for every
i ∈ [T], m(Gi) = αin (where Gi is defined as in Definition 4). This is equivalent to simply
sampling each Gi ∼ Hk,n,αi

independently.

N. Singer, M. Sudan, and S. Velusamy 17:15

Fix any set S ⊆ [n] of size at most γn. Applying Lemma 17, and the fact that each
hypermatching Gi in G is sampled independently, we conclude that

Pr
Ψ∼GN

q,n,α,T

[
∃i ∈ [T] s.t. N(Gi, S) ≥ 8k2γ2αin

∣∣ ∀i ∈ [T], m(Gi) = αin
]

≤ exp
(
−γ2(α0 + · · · + αT −1)n

)
≤ exp

(
−γ2αTn

2qk

)
.

Hence by averaging, the total fraction of k-hyperedges in G which lie on S is at most
8k2γ2. Taking the union-bound over the ≤ 2n possible subsets S ⊆ [n] gives the desired
bound. ◀

4.3.2 GN has low coarsened Max-CSP(f q
Π) values with high probability

For G ∼ Hk,n,α, we define an instance Φ(G) of Max-CSP(fq
Π) on n variables x0, . . . , xn−1

naturally as follows: for each k-hyperedge j = (j0, . . . , jk−1) ∈ E(G) ⊆ [n]k, we add the
constraint j to Φ(G).

▶ Lemma 19 (Satisfiability of random instances of Max-CSP(fq
Π)). For every n, α, η > 0, and

b ∈ [q]n,

Pr
G∼Hk,n,α

[valqΦ(G)(b) ≥ ρ(Π) + η] ≤ exp
(

−
(

η2α

2(ρ(Π) + η)

)
n

)
.

Proof. Omitted. ◀

▶ Lemma 20. For every n and α, η > 0,

Pr
Ψ∼GN

q,n,α,T

[
valqΦ ≥ ρ(Π) + η, where Φ is the q-coarsening of Ψ

∣∣∣∣ m(Ψ) ≥ nαT

2qk

]
≤ exp

(
−

(
η2αT

4(ρ(Π) + η)qk
− ln q

)
n

)
.

Proof. Identical to the proof of Lemma 18 (using Lemma 19 instead of Lemma 17), but now
union-bounding over a set of size qn (i.e., the set of possible assignments b ∈ [q]n for Φ). ◀

5 Streaming indistinguishability of GY and GN

In this section we remark on the proof of Lemma 7 (although the full proof is omitted).
This indistinguishability follows directly from the work of [5], who introduce a T -player
communication problem called implicit randomized mask detection (IRMD). Once we properly
situate our instances GY and GN within the framework of [5], Lemma 7 follows immediately.

We first recall their definition of the IRMD problem, and state their lower bound. The
following definition is based on [5, Definition 3.1]. In [5] the IRMD game is parametrized
by two distributions DY and DN , but hardness is proved for a specific pair of distributions
which suffices for our purpose; these distributions will thus be “hardcoded” into the definition
we give.

▶ Definition 21 (Implicit randomized mask detection (IRMD) problem). Let q, k, n, T ∈ N, α ∈
(0, 1/k) be parameters. In the IRMDα,T game, there are T players, indexed from 0 to T − 1,
and a hidden partition encoded by a random b ∈ [q]n. The t-th player has two inputs:

APPROX/RANDOM 2021

17:16 Streaming Approximation Resistance of Every Ordering CSP

(a.) Mt ∈ {0, 1}αkn×n, the hypermatching matrix corresponding to a uniform α-partial
k-hypermatching on n vertices (i.e., drawn from Hn,α), and (b.) a vector zt ∈ [q]αkn that
can be generated from one of two different distributions:

(YES) zt = Mtb + yt (mod q) where yt ∈ [q]αkn is of the form yt = (yt,0, . . . , yt,αn−1)
and each yt,i ∈ [q]k is sampled as (a, . . . , a) where a is sampled uniformly from [q].
(NO) zt = Mtb + yt (mod q) where yt ∈ [q]αkn is of the form yt = (yt,0, . . . , yt,αn−1)
and each yt,i ∈ [q]k is sampled as (a0, . . . , ak−1) where each aj is sampled uniformly and
independently from [q].

This is a one-way game where the t-th player can send a private message to the (t + 1)-st
player after receiving a message from the previous player. The goal is for the (T − 1)-st
player to decide whether the {zt} have been chosen from the YES or NO distribution, and
the advantage of a protocol is defined as∣∣∣∣ Pr

YES case
[the (T − 1)-st player outputs 1] − Pr

NO case
[the (T − 1)-st player outputs 1]

∣∣∣∣ .

Note that the definition of the IRMD problem does not depend on an underlying family
of constraints. Nevertheless, we are able to leverage its hardness to prove Lemma 7 (and
indeed, all hardness results in [5] itself stem from hardness for the IRMD problem). The
following theorem from [5] gives a lower bound on the communication complexity of the
IRMD problem:

▶ Theorem 22 ([5, Theorem 3.2]). For every q, k ∈ N and δ ∈ (0, 1/2), α ∈ (0, 1/k), T ∈ N
there exists n0 ∈ N and τ ∈ (0, 1) such that the following holds. For all n ≥ n0, every protocol
for IRMDα,T on n vertices with advantage δ requires τn bits of communication.

We use this hardness result to prove Lemma 7, via a standard communication-to-streaming
reduction from IRMD. Our proof is based on the reduction given by [5, Theorem 4.3], which
introduces a notion called the width of a constraint family, which we briefly discuss. For our
purposes, it suffices to define the width ω(f) ∈ [0, 1] of a single constraint f : [q]k → {0, 1} as

ω(f) = max
b∈[q]k

{
Pr

ℓ∈[q]
[f(b + ℓ) = 1]

}
,

where b + ℓ denotes adding ℓ to each component of b. [5, Theorem 4.3] states that for every
f and ϵ > 0, Max-CSP(f) cannot be (ρ(f)/ω(f) + ϵ)-approximated by a sublinear-space
single-pass streaming algorithm, where ρ(f) = Prb∈[q]k [f(b) = 1] is the random assignment
value for f . (The approximation ratio ρ(f)/ω(f) is derived from the fact that the NO
instances in the reduction have values close to ρ(f), while the YES instances have values
close to ω(f).) Hence whenever ω(f) is close to 1, Max-CSP(f) is difficult to approximate.
In our setting, we have ω(fq

Π) ≥ 1 − k−1
q ; indeed, simply take b = (π−1(0), . . . , π−1(k − 1)),

and then for any ℓ ∈ {0, . . . , q − k}, we have fq
Π(b + ℓ) = 1 (by the same reasoning as in

Subsection 4.2). The fact that ω(fq
Π) ≈ 1 for large q is precisely what enables us to apply

[5]’s lower bounds to get optimal lower bounds in our setting.

References
1 Per Austrin, Rajsekar Manokaran, and Cenny Wenner. On the NP-hardness of approximating

ordering-constraint satisfaction problems. Theory of Computing, 11:257–283, 2015. Conference
version in APPROX 2013. doi:10.4086/toc.2015.v011a010.

2 Amey Bhangale and Subhash Khot. UG-Hardness to NP-Hardness by Losing Half. In 34th
Computational Complexity Conference (CCC 2019, New Brunswick, New Jersey, USA, August

https://doi.org/10.4086/toc.2015.v011a010

N. Singer, M. Sudan, and S. Velusamy 17:17

18-20, 2019), volume 137 of LIPIcs. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.CCC.2019.3.

3 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Proceedings of the 31st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2020, Salt Lake City, Utah, USA, January 5-9, 2020), pages
1786–1802. Society for Industrial and Applied Mathematics, 2020. doi:10.5555/3381089.
3381198.

4 Benny Chor and Madhu Sudan. A geometric approach to betweenness. SIAM Journal on
Discrete Mathematics, 11(4):511–523, 1998. Conference version in Algorithms, ESA 1995.
doi:10.1137/S0895480195296221.

5 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini
Velusamy. Linear Space Streaming Lower Bounds for Approximating CSPs, June 2021.
arXiv:2106.13078.

6 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approxima-
bility of all Boolean CSPs in the dynamic streaming setting, 2021. arXiv:2102.12351.

7 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approxima-
bility of all finite CSPs in the dynamic streaming setting, June 2021. arXiv:2105.01161.

8 Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming Approxi-
mations for all Boolean Max-2CSPs and Max-kSAT. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS 2020, November 16-19, 2020), pages 330–341.
IEEE Computer Society, 2020. doi:10.1109/FOCS46700.2020.00039.

9 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential
separation for one-way quantum communication complexity, with applications to cryptography.
SIAM Journal on Computing, 38(5):1695–1708, 2008. Conference version in STOC 2007.
doi:10.1137/070706550.

10 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses
Charikar. Beating the Random Ordering is Hard: Every ordering CSP is approximation
resistant. SIAM Journal on Computing, 40(3):878–914, 2011. Conference version in FOCS
2008. doi:10.1137/090756144.

11 Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In Dimitris
Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019, Cambridge, MA, USA,
September 20-22, 2019), volume 145 of LIPIcs, pages 5:1–5:12. Schloss Dagstuhl — Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.5.

12 Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming Complexity
of Approximating Max 2CSP and Max Acyclic Subgraph. In Klaus Jansen, José D. P. Rolim,
David Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017, Berkeley,
CA, USA, August 16-18, 2017), volume 81 of LIPIcs, pages 8:1–8:19. Schloss Dagstuhl —
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.8.

13 Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001. doi:10.1145/502090.502098.

14 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approximat-
ing MAX-CUT. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2015, San Diego, California, USA, January 4-6, 2015), pages 1263–1282. Society
for Industrial and Applied Mathematics, January 2015. doi:10.1137/1.9781611973730.84.

15 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1 + ω(1))-
approximation to MAX-CUT requires linear space. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2017, Barcelona, Spain, January
16-19, 2017), pages 1703–1722. Society for Industrial and Applied Mathematics, January 2017.
doi:10.5555/3039686.3039798.

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.CCC.2019.3
https://doi.org/10.5555/3381089.3381198
https://doi.org/10.5555/3381089.3381198
https://doi.org/10.1137/S0895480195296221
http://arxiv.org/abs/2106.13078
http://arxiv.org/abs/2102.12351
http://arxiv.org/abs/2105.01161
https://doi.org/10.1109/FOCS46700.2020.00039
https://doi.org/10.1137/070706550
https://doi.org/10.1137/090756144
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.8
https://doi.org/10.1145/502090.502098
https://doi.org/10.1137/1.9781611973730.84
https://doi.org/10.5555/3039686.3039798

17:18 Streaming Approximation Resistance of Every Ordering CSP

16 Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating
MAX-CUT. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2019, Phoenix, AZ, USA, June 23-26, 2019), pages 277–288. Association
for Computing Machinery, June 2019. doi:10.1145/3313276.3316364.

17 Richard M. Karp. Reducibility among Combinatorial Problems. In R.E. Miller, J.W. Thatcher,
and J.D. Bohlinger, editors, The IBM Research Symposia Series, pages 85–103. Springer, 1972.
doi:10.1007/978-1-4684-2001-2_9.

18 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC 2002, Québec, Canada, May 19-21,
2002), pages 767–775. Association for Computing Machinery, 2002. doi:10.1145/509907.
510017.

19 Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In
Proceedings of the 6th Annual Conference on Innovations in Theoretical Computer Science
(ITCS 2015, Rehovot, Israel, January 11-13, 2015), pages 367–376. Association for Computing
Machinery, 2015. doi:10.1145/2688073.2688093.

20 Alantha Newman. Approximating the Maximum Acyclic Subgraph. Masters Thesis, Mas-
sachusetts Institute of Technology, 2000.

21 Jaroslav Opatrny. Total Ordering Problem. SIAM Journal on Computing, 8(1):111–114, 1979.
doi:10.1137/0208008.

22 Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance
of every ordering CSP, 2021. Full version of this paper. arXiv:2105.01782.

23 Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance
of every ordering CSP, May 2021. Original version of this paper; proved only o(

√
n) space

lower bounds. arXiv:2105.01782v1.
24 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals,

and other problems. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2011, San Francisco, California, USA, January 23-25, 2011), pages 11–25.
Society for Industrial and Applied Mathematics, 2011. doi:10.5555/2133036.2133038.

https://doi.org/10.1145/3313276.3316364
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1137/0208008
http://arxiv.org/abs/2105.01782
http://arxiv.org/abs/2105.01782v1
https://doi.org/10.5555/2133036.2133038

N. Singer, M. Sudan, and S. Velusamy 17:19

A Example hard instances for MAS

0
1 2

3
4

(a) Constraint graph of a sample MAS instance drawn from GY .

0
1 2

3
4

(b) Constraint graph of a sample MAS instance drawn from GN .

Figure 1 The constraint graphs of MAS instances which could plausibly be drawn from GY and
GN , respectively, for q = 5 and n = 12. Recall that MAS is a binary Max-OCSP with ordering
constraint function Π supported only on [0 1]. According to the definition of GY (see Definition 4,
with π = [0 1]), instances are sampled by first sampling a q-partition b = (b0, . . . , bn−1) ∈ [q]n, and
then sampling some edges; every sampled edge (u, v) must satisfy bv = bu + 1 (mod q). On the other
hand, there are no requirements on (bu, bv) for instances sampled from GN . Above, the blocks of the
partition b are labelled 0, . . . , 4, and the reader can verify that the edges satisfy the appropriate
requirements. We also color the edges in a specific way: We color an edge (u, v) green, orange, or
red if bv > bu, bv = bu, or bv < bu, respectively. This visually suggests important elements of our
proofs that GY has MAS values close to 1 and GN has MAS values close to 1

2 (for formal statements,
see Lemma 5 and Lemma 6, respectively). Specifically, in the case of GY , if we arbitrarily arrange
the vertices in each block, we will get an ordering in which every green edge is satisfied, and we
expect all but 1

q
fraction of the edges to be satisfied (i.e., all but those which go from block q − 1 to

block 0). On the other hand, if we executed a similar process in GN , the resulting ordering would
satisfy all green edges and some subset of the orange edges; together, in expectation, these account
only for q(q+1)

2q2 = q+1
2q

≈ 1
2 fraction of the edges.

APPROX/RANDOM 2021

Upper and Lower Bounds for Complete Linkage in
General Metric Spaces
Anna Arutyunova #

Universität Bonn, Germany

Anna Großwendt #

Universität Bonn, Germany

Heiko Röglin #

Universität Bonn, Germany

Melanie Schmidt #

Universität Köln, Germany

Julian Wargalla #

Universität Köln, Germany

Abstract
In a hierarchical clustering problem the task is to compute a series of mutually compatible clusterings
of a finite metric space (P, dist). Starting with the clustering where every point forms its own cluster,
one iteratively merges two clusters until only one cluster remains. Complete linkage is a well-known
and popular algorithm to compute such clusterings: in every step it merges the two clusters whose
union has the smallest radius (or diameter) among all currently possible merges. We prove that the
radius (or diameter) of every k-clustering computed by complete linkage is at most by factor O(k)
(or O(k2)) worse than an optimal k-clustering minimizing the radius (or diameter). Furthermore we
give a negative answer to the question proposed by Dasgupta and Long [6], who show a lower bound
of Ω(log(k)) and ask if the approximation guarantee is in fact Θ(log(k)). We present instances where
complete linkage performs poorly in the sense that the k-clustering computed by complete linkage
is off by a factor of Ω(k) from an optimal solution for radius and diameter. We conclude that in
general metric spaces complete linkage does not perform asymptotically better than single linkage,
merging the two clusters with smallest inter-cluster distance, for which we prove an approximation
guarantee of O(k).

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Hierarchical Clustering, Complete Linkage, agglomerative Clustering, k-
Center

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.18

Category APPROX

Funding This work has been supported by DFG grants RO 5439/1-1 and SCHM 2765/1-1.

1 Introduction

The k-clustering problem asks for a partition of a point set in a metric space into k subsets
(or clusters). To measure whether the data is clustered well, one option is to pick a center
for every cluster and compute the maximum distance between a point and the center of its
cluster. This objective is to be minimized and is known as k-center. A problem which is
independent of the choice of centers is the k-diameter problem, where we want to minimize
the maximum distance between two points lying in the same cluster. Observe that k-center
and k-diameter are related to each other in the sense that for a fixed set P the cost of an
optimal k-diameter clustering on P is at most twice the cost of an optimal k-center clustering,
which again costs at most as much as an optimal k-diameter clustering. There are other

© Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian Wargalla;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arutyunova@uni-bonn.de
mailto:grosswen@cs.uni-bonn.de
mailto:roeglin@cs.uni-bonn.de
mailto:mschmidt@cs.uni-koeln.de
mailto:wargalla@cs.uni-koeln.de
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

objectives to measure the quality of a clustering where every point contributes to the cost of
the clustering, for example k-median and k-means. Here we want to minimize the cost which
equals the sum over all (squared) distances between a point and the center of its cluster.

The k-center problem is NP-hard to approximate with factor α < 2 [12, 14]. This bound is
tight, as both Gonzalez [7] and Hochbaum and Shmoys [13] show. Gonzalez’s 2-approximation
algorithm is a simple, but elegant greedy approach. Starting with an arbitrary point p1 ∈ P ,
one constructs an enumeration P = {p1, . . . , p|P |} by successively choosing as pi+1 a point
from P whose minimum distance to any point from {p1, . . . , pi} is maximal. Assigning every
point from P to its closest neighbor among p1, . . . , pk (the centers) yields a 2-approximation
for the k-center problem for all k = 1, . . . , |P |. One can prove that the resulting clustering
is also a 2-approximation to k-diameter. Another greedy approach is the reverse greedy
algorithm, which starts with all data points as centers and iteratively removes a center such
that the objective stays as small as possible. Hershkowitz and Kehne [11] show that this
algorithm computes an Θ(k)-approximation. Observe that both greedy algorithms compute
an incremental clustering where the centers of a k-clustering are also centers of an l-clustering
if l ≥ k.

Gonzalez’s algorithm [7] allows to compute good clusterings, even if one does not previously
know an appropriate value for k. However, even successive clusterings computed by Gonzalez’s
algorithm and reverse greedy can be radically different and so it can be difficult to compare
them and select one that seems appropriate for the task.

Another greedy approach known as complete linkage starts with every point in its own
cluster and consecutively merges two clusters whose union has the smallest radius (or diameter
when considering the k-diameter objective) among all possible cluster pairs. If we proceed like
this until only one cluster remains, we also obtain a k-clustering for any possible 1 ≤ k ≤ |P |.
However, this time, the resulting clusterings are also hierarchically compatible: for all ℓ ≥ k

the ℓ-clustering is a refinement of the k-clustering. This makes it easier to compare such
clusterings with each other and to choose an appropriate k-clustering. Also, this additional
hierarchical structure is interesting in and of itself. Famous examples include phylogenetic
trees that represent the relationship between animal species in biology.

A series of such hierarchically compatible clusterings C1, . . . , C|P | (with Ck being a k-
clustering for all k) forms a hierarchical clustering. Complete linkage is a common and
popular bottom-up approach to compute these and can be generalized to fit any k-clustering
objective, resulting in so called agglomerative clustering methods. For hierarchical k-means
this is Wards method [16].

To evaluate a hierarchical clustering C1, . . . C|P | we refer to the underlying k-clusterings:
it is an α-approximation if the cost of Ck is at most α times that of an optimal k-clustering
for all 1 ≤ k ≤ |P |.

Related work. For hierarchical k-center and k-diameter, constant factor approximations are
known. For both problems Dasgupta and Long [6] and Charikar et al. [4] give a polynomial-
time 8-approximation. In [15] Lin et al. introduce the concept of nesting. Using this technique,
every approximation algorithm to a k-clustering objective that satisfies their nesting property
can be converted into an algorithm for its hierarchical version. Especially k-median and
k-means satisfy this property and thus (in combination with the currently best constant
factor approximations for k-median [3] and k-means [2]), polynomial time constant factor
approximations do indeed exist for the hierarchical k-median/k-means problem. Yet the
resulting guarantees are relatively high (≈ 56 for k-median and ≈ 3662 for k-means). Nesting
can also be applied to k-center/k-diameter but does not improve upon the 8-approximation.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:3

As optimal k-clusterings are not necessarily hierarchically compatible, even assuming
unlimited computation power 1-approximations do not exist in general. Das and Kenyon-
Mathieu [5] give an instance for the diameter and Großwendt [10] for the radius where the
best hierarchical clustering is a 2-approximation. Using the concept of nesting by Lin et
al. [15], Großwendt [10] proves an existential upper bound of 4 for hierarchical k-center.

However, greedy algorithms are more common in practical applications. There exist
several theoretical results on upper and lower bounds on the approximation factor for complete
linkage. For metrics induced by norms in Rd, especially the Euclidean metric, Ackermann
et al. [1] prove that, assuming the dimension d to be constant, complete linkage computes
for both the k-center and k-diameter objective an O(log(k)) approximation. This was later
improved by Großwendt and Röglin [8] to O(1). Both works distinguish between two variants
of k-center: one where centers must be from the set P and the second where they can be
arbitrary points chosen from the whole space Rd. In the first case the approximation factor
shown in [1, 8] depends linearly on d and in the second case exponentially on d. For the
k-diameter problem it even depends doubly exponentially on the dimension. Furthermore
Ackermann et al. prove for the lp-metric with 1 ≤ p < ∞ a lower bound of Ω(p

√
log(d)) for

complete linkage for k-diameter and k-center with centers drawn from P [1].
Little is known about complete linkage in general metric spaces. Dasgupta and Long show

in [6] that the lower bound is in Ω(log(k)). With an approach to upper bound the increase
in cost by a complete linkage merge, which we borrow from [1], we obtain in a relatively
straightforward manner an upper bound of O(log(|P | − k)) for complete linkage for k-center.

There exist few results for agglomerative clustering regarding other objectives. Großwendt
et al. [9] analyze Ward’s method for k-means, and show that if the clusters of an optimal
k-means clustering are sufficiently far apart, Ward’s method computes a 2-approximation
and under some additional assumptions in fact reconstructs the optimal clustering.

Our Results. We study upper and lower bounds for the complete linkage algorithm in
general metric spaces for the k-center and k-diameter objective. For k-center in general
metric spaces it is reasonable to assume that centers can be only drawn from P and thus we
only consider this variant. Our main results are:

A lower bound of Ω(k) for complete linkage for k-center and k-diameter, which improves
the currently highest lower bound of Ω(log(k)) by Dasgupta and Long [6] significantly.
An upper bound of O(k) for k-center and an upper bound of O(k2) for k-diameter, which
are to the best of the authors’ knowledge the first non-trivial upper bounds for complete
linkage in general metric spaces.

The lower bound Ω(k) is surprising as it shows that complete linkage does not perform
asymptotically better than single linkage, which merges the two clusters with smallest
distance to each other (the distance of two clusters is the smallest distance between two of
their points). Dasgupta and Long [6] prove a lower bound of Ω(k) for single linkage and
we show that the approximation factor is in fact Θ(k). As single linkage is not designed
to minimize the radius or diameter of emerging clusters, it is a natural assumption that it
performs worse than complete linkage. However our results show that this assumption is
generally not true. It is even still open if complete linkage for k-diameter performs as good
as single linkage, as we are only able to prove an upper bound of O(k2).

Techniques. One of the biggest and most well-known issues concerning single linkage is that
of chaining. If there is a sequence of points x1, . . . , xk ∈ P with dist(xi, xi+1) relatively small
for all i, then single linkage might merge all of them together, despite the resulting cluster

APPROX/RANDOM 2021

18:4 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

r
2x

r d
x

d

Figure 1 On the left we see two k-center clusters with radius r whose centers lie in the same
optimal cluster. The radius of the merged cluster is at most r + 2x. On the right we have a similar
situation for k-diameter but the merged cluster has diameter at most 2d + x.

being quite large. Dasgupta and Long show with their lower bound of Ω(log k) that a similar
process of chaining can also occur when executing complete linkage. They give the example
of points placed on a regular (k × k)-grid with a spacing of 1. The distance is given by the
sum of the discrete metric on the horizontal axis and the logarithm of the absolute value of
the vertical axis. That is, dist((x, y), (x′, y′)) = 1x ̸=x′ + log2(1 + |y − y′|). Now, although an
optimal clustering just consists of the individual rows of the grid, complete linkage might
reproduce the columns instead (assuming that k is a power of 2): iteratively go from top to
bottom and merge vertically neighboring clusters. Every such iteration halves the number of
clusters and, due to the logarithm, only increases the cost by 1, just as when merging along
the rows. Of course, we would have to pay only once to merge horizontally, whereas we have
to pay log2 k times to merge vertically, but complete linkage cannot distinguish between
these two cases. In fact, one can shift the vertical placement by arbitrarily small values to
ensure that complete linkage always chooses the bad case.

We have to heavily modify the example to improve upon this log2 k factor. The funda-
mental problem is this: a vertical merge is only allowed to increase the cost by 1 to tie it
with any horizontal merge, whereas the number of rows occupied by a cluster (and thus its
diameter) doubles. We raise the lower bound by constructing an instance on which complete
linkage iteratively merges diagonally shifted clusters. This process of merging clusters is
much slower and does not require us to introduce a logarithmic scaling: merging one such
cluster into the other incurs a cost of 1, while at the same time increasing the number of
occupied rows only by one. The instance that we describe later is successively built from
smaller components that exhibit exactly this behaviour, while ensuring that any such merge
does not pay for the whole row.

Following the work of Ackermann et al. [1] one can show for complete linkage an upper
bound of log(|P | − k) for k-center. This comes from the following easy property, which is
true for the radius but cannot be transferred to diameter: Suppose the optimal k-center
solution O has cost x. In a complete linkage clustering consisting of more than k clusters two
of its centers must lie in the same optimal cluster and therefore are at distance ≤ 2x to each
other. Thus the merge that is performed by complete linkage increases the cost by at most
2x. However if we replace k-center by k-diameter we see that the cost is more than doubled
in the worst case (see Figure 1), which is not enough to obtain an upper bound polynomial
in k. Thus we introduce another perspective on the cost of a cluster. A cluster is good if
its cost is small enough in comparison to the number of optimal clusters from O which it
intersects. As O consists of k clusters this already implies a sufficiently small upper bound
for good clusters. For all remaining clusters we show that their number is small enough.
This approach leads to an upper bound of O(k2) for k-diameter and, in combination with
the log(|P | − k) upper bound, an upper bound of O(k) for k-center.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:5

2 Preliminaries

Let (P, dist) be a metric space with n points and 1 ≤ k ≤ n. The k-center problem asks
for a partition of P into k clusters C = {C1, . . . , Ck}. The cost of cluster Ci is given
by cost(Ci) = minc∈Ci

maxx∈Ci
dist(x, c) while the cost of the clustering C is cost(C) =

maxi=1,...,k cost(Ci) and is to be minimized.
In the k-diameter problem we also have to find a partition of P into k clusters C =

{C1, . . . , Ck} and minimize the overall cost. However, we replace the cost of a cluster Ci

by cost(Ci) = maxx,y∈Ci dist(x, y). For both the k-center and the k-diameter problem we
denote by Ok an arbitrary but fixed optimal clustering.

We study the hierarchical version of the above problems, where we ask for a k-clustering
Ck of P for every 1 ≤ k ≤ n. The clusterings must be hierarchically compatible, which means
that Ck−1 is obtained from Ck by merging two of its clusters, i.e., for all 2 ≤ k ≤ n there are
A, B ∈ Ck such that Ck−1 = Ck\{A, B}∪{A∪B}. A sequence of such k-clusterings (Ck)n

k=1 is
called a hierarchical clustering. We say that it is an α-approximation if cost(Ck) ≤ α cost(Ok)
for all 1 ≤ k ≤ n. Thus the task is to find a hierarchical clustering which is a good
approximation to the optimal solution on every level k.

A common class of approaches for computing such hierarchical clusterings are agglomer-
ative linkage algorithms. As outlined above, a hierarchical clustering can be computed in a
bottom-up fashion, where pairs of clusters are merged successively. Agglomerative linkage
procedures do exactly that, with the choice of clusters to be merged at every step given
by a linkage function. Such a linkage function maps all possible pairs of disjoint clusters
onto R+ and the algorithm chooses one pair that minimizes this value: Suppose that we
have already constructed Ck and are using the linkage function f . Then Ck−1 is given by
merging a pair A ̸= B ∈ Ck with f(A, B) = minA′ ̸=B′∈Ck

f(A′, B′). As already stated, the
two linkage functions we are interested in are:

Single linkage: (A, B) 7→ dist(A, B) = min(a,b)∈A×B dist(a, b).
Complete linkage: (A, B) 7→ cost(A ∪ B).

To analyze the performance of the respective agglomerative algorithms we often consider
the smallest clustering from (Ck)n

k=1 (in terms of the number of clusters) whose cost does
not exceed a given bound. This perspective is already used by Großwendt and Röglin [8] and
allows a better handling of the cost. For any x ≥ 0 let t≤x = min{k | cost(Ck) ≤ x} and set
Hx = Ct≤x

. Observe that Hx is the smallest clustering from (Ck)n
k=1 with cost at most x.

Thus it has the useful property that every merge of two clusters in Hx results in a clustering
of cost more than x. Furthermore, for a cluster C ⊆ P and an optimal k-clustering O = Ok

we denote by OC = {O ∈ O | O ∩ C ̸= ∅} the set of all optimal k-clusters hit by C.

3 Approximation Guarantee of Single Linkage

As outlined in [6] there are clustering instances where single linkage builds chains yielding
the lower bound Ω(k) on the approximation factor. We show in Appendix A that this is the
worst case scenario, as in fact single linkage computes an O(k)-approximation for hierarchical
k-center/k-diameter.

▶ Theorem 1. Let (Ck)n
k=1 be the hierarchical clustering computed by single linkage on

(P, dist) and let Ok be an optimal clustering for k-center or k-diameter, respectively. We
have for all 1 ≤ k ≤ n

1. cost(Ck) ≤ (2k + 2) · cost(Ok) for the k-center cost
2. cost(Ck) ≤ 2k · cost(Ok) for the k-diameter cost.

APPROX/RANDOM 2021

18:6 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

1
1

1
2

1

1
2

1

1
2

3

1

1
2

1

1
2

1

1
2

1

1
2

3

3

4

Figure 2 The progression of the first 5 components K1, . . . , K5. The gray sets indicate points
on the same level and form the optimal clusters. When analyzing the instance for the radius, the
encircled points in the K2 and K4 component indicate their optimal centers.

4 Lower Bounds for Complete Linkage

In the following we show that complete linkage performs asymptotically as bad as single
linkage in the worst case. That is, for every k ∈ N we provide an instance Pk on which the
diameter and radius of a k-clustering computed by complete linkage is off by a factor of Ω(k)
from the cost of an optimal solution. This improves upon the previously known lower bound
of Ω(log2(k)) established by Dasgupta and Long. Recall from the introduction that one of
the big problems preventing an improved lower bound was that any horizontal merge already
paid for all the involved rows. As such, for the worst case, one was only allowed to merge
vertically, but this can be done at most log2(k) times. We improve upon this by inductively
constructing an instance from smaller components that are diagonally shifted to produce
bigger ones. Merging two such diagonally shifted components incurs an additional cost of
1, while ensuring at the same time that this does not pay for any future merges of parallel
components.

A k-component Kk = (Gk, ϕk) is a combination of a graph Gk = (Vk, Ek) and a mapping
ϕk : Vk → {1, . . . , k}. The mapping is necessary for the construction of the component and
later on determines an optimal k-clustering on Pk. We refer to ϕk(x) as the level of x. The
other part of the component is an undirected graph Gk, referred to as a k-graph, on 2k−1

points with edge weights in N that describe the distances between the levels.
The 1-component K1 consists of a single point x with ϕ1(x) = 1. All higher components

are constructed inductively from this 1-component. Given the (k − 1)-component Kk−1
we construct Kk as follows: Let K

(0)
k−1 and K

(1)
k−1 be two copies of the (k − 1)-component

Kk−1. For the k-graph Gk we first take the disjoint union of the graphs G
(0)
k−1 and G

(1)
k−1.

This already yields all the points of Gk. For the k-mapping ϕk we set ϕk(x) = ϕ
(i)
k−1(x) + i

for x ∈ V (G(i)
k−1) ⊂ V (Gk). That is, in the first copy the levels stay the same, whereas in

the second all levels are shifted by 1. Finally, to complete Gk, we add one edge of weight
k − 1 from the unique point s ∈ V (Gk) with ϕk(s) = 1 to the unique point t ∈ V (Gk) with
ϕk(t) = k. The progression of the first five components is given in Figure 2.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:7

The instance Pk is now constructed from the k-component as follows: Let K
(1)
k , . . . , K

(k+1)
k

be k + 1 copies of Kk. Take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k+1)
k

and connect them by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and

y ∈ V (G(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y). Note that the sets of points from the same level constitute

cliques of diameter and radius 1 and form an optimal solution of cost 1. To simplify notation
we omit the indices and write ϕk(x) to denote the level of a point x ∈ V (G(j)

k) ⊂ V (Pk). The
distance between two points in V (Pk) is given by the length of a shortest path.

Let (Ck′)n
k′=1 be the clustering produced by complete linkage on (V (Pk), dist) minimizing

the radius or diameter. Recall that Ck′−1 arises from Ck′ by merging two clusters A, B ∈ Ck′

that minimize the radius or diameter of A∪B. Remember that t≤x = min{k′ | cost(Ck′) ≤ x}
and that Hx = Ct≤x

denotes the smallest clustering with cost smaller or equal to x. We show
in the following two subsections that Hk−1 consists exactly of the k + 1 different k-graphs
that make up the instance resulting in the following theorem.

▶ Theorem 2. For every k ∈ N there exists an instance (V (Pk), dist) on which complete
linkage, minimizing either diameter or radius, computes a solution of diameter k or radius
k
2 , respectively, whereas the cost of an optimal solution is 1.

4.1 A Lower Bound for Diameter-Based Cost
We start with the analysis for diameter-based costs and after that move on to radius-based
costs.

▶ Lemma 3. The distance between two points x, y ∈ V (Pk) is at least as big as the difference
in levels |ϕk(x) − ϕk(y)|.

Proof. By the inductive construction of the components, an edge of weight w can cross at
most w levels. Hence the distance between x and y is at least |ϕk(x) − ϕk(y)|. ◀

Consider an ℓ-graph Gℓ. Instead of talking about the cluster V (Gℓ) in (V (Pk), dist) we
slightly abuse our notation and see Gℓ as a cluster with cost(Gℓ) = maxx,y∈V (Gl) dist(x, y),
i.e., the diameter of V (Gℓ). Using the previous lemma we can show inductively that the
diameter of any ℓ-graph in Pk is ℓ − 1.

▶ Lemma 4. Let Gℓ be an ℓ-graph contained in Pk. We have cost(Gℓ) = ℓ − 1.

Proof. We prove the upper bound cost(Gℓ) ≤ ℓ − 1 by induction. The 1-graphs are points
and so the claim follows trivially for ℓ = 1. Assume now that we have shown the claim for
ℓ − 1. Let s, t ∈ V (Gℓ) be points such that dist(s, t) = cost(Gℓ). If these points lie in the
same graph, say G

(0)
ℓ−1, of the two (ℓ − 1)-graphs G

(0)
ℓ−1 and G

(1)
ℓ−1 that make up Gℓ, then

cost(Gℓ) = dist(s, t) ≤ cost(G(0)
ℓ−1) ≤ ℓ − 2 < ℓ − 1

by induction and we are done. Otherwise we may assume that s ∈ V (G(0)
ℓ−1) and t ∈ V (G(1)

ℓ−1).
This leaves us with another case analysis. If s is the unique point with level 1 and t is the
unique point in level ℓ in Gℓ then we are again done, since by construction there exists an
edge between s and t of weight ℓ − 1. Otherwise one of s or t must share a level with a point
not in the same (ℓ − 1)-graph as themselves. Without loss of generality we may assume that
s lies in the same level as some u ∈ V (G(1)

ℓ−1). By induction dist(u, t) ≤ ℓ − 2 and so

cost(Gℓ) = dist(s, t) ≤ dist(s, u) + dist(u, t) ≤ 1 + ℓ − 2 = ℓ − 1.

This concludes the proof of the upper bound cost(Gℓ) ≤ ℓ − 1.
To see the lower bound cost(Gℓ) ≥ ℓ−1, we apply Lemma 3 to the unique point s with level

1 and the unique point t with level ℓ in Gℓ. This shows that cost(Gℓ) ≥ dist(s, t) ≥ ℓ − 1. ◀

APPROX/RANDOM 2021

18:8 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

The goal now is to show that complete linkage actually reconstructs these graphs as
clusters. We already computed the cost of an ℓ-graph and now it is left to observe that
merging two ℓ-graphs costs at least ℓ.

▶ Lemma 5. Complete linkage might merge clusters on (V (Pk), dist) in such a way that for
all ℓ ≤ k, the clustering Hℓ−1 consists exactly of the ℓ-graphs that make up Pk.

Proof. We again prove the claim by induction. Complete linkage always starts with every
point in a separate cluster. Since those are exactly the 1-graphs and any merge costs at least
1, the claim follows for ℓ = 1. Suppose now that Hℓ−1 consists exactly of the ℓ-graphs of the
instance. Since we are dealing with integer weights, any new merge increases the cost by at
least 1 and so we may merge all pairs of ℓ-graphs that form the (ℓ + 1)-graphs. These are
cheapest merges as they altogether increase the cost from ℓ − 1 to ℓ (see Lemma 4). To finish
the proof we are left to show that at this point there are no more free merges left. Take any
two (ℓ + 1)-graphs Gℓ+1 ̸= G′

ℓ+1 contained in the current clustering. If they do not exactly
cover the same levels, then the distance between the point in the lowest level to the point
in the highest level is strictly more than ℓ by Lemma 3. Hence, we can assume that they
share the same levels, say level λ up to level ℓ + λ. Denote by s the unique point in V (Gℓ+1)
with ϕk(s) = λ and by t the unique point in V (G′

ℓ+1) with ϕk(t) = ℓ + λ. A shortest path
connecting s and t must contain an edge {u, w} with u ∈ V (Gℓ+1) and w ∈ V (Pk)\V (Gℓ+1).
Such an edge either weights at least ℓ + 1 or weights 1 and connects points in the same level,
i.e., ϕk(u) = ϕk(w). In the first case we directly obtain dist(s, t) ≥ ℓ + 1. In the second case
we use Lemma 3 and obtain

dist(s, t) = dist(s, u) + dist(u, w) + dist(w, t)
≥ |ϕk(s) − ϕk(u)| + 1 + |ϕk(w) − ϕk(t)|
= |ϕk(s) − ϕk(t)| + 1
= ℓ + 1.

It follows that Hℓ consists exactly of the (ℓ + 1)-graphs that make up Pk. ◀

Proof of Theorem 2 (diameter). Lemma 5 shows that Hk−1 can consist of all the k-graphs
that make up Pk. There are exactly k + 1 of them and so there is one merge remaining to
get a k-clustering. By definition of Hk−1, this last merge increases the cost by at least 1
and so the k-clustering produced by complete linkage costs at least k, whereas the optimal
clustering consisting of the k individual levels costs 1. ◀

4.2 A Lower Bound for Radius-Based Costs
We show that the instance (V (Pk), dist) also yields a lower bound of k/2 for radius-based
costs. This requires some additional work, as we now also have to keep track of the centers
that induce an optimal radius. For an ℓ-graph Gℓ we again slightly abuse the notation and
talk about Gℓ as a cluster with cost(Gℓ) = minc∈V (Gℓ) maxx∈V (Gℓ) dist(c, x), the radius of
V (Gℓ).

To prove Lemma 6 we show that there is a point in Pk for which the following holds:
For all but one of the ℓ-graphs that constitute G2ℓ we can find a point that we can reach
by an edge of weight 1. Since the diameter of these graphs is ℓ − 1, this is sufficient.
The remaining ℓ-graph lies in the same (ℓ + 1)-graph as our point and so we are again
done by considering the diameter. Also there are no points that induce a smaller radius,
since the diameter of G2ℓ is already 2ℓ − 1.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:9

▶ Lemma 6. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2 arbitrary.

Then it holds that cost(G2ℓ) = ℓ and furthermore, all optimal centers that induce this cost
are themselves already contained in G2ℓ (and not in any other 2ℓ-graph).

Proof. By Lemma 4 we know that the diameter of G2ℓ is 2ℓ − 1. Thus the radius of G2ℓ is at
least ℓ. To show the upper bound of ℓ suppose that G2ℓ covers the levels λ up to λ + 2ℓ − 1
in Pk. Consider the unique (ℓ + 1)-graph Hℓ+1 contained in G2ℓ covering the levels λ + ℓ − 1
to λ + 2ℓ − 1. Let c be the unique point in Hℓ+1 with level λ + ℓ − 1. By Lemma 4 the
diameter of Hℓ+1 is ℓ, so any point in Hℓ+1 is at distance ≤ ℓ to c. Consider now a point
x ∈ V (G2ℓ)\V (Hℓ+1) and the ℓ-graph Hℓ containing x. We claim that Hℓ contains a point y

with level λ + ℓ − 1. If this is not true then Hℓ covers the levels λ + ℓ up to λ + 2ℓ − 1 and
therefore also contains the unique point in G2ℓ with level λ + 2ℓ − 1. This is not possible as
the unique point in G2ℓ with level λ + 2ℓ − 1 is already contained in Hℓ+1. So using that the
diameter of Hℓ is ℓ − 1 and ϕk(c) = ϕk(y) we obtain

dist(c, x) ≤ dist(c, y) + dist(y, x) ≤ 1 + (ℓ − 1) = ℓ.

Now we prove that all optimal centers must be contained in G2ℓ. For all points c ∈
V (Pk)\V (G2ℓ) we have to show that maxx′∈V (G2ℓ) dist(c, x′) ≥ ℓ + 1. Suppose that ϕk(c) ≤
λ+ℓ−1. Let x be the unique point in G2ℓ with level λ+2ℓ−1, we claim that dist(c, x) ≥ ℓ+1.
Consider a shortest path between c and x and let {u, w} be an edge on this path with
u ∈ V (Pk)\V (G2ℓ) and w ∈ V (G2ℓ). By construction {u, w} either weights at least 2ℓ in
which case

dist(c, x) ≥ 2ℓ ≥ ℓ + 1

or it weights 1 and ϕk(u) = ϕk(w), so

dist(c, x) = dist(c, u) + dist(u, v) + dist(v, x)
≥ |ϕk(c) − ϕk(u)| + 1 + |ϕk(w) − ϕk(x)|
= |ϕk(c) − ϕk(x)| + 1
≥ ℓ + 1.

In case ϕk(c) ≥ λ + ℓ we can prove analogously that dist(c, y) ≥ ℓ + 1 for the unique point y

in G2ℓ with level λ. This finishes the proof. ◀

Now we make sure that complete linkage completely reconstructs these components. In
particular we show that merging 2ℓ-graphs which cover the same levels increases the cost
of our solution. Here we make use of the fact that sets of optimal centers for any pair of
2ℓ-graphs do not intersect. Lemma 7 ensures that the cost indeed increases.

▶ Lemma 7. Let C, D be two subsets of V (Pk) with cost(C) = cost(D). Let Z(C) and
Z(D) denote the set of all optimal centers for C respectively D. If Z(C) ∩ Z(D) = ∅ then
cost(C ∪ D) > cost(C).

Proof. Let x ∈ V (Pk). Since Z(C) ∩ Z(D) = ∅ this point can be an optimal center for at
most one of the sets. Assume without loss of generality that x /∈ Z(D). We have

max
y∈C∪D

dist(y, x) ≥ max
y∈D

dist(y, x) > cost(D) = cost(C)

So we have for all x ∈ V (Pk) that maxy∈C∪D dist(y, x) > cost(C) which proves the lemma.
◀

APPROX/RANDOM 2021

18:10 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

Now, with this we can prove that the merging behavior of complete linkage reconstructs
our components. Observe that Theorem 2 is an immediate consequence of Corollary 8.

▶ Corollary 8. Complete linkage might merge clusters in (V (Pk), dist) in such a way, that
for 1 ≤ ℓ ≤ k

2 , the clustering Hℓ consists exactly of the 2ℓ-graphs that make up Pk.

Proof. The proof is an analogous induction to Lemma 5. Consider the case ℓ = 1. The
first merge increases the cost to 1. Observe by Lemma 6 that the cost of a 2-graph is 1.
Furthermore, the same lemma shows that the sets of optimal centers for any pair of 2-graphs
do not intersect and so, as shown in Lemma 7 any further merge necessarily has to increase
the cost. Hence H1 consists exactly of the 2-graphs.

Assume now that the claim holds for Hℓ. The induction step works essentially the same
as the base case. Any merge will increase the cost of the solution by at least 1 by definition
of Hℓ and so we might as well merge all 2ℓ-graphs that together compose a (2ℓ + 2)-graph as
this is a cheapest choice (Lemma 6). Furthermore, any additional merge would increase the
cost to at least ℓ + 2 (again by Lemma 7) and so Hℓ+1 consist of the (2ℓ + 2)-graphs. ◀

Notice that in our analysis we decided which clusters will be merged by complete linkage
whenever it has to choose between two merges of the same cost. However with some
adjustments on the instance Pk we can show a lower bound of Ω(k) for both, diameter and
radius, for any behavior of complete linkage on ties. For more details we refer to Appendix B.

5 An Upper Bound for Complete Linkage

Even though complete linkage is often used when it comes to computing a hierarchical
clustering, there are no known non-trivial upper bounds for its approximation guarantee in
general metric spaces, to the best of the authors’ knowledge. We give an upper bound for
complete linkage for hierarchical k-center and hierarchical k-diameter.

5.1 An Upper Bound for Radius-Based Cost
We show that the approximation ratio of the radius of any k-clustering Ck produced by
complete linkage relative to an optimal k-center clustering is in O(k).

▶ Theorem 9. Let (Ck)n
k=1 be the hierarchical clustering computed by complete linkage on

(P, dist) optimizing the radius. For all 1 ≤ k ≤ n the radius cost(Ck) is upper bounded by
O(k) cost(Ok), where Ok is an optimal k-center clustering.

To simplify the notation we fix an arbitrary k and assume that the optimal k-clustering
O = Ok has cost cost(O) = 1

2 . The latter is possible without loss of generality by scaling the
metric appropriately.

We split the proof of Theorem 9 into two parts. In the first, we derive a crude upper bound
for the increasing cost of clusterings produced during the execution of complete linkage. This
part follows the work of Ackermann et al. [1], who use the same bound to estimate the cost of
some few merge steps. Proposition 12 shows that the difference in cost between Ck and Ct for
t > k is at most ⌈log(t − k)⌉ + 1. That is, cost(Ck) ≤ ⌈log(t − k)⌉ + 1 + cost(Ct) holds for all
1 ≤ k < t ≤ n. A clustering Ct whose cost we can estimate directly (i.e. without refering to
any other clustering) thus yields a proper upper bound for cost(Ck). Ideally, this clustering
should consist of relatively few clusters (so that ⌈log(t − k)⌉ is small), while at the same
time not being too expensive. Of course, however, these criteria oppose each other. Naively
choosing the initial clustering Ct = Cn is not good enough. Although its cost is minimal, the
number of clusters is too high, only yielding an upper bound of cost(Ck) ≤ ⌈log(n − k)⌉ + 1.
In the second part of the proof we thus set out to find a different clustering to start from.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:11

Part 1: An estimate of the relative difference in cost

When dealing with radii, any merge done by complete linkage previous to reaching a k-
clustering increases the cost by at most 2 cost(O) = 1 (Figure 1). This is due to the fact that
the centers of two of those clusters are contained in the same optimal cluster.

We show that complete linkage clusterings at times t≤x and t≤x+1 can have at most k

clusters in common. All other clusters from Hx are merged in Hx+1.

▶ Lemma 10. For all x ≥ 0 the clustering Hx+1 contains at most k clusters of cost at most
x. In particular, it holds that |Hx+1 ∩ Hx| ≤ k.

Proof. Assume on the contrary that there exist k +1 pairwise different clusters D1, . . . , Dk+1
at time t≤x+1 of cost at most x. Denote by di ∈ Di a point that induces the smallest radius,
i.e. cost(Di) = maxd∈Di

dist(d, di) for all i. Then two of these points, say d1 and d2, have to
be contained in the same optimal cluster O ∈ O. Hence, we know that

cost(D1 ∪ D2) ≤ 1 + max
i∈{1,2}

cost(Di) ≤ 1 + x

because dist(d1, d2) ≤ 2 cost(O) ≤ 2 cost(O) = 1 and cost(Di) ≤ x for i = 1, 2. This
contradicts the definition of Hx+1, as D1 and D2 can still be merged without pushing the
cost beyond x + 1. ◀

With this we can upper bound |Hx+i| in terms of |Hx| for all i ∈ N. The proof of
Corollary 11 can be found in Appendix C.

▶ Corollary 11. For all i ∈ N+ and x ≥ 0 it holds that |Hx+i| ≤ k + 1
2i (|Hx| − k).

▶ Proposition 12. For all k < t ≤ n it holds that cost(Ck) ≤ ⌈log(t − k)⌉ + 1 + cost(Ct).

Proof. Let x = cost(Ct), so that Hx consists of at most t clusters. Applying Corollary 11
with i = ⌈log(t − k)⌉ + 1 then shows that

|Hx+i| < k + 1
t − k

(|Hx| − k) ≤ k + 1.

That is, Hx+i emerges from Ck by merging some (or none) of its clusters and we can conclude
that cost(Ck) ≤ cost(Hx+i) ≤ x + i = cost(Ct) + ⌈log(t − k)⌉ + 1. ◀

Part 2: A cheap clustering with few clusters

Suppose that there exists a complete linkage clustering Ct for some t > k with t ∈ O(2k)
clusters and cost(Ct) ∈ O(k). Then applying Proposition 12 shows that

cost(Ck) ∈ log(O(2k)) + 1 + O(k) = O(k) = O(k) cost(O)

and Theorem 9 is proven (recall that cost(O) = 1
2). We show that Ct = H4k+2 is a sufficiently

good choice. To estimate the size of H4k+2, we distinguish between active and inactive
clusters. Remember that OC = {O ∈ O | O ∩ C ≠ ∅} is the set of optimal clusters hit by C.

▶ Definition 13. We call a cluster C ∈ Hx active, if cost(C) ≤ 4 · |OC |, or if there exists an
active cluster C ′ ∈ Hx−1 such that OC ⊆ OC′ . Otherwise, C is called inactive.

APPROX/RANDOM 2021

18:12 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

The behavior that makes complete linkage more difficult to analyze than single linkage
is that the former sometimes merges clusters that are quite far apart. That is, contrary to
single linkage, complete linkage can produce clusters that are very expensive relative to the
number of optimal clusters hit by them. We mark such clusters as inactive and count them
directly the first time they are created. We will see that the number of such clusters is small.
However the number of active clusters is potentially large, but if the cost of the clustering
reaches 4k + 2, this number can also be bounded as we see in the following lemma.

▶ Lemma 14. There are at most 2k active clusters in H4k+2.

Proof. Notice that at time t≤4k+2 there cannot exist two active clusters C1 and C2 with
OC1 ⊆ OC2 . Indeed, since C2 hits all the optimal clusters hit by C1 we get that

cost(C1 ∪ C2) ≤ cost(C2) + 1 ≤ 4|OC2 | + 1 ≤ 4k + 1

and so C1 and C2 would have been merged in H4k+2. Now, if there are more than 2k active
clusters in H4k+2, then at least two of them must hit exactly the same set of optimal clusters.
Since we have just ruled this out, the lemma follows. ◀

We estimate the number of inactive clusters, by looking at the circumstances under which
they arise. As it happens, at each step there are not many clusters whose merge yields an
inactive cluster.

▶ Lemma 15. There are at most 4k2 + k inactive clusters in H4k+2.

Proof. Let mx be the number of inactive clusters in Hx. We show that the recurrence
relation mx ≤ mx−1 + k holds for any x ∈ N. In that case m4k+2 ≤ (4k + 1)k = 4k2 + k

since m1 = 0 and we are done.
To prove the recurrence relation first fix some arbitrary x ∈ N and let D ∈ Hx be an

inactive cluster. Let D1, . . . , Dℓ ∈ Hx−1 be the clusters whose merge results in D. We show
that none of them can be active at time t≤x−1 and have cost at least x − 2. Since this only
leaves few possible clusterings, we get the recurrence inequality given above. Suppose that
for one of the clusters, say Di, it holds that 4 · |ODi | ≥ cost(Di) ≥ x − 2. Right away, notice
that |ODi

| < |OD| since otherwise D would also be active by definition. But then

cost(D) ≤ x ≤ cost(Di) + 2 ≤ 4|ODi
| + 2 < 4(|ODi

| + 1) ≤ 4|OD|

contradicts the assumption of D being inactive. As such, we know that all Di (i = 1, . . . , ℓ)
must be inactive or have cost less than x − 2. In other words, each inactive cluster in Hx

descends from the set

{D ∈ Hx−1 | D is inactive} ∪ {D ∈ Hx−1 | cost(D) < x − 2}.

The cardinality of the set on the left is mx−1 and, by Lemma 10, the cardinality of the set
on the right is at most k. This proves the claim. ◀

▶ Corollary 16. H4k+2 consists of at most 2k + 4k2 + k clusters.

Notice that Theorem 9 is an immediate consequence of Corollary 16 and Proposition 12.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:13

5.2 An Upper Bound for Diameter-Based Cost
The main challenge in proving an upper bound on the approximation guarantee of complete
linkage when replacing the k-center objective by the k-diameter objective is to deal with the
possibly large increase of cost after a merge step (see Figure 1).

For some arbitrary but fixed k let O denote an optimal k-diameter solution and assume
that cost(O) = 1 from now on. To motivate our approach consider the clustering H1
computed by complete linkage at time t≤1. Observe that every optimal cluster can fully
contain at most one cluster from H1, as the union of such clusters would cost at most 1.
Now, consider the graph G = (V, E) with V = O and edges {A, B} ⊂ V for every cluster
C ∈ H1 intersecting A and B. If there is such an edge {A, B}, then the cost of merging A

and B is upper bounded by 3. We can go even further and consider the merge of all optimal
clusters in a connected component of G. Suppose the size of the connected component is
m, then the resulting cluster costs at most 2m − 1. There are two extreme cases in which
we could end up: if E = ∅, then H1 = O and complete linkage has successfully recovered
the optimal solution. On the other hand, if G is connected, then merging all points costs
at most 2k − 1 and we get an O(k)-approximative solution. The remaining cases are more
difficult to handle. We proceed by successively adding edges between optimal clusters, while
maintaining the property that for a connected component Z in G merging ∪A∈V (Z)A costs at
most |V (Z)|2. This leads to an upper bound of k2 for all clusters C constructed by complete
linkage with C ⊂ ∪A∈V (Z)A. We show that the number of clusters which do not admit this
property is sufficiently small, such that in the end, we are able to prove that Hk2 consists of
at most k clusters. This immediately leads the following theorem.

▶ Theorem 17. Let (Ck)n
k=1 be the hierarchical clustering computed by complete linkage on

(P, dist) optimizing the diameter. For all 1 ≤ k ≤ n the diameter cost(Ck) is upper bounded
by k2 cost(Ok), where Ok is an optimal k-diameter clustering.

Essential for this section is a sequence of cluster graphs Gt = (Vt, Et) for t = 1, . . . , k2

constructed directly on the set Vt = O of optimal k-clusters. We start with the cluster
graph G1 that contains edges {A, B} for every two vertices A, B ∈ V1 = O that are hit by a
common cluster from H1. To this we successively add edges based on a vertex labeling in
order to create the remaining cluster graphs G2, . . . , Gk2 . The labeling distinguishes vertices
as being either active or inactive. We denote the set of active vertices in Vt by V a

t and the
set of inactive ones by V i

t . In the beginning (t = 1) the inactive vertices are set to precisely
those that are isolated: V i

1 = {O ∈ V1 | δG1(O) = ∅}. For t ≥ 2, the labeling is outlined in
Definition 18. Over the course of time, active vertices may become inactive, but inactive
vertices never become active again.

Given a labeling for Vt+1, we construct Gt+1 from Gt by adding additional edges: If there
are two active vertices A, B ∈ V a

t+1 that are both hit by a common cluster from Ht+1, we
add an edge {A, B} to Et+1.

▶ Definition 18. Let A ∈ Vt+1 be an arbitrary optimal cluster and ZA the connected
component in Gt that contains A. We call A inactive (i.e., A ∈ V i

t+1) if ⌈cost(ZA)⌉ ≤ t,
and active otherwise. Here, and in the following cost(ZA) = cost(

⋃
B∈V (ZA) B) denotes the

cost of merging all optimal clusters contained in V (ZA).

Thus if a connected component in Gt has small cost, then all vertices in this component
become inactive in Gt+1 by definition. We state the following useful properties of inactive
vertices in (Gt)k2

t=1.

APPROX/RANDOM 2021

18:14 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

▶ Lemma 19. If Z is a connected component in Gt+1 with V (Z) ∩ V i
t+1 ̸= ∅, then

1. Z is also a connected component in Gt and ⌈cost(Z)⌉ ≤ t,
2. we have V (Z) ⊆ V i

t+1, i.e., all vertices in Z become inactive at the same time.
Moreover we have V i

t ⊆ V i
t+1, so once vertices become inactive, they stay inactive. Equival-

ently, V a
t+1 ⊆ V a

t .

Proof. Take any inactive vertex A ∈ V i
t+1 ∩ V (Z) and consider the connected component ZA

in Gt containing A. By Definition 18, we have that ⌈cost(ZA)⌉ ≤ t and so all other vertices
in ZA have to be in V i

t+1 as well. We observe that Et+1 \ Et only contains edges between
vertices from V a

t+1 by construction. This shows Z = ZA.
It is left to show that inactive vertices stay inactive. For t = 1 the inactive vertices V i

1
are already connected components with cost at most 1. As such, they remain inactive at
step t = 2. For t ≥ 2, consider an inactive vertex A ∈ V i

t and the connected component
Z ⊆ Gt containing it. We showed previously that V (Z) ⊂ V i

t and so Z is also a connected
component in Gt+1 with ⌈cost(Z)⌉ ≤ t − 1 < t and thus A ∈ V (Z) ⊂ V i

t+1. ◀

▶ Definition 20. Let C ∈ Ht for some fixed t ∈ N. We define It = {C ∈ Ht | OC ∩ V i
t ̸= ∅}

as the set of all clusters in Ht which hit at least one inactive vertex of Gt. We call these
clusters inactive and all clusters from Ht\It active.

We prove the following easy property about active clusters.

▶ Lemma 21. If C ∈ Ht \ It, then Gt[OC] forms a clique. In particular there exists a
connected component in Gt that fully contains OC .

Proof. By definition of It, OC must consist exclusively of active vertices. Since all of them
are hit by C ∈ Ht there exists an edge {A, B} ∈ Et for every pair A, B ∈ OC . In other
words, Gt[OC] forms a clique and the claim follows. ◀

This does not necessarily hold for an inactive cluster C ∈ It. As C contains at least one
inactive vertex, the connected component Z which contains this vertex does not grow. If
later on complete linkage merges C with another cluster the result is an inactive cluster
which may hit vertices outside of Z. So Gt′ does not reflect the progression of C for t′ ≥ t.
However, the number of such clusters cannot exceed |V i

t |.

▶ Lemma 22. The number of inactive clusters in Ht is at most the number of inactive
vertices at time t. That is, |It| ≤ |V i

t | holds for all t ∈ N.

Proof. We prove the claim by showing that the following inductive construction defines a
family of injective mappings ϕt : It → V i

t :
Let C ∈ I1 be an inactive cluster. By definition C thus has to intersect an inactive
optimal cluster A ∈ V i

1 . Actually, there can only be one such cluster, as any other
optimal cluster that is hit would induce an edge incident to A in G1, making it active.
Set ϕ1(C) = A, so that OC = {ϕ1(C)}.
For t > 1 and C ∈ It we distinguish two cases: If there is no cluster in It−1 that is a
subset of C, we pick an arbitrary but fixed A ∈ OC ∩V i

t and set ϕt(C) = A. Otherwise, we
know that C must descend from some cluster D ∈ It−1 and we can set ϕt(C) = ϕt−1(D).
Since ϕt−1(D) ∈ V i

t−1 ⊂ V i
t by Lemma 19, this shows that ϕt really maps into V i

t .

Suppose that there exist two inactive clusters C, D ∈ I1 that are mapped to the same
inactive vertex A ∈ V i

1 . Then, by the construction of ϕ1, OC = {A} = OD shows that C and
D are actually fully contained in the same optimal cluster. The optimal cluster has diameter
at most 1 and so C and D would have already been merged in H1. As this is not possible,
ϕ1 has to be injective.

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:15

Now, let t ≥ 2 be arbitrary and assume ϕt−1 to be injective. We show that in that case
ϕt also has to be injective. Suppose on the contrary, that there exist two different clusters
C, D ∈ It with ϕt(C) = ϕt(D). We distinguish three cases.
Case 1: Both C and D descend from (i.e., contain) clusters C ′, D′ ∈ It−1 with ϕt(C) =

ϕt−1(C ′) and ϕt(D) = ϕt−1(D′), respectively. Then ϕt−1(C ′) = ϕt(C) = ϕt(D) =
ϕt−1(D′) entails that C ′ = D′, since ϕt−1 is assumed to be injective. Clearly, C ′ = D′

cannot end up being a subset of two different clusters in It and so we end up in a
contradiction.

Case 2: Neither C nor D descend from a cluster in It−1. In other words, C and D fully
descend from clusters in Ht−1 \ It−1 and so there exist clusters C ′, D′ ∈ Ht−1 \ It−1
contained in C and D, respectively, such that A = ϕt(C) = ϕt(D) ∈ OC′ ∩ OD′ .
Applying Lemma 21 yields the existence of a connected component Z in Gt−1 with
V (Z) ⊃ OC′ ∪ OD′ . We show that this connected component has cost at most t − 1.
In that case, C ′ and D′ should have already been merged in Ht−1; a contradiction.
To show that cost(Z) ≤ t − 1, consider the connected component Z ′ in Gt containing
A = ϕt(C) = ϕt(D) ∈ OC ∩ OD ∩ V i

t . Since A was chosen from a subset of V i
t , we know

from Lemma 19 that Z ′ is also a connected component in Gt−1 with cost(Z ′) ≤ t − 1.
Now, A ∈ V (Z) ∩ V (Z ′) shows that Z = Z ′ and so we are done.

Case 3: D contains a cluster D′ ∈ It−1, so that ϕt(D) = ϕt−1(D′) ∈ V i
t−1, whereas C does

not. (The symmetric case with the roles of C and D swapped is left out.) Since C

fully descends from Ht−1 \ It−1, we know that OC ⊆ V a
t−1. But this already yields a

contradiction: V a
t−1 ∋ ϕt(C) = ϕt(D) = ϕt−1(D′) ∈ V i

t−1.
This covers all possible cases, with each one ending in a contradiction. Hence ϕt has to be
injective and by induction this holds for all t ∈ N. ◀

Active clusters from Ht are nicely represented by the graph Gt as it is shown in Lemma 21.
We can indirectly bound the cost of active clusters by bounding the cost of the connected
components they are contained in.

▶ Lemma 23. Let Z be a connected component in Gt. If V (Z) ⊂ V a
t , we have cost(Z) ≤

|V (Z)|2.

Proof. Again, we prove this via an induction over t. For t = 1 and A, B ∈ V (Z) we want to
upper bound the distance between p ∈ A and q ∈ B. Let A = Q1, . . . , Qs = B be a simple
path connecting A and B in Z. We know by definition of G1 that for j = 1, . . . , s − 1 there
is a pair of points pj ∈ Qj and qj ∈ Qj+1 with dist(pj , qj) ≤ 1. Using the triangle inequality
we obtain

dist(p, q) ≤ dist(p, p1) +
s−2∑
j=1

(
dist(pj , qj) + dist(qj , pj+1)

)
+ dist(ps−1, qs−1) + dist(qs−1, q)

≤ 2s − 1.

Here we use that qj and pj+1 are in the same optimal cluster, thus the distance between
those points is at most one.

Since V (Z) contains only active vertices we have |V (Z)| ≥ 2. Using the above upper
bound on the distance between two points in

⋃
A∈V (Z) A we obtain

cost(Z) ≤ 2|V (Z)| − 1 ≤ |V (Z)|2.

APPROX/RANDOM 2021

18:16 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

For t > 1 let Z1, . . . , Zu denote the connected components in Gt−1 with V (Z) =⋃u
j=1 V (Zj). Let j, j′ ∈ {1, . . . , u}. We observe that V (Zj) ⊂ V (Z) ⊂ V a

t ⊂ V a
t−1. Thus we

obtain by induction that

cost(Zj) ≤ |V (Zj)|2. (1)

Suppose that ⌈cost(Zj)⌉ ≤ t − 1. Then V (Zj) ⊂ V i
t by definition, which is a contradiction to

V (Z) ∩ V i
t = ∅. So we must have

t ≤ ⌈cost(Zj)⌉. (2)

Combining (1) and (2) we obtain

t ≤
√

⌈cost(Zj)⌉⌈cost(Zj′)⌉ ≤
√

|V (Zj)|2|V (Zj′)|2 = |V (Zj)||V (Zj′)|. (3)

For A, B ∈ V (Z) we want to upper bound the distance between p ∈ A and q ∈ B. Let
A = Q1, . . . , Qs = B be a simple path connecting A and B in Z which enters and leaves
every connected component Zj for j ∈ {1, . . . , u} at most once. We divide the path into
several parts such that every part lies in one connected component from {Z1, . . . , Zu}. Let
1 = m1 < m2 < . . . < ml = s such that Qmj

. . . , Qmj+1−1 lie in one connected component
Z(j) ∈ {Z1, . . . , Zu} and Z(j) ̸= Z(j+1) for all j ∈ {1, . . . , l}. Since (Qmj−1, Qmj) ∈ Et we
know that there exists a cluster in Ht that intersects Qmj−1 and Qmj

, thus there is a pair
of points pj ∈ Qmj−1 and qj ∈ Qmj

such that dist(pj , qj) ≤ t. We obtain

dist(p, q) ≤
l−1∑
j=1

(
cost(Z(j)) + dist(pj , qj)

)
+ cost(Z(l)) ≤

l∑
j=1

(
|V (Z(j))|2 + t

)
≤

(l∑
j=1

|V (Z(j))|
)2

= |V (Z)|2.

For the second inequality we use (1) and dist(pj , qj) ≤ t. For the third inequality we use (3).
So we obtain the claimed upper bound on the cost of Z. ◀

We see that a connected component in Gk2 cannot contain two active clusters, yielding the
following upper bound.

▶ Lemma 24. At time t≤k2 the number of active clusters is less than or equal to the number
of active vertices. In other words, |Hk2 \ Ik2 | ≤ |V a

k2 |.

Proof. By Lemma 21 we know that every cluster C ∈ Hk2 \ Ik2 is fully contained in a
connected component ZC from Gk2 . We show that mapping any such C to an arbitrary
vertex in ZC yields an injective map φ : Hk2 \Ik2 ↪−→ V a

k2 . First, notice that φ is well-defined:
If ZC contains an inactive vertex, then all its vertices are inactive (Lemma 19), contradicting
the choice of C as active.

Suppose now that there are two different clusters C, C ′ ∈ Hk2 \ Ik2 that are mapped to
the same vertex φ(C) = φ(C ′). Then the connected components ZC and ZC′ , in which they
are embedded, already have to coincide (ZC = ZC′). But we have just shown (Lemma 23),
that cost(ZC) ≤ |V (ZC)|2 ≤ k2 and so C and C ′ would have already been merged in Hk2 .
As such the images of both cannot coincide and the map is injective. ◀

Together with the bound for the number of inactive clusters we are now able to prove the
theorem.

Proof of Theorem 17. Using Lemma 22&24 we obtain |Hk2 | = |Hk2 \ Ik2 | + |Ik2 | ≤
|V a

k2 | + |V i
k2 | = k, yielding cost(Ck) ≤ cost(Hk2) ≤ k2 cost(Ok). ◀

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:17

References
1 Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler. Analysis of ag-

glomerative clustering. Algorithmica, 69(1):184–215, 2014. doi:10.1007/s00453-012-9717-4.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020.
doi:10.1137/18M1171321.

3 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. doi:10.1145/2981561.

4 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004. doi:10.1137/
S0097539702418498.

5 Aparna Das and Claire Kenyon-Mathieu. On hierarchical diameter-clustering and the supplier
problem. Theory Comput. Syst., 45(3):497–511, 2009. doi:10.1007/s00224-009-9186-6.

6 Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical clustering. J.
Comput. Syst. Sci., 70(4):555–569, 2005. doi:10.1016/j.jcss.2004.10.006.

7 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

8 Anna Großwendt and Heiko Röglin. Improved analysis of complete-linkage clustering. Al-
gorithmica, 78(4):1131–1150, 2017. doi:10.1007/s00453-017-0284-6.

9 Anna Großwendt, Heiko Röglin, and Melanie Schmidt. Analysis of ward’s method. In
Timothy M. Chan, editor, Proc. of the Thirtieth Annu. ACM-SIAM Symp. on Discrete
Algorithms, SODA, pages 2939–2957. SIAM, 2019. doi:10.1137/1.9781611975482.182.

10 Anna-Klara Großwendt. Theoretical Analysis of Hierarchical Clustering and the Shadow Vertex
Algorithm. PhD thesis, University of Bonn, 2020. URL: http://hdl.handle.net/20.500.
11811/8348.

11 D. Ellis Hershkowitz and Gregory Kehne. Reverse greedy is bad for k-center. Inf. Process.
Lett., 158:105941, June 2020. doi:10.1016/j.ipl.2020.105941.

12 Dorit S. Hochbaum. When are np-hard location problems easy? Ann. Oper. Res., 1(3):201–214,
1984. doi:10.1007/BF01874389.

13 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Math. Oper. Res., 10(2):180–184, 1985. doi:10.1287/moor.10.2.180.

14 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discret.
Appl. Math., 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

15 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A
general approach for incremental approximation and hierarchical clustering. SIAM J. Comput.,
39(8):3633–3669, 2010. doi:10.1137/070698257.

16 Joe H. Ward, Jr. Hierarchical grouping to optimize an objective function. J. of the Am. Stat.
Assoc., 58:236–244, 1963. doi:10.1080/01621459.1963.10500845.

A Single Linkage

Let (Ck)n
i=1 be the hierarchical clustering computed by single linkage on (P, dist). Recall

that Ck−1 arises from Ck by merging two clusters A, B ∈ Ck that minimize dist(A, B).
We first compare the radius of Ck to the cost of an optimal k-center clustering O.

We introduce a graph G whose vertices are the optimal clusters V (G) = O and whose
edges E(G) = {{O, O′} ⊆ O | dist(O, O′) ≤ 2 cost(O)} connect all pairs of optimal clusters
O, O′ ∈ O with distance at most twice the optimal radius.

We make a similar construction to compare the diameter of Ck to the cost of an optimal
k-diameter clustering O ′. We consider the graph G′ with V (G′) = O ′ where two clusters in
O ′ are connected via an edge if their distance is at most cost(O ′).

APPROX/RANDOM 2021

https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1137/18M1171321
https://doi.org/10.1145/2981561
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1007/s00224-009-9186-6
https://doi.org/10.1016/j.jcss.2004.10.006
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/s00453-017-0284-6
https://doi.org/10.1137/1.9781611975482.182
http://hdl.handle.net/20.500.11811/8348
http://hdl.handle.net/20.500.11811/8348
https://doi.org/10.1016/j.ipl.2020.105941
https://doi.org/10.1007/BF01874389
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1137/070698257
https://doi.org/10.1080/01621459.1963.10500845

18:18 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

To estimate the cost of a single linkage cluster C ∈ Ck we look at the optimal clusters hit
by C. The next lemma shows that for any two points in C we can find a path connecting
them that passes through a chain of optimal clusters with distance at most 2 cost(O) or
cost(O ′) when considering the radius or diameter, respectively. One can already anticipate
that this gives an upper bound of O(k) on the radius or diameter of any such cluster C. In
Figure 3 we see an example of such a cluster C and the optimal clusters hit by C.

▶ Lemma 25. Let C ∈ Ct be a cluster computed by single linkage at a time step t ≥ k.
Then the graphs G[OC] and G′[O ′

C] induced by the vertex set of optimal clusters hit by C are
connected.

Proof. We prove the lemma for G[OC] by induction. At the beginning (t = n) the lemma
obviously holds, since any cluster contained in Cn is a point and thus hits only one single
optimal cluster. Assume now that the claim holds for t > k. By the pidgeonhole principle
there must exist two clusters C, C ′ ∈ Ct with two points c ∈ C and c′ ∈ C ′ lying in the same
optimal cluster O ∈ O. We know that dist(C, C ′) ≤ 2 cost(O) ≤ 2 cost(O). But this value
is exactly the objective that single linkage minimizes, so we know in particular that this
upper bound also holds for the distance between the clusters D, D′ chosen by single linkage.
Combining this with the induction hypothesis that both G[OD] and G[OD′] are connected
finishes the proof. One proves analogously that G′[O ′

C] is connected. ◀

As we see in Figure 3 this already yields an upper bound of 2k cost(O ′) on the diameter of
C. We estimate the radius of C by looking at the paths going through optimal clusters in OC

that are at distance at most 2 cost(O) from one another. Choosing the center appropriately
and uncoiling these paths in our original space P yields our upper bound of (2k + 2) cost(O).

▶ Theorem 1. Let (Ck)n
k=1 be the hierarchical clustering computed by single linkage on

(P, dist) and let Ok be an optimal clustering for k-center or k-diameter, respectively. We
have for all 1 ≤ k ≤ n

1. cost(Ck) ≤ (2k + 2) · cost(Ok) for the k-center cost
2. cost(Ck) ≤ 2k · cost(Ok) for the k-diameter cost.

Proof. We prove the statement for k-center. Fix an arbitrary time step 1 ≤ k ≤ n and denote
O = Ok. Let C ∈ Ck be an arbitrary cluster and P a longest simple path in G[OC]. Choose
as center for C an arbitrary vertex c ∈ C ∩ O from an optimal cluster O lying in the middle
of P . Note that by this choice every other vertex in G[OC] is reachable from O by a path of
length at most k

2 . Uncoiling such paths in P gives us an upper bound of 2(k + 1) cost(O)
for the distance between c and any other point z ∈ C as follows: If Oz ∈ O is the optimal
cluster containing z, then by choice of O, there exists a path O = O1, . . . , Oℓ+1 = Oz in
G[OC] of length ℓ ≤ k

2 connecting them. That means, for each i = 1, . . . , ℓ there exist points
xi ∈ Oi, yi+1 ∈ Oi+1 such that dist(xi, yi+1) ≤ 2 cost(O). Hence

dist(c, z) ≤ dist(c, x1) +
ℓ−1∑
i=1

(dist(xi, yi+1) + dist(yi+1, xi+1))

+ dist(xℓ, yℓ+1) + dist(yℓ+1, z)
≤ 2(2ℓ + 1) cost(O) ≤ 2(k + 1) cost(O).

Using Lemma 25 one proves the statement for k-diameter analogously. ◀

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:19

· · · · · ·

x y

c

A1

A⌈ ℓ
2 ⌉

Aℓ

C

· · · · · ·

x y
A1 Aℓ

C

Figure 3 Cluster C hits the optimal clusters A1, . . . , Aℓ with dist(Ai, Ai+1) ≤ 2 cost(O) when
considering the radius on the left and dist(Ai, Ai+1) ≤ cost(O ′) when considering the diameter on
the right. In the left picture, we see that choosing center c in A⌈ ℓ

2 ⌉ leads to radius ≤ 2(ℓ + 1) cost(O).
Similarly the diameter of C in the right picture is at most 2ℓ cost(O).

B A Lower Bound for Complete Linkage without Bad Ties

In this section we focus on modifying the instance (V (Pk), dist) such that merging two
ℓ-graphs Gℓ, G′

ℓ which are part of the same (ℓ + 1)-graph is slightly cheaper than performing
any other merge in a clustering consisting of all ℓ-graphs.

B.1 Diameter-Based Cost

We explain how to adjust the construction of the k-components for the diameter. Let
ϵ ∈ (0, 1

2). The definition of K1 stays the same. As before a k-component is constructed
from two copies K

(0)
k−1, K

(1)
k−1 of the (k − 1)-component by taking the disjoint union of the

corresponding graphs and increasing the level of each point in K
(1)
k−1 by one. Here we do

not add an edge of weight k − 1 between the unique point s ∈ V (G(0)
k−1) with level 1 and

t ∈ V (G(1)
k−1) with level k. Instead we complete Gk by adding edges of weight (k − 1)(1 − ϵ)

between x ∈ V (G(0)
k−1) and y ∈ V (G(1)

k−1) if they are not on the same level, i.e., ϕk(x) ̸= ϕk(y).
The instance Pk is then constructed from k-copies K

(1)
k , . . . , K

(k)
k of the k-component Kk.

We take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k)
k and connect them

by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and y ∈ V (G(j)

k) with
ϕ

(i)
k (x) = ϕ

(j)
k (y).

We show that the clustering computed by complete linkage on (V (Pk), dist) at time
t≤ℓ(1−ϵ) consists exactly of the (ℓ + 1)-graphs that make up the instance.

▶ Lemma 26. The distance between two points x, y ∈ V (Pk) is at least |ϕk(x)−ϕk(y)|(1− ϵ).

Proof. By the inductive construction of the components, an edge which crosses w levels costs
at least w(1 − ϵ). Hence the distance between x and y is at least |ϕk(x) − ϕk(y)|(1 − ϵ). ◀

As before we use the previous lemma to show that the diameter of any ℓ-graph in Pk is
(ℓ − 1)(1 − ϵ).

▶ Lemma 27. Let Gℓ be an ℓ-graph contained in Pk. We have cost(Gℓ) = (ℓ − 1)(1 − ϵ).

Proof. We prove the upper bound cost(Gℓ) ≤ (ℓ − 1)(1 − ϵ) by induction. The 1-graphs are
points and so the claim follows trivially for ℓ = 1. Assume now that we have shown the claim
for ℓ − 1. Let Gℓ be an ℓ-graph and s, t ∈ V (Gℓ) points such that cost(Gℓ) = dist(s, t). If

APPROX/RANDOM 2021

18:20 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

these points lie in the same graph, say G
(0)
ℓ−1, of the two (ℓ − 1)-graphs G

(0)
ℓ−1 and G

(1)
ℓ−1 that

make up Gℓ, then

dist(s, t) ≤ cost(G(0)
ℓ−1) ≤ (ℓ − 2)(1 − ϵ) < (ℓ − 1)(1 − ϵ)

by induction and we are done. Otherwise we may assume that s ∈ V (G(0)
ℓ−1) and t ∈ V (G(1)

ℓ−1).
We distinguish two cases. If ϕk(s) = ϕk(t) these points are connected by an edge of weight
one by construction. Notice that an ℓ-graph does not contain points with the same level if
ℓ ≤ 2. Using ϵ ≤ 1

2 and ℓ ≥ 3 we obtain

dist(s, t) = 1 ≤ (ℓ − 1)(1 − ϵ).

If s and t are on different levels there is an edge of weight (ℓ − 1)(1 − ϵ) between s and t by
construction. Thus we obtain in all cases

cost(Gℓ) = dist(s, t) ≤ (ℓ − 1)(1 − ϵ).

To see the lower bound cost(Gℓ) ≥ (ℓ − 1)(1 − ϵ), we apply Lemma 26 to the unique point
s ∈ V (Gℓ) with ϕℓ(s) = 1 and the unique point t ∈ V (Gℓ) with ϕℓ(t) = ℓ. This shows that
cost(Gℓ) ≥ dist(s, t) ≥ (ℓ − 1)(1 − ϵ). ◀

We show that complete linkage must reconstruct these components as clusters.

▶ Lemma 28. Complete linkage must merge clusters on (V (Pk), dist) in such a way that for
all ℓ < k, the clustering Hℓ(1−ϵ) consists exactly of the (ℓ + 1)-graphs that make up Pk.

Proof. We prove the claim by induction. Complete linkage always starts with every point in
a separate cluster. Since those are exactly the 1-graphs and any merge of two points costs
at least (1 − ϵ), the claim follows for ℓ = 0. Suppose now that H(ℓ−1)(1−ϵ) consists exactly
of the ℓ-graphs of the instance. Consider two ℓ-graphs Gℓ ̸= G′

ℓ contained in the current
clustering. We compute the cost of merging Gℓ with G′

ℓ. For this purpose we distinguish
whether they are contained in the same (ℓ + 1)-graph or not.

Case 1: If they are contained in the same (ℓ + 1)-graph Gℓ+1 merging Gℓ with G′
ℓ results in

Gℓ+1. We obtain by Lemma 27, that cost cost(Gℓ+1) = ℓ(1 − ϵ).
Case 2: If they are not contained in the same (ℓ + 1)-graph, we show that merging Gℓ with

G′
ℓ costs more than ℓ(1 − ϵ). We make the following observations.

1. The edges connecting x ∈ V (Gℓ) and y ∈ V (G′
ℓ) with ϕk(x) ̸= ϕk(y) are of weight

≥ (ℓ + 1)(1 − ϵ).
2. There exist s ∈ V (Gℓ) and t ∈ V (G′

ℓ) with |ϕk(s) − ϕk(t)| ≥ ℓ − 1.
The last observation follows from the fact that each of the graphs contains two points
whose difference in levels is exactly ℓ − 1.
We prove that dist(s, t) > ℓ(1 − ϵ) and therefore merging Gℓ with G′

ℓ costs more than
ℓ(1− ϵ). Any shortest path connecting s and t in Pk must contain an edge {u, w} between
a point u ∈ V (Gℓ) and a point w ∈ V (G′

ℓ). By above observation this edge is either of
weight ≥ (ℓ + 1)(1 − ϵ) or u and w are on the same level and the edge is of weight 1. In
the first case we conclude

dist(s, t) ≥ (ℓ + 1)(1 − ϵ) > ℓ(1 − ϵ).

A. Arutyunova, A. Großwendt, H. Röglin, M. Schmidt, and J. Wargalla 18:21

In the second case we obtain that

dist(s, t) = dist(s, u) + 1 + dist(w, t)
≥ |ϕk(s) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(t)|(1 − ϵ)
= |ϕk(s) − ϕk(t)|(1 − ϵ) + 1
≥ (ℓ − 1)(1 − ϵ) + 1
> ℓ(1 − ϵ).

We see that Hℓ(1−ϵ) must consists exactly of the (ℓ + 1)-graphs of Pk. ◀

Lemma 28 shows that H(k−1)(1−ϵ) consists of all the k-graphs that make up Pk. There are
exactly k of them, thus the k-clustering produced by complete linkage costs (k − 1)(1 − ϵ).

▶ Corollary 29. However the tie-breaks are resolved, complete linkage computes a k-clustering
on (V (Pk), dist) with diameter (k − 1)(1 − ϵ) while the optimal k-clustering has diameter 1.

B.2 Radius-Based Cost
We explain how to adjust the construction of the k-components for the radius. Let ϵ ∈ (0, 1

2).
The definition of K1 does not change. As before a k-component is constructed from two copies
K

(0)
k−1, K

(1)
k−1 of the (k−1)-component by taking the disjoint union of the corresponding graphs

and increasing the level of each point in K
(1)
k−1 by one. We complete Gk by adding edges

between x ∈ V (G(0)
k−1) and y ∈ V (G(1)

k−1) if ϕk(x) ̸= ϕk(y) and we assign this edge a weight
of ⌈ k

2 ⌉(1 − ϵ) if |ϕk(x) − ϕk(y)| ≤ ⌈ k
2 ⌉ − 1 and otherwise a weight of |ϕk(x) − ϕk(y)|(1 − ϵ).

As before the instance Pk is constructed from k-copies K
(1)
k , . . . , K

(k)
k of the k-component

Kk. We take the disjoint union of the corresponding k-graphs G
(1)
k , . . . , G

(k)
k and connect

them by adding edges {x, y} of weight 1 for every two points x ∈ V (G(i)
k) and y ∈ V (G(j)

k)
with ϕ

(i)
k (x) = ϕ

(j)
k (y). We observe that Lemma 26 still holds on the adjusted instance. Also

notice that the diameter of an ℓ-graph is still upper bounded by (ℓ − 1)(1 − ϵ).

▶ Lemma 30. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2 . It holds that

cost(G2ℓ) = ℓ(1 − ϵ). Furthermore let G′
2ℓ be a second 2ℓ-graph which is not contained in the

same 2(ℓ + 1)-graph as G2ℓ. Any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1 − ϵ) + 1.

Proof. We know that G2ℓ contains points s and t with |ϕk(s) − ϕk(t)| = 2ℓ − 1. Thus for
any x ∈ V (Pk) we have max{|ϕk(s) − ϕk(x)|, |ϕk(t) − ϕk(x)|} ≥ ℓ. By Lemma 26 we know
that max{dist(s, x), dist(t, x)} ≥ ℓ(1 − ϵ) and therefore cost(G2ℓ) ≥ ℓ(1 − ϵ).

To prove the upper bound suppose that G2ℓ covers the levels λ up to λ + 2ℓ − 1 in Pk.
Consider the unique (ℓ + 1)-graph Hℓ+1 contained in G2ℓ covering the levels λ + ℓ − 1 to
λ + 2ℓ − 1. Let c be the unique point in Hℓ+1 with level λ + ℓ − 1. Remember that the
diameter of Hℓ+1 is at most ℓ(1 − ϵ), so any point in Hℓ+1 is at distance ≤ ℓ(1 − ϵ) to
c. Consider now a point x ∈ V (G2ℓ)\V (Hℓ+1). We know that ϕk(x) < λ + 2ℓ − 1. Thus
|ϕk(x) − ϕk(c)| ≤ ℓ − 1. By construction there exists an edge of weight at most ℓ(1 − ϵ)
between x and c and thus dist(x, c) ≤ ℓ(1 − ϵ).

It is left to show that any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1 − ϵ) + 1.

Let y ∈ V (Pk) and let H2(ℓ+1) be the 2(ℓ + 1)-graph containing y. Assume without
loss of generality that G2ℓ is not contained in H2(ℓ+1). Let x ∈ V (G2ℓ) be a point with
|ϕk(x) − ϕk(y)| ≥ ℓ. We claim that dist(x, y) ≥ (ℓ − 1)(1 − ϵ) + 1. A shortest path connecting
x and y must contain an edge {u, w} with u ∈ V (Pk)\V (H2(ℓ+1)) and w ∈ V (H2(ℓ+1)). We

APPROX/RANDOM 2021

18:22 Upper and Lower Bounds for Complete Linkage in General Metric Spaces

know by construction that either ϕk(u) = ϕk(w), or the edge weights at least (ℓ + 2)(1 − ϵ).
In the first case we use Lemma 26 and obtain

dist(x, y) = dist(x, u) + dist(u, w) + dist(w, y)
≥ |ϕk(x) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(y)|(1 − ϵ)
= |ϕk(x) − ϕk(y)|(1 − ϵ) + 1
≥ ℓ(1 − ϵ) + 1

and in the second case we obtain

dist(x, y) ≥ (ℓ + 2)(1 − ϵ) ≥ ℓ(1 − ϵ) + 1. ◀

This immediately leads the following results.

▶ Corollary 31. Complete linkage must merge clusters on (V (Pk), dist) in such a way that
for all 1 ≤ ℓ ≤ k

2 , the clustering Hℓ(1−ϵ) consists exactly of the 2ℓ-graphs that make up Pk.

▶ Corollary 32. However the tie-breaks are resolved, complete linkage computes a k-clustering
on (V (Pk), dist) with radius k

2 (1 − ϵ), while the optimal k-clustering has radius 1.

C An Upper Bound for Radius-Based Cost

▶ Corollary 11. For all i ∈ N+ and x ≥ 0 it holds that |Hx+i| ≤ k + 1
2i (|Hx| − k).

Proof. First, we consider what happens when we increase the cost by 1. We fix an arbitrary
x′ ≥ 0. Lemma 10 shows that at most k clusters from Hx′ are left untouched, while the
remaining |Hx′ | − k clusters have to be merged with at least one other cluster (thus at least
halving the number of those clusters) to get to Hx′+1. This yields a bound of

|Hx′+1| ≤ k + 1
2(|Hx′ | − k).

Now, the case for general i ∈ N follows by a straightforward induction. We have just
shown that the claim is true for i = 1, where we set x′ = x. For the induction step suppose
that

|Hx+i−1| ≤ k + 1
2i−1 (|Hx| − k).

Substituting this into the inequality

|Hx+i| ≤ k + 1
2(|Hx+i−1| − k),

derived from the first part of our proof with x′ = x + i − 1, yields

|Hx+i| ≤ k +
k + 1

2i−1 (|Hx| − k) − k

2 = k + 1
2i

(|Hx| − k)

as claimed. ◀

On Two-Pass Streaming Algorithms for Maximum
Bipartite Matching
Christian Konrad # Ñ

Department of Computer Science, University of Bristol, UK

Kheeran K. Naidu # Ñ

Department of Computer Science, University of Bristol, UK

Abstract
We study two-pass streaming algorithms for Maximum Bipartite Matching (MBM). All known two-pass
streaming algorithms for MBM operate in a similar fashion: They compute a maximal matching in
the first pass and find 3-augmenting paths in the second in order to augment the matching found
in the first pass. Our aim is to explore the limitations of this approach and to determine whether
current techniques can be used to further improve the state-of-the-art algorithms. We give the
following results:

We show that every two-pass streaming algorithm that solely computes a maximal matching in
the first pass and outputs a (2/3 + ϵ)-approximation requires n

1+Ω(1
log log n

) space, for every ϵ > 0,
where n is the number of vertices of the input graph. This result is obtained by extending the
Ruzsa-Szemerédi graph construction of [Goel et al., SODA’12] so as to ensure that the resulting
graph has a close to perfect matching, the key property needed in our construction. This result may
be of independent interest.

Furthermore, we combine the two main techniques, i.e., subsampling followed by the Greedy
matching algorithm [Konrad, MFCS’18] which gives a 2 −

√
2 ≈ 0.5857-approximation, and the

computation of degree-bounded semi-matchings [Esfandiari et al., ICDMW’16][Kale and Tirodkar,
APPROX’17] which gives a 1

2 + 1
12 ≈ 0.5833-approximation, and obtain a meta-algorithm that yields

Konrad’s and Esfandiari et al.’s algorithms as special cases. This unifies two strands of research.
By optimizing parameters, we discover that Konrad’s algorithm is optimal for the implied class of
algorithms and, perhaps surprisingly, that there is a second optimal algorithm. We show that the
analysis of our meta-algorithm is best possible. Our results imply that further improvements, if
possible, require new techniques.

2012 ACM Subject Classification Information systems → Data streaming; Mathematics of computing
→ Matchings and factors; Theory of computation → Communication complexity

Keywords and phrases Data streaming, matchings, lower bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.19

Category APPROX

Funding Kheeran K. Naidu: EPSRC Doctoral Training Studentship EP/T517872/1.

1 Introduction

In the semi-streaming model for processing large graphs, an n-vertex graph is presented to
an algorithm as a sequence of its edges in arbitrary order. The algorithm makes one or few
passes over the input stream and maintains a memory of size O(n polylog n).

The semi-streaming model has been extensively studied since its introduction by Feigen-
baum et al. in 2004 [11], and various graph problems, including matchings, independent
sets, spanning trees, graph sparsification, subgraph detection, and others are known to
admit semi-streaming algorithms (see [23] for an excellent survey). Among these problems,
the Maximum Matching problem and, in particular, its bipartite version, the Maximum
Bipartite Matching (MBM) problem, have received the most attention (see, for example,
[11, 22, 1, 20, 13, 16, 8, 15, 19, 12, 5, 10, 2, 4, 17]).

© Christian Konrad and Kheeran K. Naidu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
http://www.christiankonrad.de/
https://orcid.org/0000-0003-1802-4011
mailto:kheeran.naidu@bristol.ac.uk
https://kheerannaidu.com/
https://orcid.org/0000-0002-5946-4702
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

Algorithm 1 Greedy Matching.
Input: Graph G = (A, B, E)

1: M ← ∅
2: for each edge e ∈ E (arbitrary order)
3: if M ∪ {e} is a matching
4: M ←M ∪ {e}
5: return M

Algorithm 2 Greedyd Semi-Matching.
Input: Graph G = (A, B, E), integer d

1: S ← ∅
2: for each edge ab ∈ E (arbitrary order)
3: if degS(a) = 0 and degS(b) < d

4: S ← S ∪ {ab}
5: return S

In this paper, we focus on MBM. The currently best one-pass semi-streaming algorithm
for MBM is the Greedy matching algorithm (depicted in Algorithm 1). Greedy processes
the edges of a graph in arbitrary order and inserts the current edge into an initially empty
matching if possible. It produces a maximal matching, which is known to be at least half the
size of a maximum matching, and constitutes a 1

2 -approximation semi-streaming algorithm
for MBM. It is a long-standing open question whether Greedy is optimal for the class of
semi-streaming algorithms or whether an improved approximation ratio is possible. Progress
has been made on the lower bound side ([13, 16, 17]), ruling out semi-streaming algorithms
with approximation ratio better than 1

1+ln 2 ≈ 0.5906 [17].
Konrad et al. [20] were the first to show that an approximation ratio better than 1

2 can
be achieved if two passes over the input are allowed, and further successive improvements
[15, 8, 19] led to a two-pass semi-streaming algorithm with an approximation factor of
2−
√

2 ≈ 0.58578 [19] (see Table 1 for an overview of two-pass algorithms for MBM).

Table 1 Two-pass semi-streaming algorithms for Maximum Bipartite Matching.

Approximation Factor Reference Comment
1
2 + 0.019 Konrad et al. [20] randomized

1
2 + 1

16 = 0.5625 Kale and Tirodkar [15] deterministic
1
2 + 1

12 ≈ 0.5833 Esfandiari et al. [8] deterministic
2 −

√
2 ≈ 0.5857 Konrad [19] randomized

All known two-pass streaming algorithms proceed in a similar fashion. In the first pass,
they run Greedy in order to compute a maximal matching M . In the second pass, they
pursue different strategies to compute additional edges F that allow them to increase the
size of M . Two techniques for computing the edge set F have been used:

1. Subsampling and Greedy [19] (see also [20]): Given a bipartite graph G = (A, B, E)
and a first-pass maximal matching M , they first subsample the edges M with probability
p and obtain a matching M ′ ⊆ M . Then, in the second pass, they compute Greedy
matchings ML and MR on subgraphs GL = G[A(M ′) ∪ B(M)] and GR = G[A(M) ∪
B(M ′)], respectively, where A(M ′) are the matched A-vertices in M ′, B(M) are the
unmatched B vertices, and B(M ′) and A(M) are defined similarly. It can be seen that if
M is relatively small, then M ′ ∪ML ∪MR contains many disjoint 3-augmenting paths.
Setting p =

√
2− 1 yields the approximation factor 2−

√
2.

2. Semi-matchings and Greedyd [15, 8]: Given a bipartite graph G = (A, B, E) and a
first-pass maximal matching M , the second pass consists of finding degree-d-constrained
semi-matchings SL and SR on subgraphs GL = G[A(M) ∪B(M)] and GR = G[A(M) ∪
B(M)], respectively, using the algorithm Greedyd (as depicted in Algorithm 2). A
degree-d-constrained semi-matching in a bipartite graph is a subset of edges S ⊆ E such

C. Konrad and K. K. Naidu 19:3

that degS(a) ≤ 1 and degS(b) ≤ d, for every a ∈ A and b ∈ B or vice versa1. Similar to
the method above, it can be seen that if the matching M is relatively small, M ∪SL ∪SR

contains many disjoint 3-augmenting paths. The setting d = 3 yields the approximation
factor 1

2 + 1
12 .

Our Results. In this paper, we explore the limitations of this approach and investigate
whether current techniques can be used to further improve the state-of-the-art.

Our first result is a limitation result on the approximation factor achievable by algorithms
that follow the scheme described above:

▶ Theorem 1 (simplified). Every two-pass semi-streaming algorithm for MBM that solely
runs Greedy in the first pass has an approximation factor of at most 2

3 .

Our result builds upon a result by Goel et al. [13] who proved that the lower bound
of Theorem 1 applies to one-pass streaming algorithms. Their construction relies on the
existence of dense Ruzsa-Szemerédi graphs with large induced matchings, i.e., bipartite
2n-vertex graphs G = (A, B, E) with |A| = |B| = n whose edge sets can be partitioned into
disjoint induced matchings such that each matching is of size at least (1

2 − δ)n, for some
small δ. Our construction requires similarly dense RS graphs with equally large matchings,
however, in addition to these properties, our RS graphs must contain a near-perfect matching,
i.e., a matching that matches all but a small constant fraction of the vertices. To this end, we
augment the RS graph construction by Goel et al.: We show that, for each induced matching
M in Goel et al.’s construction, we can add a matching M ′ to the construction without
violating the induced matching property such that M ∪M ′ forms a near-perfect matching.
We believe this result may be of independent interest.

Next, we combine the subsampling and semi-matching techniques and give a meta-
algorithm that yields Konrad’s and Esfandiari et al.’s algorithms as special cases, thereby
unifying two strands of research. Our meta-algorithm is parameterised by a sampling
probability 0 < p ≤ 1 and an integral degree bound d ≥ 1. First, as in the subsampling
technique, the edges of the first-pass matching M are subsampled independently with
probability p, which yields a subset M ′ ⊆ M . Next, as in the semi-matching technique,
incomplete semi-matchings SL and SR with degree bounds d are computed, however, now in
the subgraphs G′

L = G[A(M ′) ∪B(M)] and G′
R = G[A(M) ∪B(M ′)]. The algorithm then

outputs the largest matching among the edges M ∪ SL ∪ SR.
As our second result, we establish the approximation factor of our meta-algorithm:

▶ Theorem 2 (simplified). Combining the subsampling and semi-matching techniques yields
a two-pass semi-streaming algorithm for MBM with approximation factor{

1
2 + (1

d+p −
1

2d) · p, if p ≤ d(
√

2− 1)
1
2 + d−p

6d+2p , otherwise ,

(ignoring lower order terms) that succeeds with high probability.

Interestingly, two parameter settings maximize the approximation factor in Theorem 2,
achieving the ratio 2−

√
2 (see Figure 1). This is achieved by setting d = 1 and p =

√
2− 1

which recovers Konrad’s algorithm, and by setting d = 2 and p = 2
√

2− 2 which gives a new
algorithm. The setting d = 3 and p = 1 yields the slightly weaker bound 1

2 + 1
12 ≈ 0.5833

and recovers Esfandiari et al.’s algorithm.

1 The usual definition of a semi-matching requires degS(a) = 1, for every a ∈ A (e.g. [9, 21]). This
property is not required here, and, for ease of notation, we stick to this term.

APPROX/RANDOM 2021

19:4 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

p0.5

2−
√
2 ≈ 0.5857

0 1
√
2− 1 2

√
2− 2

d = 1

d = 2

d = 3

d = 4

d = 5

Figure 1 Approximation factors for different settings of d.

We also show that the analysis of our meta-algorithm is tight, by giving instances on
which our meta-algorithm does not perform better than the claimed bound (Theorem 12).

Discussion. Our results demonstrate that new techniques are needed in order to improve
on the (2 −

√
2) approximation factor. However, one may wonder whether 2 −

√
2 is the

best approximation ratio achievable by the class of two-pass matching algorithms that solely
computes a maximal matching in the first pass. As pointed out by Kapralov [17], his
techniques for establishing the 1

1+ln 2 lower bound for one-pass algorithms can probably also
be applied to a construction by Huang et al. [14], which would then show that 2 −

√
2 is

the best approximation factor achievable by one-pass semi-streaming algorithms for MBM.
It is unclear whether a first-pass Greedy matching could be embedded in the resulting
construction without affecting its hardness, however, if possible, this would render Konrad’s
algorithm optimal for the considered class of two-pass streaming algorithms.

Further Related Work. Besides two passes over the input, improvements over the Greedy
algorithm can also be obtained under the assumption that the input stream is in random
order. Assadi and Behnezhad [2] recently showed that an approximation factor of 2

3 + ϵ can
be obtained, for some fixed small but constant ϵ > 0, building on Bernstein’s breakthrough
result [5], and improving on previous algorithms [5, 10, 19, 20]. In insertion-deletion streams,
where previously inserted edges may be deleted again, space Θ̃(n2−3ϵ) is necessary [7] and
sufficient [3, 6] for computing a nϵ-approximation (see also [18]).

Outline. We first give notation and definitions in Section 2. Subsequently, we show in
Section 3 that every two-pass semi-streaming algorithm that solely runs Greedy in the first
pass cannot have an approximation ratio of 2

3 + ϵ, for any ϵ > 0. Our main algorithmic result,
i.e., the combination of subsampling and Greedyd, is presented in Section 4. Finally, we
conclude in Section 5.

2 Preliminaries

Let G = (A, B, E) be a bipartite graph with V = A∪B and |V | = n. For F ⊆ E and v ∈ V ,
we write degF (v) to denote the degree of vertex v in subgraph (A, B, F). For any U ⊆ V and
F ⊆ E, U(F) denotes the set of vertices in U which are the endpoints of edges in F , and we
denote its complement by U(F) = U \ U(F). For a subset of vertices U ⊆ V , we write G[U]

C. Konrad and K. K. Naidu 19:5

for the subgraph of G induced by U . For any edges e, f ∈ E, e is incident to f if they share
an endpoint. We say that e and f are vertex-disjoint if e is not incident to f . Lastly, for any
two sets X and Y , we define X ⊕ Y := (X \ Y) ∪ (Y \X) as their symmetric difference.

A matching in G is a subset M ⊆ E of vertex-disjoint edges. It is maximal if every
e ∈ E \M is incident to an edge in M . We denote by µ(G) the matching number of G, i.e.,
the cardinality of a largest matching. A maximum matching is one of size µ(G). Additionally,
M is called an induced matching if the edge set of the subgraph of G induced by V (M) is
exactly M .

Wald’s Equation. We require the following well-known version of Wald’s Equation:
▶ Lemma 3. Let X1, X2, . . . be a sequence of non-negative random variables with E[Xi] ≤ τ ,
for all i ≤ T , and let T be a random stopping time for the sequence with E[T] <∞. Then:

E[
T∑

i=1
Xi] ≤ τ · E[T] .

3 Lower Bound

We now prove that every two-pass streaming algorithm for MBM with approximation factor
2
3 + ϵ, for any ϵ > 0, that solely runs Greedy in the first pass requires space n1+Ω(1

log log n).
To this end, we adapt the lower bound by Goel et al. [13], which we discuss first.

3.1 Goel et al.’s Lower Bound for One-pass Algorithms
Goel et al.’s lower bound is proved in the one-way two-party communication framework.
Two parties, denoted Alice and Bob, each hold subsets E1 and E2, respectively, of the
input graph’s edges. Alice sends a single message to Bob who, upon receipt, outputs a
large matching. Goel et al. showed that there is a distribution λ over input graphs so that
every deterministic communication protocol with constant distributional error over λ and
approximation factor 2

3 + ϵ, for any ϵ > 0, requires a message of length n1+Ω(1
log log n). A

similar result then applies for randomized constant error protocols by Yao’s Lemma [25],
and the well-known connection between streaming algorithms and one-way communication
protocols allows us to translate this lower bound to a lower bound on the space requirements
of constant error one-pass streaming algorithms.

Goel et al.’s construction is based on the existence of a dense Ruzsa-Szemerédi graph:
▶ Definition 4 (Ruzsa-Szemerédi Graph). A bipartite graph G = (A, B, E) is an (r, t)-Ruzsa-
Szemerédi graph (RS graph in short) if the edge set E can be partitioned into t disjoint
matchings M1, M2, . . . , Mt such that, for every i, (1) |Mi| ≥ r; and (2) Mi is an induced
matching in G.
They give a construction for a family of ((1

2 − δ)n, nΩ(1
log log n))-RS graphs, for any small

constant δ > 0, on 2n vertices (with |A| = |B| = n) that we will extend further below.
Their hard input distribution λ for the two-party communication setting is displayed

in Figure 2. Observe that the graphs G ∼ λ are such that µ(G) ≥ 3
2 N since the matching

M∗
X ∪M∗

Y ∪ M̂s is of this size.
Goel et al. prove the following hardness result:

▶ Theorem 5. For any small ϵ > 0, every deterministic (2
3 + ϵ)-approximation one-way

two-party communication protocol with constant distributional error over λ requires a message
of size n1+Ω(1

log log n), where n is the number of vertices in the input graph.

APPROX/RANDOM 2021

19:6 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

1. Let GRS = (A, B, E) be an (r, t)-RS graph with |A| = |B| = N and r = (1
2 − δ) ·N ,

for some δ > 0, and t = NΩ(1
log log N).

2. For every i ∈ [t], let M̂i ⊆Mi be a uniform random subset of size (1
2 − 2δ) ·N and

let E1 = ∪t
i=1M̂i.

3. Let X and Y each be disjoint sets of (1
2 + δ) ·N vertices, which are also disjoint from

A ∪B. Choose uniformly at random a special index s ∈ [t].
4. Let M∗

X and M∗
Y be arbitrary perfect matchings between X and B(Ms), and Y and

A(Ms), respectively. Then, let E2 = M∗
X ∪M∗

Y .
5. Finally, G = (A ∪X, B ∪ Y, E1 ∪ E2) which has n = (3 + 2δ) ·N vertices.

Alice is given edges E1 and Bob is given edges E2.

Figure 2 Hard input distribution λ.

3.2 Our Lower Bound Construction

In the following, we extend Goel et al.’s lower bound to the two-pass situation where a
Greedy matching is computed in the first pass. To this end, we need to augment Alice and
Bob’s inputs, as defined by distribution λ, by a maximal matching M in the input graph
G ∼ λ, which then results in a distribution λ+. Observe that if we place the edges of M at
the beginning of the input stream, then running Greedy in the first pass recovers exactly
the matching M . Hence, when abstracting the second pass as a two-party communication
problem, both Alice and Bob already know the matching M . Our main argument then is as
follows: We will show that any two-party protocol under distribution λ+ can also be used
for solving the distribution λ with the same distributional error, message size, and similar
approximation factor. The hardness of Theorem 5, therefore, carries over.

3.2.1 Ruzsa-Szemerédi Graphs with Near-Perfect Matchings

Adding a maximal matching M to Alice’s and Bob’s input requires care since we need to
ensure that the hardness of the construction is preserved. Our construction requires that
the underlying RS graph contains a near-perfect matching, which is a property that is not
guaranteed by Goel et al.’s RS graph construction.

We therefore augment Goel et al.’s construction by complementing every induced matching,
Mi, with a vertex-disjoint counterpart, M ′

i , without destroying the RS graph properties.
Then, since Mi and M ′

i are vertex-disjoint, Mi ∪M ′
i constitutes a matching, and, since both

Mi and M ′
i each already match nearly half of the vertices, Mi ∪M ′

i constitutes a near-perfect
matching in our family of RS graphs.

We will now present Goel et al.’s RS graph construction and then discuss how the
additional matchings M ′

i can be added to the construction.

Goel et al.’s Ruzsa-Szemerédi Graph Construction

For an integer m, let X = Y = [m2]m be the vertex sets of a bipartite graph, and let
N = |X| = |Y | = m2m denote their cardinalities. Every induced matching MI of Goel et
al.’s RS graph construction is indexed by a subset of coordinates I ⊂ [m] of size δm

6 , for some
small δ > 0. Then, the edges MI are defined by means of a colouring of the vertices X and
Y (which depends on I), that we discuss first.

C. Konrad and K. K. Naidu 19:7

kw

m
3

Rk

δm
6

Wk

m
3

Bk

(k + 1)w

δm
6

W ′
k

Figure 3 One group of the partitioned number line of natural numbers.

Colouring the Vertex Sets. Let w = (2+δ)m
3 . Then, define a partition of the natural

numbers into groups of size w such that, for all k ∈ N0,

Rk =
[
kw, kw + m

3

)
where |Rk| =

m

3 ,

Wk =
[
kw + m

3 , kw + m

3 + δm

6

)
where |Wk| =

δm

6 ,

Bk =
[
kw + m

3 + δm

6 , kw + 2m

3 + δm

6

)
where |Bk| =

m

3 ,

W ′
k =

[
kw + 2m

3 + δm

6 , (k + 1)w
)

where |W ′
k| =

δm

6 .

See Figure 3 for an illustration.
Given I, let Ls = {x⃗ ∈ [m2]m :

∑
i∈I xi = s} represent a layer of vectors in [m2]m where

the 1-norm of their subvectors2 w.r.t. I is s, for all s ∈ N0. Next, colour the vectors in each
Ls either red if s ∈ Rk, blue if s ∈ Bk, or white if s ∈Wk ∪W ′

k, for some k ∈ N0. Doing this
gives the following coloured strips for any k ∈ N0 (see Figure 4):

R(k) =
⋃

∀s∈Rk

Ls, W (k) =
⋃

∀s∈Wk

Ls, B(k) =
⋃

∀s∈Bk

Ls and W ′(k) =
⋃

∀s∈W ′
k

Ls.

Next, these strips are grouped together by colour, as follows:

R =
⋃

∀k∈N0

R(k), W =
⋃

∀k∈N0

W (k), B =
⋃

∀k∈N0

B(k) and W ′ =
⋃

∀k∈N0

W ′(k).

We now define the colours of the vertices X and Y as follows: A vertex z⃗ ∈ X ∪ Y is
coloured red if z⃗ ∈ R, blue if z⃗ ∈ B, and white if z⃗ ∈W ∪W ′. Let RX = R ∩X and define
BX , W X , W ′X , RY , BY , W Y , W ′Y similarly.

Definition of the Induced Matchings. Goel et al. construct the edges of the induced
matching MI by pairing every blue vertex b⃗ ∈ BX with each coordinate greater than 2

δ + 1
to a red vertex r⃗ ∈ RY , such that r⃗ = b⃗− (2

δ + 1) · 1⃗I , where 1⃗I is the characteristic vector of
set I. See Figure 4 for an illustration.

Goel et al. show that MI is large, i.e., |MI | ≥ (1
2 − δ) ·N − o(N). Observe that any two

distinct indexing sets I and J produce their own vertex colourings and matchings MI and
MJ . They prove that, as long as the index sets I and J have a sufficiently small intersection
(at most (5δ

12)(δm
6)), MI and MJ are induced matchings w.r.t. to each other. Hence, they

show the existence of a large family T , with |T | = NΩ(1
log log N), of subsets I ⊂ [m] whose

pairwise intersections are of size at most (5δ
12)(δm

6). Then, the matchings of the RS graph are
identified as the matchings MI , for every I ∈ T .

2 A subvector in this context is the result of a trivial mapping of the vector to a lower dimensional
subspace.

APPROX/RANDOM 2021

19:8 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

X

Y

R(k) ∪ W (k) ∪ B(k) ∪ W ′(k)

R(k + 3) ∪ W (k + 3) ∪ B(k + 3) ∪ W ′(k + 3)

Figure 4 Illustration of the vertex colouring and induced matchings for a fixed I. The black
edges are MI and the gold ones are M ′

I .

Extending Goel et al.’s Construction

For every indexing set I ∈ T and respective matching MI of Goel et al.’s construction,
we symmetrically construct an additional matching M ′

I by pairing every blue vertex in Y

(instead of X), b⃗ ∈ BY , with each coordinate greater than 2
δ + 1, to a red vertex in X,

r⃗ ∈ RX , such that r⃗ = b⃗− (2
δ + 1) · 1⃗I . See Figure 4 for an illustration.

We immediately see that, by virtue of being symmetrical, |M ′
I | = |MI |(≥ (1

2−δ)·N−o(N)).
Furthermore, by construction, M ′

I and MI are vertex-disjoint matchings, hence MI ∪M ′
I

is a matching, and, taking their respective sizes into account, MI ∪M ′
I is a near-perfect

matching as required. Since, for any distinct I, J ∈ T , MI and MJ are induced matchings
w.r.t. each other, the symmetrical nature of our additional matchings implies the same for
M ′

I and M ′
J . However, showing that MI and M ′

J are induced with respect to each other is
not immediately clear. Fortunately, Goel et al.’s proof already implicitly shows this, and, for
completeness, we reproduce the decisive argument:

▶ Lemma 6. Given two distinct sets of indices I and J such that |I ∩ J | ≤ (5δ
12)(δm

6), no
edge in MI is induced by M ′

J , for any small enough δ > 0.

Proof. Let b⃗ ∈ BX be matched to r⃗ ∈ RY by MI , i.e., b⃗− r⃗ = (2
δ + 1) · 1⃗I . If the edge (⃗b, r⃗)

is induced by M ′
J , then one endpoint is coloured blue and the other red in the colouring

of X and Y with respect to J . Hence, b⃗ and r⃗ are separated by a single white strip (see
Figure 4) and

|
∑
j∈J

(⃗b− r⃗)j | ≥
δm

6 . (1)

On the other hand,

|
∑
j∈J

(⃗b− r⃗)j | = |
∑
j∈J

((2
δ

+ 1) · 1⃗I)j | = (2
δ

+ 1) · |I ∩ J | ≤ (5
6 + 5δ

12)(δm

6) ,

which contradicts Equation 1 for small enough δ. ◀

We thus obtain the following theorem:

▶ Theorem 7. For any small enough constant δ > 0, there exists a family of bipartite
(r, t)-Ruzsa-Szemerédi graphs where |A| = |B| = N , r = (1

2 − δ) ·N , and t = NΩ(1
log log N) such

that there are NΩ(1
log log N) disjoint near-perfect matchings each of size exactly (1− 2δ) ·N .

C. Konrad and K. K. Naidu 19:9

1. Let GRS be an RS graph as in Theorem 7. Fix some induced matching Mi and let
Mi ∪M ′

i be its near-perfect matching of size (1− 2δ) ·N .
2. Let F be an arbitrary set of 2δN additional edges such that P = Mi ∪M ′

i ∪ F is a
perfect matching in GRS .

3. Consider distribution λ constructed using RS graph GRS \ (Mi ∪M ′
i).

4. For every G = (V, E) ∼ λ, let PG = Mi ∪M ′
i ∪ (F \ E) (to avoid multi-edges) and

add PG to G to obtain the input graph G+.
The edges P ∪ E1 are given to Alice and the edges P ∪ E2 are given to Bob (recall that
E1 and E2 are defined in distribution λ).

Figure 5 Hard input distribution λ+.

3.2.2 Lower Bound Proof
Equipped with RS graphs with near-perfect matchings and input distribution λ, we now
define our hard input distribution λ+, see Figure 5.

We are now ready to prove our main lower bound theorem:

▶ Theorem 8. For any ϵ > 0, every deterministic (2
3 + ϵ)-approximation one-way commu-

nication protocol with constant distributional error over λ+ for MBM requires a message of
size n1+Ω(1

log log n), where n is the number of vertices in the input graph.

Proof. Let γ+ be a deterministic (2
3 + ϵ)-approximation protocol that solves distribution λ+

with constant distributional error. Given γ+, we will now define a protocol γ that solves
distribution λ with the same communication cost, same error, and approximation ratio
strictly better than 2

3 . Invoking Theorem 5 then proves our result.
The protocol γ is easy to obtain: Observe that P in distribution λ+ is the same for

every sampled input graph G+ ∼ λ+. Hence, in protocol γ, Alice and Bob first make sure
that the edges P are included in their inputs. This is achieved by Alice adding the edges
P \ E1 = PG to her input, and Bob adding the edges P to his input. In doing so, Alice and
Bob’s input is equivalently distributed to choosing an input graph G+ from λ+. Alice and
Bob can, therefore, run protocol γ+ which produces an output matching M+

out. Bob then
outputs the largest matching Mout among the edges M∗

X ∪M∗
Y ∪ (M+

out \ PG) as the output
of the protocol γ.

Next, we will argue that |Mout| ≥ |M+
out| − |F | = |M+

out| − 2δN . We can construct a
matching M̃ of this size as follows: First, add every edge e ∈M+

out that is not contained in
P to M̃ . Second, for every edge e ∈M+

out ∩ (Mi ∪M ′
i), we insert the incident edge to e that

is contained in M∗
X ∪M∗

Y into M̃ (notice that these incident edges always exist except for
edges from the special induced matching). This implies that |Mout| ≥ |M̃ | ≥ |M+

out| − |F |.
Recall that µ(G) ≥ 3

2 N and, since G is a subgraph of G+, µ(G+) ≥ µ(G). This
implies that N ≤ 2

3 µ(G+). Since γ+ is a (2
3 + ϵ)-approximation protocol, we have |M+

out| ≥
(2

3 + ϵ)µ(G+), and thus:

|Mout| ≥ |M+
out| − 2δN ≥ (2

3 + ϵ)µ(G+)− 2δ
2
3µ(G+) = (2

3 + ϵ− 4
3δ)µ(G+) .

Hence, setting δ < 3
4 ϵ in distribution λ yields a protocol with approximation ratio strictly

above 2
3 . This, however, implies that γ requires a message of length n1+Ω(1

log log n) (Theorem 5),
and since the message sent in γ and γ+ is equivalent, the result follows. ◀

Applying Yao’s Lemma and the usual connection between streaming algorithms and one-way
communication protocols, we obtain our main lower bound result:

APPROX/RANDOM 2021

19:10 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

Algorithm 3 Finding Augmenting Paths.
Input: A stream of edges π of a bipartite graph G = (A, B, E), a maximal matching
M in G, p ∈ (0, 1] and d ∈ N+.

1: Let M ′ ⊆M be a random subset such that ∀e ∈M , Pr[e ∈M ′] = p

2: Let G′
L = G[A(M ′) ∪B(M)] and G′

R = G[A(M) ∪B(M ′)]
3: Denote by πG′

L
(πG′

R
) the substream of π of edges of G′

L (G′
R, respectively)

4: SL ← Greedyd(πG′
L

) such that degSL
(a) ≤ 1, for every a ∈ A(M ′), and degSL

(b) ≤
d, for every b ∈ B(M)

5: SR ← Greedyd(πG′
R

) such that degSR
(b) ≤ 1, for every b ∈ B(M ′), and degSR

(a) ≤
d, for every a ∈ A(M)

6: P ← {ab′, ab, a′b : ab′ ∈ SL, ab ∈M ′, a′b ∈ SR}
7: return A largest subset Q ⊆ P of vertex-disjoint paths.

▶ Theorem 1. For any ϵ > 0, every (possibly randomised) two-pass streaming algorithm for
MBM with approximation ratio 2

3 + ϵ that solely computes a Greedy matching in the first
pass requires n1+Ω(1

log log n) space, where n is the number of vertices in the graph.

4 Algorithm

In this section, we combine the subsampling approach as used by Konrad [19] and the
semi-matching approach as used by Esfandiari et al. [8] and Kale and Tirodkar [15] in order
to find many disjoint 3-augmenting paths, see Algorithm 3.

The input to Algorithm 3 is a stream of edges π of a bipartite graph G = (A, B, E), a
maximal matching M in G (e.g., computed in a first pass by Greedy), a sampling probability
p, and an integral degree bound d. First, each edge of M is included in M ′ with probability
p. Then, while processing the stream, degree-d-bounded semi-matchings SL and SR are
computed using the algorithm Greedyd (see Algorithm 2 in Section 1). The algorithm then
returns a largest subset of vertex-disjoint 3-augmenting paths Q. We can thus obtain a
matching of size |M |+ |Q|.

4.1 Analysis of Algorithm 3
The main task in analysing Algorithm 3 is to bound the sizes of SL and SR from below. A
bound that holds in expectation for the case d = 1 was previously proved by Konrad et al.
[20], and a high probability result (for d = 1) was later obtained by Konrad [19]. We also
first give a bound that holds in expectation (Lemma 9), which is achieved by extending the
original proof by Konrad et al. [20]. Our extension, however, is non-trivial as it requires a
very different progress measure. Then, following Konrad [19], we obtain a high probability
version in Lemma 10.

We also remark that Lemmas 9 and 10 are stated in a more general context, however,
it is not hard to see that they capture the situation of the computations of SL and SR in
subgraphs G′

L and G′
R, respectively.

▶ Lemma 9. Let G = (A, B, E) be a bipartite graph, π an arbitrarily ordered stream of
its edges, p ∈ (0, 1], and d ∈ N+. Let A′ ⊆ A be a random subset such that ∀a ∈ A,
Pr[a ∈ A′] = p, and let d be the degree bound of the B vertices. Let H = G[A′ ∪ B] and
denote by πH the substream of π consisting of the edges in H. Then,

EA′ [|Greedyd(πH)|] ≥ d

d + p
· p · µ(G) .

C. Konrad and K. K. Naidu 19:11

Proof. Let M∗ be a fixed maximum matching in G and let M∗
H := {ab ∈M∗ : a ∈ A′} be

the subset of edges incident to A′.

Game Setup. Consider the following game: On selection of an edge by Greedyd(πH), the
edge attacks the (at most two) incident edges of M∗

H and deals damage to them. Initially,
the damage of every edge in M∗

H is 0, and the maximum damage of each such edge is 1. A
damage below 1 means that the edge could still be selected by the algorithm. A damage
equal to 1 implies that the edge can no longer be selected.

Denote by Si the first i edges selected by Greedyd(πH) and let ab be the (i + 1)th edge
selected. The way damage is dealt is as follows:

If there is an edge a′b ∈ M∗
H such that a′ /∈ A(Si+1) then attack edge a′b by adding 1

d

damage to it;
If there is an edge ab′ ∈M∗

H then attack edge ab′ by adding 1− degSi
(b′)

d damage to it,
maxing out the damage to 1.

Observe that the maximum damage an edge selected by Greedyd(πH) can inflict is at
most 1 + 1

d (applying both cases to the two incident optimal edges). Furthermore, observe
that the maximum damage every edge in M∗

H receives is 1, and, indeed, at the end of the
algorithm, every edge in M∗

H has damage 1.

Applying Wald’s Equation. Denote by s the cardinality of the semi-matching computed
by Greedyd(πH) and let X1, X2, . . . , Xs be the sequence of edges selected. Define the
random variable Yi to be the damage dealt by edge Xi. Let T be the smallest i such that∑i

j=1 Yj = |M∗
H | holds. Observe that T is a random stopping time. To apply the version of

Wald’s Equation presented in Lemma 3, we need to show that E[T] is finite and find a value
τ such that, for all i ≤ T , E[Yi] ≤ τ holds:

The expected stopping time E[T] is finite since T ≤ s always holds by the end of the
algorithm, i.e., the total damage dealt is |M∗

H |. Finding τ is less obvious. By definition, the
damage Yi dealt by any edge Xi is either 0, 1

d , . . . , 1 or 1 + 1
d . Hence, we obtain the following:

E[Yi] ≤ Pr [Yi ≤ 1] · 1 + Pr
[
Yi = 1 + 1

d

]
︸ ︷︷ ︸

q

·(1 + 1
d

) = (1− q) · 1 + q · (1 + 1
d

) = 1 + q

d
.

It remains to bound Pr[Yi = 1 + 1
d](= q). Let Xi = ab. Then, by definition of the game, the

event Yi = 1 + 1
d only happens if there exists an edge a′b ∈ M∗

H such that a′ /∈ A(Si). In
this case, ab inflicts a damage of 1 on edge a′b. However, observe that since a′ /∈ A(Si), the
random choice as to whether a′ ∈ A′ and thus whether a′b ∈M∗

H had not needed to occur
yet (principle of deferred decision). Hence, we obtain:

Pr[Yi = 1 + 1
d

] ≤ Pr[a′ ∈ A′] = p .

Having shown that E[T] is finite and E[Yi] ≤ 1 + p
d for all i ≤ T , we can apply Wald’s

Equation (Lemma 3) and we obtain E[
∑T

j=1 Yi] ≤ (1 + p
d)E[T]. Finally, since E[

∑T
j=1 Yi] =

E[|M∗
H |] = p · µ(G) and T ≤ s = |Greedyd(πH)|, it follows that

E[
T∑

j=1
Yi] = p · µ(G) ≤ (1 + p

d
) · E[T] ≤ (1 + p

d
) · E[|Greedyd(πH)] ,

which implies the result. ◀

APPROX/RANDOM 2021

19:12 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

Next, we follow the approach by Konrad [19] to strengthen Lemma 9 and obtain the
following high probability result (see Appendix A for the proof):

▶ Lemma 10. Let G = (A, B, E) be a bipartite graph, π be any arbitrary stream of its edges,
p ∈ (0, 1] and d ∈ N+. Let A′ ⊆ A be a random subset such that ∀a ∈ A, Pr[a ∈ A′] = p, let
d be the degree bound of the B vertices and let H = G[A′ ∪ B]. Then, the following holds
with probability at least 1− 2µ(G)−18:

|Greedyd(πH)| ≥ d

d + p
· p · µ(G)− o(µ(G)).

Equipped with Lemma 10, we are now ready to bound the number of augmenting paths
found by Algorithm 3.

▶ Lemma 11. Suppose that |M | = (1
2 + ϵ)µ(G). Then, with probability 1 − µ(G)−16, the

number of vertex-disjoint 3-augmenting paths |Q| found by Algorithm 3 is at least:

|Q| ≥ (1− 2ϵ

d + p
− 1 + 2ϵ

2d
) · p · µ(G)− o(µ(G)) .

Proof. Let M∗ be a fixed maximum matching in G. In this proof, we will refer to the
quantities used by Algorithm 3. First, using a Chernoff bound for independent Poisson trials,
we see that |M ′| = p · |M | ± O(

√
|M | ln |M |) with probability at least 1 − |M |−C for an

arbitrarily large constant C.
Consider the subgraphs GL = G[A(M) ∪B(M)] and GR = G[A(M) ∪B(M)]. M ⊕M∗

contains (1
2 − ϵ)µ(G) vertex-disjoint augmenting paths where each path starts and ends with

an edge in GL ∪GR. This implies that

µ(GL) + µ(GR) ≥ 2(1
2 − ϵ)µ(G) = (1− 2ϵ)µ(G) . (2)

Following Konrad [19], we will argue next that

|P| ≥ |SL|+ |SR| − |M ′| . (3)

Observe that there are |M ′| − |SL| vertices of |M ′| that are not incident to an edge in SL,
and similarly, |M ′| − |SR| vertices of |M ′| that are not incident to an edge in SR. Hence,
there are at least |M ′| − (|M ′| − |SL|) − (|M ′| − |SR|) = |SL| + |SR| − |M ′| edges of |M ′|
that are incident to both an edge from SL and SR. We thus obtain that there are at least
|P| ≥ |SL|+ |SR| − |M ′| 3-augmenting paths.

Next, Esfandiari et al. (Lemma 6 in [8]) consider a similar structure to P and argue that
there is at least a d-fraction of augmenting paths in P that are vertex-disjoint, and, hence,

|Q| ≥ 1
d
|P| . (4)

Using Lemma 10 and Inequalities 2, 3, and 4, we obtain:

|Q| ≥ 1
d

(|SL|+ |SR| − |M ′|)

≥ 1
d

(d

d + p
· p · (1− 2ϵ)µ(G)− o(µ(G))− p · (1

2 + ϵ)µ(G)−O(
√

µ(G) ln µ(G)))

= (1− 2ϵ

d + p
− 1 + 2ϵ

2d
) · p · µ(G)− o(µ(G)).

Using the union bound, the error of the algorithm is bounded by |M |−C + 2µ(G)−18 ≤
µ(G)−16. ◀

C. Konrad and K. K. Naidu 19:13

1. Let Ain = {a1
in, a2

in, . . . , aN
in}, Aout = {a1

out, . . . , aN
out}, Bin = {b1

in, . . . , bN
in}, and

Bout = {b1
out, . . . , bN

out} be sets of vertices, for some integer N .
2. Let M = {ai

inbi
in : 1 ≤ i ≤ N} be a perfect matching between Ain and Bin. Let

GL = (Ain, Bout, EL) be a semi-complete graph such that ai
inbj

out ∈ EL ⇔ i ≥ j, and
let GR = (Aout, Bin, ER) be a semi-complete graph such that ai

outb
j
in ∈ ER ⇔ i ≥ j.

3. Our bipartite hard instance graph is defined as G = (Ain ∪ Aout, Bin ∪ Bout, M ∪
EL ∪ ER) and has n = 4N vertices.

4. Finally, let π be a stream of its edges where the edges of M arrive first followed by
the edges EL and ER. The edges in EL are ordered so that ai

inbj
out arrives before

ai′

inbj′

out only if i > i′, or i = i′ and j < j′. Similarly, the edges in ER are ordered so
that ai

outb
j
in arrives before ai′

outb
j′

in only if i > i′, or i = i′ and j < j′.

Figure 6 Hard input instance G for Algorithm 3.

We are now ready to state our main algorithmic result:

▶ Theorem 2. For every p ∈ (0, 1] and every integral d ≥ 1, there is a two-pass semi-streaming
algorithm for MBM with approximation factor{

1
2 + (1

d+p −
1

2d) · p− o(1), if p ≤ d(
√

2− 1)
1
2 + d−p

6d+2p − o(1), otherwise ,

that succeeds with high probability (in µ(G), where G is the input graph). The settings
(d = 1, p =

√
2 − 1) and (d = 2, p = 2(

√
2 − 1)) maximize the approximation factor to

2−
√

2− o(1).

Proof. Let M be a maximal matching such that |M | = (1
2 + ϵ)µ(G), for some 0 ≤ ϵ ≤ 1

2
and some bipartite graph G = (A, B, E) with a stream π of its edges. Let Q be the disjoint
augmenting paths found by Algorithm 3 on input π, M, p and d. Then, augmenting M with
Q yields a matching of size |M |+ |Q|. By Lemma 11, the following inequality holds with
high probability:

|M |+ |Q| ≥ (1
2 + ϵ)µ(G) + (1− 2ϵ

d + p
− 1 + 2ϵ

2d
) · p · µ(G)− o(µ(G)). (5)

We distinguish two cases:
1. If p ≤ d(

√
2−1) then ϵ = 0 minimizes the RHS of Inequality 5, and we obtain the claimed

bound by plugging the value ϵ = 0 into the inequality.
2. If p ≥ d(

√
2 − 1) (only possible if d ∈ {1, 2}) then ϵ = d−p

6d+2p minimizes the RHS of
Inequality 5, and we obtain the claimed bound by plugging the value ϵ = d−p

6d+2p into the
inequality.

It can be seen that, for a fixed d, the maximum is obtained if p = min{d
√

2− d, 1}, and the
values d ∈ {1, 2} yield the claimed bound of 2−

√
2− o(1) (see Figure 1 in Section 1). ◀

4.2 Optimality of the Analysis
We will show now that our analysis of Algorithm 3 is best possible. To this end, we define a
worst-case input graph G in Figure 6, and prove in Theorem 12 that Algorithm 3 does not
perform better on G than predicted by our analysis. See Figure 7 for an illustration.

Observe that M is a maximal matching in G, and if we run Greedy in the first pass
on π then M would be returned. Let M∗

L = {ai
inbi

out : 1 ≤ i ≤ N} and M∗
R = {ai

outb
i
in :

1 ≤ i ≤ N}. Then, M∗
L is a perfect matching in GL, M∗

R is a perfect matching in GR, and
M∗

L ∪M∗
R is a perfect matching in G.

APPROX/RANDOM 2021

19:14 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

AoutBinAinBout

b1out a1
in b1in a1

out

GL GR

M ′SL SR

Figure 7 Algorithm 3 on a hard input instance with N = 7, d = 3 and p = 0.5.

▶ Theorem 12. Algorithm 3 with parameters d ≥ 1 and 0 < p ≤ 1 on input G received via
stream π and maximal matching M finds at most(

(1
d + p

− 1
2d

) · p + o(1)
)

µ(G)

augmenting paths with high probability. This renders our analysis of Algorithm 3 best possible
when p ≤ d

√
2− d.

Proof. In this proof, we will refer to the quantities used by Algorithm 3, that is, M ′ (the
edges of M subsampled with probability p), SL and SR.

We will use the following claim in our proof:

▷ Claim 13. With high probability, for every pair i, j ∈ [N] with i ≤ j, we have

|{ak
inbk

in ∈M ′ | i ≤ k ≤ j}| = p · (j − i)± o(N) .

Proof. This claim is easy to prove. Indeed, for any fixed i, j ∈ [N] with i ≤ j, the statement
above follows directly from the Chernoff bound. Using the union bound over all pairs
i, j ∈ [N], the claim follows. ◁

From now on, we condition on the event that the statement in Claim 13 holds.
Let A′

in = A(M ′) and let B′
in = B(M ′). We will first argue that, for two different vertices

ai
in, aj

in ∈ A′
in with i < j, if ai

in ∈ A(SL) then aj
in ∈ A(SL) also holds. Indeed, suppose

that this was not the case. Let bk
out be the partner of ai

in in SL. Observe that the edges
ai

inbk
out, aj

inbk
out ∈ EL, and, in particular, the edge aj

inbk
out arrives before the edge ai

inbk
out in π.

Hence, edge aj
inbk

out would have been selected, a contradiction. A similar argument holds for
vertices bi

out, bj
out ∈ Bout with i > j; if degSL

(bi
out) ≥ 1 then degSL

(bj
out) = d.

Let imin be the smallest index such that aimin
in ∈ A(SL). We will now argue that

imin ≥ pN
p+d − o(N). Observe that the vertices A′

in are matched in order from the largest to
smallest index, and each matched vertex in A′

in is matched only once. The vertices in Bout
are matched from the smallest to largest index, and each matched vertex is matched d times
(except possibly the last such matched vertex). Consider the last edge aimin

in bq
out inserted into

SL. Then, q ≤ imin, and, thus, |B(SL)| ≤ imin. By Claim 13 (applied with j = N), we have

C. Konrad and K. K. Naidu 19:15

|A(SL)| ≥ p · (N − imin)− o(N) with high probability. Since |A(SL)| is matched to B(SL) in
SL, and each B-vertex is matched at most d times, we obtain |A(SL)| ≤ d · |B(SL)|, and,
hence:

p · (N − imin)− o(N) ≤ |A(SL)| ≤ d · |B(SL)| ≤ d · imin ,

which implies imin ≥ pN
p+d − o(N).

Let imax be the largest index such that bimax
in ∈ B(SR). Using a similar argument as

above, we see that imax ≤ dN
p+d + o(N).

Let M ′′ = {ai
inbi

in ∈M ′ : imin ≤ i ≤ imax} be the subset of augmentable edges, i.e., edges
for which there exists a left wing in SL and a right wing in SR. Then, by Claim 13, we have

|M ′′| ≤ p · (imax − imin) + o(N) ≤ p(d− p)N
p + d

+ o(N) .

All but constantly many vertices in A(M ′′) share the same neighbour in SL with d − 1
other vertices of A(M ′′). Hence, at most a d-fraction (plus up to the constantly many
exceptions, which disappear in the o(N) term) of M ′′ can be augmented simultaneously.
Using N = 1

2 µ(G), we obtain the following bound on the number of edges that can be
augmented simultaneously:

1
d
|M ′′| ≤ 1

d

(
p(d− p)N

p + d
+ o(N)

)
=
(

(1
d + p

− 1
2d

) · p + o(1)
)

µ(G) . ◀

5 Conclusion

In this paper, we studied the class of two-pass semi-streaming algorithms for MBM that
solely compute a Greedy matching in the first pass. We showed that algorithms of this
class cannot have an approximation ratio of 2

3 + ϵ, for any ϵ > 0. We also combined the
two dominant techniques that have previously been used for designing such algorithms
and discovered another algorithm that matches the state-of-the-art approximation factor of
2−
√

2 ≈ 0.58578.
We conclude with two open problems. First, we are particularly interested in whether

there exists a one-pass semi-streaming algorithm that is able to augment a maximal matching
so as to yield an approximation ratio above 2 −

√
2. Second, is there a two-pass semi-

streaming algorithm for MBM that improves on the approximation factor of 2 −
√

2 and
operates differently in the first pass to the class of algorithms considered in this paper?

References
1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. In Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part II, volume 6756 of Lecture Notes in Computer Science, pages 526–538. Springer, 2011.
doi:10.1007/978-3-642-22012-8_42.

2 Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming matching.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.19.

APPROX/RANDOM 2021

https://doi.org/10.1007/978-3-642-22012-8_42
https://doi.org/10.4230/LIPIcs.ICALP.2021.19

19:16 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

3 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016. doi:10.1137/1.9781611974331.ch93.

4 Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In Hung Viet Le and Valerie King,
editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January
11-12, 2021, pages 165–171. SIAM, 2021. doi:10.1137/1.9781611976496.18.

5 Aaron Bernstein. Improved bounds for matching in random-order streams. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.12.

6 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016. doi:10.1137/1.9781611974331.ch92.

7 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover
in dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.30.

8 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016. doi:10.1109/ICDMW.
2016.0092.

9 Jittat Fakcharoenphol, Bundit Laekhanukit, and Danupon Nanongkai. Faster algorithms for
semi-matching problems. ACM Trans. Algorithms, 10(3), 2014. doi:10.1145/2601071.

10 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1773–1785. SIAM, 2020. doi:10.1137/1.9781611975994.108.

11 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. In Josep Díaz, Juhani Karhumäki, Arto
Lepistö, and Donald Sannella, editors, Automata, Languages and Programming: 31st
International Colloquium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings,
volume 3142 of Lecture Notes in Computer Science, pages 531–543. Springer, 2004. doi:
10.1007/978-3-540-27836-8_46.

12 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019. doi:10.1145/3293611.3331603.

13 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the 23rd
ACM-SIAM Symposium on Discrete algorithms (SODA), pages pp. 468–485. SIAM, 2012.
doi:10.1137/1.9781611973099.41.

https://doi.org/10.1137/1.9781611974331.ch93
https://doi.org/10.1137/1.9781611976496.18
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1137/1.9781611974331.ch92
https://doi.org/10.4230/LIPIcs.CCC.2020.30
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1109/ICDMW.2016.0092
https://doi.org/10.1145/2601071
https://doi.org/10.1137/1.9781611975994.108
https://doi.org/10.1007/978-3-540-27836-8_46
https://doi.org/10.1007/978-3-540-27836-8_46
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1137/1.9781611973099.41

C. Konrad and K. K. Naidu 19:17

14 Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao
Zhang. Tight competitive ratios of classic matching algorithms in the fully online model. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2875–2886. SIAM, 2019. doi:10.1137/1.9781611975482.178.

15 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more
passes over graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and
Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, volume 81 of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.15.

16 Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697.
SIAM, 2013. doi:10.1137/1.9781611973105.121.

17 Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival
model. In Dániel Marx, editor, Proceedings of the 32nd ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages pp. 1874–1893. SIAM, 2021. doi:10.1137/1.9781611976465.112.

18 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer Science, pages
840–852. Springer, 2015. doi:10.1007/978-3-662-48350-3_70.

19 Christian Konrad. A simple augmentation method for matchings with applications to streaming
algorithms. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, volume 117 of LIPIcs, pages 74:1–74:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.74.

20 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Anupam Gupta, Klaus Jansen, José D. P. Rolim, and
Rocco A. Servedio, editors, Approximation, Randomization, and Combinatorial Optimiz-
ation. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th
International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Pro-
ceedings, volume 7408 of Lecture Notes in Computer Science, pages 231–242. Springer, 2012.
doi:10.1007/978-3-642-32512-0_20.

21 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-party
communication. ACM Trans. Algorithms, 12(3), 2016. doi:10.1145/2898960.

22 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. doi:10.1007/11538462_15.

23 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

24 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

25 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proceedings of the 18th Symposium on Foundations of Computer Science (FOCS), pages
pp. 222–227. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.24.

APPROX/RANDOM 2021

https://doi.org/10.1137/1.9781611975482.178
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.1007/978-3-662-48350-3_70
https://doi.org/10.4230/LIPIcs.MFCS.2018.74
https://doi.org/10.1007/978-3-642-32512-0_20
https://doi.org/10.1145/2898960
https://doi.org/10.1007/11538462_15
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1109/SFCS.1977.24

19:18 On Two-Pass Streaming Algorithms for Maximum Bipartite Matching

A Strengthening Lemma 9

Following [19], we use tail inequalities for martingales to strengthen Lemma 9 and give a
high probability result. The proof of Lemma 10 uses the Azuma-Hoeffding’s Inequality [24,
Theorem 12.4]:

▶ Lemma 14 (Azuma-Hoeffding’s Inequality). Let Z0, Z1, ..., Zn be a martingale such that
∀k ≥ 0, |Zk+1 − Zk| ≤ ck. Then, ∀t ≥ 0 and any λ > 0,

Pr [|Zt − Z0| ≥ λ] ≤ 2 exp
(

−λ2

2
∑t−1

k=0 c2
k

)
.

▶ Lemma 10. Let G = (A, B, E) be a bipartite graph, π be any arbitrary stream of its edges,
p ∈ (0, 1] and d ∈ N+. Let A′ ⊆ A be a random subset such that ∀a ∈ A, Pr[a ∈ A′] = p, let
d be the degree bound of the B vertices and let H = G[A′ ∪ B]. Then, the following holds
with probability at least 1− 2µ(G)−18:

|Greedyd(πH)| ≥ d

d + p
· p · µ(G)− o(µ(G)).

Proof. Let X1, X2, . . . , Xs be the sequence of random variables representing the edges
selected by Greedyd(πH) with the source of randomness from the choice of A′. Define
Y := |Greedyd(πH)|. Then, we define the random variables Zi := E[Y |X1, ..., Xi] for all
i = 0, . . . , s to be the corresponding Doob Martingale, and let Zi = Zi−1, for every i > s.
Notice that Zs = Y and Z0 = E[Y] ≥ d

d+p · p · µ(G) by Lemma 9. Now, we will show that
any deviation of Y from its expectation, |Zs − Z0|, is small with high probability.

To that end, we first need to bound |Zi+1 − Zi| for all i ≥ 0. Notice that |Zi+1 − Zi| = 0
for all i ≥ s. Next, we will argue that |Zi+1 −Zi| ≤ 1 for all i < s. Indeed, for any fixed first
i edges added to the semi-matching, any two different choices for Xi+1 yield two potentially
different semi-matchings S1, S2, respectively, such that S1 ⊕ S2 consists of at most one
alternating path. Hence, the two semi-matchings differ by at most one edge, which proves
the claim.

Then, we have that s = Y ≤ d ·µ(H) ≤ d ·µ(G) and it follows that |Zi+1−Zi| ≤ 1 for all
i ≤ d · µ(G) and |Zi+1 − Zi| = 0 for all i > d · µ(G). Finally, by applying Azuma-Hoeffding’s
Inequality (see Lemma 14), we finalise the proof:

Pr
[
|Zs − Z0| ≥ 6

√
dµ(G) ln µ(G)

]
≤ 2µ(G)−18 ,

where |Zs − Z0| = |Y − E[Y]|. ◀

Approximation Algorithms for Demand Strip
Packing
Waldo Gálvez #

Technische Universität München, Germany

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland

Afrouz Jabal Ameli #

IDSIA, USI-SUPSI, Lugano, Switzerland

Kamyar Khodamoradi #

Universitä Würzburg, Germany

Abstract
In the Demand Strip Packing problem (DSP), we are given a time interval and a collection of tasks,
each characterized by a processing time and a demand for a given resource (such as electricity,
computational power, etc.). A feasible solution consists of a schedule of the tasks within the
mentioned time interval. Our goal is to minimize the peak resource consumption, i.e. the maximum
total demand of tasks executed at any point in time.

It is known that DSP is NP-hard to approximate below a factor 3/2, and standard techniques
for related problems imply a (polynomial-time) 2-approximation. Our main result is a (5/3 + ε)-
approximation algorithm for any constant ε > 0. We also achieve best-possible approximation
factors for some relevant special cases.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Scheduling algorithms

Keywords and phrases Strip Packing, Two-Dimensional Packing, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.20

Category APPROX

Related Version Full Version: https://arxiv.org/pdf/2105.08577.pdf [17]

Funding Waldo Gálvez : Supported by the European Research Council, Grant Agreement No. 691672,
project APEG.
Fabrizio Grandoni: Partially supported by the SNF Excellence Grant 200020B_182865.
Afrouz Jabal Ameli: Partially supported by the SNF Excellence Grant 200020B_182865.
Kamyar Khodamoradi: Partially supported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - Project number 399223600. This project was carried out in part when the
author was a postdoctoral researcher at IDSIA, USI-SUPSI, Switzerland.

1 Introduction

Consider the following scenario: we are given a time interval and a collection of tasks, where
each task is characterized by a processing time (no longer than the time interval) and a
demand for a given resource. A feasible solution consists of a schedule of all the tasks within
the mentioned time interval, and our goal is to minimize the peak resource consumption,
i.e. the maximum total demand of tasks scheduled at any point in time. It is easy to
imagine concrete applications of this scenario; for example, the considered resource might be
electricity, bandwidth along a communication channel, or computational power.

© Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 20; pp. 20:1–20:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:galvez@in.tum.de
https://orcid.org/0000-0002-6395-3322
mailto:fabrizio@idsia.ch
mailto:afrouz@idsia.ch
mailto:kamyar.khodamoradi@uni-wuerzburg.de
https://orcid.org/0000-0003-1289-6839
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.20
https://arxiv.org/pdf/2105.08577.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Approximation Algorithms for Demand Strip Packing

The above scenario can be naturally formalized via the following Demand Strip Packing
problem (DSP). We interpret the time interval as a path graph G = (V, E) with W edges,
where each edge is interpreted as a time slot where we can start to process a task. Let
I = {1, . . . , n} be the set of tasks, where task i has integer processing time (or width)
w(i) ∈ [1, W] and integer demand (or height) h(i) ≥ 0. A feasible solution (or schedule of the
tasks) consists of a subpath P (i) of G for each i ∈ I containing precisely w(i) edges. Our
goal is to minimize the peak resource consumption (or simply peak) which is defined as

max
e∈E

∑
i∈I:e∈P (i)

h(i).

A problem closely related to DSP is the Geometric Strip Packing problem (GSP)1, which
can be interpreted as a variant of DSP with an extra geometric packing constraint. Here
we are given an axis-aligned half-strip of integer width W (and unbounded height) and a
collection of open rectangles (or tasks), where each rectangle i has integer width w(i) ∈ [1, W]
and integer height h(i) ≥ 0. Our goal is to find an axis-aligned non-overlapping packing
of all the rectangles within the strip that minimizes the peak height, i.e. the maximum
height spanned by any rectangle. Notice that one can reinterpret DSP as a variant of GSP,
where the processing time and demand of each task correspond to the width and height of a
rectangle, resp. (this also motivated our notation). A critical difference w.r.t. GSP however
is that DSP does not require to pack such rectangles geometrically2.

Obviously, a feasible solution to GSP induces a feasible solution to DSP of no larger
peak. The converse is however not true (see Figure 1), and consequently it makes sense
to design algorithms specifically for DSP. We remark that there are applications that are
better formalized by GSP than by DSP. In particular, this happens when each task requires
a contiguous and fixed portion of the considered resource. For example, we might need to
allocate consecutive frequencies or memory locations to each task: changing this allocation
over time might be problematic. Another natural application of GSP is cutting rectangular
pieces from a roll of some raw material (e.g., paper, metal, or leather). However, for other
applications, the geometric constraint in GSP does not seem to be necessary, and hence it
makes sense to drop it (i.e., to rather consider DSP): this might lead to better solutions,
possibly via simpler and/or more efficient algorithms. Consider for example the minimization
of the peak energy consumption in smart-grids [31, 44, 39].

A straightforward reduction to the NP-complete Partition problem (similar to the one
known for GSP, see also [43]) shows that DSP is NP-hard to approximate below a factor
3/2. Constant approximation algorithms for DSP are given in [43, 45]. However, a better
2-approximation can be obtained by applying an algorithm by Steinberg [42] which was
developed for GSP: the reason is that Steinberg uses area-based lower bounds that extend
directly from GSP to DSP.

1.1 Our Results and Techniques
Our main result is as follows3.

▶ Theorem 1. For any constant ε > 0, there is a polynomial-time deterministic (5/3 + ε)-
approximation algorithm for DSP.

1 GSP is usually simply called Strip Packing in the literature. We added the word “geometric” to better
highlight the differences between the two problems.

2 Or, equivalently, we can split such rectangles into unit-width vertical slices, and then pack such slices
geometrically so that slices of the same rectangle appear consecutively in a horizontal sense.

3 The same result as in Theorem 1 was achieved independently in [15]; their approach is however
substantially different from ours.

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:3

0

1

2

3

4

5

0 1 2 3 4 5 6 7

3

1

2

4

6
7

8

5

5

(a) DSP solution of peak 4 whose correspond-
ing optimal GSP solution has peak 5.

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

3 4

5

6

8

9

10

11

7

7

(b) Square-DSP solution of peak 11 whose corres-
ponding optimal GSP solution has peak at least 12.

Figure 1 Gap instances between DSP and GSP.

The above approximation ratio matches the best-known result for GSP from Harren
et al. [23], achieved using dynamic programming based techniques to place almost all
the rectangles except for a set of very small total area, followed by a careful and quite
involved case distinction to pack these remaining rectangles. However, we remark that our
algorithm is entirely different, and in particular it does not compute a geometric packing of
tasks/rectangles. Furthermore, our analysis is substantially simpler. Notice that the result
in [23] does not imply a (5/3 + ε)-approximation for DSP since some lower bounds used in
their proofs do not hold necessarily for DSP.

We also achieve improved approximation algorithms for relevant special cases of DSP.
We obtain a PTAS for the special case where the demand of each task is much lower than
the optimal peak OPT . This captures applications where each job consumes a relatively
small amount of the available resource (think about the electricity consumption of large-scale
systems such as cities or countries).

▶ Theorem 2. Given ε > 0 small enough, there exists δ > 0 and a polynomial time algorithm
such that, given an instance of DSP with optimal value OPT and consisting solely of tasks
having height at most δ · OPT , it computes a (1 + O(ε))-approximate solution.

Motivated by the special case of GSP and related problems where all rectangles are
squares, we also study the special case of DSP where h(j) = w(j) for all tasks (the Square-
DSP problem). The 3/2−ε hardness of approximation extends to this case (see Appendix A),
and we are still able to show that there is a gap between DSP and GSP (see Figure 1b and
Section 5). However, in this case, we are able to provide an optimal 3/2-approximation. We
defer the proof of the following theorem to the full version of the paper [17].

▶ Theorem 3. There is a deterministic polynomial-time 3/2-approximation for Square-
DSP.

At a high level, our approach is based on a classification of tasks into groups depending
on their heights and widths. We carefully schedule some groups first, so that their demand
profile has a convenient structure. Here, by demand profile we simply mean the total demand
of the already scheduled tasks over each edge. The structure of the demand profile allows us
to pack the remaining groups (intuitively, on top of such profile) in a convenient way. We
critically exploit the fact that, differently from GSP, we only care about the total demand on
each edge. This allows us to adapt techniques from Bin Packing or Makespan Minimization
(see Lemmas 6 and 12).

APPROX/RANDOM 2021

20:4 Approximation Algorithms for Demand Strip Packing

1.2 Related Work

GSP generalizes famous problems such as Makespan Minimization on identical machines [12]
(here all the rectangles have width 1 and W corresponds to the number of processors) or Bin
Packing [13] (here all the rectangles have height 1 and the height of the solution corresponds
to the number of bins). Consequently, it is known that for any ε > 0, there is no (3/2 − ε)-
approximation for the problem unless P=NP. The first non-trivial approximation algorithm
for GSP, with an approximation ratio of 3, was given by Baker, Coffman, and Rivest [5].
After a series of very technical and involved refinements [14, 41, 40, 42, 24], the current best
approximation factor for the problem is (5/3+ε) due to Harren et al. [23]. GSP has been also
studied in the pseudopolynomial setting, i.e., when W = nO(1) [30, 38, 1, 20, 25, 28, 27] and
in the asymptotic setting, i.e. when the optimal value is assumed to be large [32, 29]. In both
cases, approximation algorithms and almost matching lower bounds have been developed.

There is a very rich line of research on generalizations and variants of DSP such as online
versions [34, 35], tasks with availability constraints or time windows [45, 44, 31], a mixture
of preemptable and non-preemptable tasks [39] or generalized cost functions based on the
demand at each edge [10, 35]. The variant of DSP with the extra feature of interrupting the
tasks is known as Strip Packing with Slicing, for which there exists an FPTAS [3]; on
the other hand, the case of DSP is still hard to approximate by a factor better than 3/2 as
noted by Tang et al. [43].

Another problem closely related to DSP is Parallel Job Scheduling. Here we are
given a set of jobs and m machines, where each job is characterized by a processing time and
a number of machines where the job must be processed simultaneously (these machines do
not need to be contiguous), and the goal is to minimize the makespan. The same hardness of
approximation applies in this case, but interestingly an almost tight (3/2 + ε)-approximation
algorithm has been developed [26] and also a pseudopolynomial (1 + ε)-approximation is
known [30]. See [16] for a comprehensive survey on the problem and its many variants.

It is also worth mentioning another case where the distinction between geometric and
demand-based packing plays a substantial role: the Unsplittable Flow on a Path
problem (UFP) [4, 22, 7, 21] and the Storage Allocation problem (SAP) [36, 37]. In
both problems, we are given a path graph with edge capacities, and tasks specified by a
subpath, a demand (or height), and a profit. In both problems, the goal is to select a
maximum profit subset of tasks that can be packed while respecting edge capacities. For
UFP, analogously to DSP, we require that the total demand of the selected tasks on each
edge e is at most the capacity of e. For SAP, analogously to GSP, we interpret each task as
a rectangle (with the width given by its number of edges) and, intuitively, we need to pack
such rectangles non-overlappingly below the capacity profile. Notice that, differently from
DSP and GSP, here the path associated with each task is fixed in the input. Furthermore,
not all the tasks need to be packed.

Finally, in the Dynamic Storage Allocation problem (DSA) the setting is analogous
to SAP but, similarly to GSP, we are asked for an embedding of all the rectangles minimizing
the peak height, i.e. the maximum height reached by any rectangle (in particular, there are
no edge capacities). Notice that in DSA a lower bound is provided by the peak demand,
i.e. the maximum over the edges e of the sum of the heights of rectangles whose path uses
e. Buchsbaum et al. [9] studied in detail the relation between the optimal peak height and
the peak demand, providing examples where these values differ by a constant factor. The
authors also present a (2 + ε)-approximation for DSA that provides guarantees even when
compared with the peak demand.

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:5

1.3 Organization
We start by introducing in Section 2 some useful definitions and known results. As a warm-up,
in Section 3 we present a very simple 2-approximation for DSP that allows us to illustrate part
of our ideas. Then in Section 4 we present our main result, namely a (5/3 + ε)-approximation
for DSP. Finally, in Section 5 we provide details about the gap instances in Figure 1. The
results for special cases of DSP (Theorems 2 and 3) can be found in Appendix B and the full
version of this paper [17] respectively.

2 Preliminaries

Let e1, . . . , eW be the edges of G from left to right. Recall that a feasible solution or schedule
P (·) specifies a subpath P (i) of G of length w(i) for each task i. Sometimes it is convenient
to consider a partial schedule P (·) which specified the path of a subset I ′ of tasks only (it
is convenient to consider P (i) as an empty path for the remaining tasks). We call this a
schedule of I ′.

Let us define, for a given subset I ′ of tasks, hmax(I ′) := maxi∈I′ h(i) and h(I ′) :=∑
i∈I′ h(i). We define analogously wmax(I ′) and w(I ′) w.r.t. widths. Let also a(I ′) :=∑
i∈I′ a(i), where a(i) := h(i)·w(i) corresponds to the area of task i. We will start by showing

a couple of simple lower bounds for the optimal peak OPT that will be used extensively
along this work.

▶ Proposition 4. OPT ≥ max{hmax(I),
∑

i∈I:w(i)>W/2 h(i), a(I)/W}.

Proof. Since the total demand of any edge used by the task of largest height is at least
hmax(I), it holds that OPT ≥ hmax(I). Also notice that, in any scheduling, the tasks of
width larger than W/2 use the edge e⌈W/2⌉, being then the total demand of this edge (and
consequently OPT) at least

∑
i∈I:w(i)>W/2 h(i). Finally, the last bound follows from an

averaging argument and the fact that the sum over the edges of the total demand on each
edge is equal to a(I). ◀

2.1 Demand Profile and Left-Pushing
Consider a schedule P (·) of I ′ ⊆ I. We define the demand profile h(P) of P (·) as the
vector that stores for each edge e the total demand

∑
i∈I′:e∈P (i) h(i) of the tasks whose path

contains e (if the path of i is not specified, then i does not contribute to the demand profile).
Since W can be exponential in n, we need to store the demand profile in a more efficient
way. This can be done by noticing that the number of times the total demand changes from
an edge to the next one is at most 2n (when a task starts or finishes). Hence we just need
to store the edges where the demand profile changes value and the corresponding demand.
In particular, we can efficiently store the demand profile. Furthermore, we can efficiently
update it, e.g., when augmenting an existing schedule by specifying the path P (i) of one
more task i, or when we modify the value of some P (i) by shifting tasks as we will discuss
later.

Given a schedule P (·) of I ′ ⊆ I and i ∈ I ′, a left-shifting of i in P (·) is the operation
of replacing P (i) with the path P ′(i) of length w(i) that starts one edge to the left of
P (i). Clearly, this operation is allowed only if P (i) does not start at the leftmost edge
of G. Consider a schedule P (·) with peak π, and let π′ ≥ π. A π′-left-pushing of P (·) is
the operation of iteratively performing left-shiftings in any order until it is not possible
to continue while guaranteeing that the peak is always at most π′. We will critically use
left-pushings in our algorithms. Notice that a left-pushing can be computed in polynomial
time (see Appendix B for some more details).

APPROX/RANDOM 2021

20:6 Approximation Algorithms for Demand Strip Packing

Intuitively, left-pushing accumulates the demand over the first edges while inducing a
non-increasing demand profile to the right. For a node t∗ of the path and a value Q ≥ 0, we
will say that a (possibly partial) schedule P (·) is (Q, t∗)-sorted if the corresponding demand
on the edges to the left of t∗ is at least Q and on the edges to the right of t∗ the demand
profile is non-increasing (see Figure 2); if t∗ is the leftmost node we just say that the schedule
is sorted. Our algorithms will first schedule some tasks and then perform a left-pushing.
After that, it will be possible to schedule the remaining tasks in a convenient way thanks to
the properties of the resulting demand profile.

2.2 Container-based Scheduling
Similar to recent work on related rectangle packing problems (e.g., [18, 6]), we will exploit
a container-based scheduling approach. A container C can be interpreted as an artificial
task, with its own width w(C) (i.e. a number of edges) and height h(C). Furthermore, it is
classified as vertical or horizontal, with a meaning which is explained later. The containers
are scheduled as usual tasks in a DSP instance (in particular by defining a path P (C) for
each container C), with the goal of minimizing the peak π. We also define a packing of tasks
into containers C respecting the following constraints: if C is vertical, the tasks I(C) packed
into C must have height at most h(C) and total width at most w(C); if C is horizontal,
tasks I(C) must have width at most w(C) and total height at most h(C). Intuitively, the
tasks packed into a vertical (resp., horizontal) container induce a geometric packing of the
rectangles associated with each task into the rectangle corresponding to the container, where
the task rectangles are packed non-overlappingly one next to the other (resp., one on top of
the other). Any such packing and scheduling of containers naturally induces a schedule of
the tasks: if C is horizontal, tasks I(C) are all scheduled starting on the leftmost edge of
P (C). Otherwise, tasks I(C) are scheduled one after the other starting at the leftmost edge
of P (C). It is hopefully clear to the reader that the demand profile of such a schedule of the
tasks is dominated by the demand profile of the containers’ schedule. In particular, if the
latter has peak π, then the corresponding schedule of the tasks has a no larger peak.

The general strategy is then as follows: we first show that there exists a convenient
packing of tasks into a constant number of containers and that there exists a scheduling P ∗(·)
of these containers with a small peak π. We also require that these containers are guessable,
meaning that we can guess their sizes by exploring a polynomial number of options. Once
we guessed the correct set of containers, a π-left-pushing of P ∗(·) can be computed by brute
force (since they are constantly many tasks). Finally, we pack tasks into containers, inducing
a schedule of the tasks with peak π.

This final step can be performed (almost completely) via a reduction to the Generalized
Assignment problem (GAP). Recall that in GAP we are given a set of k bins, where each
bin j has an associated capacity Cj ≥ 0, and a set of n items. For each item i and bin j, the
input specifies a size sij ≥ 0 and a profit pij ≥ 0 of item i w.r.t. bin j. A feasible solution
assigns each item to some bin so that the total size of the items assigned to each bin j is at
most Cj . Our goal is to maximize the total profit associated with this assignment. GAP
admits a PTAS in the case of a constant number of bins (see Section E.2 in [19]).

▶ Lemma 5. For any constant ε′ > 0, given a set of tasks I ′ that can be packed into a given
set of containers of constant cardinality, there is a polynomial-time algorithm to pack I ′′ ⊆ I ′

with a(I ′′) ≥ (1 − ε′)a(I ′) into the mentioned containers.

Proof. We define a GAP instance as follows: we create one bin per container, where the
capacity of the bin is equal to the width of the container if it is vertical or the height of the
container if it is horizontal. For each task i we define an item that has uniform profit equal

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:7

to its area a(i) over all the bins. Given a task i and a vertical (resp., horizontal) container j,
the size sij of i into bin j is set to w(i) (resp., h(i)) if task i can be packed into container j

according to the mentioned rules. Otherwise we set sij = +∞. The claim follows by applying
the aforementioned PTAS for GAP with parameter ε′. ◀

Notice that the above lemma allows us to pack all the tasks but a subset of small total
area, hence we need to schedule somehow such leftover tasks. This is not necessarily a trivial
task; indeed, such tasks, though of small area, might have large height, and hence scheduling
them on top of the rest might substantially increase the peak. To circumvent this issue we
will identify special containers reserved for tasks of large height where we will be able to
pack all such tasks with no leftovers. We will then apply the PTAS from Lemma 5 only to
the remaining tasks and containers.

3 A Simple 2-Approximation for DSP

In order to introduce part of our ideas, in this section, we present a simple 2-approximation
for DSP. As mentioned before, a 2-approximation can also be achieved via Steinberg’s
algorithm [42], however, that algorithm is substantially more complex (not surprisingly since
it computes a geometric packing of tasks interpreted as rectangles like in GSP).

The following lemma exploits a modification of Next-Fit-Decreasing [13], the well-known
approximation algorithm for Bin Packing.

▶ Lemma 6. Let P (·) be a sorted schedule of I ′ ⊆ I with peak at most π. For I ′′ := I \ I ′,
assume that:

π ≥ hmax(I ′′) + max{a(I)/W, hmax(I ′′)},
wmax(I ′′) ≤ W/2, and
(W − wmax(I ′′))(π − hmax(I ′′)) + wmax(I ′′) · hmax(I ′′) ≥ a(I).

Then it is possible to compute in polynomial time a schedule of I having peak at most π.

Proof. By slightly abusing notation, we will next use an edge label e also to denote the
position i of e in the sequence e1, . . . , eW of edges from left to right. We do not modify the
schedule of I ′ and schedule the remaining tasks I ′′ as follows. Let us fix an arbitrary order
for tasks in I ′′, and let us initially define echeck to be the leftmost edge. We scan completely
the list of tasks I ′′ and, if the current task i can be scheduled starting on edge echeck while
maintaining a peak of at most π, we do that and remove i from I ′′; otherwise, we keep i in
I ′′ and try with the next task. Once we consider the final task, we update echeck to be the
leftmost edge to the right of the current echeck whose demand is different from the demand of
the current echeck. We iterate the procedure on the new echeck until all tasks are scheduled
or we identify a task i which cannot be scheduled.

First, notice that we update echeck at most |I ′| times, and after each time, we iterate
through at most |I ′′| tasks, so the running time is polynomial in the size of the input. It is
also not difficult to see that with this procedure, the demand profile from echeck to its right is
always non-increasing (restricted to these edges, scheduling a task is equivalent to summing
up two non-decreasing profiles), and none of the remaining tasks can fit in any one of the
edges to the left of echeck (as we actually tried to place them there but it was not possible).
Notice also that, if this procedure manages to schedule all the tasks, then the claimed peak
is automatically achieved. So we will assume by contradiction that this is not the case.

Let i be a task that could not be scheduled. This could only happen due to i being too
wide for the current edge echeck where it should be scheduled (and hence for any subsequent
edge). This implies that echeck > W − w(i) and hence there are more than W − w(i) edges

APPROX/RANDOM 2021

20:8 Approximation Algorithms for Demand Strip Packing

having demand larger than π − h(i). Thus the total area of the scheduled tasks plus task i is
strictly larger than

A(h(i), w(i)) := (W − w(i)) · (π − h(i)) + h(i) · w(i).

This expression is decreasing both as a function of h(i) and as a function of w(i). Indeed,

∂

∂h(i)A(h(i), w(i)) = 2w(i) − W ≤ 0, and ∂

∂w(i)A(h(i), w(i)) = 2h(i) − π ≤ 0,

where we used the fact that, by assumption, w(i) ≤ W
2 and π ≥ 2hmax(I ′′) ≥ 2h(i). We

conclude that
A(h(i), w(i)) ≥ A(hmax(I′′), wmax(I′′)) = (W −wmax(I′′))(π−hmax(I′′))+wmax(I′′)·hmax(I′′) ≥ a(I),

where in the last inequality we used the third assumption. This is a contradiction since a
subset of tasks would have area strictly larger than the total area a(I). ◀

We are now ready to provide a simple 2-approximation.

▶ Corollary 7. There exists a deterministic 2-approximation for DSP.

Proof. Let I be an instance of DSP. We will first schedule the tasks I ′ having width
larger than W/2 starting on the leftmost edge. Let I ′′ := I \ I ′. This partial schedule is
sorted and has peak

∑
i∈I′ h(i) ≤ M := max{hmax(I),

∑
i∈I′ h(i), a(I)/W}. Recall that, by

Proposition 4, M ≤ OPT . Define π = 2M , and observe that

(π−hmax(I ′′))(W −wmax(I ′′))+hmax(I ′′)·wmax(I ′′) ≥ M ·(W/2)+M ·(W/2) = M ·W ≥ a(I).

Thus we can apply Lemma 6 with parameter π = 2M . This provides a schedule with peak
at most 2M ≤ 2OPT . ◀

In the following sections, we will extend the approach in the above 2-approximation as
follows. We will first compute a feasible solution of some given peak that includes all the
tasks having height larger than some threshold and width larger than some threshold. Then
we will left-push this schedule to add some structure to the demand profile. Finally, we
schedule the remaining tasks by means of a generalization of Lemma 6 (Lemma 12) which
considers (Q, t∗)-sorted schedules (rather than just sorted ones).

4 A (5/3 + ε)-Approximation for DSP

In this section we will prove Theorem 1. In order to attain the claimed result, we will provide
first some useful definitions and preprocessing lemmas.

Let us assume that the optimal value OPT is known to the algorithm (this assumption
can be dropped by approximately guessing this value, introducing an extra (1 + ε) factor
in the approximation). We start by classifying the tasks in the instance according to their
widths and heights (see Figure 2). Let µ, δ, µ < δ ≤ ε, be two constant parameters to be
fixed later. We say that a task i is:

tall if h(i) > 2
3 OPT ,

large if h(i) ∈ (δOPT, 2
3 OPT] and w(i) > εW ,

horizontal if h(i) ≤ µOPT and w(i) > εW ,
narrow if h(i) ≤ 2

3 OPT and w(i) ≤ εW , or
medium if h(i) ∈ (µOPT, δOPT] and w(i) > εW .

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:9

0 εW W

0

µOPT

δOPT

2
3 OPT

OPT

Narrow

Narrow

Narrow

Tall

Horizontal

Medium

Large

Tall

h(i)

w(i)
0 t∗ W

0

Q

Demand

Edges

Figure 2 (Left) Classification of the tasks according to Section 4. (Right) Representation of a
(Q, t∗)-sorted demand profile.

We denote by T , L, H, N and M the sets of tall, large, horizontal, narrow and medium
tasks respectively. Recall that the general idea of our approach is to show that we can schedule
almost every task in a constant number of containers, which in turn can be enumerated in
polynomial time by brute force. In the rest of this section, we basically show the existence of
such a solution for most of the previously described classes. More precisely, we argue that
the optimal schedule can be rearranged so as to define constantly many containers to pack
all the tasks in T ∪ L while increasing the peak of the solution by at most an additive 2

3 OPT

term (see Lemma 9). We then show that a subset of the tasks in H can be scheduled in O (1)
containers such that the left-over from this class has a very small area compared W · OPT

(see Lemma 10). Then, it is not difficult to show that the left-over from H can be placed in
a single container with a very small height. We also prove that all the tasks in M can be
packed in a single container of small height by showing how to choose the parameters µ and
δ (see Lemma 8). This leads in conclusion to a container-based scheduling for I \ N of peak(5

3 + 7ε
)

OPT (see Lemma 11). Finally, we present a method to schedule every task in N
on top of the previous solution without increasing its peak by using a greedy approach (see
Lemma 12).

We first deal with the medium tasks. As the following lemma states, it is possible to
choose µ and δ in such a way that the two parameters differ by a large factor and the total
height of medium tasks is small.

▶ Lemma 8. Given a polynomial-time computable function f : (0, 1) → (0, 1), with f(x) < x,
and any constant ε ∈ (0, 1), we can compute in polynomial time a set ∆ of 2

ε2 many positive
real numbers upper bounded by ε, such that there is at least one number δ ∈ ∆ so that, by
choosing µ = f(δ), one has a(M) ≤ ε2 · OPT · W (hence h(M) ≤ εOPT).

Proof. Let y1 = ε and, for each j ∈ {1, . . . , |∆|}, define yj+1 = f(yj). For each j ≤ |∆|,
let Ij = {i ∈ I : h(i) ∈ [yj+1, yj)}. Note that yj ’s are decreasing since f(x) < x. Observe
that Ij′ is disjoint from Ij′′ for every j′ ̸= j′′, and the total area of tasks in

⋃
Ij is at most

W · OPT . Thus, there exists a value j such that the total area of the tasks in Ij is at most
2OP T ·W

|∆| = ε2 · OPT · W . Choosing δ = yj and µ = yj+1 verifies all the conditions of the
lemma as in that case M ⊆ Ij . Notice that, since every task in M has width at least εW ,
we have that h(M) ≤ εOPT . ◀

APPROX/RANDOM 2021

20:10 Approximation Algorithms for Demand Strip Packing

Function f will be given later. From now on, we will assume that µ and δ are chosen
according to Lemma 8. Notice that this implies that µ, δ = Oε(1). The rest of this section
is organized as follows. In Section 4.1 we define a container-based scheduling of T ∪ L.
In Section 4.2 we extend this in order to include also H. In Section 4.3 we schedule the
remaining tasks and prove Theorem 1.

4.1 Containers for Tall and Large Tasks
In this section, we define a packing of tall and large tasks into a constant number of guessable
containers. This packing can be computed exactly, i.e. with no leftovers (in particular, we
will not use Lemma 5 to compute such packing). To that aim, we will exploit the following
structural result.

▶ Lemma 9. Let P (·) be an optimal schedule of I (hence with peak OPT). There exists a
packing P ′(·) with peak at most 5

3 OPT satisfying that all the tall tasks are scheduled one
after the other starting on the leftmost edge in non-increasing order of height.

Proof. Let T be the tall tasks (having height larger than 2
3 OPT). Notice that the paths

of these tasks in P (·) need to be edge disjoint. Let us classify the edges into valley edges if
some task in T uses that edge in P (·) and mountain edges otherwise (see also Figure 3a).
We let Imnt be the (mountain) tasks whose path in P (·) consists solely of mountain edges,
Ivll be the (valley) tasks whose path in P (·) consists solely of valley edges (notice that this
set includes T), and Icrs := I \ (Ivll ∪ Imnt) the remaining (crossing) tasks.

We next define a modified partial schedule P ′(·) of Ivll ∪ Imnt as follows. Let us reorder
the edges of the path (and the tasks accordingly) so that valley edges appear to the left
and mountain edges appear to the right in the path (maintaining their relative order).
Furthermore, we rearrange the valley edges so that tasks in T are scheduled from left to
right in non-increasing order of height. Observe that by construction Imnt are scheduled on
W − w(T) edges (i.e. the total number of mountain edges). Since we temporarily removed
crossing tasks, this induces a feasible packing of Ivll ∪ Imnt. The resulting packing P ′(·)
clearly has a peak of at most OPT .

Consider next the schedule P (·) restricted to Icrs. We claim that this schedule has peak
at most 2

3 OPT . Indeed, notice first that the demand of valley edges is at most 1
3 OPT .

Consider next a mountain edge e. Let eℓ be the rightmost valley edge to the left of e (if any),
and define er symmetrically to the right of e. Any task in Icrs using e must also use eℓ or er

(or both). Hence the total demand on e is at most the total demand on eℓ plus the total
demand on er, thus at most 2

3 OPT . The claim follows by combining the schedule of Icrs

(taken from P (·)) with the above schedule P ′(·) of Ivll ∪ Imnt (see also Figure 3b). ◀

We will next assume that tall tasks are scheduled as in the above lemma. By increasing
the peak by εOPT (up to (5

3 + ε)OPT), one can define a set of Oε(1) (tall) containers where
such tasks can be packed (respecting the mentioned order and with no leftovers). Consider
the demand profile of tall tasks in the considered schedule, and round it to the next multiple
of εOPT . Consider the tasks Tk corresponding to the value k · εOPT in the rounded profile.
Notice that these tasks are scheduled consecutively along some path Pk. We create a vertical
container Ck of height k · εOPT and width |E(Pk)|, pack Tk into Ck, and schedule Ck on Pk.
Clearly, we need to create at most 1/ε containers. Notice also that the dimensions of these
containers can be guessed in polynomial time since there is a constant number of options for
the height, and the widths correspond to the total width of a subsequence of tall tasks in the
considered ordering by non-increasing height (breaking ties arbitrarily).

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:11

5
3 OPT

Mountain edges

Valley edges

OPT

(a) A scheduling of peak OP T . Light gray rect-
angles correspond to tasks in T , dark gray ones
represent mountain and valley tasks, and dashed
ones the crossing tasks.

Mountain edgesValley edges

OPT

4
3 OPT

5
3 OPT

(b) Structured solution having peak at most
5
3 OP T , where tasks in T are placed one next to
the other, starting at the leftmost edge and sorted
non-increasingly by height.

Figure 3 Depiction of the proof of Lemma 9.

It remains to consider large tasks. Since they are at most 1
εδ = Oε(1) many, it is sufficient

to define a distinct (large) container for each one of them and pack the large tasks accordingly.
We schedule the large containers exactly as in the solution guaranteed by Lemma 9. Clearly
tall and large containers can be scheduled together with a peak of at most (5

3 + ε)OPT by
the above construction.

4.2 Containers for Horizontal Tasks
In this section, we define a packing of horizontal tasks into a constant number of guessable
containers. These containers can be scheduled together with the tall and large containers
with small enough peaks. This will induce a convenient schedule of non-narrow tasks.

Let us focus on the schedule of tall and large containers with a peak of at most (5
3 +ε)OPT

from the previous section. Consider now the demand profile of such container schedule. Since
the demand profile of tall containers has at most 1/ε = Oε(1) jumps, and the demand profile
of large containers has at most 2/(εδ) = Oε(1) jumps, then the overall demand profile has
Oε(1) jumps.

Assume next that horizontal tasks are scheduled as in Lemma 9: notice that such tasks
can be scheduled with the tall and large containers without increasing the peak. This implies
that the demand profile of horizontal tasks is upper bounded (on each coordinate) by the
difference between (5/3 + ε)OPT and the demand profile of tall and large containers (see
Figure 4). Under these conditions, it is possible to build containers for horizontal tasks, using
the standard linear grouping technique, as the following lemma shows.

▶ Lemma 10. Suppose there exists a schedule of H such that its demand profile is upper
bounded (vectorially) by a demand profile D with Oε(1) jumps. Then there exists a container
packing for H into Oε(1) horizontal guessable containers with demand profile upper bounded
by D plus 4εOPT on each coordinate.

Proof. Let us assume by now that horizontal tasks are horizontally sliced, meaning that each
task i, having height h(i) and width w(i), is replaced by h(i) sibling slices, which are tasks of
width w(i) and height 1. The schedule of the slices is the same as for the corresponding task.

APPROX/RANDOM 2021

20:12 Approximation Algorithms for Demand Strip Packing

(
5
3 + ε

)
OPT

(
5
3 + ε

)
OPT

Horizontal

Tall

Large

Large

Figure 4 The demand profile of tall and large tasks in the schedule obtained from Lemma 9 has
Oε(1) jumps, bounding the profile of (sliced) horizontal tasks (on top).

In order to reduce the possible number of distinct slice widths to a constant, we will use the
technique of linear grouping while increasing the final peak by at most 2εOPT . We start
by considering all the slices in a pile, one on top of the other and sorted non-increasingly
by width from bottom to top (and putting sibling slices consecutively). Since these slices
have a width at least εW and total area at most OPT · W , the pile has total height at most
1
ε OPT . Starting from the bottom, we partition the pile into groups G1, . . . , Gq of height
exactly εOPT (except possibly for Gq which may have a smaller height). We remove from
the solution the slices in G1 and any slice in G2 which used to have a sibling slice in G1, and
temporarily remove the corresponding tasks. Observe that we are removing the tasks whose
slices are fully contained in G1 plus at most one extra task. In particular, the total height of
the removed tasks is at most (ε + µ)OPT ≤ 2εOPT (here we use µ ≤ ε).

Next, we round up the widths of the remaining slices as follows: for i = 2, . . . , q, the
width of slices (still) in Gi are rounded to the smallest width of any slice originally in Gi−1.
We call this set of slices the rounded slices, and next focus on packing them. Notice that
rounded slices have at most 1/ε2 distinct widths. This also induces a matching between each
rounded slice a and a distinct original slice b, so that w(b) ≥ w(a). In particular, we can
schedule each such a starting on the first edge of P (b) without increasing the overall peak.

Now we left-shift the horizontal slices in the solution as much as possible while still
obtaining a schedule whose demand profile is upper bounded by D. Let e be the starting
edge of some slice S at the end of the process. Notice that one of the following cases holds:
(1) D increases on edge e (including as a special case when e is the leftmost edge of G) or (2)
the edge f to the left of e is the ending edge of some other slice S′. Indeed otherwise it would
be possible to left-shift S while respecting all the constraints. This implies that the possible
positions for the starting edge of any slice can be obtained by considering the Oε(1) edges
where D increases and then adding the total width of a few slices. Notice that there are at
most 1/ε2 such widths, and we can sum up at most 1/ε of them (since horizontal slices have
widths at least εW). Altogether, the number of possible starting edges for the slices is Oε(1).

Consider the leftmost possible such edge e and all the rounded slices Se starting on e

in this left-shifted schedule. We partition Se by width w, and for each such width w and
corresponding set of slices Se,w, we construct a horizontal container of width w and height
h(Se,w) where we pack Se,w. We repeat this procedure for each possible starting edge e,

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:13

obtaining in the end K ≤ Oε(1) containers in total where we packed all the rounded slices.
Notice that the width of each container is the width of some rounded slice, which in turn is
the width of some task. Hence the widths of the containers are guessable in the usual sense.

We next turn the above packing of rounded slices into a feasible packing of tasks (into
the same containers). First of all, we repack the rounded slices as follows. We consider all
the slices Sw of a given width w in any order where sibling slices appear consecutively, and
all the containers Cw of that width in any order. We pack each slice s ∈ Sw in the first
container C ∈ Cw where s still fits. Notice that h(Sw) = h(Cw) by construction, hence we
repack all rounded slices this way. Next we consider the tasks i whose slices are all contained
in the same container C, and pack i into C. By construction this packing is feasible. We
add the tasks which are not packed this way to the set of removed tasks defined earlier. We
round up the heights of the containers to the next multiple of ε

K OPT , hence making such
heights guessable. This way the peak increases at most by εOPT .

Consider the set of removed tasks. Recall that the tasks removed in the initial rounding
phase have total height at most 2εOPT . In the following packing phase, we remove at most
one task per container, hence these removed tasks have height at most K · µ · OPT ≤ εOPT .
Here we assume that µ ≤ ε/K: this can be achieved by choosing f(x) = x/K in Lemma 8.
Hence the removed tasks altogether have total height at most 3εOPT : we pack these tasks
in one extra (guessable) horizontal container of width W and height 3εOPT . ◀

From the above construction it is possible to derive a schedule of non-narrow tasks of
small enough peak.

▶ Lemma 11. It is possible to compute in polynomial-time a feasible schedule of I \ N with
peak at most

(5
3 + 7ε

)
OPT .

Proof. Consider the guessable containers for tall, large, and horizontal tasks and the corres-
ponding schedule as described before. This schedule has a peak of at most (5

3 + ε)OPT +
4εOPT . By Lemma 8 the medium tasks fit into a horizontal container of width W and
height εOPT . Altogether this leads to a packing of L ∪ T ∪ H ∪ M = I \ N into Oε(1)
guessable containers that can be scheduled with peak at most (5

3 + 6ε)OPT .
It is easy to pack L ∪ T ∪ M into the corresponding containers. For H we apply Lemma 5

with ε′ = ε2 to assign the horizontal tasks to them, obtaining a set of horizontal unplaced
tasks of an area at most ε2 · W · OPT (hence of total height at most εOPT). The latter
tasks can be placed into an extra horizontal container of height εOPT and width W . The
resulting set of containers can be scheduled with a peak at most (5

3 + 7ε)OPT , and such a
schedule can be efficiently computed as already discussed. ◀

4.3 Scheduling Narrow Tasks
At this point it just remains to schedule the narrow tasks. For this goal we need the following
generalization of Lemma 6 that considers (Q, t∗)-sorted partial schedules. Recall that for a
node t∗ of the path and a value Q ≥ 0, a schedule is (Q, t∗)-sorted if the demand to the left
of t∗ is at least Q, and to the right of t∗ the demand profile is non-increasing.

▶ Lemma 12. Let I be an instance of DSP and α > 0. Suppose we are given a ((1 +
α)OPT, t∗)-sorted schedule of I ′ ⊆ I. Let I ′′ := I \ I ′ and assume that:

The peak of the schedule is at most π, with π ≥ (1 + α)OPT + hmax(I ′′), and
wmax(I ′′) ≤ α

2(α+1) W .
Then it is possible to compute in polynomial time a schedule of I with peak at most π.

APPROX/RANDOM 2021

20:14 Approximation Algorithms for Demand Strip Packing

Proof. By overloading notation, let t∗ also denote the number of edges to the left of t∗.
Notice first that W − t∗ ≥ 2wmax(I ′′). Indeed otherwise, since the input schedule is
((1 + α)OPT, t∗)-sorted, the total area of the tasks in I ′ would be at least

t∗ · (1 + α)OPT > (W − 2wmax(I ′′))(1 + α)OPT ≥ W · OPT

which is not possible. Roughly speaking, to prove the desired claim, we will apply Lemma 6
to the demand profile induced by the edges to the right of t∗. In more detail, we consider
a new instance defined by a path with W̃ = W − t∗ edges and a set of tasks Ĩ consisting
of Ĩ ′′ := I ′′ plus a set Ĩ ′ of W̃ tasks having width 1 and, for each edge e to the right of t∗,
height equal to the total demand on edge e in the original schedule for I ′. To see that the
required hypotheses are satisfied, notice that by scheduling the tasks in Ĩ ′ one next to the
other sorted non-increasingly by height we obtain a sorted partial schedule of a peak at most
π, where

π ≥ hmax(I ′′) + (1 + α)OPT ≥ hmax(Ĩ ′′) + max{a(Ĩ)/W̃ , hmax(Ĩ ′′)}.

The last inequality above holds since a(Ĩ) ≤ OPT · W − a(I ′) ≤ OPT (W − (1 + α)t∗).
Finally, we notice that wmax(Ĩ ′′) ≤ W̃/2, and

(W̃ − wmax(Ĩ ′′))(π − hmax(Ĩ ′′)) + wmax(Ĩ ′′) · hmax(Ĩ ′′)
≥ (W̃ − wmax(Ĩ ′′))(1 + α)OPT

= OPT (W − t∗(1 + α)) + αW · OPT − wmax(I ′′)(1 + α)OPT

≥ a(Ĩ) + αW · OPT − α

2 W · OPT ≥ a(Ĩ).

Hence all the conditions of Lemma 6 apply. Given that the demand profile of the partial
schedule for Ĩ ′ is the same as the demand profile induced by the edges to the right of t∗

in the original schedule for I ′, we can schedule I ′′ on top of the input schedule without
exceeding the peak π. ◀

We now have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Consider the schedule of I \ N with peak at most π :=
(5

3 + 7ε
)

OPT

provided by Lemma 11. We perform a π-left-pushing of this schedule, however without
left-shifting any tall task. Let us prove that this partial schedule of I ′ := I \ N satisfies
all the required properties of Lemma 12 with parameter π. First of all, there exists a node
t∗ for which (1) every edge to the left of t∗ (if any) has demand larger than (1 + 7ε)OPT ,
and (2) the demand profile to the right of t∗ is non-increasing. Indeed, if (1) does not hold,
then there exists an edge having demand less than (1 + 7ε)OPT and the following edge has
demand larger than (1 + 7ε)OPT . But this means that some task which is not tall can be
left-shifted (as there can be only one tall task per edge); similarly, if (2) does not hold, there
is a pair of contiguous edges to the right of t∗ where the demand strictly increases from left
to right. But since the tall tasks are sorted non-increasingly by height, this implies that
there exists a task that is not tall that can be left-shifted. In conclusion, the solution is
((1 + 7ε)OPT, t∗)-sorted and also wmax(N) ≤ εW ≤ 7ε

2(1+7ε) W for ε small enough. Since
π ≥ (1 + 7ε)OPT + hmax(N), by Lemma 12 we obtain a feasible schedule of peak at most π.
The claim follows by scaling ε appropriately. ◀

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:15

0

1

2

3

4

5

0 1 2 3 4 5 6 7

1

2

For 3

For 5

For 4

Figure 5 If we assume by contradiction that some optimal solution of height 4 for the GSP
instance described in Lemma 13 exists, it must have this structure.

5 Comparison between DSP and GSP

In this Section we provide instances where a gap between the optimal values they achieve
interpreted as DSP and GSP instances can be observed. First we discuss the general case and
then the case of Square-DSP. It is worth noticing that, for the general case, an analogous
proof can be derived from the results in [8].

▶ Lemma 13. There exists an instance of DSP with optimal peak 4 such that the corresponding
GSP instance has optimal peak 5.

Proof. Consider the following DSP instance I, where W = 7 and the set of tasks consists of
the following eight elements (see Figure 1a for a depiction):

Two tasks of width 2 and height 3 (tasks 1 and 2 in the figure),
Two tasks of width 4 and height 1 (tasks 3 and 4 in the figure),
One task of width 3 and height 1 (task 5 in the figure),
One task of width 1 and height 1 (task 6 in the figure), and
Two tasks of width 1 and height 2 (tasks 7 and 8 in the figure).

As it is possible to see in Figure 1a, the optimal solution has peak 4 (since OPT ≥
a(I)/W = 4). We will show now that there is no solution for the corresponding GSP instance
of height 4, which would conclude the proof.

Suppose by contradiction that there exists a solution to the corresponding GSP instance
of height 4. Let us imagine for the sake of presentation that we draw a grid of unit-size cells
over the rectangular region [0, 7] × [0, 4], defining four rows of height 1 and seven columns of
width 1. First of all, notice that in any feasible packing of the rectangles into the region,
rectangles 1 and 2 cannot be touching the top (resp. bottom) boundary of the region at
the same time. If that is the case, then the rectangles 3 and 4 do not fit in the region as
they cannot be placed in the same row and none of them fits in the rows which are partially
occupied by rectangles 1 and 2. So let us assume w.l.o.g. that rectangle 1 touches the top
boundary and rectangle 2 touches the bottom boundary. Since they both partially occupy
the middle rows of the region, rectangles 3 and 4 must be placed one touching the bottom
boundary and the other touching the top boundary. This implies that rectangle 5 has to be
placed in one of the middle rows (in the other rows there is just one cell free), forcing us to
place rectangles 1 and 2 one touching the left boundary and the other touching the right
boundary (see Figure 5). Suppose rectangle 5 is assigned to the second row from bottom to
top (the other case being symmetric). Then in the two topmost rows we have to pack two
rectangles of height 2 plus a rectangle of width 4 which is not possible as their total width is
larger than the space left due to rectangle 1. This contradicts the fact that there is a feasible
solution for the GSP instance I of height 4. ◀

APPROX/RANDOM 2021

20:16 Approximation Algorithms for Demand Strip Packing

Now we will prove that even for the case of square tasks, the optimum packing for the
two problems of Square-DSP and Square-GSP can exhibit a gap.

▶ Lemma 14. There exists an instance of Square-DSP such that the optimal schedule has
peak 11 but every feasible solution for the corresponding Square-GSP instance has height at
least 12.

Proof. Consider a Square-DSP with W = 13 and containing the following set I of tasks
(see Figure 1b for a depiction):

Two tasks of height/width 6 (tasks 1 and 2 in the figure),
Two tasks of height/width 5 (tasks 3 and 4 in the figure),
One task of height/width 3 (task 5 in the figure),
Two tasks of height/width 2 (tasks 6 and 7 in the figure), and
Four tasks of height/width 1 (tasks 8, 9, 10 and 11 in the figure).

Since a(I) = 11 · 13, we have that OPT ≥ 11. Figure 1b shows that the optimal peak is
at most 11 and hence it is exactly 11.

Assume by contradiction that there exists a feasible packing for the corresponding
Square-GSP instance of height at most 11. Consider K to be the region [0, 0] × [13, 11] in
the plane, and let (xi, yi) be the coordinate of the bottom-left corner of task i in the solution.
Notice that K must be completely filled with tasks.

We can assume that x1 ≤ x2, and since tasks 1 and 2 have height 6 and the height of K
is 11, it must hold that x1 ≤ x2 + 6. Hence, w.l.o.g. there are two cases to consider:

x1 = 0 and x2 = 6:
In this case the region [12, y2] × [13, y2 + 6] can only contain squares of size 1, and they
cannot fill the region completely, so this case cannot happen.
x1 = 0 and x2 = 7:
We show that y1, y2 ∈ {0, 5}; Assume that y1 ̸∈ {0, 5}. Then tasks 2, 3 and 4 must be
packed inside the region [6, 0] × [13, 11] since they can not be packed above or below task
1. Since a(j2) + a(j3) + a(j4) > 77, this is not possible, hence proving the claim.
Note that if y1 = y2 then, similarly to the previous case, the area in [6, y1] × [7, y1 + 6]
can only contain tasks of size 1 and they cannot fill this region completely. So we can
assume that (x1, y1) = (0, 0) and (x2, y2) = (7, 5).
Now every remaining rectangle is either packed in [6, 0] × [13, 5] or in [0, 6] × [7, 11].
However, among tasks 3, 4 and 5, it is not possible to place two of them in one of the
previously mentioned rectangular region together, contradicting the existence of a feasible
solution of height 11. ◀

References
1 Anna Adamaszek, Tomasz Kociumaka, Marcin Pilipczuk, and Michal Pilipczuk. Hardness

of approximation for strip packing. ACM Trans. Comput. Theory, 9(3):14:1–14:7, 2017.
doi:10.1145/3092026.

2 Anna Adamaszek and Andreas Wiese. A quasi-ptas for the two-dimensional geometric knapsack
problem. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1491–1505. SIAM, 2015. doi:10.1137/1.9781611973730.98.

3 Soroush Alamdari, Therese C. Biedl, Timothy M. Chan, Elyot Grant, Krishnam Raju Jampani,
Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak. Smart-grid electricity allocation via
strip packing with slicing. In 13th International Symposium on Algorithms and Data Structures
(WADS), volume 8037, pages 25–36. Springer, 2013. doi:10.1007/978-3-642-40104-6_3.

https://doi.org/10.1145/3092026
https://doi.org/10.1137/1.9781611973730.98
https://doi.org/10.1007/978-3-642-40104-6_3

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:17

4 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing
(2 + ε)-approximation for unsplittable flow on a path. ACM Transactions on Algorithms,
14(4):55:1–55:23, 2018. doi:10.1145/3242769.

5 Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two
dimensions. SIAM Journal on Computing, 9(4):846–855, 1980. doi:10.1137/0209064.

6 Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A
structural lemma in 2-dimensional packing, and its implications on approximability. In
Algorithms and Computation, 20th International Symposium (ISAAC), volume 5878, pages
77–86. Springer, 2009. doi:10.1007/978-3-642-10631-6_10.

7 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-
proximation schemes for unsplittable flow on a path. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 47–58. SIAM, 2015.
doi:10.1137/1.9781611973730.5.

8 Iwo Bladek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler. On contiguous
and non-contiguous parallel task scheduling. J. Sched., 18(5):487–495, 2015. doi:10.1007/
s10951-015-0427-z.

9 Adam L. Buchsbaum, Howard J. Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup.
OPT versus LOAD in dynamic storage allocation. SIAM Journal on Computing, 33(3):632–646,
2004. doi:10.1137/S0097539703423941.

10 Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W. H. Wong, and David K. Y.
Yau. Scheduling for electricity cost in a smart grid. Journal of Scheduling, 19(6):687–699,
2016. doi:10.1007/s10951-015-0447-8.

11 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7(4):48:1–
48:7, 2011. doi:10.1145/2000807.2000816.

12 Edward Grady. Coffman and John L. Bruno. Computer and job-shop scheduling theory /
edited by E. G. Coffman, Jr. ; coauthors, J. L. Bruno ... [et al.]. Wiley New York, 1976.

13 Edward G. Coffman Jr., János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.
Bin Packing Approximation Algorithms: Survey and Classification, pages 455–531. Springer
New York, 2013. doi:10.1007/978-1-4419-7997-1_35.

14 Edward G. Coffman Jr., M. R. Garey, David S. Johnson, and Robert Endre Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9(4):808–826, 1980. doi:10.1137/0209062.

15 Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak demand
minimization via sliced strip packing. CoRR, abs/2105.07219, 2021. URL: https://arxiv.
org/abs/2105.07219.

16 Pierre-François Dutot, Grégory Mounié, and Denis Trystram. Scheduling parallel tasks
approximation algorithms. In Joseph Y.-T. Leung, editor, Handbook of Scheduling - Algorithms,
Models, and Performance Analysis. Chapman and Hall/CRC, 2004.

17 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approxim-
ation algorithms for demand strip packing. CoRR, abs/2105.08577, 2021. arXiv:2105.08577.

18 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In 58th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 260–271. IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.32.

19 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. CoRR, abs/1711.07710,
2017. URL: http://arxiv.org/abs/1711.07710.

20 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 65,

APPROX/RANDOM 2021

https://doi.org/10.1145/3242769
https://doi.org/10.1137/0209064
https://doi.org/10.1007/978-3-642-10631-6_10
https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1007/s10951-015-0427-z
https://doi.org/10.1137/S0097539703423941
https://doi.org/10.1007/s10951-015-0447-8
https://doi.org/10.1145/2000807.2000816
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.1137/0209062
https://arxiv.org/abs/2105.07219
https://arxiv.org/abs/2105.07219
http://arxiv.org/abs/2105.08577
https://doi.org/10.1109/FOCS.2017.32
http://arxiv.org/abs/1711.07710

20:18 Approximation Algorithms for Demand Strip Packing

pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
FSTTCS.2016.9.

21 Fabrizio Grandoni, Salvatore Ingala, and Sumedha Uniyal. Improved approximation algorithms
for unsplittable flow on a path with time windows. In Approximation and Online Algorithms
- 13th International Workshop, (WAOA), volume 9499, pages 13–24. Springer, 2015. doi:
10.1007/978-3-319-28684-6_2.

22 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ϵ)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 607–619. ACM,
2018. doi:10.1145/3188745.3188894.

23 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ϵ)-approximation for
strip packing. Computational Geometry, 47(2):248–267, 2014. doi:10.1016/j.comgeo.2013.
08.008.

24 Rolf Harren and Rob van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, 12th International Workshop (APPROX), volume 5687, pages
177–189. Springer, 2009. doi:10.1007/978-3-642-03685-9_14.

25 Sören Henning, Klaus Jansen, Malin Rau, and Lars Schmarje. Complexity and inapproxim-
ability results for parallel task scheduling and strip packing. Theory of Computing Systems,
64(1):120–140, 2020. doi:10.1007/s00224-019-09910-6.

26 Klaus Jansen. A (3/2 + ε) approximation algorithm for scheduling moldable and non-moldable
parallel tasks. In 24th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 224–235. ACM, 2012. doi:10.1145/2312005.2312048.

27 Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip packing. In 27th
Annual European Symposium on Algorithms (ESA), volume 144, pages 62:1–62:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.62.

28 Klaus Jansen and Malin Rau. Improved approximation for two dimensional strip packing
with polynomial bounded width. Theoretical Computer Science, 789:34–49, 2019. doi:
10.1016/j.tcs.2019.04.002.

29 Klaus Jansen and Roberto Solis-Oba. Rectangle packing with one-dimensional resource
augmentation. Discrete Optimization, 6(3):310–323, 2009. doi:10.1016/j.disopt.2009.04.
001.

30 Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing, 39(8):3571–3615, 2010. doi:10.1137/080736491.

31 Mohammad M. Karbasioun, Gennady Shaikhet, Evangelos Kranakis, and Ioannis Lambadaris.
Power strip packing of malleable demands in smart grid. In Proceedings of IEEE International
Conference on Communications, (ICC), pages 4261–4265. IEEE, 2013. doi:10.1109/ICC.
2013.6655233.

32 Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000. doi:10.1287/moor.25.4.
645.12118.

33 Joseph Y.-T. Leung, Tommy W. Tam, C. S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
Packing squares into a square. Journal of Parallel and Distributed Computing, 10(3):271–275,
1990. doi:10.1016/0743-7315(90)90019-L.

34 Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong. Greedy is optimal for online
restricted assignment and smart grid scheduling for unit size jobs. In Approximation and
Online Algorithms - 17th International Workshop (WAOA), volume 11926, pages 217–231.
Springer, 2019. doi:10.1007/978-3-030-39479-0_15.

35 Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence W. H. Wong. Non-preemptive scheduling in a
smart grid model and its implications on machine minimization. Algorithmica, 82(12):3415–
3457, 2020. doi:10.1007/s00453-020-00733-3.

https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.1007/978-3-319-28684-6_2
https://doi.org/10.1145/3188745.3188894
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1016/j.comgeo.2013.08.008
https://doi.org/10.1007/978-3-642-03685-9_14
https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.1145/2312005.2312048
https://doi.org/10.4230/LIPIcs.ESA.2019.62
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1016/j.tcs.2019.04.002
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1137/080736491
https://doi.org/10.1109/ICC.2013.6655233
https://doi.org/10.1109/ICC.2013.6655233
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1016/0743-7315(90)90019-L
https://doi.org/10.1007/978-3-030-39479-0_15
https://doi.org/10.1007/s00453-020-00733-3

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:19

36 Tobias Mömke and Andreas Wiese. A (2 + ε)-approximation algorithm for the storage alloca-
tion problem. In Automata, Languages, and Programming - 42nd International Colloquium
(ICALP), volume 9134, pages 973–984. Springer, 2015. doi:10.1007/978-3-662-47672-7_79.

37 Tobias Mömke and Andreas Wiese. Breaking the barrier of 2 for the storage allocation
problem. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 168, pages 86:1–86:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.86.

38 Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1491–1510. SIAM, 2016. doi:
10.1137/1.9781611974331.ch102.

39 Anshu Ranjan, Pramod P. Khargonekar, and Sartaj Sahni. Offline first fit scheduling in smart
grids. In 2015 IEEE Symposium on Computers and Communication (ISCC), pages 758–763.
IEEE Computer Society, 2015. doi:10.1109/ISCC.2015.7405605.

40 Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Jan van
Leeuwen, editor, Algorithms (ESA) - Second Annual European Symposium, volume 855, pages
290–299. Springer, 1994. doi:10.1007/BFb0049416.

41 Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions.
Information Processing Letters, 10(1):37–40, 1980. doi:10.1016/0020-0190(80)90121-0.

42 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

43 Shaojie Tang, Qiuyuan Huang, Xiang-Yang Li, and Dapeng Wu. Smoothing the energy
consumption: Peak demand reduction in smart grid. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), pages 1133–1141. IEEE, 2013. doi:
10.1109/INFCOM.2013.6566904.

44 Sean Yaw and Brendan Mumey. Scheduling non-preemptible jobs to minimize peak demand.
Algorithms, 10(4):122, 2017. doi:10.3390/a10040122.

45 Sean Yaw, Brendan Mumey, Erin McDonald, and Jennifer Lemke. Peak demand scheduling
in the smart grid. In 2014 IEEE International Conference on Smart Grid Communications
(SmartGridComm), pages 770–775. IEEE, 2014. doi:10.1109/SmartGridComm.2014.7007741.

A Hardness of Approximation for Square-DSP

For several rectangle packing problems it is usually the case that they are NP-hard (or
APX-hard) even when restricted to instances consisting solely of squares [33]. This holds
also for DSP, as the following theorem shows.

▶ Theorem 15. For any ε > 0, there exists no polynomial-time (3/2 − ε)-approximation
algorithm for Square-DSP unless NP = P.

In order to prove this result, we show a gap-producing reduction from the NP-complete
Balanced Partition problem, formally defined as follows.

▶ Definition 16 (Balanced Partition). In an instance of the Balanced Partition
problem, we are given a set of 2n positive integers A = {a1, a2, . . . , a2n}. The goal is to
decide whether there exists a partitioning of A into A1 and A2 such that |A1| = |A2| = n, and
the sum of the numbers in each of the two sets is equal to a target value B =

(∑2n
j=1 aj

)
/2.

We start first by proving that the Balanced Partition problem is NP-complete. This
result is folklore by now but, for the sake of completeness, we bring a complete proof.

▶ Theorem 17. Balanced Partition is NP-complete.

APPROX/RANDOM 2021

https://doi.org/10.1007/978-3-662-47672-7_79
https://doi.org/10.4230/LIPIcs.ICALP.2020.86
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1109/ISCC.2015.7405605
https://doi.org/10.1007/BFb0049416
https://doi.org/10.1016/0020-0190(80)90121-0
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1109/INFCOM.2013.6566904
https://doi.org/10.1109/INFCOM.2013.6566904
https://doi.org/10.3390/a10040122
https://doi.org/10.1109/SmartGridComm.2014.7007741

20:20 Approximation Algorithms for Demand Strip Packing

Proof. We will reduce the Partition problem to the balanced variant in polynomial time.
Given an instance I of the Partition problem with n numbers a1, a2, . . . , an, we construct
an instance I ′

k of the Balanced Partition problem for each k ∈ {1, 2, . . . , ⌊n/2⌋}. Let
C be (

∑n
j=1 aj) + 1. For each k, the instance I ′

k is defined as follows. Let I ′
k have

all the initial numbers, a1, a2, . . . , an. Add the set dummy of n − 2k + 2 extra numbers
where dummy = {α, β1, β2, . . . , βn−2k+1} in which α = (n − 2k + 1)C and βi = C for each
i ∈ [n − k + 1]. We claim that I is a Yes instance of the Partition problem if and only if at
least one I ′

k is a Yes instance of the Balanced Partition problem.

Completeness. Assume that I is a Yes instance of the Partition problem. Let S1 and S2
be the two sets of equal sum, say B. These sets may not necessarily have the same cardinality.
With sum renumbering, assume that S1 = {a1, a2, . . . , ak} and S2 = {ak+1, ak+2, . . . , an} for
some k ∈ [⌊n/2⌋]. It is easy to see that the instance I ′

k of the Balanced Partition problem
is a Yes instance, since we can make the sets S′

1 = {a1, a2, . . . , ak, β1, β2, . . . , βn−2k+1} and
S′

2 = {ak+1, ak+2, . . . , an, α} both with the sum B + (n − 2k + 1)C and cardinality n − k + 1.

Soundness. Now assume that I is a No instance of the Partition problem. We claim that
no I ′

k can be a Yes instance of the Balanced Partition problem either. For the sake of
contradiction, assume I ′

k is a Yes instance with two partitions S′
1 and S′

2 of the same sum and
cardinality. Note that if no βi is placed in the same set as α, we reach a contradiction since we
then can find two sets S1 = {a1, a2, . . . , ak} and S2 = {ak+1, ak+2, . . . , an} of the same sum of
the original Partition instance I. So with some renumbering, we can assume we have S′

1 =
{a1, a2, . . . , ak′ , α, β1, β2, . . . , βℓ} and S′

2 = {ak′+1 + ak′+2, . . . , an, βℓ+1, βℓ+2, . . . , βn−2k+1}
for some k′ and ℓ in which:

k′∑
j=1

aj + (n − 2k + 1)C + ℓ · C =
n∑

j′=k′+1
a′

j + (n − 2k + 1 − ℓ)C.

This implies that

2ℓ · C =
n∑

j′=k′+1
a′

j −
k′∑

j=1
aj ≤

n∑
j′=k′+1

a′
j < C,

which is a contradiction. ◀

Proof of Theorem 15. Assume an instance I of the Balanced Partition problem is
given. Based in this instance, we define an instance I ′ of Square-DSP. Let amax denote
the maximum value among the integers in A. Define C as 1/ε ·

∑2n
j=1 aj , where ε is chosen

such that 1/ε is a large but constant integer. Note that C > 1/ε · amax. Let I ′ have 2n tasks,
where each task i has width and height C + ai for i ∈ [2n]. Our goal is to schedule the 2n

tasks into a path of W = n · C + B edges while minimizing the peak. Based on the hardness
of the Balanced Partition problem, we show that it is hard to distinguish between the
case where an schedule with peak 2C(1 + ε) exists and the case where the minimum peak is
larger than 3(C + 1) − ε.

Completeness. Assume that I is a Yes instance, meaning that a partitioning A = A1∪̇A2
exists that satisfies the cardinality and sum constraints. Define two shelves of squares,
Si = {j|aj ∈ Ai} for i = 1, 2, and schedule them starting at the leftmost edge. The width of
each shelf is equal to n · C + B and the peak is at most 2 · (C + amax) < 2C(1 + ε).

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:21

Soundness. Now, consider a No instance I. We claim that, for the corresponding Square-
DSP instance, no schedule with peak smaller than or equal to 3(C + 1) − ε exists. For the
sake of contradiction, assume that it is the case. Since the size of each task is at least C + 1,
it means that in the optimal solution for I ′, no three tasks use the same edge. Also, the total
width of the tasks is 2W = 2(nC + b), so no edge can have less than two tasks. This allows
us to split the tasks S into two sets S1 and S2. We start at the leftmost edge and pick one
of the two tasks placed on this edge arbitrarily and put in S1. Since every edge has exactly
two tasks, immediately to the right of this task at least one another task must start. We put
it in S1 as well and proceed until we reach the rightmost edge, breaking ties arbitrarily along
the way. We set S2 = S\S1. It remains to show that each set has exactly n tasks. Assume
otherwise; let S1 be composed of tasks s1, . . . , sn+k, and S2 be the tasks sn+k+1, . . . , s2n for
some k, 1 ≤ k ≤ n. Since the tasks are placed one next to the other in each shelf, we have
that (n + k)C +

∑n+k
j=1 aj = (n − k)C +

∑2n
j′=n+k+1 aj′ . Therefore

∑2n
j′=n+k+1 aj′ ≥ 2k · C,

which is a contradiction for any value of k > 0 by our choice of C.
As a result, assuming that NP ̸= P, no polynomial-time algorithm can approximate the

Square-DSP problem within a factor of 3(C+1)−ε
2C(1+ε) = 3/2 − ε′, for some ε′ = O(ε). ◀

B A PTAS for DSP with short tasks

In this section we will prove Theorem 2 restated below.

▶ Theorem 2. Given ε > 0 small enough, there exists δ > 0 and a polynomial time algorithm
such that, given an instance of DSP with optimal value OPT and consisting solely of tasks
having height at most δ · OPT , it computes a (1 + O(ε))-approximate solution.

Before proving the result in detail we provide a couple of required technical lemmas
regarding the computation of π-left-pushing of a given schedule P (·). First of all, we prove
that such a solution can be indeed computed efficiently.

▶ Lemma 18. Given a feasible schedule P (·) with peak π for an instance I, one can compute
a π′-left-pushing of P (·), with π′ ≥ π, in polynomial time.

Proof. Let 1, ..., n be the tasks sorted according to their starting edge in P (·) from left to
right. Let Si be the starting edge of task i. First, inductively, we compute a π′-left-pushing
of I \ {n} and do not left-shift task n. Since we only left-shifted the tasks, the demand on
the edges from Sn to eW cannot increase. Thus, we reach a feasible solution such that its
peak does not exceed π′. Now we compute the starting time of task n, s∗, if we left-shift
this task as much as possible. Note that s∗ can only be either the leftmost edge or some
edge e such that some previous task finishes next to the left of e, as otherwise at least one
more unit of left-shifting is possible for task n. Now, using this fact, we have at most n

possibilities for s∗ and we can compute this value in polynomial time. Note that if we call
the obtained schedule as P ′(·), then P ′(·) is indeed a π′-left-pushing of P (·). ◀

The following lemma summarizes the useful properties we can get when computing a
left-pushing.

▶ Lemma 19. Given a feasible schedule P (·) with peak π for an instance I, the π′-left-pushing
of P (·) for π′ ≥ π, let us say P ′(·), satisfies the following properties:
1. There exists a node t∗ such that P ′(·) is (π′ − hmax(I), t∗)-sorted, and
2. every i ∈ I has a starting edge in E ′ of the form

∑
j∈I′ w(j) for some I ′ ⊆ I \ {i} (0 if

I ′ is empty).

Proof. We now show a proof of the two properties:

APPROX/RANDOM 2021

20:22 Approximation Algorithms for Demand Strip Packing

1. Suppose that there exists a node k such that the demand on the edge to the left of k

is smaller than π′ − hmax(I) and the demand on the edge to the right of k is larger than
π′ − hmax(I). This implies that some task starts at the edge to the right of k, but then it is
possible to left-shift this task without surpassing the threshold of π′ which is a contradiction.
At this point we know that there exists k′ such that every edge to the left of k′ has demand
larger than π′ − hmax(I), and let k∗ be the rightmost such node. Similarly to the previous
case, if after k∗ there exists a node k such that the load to the left of k is smaller than the
demand to the right of k, then again there must exist a task starting to the right of k and,
since their demands are at most π′ − hmax(I), left-shifting such task does not violate the
threshold of π′ which is a contradiction.

2. Suppose there exists a task not satisfying the claim, and let i be the leftmost such task
in P ′(·). It is easy to see that i cannot start at the leftmost edge and also that the demand
on the edge just to the left of P ′(i) is larger than π′ − h(i) as otherwise a left-shifting of i is
possible. Due to i being the leftmost task, no task i′ can finish just to the left of P ′(i′), as
otherwise the number of edges before P ′(i) would be the sum of some widths in I plus w(i′),
thus fulfilling the claim for i. This implies that every task using the edge just to the left of
P ′(i) must also use edge P ′(i). But then the total demand just to the left of P ′(i) would be
at most the total demand on P ′(i) minus h(i), which is at most π′ − h(i). ◀

We can now proceed with the proof of Lemma 2, where at some point in the proof we
will make use of the following concentration bound which was proved in [11].

▶ Lemma 20 (Calinescu et al. [11]). Let X1, X2, . . . , Xn be independent random variables
and let 0 ≤ β1, β2, . . . , βn ≤ 1 be real numbers, where for each i = 1, 2, . . . , n, Xi = βi with
probability pi and Xi = 0 otherwise. Let X =

∑n
i=1 Xi and µ = E[X]. Then

1. The variance of X, σ2(X), is at most µ, and
2. For any 0 < λ <

√
µ, P[X > µ + λ

√
µ] < e− λ2

2 (1−λ/
√

µ).

Proof of Theorem 2. Let δ > 0 be a constant that we will specify later. We will partition
the tasks into two sets according to their widths: we will say that a task i is horizontal if
w(i) > δ · W and otherwise we will say it is narrow. Consider by now only the horizontal
tasks in I, and assume that the value OPT is known. Thanks to Lemma 19, by computing
an OPT -left-pushing of the optimal solution, we know there exists a set EH ⊆ E that can
be computed in polynomial time such that the starting edge of every task belongs to EH .
Indeed, edges in EH correspond to the sum of widths of some horizontal tasks, implying that
the number of widths in the sum must be at most 1

δ . Hence, all the possible starting edges
are of the form

∑
i∈I′

w(i) where |I ′| ≤ 1
δ . The set EH consisting of these edges has size at

most n1/ε−1 and can clearly be computed in polynomial time.
With the following integer program we can compute a feasible solution corresponding to

a OPT -left-pushing of some scheduling for these tasks. We define a variable xi,k for each
task i and starting edge k in the previously computed set EH (if task i cannot be scheduled
starting at edge k this variable is not considered):

min λ

s.t.
∑

k∈EH

xi,k = 1 ∀i horizontal∑
i hor.

∑
k′∈EH (i,q)

h(i) · xi,k′ ≤ OPT ∀q ∈ EH

xi,k ∈ {0, 1} ∀i horizontal, k ∈ EH ,

W. Gálvez, F. Grandoni, A. J. Ameli, and K. Khodamoradi 20:23

where, given i ∈ I and q ∈ {1, . . . , W }, EH(i, e) is the set of edges k ∈ EH such that, if i has
k as starting edge, then it uses edge e. In other words, the second family of constraints is
ensuring that the total demand of the constructed solution is at most OPT in every edge
(which can be done with polynomially many constraints thanks to the size of EH).

We will consider the canonical linear relaxation of the formulation, and let x⃗ be an optimal
solution to this LP (which can be computed in polynomial time). In order to derive a feasible
solution we will use Randomized Rounding with Alterations, a technique previously used in
similar settings for Packing and Scheduling problems [11, 36, 2]. In a first stage, for each
task i, we will sample one starting edge k according to the probability distribution induced
by {xi,k}k∈EH

. Now, in a second stage, we scan the starting edges k from left to right, and
the sampled tasks i starting at node k according to the sample in any order, and we add i

to the current solution as long as the obtained peak is no more than (1 + ε)OPT . Observe
that this is a dependent rounding where each task i is finally scheduled in the solution with
marginal probability at most xi,k.

Suppose we are applying the previous procedure, and let k be a fixed edge in that order.
Let X̃i,k ∈ {0, 1} be equal to 1 if and only if i is scheduled starting at edge k in the first
stage, and similarly we define Ỹi,k to be 1 if and only i is scheduled starting at edge k in the
second stage. Notice that Ỹi,k ≤ X̃i,k deterministically. By stochastic domination, we have
that

P

 ∑
i hor.

∑
k∈EH (i,q)

Ỹi,k · h(i) > (1 + ε)OPT

 ≤ P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 .

To upper bound the latter quantity we will consider two cases:

If µ ≤ 3
4δ , then we can use Chebyshev’s inequality for the variable Z :=

∑
i hor.

X̃i,k · h(i)
δOPT

(notice that thanks to Lemma 20 it holds that σ(Z) ≤ √
µ), from where we obtain that

P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 = P
[
Z >

1 + ε

δ

]

≤ P
[
|Z − µ| >

(
1 + ε

δ
− 3

4δ

)
· σ(Z)

√
µ

]
≤ 16µδ2

(1 + 4ε)2 ≤ ε

for δ ≤ ε
4 .

If µ > 3
4δ , we first set λ = 1+ε−µδ

δ
√

µ so that µ + λ
√

µ = 1+ε
δ . Notice that µ =∑

i hor.

xi,k · h(i)
δOPT

≤ 1
δ

due to the constraints in the LP.

Now, it is not difficult to see that λ is decreasing as a function of µ, implying that
λ ≥ 1+4ε√

12δ
. Furthermore, we have that 1 − λ√

µ = 2 − 1+ε
δµ ≥ 2

3 , and thus also λ <
√

µ. Now
we can use Lemma 20 applied to the variables {Xi,kh(i)/(δOPT)}i hor. and their sum Z

and obtain

P

 ∑
i hor.

∑
k∈EH (i,q)

X̃i,k · h(i) > (1 + ε)OPT

 = P [Z > µ + λ
√

µ]

< e− λ2
2 (1−λ/

√
µ)

< e− 2
9

(1+4ε)2
12δ ≤ ε

for δ ≤ (1+4ε)2

54 ln 1
ε .

APPROX/RANDOM 2021

20:24 Approximation Algorithms for Demand Strip Packing

This implies that we get a solution with peak at most (1 + ε)OPT and the probability
that a task is not scheduled is at most ε. As a consequence, in expectation the total area
of tasks that were not placed is at most εW · OPT , and hence using Markov’s inequality
we get that the probability that these tasks have area larger than 2εW · OPT is at most 1

2 .
Thus, if the area of these tasks is at most 2εW · OPT and since their heights are at most
δ · OPT , we can place them into a rectangular region of height 4εOPT and width W using
Corollary 7. If the area guarantee is not satisfied then we repeat the whole process to ensure
it as, in expectation, a constant number of times only is required.

Now we will include the set N of narrow tasks into the solution by applying Lemma 12 with
parameter π = (1+5ε)OPT . Consider a π-left-pushing of the solution. Thanks to Lemma 19,
there exists a node t∗ such that the obtained schedule is (π, t∗)-sorted. Furthermore, it is not
difficult to see that π ≥ (1 + 4ε) a(I)

W + hmax(I ′′) and wmax(N) ≤ εW ≤ 4ε
2(4ε+1) for ε ≤ 1/4,

hence satisfying the requirements of the lemma. This way, we obtain a feasible scheduling
with peak at most (1 + 5ε)OPT .

Finally, in order to avoid knowing the value of OPT , we can approximately guess it
using any constant approximation (such as Corollary 7) and define a constant number of
candidates. ◀

Peak Demand Minimization via Sliced Strip
Packing
Max A. Deppert #

Universität Kiel, Germany

Klaus Jansen #

Universität Kiel, Germany

Arindam Khan #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Malin Rau #

Universität Hamburg, Germany

Malte Tutas #

Universität Kiel, Germany

Abstract
We study the Nonpreemptive Peak Demand Minimization (NPDM) problem, where we are given a
set of jobs, specified by their processing times and energy requirements. The goal is to schedule all
jobs within a fixed time period such that the peak load (the maximum total energy requirement at
any time) is minimized. This problem has recently received significant attention due to its relevance
in smart-grids. Theoretically, the problem is related to the classical strip packing problem (SP). In
SP, a given set of axis-aligned rectangles must be packed into a fixed-width strip, such that the
height of the strip is minimized. NPDM can be modeled as strip packing with slicing and stacking
constraint: each rectangle may be cut vertically into multiple slices and the slices may be packed
into the strip as individual pieces. The stacking constraint forbids solutions where two slices of the
same rectangle are intersected by the same vertical line. Nonpreemption enforces the slices to be
placed in contiguous horizontal locations (but may be placed at different vertical locations).

We obtain a (5/3 + ε)-approximation algorithm for the problem. We also provide an asymptotic
efficient polynomial-time approximation scheme (AEPTAS) which generates a schedule for almost
all jobs with energy consumption (1 + ε)OPT. The remaining jobs fit into a thin container of height
1. The previous best result for NPDM was a 2.7 approximation based on FFDH [41]. One of our key
ideas is providing several new lower bounds on the optimal solution of a geometric packing, which
could be useful in other related problems. These lower bounds help us to obtain approximative
solutions based on Steinberg’s algorithm in many cases. In addition, we show how to split schedules
generated by the AEPTAS into few segments and to rearrange the corresponding jobs to insert the
thin container mentioned above.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases scheduling, peak demand minimization, approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.21

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2105.07219

Funding Max A. Deppert: Research supported by German Research Foundation (DFG) project JA
612/25-1.
Klaus Jansen: Research supported by German Research Foundation (DFG) project JA 612/25-1.
Malin Rau: Research supported by the French research program ENERGUMEN ANR-18-CE25-0008.

© Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 21; pp. 21:1–21:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:made@informatik.uni-kiel.de
https://orcid.org/0000-0003-3083-7998
mailto:kj@informatik.uni-kiel.de
https://orcid.org/0000-0001-8358-6796
mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0001-7505-1687
mailto:rau@informatik.uni-hamburg.de
https://orcid.org/0000-0002-5710-560X
mailto:m.tutas@gmx.net
https://orcid.org/0000-0002-1360-4634
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.21
https://arxiv.org/abs/2105.07219
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Peak Demand Minimization via Sliced Strip Packing

1 Introduction

Recent years have seen a substantial increase in the demand of electricity, due to rapid
urbanization, economic growth and new modes of electrical energy consumption (e.g., electric
cars). Traditionally, electricity generation, transmission, and distribution relied on building
infrastructure to support the peak load, when the demand for electricity is maximum.
However, the peak is rarely achieved and thus more demands can be accommodated using
the inherent flexibility of scheduling of certain jobs. E.g., the energy requirements for HVAC
units, electric vehicles, washers and dryers, water heaters, etc. can be met with a flexible
scheduling of these appliances. Smart-grids [48, 32, 45] are next-generation cyber-physical
systems that couple digital communication systems on top of the existing grid infrastructure
for such efficient utilization of power, e.g., by shifting users’ demand to off-peak hours in
order to reduce peak load.

Future smart-grids are expected to obtain demand requirements for a time period and
schedule the jobs such that the peak demand is minimized. Recently, this problem has
received considerable attention [3, 37, 40, 42, 12]. Each job can also be modeled as a rectangle,
with desired power demand as height and required running time as width. This gives a
geometric optimization problem where the goal is to pack the slices of the rectangles into
a strip of width as the time period. The goal is to minimize the maximum height of the
packing. There is another additional stacking constraint requiring that no vertical line may
intersect two slices from the same rectangle.

In this paper, we study this problem known as Nonpreemptive Peak Demand Minimization
(NPDM)). Formally, we are given a set of jobs J . Each job j ∈ J has a processing time
p(j) ∈ N (also called width) and an energy requirement e(j) ∈ N (also called height).
Furthermore, we are given a deadline D ∈ N. All the jobs are available from the time
0 and have to be finished before the deadline D. A schedule σ of the jobs J assigns
each job a starting time σ(j) ∈ N such that it is finished before the deadline, i.e., c(j) :=
σ(j) + p(j) ≤ D. The total energy consumption at a time τ ∈ {0, . . . , D} is given by e(τ) :=∑

j∈J ,σ(j)≤τ<σ(j)+p(j) e(j). The objective is to minimize the peak of energy consumption,
i.e., minimize Tσ := maxτ∈{0,...,D−1} e(τ).

NPDM can be viewed as a variant of strip packing problem, where we are allowed to slice
the rectangles vertically and the slices must be packed in contiguous horizontal positions
(but may be placed at different vertical positions). In the classical strip packing problem, we
are given a set of rectangles as well as a bounded-width strip and the objective is to find a
non-overlapping, axis-aligned packing of all rectangles into the strip so as to minimize the
height of the packing. A simple reduction from the partition problem shows a lower bound
of 3/2 for polynomial-time approximation for the problem. In 1980, Baker et al. [4] first gave
a 3-approximation algorithm. Later Coffman et al. [31] introduced two simple shelf-based
algorithms: Next Fit Decreasing Height (NFDH), First Fit Decreasing Height (FFDH),
with approximation ratios as 3 and 2.7, respectively. Sleator [46] gave a 2.5-approximation.
Thereafter, Steinberg [47] and Schiermeyer [44] independently improved the approximation
ratio to 2. Afterwards, Harren and van Stee [21] obtained a 1.936-approximation. The
present best approximation is (5/3 + ε), due to Harren et al. [20].

Alamdari et al. [3] studied a variant where we allow preemption of jobs, also known as
two-dimensional strip packing with slicing and stacking constraints (2SP-SSC), or preemptive
offline cost optimal scheduling problem (P-OCOSP) [41]. They showed this variant to be
NP-hard and obtained an FPTAS. They also studied several shelf-based algorithms and
provide a practical polynomial time algorithm that allows only one preemption per job.
Ranjan et al. [42] have proposed a practical 4/3-approximation algorithm for this problem.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:3

For NPDM, Tang et al. [48] first proposed a 7-approximation algorithm. Yaw et al. [49]
showed that NPDM is NP-hard to approximate within a factor better than 3/2. They have
given a 4-approximation for a special case when all jobs require the same execution time.
Ranjan et al. [40], have proposed a 3-approximation algorithms for NPDM. They [41] also
proposed an FFDH-based 2.7-approximation algorithm for a mixed variant where some jobs
can be preempted and some can not be preempted.

Our Contributions. We obtain improved approximation algorithms for NPDM.1 Note that
the optimal solutions of sliced strip packing/NPDM and strip packing can be quite different.
In fact, in [9] an example with a ratio 5/4 is presented. Thus, the techniques from strip
packing do not always translate directly to our problem. We exploit the property that, due
to slicing, we can separately guess regions (profile) for packing of jobs with large energy
demand (tall jobs) and jobs with large time requirements (wide jobs). We show that we can
remove a small amount of jobs with large energy demand so that we can approximately guess
the optimal profile of jobs with large processing time so that their starting positions come
from a set containing a constant number of values. This helps us to show the existence of a
structured solution that we can pack near-optimally using linear programs. This shows the
existence of an asymptotic efficient polynomial-time approximation scheme (AEPTAS):

▶ Theorem 1. For any ε > 0, there is an algorithm that schedules all jobs such that the peak
load is bounded by (1+ε)OPT+emax, where emax denotes the maximal energy demand among
the given jobs. The time complexity of this algorithm is bounded by O(n log(n)) + 1/ε1/εO(1/ε) .

In fact, we show a slightly stronger result here, providing a schedule for almost all jobs
J \C with peak energy demand bounded by (1+ε)OPT plus a schedule for the remaining jobs
C with peak energy demand emax and schedule length λD for a sufficiently small λ ∈ [0, 1].

Using the AEPTAS and Steinberg’s algorithm[47], we obtain our main result:

▶ Theorem 2. For any ε > 0, there is a polynomial-time (5/3 + ε)-approximation algorithm
for NPDM.

Previously, in strip packing (and related problems) the lower bound on the optimal packing
height is given based on the height of the tallest job or the total area of all jobs [47, 44]. One
of our main technical contributions is to show several additional lower bounds on the optimal
load. These bounds may be helpful in other related geometric problems. In fact, these
can be helpful to simplify some of the analyses of previous algorithms. Using these lower
bounds, we show, intuitively, that if there is a large amount of energy consuming jobs (or
time consuming jobs) we can obtain a good packing using Steinberg’s algorithm. Otherwise,
we start with the packing from AEPTAS and modify the packing to obtain a packing within
(5/3 + ε)-factor of the optimal. This repacking utilizes novel insights about the structure of
the packing that precedes it, leading to a less granular approach when repacking.

Related Work. Strip packing has also been studied under asymptotic approximation.
The seminal work of Kenyon and Rémila [34] provided an APTAS with an additive term
O(emax/ε2), where emax is the height of the tallest rectangle. The latter additive term
was subsequently improved to emax by Jansen and Solis-Oba [28]. Pseudo-polynomial time
algorithm for strip packing has received recent attention [39, 18, 2, 22]. Finally, Jansen and

1 The same result as in Theorem 1 was achieved independently in [15]; their approach is however
substantially different from ours.

APPROX/RANDOM 2021

21:4 Peak Demand Minimization via Sliced Strip Packing

Rau [27] gave an almost tight pseudo-polynomial time (5/4 + ε)-approximation algorithm.
Recently, Galvez et al. [14] gave a tight (3/2 + ε)-approximation algorithm for a special case
when all rectangles are skewed (each has either width or height ≤ δD, where δ ∈ (0, 1] is a
small constant).

A related problem is non-contiguous multiple organization packing [10], where the width
of each rectangle represents a demand for a number of concurrent processors. This is
similar to sliced strip packing, however, the slices need to be horizontally aligned to satisfy
concurrency. Several important scheduling problems are related, such as multiple strip
packing [27], malleable task scheduling [23], parallel task scheduling [29], moldable task
scheduling [24, 25], etc.

Several geometric packing problems are well-studied in combinatorial optimization. In
two-dimensional bin packing, we are given a set of rectangles and the goal is to pack all
rectangles into the minimum number of unit square bins. This well-studied problem [5, 26]
is known to admit no APTAS [6], unless P=NP, and the present best approximation ratio is
1.406 [7]. Another related problem is two-dimensional geometric knapsack [30, 17], where
each rectangle has an associated profit and we wish to pack a maximum profit subset of
rectangles in a given square knapsack. The present best approximation ratio for the problem
is 1.89 [16]. These problems are also studied under guillotine cuts [8, 36, 35] where all jobs
can be cut out by a recursive sequence of end-to-end cuts. There are several other important
related problems such as maximum independent set of rectangles [1], unsplittable flow on a
path [19], storage allocation problem [38], etc. We refer the readers to [13] for a survey.

The following result from [47] will be a crucial subroutine in our algorithms.

▶ Theorem 3 (Steinberg’s Algorithm [47]). Steinberg’s algorithm packs a set of rectangular
objects R into a rectangular container of height a and width b in polynomial time, if and
only if the following inequalities hold:

emax ≤ a, pmax ≤ b, 2
∑
r∈R

e(r)p(r) ≤ ab−(2emax −a)+(2pmax −b)+, (Steinberg Cond.)

where x+ = max{x, 0}, pmax is the maximal width of a rectangle, and emax is the maximal
height of a rectangle, e(r) represents the height of a rectangle and p(r) represents the width
of a rectangle.

General Approach. The general idea of our (5/3 + ε)-approximation algorithm is as follows:
If the jobs that are large in at least one of the two dimensions have a sufficiently large
total amount of work, a (5/3 + ε)-approximation can be achieved by placing these jobs in a
structured manner and using Steinberg’s algorithms to place the residual jobs. We describe
two of these cases in Section 2.

Otherwise, we know that the total amount of work of these jobs not too large. In this
case, we find a schedule σ1 that schedules almost all the jobs using an energy demand of at
most (1 + O(γ))OPT. The residual jobs are contained in an extra schedule σ2 of length γD

and peak energy demand bounded by T . These schedules are generated using the algorithm
described Section 4 in the proof of Theorem 10. Note that we have to choose γ ∈ Oε(1)
small enough, in order to meet the requirements for the next step.

Given these schedules, we find a rescheduling argument, where we rearrange the schedule
σ1 such that we can add the schedule σ2 while increasing the peak energy demand by at
most (2/3)T . This repacking argument is described in Section 3 in the proof of Theorem 7.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:5

Notation. For an instance I = (J , D), we denote by OPT(I) (or just OPT) the optimal
energy consumption peak. For some set of jobs J we define work(J) =

∑
i∈J p(i)e(i),

the total processing time as p(J) =
∑

i∈J p(i), as well as the total energy demand as
e(J) =

∑
i∈J e(i). With the additional notation of JP (i) = { i ∈ J | P (i) } as a restriction

of J using the predicate P . E.g., we may express the energy demand of jobs of J which
have a processing time of at least D/2 by e(Jp(i)≥D/2). Furthermore, given a set of jobs J ,
we denote pmax(J) := maxi∈J p(i) and emax(J) := maxi∈J e(i) and write emax and pmax if
the set of jobs is clear from the context. We say a job i that is placed at σ(i) overlaps a point
in time τ if and only if σ(i) ≤ τ < σ(i) + p(i). The set J (τ) denotes the set of jobs that
overlap the point in time τ . Additionally, we introduce segments S of the schedule which
refer to time intervals and container C which can be seen as sub schedules. The starting
point of a time interval S will be denoted by σ(S) and its endpoint as c(S). On the other
hand, a container C has a length (time), which is denoted as p(C), and a bound on the
energy demand e(C). If these containers are scheduled, the get a start point σ(C), which is
added to the start point of any job scheduled in C.

2 Cases solved with Steinberg’s algorithm

In this section, we first bound the peak energy demand from below and then use Steinberg’s
algorithm to handle some cases. Two obvious lower bounds are the energy demand of the
most energy demanding job emax and the bound given by the total amount of work of the
jobs, i.e., OPT ≥ max{emax, work(J)/D}. Another simple lower bound is the total energy
demand of jobs longer than D/2, since they have to be scheduled in parallel. This gives us
the first lower bound on OPT and we call it T1 := max{emax, work(J)/D, e(Jp(i)>D/2)}. In
the following, we will present three more complex lower bounds. The next bound is related
to the items with a large energy demand. We denote this lower bound as

T2 := min{T |p(Je(i)≥T/3) + p(Je(i)≥2T/3) ≤ 2D ∧ p(Je(i)≥T/2) ≤ D}.

The next two lower bounds depend on the ratio of long jobs and jobs with large energy
demand. For a given k ∈ [n], we define Jk to be the set of the k jobs with the largest
energy demand in J and J ′

k to be the set of the k jobs with the largest energy demand in
J \ Jp(i)>D/2. Let ik and i′

k be the jobs with the smallest energy demand in Jk and J ′
k,

respectively. We define:

T3,a := max{min{e(ik) + e(Jp(i)>D−p(Jk)/2 \ Jk), 2e(ik)}|k ∈ {1, . . . , n}, p(Jk) ≤ D},

T3,b := max{min{e(i′
k) + e(Jp(i)>D−p(J ′

k
)/2), 2e(i′

k)}|k ∈ {1, . . . , n}, p(J ′
k) ≤ D},

and T3 = max{T3,a, T3,b}.
Finally, define Jk as the set of the k jobs with largest energy demand, JD,k :=

Jp(i)>(max{D−p(Jk),D/2}) \ Jk. Let ik be the job with the smallest energy demand in Jk, then
define

T4 := max{min{2e(ik), e(ik) + e(JD,k)/2}|k ∈ {1, . . . , n}, p(Jk) ≤ D}.

▶ Theorem 4. Given an instance I = (J , D), the value T := max{T1, T2, T3, T4} is a lower
bound on OPT(I). The value of T can be found in O(n log(n)).

This lower bound on OPT helps us to identify two cases, that can be solved by scheduling
jobs that are large in at least one of the two dimensions in a sorted manner, while the other
jobs are scheduled using Steinberg’s algorithm. We prove this and the following two theorems
in the appendix.

APPROX/RANDOM 2021

21:6 Peak Demand Minimization via Sliced Strip Packing

0 D

(3/2)T

T

1
2 T

1
2 D

(a) An L-shaped schedule.

ρT

Steinberg

(1/2 + ρ)T

≤ (3/2)T

(2/3 + ρ)T
T

(1 + ρ/2)T

(5/3 + ε)T

(1/2 − w)D 2wD

λD

(b) First Steinberg case.

0 D

λD

Steinberg

(1 − 3
4)D (1

2)D

(2/3 + ρ)T

(2/3)T

(3/2)T

T

(5/3 + ε)T

(c) Second Steinberg case.

Figure 1 Subfigure 1a shows one possible L-shaped schedule, where Jseq contains all the jobs
with energy demand larger than T/2 and JD contains all the jobs with processing time larger than
D/2. Subfigure 1b shows a schedule in the case that p(Je(i)>(2/3)T) ≥ (1 − w)D. Subfigure 1c
shows a schedule in the case that e(Jp(i)>(3/4)D) ≥ (2/3)T .

▶ Theorem 5 (First Steinberg Case). Let T := max{T1, T2, T3, T4} be the lower bound on OPT
as defined above. If p(Je(j)>(2/3)T) ≥ (1 − (3/4)ε)D, there is a polynomial time algorithm to
place all jobs inside a schedule with peak energy demand at most (5/3 + ε)T .

▶ Theorem 6 (Second Steinberg Case). Let T be the lower bound on OPT defined as above.
If e(Jp(i)≥(3/4)D) > (2/3)T , then there is a polynomial time algorithm that places all the jobs
inside the area [0, D] × [0, (5/3)T].

3 (5/3 + ε)-Approximation

This section inspects schedules generated by the AEPTAS from Theorem 10, more closely.
The AEPTAS generates a schedule that fits almost all jobs into an amount of work of peak
energy demand T ≤ (1 + ε)OPT. Left out of the schedule is a set of jobs that has a very
small total processing time, where each job can have an energy demand up to OPT. As such,
this set of jobs can be fit into a strip of energy demand OPT and processing time γD for
some γ > 0. Since we aim to generate a schedule of peak energy demand (5/3 + ε)OPT, it
does not suffice to simply place this set atop the generated schedule, as this would result in
a peak energy demand of 2OPT. Instead, we must find some area in the generated schedule,
inside of which we can remove jobs such that an energy demand of OPT/3 for a processing
time of λD is empty, where λ ∈ [0, 1] is a small constant depending on ε. Once we have
achieved this, and placed the jobs removed by this procedure in a way that does not intersect
this strip, we can then place the strip of energy demand OPT at exactly that place, resulting
in a schedule of peak energy demand (5/3 + ε)OPT. If none of the previously mentioned
cases (as in Theorem 5 and 6, that can be solved using Steinberg’s algorithm) apply, then
the following Theorem combined with Theorem 10 proves Theorem 2.

▶ Theorem 7. Let ε ∈ (0, 1/3], ε′ ≤ (3/5)ε and γ ≤ (3/40)ε. Given an instance I with
e(Jp(j)>(3/4)D) ≤ (2/3)T ′ and p(Je(j)>(2/3)T ′) ≤ (1−(3/4)ε)D, for T ′ = max{T1, T2, T3, T4}
and a schedule σ (e.g. generated by the APTAS) where almost all jobs are placed such that
the peak energy demand is T ≤ (1 + ε′)OPT, and the residual jobs inside an additional box
Cγ of energy demand T and processing time γD, we can find a restructured schedule that
places all the jobs up to a schedule with peak energy demand of at most (5/3 + ε)OPT.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:7

τ5τ1 τ2 τ3 τ4 D−τ1D−τ2D−τ3D−τ4

T

S1 S2 S3 S4 S5 S1S2S3S4S5

0 D

Figure 2 Splitting the given schedule into segments at time points τ1 = D
8 , τ2 = (15−24γ)D

64 ,
τ3 = (9+11γ)D

32 , τ4 = (3+2γ)D
8 and τ5 = D

2 .

Proof. From the schedule σ, we will generate a new schedule σ′. Some jobs will be shifted
to new starting positions σ′. Other jobs j that are not mentioned in this proof keep their
original starting positions, i.e., σ′(j) = σ(j).

If the schedule contains a job j with processing time p(j) ∈ [γ, (1 − 2γ)D] and energy
demand e(j) ∈ [(1/3)T, (2/3)T], we proceed as follows to make room for Cγ by shifting job
j: Since p(j) ≤ (1 − 2γ)D it holds that max{σ(j), D − (σ(j) + p(j))} ≥ γD. Let us, w.l.o.g.,
assume that σ(j) ≤ D − (σ(j) + p(j)), otherwise we mirror the schedule at D/2. We shift the
job j completely to the right (by at least γD) such that it is positioned at σ′(j) := D − p(j).
This increases the peak energy demand to at most (5/3)T . Now the schedule between σ(j)
and σ(j) + γD has an energy demand of at most (2/3)T . We place the box Cγ at σ(j). Since
the box has an energy demand of at most T , the resulting schedule still has a peak energy
demand of at most (5/3)T ≤ (5/3 + ε)OPT.

If such a job does not exist, we search for segments that are not overlapped by jobs
with energy demand larger than (2/3)T . We split the schedule into segments at the times
τ1 = D

8 , τ2 = (15−24γ)D
64 , τ3 = (9+11γ)D

32 , τ4 = (3+2γ)D
8 and τ5 = D

2 as well at τ ′
i = D − τi for

i ∈ {1, 2, 3, 4} and set τ0 = 0. We number the resulting segments in increasing order from 0
to D/2 and from D to D/2 such that similar segments on both sides get the same number,
see Figure 2. For k ∈ {1, 2, 3, 4, 5}, we denote by σ(Sk) (= τk−1) the start-time of a segment,
by c(Sk) (= τk) the end-time of the segment and by p(Sk) (= τk − τk−1) the processing time
of the segment Sk . Since p(Je(j)>(2/3)T) ≤ (1 − (3/4)ε)D, we know, by pigeonhole principle,
that in one of these segments a total time of at least (3/4)εD/10 ≥ (3/40)εD ≥ γD is not
overlapped by these jobs.

Let Sl,k1 be the earliest such strip, and Sr,k2 the latest (they might be the same) such that
k1, k2 ∈ {1, 2, 3, 4, 5} represent the index of the strips S1, . . . , S5. In the next step, we modify
the start- and end-times of Sl,k1 such that it starts at the end of a job with energy demand
at least (2/3)T or at 0. We denote the shifted start times as σ′(·) and the shifted completion
time as c′(·). If the start-time of Sl,k1 , i.e. τk−1 intersects a job j with e(j) ≥ (2/3)T , we
define σ′(Sl,k1) := σ(j) + p(j) ≤ c(Sl,k1) − γD. Otherwise if k1 ≠ 1, we find the last job j

ending before σ(Sl,k1) with e(j) ≥ (2/3)T and define σ′(Sl,k1) := σ(j) + p(j) ≥ σ(Sl,k1) − γD

and shift the end-time of Sl,k1 by the same amount. Note that, since Sl,k1 is the first strip
with at least γD time not occupied by jobs with energy demand larger than (2/3)T , the
starting time of Sl,k1 is reduced by at most γD, while the processing time of the segment
is not increased. Finally, if the end-time of Sl,k1 intersects a job j that has an energy
demand larger than (2/3)T , we reduce it to c′(Sl,k1) := σ(j) and call the modified segment
S′

l,k1
. These modifications never decrease the total time that is not overlapped by jobs

with energy demand larger than (2/3)T in Sl,k1 . We do the same but mirrored for Sr,k2

resulting in a modified segment S′
r,k2

. For an illustration of this procedure, see Figure 3. If
D − c(S′

r,k2
) ≤ σ(S′

l,k1
), we mirror the schedule such that σ′(j) = D − c(j). We denote by S′

k

APPROX/RANDOM 2021

21:8 Peak Demand Minimization via Sliced Strip Packing

T

τi−1 τi

π1
π2

σ(S′
k) c(S′

k)

S′
k

Figure 3 An illustration of the border shifting procedure. The original borders are indicated by
τi−1 and τi. As τi−1 is not intersected by a job with energy demand larger than (2/3)T we shift
σ(S′

k) to an earlier point in time, such that the job with energy demand larger than (2/3)T π1 ends
at the exact same time. We then shift c(S′

k) by the same amount. The shifted c(S′
k) may intersect a

job with energy demand larger than (2/3)T π2, indicated by the dotted line, and in this case we
shift the border further such that c(S′

k) = σ(π2) holds.

the segment in {S′
l,k1

, S′
r,k2

} that appears first in this new schedule, where k = min{k1, k2}
represents the original number of the chosen segment. As a consequence of this mirroring if
k ≥ 2, we ensured there exists a job j with e(j) > (2/3)T and c(S′

k) ≤ σ(j) ≤ D − σ(S′
k).

Additionally, we know about the start and endpoints of this segment that τk−1 − γD ≤ σ(S′
k)

and p(S′
k) ≤ τk − τk−1.

We aim to remove jobs from S′
k, such that the peak energy consumption reached inside

S′
k is bounded by (2/3)T . We categorize the jobs to be removed in three classes; first the set

of jobs Jcont that are wholly contained in S′
k due to the earlier shifting and have an energy

demand less than (2/3)T , second the set of jobs that have an energy demand larger than
(2/3)T , and finally the set of jobs intersecting one of the time points σ(S′

k) or c(S′
k). First,

we remove Jcont from the segment and schedule them inside a container that has an energy
demand of at most (2/3)T and length at most 3p(S′

k).

▶ Lemma 8. The jobs Jcont can be scheduled inside a container Ccont of energy demand
(2/3)T and processing time 3p(S′

k) ≤ D/2.

Proof. First note that work(Jcont) ≤ p(S′
k)T , since the peak energy demand in σ is bounded

by T . We place these jobs using Steinberg’s algorithm. Recall that this procedure allows us
to place a set of rectangles R into a container of size a · b as long as the following conditions
are met: pmax(J) ≤ a, emax(J) ≤ b, 2 · work(J) ≤ (ab − (2emax(J) − T)+(2pmax(J) − D)+).
Setting our values for b = 3p(S′

k) and a = (2/3)T yields the desired property. Clearly no job
wholly contained in a segment of processing time p(S′

k) can have a processing time greater
than p(S′

k). Furthermore, the maximum energy demand of any job in Jcont is (2/3)T . Finally,
we have:

2 · work(Jcont) ≤ 3p(S′
k) · (2/3)T − (2p(S′

k) − 3p(S′
k))+ · (2(2/3)T − (2/3)T)+

= (ab − (2emax(J) − b)+(2pmax(J) − a)+) ◀

In the next step, we consider the jobs with energy demand larger than (2/3)T . By
construction of the strip, we know that the total processing time of jobs with energy demands
larger than (2/3)T is bounded by p(S′

k) − γD. We remove all these jobs from the strip and
combine them with the extra container Cγ of energy demand at most T and processing time
γD to a new container called Ctall. It has an energy demand of at most T and a processing
time of at most p(S′

k).

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:9

After this step, the only jobs remaining inside the area of S′
k are the jobs that overlap the

borders of S′
k. If the peak energy demand in S′

k is lower than (2/3)T , we place the container
Ctall inside the strip S′

k as well as the container Ccont right of D/2 and are done. Otherwise,
we have to remove jobs that overlap the borders of the strip S′

k until the peak energy demand
in S′

k is bounded by (2/3)T . The jobs we choose to remove are dependent on the position of
the strip. The following lemma helps to see how these jobs can be shifted without increasing
the peak energy demand of the schedule too much.

▶ Lemma 9. Consider a schedule σ with peak energy demand bounded by T and a time τ̃ ,
as well as a subset of jobs JMove ⊆ J (τ̃) with e(JMove) ≤ a · T for some a ∈ [0, 1]. Let τ be
the smallest value σ(j) for j ∈ JMove. Consider the schedule σ′, where all the jobs in JMove
are delayed such that they end at D, i. e., σ′(j) = D − p(j) for all JMove and σ′(j) = σ(j)
for all other jobs.

In the schedule σ′ before of D/2 + τ/2, the peak energy demand is bounded by T , while
after of D/2 + τ/2 the peak energy demand is bounded by (1 + a)T .

Proof. If the energy demand of the schedule σ′ is larger than T at a position τ ′, it has to be
because one of the jobs in JMove overlaps it. Hence, that peak energy demand is bounded by
(1 + a)T , since we shifted jobs with total energy demand bounded by aT . Let j be one of the
shifted jobs. If σ′(j) > D/2 + τ/2, the energy demand of the schedule before of D/2 + τ/2
cannot be influenced by this job. Therefore, assume that D − p(j) = σ′(j) ≤ D/2 + τ/2. As
a consequence, p(j) ≥ D/2 − τ/2. Since σ(j) ≤ τ it holds that σ(j) + p(j) ≥ D/2 + τ/2.
Thus before time D/2 + τ/2, the job j overlaps its previous positions and cannot increase
the peak energy demand above T . ◀

We choose which of the overlapping jobs to shift depending if k = 1 or k ̸= 1. Remember
that none of the borders of S′

k overlap a job that has an energy demand larger than (2/3)T ,
and assume for the following, that there is a point inside S′

k where the total energy demand
of overlapping jobs is larger than (2/3)T .

Case 1: k = 1. Consider the time τ = c(S′
1) ≤ D/8 and the set of jobs J (τ) that are

intersected by this line. We know that the total energy demand of jobs with processing time
greater than (3/4)D is bounded by (2/3)T . Let JMove be the set of jobs generated as follows:
Greedily take the jobs with the largest energy demand from J (τ) \ Jp(j)>(3/4)D, until either
all the jobs from J (τ) \ Jp(j)>(3/4)D are contained in JMove or e(JMove) ∈ [(1/3)T, (2/3)T].
In this process, we never exceed (2/3)T since, if there is a job with energy demand larger
than (1/3)T in J (τ) \ Jp(j)>(3/4)D, we choose it first and immediately stop. We delay the
jobs in JMove to new start positions σ′ such that for each job j ∈ JMove we have that
c′(j) := σ′(j) + p(j) = D. Note that σ′(j) ≥ (1/4)D for each j ∈ JMove and therefore no
longer overlaps c(S′

1). Furthermore, we know by Lemma 9 that before D/2 the peak energy
demand is bounded by T , while after D/2 the peak energy demand is bounded by (5/3)T .
Furthermore, the peak energy demand inside S′

1 is bounded by (2/3)T .
Since S′

1 has a processing time of at most D/8, we know by Lemma 8 that Jcont can be
placed inside a container Ccont with energy demand at most (2/3)T and processing time
bounded by 3D/8. Therefore, we can schedule this container at D/8 and know that it is
finished before D/2. Finally, we schedule the container Ctall at σ′(Ctall) = 0. The peak energy
demand of the resulting schedule is bounded by (5/3)T . See Figure 4a for the repacking
procedure.

APPROX/RANDOM 2021

21:10 Peak Demand Minimization via Sliced Strip Packing

JMoveC
ta

ll

Ccont

T

(5/3 + ϵ)T

D/2S′
1

D/8

(a) Repacking for k = 1.

JMoveC
ta

ll

Ccont

jr

jv

T

(5/3 + ϵ)T

D/2S′
2

(b) Repacking for k ∈ {2, 3}.

JMoveC
ta

ll

Ccont jv

jr

T

(5/3 + ϵ)T

D/2S′
4

(c) Repacking for k ∈ {4, 5}.

Figure 4 Illustration of the steps in the proof of Theorem 7. Note that the set JMove is delayed
such that the jobs end at D. The containers Ctall and Ccont are placed such that they do not
intersect. For 4b and 4c, the jobs jv are placed in the same manner, and the job jr is denoted.

Case 2: k ̸= 1. In this case, the borders of the considered strip can be overlapped from
both sides. Furthermore, we know that the left border of S′

k is right of D/8 − γD ≥ γD.
Consider the largest total energy demand of jobs that are intersected by any vertical

line through S′
k and denote this energy demand as TS′

k
. Since there is a job jl with energy

demand larger than (2/3)T with σ(jl)+p(jl) = σ(S′
k), we know that the total energy demand

of jobs intersecting σ(S′
k) can be at most (1/3)T . Next, consider the closest job jr that starts

after c(S′
k) and has an energy demand larger than (2/3)T . By the choice of S′

k, we know
that such a job must exist and that σ(jr) ≤ D − σ(S′

k), by the choice of S′
k out of S′

k1,l and
S′

k2,r. Furthermore, we know that the total energy demand of jobs intersecting the vertical
line at σ(jr) is bounded by (1/3)T .

Hence the jobs that overlap the vertical line at σ(jr) and the jobs that overlap the vertical
line at σ(S′

k) add a total energy demand of at most (2/3)T to TS′
k
. Let us now consider the

jobs JM that overlap the time c(S′
k) but neither the time σ(S′

k) nor the time σ(jr). Each
of them has a processing time of at most D − σ(S′

k) − σ(jr) ≤ D − 2σ(S′
k). Hence when

delaying their start points such that σ′(j) = D − p(j), they no longer overlap the time c(S′
k)

since p(S′
k) ≤ σ(S′

k) for each k ∈ {2, 3, 4, 5}.
We greedily take jobs from JM that have the earliest starting point until we have all jobs

from JM or we have a total energy demand of at least (1/3)T . If the total energy demand
of the chosen jobs is larger than (2/3)T , the last job jv has an energy demand of at least
(1/3)T . Since it has a processing time lower than (1 − 2γ)D, it has to have a processing
time of at most γD. We remove this job and place it later, while we shift all the others to
new positions σ′ such that σ′(j) = D − p(j) for each of the taken jobs j. We call the set of
shifted jobs JMove.

Furthermore, since JMove has a total energy demand of at most (2/3)T and a starting point
right of σ(S′

k), we know by Lemma 9 that the peak energy demand right of D/2 + σ(S′
k)/2

is bounded by (5/3)T while left of D/2 + σ(S′
k)/2 it is bounded by T .

Let σ(jl) be the starting time of the last taken job. Before σ(jl) (in S′
k) there is no longer

a job from JM , and, hence inside in the strip S′
i that is left of σ(jl), the peak energy demand

is bounded by (2/3)T . On the other hand, after σ(jl) (in S′
k) we either have removed jobs

with total energy demand at least (1/3)T , or all the jobs from JM and hence the schedule
there can have a total energy demand of at most (2/3)T as well. Therefore, we can place the
container Ctall inside S′

k without increasing the energy demand above (5/3)T .
The container Ccont and the job jv remain to be placed. For k ∈ {2, 3}, we set Ccont

at σ′(Ccont) = c(S′
k) and the job σ′(jv) = 0, while for k ∈ {4, 5}, we set σ′(Ccont) = 0 and

σ′(jv) = c(S′
k). We will now see, for each segment, that the peak energy demand of (5/3)T

is not exceeded by this new schedule.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:11

First note that p(jv) ≤ γD ≤ D/8 − γD and hence does not intersect S′
2, when scheduled

at σ′(jv) = 0. Similarly, it is more narrow than S′
5 and σ(S′

5)/2, and hence fits right of S′
4

and S′
5 without increasing the schedule more than (5/3)T .

Let us now check the conditions for Ccont: For k ∈ {2, 3}, we have to ensure that
c(S′

k)+p(Ccont)/2 ≤ D/2+σ(S′
k), while for k ∈ {4, 5} we have to prove that p(Ccont) ≤ σ(S′

k).
It holds that p(S′

2) ≤ (15−24γ)D
64 − D

8 = (7−24γ)D
64 and hence p(Ccont) ≤ 3((7−24γ)D

64). Therefore,
c(S′

2)+p(Ccont) ≤ D
2 + σ(S′

2)
2 . Furthermore, p(S′

3) ≤ (9+14γ)D
32 − (15−24γ)D

64 = (3
64 + 52γ

32)D and
hence p(Ccont) ≤ 3(3

64 + 52γ
32)D. Therefore, c(S′

3) + p(Ccont) ≤ (9+14γ)D
32 + 3(3

64 + 52γ
32)D =

(27+184γ)D
64 , while D/2 + σ(S′

3)/2 ≥ D/2 + ((15−24γ)
64 − γ)D/2 = (79

128 − 11
8 γ)D. As a

consequence, c(S′
3) + p(Ccont) ≤ D/2 + σ(S′

3)/2, since γ ≤ 1/40 ≤ 25/392.
Finally, we have p(S′

4) ≤ (3+2γ)D
8 − (9+14γ)D

32 = (3−6γ)D
32 . Hence, p(Ccont) ≤ 3

(
(3−6γ)D

32

)
=

(9+14γ)D
32 − γD ≤ σ(S′

4). While it holds that p(S′
5) ≤ D

2 − (3+2γ)D
8 = (1+2γ)D

8 . Therefore,
p(Ccont) ≤ 3 · (1+2γ)D

8 = (3+6γ)D
8 = (1+2γ)D

8 − γD ≤ σ(S′
5).

For a visual representation of this repacking procedure see Figure 4. In all the cases the
generated schedule has a height of at most (5/3)T ≤ (5/3)(1 + ε′)OPT ≤ (5/3 + ε)OPT. ◀

4 AEPTAS for NPDM

In this section, we will prove the following theorem.

▶ Theorem 10. Let ε > 0. There is an algorithm that places almost all jobs such that the
peak energy demand is bounded by T ′ := (1+O(ε))OPT. For the residual jobs, we can choose
one of the following containers for them to be placed in: C1 with processing time εD and
energy demand T ′ or a container C2 with processing time D and energy demand emax. The
time complexity of this algorithm is bounded by O(n log(n)/ε) + 1/ε1/εO(1/ε) .

The statement, in fact, gives two variants of the algorithm. The first variant where all
residual jobs are placed in C1 is used in our 5/3 + ε approximation algorithm, where the
second variant with all residual jobs in C2 can be used to obtain the AEPTAS by setting
σ(C2) = 0. The described algorithm follows the dual-approximation framework. We describe
an algorithm that given a bound on the schedule peak energy demand T computes a schedule
with peak energy demand (1 + O(ε))T ′ + emax or decides correctly that there is no schedule
with peak energy demand at most T ′. This algorithm then can be called in binary search
fashion with values T between T ′ = max{T1, T2, T3, T4} and max{2work(J)/D, 2emax}, using
only multiples of εT ′. Note that if emax ≤ O(ε3T ′), we can use the algorithm in [11] to
find an (1 + ε)OPT + O(log(1/ε)/ε · ε3T ′) = (1 + O(ε))OPT approximation. Hence we can
assume that emax > O(ε3T ′).

Classification of Jobs

Given two values δ and µ with µ < δ, we partition the jobs into five sets: large, horizontal,
vertical, small, and medium sized jobs. We define Jlarge := {i ∈ J |e(i) ≥ δT ′, p(i) > δD},
Jhor := {i ∈ J |e(i) < µT ′, p(i) > δD}, Jver := {i ∈ J |e(i) ≥ δT ′, p(i) < µD}, Jsmall :=
{i ∈ J |e(i) < µT ′, p(i) < µD}, and Jmedium := J \ (Jlarge ∪ Jhor ∪ Jver ∪ Jsmall).

▶ Lemma 11. In O(n + 1/ε2) operations it is possible to find values ≥ εO(1/ε2) for δ and µ

such that work(Jmedium) ≤ (ε2/4)DT and µ ≤ cε5δ for any given constant c.

Proof. Consider the sequence ρ0 := ε5/4, ρi+1 := cρiε
3. Due to the pigeonhole principle,

there exists an i ∈ {0, . . . , 8/ε2} such that when defining δ := σi and µ := σi+1 the total
amount of work of the medium sized jobs is bounded by (ε2/4)DT , because each job appears
only in two possible sets of medium jobs. We have δ ≥ µ ≥ εO(1/ε2). ◀

APPROX/RANDOM 2021

21:12 Peak Demand Minimization via Sliced Strip Packing

▶ Lemma 12. [43] We can round the energy demands e(i) of the vertical and large jobs
to multiples kiεδT with ki ∈ {1/ε, . . . , 1/εδ} such that the number of different demands is
bounded by O(1/ε2 log(1/δ)). This rounding increases the optimal energy demand by at most
2εT

Profile for vertical jobs
In the following we will dismiss the medium jobs from the schedule. Given an optimal
schedule, we partition the schedule into 1/γ segments of processing time γD, for a con-
stant γ ∈ Oε(1). Given a schedule of jobs J , we define profile of J to be {(x, y)|y =∑

j∈J|σ(j)≤x≤σ(j)+p(j) e(j), 0 ≤ x ≤ D, }. Energy demand of profile of jobs J at time t is
EJ(t) :=

∑
j∈J|σ(j)≤t≤σ(j)+p(j) e(j). Now consider the profile of large and horizontal jobs.

Let J̃ := Jlarge ∪ Jhor, We search for the segments where the maximal energy demand of
the profile of large and horizontal jobs and the minimal energy demand of this profile differs
more than εT , i.e., if in segment S := (ta, tb), | maxt∈S EJ̃(t) − mint∈S EJ̃(t)| ≥ εT , then we
remove all vertical and small jobs from these segments fractionally, i.e., we slice jobs, which
are cut by the borders of the segment.

▷ Claim 1. Let Jrem be the set of removed vertical and small jobs. Then work(Jrem) is
bounded by O(γ/εδ) · D · T .

Proof. Note that the energy demand of the profile of horizontal or large jobs only changes,
when horizontal or large jobs end or start. The large and horizontal jobs have a total energy
demand of at most T/δ since they have a processing time of at least δD and the total area
of the schedule is bounded by T · D. Hence there can be at most 2(T/δ)/εT = O(1/εδ)
segments, where the energy demand of the profile changes more than εT . As a result, the
total area of the removed vertical jobs can be bounded by O(1/εδ) · (γD · T). ◁

▷ Claim 2 (Size of γ). In the case of container C1, we can choose γ ∈ O(εδλ) such that we
can schedule the removed vertical jobs fractionally inside a container C1,1/4 of processing
time p(C1)/4 and energy demand e(C1). Otherwise, we can choose γ ∈ O(ε4δ) such that we
can schedule the removed vertical jobs fractionally inside a container C2,1/4 of processing
time p(C2)/4 and energy demand e(C2).

Proof. Let k ∈ {1, 2} depending on the chosen container. First we place all the jobs Jrem,tall,
i.e., jobs in Jrem with energy demand larger than e(Ck,1/4)/2 next to each other. The total
processing time of these jobs is bounded by 2 · work(Jrem,tall)/e(Ck,1/4). Next, we place
the residual jobs Jrem,res := Jrem \ Jrem,tall, which have an energy demand of at most
e(Ck,1/4)/2. We take slices of processing time 1 of the jobs and place them on top of each
other until the energy demand e(Ck,1/4)/2 is reached. Since each job has an energy demand of
at most e(Ck,1/4)/2 the energy demand e(Ck,1/4) is not exceeded. The total processing time
of this schedule is bounded by 2work(Jrem,res)/e(Ck,1/4) + 1 ≤ O(γ/(εδ) · D · T)/e(Ck,1/4).
Hence, for C1,1/4 the total processing time is bounded by O(γ/(εδ) · D · T)/T = O(γ/(εδ))D.
Hence, when choosing γ ∈ O(λεδ) for a suitable constant, the total processing time of this
schedule is bounded by p(C1)/4. Otherwise, for container C2,1/4 the total processing time is
bounded by O((γ/(εδ) · D · T)/ε3T) = O(γ/ε4δ)D. Hence, when choosing γ ∈ O(ε4δ) for a
suitable constant, the total processing time of this schedule is bounded by p(C2)/4. ◁

Algorithm to place the vertical, small, and medium jobs

In the algorithm, we first round the energy demands of the vertical jobs to at most O(1/ε2 ·
log(1/δ)) = (1/ε)O(1) sizes using Lemma 12 (geometric rounding).

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:13

Afterward, we guess for each of the 1/γ segments the energy demand reserved for the
vertical and small jobs rounding up to the next multiple of εT , adding at most one more
εT to the energy demand of the schedule. There are at most O((1/ε)1/γ) possible guesses.
Furthermore, we introduce one segment ⊤ of energy demand ⌈e(Ck)/(εT)⌉·εT and processing
time p(Ck)/4 (k ∈ {1, 2}) for the set of removed vertical jobs. Let Sver be the set of all
introduced segments, and for each s ∈ Sver let es,ver be the energy demand reserved for
vertical and small jobs. Note that for each s ∈ Sver there exists an i ∈ {0, . . . , 1/ε + 3} such
that es,ver = iεT . Furthermore, let Sver,e be the set of segments that have exactly energy
demand e and let p(Sver,e) be their total processing time.

To place the vertical jobs into the segments Sver, we use a configuration LP. Let C =
{aη : η|η ∈ {e(j)|j ∈ Jver}} be a configuration for vertical jobs, where aη denotes the
multiplicity with which the energy demand η is contained in C. We denote by e(C) :=∑

η∈{e(j)|j∈Jver} aη · η the energy total demand of C, and by Ce the set of configurations with
energy demand at most e. Furthermore, for a given configuration C we denote by aη(C) the
number of jobs contained in C that have an energy demand of η. Since each vertical job
has a energy demand of at least δT , there are at most (1/ε)O(1/δ) different configurations.
Consider the following linear program:∑

C∈CiεT

xC,i = p(Sver,iεT) ∀i ∈ {1, . . . , 1/ε + 3} (1)

∑
s∈S

∑
C∈Ces,ver

aη(C)xC,s =
∑

j∈Jver,e(j)=η

p(j) ∀η ∈ {e(j)|j ∈ Jver} (2)

xC,i ≥ 0 ∀C ∈ C, i ∈ {1, . . . , 1/ε} (3)

The variable xC,i represents the processing-time of configuration C inside segments s ∈ Sver

with reserved energy capacity es,ver = iεT . The first equation ensures that the total
processing-time assigned to configurations inside segments with a certain energy capacity
does not exceed the total processing time of these segments. The second equation ensures
that each job is fully scheduled. More precisely, that the total processing time of jobs with
a certain energy demand is covered by the configurations. A basic solution has at most
(1/ε + |{e(j)|j ∈ Jver}| + 1) = (1/ε)3 nonzero components. We can solve the above linear
program by guessing the set of non zero components and then solving the resulting LP in
((1/ε)O(1/δ))(1/ε)3 time.

To place the vertical jobs, we first fill them greedily inside the configurations (slicing
when the corresponding configuration slot is full) and afterwards place the configurations
inside the schedule, slicing the jobs at the segment borders. For each nonzero component
we have one configuration that contains at most 2/δ fractionally placed vertical jobs on top
of each other, which have a total energy demand of at most 2T ′. Additionally, for each
segment we have the same amount of fractional jobs. Hence total area of fractionally placed
jobs can be bounded by µD · 2T · ((1/ε)3 + 1/γ). If we choose C1 this can be bounded by
O(µ/(λεδ))DT ≤ λDT/8, since µ = cεδλ2 and otherwise by ∈ O(µD · T/(ε5δ)) ≤ DT/8,
since µ = cε5δ for a suitable small constant c. We remove the fractionally placed jobs Jfrac.

Next, we place the small jobs inside the empty area that can appear above each configur-
ation for vertical jobs. Note that there are at most ((1/ε)O(1) + 1/γ) configurations and the
free area inside these configurations has at least the size of the total area of the small jobs.
As a consequence, we have at most 2/γ rectangular areas to place the small jobs, which have
a total area, which is at least the size of the small jobs. We use the NFDH algorithm to
place these jobs inside the boxes until no other job fits inside.

APPROX/RANDOM 2021

21:14 Peak Demand Minimization via Sliced Strip Packing

Assume we could not place all the small jobs inside these boxes. When considering the
area of free energy in each box, there are three parts that contribute to it. First, each box
can have a free strip at its end, which has a processing time of at most µD. The total area
of free energy contributed by this strip is bounded by (2/γ)µD · 2T . Second, each box can
have a free strip of energy demand at most µT on the top because otherwise, another line of
jobs would have fitted inside this box. Since there are no boxes on top of each other, we can
bound the total area of free energy inside this strip by µT · D. Finally, there can be free
energy between the shelves of the jobs generated by the NFDH algorithm. This total free
energy is bounded by the energy demand of the tallest job times the processing time of the
widest box, i.e., µT · γD. Hence the total area of free energy inside the boxes is bounded by
5µD · T · γ + D · µT . Since γ ∈ O(1/ε5δ) and we have chosen µ ≤ cδε6 for a suitable small
constant c ∈ Q, the total work of the remaining small jobs Jsmall,res, which could not be
placed is bounded by εTD.

We place the residual small jobs Jsmall,res on top of the schedule using NFDH. This adds
an energy demand of at most 2εT to the schedule. Next we place the medium jobs. We
start all the medium jobs, that have a processing time larger than p(Ck)/4 with Steinberg’s
algorithm inside a box of energy demand at most O(ε)T and processing time D. This is
possible since they have processing time in (εD, D] and therefore each has an energy demand
of at most O(ε)T because their total work is bounded by (ε2/4)DT . The residual jobs (that
might have a processing time larger than εT) are placed inside the first half of the container
using Steinberg’s algorithm. The later half of the container is filled with the extra box for
vertical jobs defined for the LP and the fractionally scheduled jobs. The extra box has a
width of at most p(Ck)/4. Since the fractionally placed vertical jobs Jfrac have an area of at
most e(Ck) · p(Ck)/8 and each has a width of at most µD < p(Ck)/8, we can use Steinberg’s
algorithm to place them inside the last quarter of the container Ck.

Placement of horizontal jobs
In this section, we first reduce the number of possible starting points for horizontal jobs and
then use a linear program to place the jobs in the schedule.

First step: use geometric grouping to reduce the number of processing times of horizontal
jobs. At a loss of at most 2εT in the approximation ratio, we can reduce the number
of processing times of horizontal jobs to O(log(1/δ)/ε) using geometric grouping (see [33,
Theorem 2] by Karmarkar and Karp). These rounded jobs can be placed fractionally instead
of the original jobs and an extra box of energy demand at most O(ε)T . In this fractional
packing, the horizontal jobs are sliced along the axis of the processing-time, i.e., different
fractions of a job might have different starting points, but a fraction that is started, will not
be interrupted and require the same amount of energy during its procession. We denote the
rounded processing-time of a job j as p′(j).

In the next step, we will reduce the number of starting points of the large and fractionally
placed horizontal jobs without exceeding the given profile. Remember, we know the profile
of large and horizontal jobs with precision εT for the segments of processing time γD.

▷ Claim 3. Without loss in the approximation ratio, we can reduce the number of different
starting points of rounded horizontal and large jobs to (1/ε)(1/ε)O(1/ε) .

Proof. Consider the large and horizontal jobs starting in the first segment. Since this segment
has a processing time of γD ≤ δD, there can be no job ending in this segment. Hence this
segment is maximally filled at the point γD. We can shift the start point of each job in this
segment to 0 and we will not change the maximal energy demand of this segment.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:15

Now consider a job i ∈ Jhor ∪ Jlarge starting in the second segment. If there is no
horizontal or large job ending before the start of i, we can shift the start point of i to γD

without changing the maximal filling energy demand in this segment. However, if there is a
job j ∈ Jhor ∪ Jlarge ending before i in this segment, we can not shift this job to γD since
then i and j overlap, which they did not before. This could change the maximal energy
demand of the profile in this segment. Nevertheless, if j is the last job ending before i, we
can shift i to the left, such that i starts at the endpoint of j.

We iterate this shifting with all segments and all jobs in Jhor ∪Jlarge. As a result, all jobs
start either at a multiple of γD, or they start at an endpoint of an other job in Jhor ∪ Jlarge.
Therefore, we can describe the set of possible starting points for jobs in Jhor ∪ Jlarge as
Shor,large := {lγD +

∑1/δ
j=1 p(ij)|l ∈ {0, 1, . . . , 1/γ}, ij ∈ Jhor ∪ Jlarge∀j ∈ {1, . . . , 1/δw}}. It

holds that |Shor,large| ≤ (1/γ) · (log(1/δ)/ϵ)1/δ = (1/ε)(1/ε)O(1/ε) . ◁

▷ Claim 4. At a loss of at most O(εT) in the approximation ratio, we can reduce the number
of used starting points for rounded horizontal jobs to O(1/εδ).

Proof. We partition the set of horizontal jobs by their processing time into O(log(1/δ)) sets
J l

hor := {i ∈ Jhor|D/2l < p(i) ≤ D/2l−1}. For each of these sets, we will reduce the number
of starting positions to 2l/ε2. We partition the schedule into 2l segments of processing time
D/2l. Each job from the set J l

hor has a processing time larger than D/2l and hence it starts
in an other segment as it ends. We consider for each segment all the horizontal jobs of the
set J l

hor ending in this segment and sort them by increasing starting position. Let el,i be
the energy demand of the stack of jobs in J l

hor ending in the i-th segment. We partition
the stack into 1/ε layers of energy demand εel,i and slice the horizontal jobs overlapping
the layer borders. We remove all the jobs in the bottom most layer and shift the jobs from
the layers above to the left, such that they start at the latest original start position from
the layer below. We repeat this procedure for each segment. By this shift, we reduce the
total number of starting positions from jobs from the set J l

hor to 2l/ε. The total energy
demand of the jobs we removed is bounded by εe(J l

hor). Since these jobs have a processing
time of at most D/2l−1, we can schedule 2l−1 of these jobs after one an other (horizontally),
without violating the deadline. Hence, when scheduling these jobs fractionally, we add
at most εe(J l

hor)/2l−1 to the schedule. Note that since all the jobs in set J l
hor have a

processing time of at least D/2l, it holds that
∑⌈log(1/δ)⌉

l=1 e(J l
hor)/2l ≤ T and, hence, we

add at most
∑⌈log(1/δ)⌉

l=1 εe(J l
hor)/2l−1 ≤ 2εT to the energy demand of the schedule, when

scheduling the removed horizontal jobs. The total number of starting positions is bounded
by

∑⌈log(1/δ)⌉
l=1 2l/ε = (2⌈log(1/δ)⌉+1 − 1)/ε ∈ O(1/δwε) ◁

Algorithm to place horizontal and large jobs

To place the jobs in Jhor∪Jlarge, we first guess the starting positions of the large jobs Jlarge in
O(|Shor,large||Jlarge|) = (1/ε)(1/ε)O(1/ε) . Note that this guess affects the energy demand that
is left for horizontal jobs. Next we guess which O(1/εδ) starting points in Shor,large will be
used after the shifting due to Claim 4. There are at most |Shor,large|O(1/εδ) = (1/ε)(1/ε)O(1/ε)

possible guesses total. We call the set of guessed starting points S̄h,l. For each starting point
in S̄h,l, we calculate the residual total energy demand, that is left after the guess for the
large jobs. For a given s ∈ S̄h,l let es,hor be this residual total energy demand.

APPROX/RANDOM 2021

21:16 Peak Demand Minimization via Sliced Strip Packing

Consider the following linear program for horizontal jobs:∑
ρ∈{p′(j)|j∈Jhor}

∑
s′∈S̄h,l

s′≤s<s′+ρ

xρ,s′ ≤ es,hor ∀s ∈ S̄h,l

∑
s∈S̄h,l

xρ,s =
∑

j∈Jhor,p′(j)=ρ

e(j) ∀ρ ∈ {p′(j)|j ∈ Jhor}

xρ,s ≥ 0 ∀s ∈ S̄h,l, ρ ∈ {p′(j)|j ∈ Jhor}

The variable xρ,s denotes the total energy demand of jobs with rounded processing time
ρ starting at s. The first equation ensures that the energy capacity at a starting time s is
not exceeded by the jobs starting at or overlapping s. The second equation ensures that
the total energy requirement of jobs with rounded processing time ρ is covered by energy
demand of jobs with this processing time started in the schedule.

A basic solution to this linear program has at most |S̄h,l| + |Jhor| = O(1/εδ) non zero
components. We can guess the non zero components in at most (|S̄h,l| · |J̄hor|)|S̄h,l|+|J̄hor| =
(1/ε)(1/ε)O(1/ε) . Furthermore, we can guess their value with precision µT in at most
(1/µ)|S̄h,l|+|J̄hor| = (1/ε)(1/ε)O(1/ε) guesses. Scheduling all the horizontal jobs integral and
the error due to the precision add at most 2µT · (|S̄h,l| + |J̄hor|) to the peak energy demand.
Note that 2µT · (|S̄h,l| + |J̄hor|) ≤ O(ε)T ′ since µ ≤ O(ε2δ).

After this step, we either have scheduled all given jobs or have decided that it is not
possible for the given guess of T and the profile. If it is not possible for any profile, we have
to increase T . If we have found a schedule, we try the next smaller value for T . Each of
the steps has increased the peak energy demand by at most O(ε)T above T . Besides of
the job classification and rounding, each step of the algorithm is bounced by (1/ε)1/εO(1/ε) .
Therefore, the described algorithms fulfills the claims of Theorem 10.

5 Conclusion

In this paper, we presented an AEPTAS with additive term emax as well as a (5/3 + ε)-
approximation for Nonpreemptive Peak Demand Minimization (NPDM). Since the lower
bound for approximation algorithms for this problem is known to be 3/2, this leaves a small
gap between the lower bound and the approximation guarantee. Closing this gap is an
interesting open question for further research, especially since for the related strip packing
problem the same gap is yet to be resolved.

References
1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for inde-

pendent set and sparse subsets of polygons. J. ACM, 66(4):29:1–29:40, 2019.
2 Anna Adamaszek, Tomasz Kociumaka, Marcin Pilipczuk, and Michal Pilipczuk. Hardness of

approximation for strip packing. ACM Transactions on Computation Theory, 9(3):14:1–14:7,
2017. doi:10.1145/3092026.

3 Soroush Alamdari, Therese Biedl, Timothy M Chan, Elyot Grant, Krishnam Raju Jampani,
Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak. Smart-grid electricity allocation via
strip packing with slicing. In Workshop on Algorithms and Data Structures, pages 25–36.
Springer, 2013.

4 Brenda S. Baker, Edward G. Coffman Jr., and Ronald L. Rivest. Orthogonal packings in two
dimensions. SIAM J. Comput., 9(4):846–855, 1980. doi:10.1137/0209064.

https://doi.org/10.1145/3092026
https://doi.org/10.1137/0209064

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:17

5 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM J. Comput.,
39(4):1256–1278, 2009. doi:10.1137/080736831.

6 Nikhil Bansal, José R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: Inapproximability results and approximation schemes. Math. Oper. Res., 31(1):31–
49, 2006. doi:10.1287/moor.1050.0168.

7 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 13–25. SIAM, 2014. doi:10.1137/1.9781611973402.2.

8 Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin packing.
In FOCS, pages 657–666, 2005.

9 Iwo Błądek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler. On contiguous and
non-contiguous parallel task scheduling. Journal of Scheduling, 18(5):487–495, 2015.

10 Marin Bougeret, Pierre François Dutot, Klaus Jansen, Christina Otte, and Denis Trystram. Ap-
proximating the non-contiguous multiple organization packing problem. In IFIP International
Conference on Theoretical Computer Science, pages 316–327. Springer, 2010.

11 Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina Robenek, and Denis Trystram.
Approximation algorithms for multiple strip packing and scheduling parallel jobs in platforms.
Discret. Math. Algorithms Appl., 3(4):553–586, 2011. doi:10.1142/S1793830911001413.

12 Nilotpal Chakraborty, Arijit Mondal, and Samrat Mondal. Efficient scheduling of nonpree-
mptive appliances for peak load optimization in smart grid. IEEE Transactions on Industrial
Informatics, 14(8):3447–3458, 2017.

13 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

14 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and
Malin Rau. A tight (3/2+ϵ) approximation for skewed strip packing. In Jaroslaw Byrka and
Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference,
volume 176 of LIPIcs, pages 44:1–44:18, 2020.

15 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi. Approxim-
ation algorithms for demand strip packing. CoRR, abs/2105.08577, 2021. arXiv:2105.08577.

16 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via l-packings. In FOCS, pages 260–271,
2017.

17 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramirez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
l-shapes, spirals and more. In SoCG, pages 39:1–39:17, 2021.

18 Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-
polynomial-time approximation for strip packing. In 36th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), volume 65,
pages 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
FSTTCS.2016.9.

19 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ε)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In STOC, pages 607–619, 2018.

20 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + eps)-approximation for
2d strip packing. In Andreas Brieden, Zafer-Korcan Görgülü, Tino Krug, Erik Kropat, Silja
Meyer-Nieberg, Goran Mihelcic, and Stefan Wolfgang Pickl, editors, 11th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization, Munich, Germany, May 29-31, 2012.
Extended Abstracts, pages 139–142, 2012.

APPROX/RANDOM 2021

https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1142/S1793830911001413
http://arxiv.org/abs/2105.08577
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9

21:18 Peak Demand Minimization via Sliced Strip Packing

21 Rolf Harren and Rob van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM
2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in
Computer Science, pages 177–189. Springer, 2009. doi:10.1007/978-3-642-03685-9_14.

22 Sören Henning, Klaus Jansen, Malin Rau, and Lars Schmarje. Complexity and inapproxim-
ability results for parallel task scheduling and strip packing. Theory of Computing Systems,
64(1):120–140, 2020. doi:10.1007/s00224-019-09910-6.

23 Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial time
approximation scheme. Algorithmica, 39(1):59–81, 2004.

24 Klaus Jansen. A (3/2+ ε) approximation algorithm for scheduling moldable and non-moldable
parallel tasks. In Proceedings of the twenty-fourth annual ACM symposium on Parallelism in
algorithms and architectures, pages 224–235, 2012.

25 Klaus Jansen and Felix Land. Scheduling monotone moldable jobs in linear time. In 2018
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver,
BC, Canada, May 21-25, 2018, pages 172–181. IEEE Computer Society, 2018. doi:10.1109/
IPDPS.2018.00027.

26 Klaus Jansen and Lars Prädel. A new asymptotic approximation algorithm for 3-dimensional
strip packing. In 40th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM), volume 8327, pages 327–338. Springer, 2014. doi:10.1007/
978-3-319-04298-5_29.

27 Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip packing. In ESA,
volume 144, pages 62:1–62:14, 2019.

28 Klaus Jansen and Roberto Solis-Oba. Rectangle packing with one-dimensional resource
augmentation. Discret. Optim., 6(3):310–323, 2009. doi:10.1016/j.disopt.2009.04.001.

29 Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM J.
Comput., 39(8):3571–3615, 2010. doi:10.1137/080736491.

30 Klaus Jansen and Guochuan Zhang. Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica, 47(3):323–342, 2007. doi:10.1007/s00453-006-0194-5.

31 Edward G. Coffman Jr., M. R. Garey, David S. Johnson, and Robert Endre Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput., 9(4):808–826,
1980. doi:10.1137/0209062.

32 Mohammad M Karbasioun, Gennady Shaikhet, Ioannis Lambadaris, and Evangelos Kranakis.
Asymptotically optimal scheduling of random malleable demands in smart grid. Discrete
Mathematics, Algorithms and Applications, 10(02):1850025, 2018.

33 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer
Science, Chicago, Illinois, USA, 3-5 November 1982, pages 312–320. IEEE Computer Society,
1982.

34 Claire Kenyon and Eric Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Math. Oper. Res., 25(4):645–656, 2000. doi:10.1287/moor.25.4.645.12118.

35 Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In SoCG, pages 48:1–48:17,
2021.

36 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In APPROX, pages 47:1–47:22, 2020.

37 Fu-Hong Liu, Hsiang-Hsuan Liu, and Prudence WH Wong. Optimal nonpreemptive scheduling
in a smart grid model. In 27th International Symposium on Algorithms and Computation
(ISAAC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

38 Tobias Mömke and Andreas Wiese. Breaking the barrier of 2 for the storage allocation problem.
In ICALP, pages 86:1–86:19, 2020.

https://doi.org/10.1007/978-3-642-03685-9_14
https://doi.org/10.1007/s00224-019-09910-6
https://doi.org/10.1109/IPDPS.2018.00027
https://doi.org/10.1109/IPDPS.2018.00027
https://doi.org/10.1007/978-3-319-04298-5_29
https://doi.org/10.1007/978-3-319-04298-5_29
https://doi.org/10.1016/j.disopt.2009.04.001
https://doi.org/10.1137/080736491
https://doi.org/10.1007/s00453-006-0194-5
https://doi.org/10.1137/0209062
https://doi.org/10.1287/moor.25.4.645.12118

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:19

39 Giorgi Nadiradze and Andreas Wiese. On approximating strip packing with a better ratio
than 3/2. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1491–1510. SIAM, 2016. doi:10.1137/1.9781611974331.ch102.

40 Anshu Ranjan, Pramod Khargonekar, and Sartaj Sahni. Offline preemptive scheduling of power
demands to minimize peak power in smart grids. In 2014 IEEE Symposium on Computers
and Communications (ISCC), pages 1–6. IEEE, 2014.

41 Anshu Ranjan, Pramod Khargonekar, and Sartaj Sahni. Offline first fit scheduling in smart
grids. In 2015 IEEE Symposium on Computers and Communication (ISCC), pages 758–763.
IEEE, 2015.

42 Anshu Ranjan, Pramod Khargonekar, and Sartaj Sahni. Smart grid power scheduling via
bottom left decreasing height packing. In 2016 IEEE Symposium on Computers and Commu-
nication (ISCC), pages 1128–1133. IEEE, 2016.

43 Malin Rau. Useful Structures and How to Find Them: Hardness and Approximation Results
for Various Variants of the Parallel Task Scheduling Problem. dissertation, Kiel University,
Kiel, Germany, 2019.

44 Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Jan van
Leeuwen, editor, Algorithms - ESA ’94, Second Annual European Symposium, Utrecht, The
Netherlands, September 26-28, 1994, Proceedings, volume 855 of Lecture Notes in Computer
Science, pages 290–299. Springer, 1994. doi:10.1007/BFb0049416.

45 Pierluigi Siano. Demand response and smart grids—a survey. Renewable and sustainable
energy reviews, 30:461–478, 2014.

46 Daniel Dominic Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Inf.
Process. Lett., 10(1):37–40, 1980. doi:10.1016/0020-0190(80)90121-0.

47 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput.,
26(2):401–409, 1997. doi:10.1137/S0097539793255801.

48 Shaojie Tang, Qiuyuan Huang, Xiang-Yang Li, and Dapeng Wu. Smoothing the energy
consumption: Peak demand reduction in smart grid. In 32nd IEEE International Conference
on Computer Communications (INFOCOM), pages 1133–1141. IEEE, 2013. doi:10.1109/
INFCOM.2013.6566904.

49 Sean Yaw, Brendan Mumey, Erin McDonald, and Jennifer Lemke. Peak demand scheduling
in the smart grid. In 2014 IEEE international conference on smart grid communications
(SmartGridComm), pages 770–775. IEEE, 2014.

A Proof of Theorem 4

Proof: T2 ≤ OPT(I).

▶ Lemma 13. It holds that p(Je(i)>(1/3)OPT) + p(Je(i)>(2/3)OPT) ≤ 2D and
p(Je(i)>(1/2)OPT) ≤ D.

Proof. Note that jobs with energy demand larger than (1/3)OPT cannot intersect the same
vertical line as jobs with energy demand larger than (2/3)OPT in an optimal schedule.
Furthermore, each vertical line through an optimal schedule can intersect at most two jobs
with energy demand larger than (1/3)OPT. Moreover, no vertical line can intersect two jobs
from the set Je(i)>(1/2)OPT. The claim is a consequence. ◀

▶ Corollary 14. The smallest value T such that p(Je(i)>(1/3)T) + p(Je(i)>(2/3)T) ≤ 2D and
p(Je(i)>T/2) ≤ D is a lower bound for OPT.

Proof. By Lemma 13, we know that p(Je(i)>(1/3)OPT) + p(Je(i)>(2/3)OPT) ≤ 2D and obvi-
ously we have p(Je(i)>OPT/2) ≤ D. Therefore, the smallest value such that p(Je(i)>(1/3)T) +
p(Je(i)>(2/3)T) ≤ 2D and p(Je(i)>T/2) ≤ D has to be a lower bound on OPT. ◀

APPROX/RANDOM 2021

https://doi.org/10.1137/1.9781611974331.ch102
https://doi.org/10.1007/BFb0049416
https://doi.org/10.1016/0020-0190(80)90121-0
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1109/INFCOM.2013.6566904
https://doi.org/10.1109/INFCOM.2013.6566904

21:20 Peak Demand Minimization via Sliced Strip Packing

Note that we can find this smallest value in O(n log n) by starting with T = T1 and
as long as p(Je(i)≥1/3T) + p(Je(i)≥2/3T) > 2D or p(Je(i)>T/2) > D update T as follows:
For l ∈ [0, 1], denote by el the energy demand of the smallest job in Je(i)>l·T and set
T := min{3e1/3, (3/2)e2/3, 2e1/2}. This iteratively excludes one job from one of the three
sets. We denote this lower bound as

T2 := min{T |p(Je(i)≥T/3) + p(Je(i)≥2T/3) ≤ 2D ∧ p(Je(i)≥T/2) ≤ D}.

▶ Lemma 15. Let w′ ∈ [0, 1/2). Then

p(Je(i)>(2/3)T2) > (1 − w′)D ⇒ p(Je(i)∈((1/3)T2,(2/3)T2]) ≤ 2w′D.

Proof. We know that p(Je(i)>(1/3)T2) + p(Je(i)>(2/3)T2) ≤ 2D. Because Je(i)>(2/3)T2 ⊆
Je(i)>(1/3)T2 and p(Je(i)>(2/3)T2) > (1 − w′)D, it holds that p(Je(i)∈((1/3)T2,(2/3)T2]) ≤ 2w′D.

◀

Proof: T3 ≤ OPT(I). Next, we obtain a bound based on a set of jobs that do not overlap
vertically in a given optimal schedule.

▶ Lemma 16. Consider an optimal schedule and let Jseq be a set of jobs such that no
pair of jobs i, i′ ∈ Jseq overlaps vertically, i.e., σ(i) + p(i) ≤ σ(i′) or σ(i′) + p(i′) ≤ σ(i).
Furthermore, define Jw := Jp(i)>(D−p(Jseq)/2) \ Jseq. Then there exists a vertical line through
the schedule that intersects a job in Jseq and all the jobs in Jw.

Proof. First note that (D − p(Jseq)/2) ≥ D/2. Consider the vertical strip between p(Jseq)/2
and (D − p(Jseq))/2. Each job in Jw completely overlaps this strip. Furthermore, either the
strip itself contains a job in Jseq, in which case the claim is trivially true, or on each position
on both sides of the strip there is a job from Jseq. Assume the latter case. Since the jobs in
Jw have a time demand strictly larger than (D − p(Jseq)/2), there exists an σ > 0 such that
the vertical line at (D − p(Jseq)/2) + σ as well is overlapped by all the jobs in this set. Since
this line intersects also a job from the set Jseq, the claim follows. ◀

▶ Corollary 17. Let Jseq be a set of jobs such that p(Jseq) ≤ D and consider Jw :=
Jp(i)>D−p(Jseq)/2 \ Jseq. Furthermore let i⊥ ∈ Jseq be the job with the smallest energy
demand. Then it holds that min{e(i⊥) + e(Jw), 2e(i⊥)} ≤ OPT.

Proof. Consider an optimal solution. If two jobs from the set Jseq intersect the same vertical
line, 2e(i⊥) is obviously a lower bound on OPT. On the other hand, if in any optimal
schedule there does not exist a pair of jobs from Jseq that overlap the same vertical line, we
know by Lemma 16 that there exists a job in Jseq that overlaps with all the jobs in Jw and
therefore OPT ≥ e(i⊥) + e(Jw) in this case. ◀

From Corollary 17, we derive a lower bound on OPT. For a given k ∈ [n], we define Jk

to be the set of the k jobs with the largest energy demand in J and J ′
k to be the set of the

k jobs with the largest energy demand in J \ Jp(i)>D/2. Let ik and i′
k be the jobs with the

smallest energy demand in Jk and J ′
k, respectively. We define:

T3,a := max{min{e(ik) + e(Jp(i)>D−p(Jk)/2 \ Jk), 2e(ik)}|k ∈ {1, . . . , n}, p(Jk) ≤ D},

T3,b := max{min{e(i′
k) + e(Jp(i)>D−p(J ′

k
)/2), 2e(i′

k)}|k ∈ {1, . . . , n}, p(J ′
k) ≤ D},

and finally T3 = max{T3,a, T3,b}. Note that J ′
k and Jp(i)>D−p(J ′

k
)/2 are disjoint, since J ′

k

contains only jobs with processing time at most D/2 and Jp(i)>D−p(J ′
k

)/2 contains only jobs
with processing time larger than D/2, and hence, by Corollary 17, T3 is a lower bound on
OPT. For this lower bound, we prove the following property.

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:21

▶ Lemma 18. Let T = max{T1, T2, T3}, w ∈ (0, 1/2) and h ∈ (1/2, 1] as well as Jh :=
Je(i)≥hT and Jw := Jp(i)>(1/2+w/2)D \ Jh. It holds that

p(Jh) ≥ (1 − w)D ⇒ e(Jw) ≤ (1 − h)T.

Proof. Since T ≥ T2, it holds that p(Jh) ≤ D. By construction of T3 for each job j ∈ Jh,
it holds that e(j) + e(Jp(i)>D−p(Je(i)≥e(j))/2 \ Je(i)≥e(j)) ≤ T3, because 2e(j) > T3 (and
T3 ≥ min{2e(j), e(j) + e(Jp(i)>D−p(Je(i)≥e(j))/2 \ Je(i)≥e(j))}). Furthermore, note that Jh =
Je(i)≥e(j) for the job j with the smallest energy demand in Jh.

Therefore, if p(Jh) ≥ (1 − w)D, it holds that Jp(i)>D−(1−w)D/2 ⊆ Jp(i)>D−p(Jh)/2 and
hence,

hT + e(Jw) = hT + e(Jp(i)>D−(1−w)D/2 \ Jh)
≤ e(j) + e(Jp(i)>D−p(Jh)/2 \ Jh) ≤ T3 ≤ T. ◀

▶ Lemma 19. Let T = max{T1, T2, T3}, w ∈ (1/2, 1] and h ∈ (1/2, 1] as well as Jw :=
Jp(i)≥wD and Jh := Je(i)>hT \ Jp(i)>D/2. It holds that

e(Jw) > (1 − h)T ⇒ p(Jh) ≤ 2(1 − w)D.

Proof. Let e(Jw) > (1 − h)T . Since for each job in Jh it holds that e(i) > T/2 ≥ T3,b/2, by
definition of T3,b, for each j ∈ Jh it holds that e(j)+e(Jp(i)>D−p(Je(i)≥e(j))/2) ≤ T. Therefore
for the smallest job j ∈ Jh, it holds that e(j) + e(Jp(i)>D−p(Jh)/2) ≤ T.

For contradiction assume that p(Jh) > 2(1 − w)D. Note that in this case D −
p(Jh)/2 < wD and hence e(Jp(i)>D−p(Jh)/2) ≥ e(JD) > (1 − h)T. As a consequence
e(j) + e(Jp(i)>D−p(Jh)/2) > hT + (1 − h)T = T, a contradiction. ◀

Proof: T4 ≤ OPT(I).

▶ Lemma 20. Consider an optimal schedule and let Jseq ⊆ J be a set of jobs such that no
pair of jobs j, j′ ∈ Jseq overlaps vertically, i.e., σ(j) + p(j) ≤ σ(j′) or σ(j′) + p(j′) ≤ σ(j).
Let JD ⊆ Jp(j)>(max{D−p(Jseq),D/2}) \ Jseq. Then there exists a vertical line through the
schedule that intersects a job in Jseq and a subset JW ′ ⊆ JD with e(J ′

D) ≥ e(JD)/2.

Proof. First, we consider the trivial cases. If a job from Jseq overlaps the vertical line at
D/2 the claim is trivially true, since all the jobs from JD overlap D/2. On the other hand,
if all the jobs in Jseq are left or right of D/2, it holds that p(Jseq) ≤ D/2 and one of the
jobs has a distance of at most D/2 − p(Jseq) from D/2. This job has to be overlapped by all
the jobs from JD since they have a width larger than D − p(Jseq).

Otherwise, consider the vertical line Ll through the right border of the rightmost job from
Jseq that is left of D/2 and the vertical line Lr through the left border of the leftmost job
from Jseq that is right of D/2. Note that Ll and Lr have a distance of at most (D − p(Jseq)).
Consider the set JD,l ⊆ JD that is intersected by the vertical line Ll. Note that the residual
jobs in JD,r := JD \ JD,l all overlap the vertical line at Ll + (D − p(Jseq)) ≥ Lr and hence
Lr as well. Since JD,r ∪ JD,l = JD, one of the two sets has an energy demand of at least
e(JD)/2. Finally, note that there exists a small enough σ > 0 such that Ll − σ and Lr + σ

overlap the same set of wide jobs as Ll and Lr as well as the corresponding job in Jseq. ◀

▶ Corollary 21. Let Jseq be a set of jobs such that p(Jseq) ≤ D and consider JD :=
Jp(i)>(max{D−p(Jseq),D/2}) \ Jseq. Furthermore let i⊥ ∈ Jseq be the job with the smallest
energy demand. Then it holds that min{e(i⊥) + e(JD)/2, 2e(i⊥)} ≤ OPT.

APPROX/RANDOM 2021

21:22 Peak Demand Minimization via Sliced Strip Packing

Proof. Consider an optimal solution. If two jobs from the set Jseq intersect the same vertical
line, 2e(i⊥) is obviously a lower bound on OPT. Otherwise, if in any optimal schedule
there does not exist a pair of jobs from Jseq that overlap the same vertical line, we know
by Lemma 20 that there exists a job in Jseq that overlaps with a set J ′

D ⊆ JD such that
e(J ′

D) ≥ e(JD)/2 and therefore OPT ≥ e(i⊥) + e(JD)/2 in this case. ◀

Define Jk as the set of the k jobs with largest energy demand. Furthermore, define
JD,k := Jp(i)>(max{D−p(Jk),D/2}) \ Jk. Let ik be the job with the smallest energy demand
in Jk. We define the value T4, which by Corollary 21 is a lower bound for OPT as follows:

T4 := max{min{2e(ik), e(ik) + e(JD,k)/2}|k ∈ {1, . . . , n}, p(Jk) ≤ D}.

Given two disjoint sets of jobs Jseq and JD, we say they are placed L-shaped, if the jobs
i ∈ JD are placed such that σ(i) + p(i) = D, while the jobs in Jseq are sorted by energy
demand and placed left-aligned most demanding to the left, see Figure 1a.

▶ Lemma 22. Let T = max{T1, T2, T3, T4}. If we place Jseq := Je(i)>T/2 and JD :=
Jp(i)>D/2 \ Jseq L-shaped, the schedule has a height of at most T + e(JD)/2 ≤ (3/2)OPT.

Proof. Consider a vertical line L through the generated schedule. If L does not intersect a job
from Jseq, the intersected jobs have a height of at most e(JD) ≤ T . Otherwise, let iL ∈ Jseq
and JW,L ⊆ JD be the jobs intersected by L and define Jseq,L := Je(i)≥e(iL). Note that by
definition of the schedule, it holds that JW,L ⊆ Jp(i)>(max{D−p(Jseq,L),D/2}) \ Jseq,L. Since
e(iL) > T4/2, it holds that T4 ≥ e(iL) + e(JW,L)/2, by definition of T4. As a consequence
e(iL) + e(JW,L) ≤ T + e(JW,L)/2 ≤ T + e(JD)/2 ≤ (3/2)OPT. ◀

B Proof of Theorem 5 (First Steinberg Case)

Proof. We place jobs that are very time consuming or very energy demanding in an ordered
fashion, while the residual jobs will be placed using Steinberg’s Algorithm, see Figure 1b.
We define JD := Jp(j)>(1/2+w)D \ Je(j)>T/2 to be the set of jobs with large processing times
excluding jobs with large energy demands. We place each job j ∈ JD such that σ(j) = D−p(j).
All the jobs in Je(j)>T/2 are sorted by energy demand and placed left aligned, most demanding
first inside the schedule area. Let ρ := e(JD)/T and let e(1−2w)D denote the energy demand
of the job in Je(j)>T/2 at position (1 − 2w)D. Then e(1−2w)D ≥ (2/3)T . By Lemma 18 and
the choice of T , we know that e(1−2w)D + e(JD) ≤ T ≤ OPT and hence ρ ≤ (1/3). Let L be
a vertical line though the schedule, that is at or strictly left of (1/2 − w)D and intersects a
job from Je(j)>T/2 and all the jobs from JD. By Lemma 22 at and left of L the peak energy
demand of the schedule is bounded by (1 + ρ/2)T . On the other hand, right of L the energy
demand of the schedule does not increase compared to L. As a consequence, the peak energy
demand in the current schedule is bounded by (1 + ρ/2)T ≤ (7/6)T . Furthermore, we know
that right of (1 − 2w)D the schedule has a peak energy demand of at most T . Consider
the set of jobs Je(j)∈((1/3)T,(1/2)T]. By Lemma 15 we know p(Je(j)∈((1/3)T,(1/2)T]) ≤ 2w · D,
since Je(j)>(2/3)T ≥ (1 − w)D. Now we consider two cases.

Case A. If ε ≤ ρ/2, we place all the jobs in JM := Je(j)∈((1/3)T,(1/2)T] right-aligned next to
each other inside the strip. Since they have an energy demand of at most (1/2)T and right
of (1 − 2w)D the schedule has a peak energy demand of at most T , the peak energy demand
of (5/3)T is not exceeded after adding these jobs. Define λ := p(JM)/D. Now at each point
on the x-axis between 0 and a := (1 − λ)D the schedule has an energy demand of at most

M. A. Deppert, K. Jansen, A. Khan, M. Rau, and M. Tutas 21:23

(1 + ρ/2)T , and, therefore, we can use an energy demand of b := (2/3 − ρ/2 + ε)T to place
the residual jobs. Let Jres denote the set of residual jobs that still have to be placed. Note
that each job in Jres has an energy demand of at most (1/3)T and a processing time of at
most (1/2 + w)D and the total area of these jobs can be bound by

work(Jres) ≤ DT − (2/3)T · (1 − w)D − ρT · (1/2 + w)D − (1/3)T · λD

= (1/3 + (2/3)w − ρ(1/2 + w) − λ/3)DT,

and hence 2work(Jres) ≤ (2/3 + (4/3)w − ρ(1 + 2w) − (2/3)λ)DT . On the other hand, it
holds that

ab − (2pmax − a)+(2emax − b)+

=(2/3 − ρ/2 + ε)T (1 − λ)D
− ((2(1/2 + w) − (1 − λ))D)+((2(1/3) − (2/3 − ρ/2 + ε))T)+

=(2/3 − ρ/2 + ε − (2/3)λ + (ρ/2 − ε)λ − (2w + λ)+(ρ/2 − ε)+)DT

=(2/3 + ε(1 + 2w) − (1/2 + w)ρ − (2/3)λ)DT,

since ρ/2 − ε ≥ 0. Hence Steinberg’s condition is fulfilled if (4/3)w − ρ(w + 1/2) ≤ ε(1 + 2w),
which is true since w ≤ (3/4)ε.

Case B. On the other hand, if ρ/2 < ε, it holds that (2/3 + ε − ρ/2)/2 ≥ 1/3, and we
consider the set JM := Je(j)∈(((2/3+ε−ρ/2)/2)T,(1/2)T], instead of the set Je(j)∈((1/3)T,(1/2)T],
and place it right-aligned. Again, we define λ := p(JM). Now, each job in Jres has an energy
demand of at most (1/3 + ε/2 − ρ/4)T and a processing time of at most (1/2 + w)D. The
total area of these jobs can be bounded by

work(Jres) ≤DT − (2/3)T · (1 − w)D − ρT · (1/2 + w)D − (1/3 + ε/2 − ρ/4)T · λD

= (1/3 + (2/3)w − ρ(1/2 + w) − λ(1/3 + ε/2 − ρ/4))DT,

and hence 2work(Jres) ≤ (2/3 + 4/3w − ρ(1 + 2w) − (2/3 + ε − ρ/2)λ)DT . On the other
hand, it holds that

ab − (2pmax − a)+(2emax − b)+

= (2/3 − ρ/2 + ε)T (1 − λ)D − (2(1/2 + w)D − (1 − λ)D)+(2(1/3 + ε/2 − ρ/4)T
− (2/3 − ρ/2 + ε)T)+

= (2/3 + ε − ρ/2 − (2/3 − ρ/2 + ε)λ)DT,

Hence, Steinberg’s condition is fulfilled if (4/3−2ρ)w−ρ/2 ≤ ε, which is true since w ≤ (3/4)ε.
Therefore, in both cases we use Steinberg’s algorithm to place the jobs Jres inside a

rectangular container C of height (2/3 + ε − ρ)T and width (1 − λ)D, which in turn is
positioned at σ(C) = 0. ◀

C Proof of Theorem 6 (Second Steinberg Case)

Proof. In the first step, we place all the jobs in JD := Jp(j)>D/2 and Jseq := Je(j)>T/2 \ JD

L-shaped. By Lemma 22 the resulting schedule has a peak energy demand of at most
(3/2)OPT. Let e(JD) := (2/3 + ρ)T and p(Jseq) := λD. By Lemma 19, we know that, since
e(Jp(j)≥(3/4)D) > (2/3)T , that λD ≤ 2(D − (3/4)D) = D/2.

APPROX/RANDOM 2021

21:24 Peak Demand Minimization via Sliced Strip Packing

The total amount of work work(Jres) of the residual jobs is bounded by

work(Jres) ≤ DT − (3/4)D · (2/3)T − (1/2)D · ρT − λD · (1/2)T = (1/2 − ρ/2 − λ/2)DT.

On the other hand, there is a rectangular area with time a := (1 − λ)D and energy
b := ((5/3) − (2/3 + ρ))T = (1 − ρ)T ≥ (1/2)T where we can place the residual jobs. We
will place the residual jobs into this area using Steinberg’s algorithm. This is possible
if the Steinberg’s condition 2work(Jres) ≤ ab − (2 · pmax(Jres) − a)+(2 · emax(Jres) − b)+
is fulfilled and each job fits inside the schedule area. Since pmax(Jres) ≤ D/2 ≤ a and
emax(Jres) ≤ T/2 < b, it holds that

ab − (2 · pmax(Jres) − a)+(2 · emax(Jres) − b)+

= (1 − λ)D · (1 − ρ)T − (D − (1 − λ)D)+(T − (1 − ρ)T)+

= (1 − λ − ρ)D · T

= 2(1/2 − ρ/2 − λ/2)DT ≥ 2work(Jres).

The condition is fulfilled, and we can use the free rectangular area to place the residual
jobs. ◀

Tight Approximation Algorithms For
Geometric Bin Packing with Skewed Items
Arindam Khan #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Eklavya Sharma #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Abstract
In the Two-dimensional Bin Packing (2BP) problem, we are given a set of rectangles of height and
width at most one and our goal is to find an axis-aligned nonoverlapping packing of these rectangles
into the minimum number of unit square bins. The problem admits no APTAS and the current best
approximation ratio is 1.406 by Bansal and Khan [SODA’14]. A well-studied variant of the problem
is Guillotine Two-dimensional Bin Packing (G2BP), where all rectangles must be packed in such
a way that every rectangle in the packing can be obtained by recursively applying a sequence of
end-to-end axis-parallel cuts, also called guillotine cuts. Bansal, Lodi, and Sviridenko [FOCS’05]
obtained an APTAS for this problem. Let λ be the smallest constant such that for every set I of
items, the number of bins in the optimal solution to G2BP for I is upper bounded by λ opt(I) + c,
where opt(I) is the number of bins in the optimal solution to 2BP for I and c is a constant. It is
known that 4/3 ≤ λ ≤ 1.692. Bansal and Khan [SODA’14] conjectured that λ = 4/3. The conjecture,
if true, will imply a (4/3 + ε)-approximation algorithm for 2BP. According to convention, for a given
constant δ > 0, a rectangle is large if both its height and width are at least δ, and otherwise it is
called skewed. We make progress towards the conjecture by showing λ = 4/3 for skewed instance,
i.e., when all input rectangles are skewed. Even for this case, the previous best upper bound on λ

was roughly 1.692. We also give an APTAS for 2BP for skewed instance, though general 2BP does
not admit an APTAS.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Geometric bin packing, guillotine separability, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.22

Category APPROX

Related Version ArXiv: https://arxiv.org/abs/2105.02827

1 Introduction

Two-dimensional Bin Packing (2BP) is a well-studied problem in combinatorial optimization.
It finds numerous applications in logistics, databases, and cutting stock. In 2BP, we are given
a set of n rectangular items and square bins of side length 1. The ith item is characterized
by its width w(i) ∈ (0, 1] and height h(i) ∈ (0, 1]. Our goal is to find an axis-aligned
nonoverlapping packing of these items into the minimum number of square bins of side length
1. There are two well-studied variants: (i) where the items cannot be rotated, and (ii) they
can be rotated by 90 degrees.

As is conventional in bin packing, we focus on asymptotic approximation algorithms.
For any optimization problem, the asymptotic approximation ratio (AAR) of algorithm
A is defined as limm→∞ supI:opt(I)=m(A(I)/opt(I)), where opt(I) is the optimal objective
value and A(I) is the objective value of the solution output by algorithm A, respectively, on
input I. Intuitively, AAR captures the algorithm’s behavior when opt(I) is large. We call a

© Arindam Khan and Eklavya Sharma;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arindamkhan@iisc.ac.in
mailto:eklavyas@iisc.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.22
https://arxiv.org/abs/2105.02827
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Geometric Bin Packing with Skewed Items

bin packing algorithm α-asymptotic-approximate iff its AAR is at most α. An Asymptotic
Polynomial-Time Approximation Scheme (APTAS) is an algorithm that accepts a parameter
ε and has AAR of (1 + ε).

2BP is a generalization of classical 1-D bin packing problem [24, 15]. However, unlike
1-D bin packing, 2BP does not admit an APTAS unless P=NP [5]. In 1982, Chung, Garey,
and Johnson [13] gave an approximation algorithm with AAR 2.125 for 2BP. Caprara [9]
improved the AAR to T∞(≈ 1.691). After a series of works [4, 25, 7], the AAR was gradually
improved to 1 + ln(1.5) + ε ≈ 1.405 (for both the rotational and non-rotational versions of
2BP). The best-known lower bounds on the AAR for 2BP are 1 + 1/3792 and 1 + 1/2196
[11], for the versions with and without rotations, respectively.

In the context of geometric packing, guillotine cuts are well-studied and heavily used in
practice [41]. The notions of guillotine cuts and k-stage packing were introduced by Gilmore
and Gomory in their seminal paper [22] on the cutting stock problem. In k-stage packing,
the items can be separated from each other using k stages of axis-parallel end-to-end cuts,
also called guillotine cuts, where in each stage, either all cuts are vertical or all cuts are
horizontal. In each stage, each rectangular region obtained in the previous stage is considered
separately and can be cut again using guillotine cuts. Note that in the cutting process we
change the orientation (vertical or horizontal) of the cuts k − 1 times. 2-stage packing, also
called shelf packing, has been studied extensively. A packing is called guillotinable iff it is a
k-stage packing for some integer k. See Figure 1 for examples. Caprara et al. [10] gave an
APTAS for 2-stage 2BP. Bansal et al. [8] showed an APTAS for guillotine 2BP.

✂

✂

✂

✂ ✂ ✂

✂

(a) The items can be separated using 3 stages of guillotine cuts,
so this is a guillotinable packing.

(b) Two non-guillotinable bins.

Figure 1 Examples of guillotinable and non-guillotinable packing.

The presence of an APTAS for guillotine 2BP raises an important question: can the
optimal solution to guillotine 2BP be used as a good approximate solution to 2BP? Formally,
let opt(I) and optg(I) be the minimum number of bins and the minimum number of
guillotinable bins, respectively, needed to pack items I. Let λ be the smallest constant
such that for some constant c and for every set I of items, we get optg(I) ≤ λ opt(I) + c.
Then λ is called the Asymptotic Price of Guillotinability (APoG). It is easy to show that

A. Khan and E. Sharma 22:3

APoG ≥ 4/31. Bansal and Khan [7] conjectured that APoG = 4/3. If true, this would imply
a (4/3 + ε)-asymptotic-approximation algorithm for 2BP [8]. However, the present upper
bound on APoG is only T∞ (≈ 1.691), due to Caprara’s HDH algorithm [9] for 2BP, which
produces a 2-stage packing.

APTASes are known for some special cases for 2BP, such as when all items are squares [5]
or when all rectangles are small in both dimensions [14]. Another important class is skewed
rectangles. We say that a rectangle is δ-large if, for some constant δ > 0, its width and height
are more than δ; otherwise, the rectangle is δ-skewed. We just say that a rectangle is large or
skewed when δ is clear from the context. An instance of 2BP is skewed if all the rectangles in
the input are skewed. Skewed instances are important in geometric packing (see Section 1.1).
This special case is practically relevant [18]: e.g., in scheduling, it captures scenarios where
no job can consume a significant amount of a shared resource (energy, memory space, etc.)
for a significant amount of time. Even for skewed instance for 2BP, the best known AAR is
1.406 [7]. Also, for skewed instance, the best known upper bound on APoG is T∞ ≈ 1.691.

1.1 Related Works
Multidimensional packing problems are fundamental in combinatorial optimization [12].
Vector packing (VP) is another variant of bin packing, where the input is a set of vectors
in [0, 1]d and the goal is to partition the vectors into the minimum number of parts (bins)
such that in each part, the sum of vectors is at most 1 in every coordinate. The present
best approximation algorithm attains an AAR of (0.807 + ln(d + 1)) [6] and there is a
matching Ω(ln d)-hardness [37]. Generalized multidimensional packing [33, 32] generalizes
both geometric and vector packing.

In two-dimensional strip packing (2SP) [14, 40], we are given a set of rectangles and a
bounded width strip. The goal is to obtain an axis-aligned nonoverlapping packing of all
rectangles such that the height of the packing is minimized. The best-known approximation
ratio for 2SP is 5/3 + ε [23] and it is NP-hard to obtain better than 3/2-approximation.
However, there exist APTASes for the problem [28, 26]. In two-dimensional knapsack (2GK)
[27], the rectangles have associated profits and our goal is to pack the maximum profit subset
into a unit square knapsack. The present best polynomial-time (resp. pseudopolynomial-time)
approximation ratio for 2GK is 1.809 [20] (resp. 4/3 [21]). These geometric packing problems
have also been studied for d-dimensions (d ≥ 2) [39].

2SP and 2GK are also well-studied under guillotine packing. Seiden and Woeginger [38]
gave an APTAS for guillotine 2SP. Khan et al. [29] recently gave a pseudopolynomial-time
approximation scheme for guillotine 2GK. Recently, guillotine cuts [35] have received attention
due to their connection with the maximum independent set of rectangles (MISR) problem [2].
In MISR, we are given a set of possibly overlapping rectangles and the goal is to find the
maximum cardinality set of rectangles so that there is no pairwise overlap. It was noted in
[30, 1] that for any set of n non-overlapping axis-parallel rectangles, if there is a guillotine
cutting sequence separating αn of them, then it implies a 1/α-approximation for MISR.

Skewed instance is an important special case in these problems. In some problems, such
as MISR and 2GK, if all items are δ-large then we can solve them exactly in polynomial time.
So, the inherent difficulty of these problems lies in skewed instances. For VP, hard instances
are again skewed, e.g., Bansal, Eliáš and Khan [6] showed that hard instances for 2-D VP

1 Consider a set I of items containing 2m rectangles of width 0.6 and height 0.4 and 2m rectangles of
width 0.4 and height 0.6. Then opt(I) = m and optg(I) = ⌈4m/3⌉.

APPROX/RANDOM 2021

22:4 Geometric Bin Packing with Skewed Items

(for a class of algorithms called rounding based algorithms) are skewed instances, where one
dimension is 1 − ε and the other dimension is ε. Galvez el al. [18] recently studied strip
packing when all items are skewed. For skewed instances, they showed (3/2 − ε) hardness
of approximation and a matching (3/2 + ε)-approximation algorithm. For 2GK, when the
height of each item is at most ε3, a (1 − 72ε)-approximation algorithm is known [17].

1.2 Our Contributions
We study 2BP for the special case of δ-skewed rectangles, where δ ∈ (0, 1/2] is a constant.

First, we make progress towards the conjecture [7] that APoG = 4/3. Even for skewed
rectangles, we only knew 4/3 ≤ APoG ≤ T∞(≈ 1.691). We resolve the conjecture for skewed
rectangles, by giving lower and upper bounds of roughly 4/3 when δ is a small constant.

Specifically, we give an algorithm for 2BP, called skewed4Packε, that takes a parameter
ε ∈ (0, 1) as input. For a set I of δ-skewed rectangles, we show that when δ and ε are close
to 0, skewed4Packε(I) outputs a 4-stage packing of I into roughly 4 opt(I)/3 + O(1) bins.

▶ Theorem 1. Let I be a set of δ-skewed items, where δ ∈ (0, 1/2]. Then skewed4Packε(I)
outputs a 4-stage packing of I in time O((1/ε)O(1/ε) + n log n). Furthermore, the number of
bins used is at most (4/3)(1 + 8δ)(1 + 7ε) opt(I) + (8/ε2) + 30.

The lower bound of 4/3 on APoG can be extended to skewed items. We formally prove
this in Appendix D. Hence, our bounds are tight for skewed items. Our result indicates that
to improve the bounds on APoG in the general case, we should focus on δ-large items.

Our other main result is an APTAS for 2BP for skewed items. Formally, we give an
algorithm for 2BP, called skewedCPack, and show that for every constant ε ∈ (0, 1), there
exists a constant δ ∈ (0, ε) such that the algorithm has an AAR of 1 + ε when all items in
the input are δ-skewed rectangles. skewedCPack can be extended to the rotational version of
2BP. The best-known AAR for 2BP is 1 + ln(1.5) + ε. Our result indicates that to improve
upon algorithms for 2BP, one should focus on δ-large items.

In Section 3, we describe the skewed4Pack algorithm and prove Theorem 1. In Section 4,
we describe the skewedCPack algorithm and prove that it has an AAR of 1 + ε.

2 Preliminaries

Let [n] := {1, 2, . . . , n}, for n ∈ N. For a rectangle i, its area a(i) := w(i)h(i). For a set
I of rectangles, let a(I) :=

∑
i∈I a(i). An axis-aligned packing of an item i in a bin is

specified by a pair (x(i), y(i)), where x(i), y(i) ∈ [0, 1], so that i is placed in the region
[x(i), x(i)+w(i)]× [y(i), y(i)+h(i)]. A packing of rectangles in a bin is called nonoverlapping
iff for any two distinct items i and j, the rectangles (x(i), x(i) + w(i)) × (y(i), y(i) + h(i)) and
(x(j), x(j) + w(j)) × (y(j), y(j) + h(j)) are disjoint. Equivalently, items may only intersect
at their boundaries.

Next-Fit Decreasing Height (NFDH). NFDH [14] is a simple algorithm for 2SP and 2BP.
We will use the following results on NFDH (cf. Appendix B in [31]).

▶ Lemma 2. Let I be a set of items where each item i has w(i) ≤ δW and h(i) ≤ δH . NFDH
can pack I into a bin of width W and height H if a(I) ≤ (W − δW)(H − δH).

▶ Lemma 3. NFDH uses less than (2a(I) + 1)/(1 − δ) bins to pack I when h(i) ≤ δ for each
item i and less than 2a(I)/(1 − δ) + 3 bins when w(i) ≤ δ for each item i.

A. Khan and E. Sharma 22:5

If we swap the coordinate axes in NFDH, we get the Next-Fit Decreasing Width (NFDW)
algorithm. Analogs of the above results hold for NFDW.

Slicing Items. We will consider variants of 2BP where some items can be sliced. Formally,
slicing a rectangular item i using a horizontal cut is the operation of replacing i by two items
i1 and i2 such that w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2). Slicing using vertical cut
is defined analogously. Allowing some items to be sliced may reduce the number of bins
required to pack them.

Variants of 2SP where items can be sliced using vertical cuts find applications in resource
allocation problems [3, 16, 19]. Many packing algorithms [28, 25, 8] solve the sliceable version
of the problem as a subroutine.

3 Guillotinable Packing of Skewed Rectangles

An item is called (δW , δH)-skewed iff its width is at most δW or its height is at most δH . In
this section, we consider the problem of obtaining tight upper and lower bounds on APoG for
(δW , δH)-skewed items. We will describe the skewed4Pack algorithm and prove Theorem 1.

3.1 Packing With Slicing
Before describing skewed4Pack, let us first look at a closely-related variant of this problem,
called the sliceable 2D bin packing problem, denoted as S2BP. In this problem, we are given
two sets of rectangular items, W̃ and H̃, where items in W̃ have width more than 1/2, and
items in H̃ have height more than 1/2. W̃ is called the set of wide items and H̃ is called the
set of tall items. We are allowed to slice items in W̃ using horizontal cuts and slice items
in H̃ using vertical cuts, and our task is to pack W̃ ∪ H̃ into the minimum number of bins
without rotating the items.

We first describe a 4/3-asymptotic-approximation algorithm for S2BP, called greedyPack,
that outputs a 2-stage packing. Later, we will use greedyPack to design skewed4Pack.

We assume that the bin is a square of side length 1. Since we can slice items, we allow
items in W̃ to have height more than 1 and items in H̃ to have width more than 1.

For X ⊆ W̃ , Y ⊆ H̃, let hsum(X) :=
∑

i∈X h(i); wsum(Y) :=
∑

i∈Y w(i); wmax(X) :=
maxi∈X w(i) if X ̸= ∅, and 0 if X = ∅; hmax(Y) := maxi∈Y h(i) if Y ̸= ∅, and 0 if Y = ∅.

In the algorithm greedyPack(W̃ , H̃), we first sort items W̃ in decreasing order of width
and sort items H̃ in decreasing order of height. Suppose hsum(W̃) ≥ wsum(H̃). Let X be
the largest prefix of W̃ of total height at most 1, i.e., if hsum(W̃) > 1, then X is a prefix of
W̃ such that hsum(X) = 1 (slice items if needed), and X = W̃ otherwise. Pack X into a bin
such that the items touch the right edge of the bin. Then we pack the largest possible prefix
of H̃ into the empty rectangular region of width 1 − wmax(X) in the left side of the bin. We
call this a type-1 bin. See Figure 2a for an example. If hsum(W̃) < wsum(H̃), we proceed
analogously in a coordinate-swapped way, i.e., we first pack tall items in the bin and then
pack wide items in the remaining space. Call this bin a type-2 bin. We pack the rest of the
items into bins in the same way.

▷ Claim 4. greedyPack(W̃ , H̃) outputs a 2-stage packing of W̃ ∪ H̃ in O(m + |W̃ | log |W̃ | +
|H̃| log |H̃|) time, where m is the number of bins used. It slices items in W̃ by making at
most m − 1 horizontal cuts and slices items in H̃ by making at most m − 1 vertical cuts.

Since items in W̃ have width more than 1/2, no two items can be placed side-by-side.
Hence, ⌈hsum(W̃)⌉ = opt(W̃) ≤ opt(W̃ ∪ H̃). Similarly, ⌈wsum(H̃)⌉ ≤ opt(W̃ ∪ H̃). So, if
all bins have the same type, greedyPack uses max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) = opt(W̃ ∪ H̃)
bins. We will now focus on the case where some bins have type 1 and some have type 2.

APPROX/RANDOM 2021

22:6 Geometric Bin Packing with Skewed Items

(a) A type-1 bin produced
by greedyPack. Wide items
are packed on the right. Tall
items are packed on the left.

(b) A type-2 bin produced by
greedyPack. Tall items are
packed above. Wide items are
packed below.

(c) A type-1 bin in the packing
of Î computed by skewed4Pack (see
Section 3.2). The packing contains 5
tall containers in 2 tall shelves and
18 wide containers in 8 wide shelves.

▶ Definition 5. In a type-1 bin, let X and Y be wide and tall items, respectively. The bin is
called full iff hsum(X) = 1 and wsum(Y) = 1 − wmax(X). Similarly define full for type 2.

We first show that full bins pack items of large total area, and then show that if some
bins have type 1 and some have type 2, then there are at most 2 non-full bins. This helps us
upper-bound the number of bins used by greedyPack(W̃ , H̃) in terms of a(W̃ ∪ H̃).

▶ Lemma 6. Let there be m1 type-1 full bins, containing items J1. Then m1 ≤ 4a(J1)/3+1/3.

Proof. In the jth full bin of type 1, let Xj be the items from W̃ and Yj be the items from H̃ .
Let ℓj := wmax(Xj) if j ≤ m1 and ℓm1+1 := 1/2. Since all items have their larger dimension
more than 1/2, ℓj ≥ 1/2 and hmax(Yj) > 1/2, for any j ∈ [m1].

a(Xj) ≥ ℓj+1, since Xj has height 1 and width at least ℓj+1. a(Yj) ≥ (1 − ℓj)/2,
since Yj has width 1 − ℓj and height more than 1/2. So, a(J1) =

∑m1
j=1(a(Xj) + a(Yj)) ≥∑m1

j=1(ℓj+1 + (1 − ℓj)/2) ≥
∑m1

j=1 ((ℓj+1/2) + (1/4) + (1/2) − (ℓj/2)) ≥ (3m1 − 1/4).
In the above inequalities, we used ℓj+1 ≥ 1/2 and ℓ1 ≤ 1.

Therefore, m1 ≤ 4a(J1)/3 + 1/3. ◀

An analog of Lemma 6 can be proven for type-2 bins. Lemma 6 implies that very few full
bins can have items of total area significantly less than 3/4.

Suppose greedyPack(W̃ , H̃) uses m bins. After j bins are packed, let Aj be the height
of the remaining items in W̃ and Bj be the width of the remaining items in H̃. Let tj be
the type of the jth bin (1 for type-1 bin, 2 for type-2 bin). So tj = 1 ⇐⇒ Aj−1 ≥ Bj−1.

We first show that |Aj−1−Bj−1| ≤ 1 =⇒ |Aj −Bj | ≤ 1, i.e., once | hsum(W̃)−wsum(H̃)|
becomes at most 1 during greedyPack, it continues to stay at most 1. Next, we show
that tj ̸= tj+1 =⇒ |Aj−1 − Bj−1| ≤ 1, i.e., if all bins don’t have the same type, then
| hsum(W̃) − wsum(H̃)| eventually becomes at most 1 during greedyPack. In the first non-
full bin, we use up all the wide items or all the tall items. We will show that the remaining
items have total height or total width at most 1, so we have at most 2 non-full bins.

In the jth bin, let aj be the height of items from W̃ and bj be the width of items from H̃ .
Hence, for all j ∈ [m], Aj−1 = Aj + aj and Bj−1 = Bj + bj .

▶ Lemma 7. |Aj−1 − Bj−1| ≤ 1 =⇒ |Aj − Bj | ≤ 1.

Proof. W.l.o.g., assume Aj−1 ≥ Bj−1. So, tj = 1. Suppose aj < bj . Then aj < 1, so we
used up W̃ in the jth bin. Therefore, Aj = 0 =⇒ Aj−1 = aj < bj ≤ bj + Bj = Bj−1,
which contradicts. Hence, aj ≥ bj . As 0 ≤ (Aj−1 − Bj−1), (aj − bj) ≤ 1, we get Aj − Bj =
(Aj−1 − Bj−1) − (aj − bj) ∈ [−1, 1]. ◀

A. Khan and E. Sharma 22:7

▶ Lemma 8. tj ̸= tj+1 =⇒ |Aj−1 − Bj−1| ≤ 1.

Proof. W.l.o.g., assume tj = 1 and tj+1 = 2. Then

Aj−1 ≥ Bj−1 and Aj < Bj =⇒ Bj−1 ≤ Aj−1 < Bj−1+aj −bj =⇒ Aj−1−Bj−1 ∈ [0, 1).◀

▶ Lemma 9. If all bins don’t have the same type, then there can be at most 2 non-full bins.

Proof. Let there be p full bins. Assume w.l.o.g. that in the (p + 1)th bin, we used up all
items from W̃ but not H̃. Hence, Ap+1 = 0 and ∀i ≥ p + 2, ti = 2. Since all bins don’t
have the same type, ∃k ≤ p + 1 such that tk = 1 and tk+1 = 2. By Lemmas 7 and 8, we get
|Ap+1 − Bp+1| ≤ 1, implying Bp+1 ≤ 1. Hence, the (p + 1)th bin will use up all tall items,
implying at most 2 non-full bins. ◀

▶ Theorem 10. The number of bins m used by greedyPack is at most
max

(
⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉, 4

3 a(W̃ ∪ H̃) + 8
3

)
.

Proof. If all bins have the same type, then m ≤ max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉).
Let there be m1 (resp. m2) full bins of type 1 (resp. type 2) and let J1 (resp. J2)

be the items inside those bins. Then by Lemma 6, we get m1 ≤ 4a(J1)/3 + 1/3 and
m2 ≤ 4a(J2)/3 + 1/3. Hence, m1 + m2 ≤ 4a(W̃ ∪ H̃)/3 + 2/3. If all bins don’t have the
same type, then by Lemma 9, there can be at most 2 non-full bins, so greedyPack(W̃ , H̃)
uses at most 4a(W̃ ∪ H̃)/3 + 8/3 bins. ◀

3.2 The skewed4Pack Algorithm
We now return to the 2BP problem. skewed4Pack is an algorithm for 2BP takes as input a
set I of rectangular items and a parameter ε ∈ (0, 1) where ε−1 ∈ Z. It outputs a 4-stage
bin packing of I. skewed4Pack has the following outline:
A. Use linear grouping [15, 28] to round up the width or height of each item in I. This gives

us a new instance Î.
B. Pack Î into 1/ε2 + 1 shelves, after slicing some items. A shelf is a rectangular region

with width or height more than 1/2 and is fully packed, i.e., the area of items in a shelf
equals the area of the shelf. If we treat each shelf as an item, we get a new instance Ĩ.

C. Compute a packing of Ĩ into bins, after possibly slicing some items, using greedyPack.
D. Repack most items of Î without slicing into the shelves. We will prove that the remaining

items have very small area, so they can be packed separately using NFDH.

A. Item Classification and Rounding. Define W := {i ∈ I : h(i) ≤ δH} and H := I − W .
Items in W are called wide and items in H are called tall. Let W (L) := {i ∈ W : w(i) > ε}
and W (S) := W − W (L). Similarly, let H(L) := {i ∈ H : h(i) > ε} and H(S) := H − H(L).

We will use linear grouping [15, 28] to round up the widths of W (L) and the heights of
H(L) to get items Ŵ (L) and Ĥ(L), respectively. By Claim 27 in Appendix A, items in Ŵ (L)

have at most 1/ε2 distinct widths and items in Ĥ(L) have at most 1/ε2 distinct heights.
Let Ŵ := Ŵ (L) ∪ W (S), Ĥ := Ĥ(L) ∪ H(S), Î := Ŵ ∪ Ĥ. For X̂ ⊆ Î, let fopt(X̂) be

the minimum number of bins needed to pack X̂ when items in X̂ ∩ Ŵ (L) can be sliced
using horizontal cuts, items in X̂ ∩ Ĥ(L) can be sliced using vertical cuts, and items in
X̂ ∩ (W (S) ∪ H(S)) can be sliced both vertically and horizontally. The following lemma
follows from Lemma 28 in Appendix A.

▶ Lemma 11. fopt(Î) < (1 + ε) opt(I) + 2.

APPROX/RANDOM 2021

22:8 Geometric Bin Packing with Skewed Items

B. Creating Shelves. We will use ideas from Kenyon and Rémila’s 2SP algorithm [28] to
pack Î into shelves. Roughly, we solve a linear program to compute an optimal strip packing
of Ŵ , where the packing is 3-stage. The first stage of cuts gives us shelves and the second
stage gives us containers. From each shelf, we trim off space that doesn’t belong to any
container. See Section 3.3 for details. Let W̃ be the shelves thus obtained. Analogously, we
can pack items Ĥ into shelves H̃. Shelves in W̃ are called wide shelves and shelves in H̃

are called tall shelves. Let Ĩ := W̃ ∪ H̃. We can interpret each shelf in Ĩ as a rectangular
item. We allow slicing W̃ and H̃ using horizontal cuts and vertical cuts, respectively. In
Section 3.3, we prove the following facts.

▶ Lemma 12. Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃| ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than 1/2;
(c) a(Ĩ) = a(Î); (d) max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) ≤ fopt(Î).

C. Packing Shelves into Bins. So far, we have packed Î into shelves W̃ and H̃ . We will now
use greedyPack(W̃ , H̃) to pack the shelves into bins. By Claim 4, we get a 2-stage packing
of W̃ ∪ H̃ into m bins, where we make at most m − 1 horizontal cuts in W̃ and at most m − 1
vertical cuts in H̃ . The horizontal cuts (resp. vertical cuts) increase the number of wide shelves
(resp. tall shelves) from at most 1 + 1/ε2 to at most m + 1/ε2. By Theorem 10, Lemma 12(d)
and Lemma 12(c), we get m ≤ max

(
⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉, 4

3 a(Ĩ) + 8
3

)
≤ 4

3 fopt(Î) + 8
3 .

D. Packing Items into Containers. So far, we have a packing of shelves into m bins, where
the shelves contain slices of items Î. We will now repack a large subset of Î into the shelves
without slicing Î. See Figure 2c for an example output. We do this using a standard greedy
algorithm. See Appendix B for details of the algorithm and proof of the following lemma.

▶ Lemma 13. Let P be a packing of Ĩ into m bins, where we made at most m − 1 horizontal
cuts in wide shelves and at most m − 1 vertical cuts in tall shelves. Then we can (without
slicing) pack a large subset of Î into the shelves in P such that the unpacked items (also
called discarded items) from Ŵ have total area less than ε hsum(W̃) + δH(1 + ε)(m + 1/ε2),
and the unpacked items from Ĥ have area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

We pack wide discarded items into new bins using NFDH and pack tall discarded items
into new bins using NFDW. Finally, we prove the performance guarantee of skewed4Packε(I).

▶ Lemma 14. Let I be a set of (δW , δH)-skewed items. Then skewed4Packε(I) outputs a
4-stage packing of I in time O((1/ε)O(1/ε) + n log n) and uses less than α(1 + ε) opt(I) + 2β

bins, where ∆ := 1
2

(
δH

1−δH
+ δW

1−δW

)
, α := 4

3 (1+4∆)(1+3ε), β := 2∆(1+ε)
ε2 + 10

3 + 19∆
3 + 16∆ε

3 .

Proof. The discarded items are packed using NFDH or NFDW, which output a 2-stage
packing. Since greedyPack outputs a 2-stage packing of the shelves and the packing of items
into the shelves is a 2-stage packing, the bin packing of non-discarded items is a 4-stage
packing. The time taken by skewed4Pack is at most O((1/ε)O(1/ε) + n log n).

Suppose greedyPack uses at most m bins. By Theorem 10, m ≤ 4 fopt(Î)/3+8/3. Let W d

and Hd be the items discarded from W and H , respectively. By Lemma 13 and Lemma 12(d),
a(W d) < ε fopt(Î) + δH(1 + ε)(m + 1/ε2) and a(Hd) < ε fopt(Î) + δW (1 + ε)(m + 1/ε2).

A. Khan and E. Sharma 22:9

By Lemmas 3 and 11, the number of bins used by skewed4Packε(I) is less than

m + 2a(W d) + 1
1 − δH

+ 2a(Hd) + 1
1 − δW

≤ (1 + 4∆(1 + ε))m + 4ε(1 + ∆) fopt(Î) + 2(1 + ∆) + 4∆(1 + ε)/ε2

≤ α fopt(Î) + 2(β − 1) < α(1 + ε) opt(I) + 2β. ◀

Now we conclude with the proof of Theorem 1.

Proof of Theorem 1. This is a simple corollary of Lemma 14, where δ ≤ 1/2 gives us ∆ ≤ 2δ,
α(1 + ε) ≤ (4/3)(1 + 8δ)(1 + 7ε), and β ≤ 4/ε2 + 15. ◀

3.3 Creating Shelves
Here we will describe how to obtain shelves W̃ and H̃ from items Ŵ and Ĥ, respectively.
Let optSP(Ŵ) denote the optimal strip packing of Ŵ where items in Ŵ can be sliced
using horizontal cuts. Then fopt(Ŵ) = ⌈optSP(Ŵ)⌉. Hence, we will now try to compute a
near-optimal strip packing of Ŵ .

Define a horizontal configuration S as a tuple (S0, S1, S2, . . .) of 1/ε2 + 1 non-negative
integers, where S0 ∈ {0, 1} and

∑1/ε2

j=1 Sjwj ≤ 1. For any horizontal line at height y in a
strip packing of Ŵ , the multiset of items intersecting the line corresponds to a configuration.
S0 indicates whether the line intersects items from W (S), and Sj is the number of items from
Ŵ

(L)
j that the line intersects. Let S be the set of all horizontal configurations. Let N := |S|.
To obtain an optimal packing, we need to determine the height of each configuration.

This can be done with the following linear program.

min
x∈RN

∑
S∈S

xS

where
∑
S∈S

SjxS = h(Ŵ (L)
j) ∀j ∈ [1/ε2]

and
∑

S:S0=1

1 −
1/ε2∑
j=1

Sjwj

 xS = a(W (S))

and xS ≥ 0 ∀S ∈ S

Let x∗ be an optimal extreme-point solution to the above LP. This gives us a packing where
the strip is divided into rectangular regions called shelves that are stacked on top of each other.
Each shelf has a configuration S associated with it and has height h(S) := x∗

S and contains
Sj containers of width wj . Containers of width wj only contain items from Ŵ

(L)
j , and we call

them type-j containers. If S0 = 1, S also contains a container of width 1 −
∑1/ε2

j=1 Sjwj that
contains small items. We call this container a type-0 container. Each container is fully filled
with items. Let w(S) denote the width of shelf S, i.e., the sum of widths of all containers in
S. Note that if S0 = 1, then w(S) = 1. Otherwise, w(S) =

∑1/ε2

j=1 Sjwj .

▶ Lemma 15. x∗ contains at most 1/ε2 + 1 positive entries.

Proof sketch. Follows by applying Rank Lemma2 to the linear program. ◀

2 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [34, Lemma 2.1.4].

APPROX/RANDOM 2021

22:10 Geometric Bin Packing with Skewed Items

▶ Lemma 16. x∗
S > 0 =⇒ w(S) > 1/2.

Proof. Suppose w(S) ≤ 1/2. Then we could have split S into two parts by making a
horizontal cut in the middle and packed the parts side-by-side, reducing the height of the
strip by x∗

S/2. But that would contradict the fact that x∗ is optimal. ◀

Treat each shelf S as an item of width w(S) and height h(S). Allow each such item to
be sliced using horizontal cuts. This gives us a new set W̃ of items such that Ŵ can be
packed inside W̃ . By applying an analogous approach to Ĥ, we get a new set H̃ of items.
Let Ĩ := W̃ ∪ H̃. We call the shelves of W̃ wide shelves and the shelves of H̃ tall shelves.
The containers in wide shelves are called wide containers and the containers in tall shelves
are called tall containers.

▶ Lemma 12. Ĩ has the following properties: (a) |W̃ | ≤ 1 + 1/ε2 and |H̃| ≤ 1 + 1/ε2;
(b) Each item in W̃ has width more than 1/2 and each item in H̃ has height more than 1/2;
(c) a(Ĩ) = a(Î); (d) max(⌈hsum(W̃)⌉, ⌈wsum(H̃)⌉) ≤ fopt(Î).

Proof. Lemma 15 implies (a) and Lemma 16 implies (b). a(Î) = a(Ĩ) as the shelves are tightly
packed. Since x∗ is an optimal solution to the linear program, ⌈hsum(W̃)⌉ = ⌈

∑
S∈S x∗

S⌉ =
⌈optSP(Ŵ)⌉ = fopt(Ŵ) ≤ fopt(Î). Similarly, ⌈wsum(H̃)⌉ = fopt(Ĥ) ≤ fopt(Î). ◀

4 Almost-Optimal Bin Packing of Skewed Rectangles

In this section, we will describe the algorithm skewedCPack. skewedCPack takes as input a
set I of items and a parameter ε ∈ (0, 1/2], where ε−1 ∈ Z. We will prove that skewedCPack
has AAR 1 + 20ε when δ is sufficiently small. skewedCPack works roughly as follows:
1. Invoke the subroutine round(I) (cf. Section 4.1). round(I) returns a pair (Ĩ , Imed). Here

Imed, called the set of medium items, has low total area, so we can pack it in a small
number of bins. Ĩ, called the set of rounded items, is obtained by rounding up the width
or height of each item in I − Imed, so that Ĩ has properties that help us pack it easily.

2. Compute the optimal fractional compartmental bin packing of Ĩ (we will define fractional
and compartmental later).

3. Use this packing of Ĩ to obtain a packing of I that uses slightly more number of bins.

To bound the AAR of skewedCPack, we will prove a structural theorem (Section 4.2),
which says that the optimal fractional compartmental packing of Ĩ uses close to opt(I) bins.

4.1 Classifying and Rounding Items
We now describe the algorithm round and show that its output satisfies important properties.

First, we will find a set Imed ⊆ I and positive constants ε1 and ε2 such that a(Imed) ≤
εa(I), ε2 ≪ ε1, and I − Imed is (ε2, ε1]-free, i.e., no item in I − Imed has its width or height
in the interval (ε2, ε1]. Then we can remove Imed from I and pack it separately into a small
number of bins using NFDH. We will see that the (ε2, ε1]-freeness of I − Imed will help us
pack I − Imed efficiently. Specifically, we require ε1 ≤ ε, ε−1

1 ∈ Z, and ε2 = f(ε1), where
f(x) := εx/

(
104(1 + 1/(εx))2/x−2)

. We explain this choice of f in Section 4.3.4. Intuitively,
such an f ensures that ε2 ≪ ε1 and ε−1

2 ∈ Z. For skewedCPack to work, we require δ ≤ ε2.
Finding such an Imed and ε1 is a standard technique [25, 7], so we defer the details to
Appendix C.1.

Next, we classify the items in I − Imed into three disjoint classes:
Wide items: W := {i ∈ I : w(i) > ε1 and h(i) ≤ ε2}.
Tall items: H := {i ∈ I : w(i) ≤ ε2 and h(i) > ε1}.
Small items: S := {i ∈ I : w(i) ≤ ε2 and h(i) ≤ ε2}.

A. Khan and E. Sharma 22:11

We will now use linear grouping [15, 28] to round up the widths of items W and the
heights of items H to get items W̃ and H̃, respectively. By Claim 27 in Appendix A, items
in W̃ have at most 1/(εε1) distinct widths and items in H̃ have at most 1/(εε1) distinct
heights. Let Ĩ := W̃ ∪ H̃ ∪ S.

▶ Definition 17 (Fractional packing). Suppose we are allowed to slice wide items in Ĩ using
horizontal cuts, slice tall items in Ĩ using vertical cuts and slice small items in Ĩ using both
horizontal and vertical cuts. For any X̃ ⊆ Ĩ, a bin packing of the slices of X̃ is called a
fractional packing of X̃. The optimal fractional packing of X̃ is denoted by fopt(X̃).

▶ Lemma 18. fopt(Ĩ) < (1 + ε) opt(I) + 2.

Proof. Directly follows from Lemma 28 in Appendix A. ◀

4.2 Structural Theorem
We will now define compartmental packing and prove the structural theorem, which says
that the number of bins in the optimal fractional compartmental packing of Ĩ is roughly
equal to fopt(Ĩ).

We first show how to discretize a packing, i.e., we show that given a fractional packing of
items in a bin, we can remove a small fraction of tall and small items and shift the remaining
items leftwards so that the left and right edges of each wide item belong to a constant-sized
set T , where |T | ≤ (1 + 1/εε1)2/ε1−2. Next, we define compartmental packing and show how
to convert a discretized packing to a compartmental packing.

For any rectangle i packed in a bin, let x1(i) and x2(i) denote the x-coordinates of its left
and right edges, respectively, and let y1(i) and y2(i) denote the y-coordinates of its bottom
and top edges, respectively. Let R be the set of distinct widths of items in W̃ . Given the
way we rounded items, |R| ≤ 1/εε1. Recall that ε1 ≤ ε ≤ 1/2 and ε−1

1 , ε−1 ∈ Z.

▶ Theorem 19. Given a fractional packing of items J̃ ⊆ Ĩ into a bin, we can remove tall
and small items of total area less than ε and shift some of the remaining items to the left
such that for every wide item i, we get x1(i), x2(i) ∈ T .

Proof. For wide items u and v in the bin, we say that u ≺ v iff the right edge of u is to
the left of the left edge of v. Formally u ≺ v ⇐⇒ x2(u) ≤ x1(v). We call u a predecessor
of v. A sequence [i1, i2, . . . , ik] such that i1 ≺ i2 ≺ . . . ≺ ik is called a chain ending at ik.
For a wide item i, define level(i) as the number of items in the longest chain ending at i.
Formally, level(i) := 1 if i has no predecessors, and (1 + maxj≺i level(j)) otherwise. Let Wj

be the items at level j, i.e., Wj := {i : level(i) = j}. Note that the level of an item can be at
most 1/ε1 − 1, since each wide item has width more than ε1.

We will describe an algorithm for discretization. But first, we need to introduce two
recursively-defined set families (S1, S2, . . .) and (T0, T1, . . .). Let T0 := {0} and t0 := 1. For
any j > 0, define tj := (1 + 1/εε1)2j , δj := εε1/tj−1, Sj := Tj−1 ∪ {kδj : k ∈ Z, 0 ≤ k <

1/δj}, Tj := {x + y : x ∈ Sj , y ∈ R ∪ {0}}. Note that ∀j > 0, we have Tj−1 ⊆ Sj ⊆ Tj and
δ−1

j ∈ Z. Define T := T1/ε1−1.
Our discretization algorithm proceeds in stages, where in the jth stage, we apply two

transformations to the items in the bin, called strip-removal and compaction.
Strip-removal: For each x ∈ Tj−1, consider a strip of width δj and height 1 in the bin
whose left edge has coordinate x. Discard the slices of tall and small items inside the strips.
Compaction: Move all tall and small items as much towards the left as possible (imagine a
gravitational force acting leftwards on the tall and small items) while keeping the wide items
fixed. Then move each wide item i ∈ Wj leftwards till x1(i) ∈ Sj .

APPROX/RANDOM 2021

22:12 Geometric Bin Packing with Skewed Items

Observe that the algorithm maintains the following invariant: after k stages, for each
j ∈ [k], each item i ∈ Wj has x1(i) ∈ Sj (and hence x2(i) ∈ Tj). This ensures that after the
algorithm ends, x1(i), x2(i) ∈ T . All that remains to prove is that the total area of items
discarded during strip-removal is at most ε and that compaction is always possible.

▶ Lemma 20. For all j ≥ 0, |Tj | ≤ tj.

Proof by induction. |T0| = t0 = 1, so the base case holds. Now assume |Tj−1| ≤ tj−1. Then

|Tj | ≤ (|R| + 1)|Sj | ≤
(

1
εε1

+ 1
) (

|Tj−1| + 1
δj

)
≤

(
1

εε1
+ 1

)2
tj−1 = tj . ◀

Therefore, |T | ≤ t1/ε1−1 = (1 + 1/εε1)2/ε1−2.

▶ Lemma 21. Discarded items (across all stages) have total area less than ε.

Proof. In the jth stage, we create |Tj−1| strips, and each strip has total area at most δj .
Therefore, the area discarded in the jth stage is at most |Tj−1|δj ≤ tj−1δj = εε1. Since there
can be at most 1/ε1 − 1 stages, we discard a total area of less than ε across all stages. ◀

▶ Lemma 22. Compaction always succeeds, i.e., in the jth stage, while moving item i ∈ Wj

leftwards, no other item will block its movement.

Proof. Let i ∈ Wj . Let z be the x-coordinate of the left edge of the strip immediately
to the left of item i, i.e., z := max({x ∈ Tj−1 : x ≤ x1(i)}). For any wide item i′, we
have x2(i′) ≤ x1(i) ⇐⇒ i′ ≺ i ⇐⇒ level(i′) ≤ j − 1. By our invariant, we get
level(i′) ≤ j − 1 =⇒ x2(i′) ∈ Tj−1 =⇒ x2(i′) ≤ z. Therefore, for every wide item i′,
x2(i′) ̸∈ (z, x1(i)].

In the jth strip-removal, we cleared the strip [z, z + δj] × [0, 1]. If x1(i) ∈ [z, z + δj], then
i can freely move to z, and z ∈ Tj−1 ⊆ Sj . Since no wide item has its right edge in (z, x1(i)],
if x1(i) > z + δj , all the tall and small items whose left edge lies in [z + δj , x1(i)] will move
leftwards by at least δj during compaction. Hence, there would be an empty space of width
at least δj to the left of item i. Therefore, we can move i leftwards to make x1(i) a multiple
of δj , and then x1(i) would belong to Sj . ◀

Hence, compaction always succeeds and we get x1(i), x2(i) ∈ T for each wide item i. ◀

▶ Definition 23 (Compartmental packing). Consider a packing of some items into a bin.
A compartment C is defined as a rectangular region in the bin satisfying the following
properties:

x1(C), x2(C) ∈ T .
y1(C), y2(C) are multiples of εcont := εε1/6|T |.
C does not contain both wide items and tall items.
If C contains tall items, then x1(C) and x2(C) are consecutive values in T .

If a compartment contains a wide item, it is called a wide compartment. Otherwise it is
called a tall compartment. A packing of items into a bin is called compartmental iff there
is a set of non-overlapping compartments in the bin such that each wide or tall item lies
completely inside some compartment, and there are at most nW := 3(1/ε1 − 1)|T | + 1 wide
compartments and at most nH := (1/ε1 − 1)|T | tall compartments in the bin. A packing of
items into multiple bins is called compartmental iff each bin is compartmental.

A. Khan and E. Sharma 22:13

Note that small items can be packed both inside and outside compartments.
The following lemma states that a discretized packing can be converted to a compartmental

packing. It can be proved using standard techniques (e.g., Section 3.2.3 in [36]). See Appendix
G.2 in [31] for a formal proof.

▶ Lemma 24. If x1(i), x2(i) ∈ T for each wide item i in a bin, then by removing wide and
small items of area less than ε, we can get a compartmental packing of the remaining items.

▶ Theorem 25. For a set Ĩ of δ-skewed rounded items, define fcopt(Ĩ) as the number of bins
in the optimal fractional compartmental packing3 of Ĩ. Then fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2.

Proof. Consider a fractional packing of Ĩ into m := fopt(Ĩ) bins. From each bin, we can
discard items of area at most 2ε and get a compartmental packing of the remaining items by
Theorem 19 and Lemma 24.

Let X be the set of wide and small discarded items and let Y be the set of tall discarded
items. For each item i ∈ X, if w(i) ≤ 1/2, slice it using a horizontal cut in the middle
and place the pieces horizontally next to each other to get a new item of width 2w(i) and
height h(i)/2. Repeat until w(i) > 1/2. Now pack the items in bins by stacking them
one-over-the-other so that for each item i ∈ X, x1(i) = 0. This will require less than
2a(X) + 1 bins, and the packing will be compartmental.

Similarly, we can get a compartmental packing of Y into 2a(Y)+1 bins. Since a(X ∪Y) <

2εm, we will require less than 4εm + 2 bins. Therefore, the total number of compartmental
bins used to pack Ĩ is less than (1 + 4ε)m + 2. ◀

4.3 Packing Algorithm
We now describe the skewedCPack algorithm for packing a set I of n δ-skewed items.

1. Classifying and Rounding Items (see Section 4.1): Compute (Ĩ , Imed) := round(I).
Recall that Imed, called the set of medium items, has low total area, and Ĩ, called the set
of rounded items, is obtained by rounding up the width or height of each item in I − Imed.

2. Enumerating Packing of Compartments: Compute all possible packings of empty
compartments into at most n bins.

3. Fractionally Packing Items into Compartments: For each packing P of empty
compartments, fractionally pack Ĩ into P using a linear program.

4. Converting a Fractional Packing to a Non-Fractional Packing: Discard a small set
D ⊆ Ĩ of items and use an extreme-point solution to the linear program to non-fractionally
pack Ĩ − D into P .

5. Pack Imed ∪ D into bins using NFDH.

See Figure 3 for a visual overview of skewedCPack. We describe steps 2, 3 and 4 in
Sections 4.3.1–4.3.3, respectively. In Section 4.3.4, we bound the AAR of skewedCPack.

4.3.1 Enumerating Packing of Compartments
We will now describe a subroutine, called iterPackings(Ĩ), that outputs all packings of
empty compartments into at least ⌈a(Ĩ)⌉ bins and at most n bins. A packing of empty
compartments in a bin is called a configuration. We will first enumerate all configurations
and then output multisets of configurations of cardinality ranging from ⌈a(Ĩ)⌉ to n.

3 A fractional compartmental packing of Ĩ is a fractional packing of Ĩ that is also compartmental.

APPROX/RANDOM 2021

22:14 Geometric Bin Packing with Skewed Items

(a) Guess the packing of
empty compartments in each
bin (Section 4.3.1).

(b) Fractionally pack wide and tall
items into compartments. This
partitions each compartment into
containers (Section 4.3.2).

(c) Pack the items non-
fractionally (Section 4.3.3).

Figure 3 Major steps of skewedCPack after rounding I.

There can be at most nW := 3(1/ε1 − 1)|T | + 1 wide compartments in a bin. Each wide
compartment can have (1/εcont)2 y-coordinates of the top and bottom edges and at most
|T |2/2 x-coordinates of the left and right edges, where εcont := εε1/6|T |. The rest of the
space is for tall compartments. Therefore, the number of configurations is at most

nC :=
(
(1/εcont)2|T |2/2

)nW ≤
(

3|T |2

εε1

)6|T |/ε1

≤
(

1 + 1
εε1

)(
1+ 1

εε1

)2/ε1+1

.

Since each configuration can have at most n bins, the number of combinations of configurations
is at most (n+1)nC . Therefore, we can output all possible bin packings of empty compartments
in O(nnC) time. This completes the description of iterPackings.

4.3.2 Fractionally Packing Items into Compartments

For each bin packing P of empty compartments, we will try to fractionally pack the items
into the bins. To do this, we will create a feasibility linear program, called FP(Ĩ , P), that is
feasible iff wide and tall items in Ĩ can be packed into the compartments in P . If FP(Ĩ , P) is
feasible, then small items can also be fractionally packed since P contains at least a(Ĩ) bins.

Let w′
1, w′

2, . . . , w′
p be the distinct widths of wide compartments in P . Let Uj be the

set of wide compartments in P having width w′
j . Let h(Uj) be the sum of heights of the

compartments in Uj . By Definition 23, we know that p ≤ |T |2/2. Let w1, w2, . . . , wr be
the distinct widths of items in W̃ (recall that W̃ is the set of wide items in Ĩ). Let W̃j be
the items in W̃ having width wj . Let h(W̃j) be the sum of heights of all items in W̃j . By
Claim 27, we get r ≤ 1/εε1.

Let C := [C0, C1, . . . , Cr] be a vector, where C0 ∈ [p] and Cj ∈ Z≥0 for j ∈ [r]. C is
called a wide configuration iff w(C) :=

∑r
j=1 Cjwj ≤ w′

C0
. Intuitively, a wide configuration

C represents a set of wide items that can be placed side-by-side into a compartment of width
w′

C0
. Let C be the set of all wide configurations. Then |C| ≤ p/εr

1, which is a constant. Let
Cj := {C ∈ C : C0 = j}.

To pack W̃ into wide compartments, we must determine the height of each configuration.
Let x ∈ R|C|

≥0 be a vector where xC denotes the height of configuration C. Then W̃ can be
packed into wide compartments according to x iff x is a feasible solution to the following

A. Khan and E. Sharma 22:15

feasibility linear program, named FPW (Ĩ , P):∑
C∈C

CjxC ≥ h(W̃j) ∀j ∈ [r] (W̃j should be covered)

∑
C∈C and C0=j

xC ≤ h(Uj) ∀j ∈ [p] (Cj should fit in Uj)

xC ≥ 0 ∀C ∈ C

Let x∗ be an extreme point solution to FPW (Ĩ , P) (if FPW (Ĩ , P) is feasible). By Rank
Lemma4, at most p + r entries of x∗ are non-zero. Since the number of variables and
constraints is constant, x∗ can be computed in constant time.

Let H̃ be the set of tall items in Ĩ. Items in H̃ have at most 1/εε1 distinct heights. Let
there be q distinct heights of tall compartments in P . By Definition 23, we get q ≤ 1/εcont =
6|T |/εε1. We can similarly define tall configurations and define a feasibility linear program
for tall items, named FPH(Ĩ , P). H̃ can be packed into tall compartments in P iff FPH(Ĩ , P)
is feasible. Let y∗ be an extreme point solution to FPH(Ĩ , P). Then y∗ can be computed in
constant time and y∗ has at most q + 1/εε1 positive entries.

Hence, Ĩ can be packed into P iff FP(Ĩ , P) := FPW (Ĩ , P) ∧ FPH(Ĩ , P) is feasible. The
solution (x∗, y∗) shows us how to split each compartment into shelves, where each shelf
corresponds to a configuration C and the shelf can be split into Cj containers of width
wj and one container of width w′

C0
− w(C). Let there be m bins in P . After splitting the

configurations across compartments, we get at most p + q + 2/εε1 + m(nW + nH) shelves.

4.3.3 Converting a Fractional Packing to a Non-Fractional Packing
Consider a packing P of empty compartments into m bins. Let x∗ and y∗ be extreme-point
solutions to FPW (Ĩ , P) and FPH(Ĩ , P), respectively (assuming Ĩ can fit into P). Then
(x∗, y∗) gives us a fractional compartmental packing of Ĩ into m bins. We now show how to
convert this to a non-fractional compartmental packing by removing some items from Ĩ.

Formally, we give an algorithm called greedyCPack(Ĩ , P, x∗, y∗). It returns a pair
(Q, D), where Q is a (non-fractional) compartmental bin packing of items Ĩ − D, where the
compartments in the bins are as per P . D is called the set of discarded items.

greedyCPack is based on standard techniques. We prove in Appendix C.2 that

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
. (1)

We give an outline of greedyCPack here and defer the details to Appendix C.2.
1. For each j, iteratively assign wide items from W̃j to a container of width wj . When the

total height of assigned items exceeds the height of the container, discard the last-assigned
item and switch to a new container and repeat.

2. Similarly assign tall items to tall containers.
3. Identify rectangular regions where we can pack small items:

For each configuration C, there is a free region of width w′
C0

− w(C) and height x∗
C in

a wide compartment. Similarly, we get free regions in tall compartments.

4 Rank Lemma: the number of non-zero variables in an extreme-point solution to a linear program is at
most the number of non-trivial constraints [34, Lemma 2.1.4].

APPROX/RANDOM 2021

22:16 Geometric Bin Packing with Skewed Items

In each bin, the number of compartments is constant, so the space outside compartments
be divided into a constant number of rectangular regions (see Lemma 29).

Pack most of the small items into these free regions using NFDH. Discard the rest.

4.3.4 Summary
See Appendix C.3 for a precise description of skewedCPack.

Recall the function f from Section 4.1. Since ε2 := f(ε1), we get

ε2 = f(ε1) = εε1
104(1 + 1/εε1)2/ε1−2 ≤ εε1

104|T |
. (2)

The last inequality follows from the fact that |T | ≤ (1 + 1/εε1)2/ε1−2.

▶ Theorem 26. The number of bins used by skewedCPackε(Ĩ) is less than

(1 + 20ε) opt(I) + 1
13

(
1 + 1

εε1

)2/ε1−2
+ 23.

Proof. In an optimal fractional compartmental bin packing of Ĩ, let P ∗ be the corresponding
packing of empty compartments into bins. Hence, P ∗ contains m := fcopt(Ĩ) bins. Since
iterPackings(Ĩ) iterates over all bin packings of compartments, P ∗ ∈ iterPackings(Ĩ).
Since wide and tall items in Ĩ can be packed into the compartments of P ∗, we get that x∗

and y∗ are not null. By Lemma 3, the number of bins used by NFDH to pack Imed ∪ D

is less than 2a(Imed ∪ D)/(1 − δ) + 3 + 1/(1 − δ). Therefore, the number of bins used by
skewedCPack(I) is less than

m + 2a(Imed ∪ D)
1 − δ

+ 3 + 1
1 − δ

< m + 2ε

1 − δ
a(I) + 2ε2

1 − δ

(
52|T |

ε1
m + 4

(
|T |2

2 + 6|T | + 2
εε1

))
+ 3 + 1

1 − δ

(by Equation (1) and a(Imed) ≤ εa(I))

=
(

1 + 104ε2|T |
ε1(1 − δ)

)
m + 2ε

1 − δ
a(I) + 3 + 1

1 − δ
+ 8ε2

1 − δ

(
|T |2

2 + 6|T | + 2
εε1

)
=

(
1 + ε

1 − δ

)
m + 2ε

1 − δ
a(I) + 3 + 1

13(1 − δ)

(
εε1|T |

2 + 19 + 2
|T |

)
.

(by Equation (2))

By Theorem 25 and Lemma 18, we get

m = fcopt(Ĩ) < (1 + 4ε) fopt(Ĩ) + 2 < (1 + 4ε)(1 + ε) opt(I) + 4 + 8ε.

Therefore, the number of bins used by skewedCPack(I) is less than(
(1 + 4ε)(1 + ε)

(
1 + ε

1 − δ

)
+ 2ε

1 − δ

)
opt(I)

+ (4 + 8ε)
(

1 + ε

1 − δ

)
+ 3 + 1

13(1 − δ)

(
εε1|T |

2 + 19 + 2
|T |

)
≤ (1 + 20ε) opt(I) + 1

13

(
1 + 1

εε1

)2/ε1−2
+ 23. (since δ ≤ ε1 ≤ ε ≤ 1/2)

◀

A. Khan and E. Sharma 22:17

References
1 Fidaa Abed, Parinya Chalermsook, José Correa, Andreas Karrenbauer, Pablo Pérez-Lantero,

José A Soto, and Andreas Wiese. On guillotine cutting sequences. In International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
1–19, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.1.

2 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for
independent set and sparse subsets of polygons. Journal of the ACM, 66(4):29:1–29:40,
2019. doi:10.1145/3326122.

3 Soroush Alamdari, Therese Biedl, Timothy M Chan, Elyot Grant, Krishnam Raju Jampani,
Srinivasan Keshav, Anna Lubiw, and Vinayak Pathak. Smart-grid electricity allocation via
strip packing with slicing. In Workshop on Algorithms and Data Structures (WADS), pages
25–36. Springer, 2013. doi:10.1007/978-3-642-40104-6_3.

4 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2010. doi:10.1137/080736831.

5 Nikhil Bansal, José R Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple
dimensions: Inapproximability results and approximation schemes. Mathematics of Operations
Research, 31(1):31–49, 2006. doi:10.1287/moor.1050.0168.

6 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561–1579. SIAM,
2016. doi:10.1137/1.9781611974331.ch106.

7 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 13–25, 2014.
doi:10.1137/1.9781611973402.2.

8 Nikhil Bansal, Andrea Lodi, and Maxim Sviridenko. A tale of two dimensional bin packing.
In Symposium on Foundations of Computer Science (FOCS), pages 657–666. IEEE, 2005.
doi:10.1109/SFCS.2005.10.

9 Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, February 2008. doi:10.1287/moor.1070.0289.

10 Alberto Caprara, Andrea Lodi, and Michele Monaci. Fast approximation schemes for two-
stage, two-dimensional bin packing. Mathematics of Operations Research, 30(1):150–172, 2005.
doi:10.1287/moor.1040.0112.

11 Miroslav Chlebík and Janka Chlebíková. Hardness of approximation for orthogonal rectangle
packing and covering problems. Journal of Discrete Algorithms, 7(3):291–305, 2009. doi:
10.1016/j.jda.2009.02.002.

12 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017. doi:10.1016/j.cosrev.2016.12.001.

13 Fan RK Chung, Michael R Garey, and David S Johnson. On packing two-dimensional bins.
SIAM Journal on Algebraic Discrete Methods, 3(1):66–76, 1982. doi:10.1137/0603007.

14 Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808–826, 1980. doi:10.1137/0209062.

15 W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1 + ε in
linear time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456.

16 Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak demand
minimization via sliced strip packing, 2021. arXiv:2105.07219.

17 Aleksei V Fishkin, Olga Gerber, and Klaus Jansen. On efficient weighted rectangle packing
with large resources. In International Symposium on Algorithms and Computation (ISAAC),
pages 1039–1050. Springer, 2005. doi:10.1007/11602613_103.

18 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and
Malin Rau. A tight (3/2 + ε) approximation for skewed strip packing. In International

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.1
https://doi.org/10.1145/3326122
https://doi.org/10.1007/978-3-642-40104-6_3
https://doi.org/10.1137/080736831
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611974331.ch106
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1109/SFCS.2005.10
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1287/moor.1040.0112
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1016/j.jda.2009.02.002
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1137/0603007
https://doi.org/10.1137/0209062
https://doi.org/10.1007/BF02579456
http://arxiv.org/abs/2105.07219
https://doi.org/10.1007/11602613_103

22:18 Geometric Bin Packing with Skewed Items

Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.44.

19 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Kamyar Khodamoradi.
Approximation algorithms for demand strip packing, 2021. arXiv:2105.08577.

20 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via L-packings. In Symposium on
Foundations of Computer Science (FOCS), pages 260–271. IEEE, 2017. doi:10.1109/FOCS.
2017.32.

21 Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramirez-Romero, and Andreas
Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple
L-shapes, spirals and more. In International Symposium on Computational Geometry (SoCG),
volume 189, pages 39:1–39:17, 2021. doi:10.4230/LIPIcs.SoCG.2021.39.

22 Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more
dimensions. Operations Research, 13(1):94–120, 1965. doi:10.1287/opre.13.1.94.

23 Rolf Harren, Klaus Jansen, Lars Prädel, and Rob Van Stee. A (5/3 + ε)-approximation for
strip packing. In Workshop on Algorithms and Data Structures (WADS), pages 475–487.
Springer, 2011. doi:10.1007/978-3-642-22300-6_40.

24 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin
packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2616–2625, 2017.
doi:10.1137/1.9781611974782.172.

25 Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 919–936, 2013. doi:
10.1007/s00453-014-9943-z.

26 Klaus Jansen and Rob van Stee. On strip packing with rotations. In ACM Symposium on
Theory of Computing (STOC), pages 755–761, 2005. doi:10.1145/1060590.1060702.

27 Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), volume 4, pages 204–213, 2004.

28 Claire Kenyon and Eric Rémila. Approximate strip packing. In Symposium on Foundations of
Computer Science (FOCS), pages 31–36, 1996. doi:10.1109/SFCS.1996.548461.

29 Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable
packings for the two-dimensional geometric knapsack problem. In International Symposium on
Computational Geometry (SoCG), volume 189, pages 48:1–48:17, 2021. doi:10.4230/LIPIcs.
SoCG.2021.48.

30 Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and
rectangles. In International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.47.

31 Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin
packing with skewed items. ArXiv, 2105.02827, 2021. arXiv:2105.02827.

32 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for
generalized multidimensional knapsack. ArXiv, 2102.05854, 2021. arXiv:2102.05854.

33 Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Geometry meets vectors:
Approximation algorithms for multidimensional packing. ArXiv, 2106.13951, 2021. arXiv:
2106.13951.

34 Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative Methods in Combinatorial
Optimization, volume 46. Cambridge University Press, 2011.

35 János Pach and Gábor Tardos. Cutting glass. In International Symposium on Computational
Geometry (SoCG), pages 360–369, 2000. doi:10.1145/336154.336223.

36 Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD thesis,
Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/
dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N.

37 Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. ArXiv,
2101.02854, 2021. arXiv:2101.02854.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
http://arxiv.org/abs/2105.08577
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.1109/FOCS.2017.32
https://doi.org/10.4230/LIPIcs.SoCG.2021.39
https://doi.org/10.1287/opre.13.1.94
https://doi.org/10.1007/978-3-642-22300-6_40
https://doi.org/10.1137/1.9781611974782.172
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.4230/LIPIcs.SoCG.2021.48
https://doi.org/10.4230/LIPIcs.SoCG.2021.48
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47
http://arxiv.org/abs/2105.02827
http://arxiv.org/abs/2102.05854
http://arxiv.org/abs/2106.13951
http://arxiv.org/abs/2106.13951
https://doi.org/10.1145/336154.336223
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N
http://arxiv.org/abs/2101.02854

A. Khan and E. Sharma 22:19

38 Steven S. Seiden and Gerhard J. Woeginger. The two-dimensional cutting stock
problem revisited. Mathematical Programming, 102(3):519–530, 2005. doi:10.1007/
s10107-004-0548-1.

39 Eklavya Sharma. Harmonic algorithms for packing d-dimensional cuboids into bins. ArXiv,
2011.10963, 2020. arXiv:2011.10963.

40 A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing, 26(2):401–409, 1997. doi:10.1137/S0097539793255801.

41 Paul E. Sweeney and Elizabeth Ridenour Paternoster. Cutting and packing problems: A
categorized, application-orientated research bibliography. Journal of the Operational Research
Society, 43(7):691–706, 1992. doi:10.1057/jors.1992.101.

A Linear Grouping

In this section, we describe the linear grouping technique [15, 28] for wide and tall items.
Let ε and ε1 be constants in (0, 1). Let W be a set of items where each item has width

more than ε1. We will describe an algorithm, called lingroupWide that takes W , ε and ε1
as input and returns the set Ŵ as output, where Ŵ is obtained by increasing the width of
each item in W . lingroupWide(W, ε, ε1) first arranges the items W in decreasing order of
width and stacks them one-over-the-other (i.e., the widest item in W is at the bottom). Let
hL be the height of the stack. Let y(i) be the y-coordinate of the bottom edge of item i.
Split the stack into sections of height εε1hL each. For j ∈ [1/εε1], let wj be the width of the
widest item intersecting the jth section from the bottom, i.e.,

wj := max({w(i) : i ∈ W and (y(i), y(i) + h(i)) ∩ ((j − 1)εε1hL, jεε1hL) ̸= ∅}).

Round up the width of each item i to the smallest wj that is at least w(i) (see Figure 4).
Let Wj be the items whose width got rounded to wj and let Ŵj be the resulting rounded
items. (There may be ties, i.e., there may exist j1 < j2 such that wj1 = wj2 . In that case,
define Wj2 := Ŵj2 = ∅. This ensures that all Wj are disjoint.) Finally, define Ŵ :=

⋃
j Ŵj .

w1 w2 w3w4

εε1hL

Figure 4 Example invocation of lingroupWide for ε = ε1 = 1/2.

We can similarly define the algorithm lingroupTall. Let H be a set of items where each
item has height more than ε1. lingroupTall that takes H, ε and ε1 as input and returns
Ĥ, where Ĥ is obtained by increasing the height of each item in H.

▷ Claim 27. Items in lingroupWide(W, ε, ε1) have at most 1/(εε1) distinct widths.
Items in lingroupTall(H, ε, ε1) have at most 1/(εε1) distinct heights.

APPROX/RANDOM 2021

https://doi.org/10.1007/s10107-004-0548-1
https://doi.org/10.1007/s10107-004-0548-1
http://arxiv.org/abs/2011.10963
https://doi.org/10.1137/S0097539793255801
https://doi.org/10.1057/jors.1992.101

22:20 Geometric Bin Packing with Skewed Items

▶ Lemma 28. Let W , H and S be sets of items, where items in W have width more
than ε1 and items in H have height more than ε1. Let Ŵ := lingroupWide(W, ε, ε1) and
Ĥ := lingroupTall(H, ε, ε1). If we allow slicing items in Ŵ and Ĥ using horizontal and
vertical cuts, respectively, then we can pack Ŵ ∪Ĥ ∪S into less than (1+ε) opt(W ∪H ∪S)+2
bins.

Proof. (cf. Appendix C in [31]) ◀

B skewed4Pack: Packing Items into Containers

▶ Lemma 13. Let P be a packing of Ĩ into m bins, where we made at most m − 1 horizontal
cuts in wide shelves and at most m − 1 vertical cuts in tall shelves. Then we can (without
slicing) pack a large subset of Î into the shelves in P such that the unpacked items (also
called discarded items) from Ŵ have total area less than ε hsum(W̃) + δH(1 + ε)(m + 1/ε2),
and the unpacked items from Ĥ have area less than ε wsum(H̃) + δW (1 + ε)(m + 1/ε2).

Proof. For each j ∈ [1/ε2], number the type-j wide containers arbitrarily, and number the
items in Ŵ

(L)
j arbitrarily. Now greedily assign items from Ŵ

(L)
j to the first container C until

the total height of the items exceeds h(C). Then move to the next container and repeat. As
per the constraints of the linear program, all items in Ŵ

(L)
j will get assigned to some type-j

wide container. Similarly, number the type-0 wide containers arbitrarily and number the
items in W (S) arbitrarily. Greedily assign items from W (S) to the first container C until the
total area of the items exceeds a(C). Then move to the next container and repeat. As per
the constraints of the linear program, all items in W (S) will get assigned to some type-0 wide
container. Similarly, assign all items from Ĥ to tall containers.

Let C be a type-j wide container and Ĵ be the items assigned to it. If we discard the
last item from Ĵ , then the items can be packed into C. The area of the discarded item is at
most w(C)δH . Let C be a type-0 wide container and Ĵ be the items assigned to it. Arrange
the items in Ĵ in decreasing order of height and pack the largest prefix Ĵ ′ ⊆ Ĵ into C using
NFDW (Next-Fit Decreasing Width).

Discard the items Ĵ − Ĵ ′. By Lemma 2, a(Ĵ − Ĵ ′) < εh(C) + δHw(C) + εδH . Therefore,
for a wide shelf S, the total area of discarded items is less than εh(S) + δH(1 + ε).

After slicing the shelves in Ĩ to get P , we get at most m + 1/ε2 wide shelves and at
most m + 1/ε2 tall shelves. Therefore, the total area of discarded items from W is less than
ε hsum(W̃) + δH(1 + ε)(m + 1/ε2), and the total area of discarded items from H is less than
ε wsum(H̃) + δW (1 + ε)(m + 1/ε2). ◀

C Details of skewedCPack

C.1 Removing Medium Items
Let T := ⌈2/ε⌉. Let µ0 = ε. For t ∈ [T], define µt := f(µt−1) and define

Jt := {i ∈ I : w(i) ∈ (µt, µt−1] or h(i) ∈ (µt, µt−1]}.

Let r := argminT
t=1 a(Jt), Imed := Jr, ε1 := µr−1. Each item belongs to at most 2 sets Jt, so

a(Imed) =
T

min
t=1

a(Jt) ≤ 1
T

T∑
t=1

a(Jt) ≤ 2
⌈2/ε⌉

a(I) ≤ εa(I).

A. Khan and E. Sharma 22:21

C.2 Converting a Fractional Packing to a Non-Fractional Packing
▶ Lemma 29. Let there be a set I of rectangles packed inside a bin. Then there is a
polynomial-time algorithm that can decompose the empty space in the bin into at most 3|I| + 1
rectangles by making horizontal cuts only.

Proof. Extend the top and bottom edge of each rectangle leftwards and rightwards till they
hit another rectangle or an edge of the bin. This decomposes the empty region into rectangles
R. See Figure 5.

For each rectangle i ∈ I, the top edge of i is the bottom edge of a rectangle in R, the
bottom edge of i is the bottom edge of two rectangles in R. Apart from possibly the rectangle
in R whose bottom edge is at the bottom of the bin, the bottom edge of every rectangle in
R is either the bottom or top edge of a rectangle in I. Therefore, |R| ≤ 3|I| + 1. ◀

1
2 3

4
5

6
7

8
9

Figure 5 Horizontal cuts partition empty space around the 3 items into 9 rectangular regions.

Let (Q, D) := greedyCPack(Ĩ , P, x∗, y∗), where P is a packing of empty compartments
into m bins. We will describe greedyCPack and show that

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
.

For a configuration C in a wide compartment, there is a container of width w′
C0

− w(C)
available for packing small items. Hence, there are p + q + 2/εε1 + m(nW + nH) containers
available inside compartments for packing small items. By Lemma 29, we can partition the
space outside compartments into at most m(3(nW + nH) + 1) containers. Therefore, the
total number of containers available for packing small items is at most

mS := (p + q + 2/εε1) + m(4(nW + nH) + 1) ≤
(

|T |2

2 + 6|T |
εε1

+ 2
εε1

)
+ 16|T |

ε1
m.

Greedily assign small items to small containers, i.e., keep assigning small items to a
container till the area of items assigned to it is at least the area of the container, and then
resume from the next container. Each small item will get assigned to some container. For
each container C, pack the largest possible prefix of the assigned items using the Next-Fit
Decreasing Height (NFDH) algorithm. By Lemma 2, the area of unpacked items would be
less than ε2 + δ + ε2δ. Summing over all containers, we get that the unpacked area is less
than (ε2 + δ + ε2δ)mS ≤ 3ε2mS .

For each j, greedily assign wide items from W̃j to containers of width wj , i.e., keep
assigning items till the height of items exceeds the height of the container. Each wide item
will get assigned to some container. Then discard the last item from each container. For
each shelf in a wide compartment having configuration C, the total area of items we discard
is at most δw(C). Similarly, we can discard tall items of area at most δh(C) from each shelf
in a tall compartment having configuration C.

APPROX/RANDOM 2021

22:22 Geometric Bin Packing with Skewed Items

Hence, across all configurations, we discard wide and tall items of area at most

δ((p + q + 2/εε1) + m(nW + nH)) ≤ δ

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
+ 4δ|T |

ε1
m.

Therefore, for (Q, D) := greedyCPack(Ĩ , P, x∗, y∗), we get

a(D) <
52|T |ε2

ε1
m + 4ε2

(
|T |2

2 + 6|T |
εε1

+ 2
εε1

)
.

C.3 Pseudocode for skewedCPack

Algorithm 1 skewedCPackε(I): Packs a set I of δ-skewed rectangular items into bins without
rotating the items.

1: (Ĩ , Imed) = roundε(I).
2: Initialize Qbest to null.
3: for P ∈ iterPackings(Ĩ) do // iterPackings is defined in Section 4.3.1.
4: x∗ = opt(FPW (Ĩ , P)). // FPW and FPH are defined in Section 4.3.2.
5: // If FPW (Ĩ , P) is feasible, x∗ is an extreme-point solution to FPW (Ĩ , P).
6: // If FPW (Ĩ , P) is infeasible, x∗ is null.
7: y∗ = opt(FPH(Ĩ , P)).
8: if x∗ ̸= null and y∗ ̸= null then // if Ĩ can be packed into P

9: (Q, D) = greedyCPack(Ĩ , P, x∗, y∗). // greedyCPack is defined in Section 4.3.3.
10: QD = NFDH(D ∪ Imed).
11: if Q ∪ QD uses less bins than Qbest then
12: Qbest = Q ∪ QD.
13: end if
14: end if
15: end for
16: return Qbest

D Lower Bound on APoG

In this section, we prove a lower bound of roughly 4/3 on the APoG for skewed rectangles.

▶ Lemma 30. Let m and k be positive integers and ε ∈ (0, 1). Let J be a set of items packed
into a bin, where each item has the longer dimension equal to (1 + ε)/2 and the shorter
dimension equal to (1 − ε)/2k. If the bin is guillotine-separable, then a(J) ≤ 3/4 + ε/2 − ε2/4.

Proof sketch. For an item packed in the bin, if the height is (1 − ε)/2k, call it a wide item,
and if the width is (1 − ε)/2k, call it a tall item. Let W be the set of wide items in J .

We can rearrange the items in the bin so that all wide items touch the left edge of the
bin and all tall items touch the bottom edge of the bin. See Appendix E in [31] for a formal
proof and Figure 6 for an example.

Therefore, the square region of side length (1 − ε)/2 at the top-right corner of the bin is
empty. Hence, the area occupied in each bin is at most 3/4 + ε/2 − ε2/4. ◀

A. Khan and E. Sharma 22:23

Figure 6 Structuring a guillotine-separable packing.

▶ Theorem 31. Let m and k be positive integers and ε ∈ (0, 1). Let I be a set of 4mk items,
where 2mk items have width (1 + ε)/2 and height (1 − ε)/2k, and 2mk items have height
(1 + ε)/2 and width (1 − ε)/2k. Let opt(I) be the number of bins in the optimal packing of I

and optg(I) be the number of bins in the optimal guillotinable packing of I. Then

optg(I)
opt(I) ≥ 4

3(1 − ε).

This holds true even if items in I are allowed to be rotated.

Proof. For an item i ∈ I, if h(i) = (1 − ε)/2k, call it a wide item, and if w(i) = (1 − ε)/2k,
call it a tall item. Let W be the set of wide items and H be the set of tall items.

Partition W into groups of k elements. In each group, stack items one-over-the-other.
This gives us 2m containers of width (1 + ε)/2 and height (1 − ε)/2. Similarly, get 2m

containers of height (1 + ε)/2 and height (1 − ε)/2 by stacking items from H side-by-side.
We can pack 4 containers in one bin, so I can be packed into m bins. See Figure 7 for an
example. Therefore, opt(I) ≤ m.

Figure 7 Packing 4k items in one bin. Here k = 7.

We will now show a lower-bound on optg(I). In any guillotine-separable packing of
I, the area occupied by each bin is at most 3/4 + ε/2 − ε2/4 (by Lemma 30). Note that
a(I) = m(1 − ε2). Therefore,

optg(I) ≥ m(1 − ε2)
3/4 + ε/2 − ε2/4

=⇒
optg(I)
opt(I) ≥ 4

3 × 1 − ε2

1 + 2ε/3 − ε2/3 = 4
3 × 1 − ε

1 − ε/3 ≥ 4
3(1 − ε). ◀

APPROX/RANDOM 2021

Approximating Two-Stage Stochastic Supplier
Problems
Brian Brubach #

Wellesley College, MA, USA

Nathaniel Grammel #

University of Maryland at College Park, MD, USA

David G. Harris #

University of Maryland at College Park, MD, USA

Aravind Srinivasan #

University of Maryland at College Park, MD, USA

Leonidas Tsepenekas #

University of Maryland at College Park, MD, USA

Anil Vullikanti #

University of Virginia, Charlottesville, VA, USA

Abstract
The main focus of this paper is radius-based (supplier) clustering in the two-stage stochastic setting
with recourse, where the inherent stochasticity of the model comes in the form of a budget constraint.
We also explore a number of variants where additional constraints are imposed on the first-stage
decisions, specifically matroid and multi-knapsack constraints.

Our eventual goal is to provide results for supplier problems in the most general distributional
setting, where there is only black-box access to the underlying distribution. To that end, we follow a
two-step approach. First, we develop algorithms for a restricted version of each problem, in which all
possible scenarios are explicitly provided; second, we employ a novel scenario-discarding variant of
the standard Sample Average Approximation (SAA) method, in which we crucially exploit properties
of the restricted-case algorithms. We finally note that the scenario-discarding modification to the
SAA method is necessary in order to optimize over the radius.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Approximation Algorithms, Stochastic Optimization, Two-Stage Recourse
Model, Clustering Problems, Knapsack Supplier

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.23

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2008.03325

Funding Brian Brubach: Brian Brubach was supported in part by NSF awards CCF-1422569 and
CCF-1749864, and by research awards from Adobe.
Nathaniel Grammel: Nathaniel Grammel was supported in part by NSF awards CCF-1749864 and
CCF-1918749, and by research awards from Amazon and Google.
Aravind Srinivasan: Aravind Srinivasan was supported in part by NSF awards CCF-1422569, CCF-
1749864 and CCF-1918749, and by research awards from Adobe, Amazon, and Google.
Leonidas Tsepenekas: Leonidas Tsepenekas was supported in part by NSF awards CCF-1749864 and
CCF-1918749, and by research awards from Amazon and Google.

Acknowledgements The authors want to sincerely thank Chaitanya Swamy as well as referees of
earlier versions of the paper, for their precious feedback and helpful suggestions.

© Brian Brubach, Nathaniel Grammel, David G. Harris, Aravind Srinivasan, Leonidas Tsepenekas, and
Anil Vullikanti;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bb100@wellesley.edu
mailto:ngrammel@cs.umd.edu
mailto:davidgharris29@gmail.com
mailto:srin@cs.umd.edu
mailto:ltsepene@cs.umd.edu
mailto:vsakumar@virginia.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.23
https://arxiv.org/abs/2008.03325
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Approximating Two-Stage Stochastic Supplier Problems

1 Introduction

Stochastic optimization, first introduced in the work of Beale [2] and Dantzig [5], provides
a way for modeling uncertainty in the realization of the input data. In this paper, we give
approximation algorithms for a family of problems in stochastic optimization, and more
precisely in the 2-stage recourse model [22]. Our formal problem definitions follow.

We are given a set of clients C and a set of facilities F , in a metric space characterized by
a distance function d. We let n = |C| and m = |F|. Our paradigm unfolds in two stages. In
the first, each i ∈ F has a cost cI

i , but at that time we do not know which clients from C will
need service, and we only have a description of the distribution D that governs the arrivals
of clients later on. In the second stage, a scenario A ⊆ C is realized with probability pA

according to D, and now each i ∈ F has a cost cA
i . The clients of the realized scenario are

precisely those that will require service from the facilities of F . Using only the description of
the distribution D, we can proactively open a set of facilities FI in stage-I. Subsequently,
when a scenario A arrives in stage-II, we can augment the already constructed solution by
opening some additional facilities FA.

Throughout the paper, the objective function we minimize is the maximum covering
distance or radius. Let d(j, S) = mini∈S d(i, j) for any j ∈ C and for any S ⊆ F . We then ask
for FI and FA, such that d(j, FI ∪ FA) ≤ R for every A that materializes and all j ∈ A, for
the minimum R possible. Furthermore, the expected opening cost of the returned solution
is required to be at most some given budget B, i.e.,

∑
i∈FI

cI
i + EA∼D

[∑
i∈FA

cA
i

]
≤ B. We

call this problem Two-Stage Stochastic Supplier or 2S-Sup for short.
Finally, we assume that for every j ∈ C we have PrA∼D[j ∈ A] > 0; note that if this is

not the case, then the presence of j in the input is completely redundant.

Additional Stage-I Constraints. Beyond the basic version of the problem, we also consider
variants where there are additional hard constraints on the set of chosen stage-I facilities.

In Two-Stage Stochastic Matroid Supplier or 2S-MatSup for short, the input also
includes a matroid M = (F , I), where I ⊆ 2F is the family of independent sets of M. In
this case, we additionally require FI ∈ I.

In Two-Stage Stochastic Multi-knapsack Supplier or 2S-MuSup for short, L additional
knapsack constraints are imposed on FI . Specifically, we are given budgets Wℓ ≥ 0 and
weights f ℓ

i ≥ 0 for every i ∈ F and every integer ℓ ∈ [L], such that the stage-I facilities should
satisfy

∑
i∈FI

f ℓ
i ≤Wℓ for every ℓ ∈ [L]. We also call a 2S-MuSup instance discrete, if all

weights f ℓ
i are integers, and for such an instance we further define a parameter Λ =

∏L
ℓ=1 Wℓ.

Modeling the Stage-I Distributional Knowledge. To complete the description of a two-
stage problem, one needs to define how knowledge of the distribution D is represented in
stage-I.

The most general representation is the black-box model [20, 8, 17, 14, 19], where we
only have access to an oracle that can sample scenarios A according to D. In this model,
every time a scenario A is revealed, either through the oracle or through an actual data
realization, we also learn the facility-cost vector cA associated with it. We also consider the
more restricted polynomial-scenarios model [18, 11, 16, 7], where all scenarios A, together
with their occurrence probabilities pA and their corresponding facility-cost vectors cA, are
explicitly provided.

We use the suffixes BB and Poly to distinguish these settings. For example, 2S-Sup-BB
is the previously defined 2S-Sup in the black-box model.

B. Brubach et al. 23:3

In both distributional settings, our algorithms must have runtime polynomial in n, m.
For the polynomial-scenarios case, the runtime should also be polynomial in the number of
explicitly provided scenarios.

1.1 Motivation
To our knowledge, we are the first to consider this type of radius minimization problems
in the two-stage stochastic paradigm. Regarding clustering problems in this regime, most
prior work has focused on Facility Location [18, 20, 16, 17, 9, 14, 19]. On similar lines, [1]
studies a stochastic k-center variant, where points arrive independently, but each point only
needs to get covered with some given probability. Moreover, 2S-Sup is the natural two-stage
counterpart of the well-known Knapsack-Supplier problem [10]. Knapsack-Supplier has
a 3-approximation, which is also the best ratio possible unless P=NP [10].

To see a practical application for our problems, consider healthcare resource allocation,
when trying to mitigate a disease outbreak through the preventive placement of testing
sites. Suppose that F corresponds to potential locations that can host a testing center (e.g.,
hospitals, private clinics, university labs), C to populations that can be affected by a possible
disease outbreak, and each scenario A ∈ D to which populations suffer the outbreak. Since
immediate testing is of utmost importance, a central decision maker may prepare testing
sites, such that under every scenario, each infected population has the closest possible access
to a testing center. Assembling these sites in advance, i.e., in stage-I, has multiple benefits;
for example, the necessary equipment and materials might be much cheaper and easier to
obtain before the onset of the disease. Furthermore, the choice to minimize the maximum
covering distance, as opposed to the opening cost, would reflect a policy valuing societal
welfare more than economic performance.

In addition, there may be further constraints on FI , irrespective of the stage-II decisions,
which cannot be directly reduced to the budget B. For instance, we might have a constraint
on the total number of personnel we want to occupy prior to the outbreak of the disease,
assuming that facility i requires fi people to keep it operational during the waiting period.
To our knowledge, this is the first time additional stage-I constraints are studied in the
two-stage stochastic regime.

1.2 Our Generalization Scheme and Comparison with Previous Results
Our ultimate goal is to devise algorithms for the black-box setting. As is usual in two-stage
stochastic problems, we do this in three steps. First, we develop algorithms for the less
complicated polynomial-scenarios model. Second, we sample a small number of scenarios
from the black-box oracle and use our polynomial-scenarios algorithms to (approximately)
solve the problems on them. Finally, we extrapolate this solution to the original black-box
problem. This overall methodology is called Sample Average Approximation (SAA).

Unfortunately, standard SAA approaches [21, 4] cannot be directly applied in radius
minimization problems. On a high level, the obstacle here is that we need to compute the
true cost of the approximate solution, something that is impossible using already existing
results. Because this is a delicate technical issue, we refer the reader to Appendix A for an
in-depth discussion.

Our Sampling Framework. Since the optimal black-box radius R∗ is always the distance
between a client and a facility, there are at most nm different options for it. Thus, we
consider each separately, and assume for now that we work with a specific guess R. Given

APPROX/RANDOM 2021

23:4 Approximating Two-Stage Stochastic Supplier Problems

this, we sample some N scenarios from the oracle, and let Q = {S1, S2, . . . , SN} be that
sampled set. We then run our polynomial-scenarios η-approximation algorithms on Q, which
are guaranteed to provide solutions that cover each client within distance ηR. Crucially,
we show that if R ≥ R∗ and N is chosen appropriately, these solutions have cost at most
(1 + ϵ)B on Q, for any ϵ > 0. Hence, in the end we keep the minimum guess for R whose
cost over the samples is at most (1 + ϵ)B.

For this minimum guess R (which obviously satisfies R ≤ R∗), the polynomial-scenarios
algorithm returned a stage-I set FI , and a stage-II set FSv for each Sv ∈ Q. Our polynomial-
scenarios algorithms are also designed to satisfy two additional key properties.
First, given FI and any A /∈ Q, there is an efficient process to extend the algorithm’s output
to a stage-II solution FA with d(j, FI ∪ FA) ≤ ηR for all j ∈ A. Second, irrespective of
Q, the set S of possible black-box solutions the extension process might produce, has only
exponential size as a function of n and m (by default, it could have size 2m|D|, and note
that D may be exponentially large or even uncountably infinite). We call algorithms
satisfying these properties efficiently generalizable.

After using the extension process to construct a solution for every A that materializes,
there is a final scenario-discarding step to our framework. Specifically, for some given
α ∈ (0, 1), we first determine a threshold value T corresponding to the ⌈α|Q|⌉th costliest
scenario of Q. Then, if for an arriving A the computed set FA has stage-II cost more than
T , we perform no stage-II openings by setting FA = ∅ (i.e., we “give up” on A). This step
coupled with the bounds on |S| ensure that the overall opening cost of our solution is at
most (1 + ϵ)B. At this point, note that discarding implies that there may exist scenarios
A with d(j, FI ∪ FA) > ηR for some j ∈ A. However, we show such scenarios occur with
probability at most α, and the latter can be made inverse polynomially small.

1.3 Outline and Contributions
In Section 2, we present our generalization scheme. We summarize it as follows:

▶ Theorem 1. Suppose we have an efficiently generalizable, η-approximation algorithm for
the polynomial-scenarios variant of any of the problems we study. Let S be the set of all
potential black-box solutions its extension process may produce. Then, for any γ, ϵ, α ∈ (0, 1)
and with O

(1
ϵα log

(nm|S|
γ

)
log

(
nm
γ

))
samples, we compute a radius R and a black-box solution

FI , FA for all A ∈ D:
1. FI satisfies the stage-I specific constraints of the problem (matroid or multiknapsack).
2. With probability at least 1−γ, we have R ≤ R∗ and

∑
i∈FI

cI
i +EA∼D[

∑
i∈FA

cA
i] ≤ (1+ϵ)B,

where R∗ the optimal radius of the black-box variant.
3. With probability at least 1− γ, there holds PrA∼D[d(j, FI ∪ FA) ≤ ηR, ∀j ∈ A] ≥ 1− α.

▶ Theorem 2. We provide the following efficiently generalizable algorithms:
A 3-approximation for 2S-Sup-Poly with |S| ≤ (n + 1)!.
For the black-box case, the sample complexity of Theorem 1 is Õ(n

ϵα).
A 5-approximation for 2S-MatSup-Poly with |S| ≤ 2mn!.
For the black-box case, the sample complexity of Theorem 1 is Õ(m+n

ϵα).
A 5-approximation for discrete instances of 2S-MuSup-Poly, with |S| ≤ 2m and runtime
poly(n, m, Λ). In the black-box case, the sample complexity of Theorem 1 is Õ(m

ϵα).

Here, Õ() hides polylog(n, m, 1/γ) terms. The 3-approximation for 2S-Sup-Poly is
presented in Section 3. It relies on a novel LP rounding technique, not used in clustering
problems before. Notably, its approximation ratio matches the lower bound of the non-
stochastic counterpart [10] (Knapsack Supplier), something very rare in the two-stage

B. Brubach et al. 23:5

paradigm. The 5-approximation for 2S-MatSup-Poly is presented in Section 4. It relies
on solving an auxiliary LP, whose optimal solution is guaranteed to be integral. The 5-
approximation for 2S-MuSup-Poly is presented in Appendix C, and is based on a reduction
to a deterministic supplier problem with outliers. Specifically, if we view stage-I as consisting
of a deterministic robust problem, stage-II is interpreted as trying to cover all outliers left
over by stage-I.

The main advantages of our generalization scheme are.
1. Unlike standard SAA approaches [4, 21], it can handle problems based on the maximum-

radius objective function.
2. The approximation ratio η is preserved with high probability during the generalization.

By contrast, in typical two-stage problems, the approximation ratio usually gets inflated
when generalizing the polynomial-scenarios setting to the black-box one.

3. The adaptive selection of T yields crisp sample bounds in terms of α and ϵ. By contrast,
simpler non-adaptive approaches (e.g., T = B

α) would still give the same guarantees, but
the dependence of the sample bounds on α, ϵ would be worse (1

ϵ2α2 compared to 1
ϵα as we

achieve). This adaptive thresholding may also be of independent interest; for instance, we
conjecture that it might be able to improve the sample complexity in the SAA analysis
of [4].

Remark 1. There is an important connection between the design of our generalization
scheme and the design of our polynomial-scenarios approximation algorithms.

In any SAA approach, the sample complexity necessarily depends on the set of possible
actions over which the generalization is performed. In Theorem 1, the sample bounds are
given in terms of the cardinality of S. Following the lines of [21], it may be possible to replace
this dependence with a notion of dimension of the underlying convex program. However,
such general bounds would lead to significantly larger complexities, consisting of very high
order polynomials of n, m.

On the other hand, all of our polynomial-scenarios algorithms are carefully designed, so
that the cardinality of S itself is small. Indeed, one of the major contributions of this work is
to show that this property can still be satisfied for sophisticated approximation algorithms
using complex LP rounding. Consequently, we can use simple generalization bounds. Besides
being clear and intuitive, these lead to a much lower dependence on n, m for the sample
complexity (see Theorem 2). To our knowledge, these are the first examples of non-trivial
approximation algorithms for two-stage stochastic problems via directly bounding the size of
the solution set S.

Remark 2. If we assume that the maximum stage-II cost of any facility is bounded by
some polynomial value ∆, then we could use standard SAA results directly for our problems.
Alternatively, we can use a variant of our generalization scheme (without scenario-discarding)
getting refined sample bounds. A simple modification of our Section 2 analysis yields Theorem
3. However, this additional assumption on the cost function is much stronger than what is
typically used in the two-stage stochastic literature, and so our scheme aims at tackling the
most general case.

▶ Theorem 3. Suppose we have an efficiently generalizable, η-approximation algorithm for
the polynomial-scenarios variant of any of the problems we study. Let S be the set of all
possible black-box solutions its extension process can produce. Then, for any γ, ϵ ∈ (0, 1) and

APPROX/RANDOM 2021

23:6 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 1 GreedyCluster(Q, R, g).

H ← ∅;
for each j ∈ Q in non-increasing order of g(j) do

H ← H ∪ {j};
for each j′ ∈ Q with Gj,R ∩Gj′,R ̸= ∅ do

π(j′)← j,Q ← Q \ {j′};
end

end
Return (H, π) ;

with O
(

m∆
ϵ log

(nm|S|
γ

)
log

(
nm
γ

))
samples, we get a radius R and a black-box solution FI ,

FA for all A ∈ D:
1. FI satisfies the stage-I specific constraints of the problem (matroid or multiknapsack).
2. With probability at least 1−γ, we have R ≤ R∗ and

∑
i∈FI

cI
i +EA∼D[

∑
i∈FA

cA
i] ≤ (1+ϵ)B,

where R∗ the optimal radius of the black-box variant.
3. With probability one, we have d(j, FI ∪ FA) ≤ ηR for all j ∈ A ∈ D.

In particular, with our polynomial-scenarios approximation algorithms, the sample bounds
of 2S-Sup, 2S-MatSup and 2S-MuSup are Õ(nm∆

ϵ), Õ((n+m)m∆
ϵ) and Õ(m2∆

ϵ) respect-
ively.

1.4 Notation and Important Subroutines
For k ∈ N, we use [k] to denote {1, 2, . . . , k}. Also, for a vector α = (α1, α2, . . . , αk) and
a subset X ⊆ [k], we use α(X) to denote

∑
i∈X αi. For a client j and R ≥ 0, we define

Gj,R = {i ∈ F : d(i, j) ≤ R}, iI
j,R = arg mini∈Gj,R

cI
i and iA

j,R = arg mini∈Gj,R
cA

i for any A.
We repeatedly use a key subroutine named GreedyCluster(), shown in Algorithm 1. Its

input is a set of clients Q, a target radius R, and an ordering function g : Q 7→ R. Its output
is a set H ⊆ Q along with a mapping π : Q 7→ H. The goal of this subroutine is to sparsify
the given input Q, by greedily choosing a set of representative clients H.

▶ Observation 4. For (H, π) = GreedyCluster(Q, R, g), the following two properties hold: (i)
for all j, j′ ∈ H with j ̸= j′, we have Gj,R ∩Gj′,R = ∅; and (ii) for all j ∈ Q with j′ = π(j),
we have Gj,R ∩Gj′,R ̸= ∅, d(j, j′) ≤ 2R, and g(j′) ≥ g(j).

2 Generalizing to the Black-Box Setting

Let P be any of the two-stage problems we consider, with polynomial-scenarios variant
P-Poly and black-box variant P-BB. Moreover, suppose that we have an η-approximation
algorithm AlgP for P-Poly, which we intend to use to solve P-BB. Before we proceed to
our generalization scheme, we present some important definitions and assumptions.

As a starting point, assume we are given a radius demand R; we later discuss how
to optimize over this. Hence, we denote a P-BB problem instance by the tuple I =
(C,F ,MI , cI , B, R), where C is the set of clients, F the set of facilities i, each with stage-I
cost cI

i ,MI ⊆ 2F the set of legal stage-I openings (representing the stage-I specific constraints
of P), B the budget, and R the given covering demand. In addition, there is an underlying
distribution D, where each scenario A ∈ D appears with some unknown probability pA.
Our only means of access to D is via a sampling oracle. Finally, when a scenario A ∈ D is
revealed, we also learn the corresponding facility costs cA

i .

B. Brubach et al. 23:7

▶ Definition 5. We define a strategy s to be a tuple (F s
I , F s

A | A ∈ D) of facility sets, where
A ranges over D. The set F s

I represents the facilities s opens in stage-I, and F s
A denotes the

facilities s opens in stage-II, when the arriving scenario is A. In other words, a strategy is a
just potential solution to P-BB.

▶ Assumption 6. For any strategy s and A ∈ D, the value cA(F s
A) has a continuous CDF.

We can assume this w.l.o.g.; we simply add a dummy facility id in the input, and for all s

and A ∈ D, we include id in the original F s
A. Then, cA

id
is set to be some infinitesimal smooth

noise. Also, B and MI can trivially be extended to account for id. Finally, the assumption
implies that for a finite set of scenarios Q, the values cA(F s

A) for all A ∈ Q are distinct with
probability 1.

We say that a given instance I is feasible for P-BB, if there exists a strategy s∗ satisfying:

F s∗

I ∈MI , cI(F s∗

I) +
∑
A∈D

pAcA(F s∗

A) ≤ B, ∀j ∈ A ∈ D d(j, F s∗

I ∪ F s∗

A) ≤ R

For P-Poly, consider an instance J = (C,F ,MI , Q, q⃗, c⃗, B, R), where C,F ,MI , B, R are
as in the P-BB setting, Q is the set of provided scenarios, c⃗ the vector of stage-I and stage-II
explicitly given costs, and q⃗ the vector of occurrence probabilities qA of each A ∈ Q. We say
that the instance J is feasible for P-Poly, if there exist sets FI ⊆ F and FA ⊆ F for every
A ∈ Q, such that:

FI ∈MI , cI(FI) +
∑
A∈Q

qAcA(FA) ≤ B, ∀j ∈ A ∈ Q d(j, FI ∪ FA) ≤ R

We also write F for the overall collection of sets FI and FA : A ∈ Q.

▶ Definition 7. An algorithm AlgP is a valid η-approximation algorithm for P-Poly, if
given any problem instance J = (C,F ,MI , Q, q⃗, c⃗, B, R), one of the following two cases holds:
(A) If J is feasible for P-Poly, then AlgP returns a collection of sets F with FI ∈ MI ,

cI(FI) +
∑

A∈Q qAcA(FA) ≤ B and ∀j ∈ A ∈ Q d(j, FI ∪ FA) ≤ ηR.
(B) If J is not feasible for P-Poly, then the algorithm either returns “INFEASIBLE”, or

returns a collection of sets F satisfying the properties presented in A.

▶ Definition 8. A valid η-approximation algorithm AlgP for P-Poly is efficiently general-
izable, if for every instance J = (C,F ,MI , Q, q⃗, c⃗, B, R) for which it returns a solution F ,
there is an efficient procedure that implicitly extends this to a strategy s̄, and satisfies:

(I) Given any A ∈ D, it returns a set F s̄
A ⊆ F , with d(j, F s̄

I ∪ F s̄
A) ≤ ηR for all j ∈ A.

(II) F s̄
I = FI and F s̄

A = FA for every A ∈ Q.
(III) Given J, let S be the set of all possible strategies that are potentially achievable using

the extension procedure for any set Q. Then |S| ≤ tP(n, m) for some function tP(n, m),
with log(tP(n, m)) = poly(n, m).

Note that property III is not trivial, since by default |S| ≤ 2m|D|, and |D| can be exponentially
large or even uncountably infinite.

The first step of our generalization is based on sampling a set Q of scenarios from D,
and then applying the efficiently-generalizable AlgP on Q. When running the latter, we also
increase the available budget to (1 + ϵ)B, for some ϵ > 0. The purpose of this step is to
verify whether or not the given instance of P-BB is feasible, and to achieve this we may
have to repeat it a polynomial number of times. See Algorithm 2 for the full details.

APPROX/RANDOM 2021

23:8 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 2 Determining Feasibility for P-BB.

Input : Parameters ϵ, γ, α ∈ (0, 1), N ≥ 1 and a P-BB instance
I = (C,F ,MI , cI , B, R).

If ∃j ∈ C : d(j,F) > R then return “INFEASIBLE” ; // For points not sampled

for h = 1, . . . ,
⌈
log 13

12
(1/γ)

⌉
do

Draw N independent samples from the oracle, obtaining set Q = {S1, . . . , SN};
Let c⃗ the vector containing cI and the stage-II facility-cost vectors of all Sv ∈ Q;
For every Sv ∈ Q set qSv

← 1/N ;
if AlgP(C,F ,MI , Q, q⃗, c⃗, (1 + ϵ)B, R) returns F then

Let T be the ⌈αN⌉th largest value of cSv (FSv) among all scenarios in Q;
Return (F, T);

end
end
Return “INFEASIBLE”;

If Algorithm 2 returns “INFEASIBLE”, then our approach would deem that I is not
feasible for P-BB. Otherwise, let F be the solution returned by AlgP at the last “successfull”
iteration of the while loop. Because AlgP is efficiently-generalizable, we can apply its
extension procedure to any arriving scenario, and therefore implicitly construct a strategy
s̄. By the properties of AlgP and II, I, we have F s̄

I ∈MI and d(j, F s̄
I ∪ F s̄

A) ≤ ηR for every
A ∈ D and j ∈ A.

However, we are not yet done. The second step of our generalization framework consists
of slightly modifying the strategy s̄. For that reason, we use the value T returned by
Algorithm 2, which corresponds to the ⌈αN⌉th largest value cSv (F s̄

Sv
) among all Sv ∈ Q,

with Q the sampled set in the last iteration of the while loop (F s̄
Sv

= FSv by II). Note here
that Assumption 6 ensures that the choice of T is well-defined.

If now an arriving scenario A has cA(F s̄
A) > T , we will perform no stage-II opening. This

modification eventually constructs a new strategy ŝ, with F ŝ
I = F s̄

I , F ŝ
A = ∅ when cA(F s̄

A) > T ,
and F ŝ

A = F s̄
A if cA(F s̄

A) ≤ T . The latter strategy will determine our final opening actions,
and hence we need to analyze its opening cost C(ŝ) over D, and the probability with which it
does not return an η-approximate solution. Regarding the latter, note that when F ŝ

A ̸= F s̄
A,

we can no longer guarantee an approximation ratio of η as implied by property I for s̄.

▶ Lemma 9. If instance I is feasible for P-BB and N ≥ 1/ϵ, then with probability at least
1− γ Algorithm 2 does not terminate with “INFEASIBLE”.

Proof. By rescaling, we assume w.l.o.g. that B = 1. Also, the cost of any strategy s

over D is given by C(s) = cI(F s
I) +

∑
A∈D pAcA(F s

A). For any specific execution of the
while loop in Algorithm 2, let Y s

v be the second-stage cost of s on sample Sv. Finally, for
a fixed s the random variables Y s

v are independent, and the empirical cost of s on Q is
Ĉ(s) = cI(F s

I) + 1
N

∑N
v=1 Y s

v .
If I is feasible, then there exists some strategy s⋆ satisfying F s⋆

I ∈ MI and d(j, F s⋆

I ∪
F s⋆

A) ≤ R for every A ∈ Q and j ∈ A. We will also show that Ĉ(s⋆) ≤ (1+ϵ)B with probability
at least 1/13. In this case, the restriction of s⋆ to Q verifies that (C,F ,MI , Q, q⃗, c⃗, (1+ϵ)B, R)
is feasible for P-Poly. Thus, since AlgP is a valid η-approximation for P-Poly, it will not
return “INFEASIBLE”.

B. Brubach et al. 23:9

As s∗ is feasible for I we have C(s⋆) ≤ B, implying E[Y s⋆

v] =
∑

A∈D pA ·cA(F s⋆

A) ≤ B = 1
for all samples v. By Lemma 20 with δ = ϵBN , this yields

Pr
[N∑

v=1
Y s⋆

v < E
[N∑

v=1
Y s⋆

v

]
+ ϵBN

]
≥ min

{ ϵBN

1 + ϵBN
,

1
13

}
When N ≥ B

ϵ = 1
ϵ , we see that ϵBN/(1 + ϵBN) ≥ 1/13. Hence, with probability at least

1/13 we have
∑N

v=1 Y s⋆

v < E[
∑N

v=1 Y s⋆

v] + ϵBN , in which case we get Ĉ(s∗) ≤ (1 + ϵ)B as
shown below:

Ĉ(s⋆) = cI(F s⋆

I) + 1
N

N∑
v=1

Y s⋆

v ≤ cI(F s⋆

I) + 1
N

N∑
v=1

E[Y s⋆

v] + ϵB

≤ cI(F s⋆

I) +
∑
A∈D

pA · cA(F s⋆

A) + ϵB ≤ (1 + ϵ)B

So each iteration terminates successfully with probability at least 1/13. To bring the error
probability down to at most γ, we repeat the process for

⌈
log 13

12
(1/γ)

⌉
iterations. ◀

Let T be the event that Algorithm 2 terminates without returning “INFEASIBLE”,
and Th the event that AlgP found a solution F at the hth iteration of the while loop. We
denote by Invalid the event that Algorithm 2 returns an invalid output; specifically, if
T occurs, Invalid is the event of having C(ŝ) > (1 + 2ϵ)B, otherwise it is the event of
mistakenly deciding that I is not feasible. Let now Qh be the set of scenarios sampled at
the hth iteration of Algorithm 2, and for any strategy s let T h

s be the ⌈αN⌉th largest value
cSv (F s

Sv
) among all Sv ∈ Qh. We then denote by Eh the event that for all s ∈ S, we have

PrA∼D[cA(F s
A) > T h

s] ≥ α
4 . Finally, note that due to III the set S is deterministically given

in the event Eh.

▶ Lemma 10. For any γ, α ∈ (0, 1) and N = O
(

1
α log(tP (n,m)

γ)
)

, we have Pr[Ēh] ≤
γ/(log 13

12
(1

γ) + 1).

Proof. Focus on a specific iteration h. Consider a strategy s ∈ S, and for each Sv ∈ Qh let
Xv be an indicator random variable that is 1 iff cSv (F s

Sv
) > T h

s . Also let X =
∑N

v=1 Xv,
and note that by Assumption 6 we have X = ⌈αN⌉ − 1. This implies that the empirical
probability of scenarios with stage-II cost more than T h

s is qh
s = (⌈αN⌉ − 1)/N . Finally, let

ph
s = PrA∼D[cA(F s

A) > T h
s].

If ph
s ≥ α then we immediately get Pr[ph

s < α/4] = 0. Therefore, assume that ph
s < α. If

N ≥ 4/α then we have:

qh
s −

α

2 = ⌈αN⌉ − 1
N

− α

2 ≥
αN − 1

N
− α

2 = α

2 −
1
N
≥ α

2 −
α

4 = α

4

Hence, if ph
s ≥ qh

s − α
2 and N ≥ 4/α, we get ph

s ≥ α
4 . Using Lemma 22 with ph

s < α, δ = α/2
and N = 8

α log
(

tP (n,m)
γ (log 13

12
(1

γ) + 1)
)
≥ 4/α yields the following:

Pr[ph
s <

α

4] ≤ Pr[ph
s < qh

s − α/2] ≤ e
−

(
tP (n,m)

γ (log 13
12

(1
γ)+1)

)
= γ

tP(n, m)(log 13
12

(1/γ) + 1)

A union bound over all s ∈ S and property III will finally give Pr[Ēh] ≤ γ/(log 13
12

(1
γ) + 1). ◀

▶ Theorem 11. For any ϵ, γ, α ∈ (0, 1) and N = O
(

1
ϵα log(tP (n,m)

γ)
)

, Pr[Invalid] ≤ 3γ.

APPROX/RANDOM 2021

23:10 Approximating Two-Stage Stochastic Supplier Problems

Proof. Using the definition of the Invalid event and Lemmas 9, 10 we get the following.

Pr[Invalid] = Pr[Invalid | T̄] Pr[T̄] + Pr[Invalid | T] Pr[T] ≤ γ +
∑

h

Pr[Invalid ∧ Th]

= γ +
∑

h

(
Pr[Invalid ∧ Th | Eh] Pr[Eh] + Pr[Invalid ∧ Th | Ēh] Pr[Ēh]

)
≤ 2γ +

∑
h

Pr[Invalid ∧ Th ∧ Eh] (1)

For each s ∈ S, let ts be value such that PrA∼D[cA(F s
A) > ts] = α

4 . Note that the
existence of ts is guaranteed by Assumption 6. Further, for each s ∈ S, A ∈ D, define c̃A(F s

A)
to be cA(F s

A) if cA(F s
A) ≤ ts, and 0 otherwise. In addition, for an iteration h let Y s

v,h be a
random variable denoting the second-stage c̃ cost of s for the v-th sample of h, and Zs

v,h

be an indicator random variable that is 1 iff the original second-stage cost of s on the v-th
sample of h is greater than ts. We use the following cost functions:

Ĉh(s) = cI(F s
I) + 1

N

N∑
v=1

Y s
v,h + ts

N

N∑
v=1

Zs
v,h and C̃(s) = cI(F s

I) +
∑
A∈D

pA · c̃A(F s
A)

Also, if ps = PrA∼D[cA(F s
A) > ts], then E[Ĉh(s)] = C̃(s) + psts. Finally, let ĈII

h (s) =
Ĉh(s)− cI(F s

I) and C̃II(s) = C̃(s)− cI(F s
I).

Now observe that if Invalid ∧ Th ∧ Eh occurs, then there must exist some s ∈ S with
Ĉh(s) ≤ (1 + ϵ)B and C̃(s) > (1 + 2ϵ)B. Specifically we have Ĉh(s̄) ≤ (1 + ϵ)B and
C̃(s̄) > (1 + 2ϵ)B. To see why Ĉh(s̄) ≤ (1 + ϵ)B is true, note than under this event AlgP
finds a solution in iteration h. The empirical cost of this solution (which corresponds to
a restriction of s̄) is at most (1 + ϵ)B, and the pruning based on the value ts can only
decrease this cost. Regarding C̃(s̄) > (1 + 2ϵ)B, under Invalid ∧ Th ∧ Eh we at first have
C(ŝ) > (1 + 2ϵ)B. In addition, C̃(s̄) ≤ C(ŝ), because by the definitions of ts and Eh we have
ts ≥ T h

s . Hence, we upper bound the probability of Invalid ∧ Th ∧ Eh as follows:

Pr[Invalid ∧ Th ∧ Eh] ≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ C̃(s) > (1 + 2ϵ)B]

≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ C̃(s) + psts > (1 + 2ϵ)B + psts]

≤ Pr[∃s ∈ S : Ĉh(s) ≤ (1 + ϵ)B ∧ E[Ĉh(s)] > (1 + 2ϵ)B + psts]

≤ Pr[∃s ∈ S : ĈII
h (s) ≤ (1− δs)E[ĈII

h (s)]]

≤
∑
s∈S

Pr
[
ĈII

h (s) ≤ (1− δs)E[ĈII
h (s)]

]
=

∑
s∈S

Pr
[
N · ĈII

h (s)/ts ≤ (1− δs)N · E[ĈII
h (s)]/ts

]
(2)

In the above we defined δs such that δs ≥ ϵ+psts

1+2ϵ+psts
, and also we made use of B = 1 and

E[Ĉh(s)] = C̃(s) + psts > 1 + 2ϵ + psts. Applying Lemma 21 gives

Pr[N · ĈII
h (s)/ts ≤ (1− δs)N · E[ĈII

h (s)]/ts] ≤ e
−N(ϵ+psts)2

2ts(1+2ϵ+psts) (3)

We now focus on the quantity (ϵ+psts)2

2ts(1+2ϵ+psts) , and consider two distinct cases for psts.

Suppose psts ≥ ϵ. Then (ϵ+psts)2

2ts(1+2ϵ+psts) ≥
p2

st2
s

2ts(1+3psts) ≥
ps

2
psts

1+3psts
≥ ϵ·ps

2(1+3ϵ) ,where the
last inequality follows because x/(1 + 3x) is increasing and in our case x ≥ ϵ.

B. Brubach et al. 23:11

Suppose psts < ϵ. Then (ϵ+psts)2

2ts(1+2ϵ+psts) ≥
ϵ2

2ts(1+3ϵ) ≥
ϵ·ps

2(1+3ϵ) ,where in the last inequality
we used the fact that in this case ts < ϵ/ps.

Therefore, by definition of ps, we have (ϵ+psts)2

2ts(1+2ϵ+psts) ≥
ϵ·α

8(1+3ϵ) in every case. Plugging that

in (3), (2), and setting N = 8(1+ϵ)
ϵα log

(
tP (n,m)

γ (log 13
12

(1
γ) + 1)

)
gives Pr[Invalid ∧ Th ∧ Eh] ≤

γ/(log 13
12

(1
γ) + 1). Finally, using this in (1) gives the desired error probability of at most

3γ. ◀

▶ Theorem 12. For any γ, α ∈ (0, 1) and N = O
(

1
α log(tP (n,m)

γ)
)

, the solution strategy ŝ

satisfies PrA∼D[d(j, F ŝ
I ∪ F ŝ

A) ≤ ηR, ∀j ∈ A] ≥ 1− 2α with probability at least 1− γ.

Proof. Consider some iteration h and strategy s ∈ S. Let ph
s = PrA∼D[cA(F s

A) > T h
s], and

Bh
s the event of having pT h

s
> 2α. Suppose that ph

s > α, otherwise Bh
s cannot occur. Let

Xv an indicator random variable that is 1 iff s has stage-II cost larger than T h
s in the v-th

sample. Also, let X =
∑N

v=1 Xv, and recall that X = ⌈αN⌉ − 1 ≤ αN . Moreover, we have
E[X] = ph

s N and notice that 2X > E[X] implies ph
s < 2α. Using Lemma 21 with δ = 1/2 we

get Pr[X ≤ E[X]/2] ≤ e−ph
s N/8. Because ph

s > α, setting N = 8
α log(tP (n,m)

γ (log 13
12

(1
γ) + 1))

gives
∑

h

∑
s∈S Pr[Bh

s] ≤ γ. ◀

Finally, by optimizing over the radius, we get our main generalization result:

▶ Theorem 13. Assume we have an efficiently generalizable η-approximation for P-Poly.
Then, using O

(1
ϵα log(nm·tP (n,m)

γ) log nm
γ

)
samples, we obtain a strategy ŝ and a radius R,

such that with probability at least 1 − O(γ) the following hold: (i) C(ŝ) ≤ (1 + 2ϵ)B, (ii)
F ŝ

I ∈MI ; (iii) R ≤ R∗, where R∗ is the optimal radius for P-BB; (iv) PrA∼D[d(j, F ŝ
I ∪F ŝ

A) ≤
ηR, ∀j ∈ A] ≥ 1− 2α.

Proof. Because R∗ is the distance between some facility and some client, there are at most
nm alternatives for it. Thus, we can run Algorithm 2 for all possible nm target radius
values, using error parameter γ′ = γ

nm . We then return the smallest radius that did not yield
“INFEASIBLE”. By a union bound over all radius choices, the probability of the Invalid
event in any of them is at most 3γ. Thus, with probability at least 1− 3γ, the chosen radius
R satisfies R ≤ R∗, and the opening cost of the corresponding strategy is at most (1 + 2ϵ)B.
Finally, for the returned strategy Theorem 12 holds as well, and the sample bound accounts
for all iteration of Algorithm 2.

Additionally, note that we do not need fresh samples for each radius guess R; we can
draw an appropriate number of samples N upfront, and test all guesses in “parallel” with
the same data. ◀

In light of Theorem 13 and the generic search step for the radius R, we assume
for all our P-poly problems that a target radius R is given explicitly.

We conclude with some final remarks. At first, III guarantees N = poly(n, m, 1
ϵ , 1

α , log 1
γ).

Also, the probability 2α of not returning an η-approximate solution can be made inverse
polynomially small, without affecting the polynomial nature of the sample complexity.

3 Approximation Algorithm for 2S-Sup-BB

In this section we tackle 2S-Sup-BB, by first designing a 3-approximation algorithm for
2S-Sup-Poly, and then proving that the latter is efficiently generalizable.

APPROX/RANDOM 2021

23:12 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 3 Correlated LP-Rounding Algorithm for 2S-Sup-Poly.

Solve LP (4)-(6) to get a feasible solution yI , yA : A ∈ Q;
if no feasible LP solution exists then

Return “INFEASIBLE”;
end
(HI , πI)← GreedyCluster(C, R, gI), where gI(j) = yI(Gj) ;
for each scenario A ∈ Q do

(HA, πA)← GreedyCluster(A, R, gA), where gA(j) = −yI(GπI (j)) ;
end
Order the clients of HI as j1, j2, . . . , jh such that yI(Gj1) ≤ yI(Gj2) ≤ · · · ≤ yI(Gjh

);
Consider an additional “dummy” client jh+1 with yI(Gjh+1) > yI(Gjℓ

) for all ℓ ∈ [h];
for all integers ℓ = 1, 2, . . . , h + 1 do

F ℓ
I ← {iI

jk
| jk ∈ HI and yI(Gjk

) ≥ yI(Gjℓ
)};

for each A ∈ Q do
F ℓ

A ← {iA
j | j ∈ HA and F ℓ

I ∩GπI (j) = ∅};
end
Sℓ ← cI(F ℓ

I) +
∑

A∈Q pA · cA(F ℓ
A);

end
Return F ℓ∗

I , F ℓ∗

A : A ∈ Q such that ℓ∗ = arg minℓ Sℓ;

3.1 A 3-Approximation Algorithm for 2S-Sup-Poly
We are given a list of scenarios Q together with their probabilities pA and cost vectors cA, a
target radius R, and let Gj = Gj,R, iI

j = iI
j,R, iA

j = iA
j,R for every j ∈ C and A ∈ Q. Consider

LP (4)-(6).∑
i∈F

yI
i · cI

i +
∑
A∈Q

pA

∑
i∈F

yA
i · cA

i ≤ B (4)

∑
i∈Gj

(yI
i + yA

i) ≥ 1, ∀j ∈ A ∈ Q (5)

0 ≤ yI
i , yA

i ≤ 1 (6)

Constraint (4) captures the total expected cost, and constraint (5) the fact that for all
A ∈ Q, every j ∈ A must have an open facility within distance R from it. In addition, note
that if the LP is infeasible, then there cannot be a solution of radius at most R for the given
2S-Sup-Poly instance. The rounding algorithm appears in Algorithm 3.

▶ Theorem 14. For any scenario A ∈ Q and every j ∈ A, we have d(j, F ℓ∗

I ∪ F ℓ∗

A) ≤ 3R.

Proof. Focus on some A ∈ Q. Recall that d(j, πI(j)) ≤ 2R and d(j, πA(j)) ≤ 2R for
any j ∈ A. For j ∈ HA the statement is clearly true, because either GπI (j) ∩ F ℓ∗

I ̸= ∅
or Gj ∩ F ℓ∗

A ≠ ∅. So consider some j ∈ A \ HA. If GπA(j) ∩ F ℓ∗

A ≠ ∅, then any facility
i ∈ GπA(j) ∩ F ℓ∗

A will be within distance 3R from j. If on the other hand GπA(j) ∩ F ℓ∗

A = ∅,
then our algorithm guarantees GπI (πA(j)) ∩ F ℓ∗

I ≠ ∅. Further, the stage-II greedy clustering
yields gA(πA(j)) ≥ gA(j) =⇒ yI(GπI (j)) ≥ yI(GπI (πA(j))). Therefore, from the way we
formed F ℓ∗

I and the fact that GπI (πA(j)) ∩ F ℓ∗

I ≠ ∅, we infer that GπI (j) ∩ F ℓ∗

I ̸= ∅. The
latter ensures that d(j, GπI (j) ∩ F ℓ∗

I) ≤ 3R. ◀

▶ Theorem 15. The opening cost Sℓ∗ of Algorithm 3 is at most B.

B. Brubach et al. 23:13

Algorithm 4 Generalization Procedure for 2S-Sup-Poly.

Input : Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 3
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenario A ∈ D arrived in the second stage;
For every j ∈ A set g(j)← −yI(GπI (j)), where yI , πI are the LP solution vector and
stage-I mapping computed in Algorithm 3;

(HA, πA)← GreedyCluster(A, R, g);
F s̄

A ← {iA
j | j ∈ HA and FI ∩GπI (j) = ∅};

Proof. Consider the following process to generate a random solution: we draw a random
variable β uniformly from [0, 1], and then set F β

I = {iI
j | j ∈ HI and yI(Gj) ≥ β}, F β

A =
{iA

j | j ∈ HA and FI ∩GπI (j) = ∅} for all A ∈ Q. For each possible draw for β, the resulting
sets F β

I , F β
A correspond to sets F ℓ

I , F ℓ
A for some integer ℓ ∈ [h+1]. Hence, in order to show the

existence of an ℓ with Sℓ ≤ B, it suffices to show Eβ∼[0,1][cI(F β
I) +

∑
A∈Q pA · cA(F β

A)] ≤ B.
We start by calculating the probability of opening a given facility iI

j with j ∈ HI in stage-
I. This will occur only if β ≤ yI(Gj), and so Pr[iI

j is opened at stage-I] ≤ min(yI(Gj), 1).
Therefore, due to Gj ∩Gj′ = ∅ for all distinct j, j′ ∈ HI , we get:

Eβ∼[0,1][cI(F β
I)] ≤

∑
j∈HI

cI
iI

j
· yI(Gj) ≤

∑
i∈F

yI
i · cI

i (7)

Moreover, for any j ∈ HA and any A ∈ Q we have Pr[iA
j is opened at stage-II | A] =

1−min(yI(GπI (j)), 1) ≤ 1−min(yI(Gj), 1) ≤ yA(Gj). The first inequality results from the
greedy clustering of stage-I that gives yI(GπI (j)) ≥ yI(Gj), and the second follows from (5).
Thus, due to Gj ∩Gj′ = ∅ for all distinct j, j′ ∈ HA, we get:

Eβ∼[0,1][cA(F β
A)] ≤

∑
j∈HA

cA
iA

j
· yA(Gj) ≤

∑
i∈F

yA
i · cA

i (8)

Combining (7), (8) and (4) gives Eβ∼[0,1][cI(F β
I)] +

∑
A∈Q pA · Eβ∼[0,1][cA(F β

A)] ≤ B. ◀

3.2 Generalizing to the Black-Box Setting
To show that Algorithm 3 fits the framework of Section 2, we must show that it is efficiently
generalizable as in Definition 8. For one thing, it is obvious that Algorithm 3 satisfies the
properties of Definition 7, and therefore is a valid 3-approximation. Hence, we only need a
process to efficiently extend its output to any arriving scenario A ∈ D, where D the black-box
distribution. This is demonstrated in Algorithm 4, which mimics the stage-II actions of
Algorithm 3. Here we crucially exploit the fact that the stage-II decisions of Algorithm 3
only depend on information from the LP about stage-I variables.

Since Algorithm 4 exactly imitates the stage-II actions of Algorithm 3, it is easy to
see that property II is satisfied. Further, the arguments in Theorem 14 would still apply,
and eventually guarantee d(j, F s̄

I ∪ F s̄
A) ≤ 3R for all j ∈ A and any A ∈ D, thus verifying

property I. To conclude, we only need to prove III. Let SK the set of strategies achievable
via Algorithm 4.

▶ Lemma 16. Algorithm 3 satisfies property III with |SK | ≤ (n + 1)!.

APPROX/RANDOM 2021

23:14 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 5 Rounding Algorithm for 2S-MatSup-Poly.

Solve LP (9)-(12) to get a feasible solution yI , yA for all A ∈ Q;
if no feasible LP solution exists then

Return “INFEASIBLE”;
end
(HI , πI)← GreedyCluster(C, R, gI) where gI(j) = yI(Gj) ;
Let gII : C 7→ [n] be some fixed and given bijective mapping;
for each scenario A ∈ Q do

(HA, πA)← GreedyCluster(A, R, gII) ;
end
Solve LP (13)-(16) and get an optimal integral solution z∗, such that
z∗

i ∈ {0, 1} ∀i ∈ F ;
FI ← {i ∈ F | z∗

i = 1};
FA ← {iA

j ∈ F | j ∈ HA and GπI (j) ∩ FI = ∅} for every A ∈ Q.

Proof. The constructed final strategy is determined by 1) the sorted order of yI(Gj) for all
j ∈ C, and 2) a minimum threshold ℓ′ such that Gjℓ′ ∩ FI ≠ ∅ with jℓ′ ∈ HI . Given those,
we know exactly what HI and HA for every A ∈ D will be, as well as FI and FA for every
A ∈ D. The set of all possible such options is also independent Q. Since there are n! total
possible orderings for the yI(Gj) values, and the threshold parameter ℓ′ can take at most
n + 1 values, we get |SK | ≤ (n + 1)!. ◀

4 Approximation Algorithm for 2S-MatSup-BB

The outline of this section is similar to that of Section 3. We begin with a 5-approximation
algorithm for 2S-MatSup-Poly, and then show that it is also efficiently generalizable.

4.1 A 5-Approximation Algorithm for 2S-MatSup-Poly
We are given a radius R, and a list of scenarios Q together with their probabilities pA and cost
vectors cA. Moreover, assume that rM is the rank function of the input matroid M = (F , I).
We also use the notation Gj = Gj,R, and iA

j = iA
j,R for every j ∈ C and A ∈ Q. Consider LP

(9)-(12).∑
i∈F

yI
i · cI

i +
∑
A∈Q

pA

∑
i∈F

yA
i · cA

i ≤ B (9)

∑
i∈Gj

(yI
i + yA

i) ≥ 1, ∀j ∈ A ∈ Q (10)

∑
i∈U

yI
i ≤ rM(U), ∀U ⊆ F (11)

0 ≤ yI
i , yA

i ≤ 1 (12)

Compared to LP (4)-(6), the only difference lies in constraint (11), which exactly represents
the stage-I matroid requirement. Hence, it is a valid relaxation for the problem. Although
the LP has an exponential number of constraints, it can be solved in polynomial time via the
Ellipsoid algorithm, with a separation oracle based on minimizing a submodular function [13].

Assuming LP feasibility, our algorithm (presented in full detail in Algorithm 5), begins
with two greedy clustering steps, one for each stage, that produce sets HI , HA : A ∈ Q with

B. Brubach et al. 23:15

corresponding mappings πI and πA. We then set up and solve the auxiliary LP shown in
(13)-(16), and use this solution to determine sets FI and FA.

minimize
∑
i∈F

zi · cI
i +

∑
A∈Q

pA

∑
j∈HA

cA
iA

j
(1− z(GπI (j))) (13)

subject to z(Gj) ≤ 1, ∀j ∈ HI (14)
z(U) ≤ rM(U), ∀U ⊆ F (15)
0 ≤ zi ≤ 1 (16)

▶ Lemma 17. If LP (9)-(12) is feasible, then the optimal solution z∗ of the auxiliary LP
(13)-(16) has objective function value at most B, and is integral (i.e. for all i ∈ F we have
z∗

i ∈ {0, 1}).

Proof. Solution z∗ is integral since the LP (13)-(16) is the intersection of two matroid
polytopes, namely, the polytope correspondind to M, and a partition matroid polytope over
all Gj with j ∈ HI . (Recall that sets Gj for j ∈ HI are pairwise disjoint.)

Now let yI , yA be a feasible solution of (9)-(12). For all j ∈ HI with yI(Gj) ≤ 1, set
zi = yI

i for all i ∈ Gj . For all j ∈ HI with yI(Gj) > 1, set zi = yI
i /yI(Gj) for all i ∈ Gj . For

the rest of the facilities set zi = 0. This solution obviously satisfies (14). Also, because yI

satisfies (11) and zi ≤ yI
i for all i, we know that z satisfies (15) too. Finally, regarding the

objective function:∑
i∈F

zi · cI
i ≤

∑
i∈F

yi · cI
i (17)

For the second-stage cost we then get:∑
A∈Q

pA

∑
j∈HA

cA
iA

j
(1− z(GπI (j))) ≤

∑
A∈Q

pA

∑
j∈HA:

yI (GπI (j))≤1

cA
iA

j
(1− yI(GπI (j)))

≤
∑
A∈Q

pA

∑
j∈HA:

yI (GπI (j))≤1

cA
iA

j
(1− yI(Gj))

≤
∑
A∈Q

pA

∑
j∈HA:

yI (GπI (j))≤1

cA
iA

j
yA(Gj) ≤

∑
A∈Q

pA

∑
i∈F

yA
i cA

i (18)

The second line follows from the stage-I greedy clustering, which ensures yI(GπI (j)) ≥ yI(Gj)
for all j ∈ C. The last line is due to (10), and the fact that for all A ∈ Q and all distinct
j, j′ ∈ HA we have Gj ∩Gj′ = ∅. Finally, combining (9), (17) and (18) we get the desired
bound on the cost. ◀

▶ Theorem 18. For the sets FI , FA : A ∈ Q returned by Algorithm 5 the following three
properties hold: (i) FI ∈ I, (ii) cI(FI) +

∑
A∈Q pAcA(FA) ≤ B, and (iii) d(j, FI ∪FA) ≤ 5R

for all j ∈ A ∈ Q.

Proof. (i) is obvious, since z∗ satisfies constraint (15). For (ii), the opening cost of the
solution coincides with the value of the objective (13) for z∗, and hence by Lemma 17 it is at
most B.

For (iii), consider A ∈ Q, and recall that d(j, πI(j)) ≤ 2R and d(j, πA(j)) ≤ 2R for any
j ∈ A. For j ∈ HA the bound (iii) holds, because either GπI (j) ∩ FI ̸= ∅ or Gj ∩ FA ̸= ∅. So
suppose that j ∈ A \HA. If GπA(j) ∩FA ̸= ∅, then any facility i ∈ GπA(j) ∩FA will be within
distance 3R from j. If on the other hand GπA(j)∩FA = ∅, then there exists i ∈ GπI (πA(j))∩FI .
Therefore, d(i, j) ≤ d(i, πI(πA(j))) + d(πI(πA(j)), πA(j)) + d(πA(j), j) ≤ 5R. ◀

APPROX/RANDOM 2021

23:16 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 6 Generalization Procedure for 2S-MatSup-Poly.

Input : Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 5
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenario A ∈ D arrived in the second stage;
Let πI the stage-I mapping and gII the bijective function, both used in Algorithm 5;
Set (HA, πA)← GreedyCluster(A, R, gII);
Open the set F s̄

A = {iA
j | j ∈ HA and FI ∩GπI (j) = ∅};

4.2 Generalizing to the Black-Box Setting
It is clear that Algorithm 5 satisfies Definition 7, and therefore is a valid 5-approximation.
Consider now Algorithm 6 to efficiently extend its output to any arriving scenario A ∈ D.
Since Algorithm 6 exactly imitates the stage-II actions of Algorithm 5, it is easy to see that
property II is satisfied. Furthermore, the arguments in Theorem 18 would still go through,
and eventually guarantee d(j, F s̄

I ∪ F s̄
A) ≤ 5R for all j ∈ A and any A ∈ D, thus verifying

property I. To conclude, we only need to prove III. Let SM the set of strategies achievable
via Algorithm 6.

▶ Lemma 19. Algorithm 5 satisfies property III with |SM | = 2m · n!.

Proof. Since gII can be thought of as part of the input, s̄ depends only on 1) the set FI

returned by Algorithm 5, and 2) the sorted order of yI(Gj) for all j ∈ C, which ultimately
dictates the mapping πI . Given those, we can determine the stage-II openings for every
possible scenario A ∈ D. These options do not depend on scenarios Q. The total number of
possible outcomes for FI is 2m, and the total number of orderings for the clients of C is n!.
Hence, |SM | = 2m · n!. ◀

References
1 Shipra Agrawal, Amin Saberi, and Yinyu Ye. Stochastic combinatorial optimization under

probabilistic constraints, 2008. arXiv:0809.0460.
2 E. M. L. Beale. On minimizing a convex function subject to linear inequalities. Journal of the

Royal Statistical Society. Series B (Methodological), pages 173–184, 1955.
3 Deeparnab Chakrabarty and Maryam Negahbani. Generalized center problems with outliers.

ACM Trans. Algorithms, 2019.
4 Moses Charikar, Chandra Chekuri, and Martin Pal. Sampling bounds for stochastic optimiz-

ation. In Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques, pages 257–269, 2005.

5 George B. Dantzig. Linear programming under uncertainty. Management Science, pages
197–206, 1955.

6 Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

7 A. Gupta, R. Ravi, and A. Sinha. An edge in time saves nine: Lp rounding approximation
algorithms for stochastic network design. In 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 218–227, 2004.

8 Anupam Gupta, Martin Pál, R. Ravi, and Amitabh Sinha. Boosted sampling: Approximation
algorithms for stochastic optimization. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, page 417–426, 2004.

9 Anupam Gupta, Martin Pal, R. Ravi, and Amitabh Sinha. Sampling and cost-sharing:
Approximation algorithms for stochastic optimization problems. SIAM J. Comput., pages
1361–1401, 2011.

http://arxiv.org/abs/0809.0460

B. Brubach et al. 23:17

10 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. J. ACM, 1986.

11 Nicole Immorlica, David Karger, Maria Minkoff, and Vahab S. Mirrokni. On the costs and
benefits of procrastination: Approximation algorithms for stochastic combinatorial optimiza-
tion problems. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 691–700, 2004.

12 Anton J. Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average
approximation method for stochastic discrete optimization. SIAM Journal on Optimization,
12(2):479–502, 2002.

13 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, USA, 1st edition, 2011.

14 Andre Linhares and Chaitanya Swamy. Approximation algorithms for distributionally-robust
stochastic optimization with black-box distributions. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 768–779, 2019.

15 Andrea Pietracaprina, Geppino Pucci, and Federico Solda. Coreset-based strategies for robust
center-type problems, 2020. arXiv:2002.07463.

16 R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. In Integer Programming and Combinatorial Optimization, 2004.

17 David Shmoys and Chaitanya Swamy. An approximation scheme for stochastic linear program-
ming and its application to stochastic integer programs. J. ACM, 53:978–1012, November
2006.

18 Aravind Srinivasan. Approximation algorithms for stochastic and risk-averse optimization. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1305–1313, 2007.

19 C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms for multi-stage
stochastic optimization. In 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05), pages 357–366, 2005.

20 Chaitanya Swamy. Risk-averse stochastic optimization: Probabilistically-constrained models
and algorithms for black-box distributions: (extended abstract). Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1627–1646, 2011.

21 Chaitanya Swamy and David Shmoys. The sample average approximation method for 2-stage
stochastic optimization. Survey Paper, April 2008.

22 Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage stochastic
optimization problems. SIGACT News, pages 33–46, 2006.

A Applying the Standard SAA Method in Supplier Problems

Consider the standard two-stage stochastic setting. In the first stage, we are allowed to take
some proactive actions and commit to an anticipatory part of the solution x, which will incur
some cost c(x). In the second stage, a scenario A is sampled from the distribution D, and we
can take some stage-II recourse actions yA with cost fA(x, yA). If X is the set of stage-I actions
and Y the set of recourse actions, the goal is to find a solution x⋆ ∈ X to minimize f(x) =
c(x) + EA∼D[qA(x)], where qA(x) = miny∈Y {fA(x, y) | (x, y) is a valid solution for A}.

The Standard SAA Method. Consider minimizing f(x) in the black-box model. If S is
a set of scenarios sampled from the black-box oracle, let f̂(x) = c(x) +

(∑
A∈S qA(x)

)
/|S|

be the empirical estimate of f(x). Also, let x∗ and x̄ be the minimizers of f(x) and f̂(x)
respectively.

The work [21] shows that if f(x) is modeled as a convex program, then for any ϵ, γ ∈ (0, 1)
and with |S| = poly(n, m, λ, ϵ, 1/γ), we have f(x̄) ≤ (1 + ϵ)f(x∗) with probability at least
1 − γ (λ is the maximum multiplicative factor by which an element’s cost is increased in

APPROX/RANDOM 2021

http://arxiv.org/abs/2002.07463

23:18 Approximating Two-Stage Stochastic Supplier Problems

stage-II). An alternate proof of this appeared in [4], which also covered the case of f(x) being
an integer program. Moreover, [4] proves that if x̄ is an α-approximate minimizer of f̂(x),
then a slight modification to the sampling still gives f(x̄) ≤ (α + ϵ)f(x∗) with probability at
least 1− γ.

The result of [4] further implies that the black-box model can be effectively reduced to
the polynomial-scenarios one, via the following process. Assuming that f(x) corresponds
to the integer program modeling our problem, first find an α-approximate minimizer x̄ of
f̂(x), and treat x̄ as the stage-I actions. Then, given any arriving A, re-solve the problem
using any known ρ-approximation algorithm for the non-stochastic counterpart, with x̄ as a
fixed part of the solution. This process eventually leads to an overall approximation ratio of
αρ + ϵ.

Roadblocks for the Standard SAA Analysis in Supplier Problems. A natural way to fit
our models within the existing framework, is to first assume knowledge of the optimal radius
R∗ and then use the opening cost as the objective function fR∗(x), by turning the radius
requirement into a simple covering constraint. In other words, we set fR∗(x) = cI(x) +
EA∼D[qA,R∗(x)] with qA,R∗(x) = miny{cA(y) | (x, y) covers all j ∈ A within distance R∗}.
Note that fR∗(x) may represent both the convex and the integer program corresponding to
the underlying problem.

To avoid any overhead in the approximation ratio (from re-solving the problem in stage-II),
one should apply SAA to the function fR∗(x) corresponding to the convex program describing
the problem (the roadblock described here trivially extends to the case of fR∗(x) being an
integer function as well). If there exists a rounding that turns the empirical minimizer x̄R∗

into a solution that covers each client within distance αR∗, while also having an opening
cost of at most fR∗(x̄R∗), we get the desired result because fR∗(x̄R∗) ≤ (1 + ϵ)fR∗(x∗

R∗) and
fR∗(x∗

R∗) ≤ B. With slight modifications, all our polynomial-scenarios algorithms can be
interpreted as such rounding procedures.

Nonetheless, we still have to identify a good guess for R∗, and this constitutes an
unavoidable roadblock in applying standard SAA in supplier problems. Since R∗ is
one of nm alternative options, one can test each of those individually. Hence, assume we
work with some guess R, and define the corresponding cost functions fR, f̂R with minimizers
x∗

R, x̄R respectively. Observe that R is a good guess iff fR(x∗
R) ≤ (1 + O(ϵ))B, since in

this way vanilla SAA combined with our rounding procedures yields an opening cost of
fR(x̄R) ≤ (1 + ϵ)fR(x∗

R), and minimizing over the radius is just a matter of finding the
minimum good guess. However, because fR(x) is not efficiently computable, the only way
to test if R is a good guess, is through f̂R(x). Unfortunately, empirically estimating fR(x)
within an (1 + ϵ) factor may require a super-polynomial number of samples [12]. The reason
for this is the existence of scenarios with high stage-II cost appearing with small probability,
which drastically increase the variance of f̂R(x). On a high level, the obstacle in supplier
problems stems from the need to not only find a minimizer x̄R, but also compute
its corresponding value fR(x̄R). This makes it impossible to know which guesses R are
good, and consequently there is no way to optimize over the radius.

Finally, note that if the stage-II cost of every scenario is polynomially bounded, the
variance of f̂R(x) is also polynomial, and standard SAA arguments go through without
difficulties. However, this assumption is much stronger than is typically used for the two-stage
stochastic model.

B. Brubach et al. 23:19

B Auxiliary Lemmas

▶ Lemma 20 ([6]). Let X1, . . . , XK be non-negative independent random variables, with
expectations µ1, . . . , µK respectively, where µk ≤ 1 for every k. Let X =

∑K
k=1 Xi, and let

µ =
∑K

k=1 µi = E[X]. Then for every δ > 0 we have Pr[X < µ + δ] ≥ min{ δ
1+δ , 1

13}.

The two following lemmas are standard Chernoff bounds.

▶ Lemma 21. Let X1, X2, . . . , XK be independent random variables with Xk ∈ [0, 1] for every
k. For X =

∑K
k=1 Xk with µ = E[X] and any δ > 0, we have Pr[X ≤ (1− δ)µ] ≤ e

−µδ2
2 .

▶ Lemma 22. Let X1, X2, . . . , XK be independent Bernoulli random variables with parameter
p. Let X =

∑K
k=1 Xk the corresponding binomial random variable. If for the realization of

X we have X = qK, then for any δ > 0 we have Pr[p < q − δ] ≤ e−Kδ2/2p

C Approximation Algorithm for 2S-MuSup-BB

To tackle this, we construct an efficiently generalizable algorithm for 2S-MuSup-Poly, via
an intriguing reduction to a non-stochastic clustering problem with outliers. Specifically, if
we view stage-I as consisting of a deterministic robust problem, stage-II is interpreted as
covering all outliers left over by stage-I. Formally, we use the following robust problem:

Robust Weighted Multi-Knapsack-Supplier. We are given a set of clients C and a set of
facilities F , in a metric space with distance function d. The input also includes parameters
V, R ∈ R≥0, and for every client j ∈ C an associated weight vj ∈ R≥0. In addition, we have
the same types of multi-knapsack constraints as in 2S-MuSup: there are L in total budgets
Wℓ, and every facility i ∈ F has costs f ℓ

i for ℓ ∈ [L]. The goal is to choose a set of facilities
S ⊆ F , such that

∑
j∈C:d(j,S)>R vj ≤ V and f ℓ(S) ≤ Wℓ for every ℓ ∈ [L]. Clients j with

d(j, S) > R are called outliers. Finally, an instance of this problem is called discrete, if the
values f ℓ

i are all integers.

We first show that any ρ-approximation for Robust Weighted Multi-Knapsack-
Supplier can be used in order to get an efficiently generalizable (ρ + 2)-approximation
algorithm for 2S-MuSup-Poly. In addition, we argue that already existing work [3, 15]
gives a 3-approximation for discrete instances of Robust Weighted Multi-Knapsack-
Supplier, thus leading to an efficiently generalizable 5-approximation for discrete instances
of 2S-MuSup-Poly.

C.1 Reducing 2S-MuSup-Poly to Robust Weighted
Multi-Knapsack-Supplier

We first suppose that the costs cI
i are polynomially bounded integers, and claim that this

restriction will be removed when we generalize to the black-box setting. Once more, let Q be
a set of provided scenarios, R a target radius, and Gj = Gj,R, iA

j = iA
j,R for all j ∈ C and

A ∈ Q. Furthermore, suppose that we have a ρ-approximation algorithm RW for Robust
Weighted Multi-Knapsack-Supplier. For a feasible instance I′ of the latter problem,
RW returns a solution S satisfying all knapsack constraints and also

∑
j∈C:d(j,S)>ρR vj ≤ V .

Otherwise, it either returns “INFEASIBLE”, or again a solution with the previous properties.
If the provided instance I of 2S-MuSup-Poly is feasible, the first step in tackling the

problem is figuring out the portion of the budget, say BI , that is used in the first stage of a

APPROX/RANDOM 2021

23:20 Approximating Two-Stage Stochastic Supplier Problems

Algorithm 7 Approximation Algorithm for 2S-MuSup-Poly.

Let gII : C 7→ [n] be some fixed and given bijective mapping;
for each scenario A ∈ Q do

(HA, πA)← GreedyCluster(A, R, gII);
end
Construct instance I′ of Robust Weighted Multi-Knapsack-Supplier as
discussed;

if RW (I′) = “INFEASIBLE” then
Return “INFEASIBLE”;

end
FI ← RW (I′); // Stage-I facilities
for each scenario A ∈ Q do

FA ← {iA
j | j ∈ HA with d(j, FI) > ρR}; // Stage-II facilities

end

feasible solution. Since the costs cI
i are polynomially bounded integers, we can guess BI in

polynomial time through solving the problem for all different alternatives for it. So from this
point on, assume w.l.o.g. that we have the correct BI , and also let BII = B −BI .

Algorithm 7 shows how to use RW to approximate 2S-MuSup-Poly. It begins with
greedy clustering steps for each A, and given HA, πA it constructs an instance I′ of Robust
Weighted Multi-Knapsack-Supplier as follows. C, F , d, and R are the same for both
problems. For all j ∈ C we set vj =

∑
A∈Q:j∈HA

pA · cA
iA

j

and also V = BII . Finally, the
instance I′ has L′ = L + 1 knapsack constraints, where the first L are the stage-I constraints
of 2S-MuSup-Poly (f ℓ(S) ≤Wℓ), and the last is cI(S) ≤ BI .

▶ Lemma 23. If the original 2S-MuSup-Poly instance I is feasible, then the Robust
Weighted Multi-Knapsack-Supplier instance I′ is also feasible.

Proof. Consider some feasible solution F ⋆
I , F ∗

A for 2S-MuSup-Poly. We claim that F ⋆
I is a

valid solution for I′. It clearly satisfies the L knapsack constraints of the form f ℓ(F ∗
I) ≤Wℓ,

and if our guess BI is the right one, it also satisfies cI(F ⋆
I) ≤ BI . Now, for any A ∈ Q, any

client j ∈ HA with d(j, F ⋆
I) > R must be covered by some facility xA

j ∈ Gj ∩ F ⋆
A. Since BII

is the second-stage portion of the budget used by F ⋆
I , F ∗

A, and Gj′ ∩Gj′′ = ∅ for all distinct
j′, j′′ ∈ HA we have:

BII ≥
∑

A

pA

∑
i∈F ⋆

A

cA
i ≥

∑
A

pA

∑
j∈HA:

d(j,F ⋆
I)>R

cA
xA

j
≥

∑
A

pA

∑
j∈HA:

d(j,F ⋆
I)>R

cA
iA

j
=

∑
j∈C:

d(j,F ⋆
I)>R

vj

This implies that S = F ⋆
I satisfies the constraint

∑
j:d(j,S)>R vj ≤ BII of instance I′. ◀

▶ Theorem 24. Algorithm 7 is a valid (ρ + 2)-approximation for 2S-MuSup-Poly.

Proof. First of all, Lemma 23 guarantees that if the given instance of 2S-MuSup-Poly is
feasible, we will get a solution FI , FA. By specification of RW , cI(FI) ≤ BI and f ℓ(FI) ≤Wℓ

for every ℓ. The stage-II cost CII of this solution is given by:

CII =
∑

A

pA

∑
j∈HA:

d(j,FI)>ρR

cA
iA

j
=

∑
j∈C:

d(j,FI)>ρR

vj ≤ BII ,

B. Brubach et al. 23:21

Algorithm 8 Generalization Procedure for 2S-MuSup-Poly.

Input : Returned sets FI , FA : A ∈ Q and inner execution details of Algorithm 7
Let s̄ the strategy we will define, and for the stage-I actions set F s̄

I ← FI ;
Suppose scenaio A arrived in the second stage;
(HA, πA)← GreedyCluster(A, R, gII), where gII the bijective function used in

Algorithm 7;
Open the set F s̄

A ← {iA
j | j ∈ HA and d(j, FI) > ρR};

where the last inequality follows because FI is the output of RW (I′).
Consider now a j ∈ A for some A ∈ Q. The distance of j to its closest facility will be

at most d(πA(j), FI ∪ FA) + d(j, πA(j)). Since πA(j) ∈ HA, there will either be a stage-I
open facility within distance ρR from it, or we perform a stage-II opening in Gπ(j), which
results in a covering distance of at most R. Also, by the greedy clustering step, we have
d(j, πA(j)) ≤ 2R. So in the end we get d(j, FI ∪ FA) ≤ (ρ + 2)R. ◀

By combining Algorithm 7 with existing 3-approximation algorithms for Robust
Weighted Multi-Knapsack-Supplier, we get the following result:

▶ Theorem 25. There is a 5-approximation algorithm for discrete instances of 2S-MuSup-
Poly, where additionally all cI

i are polynomially bounded integers. The runtime of it is
poly(n, m, Λ).

Proof. The results of [3] give a 3-approximation for discrete instances of Robust Weighted
Multi-Knapsack-Supplier, when vj = 1 for all j. The work of [15] extends this to
allow arbitrary vj values. Note that by our assumption that the values cI are polynomially
bounded integers, the instance I′ is discrete, and hence the algorithm of [15] can be utilized
in Algorithm 7 and give a 5-approximation for 2S-Sup-Poly. Finally, given the results in
[3, 15], the runtime of the whole process will be poly(n, m, Λ). ◀

C.2 Generalizing to the Black-Box Setting
Since the algorithm of Section C.1 is a valid (ρ + 2)-approximation, consider the process in
Algorithm 8, which efficiently extends its output to any arriving scenario A ∈ D.

Because Algorithm 8 exactly mimics the stage-II actions of Algorithm 7, it is easy to
see that property II is satisfied. Further, the arguments of Theorem 24 would still ensure
d(j, FI ∪ FA) ≤ (ρ + 2)R for every j ∈ A and A ∈ D, thus guaranteeing property I. To
conclude, we again only need to prove property III. Let SMK the set of strategies achievable
via Algorithm 8.

▶ Lemma 26. Algorithm 7 satisfies property III with |SMK | = 2m.

Proof. The returned final strategy depends solely on the set FI . Given that, we can exactly
determine all possible stage-II openings, since every HA for A ∈ D can be computed using
the fixed function gII . There are 2m choices for FI , and therefore |SMK | = 2m. Finally, it is
easy to see that the set SMK is independent of Q . ◀

Our algorithm for 2S-MuSup-Poly requires the values cI
i to be polynomially bounded

integers. As we show next, this assumption can be removed by a standard rescaling trick:

APPROX/RANDOM 2021

23:22 Approximating Two-Stage Stochastic Supplier Problems

▶ Theorem 27. Suppose that the cI
i are arbitrary numbers. By appropriate cost-quantization

for any ϵ ∈ (0, 1), Algorithm 7 can be modified to give a solution FI , FA : A ∈ Q for 2S-
MuSup-Poly, where d(j, FI ∪ FA) ≤ (ρ + 2)R for all A ∈ Q, j ∈ A, and also cI(FI) +∑

A∈Q pAcA(FA) ≤ (1 + ϵ)B.

Proof. For convenience, let us assume that B = 1, and suppose that all facilities have
cI

i ≤ B = 1 (as otherwise they can never be opened). Given some ϵ > 0, let us define
q = ϵ/m, and form new costs by c̃I

i = ⌈cI
i /q⌉, c̃A

i = cA
i /q, B′ = B(1 + ϵ)/q. The costs c̃I

i are
at most ⌈1/q⌉, and hence are polynomially-bounded integers. Therefore, the reduction of
Section C.1 can be applied.

Suppose now that FI , FA is a solution to the original instance of 2S-MuSup-Poly, with
opening cost at most B. For the modified cost of this solution we then have:

c̃I(FI) +
∑

A

pAc̃A(FA) ≤ (cI(FI) +
∑

A

pAcA(FA))/q +
∑
i∈F

1 ≤ B/q + m ≤ B′

Thus, FI , FA is also a solution to the modified instance, implying that the latter is feasible.
Hence, consider any solution F̃I , F̃A to the modified instance, that we would get after
running Algorithm 7 with the new costs; its opening cost in the original instance is cI(F̃I) +∑

A pAcA(F̃A) ≤ qc̃I(F̃I) + q
∑

A pAc̃A(F̃A) ≤ qB′ = B(1 + ϵ). Therefore, since F̃I , F̃A is a
(ρ + 2)-approximate solution, we get the desired result. ◀

Note that applying our generalization framework on this solution would make the overall
cost over D be at most (1 +O(ϵ))(1 + ϵ)B = (1 +O(ϵ))B, which implies that in the black-box
setting we do not need the initial assumption for the costs cI

i .

C.3 Connections to 2S-MatSup
Suppose we define our non-stochastic robust problem as having one knapsack and one matroid
constraint, instead of L knapsack constraints. Then the reduction of Section C.1 would yield
a (ρ + 2)-approximation for 2S-MatSup-Poly in the exact same manner, where ρ the ratio
of the algorithm used to solve the corresponding deterministic outliers problem.

A result of [3, Theorem 16] gives a 3-approximation for this outliers problem, which in
turn would give a 5-approximation for 2S-MatSup-Poly. However, the algorithm obtained
in this way would be randomized (its solution may not be a valid one), would only work
for polynomially bounded values vj , and would also be significantly more complex than the
algorithm of Section 4.

Fast Approximation Algorithms for Bounded
Degree and Crossing Spanning Tree Problems
Chandra Chekuri #

University of Illinois at Urbana-Champaign, IL, USA

Kent Quanrud #

Purdue University, West Lafayette, IN, USA

Manuel R. Torres #

University of Illinois at Urbana-Champaign, IL, USA

Abstract
We develop fast approximation algorithms for the minimum-cost version of the Bounded-Degree
MST problem (BD-MST) and its generalization the Crossing Spanning Tree problem (Crossing-
ST). We solve the underlying LP to within a (1 + ϵ) approximation factor in near-linear time
via the multiplicative weight update (MWU) technique. This yields, in particular, a near-linear
time algorithm that outputs an estimate B such that B ≤ B∗ ≤ ⌈(1 + ϵ)B⌉ + 1 where B∗ is the
minimum-degree of a spanning tree of a given graph. To round the fractional solution, in our main
technical contribution, we describe a fast near-linear time implementation of swap-rounding in the
spanning tree polytope of a graph. The fractional solution can also be used to sparsify the input
graph that can in turn be used to speed up existing combinatorial algorithms. Together, these ideas
lead to significantly faster approximation algorithms than known before for the two problems of
interest. In addition, a fast algorithm for swap rounding in the graphic matroid is a generic tool
that has other applications, including to TSP and submodular function maximization.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Graph algorithms analysis

Keywords and phrases bounded degree spanning tree, crossing spanning tree, swap rounding, fast
approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.24

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2011.03194v2 [19]

Funding Chandra Chekuri: Supported in part by NSF grant CCF-1910149.
Manuel R. Torres: Supported in part by fellowships from NSF and the Sloan Foundation, and NSF
grant CCF-1910149.

1 Introduction

Spanning trees in graphs are a fundamental object of study and arise in a number of settings.
Efficient algorithms for finding a minimum-cost spanning tree (MST) in a graph are classical.
In a variety of applications ranging from network design, TSP, phylogenetics, and others, one
often seeks to find a spanning tree with additional constraints. An interesting and well-known
problem in this space is the Bounded-Degree Spanning Tree (BD-ST) problem in
which the goal is to find a spanning tree in a given graph G = (V, E) that minimizes the
maximum degree in the tree. We refer to the minimum-cost version of BD-ST as BD-MST
where one seeks a spanning tree of minimum cost subject to a given degree bound B on the
vertices. The decision version of BD-ST (Given G, B is there a spanning tree with maximum
degree B?) is already NP-Complete for B = 2 since it captures the Hamilton-Path problem.
In an influential paper, Fürer and Raghavachari [24], building on earlier work of Win [49],

© Chandra Chekuri, Kent Quanrud, and Manuel R. Torres;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 24; pp. 24:1–24:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
mailto:krq@purdue.edu
mailto:manuelt2@illinois.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.24
https://arxiv.org/abs/2011.03194v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Fast Bounded-Degree and Crossing Spanning Trees

described a simple local-search type algorithm that runs in Õ(mn) time (here m is number
of edges and n number of nodes) that outputs a spanning tree with degree at most B + 1, or
certifies that G does not have a spanning tree with degree at most B (we use Õ notation
to suppress poly-logarithmic factors in n, m, 1/ϵ for notational simplicity). Their algorithm,
in fact, works even in the non-uniform setting where each vertex v has a specified degree
bound Bv. The Fürer-Raghavachari result spurred a substantial line of work that sought to
extend their clean result to the minimum-cost setting. This was finally achieved by Singh
and Lau [43] who described a polynomial-time algorithm that outputs a tree T such that
the degree of each v in T is at most Bv + 1 and the cost of the tree is at most OPT. Their
algorithm is based on iterative rounding of a natural LP relaxation. We refer the reader to
[35, 13, 28, 43, 22] for several ideas and pointers on BD-ST and BD-MST.

Motivated by several applications, Bilo et al. [9] defined the Crossing Spanning
Tree problem (Crossing-ST). In Crossing-ST the input is a graph G = (V, E), a
collection of cuts C1, C2, . . . , Ck, and integers B1, B2, . . . , Bk. Each cut Ci is a subset of
the edges though in many applications we view Ci as δG(Si) for some Si ⊂ V (where
δG(Si) = {uv ∈ E | u ∈ Si, v ∈ V \ Si} is the standard definition of a cut set with respect to
Si). The goal is to find a spanning tree T such that |E(T)∩Ci| ≤ Bi, that is, T crosses each cut
Ci at most Bi times. It is easy to see that BD-ST is a special case of Crossing-ST where the
cuts correspond to singletons. We refer to the min-cost version of Crossing-ST as Crossing-
MST. Crossing-ST gained substantial prominence in the context of the asymmetric traveling
salesman problem (ATSP) – Asadpour et al. [5] showed the importance of thin spanning trees
for approximating ATSP and obtained an O(log n/ log log n)-approximation (now we have
constant factor approximations for ATSP via other methods [46, 47]). Motivated by the thin
tree conjecture and its applications to ATSP (see [5, 2]) and other technical considerations,
researchers have studied Crossing-ST, its generalization to the matroid setting, and various
special cases [20, 8, 7, 37, 36]. The best known approximation algorithms for Crossing-ST
and its special cases have mainly relied on the natural LP relaxation. For general Crossing-
ST the best know approximation ratio is min{O(log k/ log log k), (1 + ϵ)B + O(log k/ϵ2)}. A
variety of sophisticated and interesting rounding techniques have been designed for Crossing-
ST and its special cases. An outstanding open problem is whether Crossing-ST admits
a constant factor approximation via the natural LP relaxation. This is challenging due its
implications for the thin tree conjecture.

Most of the focus on BD-MST and Crossing-ST has been on the quality of the
approximation. The best known approximaton bounds rely on LP relaxations and complex
rounding procedures. The overall running times are very large polynomials in the input size
and are often unspecified. In this paper we are interested in the design of fast approximation
algorithms for BD-MST, Crossing-ST and related problems. In recent years there has been
significant progress in designing fast, and often near-linear time, approximation algorithms
for a number of problems in discrete and combinatorial optimization. This has been led
by, and also motivated, synergy between continuous/convex optimization, numerical linear
algebra, dynamic data structures, sparsification techniques, and structural results, among
several others. For BD-ST with uniform degree, Duan, He and Zhang [22] described a
combinatorial algorithm that for any given ϵ > 0, runs in O(m log7 n/ϵ7) time, and either
outputs a spanning tree with degree (1 + ϵ)B + O(log n/ϵ2) or reports that there does not
exist a tree with maximum degree ≤ B. This paper is partly motivated by the goal of
improving their results: dependence on ϵ, a better approximation, handling non-uniform
bounds, cost, Crossing-MST, and connection to the LP relaxation.

C. Chekuri, K. Quanrud, and M. R. Torres 24:3

A second motivation for this paper is to develop a fast algorithm for swap-rounding in the
spanning tree polytope. It is a dependent rounding technique that has several applications
ranging from TSP to submodular function maximization (see [20, 26, 17, 23]). The question
of developing a fast swap-rounding procedure for spanning trees was explicitly raised in [17]
in the context of Metric-TSP.

1.1 Results
In this paper we develop fast approximation algorithms for BD-MST, Crossing-MST and
related problems in a unified fashion via broadly applicable methodology based on the LP
relaxation. We consider the following problem with general packing constraints. The input to
this problem is an undirected graph G = (V, E), a non-negative edge-cost vector c : E → R+,
a non-negative matrix A ∈ [0, 1]k×m, and a vector b ∈ [1,∞)k. The goal is to find a spanning
tree T of minimum cost such that A1T ≤ b where 1T ∈ {0, 1}m is the characteristic vector
of the edge set of T . This is a special case of a more general problem considered in [20]:
min-cost matroid base with packing constraints. Here we restrict attention to spanning trees
(graphic matroid). We refer to this slightly more general problem also as Crossing-MST.

Our first result is a near-linear time algorithm to approximately solve the underlying
LP relaxation for Crossing-MST. For a multigraph G we let T (G) denote the set of all
spanning trees of G and let ST(G) denote the spanning tree polytope of G (which is the
convex hull of the characteristic vectors {1T | T ∈ T (G)}).

▶ Theorem 1. Let G = (V, E) be a multigraph with m edges and n nodes and consider the
linear program min{cT x : Ax ≤ b, x ∈ ST(G)} where A ∈ [0, 1]k×m, b ∈ [1,∞)k, c ∈ [0,∞)m.
Let N be the maximum of m and number of non-zeroes in A. There is a randomized
polynomial time algorithm that for any given ϵ ∈ (0, 1/2] runs in Õ(N/ϵ2) time and with high
probability either correctly certifies that the LP is infeasible or outputs a solution y ∈ ST(G)
such that cT y ≤ (1 + ϵ)OPT and Ay ≤ (1 + ϵ)b where OPT is the minimum value of a feasible
solution.

▶ Remark 2. We describe a randomized algorithm for the sake of simplicity, however we
believe that a deterministic algorithm with similar guarantees can be obtained via ideas
in [16].

Solving the LP relaxation quickly enables to estimate the optimum integer solution value
via existing rounding results [43, 20, 8, 7, 37, 36]. For instance, when specialized to BD-ST,
we obtain a near-linear time algorithm to estimate the optimum value arbitrarily closely
(modulo the addditive 1).

▶ Corollary 3. There is a randomized Õ(m/ϵ2)-time algorithm that outputs a value B such
that B ≤ B∗ ≤ ⌈(1 + ϵ)B⌉+ 1 where B∗ is the minimum maximum degree over all spanning
trees (that is, B∗ = minT ∈T (G) maxv∈V degT (v) where degT (v) is the degree of v in T).

Our second result shows the utility of the LP solution to sparsify the original graph G.

▶ Theorem 4. Let x ∈ ST(G) be such that Ax ≤ b for a matrix A ∈ [0, 1]k×m and b ∈ [1,∞)k.
Consider a random subgraph G′ = (V, E′) of G obtained by picking each edge e ∈ G with
probability αe := min{1, 36 log(k+m)

ϵ2 · xe}. Then with high probability the following hold: (i)
|E′| = O(n ln(k + m)/ϵ2) (ii) there exists a fractional solution z ∈ ST(G) in the support of
G′ such that Az ≤ (1 + 3ϵ)b.

One can run a combinatorial algorithm such as the Fürer-Raghavchari algorithm [24] on
the sparse graph rather than on the original graph G. This yields the following corollary
which improves the Õ(mn) running time substantially when G is dense.

APPROX/RANDOM 2021

24:4 Fast Bounded-Degree and Crossing Spanning Trees

▶ Corollary 5. There is a randomized algorithm for BD-ST that given a graph G on n nodes
runs in Õ(n2/ϵ2) time, and with high probability outputs a spanning tree T with maximum
degree ⌈(1 + ϵ)B∗⌉+ 2 where B∗ is the optimal degree bound.

▶ Remark 6. Corollaries 3 and 5 can be generalized to the non-uniform degree version of
BD-ST. Input is G and degree bounds Bv, v ∈ V , and the algorithm either decides that
there is no spanning tree satisfying the degree bounds or outputs a tree that approximately
satisfies them.

Our final result is a fast algorithm to round the LP solution. Several different rounding
strategies have been developed for BD-MST and Crossing-MST and they yield different
guarantees and take advantage of the special structure of the given instance. Iterated
rounding has been one of the primary and powerful techniques, however it requires basic
feasible solutions to the LP relaxation; it seems far from obvious how to obtain fast algorithms
with comparable guarantees and is a challenging open problem. We are here interested
in oblivious randomized rounding strategies that take a point x ∈ ST(G) and round it
to a random spanning tree T ∈ T (G) such that the coordinates of the resulting random
edge vector are negatively correlated1. Negative correlation implies concentration for linear
constraints as shown by Panconesi and Srinivasan [38]. These strategies, when combined
with the LP solution, yield bicriteria approximation algorithms for Crossing-MST of the
form (1 + ϵ, min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2}) where the first part is the
approximation with respect to the cost and the second part with respect to the packing
constraints. For Crossing-ST and Crossing-MST these are currently the best known
approximation ratios (although special cases such as BD-MST admit much better bounds).
Several dependent randomized rounding techniques achieving negative correlation in the
spanning tree polytope are known: maximum entropy rounding [5], pipage rounding and
swap rounding [20]. These rounding techniques generally apply to matroids and have several
other applications. In this paper we show that given x ∈ ST(G), one can swap-round x to
a spanning tree in near-linear time provided it is given in an implicit fashion; alternately
one can obtain an implicit approximate representation x′ of x and then apply an efficient
swap-rounding on x′. Since swap-rounding is a flexible procedure and does not generate a
unique distribution, a precise technical statement requires more formal notation and we refer
the reader to Section 3. Here we state a theorem in a general form so that it can be used in
other contexts.

▶ Theorem 7. Let G = (V, E) be a multigraph with m edges and let x ∈ [0, 1]m. For any
ϵ ∈ (0, 1/2) there is a randomized algorithm that runs in Õ(m/ϵ2) time and either correctly
decides that x ̸∈ ST(G) or outputs a random vector T = (X1, X2, . . . , Xm) ∈ {0, 1}m such
that (i) T is the characteristic vector of a spanning tree of G (ii) E[Xi] ≤ (1 + ϵ)xi for
1 ≤ i ≤ m and (iii) X1, X2, . . . , Xm are negatively correlated. In particular T is obtained as
a swap-rounding of a vector y such that y ≤ (1 + ϵ)x.

Combining Theorems 1 and 7 and existing results on swap rounding [20] we obtain the
following. The approximation ratio matches the best known for Crossing-MST and the
algorithm runs in near-linear time.

1 A collection of {0, 1} random variables X1, X2, . . . , Xr are negatively correlated if, for all subsets S ⊆ [r],
E[

∏
i∈S

Xi] ≤
∏

i∈S
E[Xi] and E[

∏
i∈S

(1 − Xi)] ≤
∏

i∈S
(1 − E[Xi]).

C. Chekuri, K. Quanrud, and M. R. Torres 24:5

▶ Corollary 8. For the feasibility version of Crossing-MST, there is a randomized algorithm
that runs in near-linear time and outputs a spanning tree T such that

A1T ≤ min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2}

with high probability. For the cost version of Crossing-MST, there is a randomized algorithm
that outputs a

(1 + ϵ, min{O(log k/ log log k)bi, (1 + ϵ)bi + O(log k)/ϵ2})

bicriteria approximation with probability Ω(ϵ). After Õ(1/ϵ) independent repetitions of this
algorithm, we can obtain the same guarantees with high probability.

Our algorithm, when specialized to BD-ST and BD-MST is more general than the one
in [22] in terms of handling cost and non-uniform degrees. In addition we obtain a very close
estimate of B∗, a much better dependence on ϵ, and also obtain an approximation of the
form O(log n/ log log n)B∗ which is better than (1 + ϵ)B∗ + O(log n)/ϵ2 for small B∗.

We mainly focused on BD-MST and a high-level result for Crossing-MST. One can
obtain results for related problems that involve multiple costs, lower bounds in addition to
upper bounds, and other applications of swap-roundings. We discuss these in more detail in
Section A.

1.2 Overview of main ideas
Faster approximation algorithms for LPs that arise in combinatorial optimization have been
developed via several techniques. We follow a recent line of work [16, 18, 39, 14] that utilizes
features of the multiplicative weight update (MWU) method and data structures to speed
up implicit LPs. In particular, the LP for Crossing-MST that we seek to solve can be
addressed by the randomized MWU algorithm from [18] and data structures for dynamic
MST [29]. The overall approach follows some ideas from past work [16]. The sparsification
result is inspired by recent applications of similar ideas [16, 15, 11] and utilizes Karger’s
theorem on random sampling for packing disjoint bases in matroids [30].

Our main novel contribution is Theorem 7 which we believe is of independent interest
beyond the applications outlined here. Dependent randomized rounding techniques have had
many spectacular applications. In particular maximum entropy rounding in the spanning
tree polytope gave a strong impetus to this line of work via its applications to ATSP [5] and
metric-TSP [27]. Swap-rounding is a simpler scheme to describe and analyze, and suffices for
several applications that only require negative correlation. However, all the known dependent
rounding schemes are computationally expensive. Recent work has led to fantastic progress
in sampling spanning trees [4], however the bottleneck for maximum entropy rounding is to
compute, from a given point x ∈ ST(G), the maximum entropy distribution with marginals
equal to x; polynomial time (approximation) algorithms exist for this [5, 44] but they are
rather slow. Swap-rounding [20] requires one to decompose x ∈ ST(G) (or more generally a
point in the matroid base polytope) into a convex combination of spanning trees; that is
we write x =

∑
T ∈T λT1T such that

∑
T λT = 1 and λT ≥ 0, T ∈ T . This is a non-trivial

problem to do exactly. The starting point here is a theorem in [16] that shows that one can
solve this decomposition problem approximately and deterministically in near-linear time via
a reduction to the problem of spanning tree packing; this is done via MWU techniques. The
near-linear time algorithm implies that any x ∈ ST(G) can be decomposed efficiently into an
implicit convex decomposition of total size Õ(m/ϵ2) where ϵ is the approximation parameter
in the decomposition. To store the convex combination

∑h
i=1 λi1Ti

implicitly, we store the

APPROX/RANDOM 2021

24:6 Fast Bounded-Degree and Crossing Spanning Trees

first tree T1 explicitly and to obtain Ti+1 from Ti for i ∈ [h− 1], we store the edges in the
symmetric difference of Ti+1 and Ti. The size of the decomposition is then the sum of the sizes
of the symmetric differences and the size of T1. We give a more formal definition of an implicit
decomposition in Section 3.2. We show in this paper that this implicit sparse decomposition
is well-suited to the swap-rounding algorithm. We employ a divide-and-conquer strategy
with appropriate tree data structures to obtain an implementation that is near-linear in the
size of the implicit decomposition. Putting these ingredients together yields our result.2

The seemingly fortuitous connection between the MWU based algorithm for packing
spanning trees and its implicit representation leading to a fast algorithm for swap-rounding
is yet another illustration of the synergy between tools coming together in the design of fast
algorithms.

1.3 Other related work

We overview some known results on Crossing-ST and Crossing-MST and special cases.
BD-MST can be viewed as a special case of Crossing-MST where each edge participates in
2 constraints. Bansal et al. [8] showed that if each edge participates in at most ∆ constraints
of A (and A is a binary matrix) then one can obtain a (1, b+∆−1)-approximation generalizing
the BD-MST result; this was further extended to matroids by Lau, Kiraly and Singh [33].
It is shown in [7] that for Crossing-ST one cannot obtain a purely additive approximation
better than O(

√
n) via the natural LP relaxation. For this they use a reduction from

discrepancy minimization; it also implies, via the hardness result in [12] for discrepancy,
that it is NP-Hard to obtain a purely additive o(

√
n) bound. Bansal et al. [7] consider

the laminar case of Crossing-MST where the cuts form a laminar family and obtained
a (1, b + O(log n)) approximation via iterative rounding (this problem generalizes BD-
MST). Olver and Zenklusen [37] consider chain-constrained Crossing-ST which is a further
specialization when the laminar family is a chain (a nested family of cuts). For this special
case they obtained an O(1)-factor approximation in the unit cost setting; Linhares and
Swamy [36] considered the min-cost version and obtained an (O(1), O(1))-approximation.
[37] also showed that even in the setting of chain-constrained Crossing-ST, it is NP-Hard
to obtain a purely additive bound better than c log n/ log log n for some fixed constant c.

Dependent randomized rounding has been an active area of research with many applica-
tions. Pipage rounding, originally devoped by Ageev and Sviridenko [1] in a deterministic
way, was generalized to the randomized setting by Srinivasan [45] and by Gandhi et al. [25]
and [10, 20] and has led to a number of applications. Maximum entropy rounding satisfies
additional properties beyond negative correlation and this is important in applications to
metric-TSP (see [27] and very recent work [31, 32]). There has been exciting recent progress
on sampling spanning trees and bases in matroids and we refer the reader to some recent
work [41, 3, 4] for further pointers. Concentration bounds via dependent rounding can also
be obtained without negative correlation (see [21] for instance) and recent work of Bansal [6]
combines iterative rounding with dependent rounding in a powerful way.

2 In an earlier version of the paper (see [19]) we described our fast swap rounding using two ideas. The
first was a fast near-linear time algorithm to merge two spanning trees using the link-cut tree data
structure. We were unaware of prior work of Ene and Nguyễn [23] that had already given such an
algorithm in the context of fast algorithms for submodular function maximization in graphic matroids.
In this version of the paper we use their algorithm as a black box. We focus on our second idea which
exploits the implicit representation. We thank Alina Ene and Huy Nguyễn for pointing out to us their
fast algorithm for merging two trees.

C. Chekuri, K. Quanrud, and M. R. Torres 24:7

Fast approximation algorithms for solving positive LPs and SDPs has been an extensive
area of research starting from the early 90s. Lagrangean relaxation techniques based on
MWU and other methods have been extensively studied in the past, and continue to provide
new insights and results for both explicit and implicit problems. Recent work based on
a convex optimization perspective has led to a number of new results and improvements.
It is infeasible to do justice to this extensive research area and we refer the reader to two
recent PhD theses [40, 48]. Spectacular advances in fast algorithms based on the Laplacian
paradigm, interior point methods, cutting plane methods, spectral graph theory, and several
others have been made in the recent past and is a very active area of research with frequent
ongoing developments.

Organization

Section 2 introduces some relevant notation, technical background and tree data structures
that we rely on. Section 3 describes our fast swap-rounding algorithm and proves Theorem 7.
Section 4 describes the sparsification process of Theorem 4. Section 5 discusses the LP
relaxation for Crossing-ST and Theorem 1. Section A brings together results from previous
sections to prove some of the corollaries stated in the introduction and provides details of
some extensions and related problems.

2 Preliminaries and notation

For a set S, we use the convenient notation S − i to denote S \ {i} and S + i to denote
S ∪ {i}.

Matroids

We discuss some basics of matroids to establish some notation as well as present some useful
lemmas that will be used later. A matroid M is a tuple (N, I) with I ⊆ 2N satisfying
the following three properties: (1) ∅ ∈ I, (2) if A ∈ I and B ⊆ A, then B ∈ I, and (3) if
A, B ∈ I such that |A| < |B| then there exists b ∈ B \A such that A + b ∈ I. We refer to
the sets in I as independent sets and say that maximal independent sets are bases. The rank
of M is the size of a base. For a set A ∈ 2N , we refer to rM(A) = max{|S| : S ⊆ A, S ∈ I}
as the rank of A.

A useful notion that we utilize in our fast implementation of swap rounding is that of
contraction of a matroid. We say that the contraction of e in M results in the matroid
M/e = (N−e, {I ⊆ N−e : I+e ∈ I}) if rM({e}) = 1 andM/e = (N−e, {I ⊆ N−e : I ∈ I})
if rM({e}) = 0. This definition extends naturally to contracting subsets A ⊆ N . It can be
shown that contracting the elements of A in any order results in the same matroid, which we
denote as M/A.

The following statements are standard results in the study of matroids (e.g. see [42]).
The following theorem is important in the analysis of swap rounding. It is often called the
strong base exchange property of matroids.

▶ Theorem 9. Let M = (N, I) be a matroid and let B, B′ be bases. For e ∈ B \B′, there
exists e′ ∈ B′ \B such that B − e + e′ ∈ I and B′ − e′ + e ∈ I.

The next lemma shows that if one contracts elements of an independent set in a matroid,
bases in the contracted matroid can be used to form bases in the initial matroid.

APPROX/RANDOM 2021

24:8 Fast Bounded-Degree and Crossing Spanning Trees

▶ Lemma 10. Let M = (N, I) be a matroid and let A ∈ I. Let BA be a base in M/A.
Then A ∪BA is a base in M.

A forest data structure

We need a data structure to represent a forest that supports the necessary operations we
need to implement randomized swap rounding in Section 3. The data structure mainly needs
to facilitate the contraction of edges, including being able to recover the identity of the
original edges after any number of contractions. We enable this by enforcing that when
the data structure is initialized, every edge e is accompanied with a unique identifier. This
identifier will be associated with the edge regardless of the edge’s endpoints changing due to
contraction. The implementation of this step is important to guarantee a fast running time.

The data structure is initialized via the function init, which takes as input the vertices,
edges, and unique edge identifiers of the forest. init initializes an adjacency list A, stores a
mapping f of edges to their unique edge identifiers, and creates a disjoint-set data structure
R where every vertex initially is in its own set. The operation contract contracts an edge uv

in the forest by identifying the vertices u and v as the same vertex. This requires choosing u

or v to be the new representative (suppose we choose u without loss of generality), merging
the sets corresponding to u and v in R while making u the representative of the set in
R, and modifying the adjacency list A to reflect the changes corresponding to contracting
uv and making u the representative. After an edge is contracted, the vertex set changes.
We need to support the ability to obtain the edge identifier of an edge in the contracted
forest. The data structure maintains f under edge contractions and returns unique identifiers
with the operation orig-edge. Given an edge uv that was in the contracted forest at some
point in the past, we also need to support the ability to obtain the edge in the vertex
set of the current contracted forest. We do this using R, which stores all of the vertices
that have been contracted together in disjoint sets. This operation is supported by the
operation represented-edge. Finally, we can copy the graph via the operation copy, which
simply enumerates over the vertices, edges, and stored unique identifiers of the edges to
create a new data structure.

The following lemma formalizes the preceding description of the data structure. We leave
the formal details of a specific implementation and the proof of the following lemma for the
full version.

▶ Lemma 11. Let F = (V, E) be a forest and for all e ∈ E, let id(e) be the unique identifier
of e. The data structure can be initialized via a call to init in Õ(|V |) time. For i = 0, 1, . . . , k,
let Fi = (Vi, Ei) be the forest after i calls to contract, so F0 = F and Fk is the current state
of the forest. The data structure supports the following operations.

orig-edge(e): input is an edge e ∈ Ek. Output is the identifier id(e) that was provided
when e was added to the data structure. Running time is Õ(1).
represented-edge(e): input is two vertices u, v ∈ Vi for some i = 0, 1, . . . , k. Output is the
pair {ur, vr}, where ur and vr are the vertices in Vk that correspond to u and v in the
contracted forest Fk. Running time is O(1).
contract(uv, z ∈ {u, v}): input is two vertices u, v ∈ Vk. The operation contracts uv in
Ek, setting the new vertex in Fk+1 = (Vk+1, Ek+1) to be {u, v} \ {z}. The amortized
running time is Õ(degFk

(z)).
copy(): output is a forest data structure with vertices Vk and edges Ek along with the
stored edge identifiers. Running time is Õ(|Vk|).

C. Chekuri, K. Quanrud, and M. R. Torres 24:9

merge-bases(δ, B, δ′, B′)
while B \B′ ̸= ∅ do

e← arbitrary element of B \B′

e′ ← element of B′ \B such that B − e + e′ ∈ I and B′ − e′ + e ∈ I
b← 1 with probability δ

δ+δ′ and 0 otherwise
if b = 1 then

B ← B − e + e′

else
B′ ← B′ − e′ + e

end if
end while
return B

swap-round(δ1, B1, . . . , δh, Bh)
C1 ← B1
for k from 1 to h− 1 do

Ck+1 ← merge-bases(
∑k

i=1 δi, Ck, δk+1, Bk+1)
end for
return Ch

Figure 1 The randomized swap rounding algorithm from [20].

3 Fast swap rounding in the spanning tree polytope

Randomized swap rounding, developed in [20], is a dependent rounding scheme for rounding
a fractional point x in the base polytope of a matroid to a random base X. The rounding
preserves expectation in that E[X] = x, and more importantly, the coordinates of X are
negatively correlated. In this section we prove Theorem 7 on a fast algorithm for swap-
rounding in the spanning tree polytope. We begin by describing swap-rounding.

3.1 Randomized swap rounding
Let M = (N, I) be a matroid and let P be the base polytope of M (convex hull of the
characteristic vectors of the bases of M). Any x ∈ P can be written as a finite convex
combination of bases: x =

∑h
i=1 δi1Bi . Note that this combination is not necessarily unique.

As in [20], we give the original algorithm for randomized swap rounding via two routines. The
first is merge-bases, which takes as input two bases B, B′ and two real values δ, δ′ ∈ (0, 1). If
B = B′ the algorithm outputs B. Otherwise the algorithm finds a pair of elements e, e′ such
that e ∈ B \B′ and e′ ∈ B′ \B where B − e + e′ ∈ I and B′ − e′ + e ∈ I. For such e and
e′, we say that they are a valid exchange pair and that we swap e with e′. The existence of
such elements is guaranteed by the strong base exchange property of matroids in Theorem 9.
The algorithm randomly retains e or e′ in both bases with appropriate probability and this
increases the intersection size of B and B′. The algorithm repeats this process until B = B′.
The overall algorithm swap-round utilizes merge-bases as a subroutine and repeatedly merges
the bases until only one base is left. A formal description is in Figure 1 along with the
pseudocode for merge-bases.

It is shown in [20] that swap-rounding generates a random base/extreme point X ∈ P
(note that the extreme points of P are characteristic vectors of bases) such that E[X] = x

and the coordinates X1, X2, . . . , Xn (here |N | = n) are negatively correlated. We observe

APPROX/RANDOM 2021

24:10 Fast Bounded-Degree and Crossing Spanning Trees

that swap-rounding does not lead to a unique probability distribution on the bases (that
depends only x). First, as we already noted, the convex decomposition of x into bases is not
unique. Second, both merge-bases and swap-round are non-deterministic in their choices of
which element pairs to swap and in which order to merge bases in the convex decomposition.
The key property for negative correlation, as observed in [20], is to view the generation of
the final base B as a vector-valued martingale (which preserves expectation in each step)
that changes only two coordinates in each step. Another rounding strategy, namely pipage
rounding, also enjoys this property. Nevertheless swap-rounding is a meta algorithm that
has certain clearly defined features. The flexibility offered by merge-bases and swap-round
are precisely what allow for faster implementation in specific settings.

We say that B̄
d= merge-bases(δ, B, δ′, B′) if for some non-deterministic choice of valid

exchange pairs in the algorithm, B̄ is the random output of merge-bases(δ, B, δ′, B′). Similarly
we say that B

d= swap-round(δ1, B1, . . . , δh, Bh) if B is the random output of the swap-round
process for some non-deterministic choice of the order in which bases are merged and
some non-deterministic choices in the merging of bases. It follows from [20] that if B

d=
swap-round(δ1, B1, . . . , δh, Bh) then B satisfies the property that E[B] = x and coordinates
of B are negatively correlated.

3.2 Setup for fast implementation in graphs
Let G = (V, E) be a multigraph with |V | = n and |E| = m and let x ∈ ST(G) be a fractional
spanning tree. Swap rounding requires decomposing x into a convex combination of spanning
trees. This step is itself non-trivial; existing algorithms have a high polynomial dependence
on n, m. Instead we will settle for an approximate decomposition that has some very useful
features. We state a theorem (in fact a corollary of a theorem) from [16] in a slightly modified
form suitable for us.

▶ Theorem 12 (Paraphrase of Corollary 1.2 in [16]). Given a graph G = (V, E) with n = |V |
and m = |E| and a rational vector x ∈ [0, 1]m there is a deterministic polynomial-time
algorithm that runs in Õ(m/ϵ2) time and either correctly reports that x ̸∈ ST(G) or outputs
an implicit convex decomposition of z into spanning trees such that z ≤ (1 + ϵ)x.

The MWU algorithm behind the preceding theorem outputs a convex decomposition
of z =

∑h
i=1 δi1Ti

for h = Õ(m/ϵ2) but in an implicit fashion. It outputs T = T1 and a
sequence of tuples (δi, Ei, E′

i) where Ti+1 = Ti − Ei + E′
i for 1 ≤ i < h and has the property

that
∑h−1

i=1 (|Ei|+ |E′
i|) = Õ(m/ϵ2). Thus the convex decomposition of z is rather sparse and

near-linear in m for any fixed ϵ > 0. We will take advantage of this and swap-round z via this
implicit convex decomposition. For many applications of interest, including Crossing-MST,
the fact that we randomly round z instead of x does not make much of a difference in the
overall approximation since x itself in our setting is the output of an approximate LP solver.
▶ Remark 13. The output of the approximate LP solver based on MWU for Crossing-MST
has the implicit decomposition as outlined in the preceding paragraph. However, for the sake
of a self-contained result as stated in Theorem 7, we use the result from [16] which also has
the advantage of being deterministic.

The rest of the section describes a fast implementation for swap-round. The algorithm
is based on a divide and conquer strategy for implementing swap-round when the convex
combination is described in an implicit and compact fashion. An important ingredient is a
fast black-box implementation of merge-bases. For this we use the following result; as we
remarked earlier, an earlier version of this paper obtained a similar result.

C. Chekuri, K. Quanrud, and M. R. Torres 24:11

▶ Theorem 14 (Ene and Nguyễn [23]). Let T and T ′ be spanning trees of a graph G = (V, E)
with |V | = n and E = T ∪ T ′ and let δ, δ′ ∈ (0, 1). There exists an algorithm fast-merge
such that fast-merge(δ, T, δ′, T ′) d= merge-bases(δ, T, δ′, T ′) and the call to fast-merge runs in
O(n log2 n) time.

3.3 Fast implementation of swap-round
In this subsection the goal is to prove the following theorem.

▶ Theorem 15. Let
∑h

i=1 δi1Ti
be a convex combination of spanning trees of the graph

G = (V, E) where n = |V |. Let T be a spanning tree such that T = T1 and let {(Ei, E′
i)}h−1

i=1
be a sequence of sets of edges such that Ti+1 = Ti−Ei + E′

i for all i ∈ [h− 1] and Ei∩E′
i = ∅

for all i ∈ [h− 1]. Then there exists an algorithm that takes as input T , {(Ei, E′
i)}h−1

i=1 , and
{δi}h

i=1 and outputs a tree TS such that TS
d= swap-round(δ1, T1, . . . , δh, Th). The running

time of the algorithm is Õ(n + γ) time where γ =
∑h−1

i=1 (|Ei|+ |E′
i|).

A divide and conquer approach

We consider the swap rounding framework in the setting of arbitrary matroids for simplicity.
We work with the implicit decomposition of the convex combination of bases

∑h
i=1 δi1Bi of

the matroid M = (N, I), as described in Theorem 15. That is, the input is a base B such
that B = B1, a sequence of sets of elements {(Ei, E′

i)}h−1
i=1 such that Bi+1 = Bi − Ei + E′

i

and Ei ∩ E′
i = ∅ for all i ∈ [h− 1], and the sequence of coefficients {δi}h

i=1.
The pseudocode for our divide and conquer algorithm divide-and-conquer-swap is given in

Figure 2. The basic idea is simple. We imagine constructing an explicit convex decomposition
B1, B2, . . . , Bh from the implicit one. The high-level idea is to recursively apply swap rounding
to B1, . . . , Bh/2 to create a base B, and similarly create a base B′ by recursively applying swap
rounding to Bh/2+1, . . . , Bh, and then merging B and B′. The advantage of this approach is
manifested in the implicit case. To see this, we observe that in merge-bases(δ, B, δ′, B′), the
intersection B∩B′ is always in the output, and this implies that the intersection

⋂h
i=1 Bi will

always be in the output of swap-round(δ1, B1, . . . , δh, Bh). Therefore, at every recursive level,
we simply contract the intersection prior to merging any bases. Note that this is slightly
complicated by the fact that the input is an implicit representation. However, we note that
B ∩

⋃h−1
i=1 (Ei ∪ E′

i) = B \
⋂h

i=1 Bi as Ei ∪ E′
i = Bi△Bi+1 for all i ∈ [h − 1] where S△U

denotes the symmetric difference of the sets S, U (see full version for more details). (We
note later how the contraction of elements helps in the running time when specializing to the
graphic matroid.) After contracting the intersection, the algorithm recursively calls itself on
the first h/2 bases and the second h/2 bases, then merges the output of the two recursive
calls via merge-bases. With the given implicit representation, this means that the input to
the first recursive call is B1, {(Ei, E′

i)}
h/2−1
i=1 , {δi}h/2

i=1 and the input to the second recursive
call is Bh/2+1, {(Ei, E′

i)}h−1
i=h/2+1, {δi}h

i=h/2+1 (note we can easily construct Bh/2+1 via the
implicit representation). The underlying matroid in the call to merge-bases is the matroid
M with the intersection

⋂h
i=1 Bi contracted.

The following lemma shows that divide-and-conquer-swap is a proper implementation of
swap-round. We leave the details of the proof for the full version of the paper.

▶ Lemma 16. Let
∑h

i=1 δi1Bi
be a convex combination of bases in the matroid M and

{(Ei, E′
i)}h−1

i=1 be a sequence of elements such that Bi+1 = Bi−Ei+E′
i and Ei∩E′

i = ∅ for all i.
Then swap-round(δ1, B1, . . . , δh, Bh) d= divide-and-conquer-swap(B1, {(Ei, E′

i)}h−1
i=1 , {δi}h

i=1).

APPROX/RANDOM 2021

24:12 Fast Bounded-Degree and Crossing Spanning Trees

divide-and-conquer-swap(B, {(Ei, E′
i)}t−1

i=s , {δi}t
i=s)

if s = t then
return B

end if
ℓ← max

{
ℓ′ ∈ {s, s + 1, . . . , t} :

∑ℓ′−1
i=s |Ei| ≤ 1

2
∑t−1

i=s |Ei|
}

B̂ ← B ∩
⋃t−1

i=s(Ei ∪ E′
i)

B̂C ← B̂

for i from s to ℓ do
B̂C ← B̂C − Ei + E′

i

end for
B̂L ← divide-and-conquer-swap(B̂, {(Ei, E′

i)}ℓ−1
i=s , {δi}ℓ

i=s)
B̂R ← divide-and-conquer-swap(B̂C , {(Ei, E′

i)}t−1
i=ℓ+1, {δi}t

i=ℓ+1)
B̂M ← merge-bases(

∑ℓ
i=s δi, B̂L,

∑t
i=ℓ+1 δi, B̂R)

return B̂M ∪ (B \
⋃t−1

i=s(Ei ∪ E′
i))

Figure 2 A divide-and-conquer implementation of swap rounding with an implicit representation.

A fast implementation of divide-and-conquer-swap for spanning trees

The pseudocode for our fast implementation fast-swap of divide-and-conquer-swap is given in
Figure 4.

As in divide-and-conquer-swap, the algorithm fast-swap contracts the intersection of the
input. Suppose we contract the intersection

⋂h
i=1 Ti in Tj and call this contracted tree T̂j .

Then
∣∣∣T̂j

∣∣∣ ≤ ∣∣∣Tj \
⋂h

i=1 Ti

∣∣∣. A simple argument shows that Tj \
⋂h

i=1 Ti ⊆
⋃h−1

i=1 (Ti△Ti+1) =⋃h−1
i=1 (Ei ∪ E′

i) (see full version for more details). Thus, the size of the contracted tree is
bounded by the size of the implicit representation γ :=

∑h−1
i=1 |Ei|+ |E′

i|. One can write a
convex combination of bases in any matroid using the implicit representation, and contraction
could even be implemented quickly as is the case in the graphic matroid. The main point for
improving the running time is having an implementation of merge-bases that runs in time
proportional to the size of the contracted matroid. This is key to the speedup achieved for the
graphic matroid. fast-merge runs in time proportional to the size of the input trees, which
have been contracted to have size O(min{n, γ}), which yields a running time of Õ(min{n, γ}).
This speedup at every recursive level combined with the divide-and-conquer approach of
fast-swap is sufficient to achieve a near-linear time implementation of swap-round.

Recall that as we are working with contracted trees, an edge in the contracted trees
might have different endpoints than it did in the initial trees. The identifiers of edges do not
change, regardless of whether the endpoints of the edge change due to contraction of edges
in a tree. We therefore will refer to id’s of edges throughout the algorithm fast-swap to work
from contracted edges back to edges in the initial trees. This extra bookkeeping will mainly
be handled implicitly.

Contraction of the intersection of the input trees in fast-swap using only the implicit
representation is handled by the algorithm shrink-intersection and we give the pseudocode
in Figure 3. Consider spanning trees Ts, Ts+1, . . . , Tt. The input to shrink-intersection
is Ts and a sequence of sets of edges {(Ei, E′

i)}t−1
i=s such that Ti+1 = Ti − Ei + E′

i and
Ei ∩ E′

i = ∅ for i ∈ {s, s + 1, . . . , t − 1}. Then shrink-intersection contracts
⋂t

i=s Ti in Ts.
It is then easy to see that one can compute the intersection via the edges {(Ei, E′

i)}t−1
i=s as⋂t

i=s Ti = Ts \
⋃t−1

i=s(Ei ∪ E′
i) (see full version for more details). Let T̂s be Ts with

⋂t
i=s Ti

C. Chekuri, K. Quanrud, and M. R. Torres 24:13

shrink-intersection(T, {(Ei, E′
i)}t−1

i=s)
T̂ ← T.copy()
for e ∈ T \

⋃t−1
i=s(Ei ∪ E′

i) do
uv ← T̂ .represented-edge(e)
assume degT̂ (u) ≤ degT̂ (v) (otherwise rename)
T̂ .contract(uv, u)

end for
let id(e) denote the unique identifier of an edge e

for i from s to t− 1 do
Êi ←

⋃
e∈Ei

(T̂ .represented-edge(e), id(e))
Ê′

i ←
⋃

e∈E′
i
(T̂ .represented-edge(e), id(e))

end for
return (T̂ , {(Êi, Ê′

i)}t−1
i=s)

Figure 3 A subroutine used in our fast implementation fast-swap of randomized swap rounding;
used to implicitly contract the trees of the given convex combination.

contracted. The vertex set of T̂s is different than the vertex set of Ts. Then as the sets of
edges Ei and E′

i for all i are defined on the vertices in Ts, we need to map the endpoints of
edges in Ei to the new vertex set of T̂s. Using the data structure presented in Lemma 11,
this is achieved using the operations represented-edge and orig-edge, which handle mapping
the edge to its new endpoints and maintaining the edge identifier, respectively.

The following lemma shows that shrink-intersection indeed contracts the intersection of
the trees via the implicit representation. We leave the details of the proof for the full version.

▶ Lemma 17. Let T1, . . . , Th be spanning trees and let {(Ei, E′
i)}h−1

i=1 be a sequence of edge
sets defined on the same vertex set such that Ti+1 = Ti − Ei + E′

i and Ei ∩ E′
i = ∅ for all

i ∈ [h− 1]. Contract
⋂h

i=1 Ti in T1, . . . , Th to obtain T̂1, . . . , T̂h, respectively.
Let nT1 = |T1| and γ =

∑h−1
i=1 (|Ei| + |E′

i|). Then shrink-intersection(T1, {(Ei, E′
i)}h−1

i=1)
runs in time Õ(nT1 +γ) and outputs (T̂ , {(Êi, Ê′

i)}h−1
i=1) where T̂ = T̂1 and T̂i+1 = T̂i−Êi +Ê′

i

for all i ∈ [h − 1]. Moreover, |Ei| =
∣∣∣Êi

∣∣∣ and |E′
i| =

∣∣∣Ê′
i

∣∣∣ for all i ∈ [h − 1] and
∣∣∣T̂ ∣∣∣ ≤

min{nT1 , γ}.

We use the algorithm in Theorem 14 for merge-bases. In fast-swap, the two trees that
are merged T̂L and T̂R are the return values of the two recursive calls to fast-swap. The
algorithm at this point has explicit access to the adjacency lists of both T̂L and T̂R, which
are used as input to the algorithm fast-merge. The output of fast-merge will be the outcome
of merging the two trees T̂L and T̂R, which are edges of potentially contracted trees from
the original convex combination. We can use the operation orig-edge of the forest data
structure of Lemma 11 for T̂L and T̂R to obtain the edges from the trees of the original
convex combination. This extra bookkeeping will be handled implicitly.

We next prove that fast-swap is implementing swap-round and that it runs in near-linear
time.

▶ Lemma 18. Let
∑h

i=1 δi1Ti
be a convex combination of spanning trees of the graph

G = (V, E) where n = |V |. Let T be a spanning tree such that T = T1 and let {(Ei, E′
i)}h−1

i=1
be a sequence of sets of edges such that Ti+1 = Ti−Ei + E′

i and Ei∩E′
i = ∅ for all i ∈ [h−1].

Then fast-swap(T, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1) d= swap-round(δ1, T1, . . . , δh, Th) and the call to

fast-swap runs in Õ(nT + γ) time where nT = |T | and γ =
∑h−1

i=1 (|Ei|+ |E′
i|).

APPROX/RANDOM 2021

24:14 Fast Bounded-Degree and Crossing Spanning Trees

fast-swap(T, {(Ei, E′
i)}t−1

i=s , {δi}t
i=s)

if s = t then
return T

end if
ℓ← max

{
ℓ′ ∈ {s, s + 1, . . . , t} :

∑ℓ′−1
i=s |Ei| ≤ 1

2
∑t−1

i=s |Ei|
}

(T̂ , {(Êi, Ê′
i)}t−1

i=s)← shrink-intersection(T, {(Ei, E′
i)}t−1

i=s)
ÊC ← E(T̂)
for i from s to ℓ do

ÊC ← ÊC − Êi + Ê′
i

end for
T̂C ← init(V (T̂), ÊC)
T̂L ← fast-swap(T̂ , {(Êi, Ê′

i)}ℓ−1
i=s , {δi}ℓ

i=s)
T̂R ← fast-swap(T̂C , {(Êi, Ê′

i)}t−1
i=ℓ+1, {δi}t

i=ℓ+1)
T̂M ← fast-merge(

∑ℓ
i=s δi, T̂L,

∑t
i=ℓ+1 δi, T̂R)

return T̂M ∪ (T \
⋃t−1

i=s(Ei ∪ E′
i))

Figure 4 A fast implementation of randomized swap rounding from [20].

Proof. One can immediately see fast-swap is an implementation of divide-and-conquer-swap.
There are some bookkeeping details that are left out of the implementation, such as main-
taining the set of edges returned by fast-merge, but these are easily handled. Lemma 16
shows that divide-and-conquer-swap(δ1, T1, . . . , δh, Th) d= swap-round(δ1, T1, . . . , δh, Th), im-
plying fast-swap(T, {(Ei, E′

i)}h−1
i=1 , {δi}h

i=1) d= swap-round(δ1, T1, . . . , δh, Th).
Now we prove the running time bound. Let R(nT , γ) denote the running time of the

call to fast-swap(T, {(Ei, E′
i)}h−1

i=1 , {δi}h
i=1). By Lemma 17, the running time of the call to

shrink-intersection is Õ(nT + γ). Let (T̂ , {(Êi, Ê′
i)}h−1

i=1) be the output of shrink-intersection.
Lemma 17 also guarantees that γ =

∑h−1
i=1

∣∣∣Êi

∣∣∣ +
∣∣∣Ê′

i

∣∣∣ and
∣∣∣T̂ ∣∣∣ ≤ min{nT , γ}. Then by

Lemma 11, constructing T̂C requires Õ(nT̂ + γ) time. As the size of T̂L and T̂R is the same
as T̂ and T̂C , the call to fast-merge runs in Õ(nT + γ) time by Theorem 14. The time it
takes to compute the returned tree is Õ(nT + γ) as we have enough time to scan all of T

and
⋃h−1

i=1 (Ei ∪ E′
i). So the total time excluding the recursive calls is (nT + γ) · α for where

α = O(logc(nT + γ)) for some fixed integer c.
As for the recursive calls, first define γ(s, t) :=

∑t
i=s(|Ei|+|E′

i|). Then the running time of
the first recursive call is R(nT̂ , γ(1, ℓ−1)) and the second recursive call is R(nT̂C

, γ(ℓ+1, h−1)).
By choice of ℓ, we always have that γ(1, ℓ − 1) ≤ γ

2 . As ℓ is the largest integer such that
γ(1, ℓ − 1) ≤ γ

2 , then γ(1, ℓ) > γ
2 . Therefore, we have γ(ℓ + 1, h − 1) = γ − γ(1, ℓ) < γ

2 .
Combining this with the fact that shrink-intersection guarantees that

∣∣∣T̂ ∣∣∣ ≤ min{nT , γ} and∣∣∣T̂C

∣∣∣ ≤ min{nT , γ}, we have

R(nT , γ) ≤ 2R(min{nT , γ}, γ/2) + α · (nT + γ).

Note that R(nT , γ) = O(1) when nT = O(1) and γ = O(1).
We claim that R(a, b) ≤ αβ · (a + 8b log b) is a valid solution to this recurrence for some

sufficiently large but fixed constant β ≥ 1. By choosing β sufficiently large it is clear that it
holds for the base case. To prove the inductive step we see the following:

R(a, b) ≤ 2R(min{a, b}, b/2) + α · (a + b) ≤ 2[αβ · (min{a, b}+ 4b log(b/2))] + α · (a + b).

C. Chekuri, K. Quanrud, and M. R. Torres 24:15

Hence we need to verify that

2[αβ(min{a, b}+ 4b log(b/2))] + α · (a + b) ≤ αβ · (a + 8b log b). (1)

Since β ≥ 1, rearranging, it suffices to verify that

2 min{a, b}+ 8b log(b/2) + b ≤ 8b log b.

As 8b log b − 8b log(b/2) = 8b and 2 min{a, b} + b ≤ 3b, this proves (1) and therefore
R(nT , γ) ≤ αβ(nT + 8γ log γ) = Õ(nT + γ). This concludes the proof. ◀

The proof of Theorem 7 then follows by combining Theorem 12 (and remarks after the
theorem statement) and Theorem 15.

4 Sparsification via the LP Solution

Let G = (V, E) be a graph on n nodes and m edges and let x be a point in ST(G). In
this section we discuss Theorem 4, which shows that, via random sampling, one can obtain
a sparse point x′ ∈ ST(G) from x. The random sampling approximately preserves linear
constraints and thus one can use this technique to obtain sparse LP solutions to the packing
problems involving spanning tree (and more generally matroid) constraints. The sampling
and analysis rely on Karger’s well-known work on random sampling for packing disjoint bases
in matroids. We paraphrase the relevant theorem.

▶ Theorem 19 (Corollary 4.12 from [30]). Let M be a matroid with m elements and non-
negative integer capacities on elements such that M has k disjoint bases. Suppose each
copy of a capacitated element e is sampled independently with probability p ≥ 18(ln m)/(kϵ2)
yielding a matroid M(p). Then with high probability the number of disjoint bases in M(p) is
in [(1− ϵ)pk, (1 + ϵ)pk].

We restate Theorem 4 for the reader’s convenience. We leave the details of the proof to
the full version.

▶ Theorem 20. Let x ∈ ST(G) be a rational vector such that Ax ≤ b for a matrix A ∈
[0, 1]r×m and b ∈ [1,∞)r. Consider a random subgraph G′ = (V, E′) of G obtained by picking
each edge e ∈ G with probability αe := min{1, 36 log(r+m)

ϵ2 · xe}. Then with high probability the
following hold: (i) |E′| = O(n ln(r + m)/ϵ2) (ii) there exists a fractional solution z ∈ ST(G)
in the support of G′ such that Az ≤ (1 + 3ϵ)b.

▶ Remark 21. For problems that also involve costs, we have a fractional solution x and an
objective

∑
e cexe. Without loss of generality we can assume that ce ∈ [0, 1] for all e. The

preceding proof shows that the sparse graph obtained by sampling supports a fractional
solution z such that E[

∑
e ceze] ≤ (1 + ϵ)

∑
e cexe. Further,

∑
e ceze ≤ (1 + 3ϵ)

∑
e cexe holds

with high probability as long as maxe ce ≤
∑

e cexe. This condition may not hold in general
but can be typically guaranteed in the overall algorithm by guessing the largest cost edge in
an optimum integer solution.

▶ Remark 22. The proof in the preceding theorem also shows that with high probability
the graph G′ is connected and satisfies the property that A1E′ ≤ O(log n/ϵ2)b. Thus any
spanning tree of G′ satisfies the constraints to a multiplicative O(log n)-factor by fixing ϵ to
a small constant. This is weaker than the guarantee provided by swap-rounding.

APPROX/RANDOM 2021

24:16 Fast Bounded-Degree and Crossing Spanning Trees

5 Fast approximation scheme for solving the LP relaxation

In this section, we discuss Theorem 1, which gives a fast approximation scheme to solve the
LP relaxation for Crossing-ST. We recall the LP for Crossing-ST.

min
∑

e∈E ceye

subject to Ay ≤ b

y ∈ ST(G)
(P)

Note that even the feasibility problem (whether there exists y ∈ ST(G) such that Ay ≤ b)
is interesting and important. We will mainly focus on the feasibility LP and show how we
can incorporate costs in the full version of the paper. We recast the feasibility LP as a pure
packing LP using an implicit formulation with an exponential number of variables. This is
for technical convenience and to more directly apply the framework from [18]. For each tree
T ∈ T (G) we have a variable xT and we consider the problem of packing spanning trees.

maximize
∑
T ∈T

xT

subject to
∑
T ∈T

(A1T)i · xT ≤ bi, ∀i ∈ [k]

xT ≥ 0, ∀T ∈ T

(C)

The following is easy to establish from the fact that y ∈ ST(G) iff y can be written as a
convex combinaton of the characteristic vectors of spanning trees of G.

▶ Observation 23. There exists a feasible solution y to P iff there exists a feasible solution
x to C with value at least 1. Further, if x is a feasible solution to C with value (1− ϵ) there
exists a solution y such that y ∈ ST(G) and Ay ≤ 1

1−ϵ b.

C is a pure packing LP, albeit in implicit form. In the full version of the paper, we show
how to approximately solve the LP using MWU techniques and in particular we use the
randomized MWU framework from [18] for positive LPs. The full version reviews the MWU
framework and shows how to apply it along with other implementation details to achieve the
concrete run times that we claim in Theorem 1.

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing

algorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8:307–328, 2004.

2 N. Anari and S. O. Gharan. Effective-resistance-reducing flows, spectrally thin trees, and
asymmetric TSP. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 20–39, 2015.

3 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,
2018.

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
IV: exchange properties, tight mixing times, and faster sampling of spanning trees, 2020.
arXiv:2004.07220.

5 Arash Asadpour, Michel X Goemans, Aleksander Mádry, Shayan Oveis Gharan, and Amin
Saberi. An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman
problem. Operations Research, 65(4):1043–1061, 2017.

http://arxiv.org/abs/2004.07220

C. Chekuri, K. Quanrud, and M. R. Torres 24:17

6 Nikhil Bansal. On a generalization of iterated and randomized rounding. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1125–1135, 2019.

7 Nikhil Bansal, Rohit Khandekar, Jochen Könemann, Viswanath Nagarajan, and Britta Peis.
On generalizations of network design problems with degree bounds. Mathematical Programming,
141(1-2):479–506, 2013.

8 Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-
bounded directed network design. SIAM Journal on Computing, 39(4):1413–1431, January
2010. doi:10.1137/080734340.

9 Vittorio Bilo, Vineet Goyal, Ramamoorthi Ravi, and Mohit Singh. On the crossing spanning
tree problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 51–60. Springer, 2004.

10 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

11 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pages 1146–1168. IEEE, 2019.

12 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for
minimizing discrepancy. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1607–1614. SIAM, 2011.

13 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What would
Edmonds do? augmenting paths and witnesses for degree-bounded MSTs. Algorithmica,
55(1):157–189, November 2007. doi:10.1007/s00453-007-9115-5.

14 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP-based approximations for
geometric packing and covering problems. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1019–1038. SIAM, 2020.

15 Chandra Chekuri and Kent Quanrud. Approximating the Held-Karp bound for metric TSP
in nearly-linear time. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 789–800. IEEE, 2017.

16 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 801–820. SIAM, 2017.

17 Chandra Chekuri and Kent Quanrud. Fast approximations for Metric-TSP via linear program-
ming. arXiv preprint arXiv:1802.01242, 2018.

18 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 358–377.
SIAM, 2018.

19 Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Fast approximation algorithms
for bounded degree and crossing spanning tree problems. CoRR, abs/2011.03194, 2020.
arXiv:2011.03194.

20 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, pages 575–584. IEEE, 2010.

21 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1080–1097. SIAM, 2011.

22 Ran Duan, Haoqing He, and Tianyi Zhang. Near-linear time algorithms for approximate
minimum degree spanning trees. ArXiv, abs/1712.09166, 2017.

23 Alina Ene and Huy L Nguyen. Towards nearly-linear time algorithms for submodular maxi-
mization with a matroid constraint. In International Colloquium on Automata, Languages,
and Programming, volume 132, 2019.

APPROX/RANDOM 2021

https://doi.org/10.1137/080734340
https://doi.org/10.1007/s00453-007-9115-5
http://arxiv.org/abs/2011.03194

24:18 Fast Bounded-Degree and Crossing Spanning Trees

24 M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within
one of optimal. Journal of Algorithms, 17(3):409–423, November 1994. doi:10.1006/jagm.
1994.1042.

25 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM (JACM),
53(3):324–360, 2006.

26 Kyle Genova and David P Williamson. An experimental evaluation of the best-of-many
Christofides’ algorithm for the traveling salesman problem. Algorithmica, 78(4):1109–1130,
2017.

27 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to
the traveling salesman problem. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 550–559. IEEE, 2011.

28 Michel Goemans. Minimum bounded degree spanning trees. 2006 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’06), 2006. doi:10.1109/focs.2006.48.

29 Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
Journal of the ACM (JACM), 48(4):723–760, 2001.

30 David R Karger. Random sampling and greedy sparsification for matroid optimization problems.
Mathematical Programming, 82(1-2):41–81, 1998.

31 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. An improved approximation
algorithm for TSP in the half integral case. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 28–39, 2020.

32 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 32–45, 2021.

33 Tamás Király, Lap Chi Lau, and Mohit Singh. Degree bounded matroids and submodular
flows. Combinatorica, 32(6):703–720, 2012.

34 Jochen Könemann and R Ravi. Primal-dual meets local search: approximating MST’s with
nonuniform degree bounds. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 389–395, 2003.

35 Jochen Könemann and Ramamoorthi Ravi. Primal-dual meets local search: approximating
MSTs with nonuniform degree bounds. SIAM Journal on Computing, 34(3):763–773, 2005.

36 André Linhares and Chaitanya Swamy. Approximating min-cost chain-constrained spanning
trees: a reduction from weighted to unweighted problems. Mathematical Programming, 172(1-
2):17–34, 2018.

37 Neil Olver and Rico Zenklusen. Chain-constrained spanning trees. Mathematical Programming,
167(2):293–314, 2018.

38 Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the Chernoff-Hoeffding bounds. SIAM J. Comput., 26:350–368, 1997.

39 Kent Quanrud. Fast and deterministic approximations for k-cut. arXiv preprint
arXiv:1807.07143, 2018.

40 Kent Quanrud. Fast approximations for combinatorial optimization via multiplicative weight
updates. PhD thesis, University of Illinois, Urbana-Champaign, 2019. URL: https://www.
ideals.illinois.edu/handle/2142/106153.

41 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
214–227, 2018.

42 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

43 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. Journal of the ACM (JACM), 62(1):1–19, 2015.

https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1109/focs.2006.48
https://www.ideals.illinois.edu/handle/2142/106153
https://www.ideals.illinois.edu/handle/2142/106153

C. Chekuri, K. Quanrud, and M. R. Torres 24:19

44 Mohit Singh and Nisheeth K Vishnoi. Entropy, optimization and counting. In Proceedings of
the forty-sixth annual ACM symposium on Theory of computing, pages 50–59, 2014.

45 Aravind Srinivasan. Distributions on level-sets with applications to approximation algorithms.
In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 588–597.
IEEE, 2001.

46 Ola Svensson, Jakub Tarnawski, and László A Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 204–213, 2018.

47 Vera Traub and Jens Vygen. An improved approximation algorithm for ATSP. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 1–13, 2020.

48 Di Wang. Fast Approximation Algorithms for Positive Linear Programs. PhD thesis, EECS
Department, University of California, Berkeley, July 2017. URL: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2017/EECS-2017-126.html.

49 Sein Win. On a connection between the existence of k-trees and the toughness of a graph.
Graphs and Combinatorics, 5(1):201–205, 1989.

A Putting things together and extensions

In the main body of the paper we discussed the main technical results corresponding to
Theorems 1, 4, and 7. In this section we give formal proofs of the corollaries stated in
Section 1. In addition, we also describe some extensions and other related results that follow
from the ideas in the preceding sections.

A.1 Proofs of corollaries
We start with Corollary 3.

Proof of Corollary 3. Let G = (V, E) be the input graph with m edges and n vertices and
let ϵ > 0. Consider the LP relaxation to test whether G has a spanning tree with degree at
most a given parameter B′. Theorem 1 implies that there exists a randomized algorithm that,
with high probability, either correctly determines that there is no feasible solution to the LP,
or outputs a fractional spanning tree y ∈ ST(G) such that

∑
e∈δ(v) ye ≤ (1 + ϵ)B′ for all v.

Using the algorithm, we can do binary search over the integers from 2 to n− 1 to find the
smallest value B for which the algorithm outputs a solution. We will focus on the scenario
where the algorithm from Theorem 1 is correct in each of the O(log n) calls in the binary
search procedure; this happens with high probability. For the value of B found in the binary
search, let y ∈ ST(G) be the solution that is output; we have

∑
e∈δ(v) ye ≤ (1 + ϵ)B for all

v. Since the approximate LP solver correctly reported infeasibility for all B′ < B, we have
B − 1 < B∗, which implies B ≤ B∗. As there is a feasible fractional spanning tree y such
that

∑
e∈δ(v) ye ≤ ⌈(1 + ϵ)B⌉ for all v, the result of [43] implies that B∗ ≤ ⌈(1 + ϵ)B⌉+ 1.

Regarding the run time, each call to the algorithm in Theorem 1 takes Õ(m/ϵ2) time since
N = O(m) in the setting of BD-ST. Binary search adds only an O(log n) multiplicative-factor
overhead, leading to the claimed running time. ◀

We next prove Corollary 5. The algorithm described in the corollary takes advantage of
Theorem 4 to sparsify the input graph, then runs the Fürer-Raghavachari algorithm [24].

Proof of Corollary 5. We will assume that the input is a graph G = (V, E) m edges and
n vertices. Let ϵ > 0. As in the proof of Corollary 3, we can use Theorem 1 and binary
search to find in Õ(m

ϵ2) time, with high probability, a fractional spanning tree x ∈ ST(G)
such that

∑
e∈δ(v) xe ≤ (1 + ϵ)B∗ for all v ∈ V . By Theorem 4, we can use random

APPROX/RANDOM 2021

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html

24:20 Fast Bounded-Degree and Crossing Spanning Trees

sampling based on x to obtain a subgraph G′ = (V, E′) of G such that with high probability
we have |E′| = O(n log(n+m)

ϵ2) and there exists a fractional solution z ∈ ST(G) in the
support of G′ such that

∑
e∈δ(v) ze ≤ (1 + 3ϵ)(1 + ϵ)B∗ ≤ (1 + 7ϵ)B∗ for all v ∈ V (for

sufficiently small ϵ). The result of [43] implies there exists a spanning tree T in G′ such
that maxv∈V degT (v) ≤ ⌈(1 + 7ϵ)B∗⌉ + 1. For a graph H on n vertices and m edges, the
algorithm of [24] runs in Õ(mn) time and outputs a spanning tree T such that the maximum
degree of T is at most OPT(H) + 1, where OPT(H) = minT ∈T (H) maxv∈V degT (v). Thus,
the algorithm of [24] when applied to G′, outputs a spanning tree with degree at most
⌈(1 + 7ϵ)B∗⌉+ 2, and runs in Õ(n2

ϵ2) time. ◀

We now prove Corollary 8. This corollary combines the LP solver of Theorem 1 and the
fast implementation of randomized swap rounding of Theorem 7 to give a fast algorithm for
Crossing-MST.

Proof of Corollary 8. Let G = (V, E) be the input graph and ϵ > 0. We want to solve
min{cT x : Ax ≤ b, x ∈ ST(G)}. By Theorem 1, there exists a randomized algorithm that
runs in Õ(N/ϵ2) time and with high probability certifies the LP is infeasible or outputs
y ∈ ST(G) such that cT y ≤ (1 + ϵ)OPT and Ay ≤ (1 + ϵ)b. We then apply the fast
implementation of randomized swap rounding of Theorem 7 to y, which runs in Õ(m/ϵ2)
time and outputs a spanning tree T . If we only considered the feasibility version (i.e. find
x ∈ ST(G) such that Ax ≤ b), then the existing results on swap rounding [20] imply that
A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} with high probability. In the cost
version, [20] implies that A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} with high
probability, and E[cT1T] ≤

∑
e cT x. Thus, the cost is preserved only in expectation. We can,

however, apply Markov’s inequality and conclude that Pr[cT1T ≥ (1 + ϵ)cT x] ≤ 1
1+ϵ ≤ 1− ϵ

2
(for ϵ sufficiently small). For a suitable choice of the high probability bound, we have
that A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2} and cT1T ≤ (1 + ϵ)cT x with
probability at least ϵ

2 −
1

2n2 . We can assume that ϵ > 1
n2 , for otherwise the 1

ϵ2 dependence
in the run time of the approximate LP algorithm is not meaningful; one can use other
techniques including an exact LP solver. Thus, with probability at least ϵ

4 , we have cT1T ≤
(1 + O(ϵ))cT x ≤ (1 + O(ϵ))OPT and A1T ≤ min{O(log k/ log log k)b, (1 + ϵ)b + O(log k)/ϵ2}.
To boost the ϵ

4 probability of success, we can repeat the rounding algorithm O(log n
ϵ)

times independently; with high probability, one of the trees will yield the desired bicriteria
approximation. ◀

Non-uniform degree bounds

We briefly sketch some details regarding Remark 6. First, we note that the algorithm for
solving the LP relaxation handles the non-uniform degree bound case in Õ(m/ϵ2) time. It
either certifies that the given bounds are infeasible or outputs a fractional solution with
degree at most (1 + ϵ)Bv for each v. We can then apply the result in [43] to know that
there exists a spanning tree T in which the degree of each v is at most ⌈(1 + ϵ)Bv⌉ + 1.
We can apply sparsification from Theorem 4 to the fractional solution to obtain a sparse
subgraph that contains a near-optimal fractional solution. It remains to observe that the
Fürer-Raghavachari algorithm can be used even in the non-uniform setting via a simple
reduction to the uniform setting. This was noted in prior work [34, 43] and we provide the
details in the full version of the paper. This results in an Õ(n2/ϵ2) time algorithm that either
decides that the given non-uniform degree bounds are infeasible or outputs a spanning tree
in which the degree of each node v is at most ⌈(1 + ϵ)Bv⌉+ 2.

C. Chekuri, K. Quanrud, and M. R. Torres 24:21

A.2 Extensions and related problems
We focused mainly on BD-ST, BD-MST and Crossing-MST. Here we briefly discuss
related problems that have also been studied in the literature to which some of the ideas in
this paper apply.

Estimation of value for special cases of Crossing-MST

As we remarked in Section 1, various special cases of Crossing-MST have been studied. For
some of these special cases one can obtain a constant factor violation in the constraint [37, 36].
We highlight one setting. One can view BD-MST as a special case of Crossing-MST
where the matrix A is a {0, 1}-matrix with at most 2 non-zeroes per column (since an edge
participates in only two degree constraints); the result in [43] has been extended in [33] (see
also [8]) to show that if A is a {0, 1}-matrix with at most ∆ non-zeroes per column, then the
fractional solution can be rounded such that the cost is not violated and each constraint is
violated by at most an addtive bound of (∆− 1). Theorem 1 allows us to obtain a near-linear
time algorithm to approximate the LP. Combined with the known rounding results, this
gives estimates of the integer optimum solution in near-linear time. Thus, the bottleneck in
obtaining a solution, in addition to the value, is the rounding step. Finding faster iterated
rounding algorithms is an interesting open problem even in restricted settings.

Multiple cost vectors

In some applications one has multiple different cost vectors on the edges, and it is advantageous
to find a spanning tree that simultaneously optimizes these costs. Such multi-criteria problems
have been studied in several contexts. Let c1, c2, . . . , cr be r different cost vectors on the edges
(which we assume are all non-negative). In this setting it is typical to assume that we are
given bounds B1, B2, . . . , Br and the goal is to find a spanning tree T ∈ T (G) satisfying the
packing constraints such that cj(T) ≤ Bj for j ∈ [r]. We can easily incorporate these multiple
cost bounds as packing constraints and solve the resulting LP relaxation via techniques
outlined in Section 5. Once we have the LP solution we note that swap-rounding is oblivious
to the objective, and hence preserves each cost in expectation. With additional standard
tricks one can guarantee that the costs can be preserved to within an O(log r) factor while
ensuring that the constraints are satisfied to within the same factor guaranteed in Corollary 8.

Lower bounds

BD-MST has been generalized to the setting where there can also be lower bounds on
the degree constraints of each vertex. [43] and [33] showed that the additive degree bound
guarantees for BD-MST can be extended to the setting with lower bounds in addition to
upper bounds. One can also consider such a generalization in the context of Crossing-MST.
The natural LP relaxation for such a problem with both lower and upper bounds is of the form
min{cT x : Ax ≤ b, A′x ≥ b′, x ∈ ST(G)} where A, A′ ∈ [0, 1]k×m, b, b′ ∈ [1,∞)k, c ∈ [0,∞)m.
Here A corresponds to upper bounds (packing constraints) and A′ corresponds to lower
bounds (covering constraints). This mixed packing and covering LP can also be solved
approximately in near-linear time by generalizing the ideas in Section 5. Sparsification as
well as swap-rounding can also be applied since they are oblivious to the constraints once the
LP is solved. The guarantees one obtains via swap rounding are based on negative correlation
and concentration bounds. They behave slightly differently for lower bounds. One obtains
a tree T such that A1T ≤ (1 + ϵ)b + O(log k)/ϵ2 and A′1T ≥ (1 − ϵ)b′ − O(log k)/ϵ2 with
high probability. As in the other cases, the LP solution proves the existence of good integer
solutions based on the known rounding results.

APPROX/RANDOM 2021

Hitting Weighted Even Cycles in Planar Graphs
Alexander Göke #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Jochen Koenemann #

University of Waterloo, Canada

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Germany

Hao Sun #

University of Waterloo, Canada

Abstract
A classical branch of graph algorithms is graph transversals, where one seeks a minimum-weight
subset of nodes in a node-weighted graph G which intersects all copies of subgraphs F from a
fixed family F . Many such graph transversal problems have been shown to admit polynomial-time
approximation schemes (PTAS) for planar input graphs G, using a variety of techniques like the
shifting technique (Baker, J. ACM 1994), bidimensionality (Fomin et al., SODA 2011), or connectivity
domination (Cohen-Addad et al., STOC 2016). These techniques do not seem to apply to graph
transversals with parity constraints, which have recently received significant attention, but for which
no PTASs are known.

In the even-cycle transversal (ECT) problem, the goal is to find a minimum-weight hitting set
for the set of even cycles in an undirected graph. For ECT, Fiorini et al. (IPCO 2010) showed that
the integrality gap of the standard covering LP relaxation is Θ(log n), and that adding sparsity
inequalities reduces the integrality gap to 10.

Our main result is a primal-dual algorithm that yields a 47/7 ≈ 6.71-approximation for ECT
on node-weighted planar graphs, and an integrality gap of the same value for the standard LP
relaxation on node-weighted planar graphs.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Even cycles, planar graphs, integrality gap

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.25

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2107.04763

Funding Jochen Koenemann: Research funded by the NSERC Discovery Grant program.
Hao Sun: Research funded by the NSERC Discovery Grant program.

1 Introduction

Transversal problems in graphs have received a significant amount of attention from the
perspective of algorithm design. Such problems take as input a node-weighted graph G,
and seek a minimum-weight subset S of nodes which intersect all graphs F from a fixed
graph family F that appears as subgraph in G. A prominent example in this direction
is the fundamental Feedback Vertex Set (FVS) problem, where F is the class of all
cycles. FVS is one of Karp’s 21 NP-complete problems [17]. It admits a 2-approximation in
polynomial time [2, 5], which cannot be improved to a (2− ε)-approximation for any ε > 0
assuming the Unique Games Conjecture [18].

Recently, several graph transversal problems have been revisited in the presence of
additional parity constraints [19, 21, 20, 23]. The natural parity variants of FVS are Odd
Cycle Transversal (OCT) and Even Cycle Transversal (ECT), where one wishes
to intersect the odd-length and even-length cycles of the input graph G, respectively. The

© Alexander Göke, Jochen Koenemann, Matthias Mnich, and Hao Sun;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 25; pp. 25:1–25:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.goeke@tuhh.de
mailto:jochen@uwaterloo.ca
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:hao@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.25
https://arxiv.org/abs/2107.04763
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Hitting Weighted Even Cycles in Planar Graphs

approximability of these problems is much less understood than that of FVS: for OCT,
only an O(

√
log n)-approximation is known [1], and for ECT, only a 10-approximation is

known [21].
Planar graphs are a natural subclass of graphs in which to consider graph transversal

problems. The interest goes back to Baker’s shifting technique [3], which yielded a PTAS for
Vertex Cover in planar graphs (where F is the single graph consisting of an edge). The
technique was generalized by Demaine et al. [8], who gave EPTASs for graph transversal
problems satisfying a certain bidimensionality criterion, including FVS in unweighted planar
graphs. That result was later extended to yield an EPTAS for FVS in unweighted H-minor
free graphs [13], for any fixed graph H . In edge-weighted planar graphs, PTAS are known for
edge-weighted Steiner Forest and OCT [4, 16, 10].

On node-weighted planar graphs, the situation appears to be more complex. First, the
existence of a PTAS for FVS on node-weighted planar graphs was a long-standing open
question which was resolved only recently in a paper of Cohen-Addad et al. [7]. The authors
presented a PTAS for FVS in node-weighted planar graphs, crucially exploiting the fact that
the treewidth of G− S is bounded for feasible solutions S. The existence of an EPTAS for
FVS in node-weighted planar graphs is still open.

To deal with cycle transversal problems (in node-weighted planar graphs) which are
more complex than FVS, Goemans and Williamson [14] first proposed a primal-dual based
framework. Their framework requires the cycle family F to satisfy a certain uncrossing
property. The latter property can be seen to be satisfied by OCT, Directed FVS in
directed planar graphs, and Subset FVS, which seeks a minimum-cost node set hitting
all cycles containing a node from a given node set T . For those problems, the authors
obtained 3-approximations1. The framework by Berman and Yaroslavtsev [14] also yields a
3-approximation for Steiner Forest in node-weighted planar graphs [9, 22]. Berman and
Yaroslavtsev [6] later improved the approximation factor for the same class of uncrossable
cycle transversal problems from 3 to 2.4. For none of those problems, though, the existence
of a PTAS is known.

The main question driving our work is whether the framework of Goemans and William-
son [14] (and its improvement by Berman and Yaroslavtsev [6]) can be extended to cycle
transversal problems that do not satisfy uncrossability. In this paper we focus on ECT in
node-weighted planar graphs as a natural such problem: even cycles are not uncrossable, and
hence the frameworks by Goemans and Williamson [14] does not apply. Furthermore, the
framework of Cohen-Addad et al. [7] requires that contracting edges only reduces the solution
value, which is not the case for even cycles either. For unweighted planar graphs, it is still
possible to obtain an EPTAS for ECT, by building on the work of Fomin et al. [12]. Their
main result are EPTASs for bidimensional problems, which ECT is not (as contracting edges
can change the parity of cycles). Yet, to obtain their result, they show that any transversal
problem that satisfies the “ν-transversability” and “reducibility” conditions has an EPTAS
on H-minor free graphs (cf. [12, Theorem 1]). Both conditions are met by unweighted ECT2,
which thus admits an EPTAS on H-minor free graphs. For ECT on node-weighted planar
graphs, though, reducibility fails, and the existence of a PTAS is unknown. The currently
best result for ECT is a 10-approximation, which was given by Fiorini et al. [11] for general
graphs. They showed that the integrality gap of the standard covering LP relaxation for
ECT is Θ(log n), but that adding sparsity inequalities reduces the integrality gap to 10. No
better than 10-approximation is known for ECT in node-weighted planar graphs.

1 18/7-approximations were claimed but later found to be incorrect [6].
2 ν-transversability follows from as graphs without even cycles have treewidth 2, and reducibility from

unit weights and connectedness of the to-be-hit subgraphs F .

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:3

1.1 Our results
We prove an improved approximation algorithm for ECT in node-weighted planar graphs.

▶ Theorem 1. ECT has an efficient 47/7 ≈ 6.71-approximation on node-weighted planar
graphs.

This improves the previously best 10-approximation by Fiorini et al. [11] for planar graphs.
Our algorithm takes as input a node-weighted planar graph G with node weights cv ∈ N

for each v ∈ V (G). We then employ a primal-dual algorithm that is based on the following
natural covering LP for ECT and its dual, where C denotes the set of even cycles in G:

min cTx

s.t. x(C) ≥ 1 ∀ C ∈ C(PECT)
x ≥ 0

max 1
T y

s.t.
∑

C∈C,v∈C
yC ≤ cv ∀v ∈ V (G)

(DECT)
y ≥ 0

Fiorini et al. [11] proved that the integrality gap of this LP is Θ(log n). Our main result
is an improved integrality gap of this LP for ECT in planar graphs:

▶ Theorem 2. The integrality gap of the LP (PECT) is at most 47/7 ≈ 6.71 in planar graphs.

1.2 Our approach
Designing a primal-dual algorithm is far from trivial, as the imposed parity constraints rule
out a direct application of the framework proposed by Goemans and Williamson [14]. Unlike
in their work, face-minimal even cycles (even cycles containing a minimal set of faces in their
interior) are not necessarily faces, and may thus overlap. Indeed, increasing the dual variables
of face-minimal even cycles does not yield a constant-factor approximation in general.

Consider Figure 1, and let F be the inner face that is only incident to blue and black
nodes. For an even number of 5-cycles surrounding F , F is the only face-minimal even cycle

Figure 1 The bottom path has odd length, and the number of length-5 faces at the top is even.

in the graph. Using only F for the dual increase, even including a reverse-delete step, leaves
one blue node of each 5-cycle. Yet, an optimal solution would take a single red and blue
node from one 5-cycle.

To circumvent this impediment, we establish strong structural properties of planar graphs
related to ECT. Those properties along with results from matching theory allow us to
algorithmically find a large set of pairwise face-disjoint even cycles whose dual variables we
can then increment. Even with this set of cycles found, it remains technically challenging to
bound the integrality gap. For this purpose, we first use the structure of minimal hitting sets
of our graph to associate each such set with a hitting set in a subdivision of the so called
2-compression of our graph; the latter is a certain minor that we define in detail shortly.
We then show that faces that are contained in even cycles we increment are incident to few

APPROX/RANDOM 2021

25:4 Hitting Weighted Even Cycles in Planar Graphs

nodes on average. Crucial in this step is a technical result that is implicit in the work of
Berman and Yaroslavtsev [6]. Eventually, this approach leads to an integrality gap of 47/7,
and an algorithm with the same approximation guarantee.

Due to space constraints, we defer proofs of statements marked by (⋆) to the full version
of the paper [15].

2 Primal-dual algorithm for ECT on node-weighted planar graphs

We describe a primal-dual, constant-factor approximation for ECT on node-weighted planar
graphs. Our algorithm borrows some ideas from Fiorini et al. [11] for the Diamond Hitting
Set (DHS) problem, which seeks a minimum-cost set of nodes in a node-weighted graph G

that hits all diamonds (sub-divisions of the graph consisting of three parallel edges). For
DHS, Fiorini et al. [11] employ a primal-dual algorithm to prove that the natural covering
LP (PECT) (where C is replaced by the set of diamonds) has integrality gap Θ(log n). We
develop several new ideas to obtain a constant integrality gap.

We now outline the ideas of our primal-dual approach. Consider a planar input graph G

with node costs cv ∈ N for each v ∈ V (G). Given feasible dual solution y to (DECT), let the
residual cost of node v ∈ V (G) be cv −

∑
C∈C,v∈C yC . Our primal-dual method begins with

a trivial feasible dual solution y = 0, and the empty, infeasible hitting set S = ∅.
Then, in each iteration, we increase yC for all C in some carefully chosen subset C′ ⊆ C of

even cycles, while maintaining dual feasibility, and until some primary condition is achieved.
A common such primary condition is that some dual node-constraint becomes tight in the
increase process, and hence the corresponding node ends up having residual cost 0.

When this happens, we add the node to S. Once S is a feasible ECT, our algorithm ends
its first phase, and executes a problem-specific reverse-delete procedure. Here, we consider all
nodes in S in reverse order of addition to S, and we delete such a node if the feasibility of S
is maintained. We will later describe a subtle and crucial refinement of this reverse-delete
procedure. Call the resulting final output of the algorithm S′.

During our algorithm, we will use the term hitting set to refer to S, and during the
analysis we will use the term hitting set to refer to S′. We will say a hitting set is feasible if
it is a feasible ECT, and refer to nodes of the hitting set as hit nodes.

In the next subsections, we will fill in the details of the algorithm, and analyze the cost
of S′ compared to the value of an optimal solution. We begin by defining the concept of
“blended inequalities” and necessary graph compression operations. Blended inequalities were
used by Fiorini et al. [11], and our definitions follow their’s closely.

2.1 Blended inequalities and compression
A block of G is an inclusion-maximal 2-connected subgraph of G. The block graph of G is
the bipartite graph BG with bipartition V (BG) = B1 ∪ B2, where B1 are the blocks of G,
B2 are the cut nodes of G, and (b1, b2) ∈ B1 ×B2 is an edge if b2 is a node of b1.

Let S be a partial solution to the given ECT instance at some point during the execution
of our algorithm. Let GS be the corresponding residual graph that we obtain from G− S by
deleting all nodes that do not lie on even cycles. Our primal-dual algorithm first looks for an
even cycle C in GS such that at most two nodes of C have neighbours outside C. If such a
cycle C is found, we increment its dual variable yC until a node becomes tight. The reason
for doing this is that such C will pay for at most two hit nodes, which we will show later.

If there is no even cycle C in GS such that at most two nodes of C have neighbours
outside C, we successively compress the residual graph GS using two types of graph com-
pression. To this end, first note that any minimal solution will only contain one node in the

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:5

interior of any induced path in GS . Suppose we contract some path P of GS of length at
least 2 down to an edge e. Choosing a node in the interior of P is “equivalent” to choosing
the edge e. This is the motivation for the 1-compression.

Suppose we contract two u-v paths P1, P2 with lengths of different parity down to
edges e1, e2, respectively. We will find it helpful to think of these edges as a single twin edge
between u and v whose parity is flexible. This is the motivation for the 2-compression.

Formally, we will successively compress GS as follows:
Obtain the 1-compression GS1 of GS by repeatedly folding degree-2 nodes v, as long as
they exist, which means to delete v and adding the edge uw between its neighbors u,w.
Note that no pair of nodes in GS1 is connected by more than two edges. Obtain ḠS1
from GS1 by replacing each pair of parallel edges by a twin edge. In ḠS1 , we now once
again fold degree-2 nodes as long as those exist. The resulting graph is the 2-compression
GS2 of GS .

See Figure 2 for examples of 1- and 2-compression of a graph. In the following, we will
omit the superscript S from GS1 , ḠS1 , and GS2 if this is clear from the context. Let G3 be
obtained from G2 by replacing every edge of G2 with a path of length two. If a twin edge
was replaced, call the two edges of the path added twin edges. By an abuse of notation, we
call a cycle of G1, G2 or G3 even if it contains a twin edge, or if its preimage in G is even.

G

v
′

v

e1

u

e2

w

G1

e

u

w

t

Ḡ1

u

w

t

u t

G2

Figure 2 The graph G and its 1- and 2-compression G1 and G2.

In the following, we will sometimes call the subgraph Q of G whose contraction yields a
subgraph R of G2 the preimage of R. If R is an edge, call Q a piece, and say Q corresponds
to R. Furthermore, call u, v ends of Q and other nodes of Q internal nodes. If the edge was
twin, call the piece twin, otherwise, call the piece single. The blocks of a piece are cycles and
paths, and the block graph of a piece is a path. Each cycle of a piece is called an elementary
cycle. For an elementary cycle C, call its two nodes uC and vC with neighbours outside C
branch nodes. Call the two uC − vC-paths P1, P2 in C the handles of C, which form the
handle pair (P1, P2). For an illustration, see the red and light blue edges in Figure 2.

The reason for defining G3 is that intuitively selecting a node inside a piece corresponds
to selecting the edge corresponding to the piece in G2. It will be simpler for us if our hitting
set consists of only nodes, so we subdivide each edge of G2. Suppose that S is the partial
(and infeasible) hitting set for the cycles in C at some point during the algorithm. Further,
assume that GS has even cycles, but none with at most two outside neighbours. In this case,
if an even cycle C ′ in GS contains an internal node of some piece Q, then C ′ ∩Q is a path
between the ends of Q; see Figure 3. It follows that C ′ has the form v1P1v2P2 . . . vkPkv1,
where for i = 1, . . . , k nodes vi, vi+1 mod k are ends of some piece Qi, and Pi is a vi-vi+1
path in Qi. For i = 1, . . . , k, pieces Qi, Qj for i ̸= j are disjoint except for their ends.

APPROX/RANDOM 2021

25:6 Hitting Weighted Even Cycles in Planar Graphs

u

e1

v

e2

w

v
′

t

Figure 3 The light blue cycle in G has two u-t paths lying in different pieces of G; the dashed
path has odd length.

We say that C ′ in GS corresponds to cycle C = (v1, . . . , vk) in GS2 . For such C, its blended
inequality is∑

v

aCv xv ≥ 1, (⊛)

where aCv ∈ {0, 1/2, 1} for all nodes v, and where the support of aC is contained in the node
set of the preimage of C. We next provide a precise definition of the coefficients of (⊛).
With those, one can show that (⊛) is dominated by a convex combination of inequalities
x(C) ≥ 1 in (PECT).

Consider an elementary cycle of the preimage of C and let h1, h2 be its two handles. For
each of these handles, we define its residual cost as the smallest residual cost of any of its
internal nodes. Suppose that the residual cost of h2 is at most that of h1. We will also call h1
the dominant, and h2 the non-dominant handle of this cycle. As an invariant, our algorithm
maintains that the designation of dominant and non-dominant handles of an elementary
cycle does not change throughout the algorithm’s execution.

Suppose first that the residual cost of h1 is strictly larger than that of h2. In this case, let
aCv = 1 for all internal nodes of handle h1, and let aCv = 0 of the internal nodes of h2. If the
residual cost of both handles is the same, we let aCv = 1/2 on internal nodes of both handles.

In certain cases, we need to correct the parity of the constructed inequality. This is
necessary if aC as defined above is 0, 1 (i.e., if all elementary cycles of C have a strictly
dominant handle), and if the cycle formed by all dominant handles is odd. In this case, we
pick an arbitrary elementary cycle on C, and declare it special. For this special cycle, we
then set aCv = 1 for the internal nodes on both handles. Following the same reasoning as
Fiorini et al. [11] for DHS, we can show the following for ECT:

▶ Lemma 3. Each feasible point of our LP (PECT) satisfies any blended inequality.

In our algorithm, we assume that inequalities (⊛) are part of (PECT). Throughout the
algorithm, we increase dual variables y⊛ of such inequalities.

We will sometimes say that variable y⊛ (or cycle C) pays for
∑
v∈S′ aCv hit nodes. It

is well-known (see, e.g., Goemans and Williamson [14]) that if during any iteration dual
variables for a family of blended inequalities are incremented uniformly, and the dual variables
pay for α hit nodes (of S′) on average, then the final solution produced by the algorithm is
α-approximate.

The motivation for blended inequalities is to pay for no more than one node in each piece.
Consider the example in Figure 1. Here, the bottom black dashed path is odd, there are
an even number of handle pairs in the top part, and ε is small. Suppose we set aCv = 1/2

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:7

on internal nodes of each handle. If we were to increment the inequality (⊛), all the blue
nodes of weight 1 would become tight, and after reverse-delete, the algorithm would keep
one blue node for each handle pair. However, selecting a red node and a blue node would be
a cheaper solution. This could be achieved by setting aCv = 1 for red and black nodes, and
aCv = 0 on blue nodes, until the residual costs of the red nodes become 1, and afterwards
setting aCv = 1/2 on internal nodes of each handle.

During its execution, the algorithm carefully chooses a family of even cycles C in GS2 and
increments the dual variables of certain blended inequalities for each C ∈ C until a node
becomes tight, or the blended inequality changes; i.e. the residual costs of two handles of a
handle pair, which were previously not equal, become equal.

In their primal-dual algorithms for cycle transversal problems with uncrossing property,
Goemans and Williamson [14] started with the infeasible “hitting set” S = ∅. While S is
infeasible, the dual variables for faces of the residual digraph that are cycles are incremented.
A reverse-delete step is applied at the end. The authors show that tight examples for their
algorithm feature so called pocket subgraphs. Not surprisingly, the improved algorithm of
Berman and Yaroslavtsev [6] has to pay special attention to these pockets to obtain the
improvement in performance guarantee.

2.2 Pockets and their variants
The following definition of crossing cycles was elementary to the approach by Goemans and
Williamson [14] for cycle transversal problems in planar graphs.

▶ Definition 4. In an embedded planar graph, two cycles C1, C2 cross if Ci contains an edge
intersecting the interior of the region bounded by C3−i, for i = 1, 2. That is, the plane curve
corresponding to the embedding of the edge in the plane intersects the interior of the region
of the plane bounded by C3−i. A set of cycles C is laminar if no two elements of C cross.

Next, we formally define pockets, and we also introduce the new notion of “pseudo-
pockets”, the lack of which will help us “cover” our graph with even cycles.

▶ Definition 5. Let G be a graph and let C be a collection of cycles in G. A pseudo-pocket
of (G, C) is a connected subgraph G′ of G which contains a cycle such that at most two nodes
of G′ have neighbours outside G′. A pocket of (G, C) is a pseudo-pocket that contains a cycle
of C. A pocket is minimal if it contains no pocket as a proper induced subgraph.

a) b)

Figure 4 (a) Graph formed by red nodes is a pocket. (b) Crossing cycles in red and black.

2.3 Identifying families of even cycles via tilings
The 12/5-approximation algorithm of Berman and Yaroslavtsev [6] for Directed FVS in
node-weighted planar digraphs G proceeds roughly as follows.

APPROX/RANDOM 2021

25:8 Hitting Weighted Even Cycles in Planar Graphs

It starts with the empty hitting set S = ∅. As long as S is not a hitting set for the
directed cycles of G, it first looks for a pocket H of the residual digraph GS , that is the
digraph obtained from G−S by deleting all nodes not on a directed cycle. It then increments
the dual variables for the set of face minimal directed cycles of H, which happen to be faces.
It then adds any nodes that become tight to S. Once S is feasible, the algorithm performs a
reverse deletion step.

As pointed out, in our setting, face-minimal even cycles may not be faces, and may
cross. Following Berman and Yaroslavtsev [6], we wish to “cover” our residual graph with
face-minimal even cycles which do not cross, we call this a “tiling”; see Figure 5 iii). As we
will see, this tiling allows us to identify the dual variables to increase. Let us formalize the
correspondence between edges of the dual between odd faces and even faces.

▶ Definition 6. Let H be a plane graph without pseudo-pockets. For each face f of H,
let vf be the corresponding node of the planar dual H∗. A tile of H is an even cycle C of H
bounding one or two faces. If C is a single face f , we say that C corresponds to the node vf .
If C bounds two faces f and g, we say that C corresponds to the edge vfvg ∈ E(H∗). We
say that nodes vf , vg and the faces f, g are covered by the tile.

For a node v of H∗, let fv ⊂ E(H) be the edges on the boundary of the corresponding face
of H. Denote by h∞ the node of H∗ corresponding to the infinite face.

Given wh∞ ∈ E(H∗), a cycle C1 ⊂ E(H) corresponds to wv∞ if C1 is a cycle of fw∆fh∞ ,
or C1 = C ′∆fw and C ′ is a cycle of fw∆fh∞ . We also call such a cycle C1 a tile and say
that C1 covers h∞, w, and the corresponding faces.

Given a matching E′ ⊂ E(H∗) and V ′ ⊂ V (H∗), with E′ = {e1, . . . , eℓ} and V ′ =
{v1, . . . , vt}, a set of tiles T = {C1, . . . , Cℓ+t} corresponds to E′ ∪ V ′ if Ci corresponds to ei
for i = 1, . . . , ℓ and Cj+ℓ corresponds to vj for j = 1, . . . , t.

In Figure 5 i), cycle C bounds two faces f and g; see also Figure 5 ii).

i) ii)

Figure 5 Diagrams i) and ii) show cycles in green and corresponding edges of the dual graph
in red. (i) The red edge corresponds to the symmetric difference of two finite faces. (ii) The red
edge corresponds to the symmetric difference of a finite and infinite face. Diagrams iii) and iv) show
a tiling indicated by the boundaries of the various finite regions in white, light grey, etc and the
corresponding matching.

▶ Definition 7. For a plane graph H, a set T of tiles is a pseudo-tiling if no face of H is
covered by more than one tile. If the node vh∞ corresponding to the infinite face of H is not
covered by T , we call T a tiling.

Certain tilings are particularly desirable; we will define these the next.

▶ Definition 8. Let α ∈ (0, 1). A tiling is α-quasi-perfect if it covers all even finite faces,
a β-fraction of odd finite faces of GS, and a ψ-fraction of the finite faces of GS are even,
where β(1− ψ) + 2ψ ≥ α.

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:9

Let C be an even cycle in GS2 , and recall that we say that C pays for
∑
v∈S a

C
v hit nodes.

For an even cycle in a tiling consisting of two faces, we bound the number of hit nodes it
pays for by the number of hit nodes each face pays for.

We will show that a finite face of our graph intersects at most 18/7 hit nodes on average
(over all finite faces). Ideally, we would want to cover all faces by a tiling. Then an even cycle
of our tiling is incident to at most 36/7 hit nodes on average, twice the amount a face of
our graph intersects on average. Alas, tilings covering all faces need not always exist. Thus,
we try to find a tiling that covers as many finite faces as possible. Suppose that we find
a tiling T that covers a set TFaces of finite faces consisting of α-fraction of the finite faces
of our graph. It follows that a face of TFaces will be incident to at most 18/7α hit nodes
on average, and so an even cycle of the tiling T is incident to at most 36/7α hit nodes on
average. Intuitively, even faces pay for fewer hit nodes than even cycles containing two faces,
so it is good if a tiling contains many even faces. The motivation for quasi-perfect tilings is
that it is good if a large fraction of faces are covered by the tiling and if the tiling contains a
lot of even faces. We prove the following key result in Appendix A.

▶ Theorem 9. Let H be a 2-compression of some planar graph G, that has an even cycle
and contains no pockets. Then H has a 2/3-quasi-perfect tiling.

2.4 The algorithm in detail
We formally state our algorithm. It takes as input a planar graph G with cost function
c : V (G)→ N. Let C(G) be the set of even cycles of G, and let opt(G, c) be the minimum
cost of an even cycle transversal of G, which is a set of nodes intersecting each cycle in C(G).

As we will see, the algorithm returns an even cycle transversal S of G whose cost is at
most (47/7)opt(G, c). We start with the empty candidate S := ∅. In each iteration, the
algorithm looks for an even cycle C in the residual graph GS such that at most two nodes of C
have outside neighbours. If we find such C, increment the variable yC until a node becomes
tight. If no such cycle exists, the algorithm computes the 2-compression of GS , and in it, we
find an inclusion-minimal pocket H of GS2 . Using Theorem 9, we find a 2/3-quasi-perfect
tiling TH of H and increments the dual variables for the blended inequalities for each C ∈ TH .
The algorithm then adds all nodes X that became tight to our candidate hitting set S.

During an iteration, for each handle pair (Q1, Q2) for which the set X of nodes that
became tight contains a node in the interior of each handle, our algorithm will choose two
nodes a, b ∈ X with a in the interior of Q1 and b in the interior of Q2 and define (a, b) to
be a node pair. For instance, in Figure 2 if v and v′ are the only nodes added during some
iteration then the algorithm would define (v, v′) to be a node pair. For a set of nodes X
added during the same iteration, nodes in a pair are considered to be added before any node
not in a pair.

At the end of the algorithm, we perform a non-trivial reverse-delete procedure. Formally,
let w1, . . . , wℓ be the nodes of S in the order they were added to S by the algorithm, where
for nodes wi, wj that were added during the same iteration if wi is in a pair and wj is not,
then i < j. That is, for reverse-delete purposes, nodes not in a pair are considered for deletion
first. For p = ℓ, ℓ− 1, . . . , 1, if wp is not in a node pair, then if S\{wp} is a feasible ECT, the
algorithm deletes wp from S; otherwise, it does not. If wp is in a node pair (wp, w′), then if
S\{wp, w′} is a feasible hitting set, then delete both wp, w

′ from S; else, keep both wp, w
′.

The intuition behind the caveat in our reverse-delete step is that node pairs are often very
useful to keep, because they disconnect a piece. Consider the example in Figure 6. There is
a piece with green nodes of cost 2, and an odd number of length-5 faces with red and blue

APPROX/RANDOM 2021

25:10 Hitting Weighted Even Cycles in Planar Graphs

Algorithm 2.1 EvenCycleTransversal(G, c).

Input : A planar graph G with node costs c : V (G)→ N.
Output : An even cycle transversal S of G of cost at most 47

7 opt(G, c).
1 S ← ∅
2 while residual graph GS contains an even cycle do
3 if GS contains a cycle C with at most 2 outside neighbours then
4 increase the dual variable yC for C until a node v becomes tight.
5 else
6 compute the 2-compression GS2 of GS .
7 H ← minimal pocket of GS2 .
8 TH ← a 2/3-quasi-perfect tiling of H.
9 Increment dual variables of blended inequalities of all C ∈ TH until a node v

becomes tight or the blended inequality changes.
10 Denote by X the set of nodes that became tight, and add X to S.
11 for each handle pair (Q1, Q2) do
12 if X contains a node in the interior of each handle then
13 choose two nodes a, b ∈ X with a in the interior of Q1 and b in the interior

of Q2 and define (a, b) to be a node pair.

14 w1, . . . , wℓ ← nodes of S in the order they were added, where for nodes X added
during the same iteration, any node of X in a pair appears before others node of X
not in pairs.

15 for i = ℓ downto 1 do
16 if wi is not part of a pair then
17 if S\{wi} is feasible then
18 S ← S\{wi}.

19 else
20 Let (wi, wj) be the pair containing wi. if S\{wi, wj} is feasible then
21 S ← S\{wi, wj}.

22 return S

striped nodes of cost 1. The black nodes have cost infinity. The bottom dashed path has
odd length. In the 2-compression shown on the right, all length-5 faces in the figure belong
to one piece. Suppose the blended inequality chooses the length-5 face with the green nodes
as the special cycle, and increments the blended inequality for this graph. One sees that the
red, blue striped and green nodes become tight simultaneously.

To see that reverse delete orders need to be chosen carefully, consider the following
adversarial ordering: in reverse delete, consider the two green nodes other than v first, then
consider the red nodes, and then consider one blue striped node on each handle. Finally,
consider the remaining blue striped nodes. One can see that the algorithm would end up
with v and one blue striped node per handle, which is significantly more costly than the
optimum which selects the solution consisting of one red and one blue striped node on a
handle pair. This completes the description of our approximation algorithm for ECT, whose
complete pseudo-code is given as Algorithm 2.1.

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:11

1 ∞

2

1

v

Figure 6 The red and blue striped nodes have weight 1, black nodes have infinite weight and
green nodes have cost 2. The bottom dashed black path has odd length. The number of length-5
faces at the top is assumed to be even.

2.5 Analysis of approximation ratio
We claim the algorithm to be a 47/7-approximation for ECT on node-weighted planar graphs.

Fix an input planar graph G with node costs cv ∈ N. Consider a set S ⊆ V (G) of
nodes and a node v ∈ S. A cycle C is a pseudo-witness cycle for v with respect to S if
C ∩ S = {v}. If C is additionally even, then C is a witness cycle for v. Note that if S is an
inclusion-minimal ECT for G, then there is a set Wv of witness cycles for each node in v ∈ S.
If the reverse-delete procedure does not delete any node of S, then each node not in a pair
has a witness cycle and for each pair, at least one of the nodes in the pair has a witness cycle.

The analyses of the algorithms by Goemans and Williamson [14] and by Berman and
Yaroslavtsev [6] for Subset FVS on planar graphs rely crucially on the fact that, each node
of an inclusion-wise minimal solution has a witness cycle. Goemans and Williamson [14]
showed that one can find a laminar collection A of witness cycles. Laminar families are
well-known to have a natural tree representation. The key argument of both algorithms is
that for each leaf cycle C of the laminar family, one can increment the dual variable of at
least one face contained in the region defined by C. Further, this dual variable pays only for
the hit node that C is a witness of. This is used to argue that a large portion of the dual
variables they incremented pay for a single hit node. An additional bound on how many
nodes the other dual variables pay for is proven exploiting the sparsity of planar graphs.

For ECT, however, we do not have laminar witness cycles. Instead, we must extend the
analysis of Berman and Yaroslavtsev [6] to find a set of laminar pseudo-witness cycles.

Consider some time t̄ during the algorithm when applied to (G, c). Let St̄ be the current
hitting set and GSt̄ the residual graph. Let {

∑
v∈V (G) a

C
v ≥ 1}C∈L be the set of inequalities

of the increased dual variables. Here, L will be either a single cycle of GSt̄ , or a tiling
of GSt̄

2 . We wish to show that the primal increase rate towards the final set S′ at time t̄,∑
C∈L

∑
v∈S′ aCv is at most 47/7 times the dual increase rate |L|.

If the algorithm incremented yC , where C was a cycle of G for which at most two nodes
have outside neighbours, then the inequality we increase is

∑
v∈C xv ≥ 1. As S′ is minimal

under reverse-delete, |C ∩ S′| ≤ 2, and hence the primal increase rate
∑
v∈S′ aCv = |C ∩ S′| is

at most twice the dual increase rate 1.
Otherwise, if the algorithm did not increment yC , then there is no cycle C of GSt̄ such that

at most two nodes of C have neighbours outside C. Hence, the set of increased inequalities
are the blended inequalities of a tiling TH of an inclusion-minimal pocket H of G

St̄
2 . For a

cycle C of GSt̄
2 , let

∑
v∈V (GSt̄) a

C
v ≥ 1 be the blended inequality C (see Equation ⊛).

Recall that informally speaking, we wish to pay for at most one hit node inside a piece.
To do this, we need the following theorem which generalizes a result by Fiorini et al. [11,
Theorem 5.7] and tells us the structure of a minimal solution within a piece.

APPROX/RANDOM 2021

25:12 Hitting Weighted Even Cycles in Planar Graphs

▶ Theorem 10. Let S′ be the output of Algorithm 2.1 on input (G, c). Consider an edge
uw ∈ E(GSt̄

2) on the even cycle whose dual variable we increase, and let Q be the piece
corresponding to uw in G. Then exactly one of the following occurs:
(C1) S′ contains no internal node of Q,
(C2) S′ contains exactly one node of Q, and this node is a cut-node of Q,
(C3) S′ contains exactly two nodes of Q, and they belong to opposite handles of a cycle of Q,
(C4) S′ contains exactly one node per elementary cycle of Q, each belonging to the interior

of some handle of the corresponding cycle.

Proof. If S′ contains two nodes a and b in the interiors of different handles of a pair, then
since removing both a and b disconnects u from w in Q, our algorithm would delete all other
nodes of V (Q)\{u,w} from S′. If u or w were in S′, then our algorithm would delete both a

and b. Thus, u,w /∈ S′, and case (C3) holds.
Similarly, if S′ contains a cut node z, then since removing z disconnects from u from v

in Q, our algorithm would delete all other nodes of V (Q)\{u, v} from S′. If u or w were
in S′, then our algorithm would delete z. Thus, u,w /∈ S′, and case (C2) holds.

If u or w is in S′, then for any r ∈ S′ ∩ (V (Q)\{u,w}) there cannot be an even cycle
of G which intersects S′ only at r as such a cycle would have to go through u or w, and
thus S′ contains no internal node of Q and case (C1) holds.

Assume that cases (C1), (C2) and (C3) do not hold, so u,w /∈ S′. Let (P1, P2) be a
handle pair on Q such that P1 contains a hit node t in its interior and P2 does not. Suppose
that Y1, Y2 was another handle pair with no hit node on either of Y1 or Y2. By our deletion
procedure, there must be an even cycle C which intersects S′ at t only. Such a cycle C uses
the handle P1 and one handle Yi of the pair Y1, Y2. Let C ′ be the cycle obtained from C by
replacing the paths P1 and Yi in C by the paths P2 and Y3−i. Since the lengths of different
handles of a pair have different parity, C ′ is even. Since P2, Y1 and Y2 contain no nodes of
S′, C ′ contains no nodes of S′, which is a contradiction. Since a handle can only contain one
hit node of S′, this implies that case (C4) holds. ◀

Given a hitting set S′ output by Algorithm 2.1, we wish to construct a corresponding
hitting set for GSt̄

3 such that the primal increase rate of any particular blended inequality
(with respect to S′) is equals the number of nodes of S′

3 on the corresponding cycle of GSt̄
3 .

▶ Definition 11. Let S′ be a hitting set output by Algorithm 2.1. The corresponding hitting
set for GSt̄

3 is the set S′
3 ⊂ V (GSt̄

3) obtained by first taking the nodes of S′ ∩ V (GSt̄
3). Now,

consider an edge uv of GSt̄
2 with corresponding piece P . Replace uv by the path uwpv in G

St̄
3 ,

and add wp to S′
3 if P − S′ has two components.3

▷ Claim 12. Let C be the preimage of an even cycle in GSt̄
2 , and C3 the corresponding cycle

in G
St̄
3 . We claim

∑
v∈S′ aCv ≤ |C3 ∩ S′

3| + 1. Further, if C does not contain a twin edge,
then

∑
v∈S′ aCv ≤ |C3 ∩ S′

3|.

Proof. Define bC as follows: For a handle pair, while one handle has greater residual cost
than the other set bCv = 1 for v on the handle of greater residual cost bCv = 0 on internal
nodes of the other handle (change bC whenever residual costs become equal). Otherwise,
bCv = 1/2 on internal nodes of both handles. In short, bCv are the coefficients aCv if we had
not redefined aCv = 1 for nodes on the special cycle.

3 Note that the minimality of S′ implies that removing S′ from P yields at most two connected components.

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:13

Let uw ∈ E(GSt̄
2), Q be the preimage of uw in GSt̄ and uwQw be the subdivision of uw

in GSt̄
3 . Let S′

3 be the corresponding hitting set of S′ for GSt̄
3 . We claim

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|. We decide which case of Theorem 10 is satisfied by uw and S′.

If uw and S′ satisfy (C1), then
∑
v∈S′∩(Q\{u,w} b

C
v = 0. Since S′ contains no internal node

of Q, Q\S is connected, and hence S′
3 does not contain wQ. Hence

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|.

If uw and S′ satisfy (C2) or (C3), then S′ does not contain either end node of Q, and
contains either a single cut node of Q, or exactly two nodes of Q in the interiors of two
handles of a handle pair of Q. Thus, S′ ∩Q consists either of a single node v for which
bCv = 1, or two nodes j, k for which bCj = bCk = 1/2, and so

∑
v∈S′∩Q b

C
v = 1.

In case (C2) or (C3), Q\S′ is disconnected, so |S′
3∩{wQ}| = 1. Hence,

∑
v∈S′∩(Q\{u,w}) b

C
v =

|S′
3 ∩ {wQ}|.

Suppose S′ satisfies (C4). Suppose, for sake of contradiction that, Algorithm 2.1 added a
node pair (ℓ′,m) on some handle pair (P1, P2) of Q. It then follows from the reverse-delete
step that the final solution S′ contains both ℓ′ and m, or none of them. Since we do not
contain a node pair, the deletion procedure of Algorithm 2.1 implies the algorithm did
not add a node pair with nodes in Q. Hence, throughout the algorithm, for each handle
pair (P1, P2) of Q, the handle Pi, which contains a hit node in its interior must have
strictly less residual cost than the other. Hence bCv = 0 on handle Pi. This implies∑

v∈(V (Q)\{u,w})

bCv = 0 . (1)

Thus
∑
v∈S′∩(Q\{u,w} b

C
v = |S′

3 ∩ {wQ}|.
Let C = v1v2 . . . vℓv1. Let Qi be the piece corresponding to vivi+1 mod ℓ. Let qi

be the node resulting from subdividing vivi+1 mod ℓ in G
St̄
2 to obtain G

St̄
3 . Let C3 :=

v1q1v2, q2, . . . , vℓqℓ the cycle corresponding to C in G
St̄
3 . We showed∑

v∈S′∩(Qi\{u,w})

bCv = |S′
3 ∩ {qi}| . (2)

Summing (2) for i− 1, .., l yields
∑
v∈S′∩(∪ℓ

i=1Qi\{v1,v2,...,vℓ}) b
C
v = |{q1, q2, . . . , qℓ} ∩ C3|.

Noting bCvi
= 1 for each i and bCv = 0 for v /∈ ∪lj=1Qj , yields∑

v∈S′

bCv = |C3 ∩ S′
3| . (3)

Let us now relate aCv to bCv . If C has no twin edge, then the blended inequality coefficients aCv
are equal to bCv , therefore

∑
v∈S a

C
v = |C3 ∩ S′

3|.
In general, C may contain a twin edge. In this case, aCv differs from bCv only in the interior

of the handles H1, H2 of the special cycle: then either bCv = 1
2 in the interior of H1 and H2,

or bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.
If bCv = 1

2 in the interior of H1 and H2, then note from Theorem 10 there are at most
two nodes of S′ on H1 ∪H2. Thus,

∑
v∈S a

C
v ≤

∑
v∈S b

C
v + 1.

Otherwise, bCv = 0 in the interior of the dominant handle, and bCv = aCv everywhere else.
Since S contains at most one node from the dominant handle

∑
v∈S a

C
v ≤

∑
v∈S b

C
v + 1.

Thus,
∑
v∈S a

C
v ≤ |C3 ∩ S′

3|+ 1 completing the proof. ◁

To show that |C3 ∩ S′
3| + 1 is small on average we need the fact that S′

3 is a minimal
ECT, which is stated in the following remark.

APPROX/RANDOM 2021

25:14 Hitting Weighted Even Cycles in Planar Graphs

▶ Remark 13. Let S′ be the output of Algorithm 2.1 on input (G, c). Let S′
3 be the

corresponding hitting set for GSt̄
3 in Definition 11. Then each v ∈ S′

3 has a witness cycle.
For a node h and cycle C, denote by C ◦ h that h lies on C.

▶ Definition 14. Let R be a set of cycles of a graph G, and let S ⊂ V (G). The debit graph
for R and S is the bipartite graph DG = (R∪S,E) with edges ER = {(C, s) ∈ R×S | C ◦ s}.

Given an embedding of G and a set R of faces of G, we can obtain an embedding of DG
by placing a node vM inside the face R for each R ∈ R. This shows the following observation.

▶ Observation 15 ([14, 6]). If R is a set of faces of G, then the debit graph is planar.

Note that for R a set of cycles, a cycle R ∈ R, the number of nodes |R ∩ S| that R pays
for in the hitting set is the degree of R in the debit graph.

Recall the definition of the Subset FVS problem, which seeks a minimum-weight node
set X which intersects all cycles from CT , the collection of cycles in G which contain some
node from a given set T ⊆ V (G). Observe that each node of S′

3 has a witness cycle in G
St̄
3 ;

therefore, it is an inclusion-minimal hitting set for the collection CT with T = S′
3. Goemans

and Williamson [14, Lemma 4.2] showed that any inclusion-minimal hitting set for CT has
a laminar set of witness cycles, which implies that there is a laminar set of pseudo-witness
cycles A for hitting set S′

3.

▶ Proposition 16 ([14, Lemma 4.2 specialized for Subset FVS]). Let G′ be a planar graph
and let T ⊆ V (G′). Let CT be the set of cycles of G′ containing at least one node of T ,
and let X be an inclusion-minimal hitting set for CT . Then there is a laminar set of cycles
A = {Ax | x ∈ X}, satisfying Ax ∈ CT and Ax ∩X = {x}.

Applying Proposition 16 to G′ = G3 and X = T = S′
3 implies there is a laminar set

A = {Ax | x ∈ S′
3} of cycles satisfying Ax ∩ S′

3 = {x}. In other words, A is a laminar set of
pseudo-witness cycles for S′

3. Note that cycles of A may not be even, hence they may be
pseudo-witness cycles for S′

3, but not necessarily witness cycles for nodes of S′
3.

Recall that, during the current iteration, our algorithm incremented the blended inequal-
ities of the cycles in a 2/3-quasi-perfect tiling TH of H. Recall H is an inclusion-minimal
pocket of GSt̄

2 . By abuse of notation, let TH be the corresponding cycles of GSt̄
3 . Let D be

the debit graph formed using GSt̄
3 , the cycle set TH and hitting set S′

3.
Obtain graph D′ from D by replacing each even cycle C containing two faces with the two

faces that compose it. To be precise, construct D′ by first taking all nodes of S′
3 and all faces

of H that lie inside some even cycle of TH as the vertex set. For each edge (C, v) ∈ E(D), if
the cycle C consist of two faces f1, f2 add the edges (f1, v) and (f2, v) to D′, otherwise add
the edge (C, v) to D′ (see Figure 7). Delete isolated vertices from D′. If fi is not incident to
any hit nodes v, we remove fi from D′. Let TFaces(H) be the “face nodes” of D′. Let Fall(H)
denote the finite faces of H. Let FH denote the set of finite faces of H that contain a hit
node. Observe that M ∩ S′

3 = ∅ for each M ∈ Fall(H)\FH . Now

∑
M∈TH

|M ∩ S′
3| ≤

∑
M∈TFaces(H)

|M ∩ S′
3|

≤
∑

M∈Fall(H)

|M ∩ S′
3| − |FH\TFaces(H)| =

∑
M∈F

|M ∩ S′
3| − |FH\TFaces(H)| . (4)

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:15

Figure 7 Left: A possible debit graph D with the cycles of the tiling in Figure 5. Right: the
graph D′ obtained by replacing each cycle with the faces that compose it.

Figure 8 A graph consisting of a tessellation of the plane with twice as many triangles as
dodecagons. None of the triangles are adjacent, so a maximum tiling covers only the even dodecagons.

The first inequality holds, because for each cycle C consisting of two faces f1 and f2 we
have |C ∩ S′

3| ≤ |f1 ∩ S′
3|+ |f2 ∩ S′

3|. The second inequality holds, because each face of FH
contains a hit node, and so |C ∩ S′

3| ≥ 1 for each C ∈ FH . The last inequality holds, because
by definition |M ∩ S′

3| = 0 for all M ∈ Fall(H)\FH .
If our tiling covers 2/3 of all finite faces, then |TFaces(H)| ≤ 2|TH | and (2/3)|FH | ≤

|TFaces(H)|, so |FH | ≤ 3|TH |. Alas, one can show that a tiling that covers 2/3 of all finite
faces does not always exist; see Figure 8. To overcome this impediment, we will show
that |FH | ≤ 3|TH | holds for a 2/3-quasi-perfect tiling. Suppose that our 2/3-quasi-perfect
tiling covers a b-fraction of the odd faces in FH , and a c-fraction of the faces in FH which
are even. Let Feven(H) be the even finite faces of FH . Then, as FH\Feven(H) are the odd
faces of FH , and TFaces(H)\Feven(H) are the odd faces covered by our tiling, it holds that
b|FH\Feven(H)| = |TFaces(H)\Feven(H)|. Simplifying, we get

b|FH |+ (1− b)|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | − |Feven(H)| .

By rearranging, we get b|FH\Feven(H)|+ 2|Feven(H)| ≤ 2|TH |. Noting that b(1− c) + 2c ≥ 2/3,
and rearranging once more, yields

2
3 |FH | ≤ b|FH\Feven(H)|+ 2|Feven(H)| ≤ |TFaces(H)| ≤ 2|TH | .

Noting that |Feven(H)|/|FH | = c and b(1− c) + 2c ≥ 2/3, we get

3|TH | ≥
3
2(b(1− c) + 2c)|FH | ≥ |FH | . (5)

By (4), in order to bound
∑
M∈TH

|M ∩S′
3|, it suffices to bound

∑
M∈F |M ∩S′

3|. To do this,
we prove the following extension of the work by Berman and Yaroslavtsev [6, Theorem 4.1].

APPROX/RANDOM 2021

25:16 Hitting Weighted Even Cycles in Planar Graphs

▶ Theorem 17. Let H be an inclusion-wise minimal pocket of G. Let S ⊂ V (G) be a set of
nodes with some set A of laminar pseudo-witness cycles. Let R be a set of finite faces of H
such that each cycle of A contains a face of R in its interior. Then

∑
M∈R |M ∩ S| ≤

18
7 |R|.

We defer the proof of Theorem 17 to Subsection A.1.
Let A be a set of laminar witness cycles for S′

3. If we were to set R = FH (the set of
finite faces of H incident to a hit node), then each cycle A ∈ A contains a face of R in its
interior, namely any face inside A that is incident to the hit node of S′

3 on A. Thus, S′
3,A

and R meet the conditions of Theorem 17.
To recap, we wish to bound the primal increase rate

∑
M∈TH

∑
v∈S a

M
v , so we analyze the

expression
∑
M∈TH

|M ∩ S′
3|. Recall from Claim 12 that

∑
v∈S a

M
v is at most one more than

|M ∩S′
3| and

∑
v∈S a

M
v = |M ∩S′

3| if M contains no twin edge. We bound
∑
M∈TH

|M ∩S′
3|

by looking at the quantity
∑
M∈FH

|M ∩ S′
3|, because FH fits the conditions of Theorem 17.

One could then use |FH | ≤ 3|TH | (by (5)), to bound
∑
M∈TH

∑
v∈S a

M
v in terms of the dual

increase rate |TH |. We will use 3|TH | ≥ 3
2 (b(1− c) + 2c)|FH | to obtain a stronger bound.

Let T be our 2/3-quasi-perfect tiling from Theorem 9. Recall from Definition 8 that
the fraction β of odd finite faces that are covered by the tiling, and the fraction ψ of finite
faces of H , that are even satisfy β(1− ψ) + 2ψ ≥ α. Let A be a set of pseudo-witness cycles
in H for S′

3, the corresponding set for the hitting set S′ returned by our algorithm. Define
R = FH . We have that every cycle of A contains a face of R in its interior. Thus, R,A
and S′

3 satisfy the conditions of Theorem 17. Therefore,

∑
M∈TH

|M ∩ S′
3| ≤

(∑
M∈FH

|M ∩ S′
3|

)
− |FH\TFaces(H)| ≤

18
7 |FH | − |FH\TFaces(H)| . (6)

Note that
∑
v∈S a

M
v ≤ |M ∩ S|, unless M contains a twin edge. If M ∈ T is the disjoint

union of two odd faces which share an edge, then M will not contain a twin edge. That
is, M can only contain a twin edge if M ∈ Feven(H), so M is an even face then. So∑

M∈TH

∑
v∈S

aMv ≤
∑
M∈TH

|M ∩ S|+ |Feven(H)| ≤
18
7 |FH | − |FH\TFaces(H)|+ |Feven(H)| . (7)

Recall that c = |Feven(H)|/|FH | is the fraction of finite faces of FH which are even, and that
b = |TFaces(H)\Feven(H)|/|FH\Feven(H)| is the fraction of odd finite faces of FH covered by
our tiling. Note that

|F\TFaces(H)| = |FH Feven(H)| − |TFaces(H)\Feven(H)|
= |F\Feven(H)| − b|FH\Feven(H)| = (1− b)(1− c)|FH | .

We now recall (5), by which 3|TH | ≥ 3
2 (b(1− c) + 2c)|FH |.

Substituting these bounds for |FH | and |FH\TFaces(H)| into (7), we obtain∑
M∈TH

∑
v∈S

aMv ≤ c|FH |+
18
7

(
2

b(1− c) + 2c |TH |
)
− (1− b)(1− c)|FH |

= 2c
b(1− c) + 2c |TH |+

18
7

(
2

b(1− c) + 2c |TH |
)
− 2(1− b)(1− c)

b(1− c) + 2c |TH | .

If we maximize the right-hand side factor 2c
(b(1−c)+2c) + 36

7(b(1−c)+2c) −
2(1−b)(1−c)
(b(1−c)+2c) subject to

b(1− c) + 2c ≥ 2/3, we obtain that the right-hand side is bounded by 47
7 |TH |.

This completes the proof of Theorem 1 modulo the proof of Theorem 9; i.e., the fact that
large quasi-perfect tilings can be computed efficiently. We deal with this in the appendix.

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:17

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(
√

log n)
approximation algorithms for min uncut, min 2CNF deletion, and directed cut problems. In
Proc. STOC 2005, pages 573–581, 2005.

2 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM J. Discrete Math., 12:289–297, 1999.

3 Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153–180, 1994.

4 Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Dániel Marx. Approximation
schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM, 58(5),
2011.

5 Ann Becker and Dan Geiger. Optimization of Pearl’s method of conditioning and greedy-like
approximation algorithms for the vertex feedback set problem. Artif. Intelligence, 83(1):167–
188, 1996.

6 Piotr Berman and Grigory Yaroslavtsev. Primal-dual approximation algorithms for node-
weighted network design in planar graphs. In Proc. APPROX 2012, volume 7408 of Lecture
Notes Comput. Sci., pages 50–60, 2012.

7 Vincent Cohen-Addad, Éric Colin de Verdière, Philip N. Klein, Claire Mathieu, and David
Meierfrankenfeld. Approximating connectivity domination in weighted bounded-genus graphs.
In Proc. STOC 2016, pages 584–597, 2016.

8 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensional parameters and local treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.

9 Erik D. Demaine, Mohammadtaghi Hajiaghayi, and Philip N. Klein. Node-weighted Steiner
tree and group Steiner tree in planar graphs. ACM Trans. Algorithms, 10(3), 2014.

10 Yevgeniy Y. Dorfman and Galina Orlova. Finding the maximal cut in a graph. Engineering
Cybernetics, 10(3), 1972.

11 Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. Hitting diamonds and growing cacti. In
Proc. IPCO 2010, volume 6080 of Lecture Notes Comput. Sci., pages 191–204, 2010.

12 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. Bidimensionality
and EPTAS. In Proc. SODA 2011, pages 748–759, 2011.

13 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimension-
ality and kernels. In Proc. SODA 2010, pages 503–510, 2010.

14 Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica, 18(1):37–59, 1998.

15 Alexander Göke, Jochen Koenemann, Matthias Mnich, and Hao Sun. Hitting weighted even
cycles in planar graphs, 2021. arXiv:2107.04763.

16 Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J.
Comput., 4(3), 1975.

17 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

18 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci., 74(3):335–349, 2008.

19 Daniel Lokshtanov and MS Ramanujan. Parameterized tractability of multiway cut with
parity constraints. In Proc. ICALP 2012, volume 7391 of Lecture Notes Comput. Sci., pages
750–761, 2012.

20 Daniel Lokshtanov, MS Ramanujan, Saket Saurab, and Meirav Zehavi. Parameterized com-
plexity and approximability of directed odd cycle transversal. In Proc. SODA 2020, pages
2181–2200, 2020.

21 Pranabendu Misra, Venkatesh Raman, MS Ramanujan, and Saket Saurabh. Parameterized
algorithms for even cycle transversal. In Proc. WG 2012, volume 7551 of Lecture Notes Comput.
Sci., pages 172–183, 2012.

APPROX/RANDOM 2021

http://arxiv.org/abs/2107.04763

25:18 Hitting Weighted Even Cycles in Planar Graphs

22 Carsten Moldenhauer. Primal-dual approximation algorithms for node-weighted Steiner forest
on planar graphs. Inf. Comput., 222:748–759, July 2011.

23 Martin Nägele and Rico Zenklusen. A new contraction technique with applications to
congruency-constrained cuts. Math. Prog., 183:455–481, 2020.

A Obtaining a 2/3-quasi-perfect tiling

We now show how to find the 2/3-quasi perfect tiling in line 8 of Algorithm 2.1. The following
result states that the minimal pockets picked by the algorithm have such tilings.

▶ Theorem 9. Let H be a 2-compression of some planar graph G, that has an even cycle
and contains no pockets. Then H has a 2/3-quasi-perfect tiling.

To prove this theorem we will use the following lemma.

▶ Lemma 18. For any set S, any pseudo-pocket contained in GS2 contains an even cycle.

Proof. Informally speaking, the proof will show that any pseudo-pocket without even cycles
contains an odd cycle for which only two nodes have outside neighbours; this, however,
cannot appear in the 2-compression, as we would have replaced this cycle by an edge in GS2 .

Suppose, for sake of contradiction, that GS2 contained a pseudo-pocket Q without even
cycles. Since each node of Q is in an even cycle of G2 and Q contains no even cycle, Q
contains exactly two nodes u and v with neighbours outside Q, and each node of Q lies on a
u-v path of Q. Let Bu and Bv be the blocks of Q containing u and v in the block graph B
of Q, respectively (see Figure 9).

If B is not a path, then there would be some block B1 that does not lie on a Bu-Bv
path in B, and thus there would be a node of B1 that would not lie on a u-v path in Q –
a contradiction. Hence, B is a path. Let B be a block of Q. Suppose for a contradiction

G
S

2
\Q

Bu

B2

B3

B4 Bv

vu

B1

Figure 9 Graph Q consisting of blocks labelled B1, B2, B3, B4, Bu, Bv. Block B1 depicted in blue
contains nodes not on any u-v path, which is a contradiction.

that B contains a cycle C and a node v′ of C with a neighbour u′ ∈ V (B) outside C. Since
v′ is not a cut node, there is a path P from u′ to C\v′. Construct the u′-v′ path P ′ from P

by traversing P from u′ to the first node w′ of C\v′ and appending to that a w′-v′ path in C.
Since Q contains no even cycles, the cycles P ′ ∪ v′u′ and C are odd. Then the cycle formed
by the edges E(C)∆E(P ′ ∪ v′u′), that is edges of C or P ′ ∪ v′u′, but not both, has length
|E(C)|+ |E(P ′ ∪ v′u′)| − 2|E(C) ∩ E(P ′ ∪ v′u′)| which is even, and hence a contradiction.
Thus if B contains a cycle then it does not contain nodes outside the cycle, or put simply B

is a cycle. Since we assume B contains no even cycles, B is an odd cycle. Thus, the blocks
of Q are odd cycles or edges. Since Q contains at least one cycle, there is an odd cycle C ′.
Since B is a path, C ′ contains 2 nodes a and b with neighbours outside C ′. However, GS2

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:19

cannot contain such an odd cycle, as that we would have contracted the two a-b paths of C ′

to parallel edges and then replaced them by a twin edge; see Figure 10. This completes the
proof. ◀

G Ḡ1G1

Figure 10 Cycle is replaced by an edge in 2-compression.

For any set S, if GS3 contained a pseudo-pocket Q without even cycles, then Q was obtained
from a subgraph Q′ of GS2 by subdividing edges. Then Q′ would be a pseudo-pocket of GS2
without even cycles. This contradicts Lemma 18. This shows the following corollary.

▶ Corollary 19. For any set S, any pseudo-pocket of GS3 contains an even cycle.

Recall from Definition 6 and the paragraph afterwards, that a pseudo-tiling of our graph
corresponds to the union of a matching of the dual graph and a set of even faces. A tiling
corresponds to the union of a matching of the dual graph not containing any edge incident
to the infinite face and a set of even finite faces. Under this correspondence, the existence of
large pseudo-tilings is a much more natural thing to prove. Let us first formally define a
large pseudo-tiling.

▶ Definition 20. Let α ∈ (0, 1). A pseudo-tiling T is α-pseudo-perfect if it covers all
even faces (including the infinite face if it is even) and a β-fraction of the odd faces, and a
ψ-fraction of the faces of H are even, where β(1− ψ) + 2ψ ≥ α.

We will first prove the existence of large pseudo-perfect pseudo-tilings. We fix an embedding
of H. For any multigraph W , let oc(W) be the number of odd components of W . Recall
pseudo-tilings correspond to matchings. Our proof will use Tutte’s Theorem stated below,
which informally speaking, says that the absence of a large matching implies the existence of
a small set of vertices whose removal results in a graph with a large number of connected
components of odd size.

▶ Theorem 21 (Tutte’s Theorem). For any graph G, the number of nodes of G which are
not covered by a maximum size matching of G is at most

oc(G\X)− |X| . (8)

for some X ⊂ V (G). Further, if some node v ∈ V (G) is covered by every maximum matching
of G, then (8) holds for some X ⊂ V (G) containing v.

The main idea of why such large pseudo-perfect pseudo-tilings should exist is that by
Tutte’s Theorem, the absence of a large pseudo-tiling implies that for some set X of nodes of
the dual graph H∗, the set of odd components of H∗\X is large relative to |X|.

Construct a new graph H1 as follows. Start with the graph H∗ and add as many edges as
possible between nodes of X while preserving planarity and not creating any faces of length
two (see Figure 11). We will show that each odd component of H1\X lies in a different
face of H1[X] and that H1 contains at most two faces of length two. Thus using Euler’s
formula, |E(H1[X])| ≤ 3|V (H1[X])| − 4, H1[X] does not have too many edges. The crucial
observation is that since each odd component of H1\X lies in a different face of H1[X], each

APPROX/RANDOM 2021

25:20 Hitting Weighted Even Cycles in Planar Graphs

X E(H1)\E(H∗)

X

Figure 11 The graph H∗ with set X ⊂ V (H∗) (depicted in blue) on the left. On the right, the
graph H1 obtained from H∗ by adding edges (dashed) between X.

node x ∈ X is adjacent to more other nodes of X in H1 than there are odd components of
H1\X which contain a neighbour of x. By facial region, we mean the region of the plane
bounded by a face. We will also show there are at most two odd components J1, J2 for which
at most two nodes of X have neighbours in Ji. We can then show that the number of odd
components is at most 2/3 the number of edges of H1[X] plus 2

3 , which will contradict that
the set of odd components is large.

▶ Lemma 22 (⋆). Let H be as in Algorithm 2.1, that is, H is a minimal pocket of GS2 .
Then H has a 2/3-pseudo-perfect pseudo-tiling.

So let T be a 2/3-pseudo-perfect pseudo-tiling of H. Let β′ be the fraction of odd faces
of H which are covered by T , and let ψ′ be the fraction of even faces of H. Next, we will show
that if T covers more faces than a maximum tiling of H, then T satisfies a slightly stronger
condition than 2/3-pseudo-perfect, namely, β′(1−ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2

3 |V (H∗)|+ 4
3 .

Formally, this means:

▶ Lemma 23 (⋆). Let H be as in Algorithm 2.1, that is, H is a minimal pocket of GS2 .
Suppose that any maximum size pseudo-tiling of H covers the infinite face. Then H has a
pseudo-tiling covering a β′-fraction of all odd faces such that

β′(1− ψ′)|V (H∗)|+ 2ψ′|V (H∗)| ≥ 2
3 |V (H∗)|+ 4

3 . (9)

▶ Theorem 24. Let H be an inclusion-minimal pocket of GS2 . Then we can obtain 2/3-quasi-
perfect tiling of H in polynomial time.

Proof. We first show that H admits a 2/3-quasi-perfect tiling. Let us show that if some
tiling T is 2/3-pseudo-perfect, then it is 2/3-quasi-perfect. Let β′ be the fraction of odd
faces of H that are covered by T and ψ′ the fraction of faces of H, that are even. As T is
2/3-pseudo-perfect, it covers all even faces. Since T is a tiling, the infinite face is odd. As
the number of even finite faces is ψ′|V (H∗)|, so ψ′|V (H∗)|

|V (H∗)|−1 is the fraction of finite faces of H
that are even. (1− ψ′)|V (H∗)| is the number of odd faces of H, so β′(1− ψ′)|V (H∗)| is the
number of odd faces of H covered by T . Since the infinite face is odd, (1−ψ′)|V (H∗)| − 1 is
the number of odd finite faces. Thus β′(1−ψ′)|V (H∗)|

(1−ψ′)|V (H∗)|−1 is the fraction of odd finite faces of H
covered by T . Since

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:21

β′(1 − ψ′)|V (H∗)|
(1 − ψ′)|V (H∗)| − 1(1 − ψ′|V (H∗)|

|V (H∗)| − 1) + 2ψ′|V (H∗)|
|V (H∗)| − 1

= β′(1 − ψ′)|V (H∗)|
(1 − ψ′)|V (H∗)| − 1(1 − ψ′) + 2ψ′ +

(
2 − β′(1 − ψ′)|V (H∗)|

(1 − ψ′)|V (H∗)| − 1

)(
ψ′ − ψ′|V (H∗)|

|V (H∗)| − 1

)
≤ β′(1 − ψ′)|V (H∗)|

(1 − ψ′)|V (H∗)| − 1(1 − ψ′) + 2ψ′ ≤ 2
3 ,

it holds that T is 2/3-quasi-perfect.
If there is a maximum size pseudo-tiling that is also a tiling, then it follows from Lemma 22

that such a tiling is 2/3-quasi-perfect.
Otherwise, if no pseudo-tiling exists, the largest pseudo-tiling is larger than the largest

tiling. Let T be a maximum size pseudo-tiling.
If the infinite face of T is even, consider the tiling T ′ obtained by removing the infinite

face from T . Let ψ(1) := (ψ′|V (H∗)| − 1)/(|V (H∗)| − 1) be the fraction of finite faces of H
which are even. As the infinite face is even, β′ is the fraction of odd finite faces of H which
are covered by T ′. It holds that

β′(1 − ψ(1))(|V (H∗)| − 1) + 2ψ(1)(|V (H∗)| − 1) = β′|V (H∗)|(1 − ψ′) + ψ′|V (H∗)| − 1

≥ 2
3 |V (H∗)| + 4

3 − 1 = 2
3(|V (H∗)| − 1) .

So T ′ is 2/3-quasi-perfect.
If the infinite face is odd, consider the tiling T ′ obtained by removing the even cycle

covering the infinite face from T . Let ψ(2) := ψ′|V (H∗)|/(|V (H∗)| − 1) be the fraction
of finite faces of H that are even. At least β′|V (H∗)| − 2 of the finite faces of H are
covered by T ′ so the fraction β′′′ of finite odd faces of H that are covered satisfies b′′ ≥
(β′|V (H∗)| − 1)/(1− ψ(2))(|V (H∗)| − 1). Therefore,

b′′(1 − ψ(2))(|V (H∗)| − 1) + 2ψ(2)(|V (H∗)| − 1) ≥ (β′|V (H∗)| − 1) + 2c|V (H∗)|

≥ 2
3 |V (H∗)| + 4

3 − 1 = 2
3(|V (H∗)| − 1) .

Hence also in this case, T ′ is 2/3-quasi-perfect.
Finally, since a tiling corresponds to the union of a matching and a set of even faces,

finding a maximum tiling of H corresponds to finding a maximum matching of the odd finite
faces of H. Computing such a maximum matching can be done in polynomial time. ◀

A.1 Proof of Theorem 17
In this section we will prove Theorem 17. Let G,H,R, S,A be as in the statement of
Theorem 17. Let DG be the debit graph of G with respect to S.

We introduce the notion of “balance”, which captures for subsets R′ ⊆ R of cycles are
incident to more or less than 18/7 nodes of S on average.

▶ Definition 25. For each subset R′ ⊆ R, its balance bal(R′) is the quantity |R′| − 7
18 |E

′
R|.

Our proof follows the same methodology as Berman and Yaroslavtsev [6]. First, it shows a
pseudo-witness cycle that is not a face and is minimally so, that is any pseudo-witness cycle
lying in the finite region bounded by it is a face, has balance at least 1− 7

18 . Then it uses
this to apply a reduction on G. We will use the following result of theirs.

APPROX/RANDOM 2021

25:22 Hitting Weighted Even Cycles in Planar Graphs

R0 R1 R2 R3 R4 R5

C5 C4 C3 C2 C1

Figure 12 Pseudo-witness cycles C1, . . . , C5 divide H into regions R0, R1, . . . , R5.

▶ Proposition 26 ([6, Lemma 4.3]). Let W be a planar graph, Ŝ be a set of nodes of W and
Q ⊂ Ŝ be a set of nodes of W that we call outer nodes. Let RW be a set of faces of W such
that each non-outer node of Ŝ ∩W has a pseudo-witness cycle in RW . If W contains a ≤ 2
outer nodes, then bal(RW) ≥ 1− 7

18a.

If all nodes of a pseudo-witness cycle A are contained in H, call A a hierarchical pseudo-
witness cycle. Otherwise, call A a crossing pseudo-witness cycle. Denote the set of crossing
pseudo-witness cycles by Â. We are now ready to complete the proof of Theorem 17. We
begin by reductions on our instance (G,H,R,A, S) which simplify our instance and do not
increase the balance. If after applying this reduction our instance has positive balance, then
our instance had positive balance before the reduction. We define the reduction below.

▶ Definition 27. We define the following reduction on our instance (G,H,R,A, S). If H
contains a hierarchical pseudo-witness cycle A that is not a face of R, delete all nodes, edges
and faces of R inside A from H and add A to R. If H does not contain a hierarchical witness
cycle, we call the instance (G,H,R,A, S) reduced.

Let RC be the faces in R contained in the region bounded by C. Let H1,R1 be the result
of applying the reduction in Definition 27 on H,R. The balance of H1,R1 is equal to

|(R\RC) ∪ {C}| −
∑

M∈(R\RC)∪{C}

|M ∩ S|

= |R| −
∑

M∈R

|M ∩ S| − (|RC | + 1 − (
∑

M∈RC

|M ∩ S|) + 1) = bal(H) + 1 − bal(RC) − 7
18 .

That is to say, the reduction changes the balance by 1−bal(RC)− 7
18 , which by Proposition 26

is non-positive. Thus, if after applying the reduction in Definition 27, our instance has
positive balance then it initially had positive balance. We know apply the reduction in
Definition 27 until our instance is reduced, for simplicity we will continue to call this graph H .

The crossing pseudo-witness cycles Â partition H into regions, see Figure 12. That is,
consider the subgraph K ⊂ H consisting of nodes and edges lying on a witness cycle of Â or
on the outside face of H. The regions are defined as the portions of the plane bounded by
the finite faces of K. Define a subpocket [6] as the subgraph of H consisting of the nodes
and edges lying in or on the boundary of a region.

▶ Proposition 28 ([6]). The regions that the set of crossing cycles Â partition the plane into
satisfy the following. For each region, there is a set Ã of at most two pseudo-witness cycles
of Â such that each node bounding the region either does not lie on a pseudo-witness cycle
in Â or lies on a cycle of Ã.

A. Göke, J. Koenemann, M. Mnich, and H. Sun 25:23

By the reduction described in Definition 27 each non-crossing cycle of A is a face. Since
by Proposition 28, the outside face of each subpocket W contains nodes from at most two
crossing pseudo-witness cycles, and contains all nodes that belong to pseudo-witness cycles lie
on the outside face, there are at most two hit nodes of W whose pseudo-witness is not a face
and they must lie on the outside face of W . Hence, each subpocket satisfies the conditions
of Proposition 26 and hence has positive balance. Thus, H has positive balance, that is,
0 ≤ |R| − 7

18 |ER| = |R| −
∑
M∈R |M ∩ S|. Rearranging,

∑
M∈R |M ∩ S| ≤

18
7 |R|, which

completes the proof of Theorem 17. ◀

APPROX/RANDOM 2021

Revenue Maximization in Transportation Networks
Kshipra Bhawalkar #

Google Research, Mountain View, CA, USA

Kostas Kollias #

Google Research, Mountain View, CA, USA

Manish Purohit #

Google Research, Mountain View, CA, USA

Abstract
We study the joint optimization problem of pricing trips in a transportation network and serving the
induced demands by routing a fleet of available service vehicles to maximize revenue. Our framework
encompasses applications that include traditional transportation networks (e.g., airplanes, buses)
and their more modern counterparts (e.g., ride-sharing systems). We describe a simple combinatorial
model, in which each edge in the network is endowed with a curve that gives the demand for traveling
between its endpoints at any given price. We are supplied with a number of vehicles and a time
budget to serve the demands induced by the prices that we set, seeking to maximize revenue. We
first focus on a (preliminary) special case of our model with unit distances and unit time horizon.
We show that this version of the problem can be solved optimally in polynomial time. Switching to
the general case of our model, we first present a two-stage approach that separately optimizes for
prices and routes, achieving a logarithmic approximation to revenue in the process. Next, using the
insights gathered in the first two results, we present a constant factor approximation algorithm that
jointly optimizes for prices and routes for the supply vehicles. Finally, we discuss how our algorithms
can handle capacitated vehicles, impatient demands, and selfish (wage-maximizing) drivers.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Pricing, networks, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.26

Category APPROX

1 Introduction

The increasing popularity of ride-sharing systems has inspired renewed interest on questions
of pricing and routing transportation requests in networks [2, 4, 6, 12, 16]. Typically, such
ride sharing platforms have an abundance of data at their disposal, which offers them a good
understanding of the market. These data offer insights which can lead to reasonable estimates
of the supply of drivers expected at a given time, as well as the number of customers who
would be interested in taking a given trip at a given time and price. Similar data is available
for more traditional transportation companies, such as airlines and bus agencies. In all these
settings it is natural to ask the question:

How do we maximize revenue in a transportation network, given a) a supply of vehicles
and b) demand curves for the possible trips?

This question appears at face value to be (primarily) a pricing problem. While this is
true to a large extent, there is a latent scheduling/routing aspect of how one can serve these
demands with an available supply of vehicles. This connection implies that any approach in
this setting has to address difficulties encountered both in pricing and in routing problems.

Various efforts have been made at tackling aspects of pricing and routing in ride-sharing
platforms. These include queueing approaches [4], mechanism design [6, 12, 16], and Markov
chain models [2]. In this work we formulate and study a simple combinatorial model of the

© Kshipra Bhawalkar, Kostas Kollias, and Manish Purohit;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 26; pp. 26:1–26:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kshipra@google.com
mailto:kostaskollias@google.com
mailto:mpurohit@google.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Revenue Maximization in Transportation Networks

Transportation Network Pricing problem. In our model, the problem is studied on a
graph where distances are symmetric (i.e., the distance from node u to node v is the same as
the distance from node v to node u) but demands are asymmetric (i.e., the demand from
node u to node v at a price p is not necessarily the same as the demand from node v to
node u at the same price p). We consider this assumption to be reasonable in real world
scenarios but also note that our results hold within a constant approximation when the
distance between any u and v is within constant bounds of the distance between v and u.
An available supply of k vehicles can move from node to node in the graph serving demands
in the process.

It is not hard to observe that pricing decisions are interconnected with routing decisions.
Knowing how many times vehicles will travel from u to v gives insights on how to price
the trip from u to v. In such a case, we would want to charge as much as possible while
still maintaining a demand high enough to utilize the vehicles that make the trip. Similarly,
knowing that a specific trip has a large number of customers who are willing to travel at a high
price hints that we should send a large number of vehicles their way. This interconnection
makes the problem challenging and interesting.

1.1 Our Contributions
In Section 3 we attempt to disentangle the pricing component from the routing aspect and
understand their difficulties separately. We explore the pricing and supply assignment aspect
by abstracting away the routing component in a special case of the model. We show that
this pricing and assignment version of the problem can be solved in polynomial time. In
Section 4, we transition to the general graph model and present an approach that handles
pricing and routing as separate stages, achieving a logarithmic approximation to the revenue
in the process. In Section 5, applying the insights gathered in the first two, we bring the
pricing and routing components back together in a joint optimization stage and provide a
constant factor approximation algorithm for general graphs. In Section 6 of the paper we
explain how our solution can handle selfish drivers with a small loss in the approximation
factor. In Section 7, we show that our techniques generalize to the setting where edges have
different demands depending on the time of the day, a setting that can also handle impatient
demands that disappear after a certain period. Finally, in Section 8, we discuss how the
capacitated version of the problem reduces to the unit capacity case.

1.2 Related Work
Various previous works study pricing in ride-sharing systems. The papers most closely related
to ours are [6, 16] who also study a network with price dependent demand curves and seek
to maximize revenue. A significant difference in our model is that we consider a general
network with arbitrary distances as opposed to the unit distances studied in these two models.
The work in [6] considers an infinite supply setting and proves that price discrimination
can significantly improve revenue over uniform pricing. The work in [16] considers drivers
with preferences for one location over the other and takes a mechanism design approach to
achieve incentive compatibility. We note that in our final section we also consider a special,
well-motivated, form of driver preferences: wage maximization.

Other papers study more dynamic aspects of ride-sharing platforms such as spatial
imbalance and temporal variation [12], dynamic pricing [8], Markov models [2], and queueing
models [4]. Other studies focus on market segmentation [1, 3] and car pooling aspects [14].

K. Bhawalkar, K. Kollias, and M. Purohit 26:3

On the routing side, our work is related to the vehicle routing problem [10, 11] and, more
closely, to prize collecting traveling salesperson problems in graphs. Most relevant is work on
the orienteering problem, the best known algorithms for variants of which are given in [15]
and [9]. The work in [15] achieves a 2 approximation for single path orienteering on undirected
graphs via a primal-dual algorithm. The work in [9] presents dynamic programming based
algorithms, following up on work in [5, 7]. A particular result from [7] that is relevant in our
proofs is that undirected orienteering with k paths can be approximated within a factor 3.

2 Model and Preliminaries

In this section we define the specifics of Transportation Network Pricing.
Consider a set of locations V and the possible trips between them E = V × V . Let le

be the length (in time) of trip e ∈ E. We assume trip times are symmetric and le = le′ for
e = (u, v) and e′ = (v, u). For each trip e, we are also given a demand curve de(p) that gives
the number of agents who are willing to pay a price p for trip e. Naturally, we assume that
de(p) is a non-increasing function of p. For convenience, for each trip e, we also define the
price curve

pe(d) = max{p | de(p) ≥ d}

as the maximum price p such that at least d agents are willing to pay p for the trip e. To
serve these demands, we have a supply of k service vehicles who can move from location to
location and transport the demands. The total trips a service vehicle can make are limited
by a time horizon T which is an upper bound on the total length of trips a service vehicle can
do. For simplicity and without loss of generality we assume that all edge lengths, demand
values, and possible prices are integers.

A solution consists of: (a) a price qe for each trip e and (b) a path Pi of length at most
T for each service vehicle i. A path is a sequence of trips P = {e1, e2, . . . , em} such that the
destination of trip ej is the source of trip ej+1. The set of service vehicle paths induces a
supply se for trip e, defined as the number of times e appears in all paths (note that a path
might repeat e multiple times). The revenue for trip e is then equal to:

re = qe min{se, de(qe)}.

Our objective is to provide prices and paths that maximize the total revenue:

R =
∑
e∈E

re.

We assume throughout the paper that the number of agents k and the time horizon T are
both polynomial in the size of the graph G. We will design (approximation) algorithms that
are polynomial in k, T , and the size of the graph. Figure 1 illustrates a simple instance of
the Transportation Network Pricing problem and its optimal solution.

A key component of our algorithms is the revenue function of an edge e ∈ V × V that
expresses the maximum amount of revenue that can be obtained from the edge e for a given
supply. Mathematically, we define

re(ℓ) = max
0≤j≤ℓ

{j · pe(j)}

.

APPROX/RANDOM 2021

26:4 Revenue Maximization in Transportation Networks

1 : 20
2 : 15
3 : 0

{ }

1 : 10

2 : 8 }{

1 : 10

2 : 8 }{

1 : 10

2 : 0 }{

1 : 10

2 : 0 }{
u

v

w x

2 1

Figure 1 An instance of the Transportation Network Pricing problem. Each edge in the
digraph represents a trip e of unit length. The maps labeling each edge represent the corresponding
price curve, for instance, p(u,v)(1) = 20 and p(u,v)(2) = 15. For a time horizon of T = 3 and k = 3
service vehicles, the figure illustrates an optimal solution that assigns two vehicles to the path
⟨(u, v), (v, w), (w, u)⟩ and one vehicle to the path ⟨(u, v), (v, x), (x, u)⟩ for a total revenue of 82.

3 Node Model: One Trip Per Vehicle

We begin with a warm-up setting in which each vehicle only makes one trip and our decisions
amount to pricing edges and assigning vehicles to them. To fit this framework in our model,
we can think of the special case with unit edge lengths and a unit time horizon. Since edges
have no interaction with each other in this setting, we may equivalently think of them as
simply unconnected nodes. For ease of notation, for this special case, we define a demand
curve di(·) for each node i. The price curve pi(·) and revenue curve ri(·) are defined similarly.
We term this special case as the Transportation Node Pricing Problem. We show
that the problem is poly-time solvable.

▶ Theorem 1. Transportation Node Pricing can be solved in polynomial time when
the number k of service vehicles is polynomial in the size of the graph.

Proof. Consider an arbitrary ordering of the nodes. Let Opt(i, j) denote the revenue
extracted by the optimal solution for the first i nodes with j vehicles. Thus Opt(n, k) denotes
the revenue extracted by the optimal solution for an instance. The following recurrence
shows how one can compute this optimal solution via dynamic programming.

Opt(i, j) = max
ℓ∈{0,...,j}

{Opt(i − 1, j − ℓ) + ri(ℓ)} (1)

Intuitively, the recurrence searches over all possible number of vehicles to assign to the ith

node and solves the residual problem optimally. While Opt(n, k) only yields the optimal
revenue, it is also easy to obtain the actual optimal solution by tracing the path taken by
the dynamic program. ◀

As a side-note, we prove that the problem is NP-Hard when k is super-polynomial. We
note though that a FPTAS is possible with an approach similar to the one for Knapsack.

▶ Theorem 2. Transportation Node Pricing is NP-Hard.

Proof. We will prove this by reducing Knapsack to our problem. The Knapsack problem
has a collection of n items with sizes si and values vi for i = 1, 2, . . . , n and a knapsack of
size B. The goal is to pack items of total size at most B and maximize the total value picked.

K. Bhawalkar, K. Kollias, and M. Purohit 26:5

Our reduction is as follows. For each item i, we construct a node i with the following
demands: for a given large number L, the demand for the trip to i is one when the price
is Lsivi and Lsi when the price is vi. There are no others interested in the trip to i. In
other words, we set ri(1) = Lsivi and r(Lsi + 1) = Lsivi + vi. The total supply of vehicles
is k = n + LB.

Observe that in the induced Transportation Node Pricing instance there are, in
effect, two possible prices for each node: either set price pi = Lsivi and serve the unique
customer at that price, or set pi = vi and serve all Lsi + 1 customers. This means we have
the option to either extract total revenue Lsivi spending supply 1 or spend an additional
supply of Lsi to extract an extra vi. When L is high enough, it is clear that any optimal
solution spends the first n of the n + LB supply units to secure the Lsivi from every node,
before considering any of the additional vi’s. Then the solution will have to allocate the
remaining LB supply units to get additional revenue vi from any node i to which it allocates
Lsi. This is precisely the original Knapsack problem where all the sizes are scaled by L,
which implies that any optimal solution to this Transportation Node Pricing instance
recovers an optimal solution to the corresponding Knapsack instance. ◀

4 Separate Price & Route Optimization

In this section we consider the general Transportation Network Pricing model and
present an approach that first attempts to determine prices and then to compute routes
for the supply vehicles. We show that this algorithm achieves a logarithmic approximation.
This section is of interest in itself, but also a warm-up for various aspects we will encounter
in our main technical result in the next section (a constant approximation for the same
problem that jointly optimizes for prices and routes) such as a reduction to the Undirected
Orienteering Problem:

▶ Definition 3. In the Undirected Orienteering problem we are given an undirected
graph G = (V, E) with costs on the edges and values on the nodes, and a cost budget T . We
seek to find k paths each of cost at most T that maximize the total value of nodes visited.

Our algorithm proceeds in two steps as follows:
Guess a revenue target and set prices accordingly. We guess a target revenue r̃ ∈ R and

attempt to extract a revenue of r̃ from each edge e in the network. For every edge e, set the
price that would achieve the revenue target r̃ with the smallest supply possible. If r̃ is not
achievable on some edge e, give up on e and set an infinite price.

Construct and solve an undirected orienteering instance. Since prices have been deter-
mined, each crossing of an edge by a supply vehicle extracts a known revenue. We formulate
and solve an Undirected Orienteering instance based on this information. Good constant
factor approximation algorithms are known for Undirected Orienteering, something that
is the raison d’etre of the graph transformation we perform in this stage. In more detail, we
construct an auxiliary undirected graph in which we move the value from edges (i.e., the trips
in the transportation graph) to new nodes that we introduce between the trip’s endpoints.
Every time such a node is visited will represent the corresponding trip being performed once.
Hence, the value of such a node is equal to the price set for the corresponding trip. The
edge lengths in the auxiliary graph are scaled so that the paths returned by the orienteering
algorithm can be converted into sequences of trips in the original network.

APPROX/RANDOM 2021

26:6 Revenue Maximization in Transportation Networks

4.1 Price Setting
Our algorithm begins with a guess r̃ that is the revenue we will try to extract from every edge
(i.e., every trip) in the network. Let R = {re(ℓ)}e∈E,0≤ℓ≤kT denote the set of all possible
revenue values that can be extracted from any edge (note that no trip can be made more than
kT times even if all service vehicles perform that one trip). The algorithm will ultimately be
run for all possible guesses r̃ ∈ R. Since |R| ≤ n2kT , trying all possible revenues in R can
be done in polynomial time.

Once r̃ is fixed, the price that we should set at any edge e can be computed as follows.
Let se = min{ℓ : re(ℓ) ≥ r̃} be the minimum supply we need to extract value r̃ at e. Then
qe = pe(se) is the price we set for edge e. We now make the following claim.

▶ Lemma 4. Let (q∗, P ∗) be an optimal solution with q∗ the vector of prices and P ∗ the
paths of the service vehicles. Also, let r̃ be the guess that, with induced prices q̃ and the
same paths P ∗, maximizes the revenue among all guesses. The revenue extracted by solution
(q̃, P ∗) is an Hm-approximation to the revenue extracted by the solution (q∗, P ∗), where m is
the number of edges in the graph and Hm the m-th harmonic number.

Proof. Order the edges as 1, 2, . . . , m, in order of non-increasing revenue extracted in (q∗, P ∗).
Call these revenues r∗

1 , r∗
2 , . . . , r∗

m. Consider the guess r̃ = r∗
j for our algorithm. Fix the paths

P ∗ and set the price that achieves r̃ in each edge e (or infinite price if not possible) as per
our algorithm. Consider any edge e ≤ j. We know that r̃ = r∗

j is achievable on these edges,
since the optimal solution extracts at least that on each one. Moreover, we have enough
supply to achieve r∗

j on these edges, since P ∗ allocates enough supply for at least that much.
Hence, when the guess is r̃ = r∗

j , the solution (q̃, P ∗) extracts value at least jr∗
j .

Let j∗ = arg maxj{jr∗
j } be the guess that yields the maximum value. Thus, we have

j∗r∗
j∗ ≥ j′r∗

j′ , for all j′ = 1, 2, . . . , m. Then:

R∗ =
m∑

j′=1
r∗

j′ ≤
m∑

j′=1

j∗r∗
j∗

j′ = Hmj∗r∗
j∗ ≤ HmR,

with R∗ the optimal revenue and R the revenue of (q̃, P ∗). This proves the lemma.
We also proceed to prove that this factor is tight. Consider the case when r∗

j = 1/j.
Every jr∗

j is unit, whereas their sum is Hm. ◀

4.2 Construction of the Orienteering Instance
Given the prices fixed in the previous stage of the algorithm, our goal is to route the k

supply vehicles so that they can extract as much value as possible. This task is similar to
the Undirected Orienteering problem, for which a 2-approximation algorithm exists
[15]. The main difference in our setting is that the values are on the trips between nodes and
not on the nodes. Moreover, these trips are directed. We now describe a transformation to
the graph that handles these issues with a small loss in approximation.

We construct an undirected graph H = (N, A) with values on the nodes and costs on
the edges as follows. We begin with the nodes of the input transportation network V . All
these nodes have value 0. For every ordered pair of nodes e = (u, v) ∈ E, we construct
min{kT, de(qe)} nodes zi

e, i = 1, 2, . . . , min{kT, de(qe)}, with value qe, i.e., the price of the
trip from u to v. For every such node zi

e, we add an (undirected) edge between it and u and
an (undirected) edge between it and v. Both these edges have length equal to le, the length
of the trip from u to v. Figure 2 shows an example of the construction of the orienteering
instance.

K. Bhawalkar, K. Kollias, and M. Purohit 26:7

u v
price = qe
length = `e

u v

value = qe

value = qe

`e `e

`e`e
value = 0 value = 0

z1e

z2e

zie

Figure 2 Construction of the orienteering instance with fixed prices.

▶ Lemma 5. Every path of length at most T ∗ in the input graph G that extracts revenue R

can be expressed as a path of length at most 2T ∗ in H that picks value R.

Proof. Let P be a path of length at most T ∗ in G. Consider the order in which nodes
are visited by the path P in G. We visit the same nodes in the same order in the graph
H to obtain a path P ′. The ith time we cross an edge from u to v (in G), we go via the
intermediate node zi

e in H . For i larger than de(qe), we go via any of the intermediate nodes
(since they all have already been visited). Since the original path P in G has length at most
T ∗, and every edge e = (u, v) of length le in G corresponds to a walk (u → zi

e → v) of length
2le in H, the new path P ′ in H has a total length of at most 2T ∗. Let us now compute the
value picked up by the path P ′ in H. Let se be the number of times that path P passes
through edge e. Then, by definition, the total revenue extracted by P is given by:

R =
∑

e

qe min{se, de(qe)}.

On the other hand, for every edge e = (u, v) in G, by construction the path P ′ passes through
min{se, de(qe)} distinct intermediate vertices (zi

e) each having value qe. Thus path P ′ picks
up value at least R in H. ◀

▶ Lemma 6. Every path of length at most T̃ in graph H that picks value R can be expressed
as a path of length at most T̃ in G that extracts at least revenue R.

Proof. Let P ′ be a path in H of length at most T̃ that picks value R. Let v be the first
vertex on path P ′. Then the path P ′ departs from node v, visits an intermediate node zi

e

(where e = (u, v) or e = (v, u)) and either returns back to v or moves to the opposite node u.
In the former case, it pays a cost of 2le and extracts value qe. We can construct a path P in
G in exactly the same way as follows - starting from node v, visit node u and come back to
v paying a total cost of 2le (since lengths are symmetric) and extracting at least qe revenue.
In the latter case P ′ visits v → zi

e → u and again pays a cost of 2le and extracts a revenue
of qe (unless of course all intermediate nodes zi

e have already been visited earlier). In this
case, if e = (v, u), then we simply cross from node v to node u in the path P to earn revenue
qe and a cost of only le. On the other hand, if e = (u, v), then in path P , we first take edge
(v, u), then take (u, v), and then again take (v, u) so that we end up on the same node on
both P and P ′. In this step, path P extracts a revenue of at least qe but pays a cost of 3le.

Let P ′
rev denote a path in H that is the reverse of P ′, i.e., it visits the same set of nodes

but in the reverse order. Let Prev be the path in G constructed as above starting from P ′
rev.

By construction, both P and Prev extract a revenue of at least R. However, since for any

APPROX/RANDOM 2021

26:8 Revenue Maximization in Transportation Networks

step v → zi
e → u in P ′, exactly one of P and Prev pay a cost of le while the other pays 3le.

Thus, we have:

length(P) + length(Prev) =
∑

e

4le = 2length(P ′)

and hence at least one of P and Prev have length of at most T̃ , proving the lemma. ◀

▶ Lemma 7. For a set of fixed prices, solving the Undirected Orienteering problem
on graph H with budget T and translating the paths of graph H to paths of graph G as in
Lemma 6, gives a 6-approximation to revenue.

Proof. By Lemma 5 we get that each one of the optimal paths in G can be expressed as
a path of length at most 2T in H. We solve Undirected Orienteering with a budget
of T . We note that the optimal solution with budget T will have at least half the value
of the optimal solution with budget 2T since we can simply take the better half. This
implies the optimal solution for the instance we solve will have value at least half the optimal
revenue. By the fact that Undirected Orienteering with k paths can be solved within a
3-approximation, our paths in H will be within 6 of the optimal revenue. Applying Lemma
6 completes the proof. ◀

Putting Lemma 4 with Lemma 7 together, we get the main theorem of the section. More
precisely, Lemma 4 suggests that some prices given by our first stage are such that the
optimal paths for them will give an Hm-approximation to revenue. Lemma 7 proves that,
when we try these prices, we will find paths that approximate the optimal paths within a
factor 6. We then get the following theorem.

▶ Theorem 8. Our separate pricing & routing optimization algorithm gives a 6Hm-
approximation to revenue, where m is the number of edges.

5 Joint Price and Route Optimization

In this section we use the insights obtained in the previous two sections to come up with a
joint pricing and routing optimization algorithm. The algorithm in effect combines the main
ideas of the previous two approaches to price and route at the same time. The algorithm
proceeds in the following stages.

Concave approximate revenue curve construction. First, we process all demand curves
to obtain the corresponding revenue functions re(ℓ) (recall that these give the maximum
possible revenue that can be achieved at edge e with supply ℓ), which in turn we process to
obtain approximate revenue functions r̂e(ℓ) that are concave. We prove that we can always
find a concave function that satisfies re(ℓ) ≤ r̂e(ℓ) ≤ 2re(ℓ) for every ℓ. The main reason for
performing this step is that the concave approximate revenue functions r̂e(ℓ) satisfy the nice
property that the marginal increase:

∆r̂e(ℓ) = r̂e(ℓ) − r̂e(ℓ − 1)

that is caused by the ℓ-th supply on edge e is decreasing. This proves useful when we place
these marginal contributions as values to be collected from a graph in the second stage. We
will also refer to r̂e(·) as the perceived revenue.

Auxiliary graph construction. The main idea of the second stage of our algorithm is to
construct an auxiliary graph that, similarly to our approach in the previous section, a) is
undirected, b) has values only on nodes, and c) there is an equivalence between paths in the

K. Bhawalkar, K. Kollias, and M. Purohit 26:9

auxiliary graph and sequences of trips in the input transporation network. Again, the value is
moved from edge e, to a collection of nodes zi

e, i = 1, 2, . . . , kT , that are introduced between
its endpoints. This time however, the values of these nodes are not the same. Instead, the
value of zℓ

e is precisely the marginal perceived revenue ∆r̂e(ℓ). The transformation of edge
lengths is exactly as in the previous section. We then proceed as in the previous section,
to solve the induced Undirected Orienteering instance and translate the paths of the
auxiliary graph H to paths of the input graph G. Once this is done, the paths induce supplies
on the edges which we can use to infer the prices.

5.1 Concave Approximate Revenue Functions
As we also discussed in the preliminary node model, we can express the maximum revenue
we can extract from an edge, given supply ℓ, as:

re(ℓ) = max
0≤j≤ℓ

{jpe(j)} ,

with pe(j) the maximum price that induces demand at least j. As can be seen in Figure 3,
we note that re(·) need not be a concave function.

However, we can define a concave function r̂e(·) as the concave envelope of re(·). In other
words, r̂e(·) is the lowest-valued concave function such that r̂e(ℓ) ≥ re(ℓ). Concretely, let
[ℓ1, ℓ2] be a maximal interval such that the function re(·) in this interval is bounded above by
the linear interpolation of re(ℓ1) and re(ℓ2). Then ∀ℓ ∈ [ℓ1, ℓ2], r̂e(ℓ) is obtained by linearly
interpolating between (ℓ1, re(ℓ1) and (ℓ2, re(ℓ2)), i.e.,

r̂e(ℓ) =
(

re(ℓ2) − re(ℓ1)
ℓ2 − ℓ1

)
(ℓ − ℓ1) + re(ℓ1)

`1 `2

re(`1)

re(`2)

= `2pe(`2)

= `1pe(`1)

(0, 0)
demand

revenue

r̂e(·)

Figure 3 Example revenue function and its concave approximation. The bold line shows the
original revenue function re(·) for some edge e, and the green dashed line shows its concave
approximation r̂e(·).

We now show that r̂e(·) point-wise approximates re(·) within a factor of 2.

▷ Claim 9. For all 0 ≤ ℓ ≤ k, r̂e(ℓ) ≤ 2re(ℓ)

Proof. Let [ℓ1, ℓ2] be a maximal interval such that r̂e(ℓ) > re(ℓ), ∀ℓ ∈ (ℓ1, ℓ2). Note that by
definition of ℓ2, we have re(ℓ2) = ℓ2pe(ℓ2). Otherwise, if re(ℓ2) = jpe(j) for some j < ℓ2, then
we have re(ℓ2) = re(j) and we cannot have r̂e(j) > re(j). Now, since pe(·) is a non-increasing
function, we have

re(ℓ1) = max
0≤j≤ℓ1

{jpe(j)} ≥ ℓ1pe(ℓ2) (2)

APPROX/RANDOM 2021

26:10 Revenue Maximization in Transportation Networks

Hence, we have the following,

re(ℓ2) − re(ℓ1)
ℓ2 − ℓ1

≤ re(ℓ2) − ℓ1pe(ℓ2)
ℓ2 − ℓ1

(3)

= ℓ2pe(ℓ2) − ℓ1pe(ℓ2)
ℓ2 − ℓ1

= pe(ℓ2) (4)

Now, for any ℓ ∈ (ℓ1, ℓ2), by definition of r̂e(·) we have,

r̂e(ℓ) =
(

re(ℓ2) − re(ℓ1)
ℓ2 − ℓ1

)
(ℓ − ℓ1) + re(ℓ1) (5)

≤ pe(ℓ2)(ℓ − ℓ1) + re(ℓ1) (6)
≤ 2 max{ℓpe(ℓ2), re(ℓ1)} (7)

However, since the revenue function re(·) is non-decreasing and the price function pe(·) is
non-increasing, we have

re(ℓ) ≥ max{ℓpe(ℓ2), re(ℓ1)} (8)

The claim now follows from equations (7) and (8). ◁

5.2 Construction of the Orienteering Instance
As in the previous section, we will construct an undirected graph H = (N, A) with values
on the nodes and costs on the edges. Here also, we begin with the nodes of the input
transportation network V which again have value 0. For every ordered pair of nodes
e = (u, v) ∈ E, we construct kT nodes zi

e, i = 1, 2, . . . , kT . The value of zi
e is ∆r̂e(i), i.e., the

marginal increase in perceived total revenue (as given by the concave approximate revenue
functions r̂e(·)) offered by the i-th trip from u to v. For every such node zi

e, we add an
(undirected) edge between it and u and an (undirected) edge between it and v. Both these
edges have length equal to le, the length of the trip from u to v. Figure 4 shows an example
of the construction of the orienteering instance.

u v
revenue func = re(·)

length = `e

u v

val = r̂e(1)

val = ∆r̂e(kT)

`e `e

`e`e
value = 0 value = 0

val = ∆r̂e(2)

z1e

z2e

zie

Figure 4 Construction of the orienteering instance with approximate revenues.

▶ Lemma 10. Every path of length at most T ∗ in the input graph G that extracts perceived
revenue R can be expressed as a path of length at most 2T ∗ in H that picks value R.

K. Bhawalkar, K. Kollias, and M. Purohit 26:11

Proof. Let P be a path in G of length at most T ∗ that extracts a perceived revenue of R.
We construct a path P ′ in H as follows - when P uses the edge (u, v) for the ith time, our
path in H moves from node u to node v via the intermediate node zi

(u,v). Thus, if P passes
through an edge e exactly l times to extract a perceived revenue of r̂e(l), the path P ′ also
picks up a value of

∑l
i=1 ∆r̂e(i) = r̂e(l). Thus P ′ also picks up a total value of R. The

length argument follows precisely as in Lemma 5. ◀

▶ Lemma 11. Every path of length at most T̃ in graph H that picks value R can be expressed
as a path of length at most T̃ in G that extracts perceived revenue at least R.

Proof. The path construction and length arguments follow exactly as in Lemma 6. The
revenue argument is as follows: Say the path P ′ in H visits x intermediate nodes corresponding
to edge e = (u, v). Then our constructed path P in G crosses edge e at least x times and
extracts a perceived revenue of at least r̂e(x). On the other hand, since ∆r̂e(·) is the
non-increasing, the value earned by P ′ from edge e is at most

∑x
i=1 ∆r̂e(i) = r̂e(x). ◀

Lemmas 10 and 11 together imply that the Undirected Orienteering problem with
k paths is equivalent to the Transportation Network Pricing problem with concave
revenue functions up to a factor of 2 in the approximation ratio. We can thus directly use
a 3-approximation algorithm for Undirected Orienteering as in Lemma 7 to obtain
a 6-approximation to the Transportation Network Pricing with concave revenue
functions. However, since arbitrary revenue functions can be approximated within a factor
of 2 by concave functions, Claim 9 then yields our main result.

▶ Theorem 12. Our joint pricing & routing optimization algorithm gives a 6-approximation
to revenue for concave revenue functions and a 12-approximation to revenue for general
revenue functions.

6 Selfish drivers

An additional layer of complexity in the ride-sharing context is added by the fact that drivers
are independent and will not follow the paths dictated by our algorithm when this is not the
behavior that maximizes their total wages. In this section we discuss the presence of selfish
drivers in the Transportation Network Pricing setting. We assume that wages are a
fixed α fraction of the revenue (i.e., the drivers and the platform share the earnings with
a fixed ratio) and argue that, for any given prices, letting the drivers reach an equilibrium
is within a factor 2 of the optimal path selections. In this sense, with a small loss in the
approximation factor, we may use our algorithms to compute prices assuming the drivers
will comply, advertise them, and let the drivers reach an equilibrium.

For the purposes of our argument, we will need to introduce some additional notation
and definitions. First, for simplicity of exposition, we set α = 1, i.e., assume the drivers
receive all revenue. Let xi

e be the number of times driver i crosses edge e and xi = (xi
e)e∈E

the vector for driver i over all edges which we will refer to as the driver’s strategy. Let x be
the vector of all driver strategies. Let de be the demand under the current price vector (note
that, for simplicity, we have dropped dependence of de on qe in the notation, since prices are
considered fixed throughout this section) and se(x) the supply under x. We are now ready
to define the (expected) wage of i on e as:

wi
e(x) = xi

eqe min
{

1,
de

xe

}
.

APPROX/RANDOM 2021

26:12 Revenue Maximization in Transportation Networks

The interpretation of this expression is that i has probability 1 to get a ride (and hence
a payment of qe) every time she crosses the edge when the demand is at least the supply
and probability de/xe when the demand is less than the supply. Another interpretation is
that drivers share the total revenue on the edge re = qe min{se(x), de} proportionally to the
number of times they cross it.

A collection of strategies is a Nash equilibrium when for every driver i, it is the case that
a unilateral deviation to some other vector yi, induced by a different path selection will not
increase her total wages:∑

e∈E

wi
e(x) ≥

∑
e∈E

wi
e(x−i, yi), ∀yi.

The price of anarchy is the ratio of the total wages in the optimal solution over the total
wages in the worst Nash equilibrium. We get the following observation.

▶ Observation 13. The price of anarchy in the Transportation Network Pricing
problem after prices have been fixed is 2.

Proof. The upper bound follows by the fact that the game we have described is a utility
game with a submodular utility function (since the drivers cover demands with their path
selections). The upper bound then follows from the main result in [18].

The lower bound follows from the following simple instance of the Transportation
Node Pricing submodel. Node 1 has a single demand which is priced at 1 + ϵ. Node 2
has 1/ϵ demands priced at ϵ. There are 1/ϵ drivers in the game. If all of them head to node
1, their expected wage will be ϵ + ϵ2, which is larger than the ϵ they can get from a ride
at node 2. Hence, this is a Nash equilibrium with total wages 1 + ϵ. The optimal solution
assigns 1 driver to node 1 and the rest of them to node 2 for total wages 2. ◀

Hence, we reach the conclusion that, in the presence of selfish drivers, our approximation
will be a factor 2 away of the ones achieved by our algorithms, i.e., we achieve a 24-
approximation using our joint price and route optimization algorithm.

7 Transportation Network Pricing with Dynamic Demands

In this section we consider a natural extension of the Transportation Network Pricing
problem where the demands on an edge can now vary as a function of time. We let de(p, t)
denote the demand on edge e at time t when the price is p. The demand that applies is
determined at the moment in time when an agent starts traversing an edge. For ease of
notation, we assume that the lengths on edges are specified in the units of time. Since all
edge lengths are integral we can assume that the demand changes only at integral time steps.
In this section we prove the following theorem.

▶ Theorem 14. The Tranportation Network pricing problem with dynamic demands can be
solved in time polynomial in n, k, and T to obtain an approximation of O(log n).

To obtain the best possible result, we proceed in two steps. In step 1, we reduce the
Transportation Network Pricing with dynamic demand problem to single agent
Transportation Network Routing with Unit Time Windows. In step 2, we reduce
the single agent Transportation Network Routing with Unit Time Windows
problem to Directed orienteering with Unit Time Windows problem. In the end, we
obtain an approximation factor of O(log n).

K. Bhawalkar, K. Kollias, and M. Purohit 26:13

7.1 Step 1: Transportation Network Pricing to Transportation Network
Routing

This reduction is similar to section 5.2. We present an additional step where we reduce the
problem from k agents to a single agent.

First since the demand varies with time, we redevelop some of the notation to de-
pend on time. The price curve pe(d, t) = max{p|de(p, t) ≥ d} is the price at which
the demand is at least d. The revenue from assigning l agents to edge e at time t is
re(l, t) = max0≤j≤l{jpe(j, t)}. We approximate the revenue curve using a concave function
r̂e(t, i) constructed similar to Lemma 9 with the guarantee that re(l, t) ≤ r̂e(l, t) ≤ 2re(l, t).

Using the concave revenue functions r̂, we reduce the problem to one of constructing paths
on a graph. We will call this the Transportation Network Routing with Unit Time Windows
problem.

▶ Definition 15. In Transportation Network Routing with Unit Time Windows
problem, we are given a directed graph G(V, E) with values ve and time window of unit length
[te, te + 1] associated with each edge. The goal is to find k paths such that each path has
length at most T and the sum of values ve of all edges that appear in at least one path is
maximized. The value ve on an edge is only collected if the path starts on the edge e during
the time window [te, te + 1]. If the same edge e appears in multiple paths, its value ve is
collected only once.

Given our input instance G = (V, E) of the Transportation Network Pricing with
Dynamic Demands problem, we construct an instance G′ = (V, E′) of the Tranportation
Network Routing with Unit Time Windows problem as follows. This graph has
the same set of vertices V . For each edge (u, v) in the original graph G, we construct
kT parallel edges between u and v. The value of the (l, t)’th edge for l ∈ {0, 1, . . . k}
and t ∈ 0, 1, . . . , T − 1 is ∆r̂(l, t) = r̂(l, t + 1) − r̂(l, t). Then similar arguments as section
5.2 guarantee that an α-approximation to Transportation Network Routing with
Unit Time Windows problem yields a 2α-approximation to Transportation Network
Pricing with Dynamic Demands. Note that since the paths map one-to-one in time
between the two instances the time windows do not create any new challenge.

Next we show that an approximation algorithm for the Transportation Network
Routing with Time Windows problem with one agent can be used to obtain a slightly
worse approximation for k agents. The proof is similar to an analogous result by [7] for
orienteering problem.

▶ Theorem 16. An α-approximation algorithm for the transportation network problem with
time windows for a single agent can be used to obtain an (α + 1)-approximation for the
transportation network problem with time windows for k agents.

Proof. Given an α-approximation algorithm for the transportation network problem for a
single agent, we use it repeatedly to solve the problem for k agents. After the algorithm has
selected path Ai for the i’th agent. We set the value on all edges used by the path Ai to
zero before calling the algorithm for the next agent. This ensures that all paths constructed
by the algorithm are edge disjoint. Let O = (O1, O2, . . . , Ok) denote the optimal solution
with k agents decomposed into the k agents’ paths. Let ∆i denote the edges from path
Oi that have already been used by some path Aj (where j < i) by algorithm before path
Ai is chosen. There is a feasible path using all the edges of Oi \ ∆i. Thus we have that
v(Ai) ≥ 1

α {v(Oi) − v(∆i)}. Summing these over all agents, αv(A) ≥ v(O) − v(∆). Moreover
v(∆) ≤ v(A). Hence we conclude that (α + 1)v(A) ≥ v(O). ◀

APPROX/RANDOM 2021

26:14 Revenue Maximization in Transportation Networks

With this result, it suffices to obtain an approximation for the transportation network
routing with time windows problem for a single agent.

7.2 Step 2: Transportation Network Routing to Directed Orienteering
We next reduce transportation network routing with time windows to directed
orienteering with fixed start locations and unit time windows.

▶ Definition 17. In Directed Orienteeting with Unit Time Windows and Fixed
Start we are given a directed graph G = (V, E) with costs on the edges and values on the
nodes, and a cost budget T . There is also a time-window of unit length associated with each
node. The value from a node is only collected if it is visited within the time window. We seek
to find a path of cost at most T that starts at node s ∈ V such that the value collected is
maximized.

This problem can be solved in polynomial time to obtain an approximation of O(log n).
This follows from [9] that provide an approximation of O(α) where α is approximation for
directed orienteering, [13] that provides an O(β log n) approximation for directed orienteering
where β is the integrality gap for asymmetric TSP, and [17] that provides a constant factor
integrality gap for asymmetric TSP.

We start with the Transportation Network Routing instance G′ = (V, E′) with
length le, value ve and unit time window [te, te + 1] associated with each edge. We construct
a directed graph H = (N, A) with values on the nodes and costs on the edges. The set
of vertices N = V ∪ I. The set V is the set of original vertices. The set I is the set of
intermediate vertices, with one vertex ze for each edge e in E′. In the graph H , for each edge
e = (u, v) ∈ E′, we add an edge (u, ze) of length le and an edge (ze, v) of length zero. We
associate value ve and time window [te + le, te + le + 1] with each intermediate node ze and
value 0 with nodes in V .

We prove the following lemmas to obtain the final result:

▶ Lemma 18. Any path of length at most T ∗ in graph G′ that picks value V can be expressed
as a path of length T ∗ in H that picks value V

Proof. Consider edge e = (u, v) in the path. We map it to the edges (u, ze), (ze, v). The
path collects the value if it starts traversing the edge during [te, te + 1]. In the orienteering
instance the path will get to the intermediate node ze in time window [te + le, te + le + 1] so
the same value ve can be collected. ◀

For mapping a solution in graph H to a solution in graph G′ the main blocker is that the
path may start or end at one of the ze nodes. To tackle this we call the orienteering problem
with a fixed start node. We prove the following lemma.

▶ Lemma 19. Given a path of length T ∗ that starts at a node a non-intermediate node s in
H and collects value V , we can construct a path of length T ∗ in the graph G′ with value V

starting at node s in graph G′

Proof. If the path in H ends at an intermediate node ze, it can be extended to the next
non-intermediate node without increasing its length. We can assume that the path begins
and ends in non-intermediate nodes. After that there is one-to-one mapping between the
portions of the path. An intermediate node ze only connects to the end node v of the edge e.
So we can always find pairs of segments (u, ze), (ze, v) in the path. These can be mapped to
e = (u, v) in graph G′. The value ve is the same, the lengths of the segments are the same
and the time window [te + le, te + le + 1] in the graph H maps to [te, te + 1] which is precisely
when the constructed path will begin traversing edge e. ◀

K. Bhawalkar, K. Kollias, and M. Purohit 26:15

To complete the proof of Theorem 14, we need to call the orienteering subroutine with all
possible start nodes in the set V . We can choose the best solution among those and it will be
an O(log n)-approximation to the optimal solution to the single agent transportation
network routing problem. Trying different start nodes does not degrade the running
time by more than a factor of n.

8 Capacitated Vehicles

For the sake of simplicity, we have studied the problem in terms of unit capacity vehicles
that can serve a single demand when crossing an edge. We now explain that a simple
transformation can reduce the capacitated version of the problem where each vehicle can
serve up to a fixed number c of demands to the unit capacity case. The main idea is as
follows: We will transform any given demand curve into an equivalent one such that a) for
any given price, the number of buyers that is willing to buy is a multiple of c and b) the
revenue functions remain intact. Achieving that would then allow us to change the units
of measurement by a factor c and have each unit of demand correspond to a number of
buyers equal to the vehicle capacity, in effect recovering the unit capacity model. Note
that the revenue functions that give the optimal revenue of an edge as a function of the
supply assigned to it are the only input given to our main algorithms. This implies our
approximation results are preserved by such a reduction.

Consider a given price curve pe(·). For any given integer s, let,

ρs = max
(s−1)c<d≤s·c

d · pe(d), (9)

be the maximum revenue obtained when using exactly s service vehicles. Our modified curve
is such that:

d̂e(p) = s · c, for all p ∈
(

ρs+1

(s + 1)c ,
ρs

s · c

]
. (10)

The following lemma proves that the modified demand curve is well defined.

▶ Lemma 20.
ρs+1

(s + 1)c ≤ ρs

s · c
.

Proof. Note that ρs ≥ pe(s · c)s · c, since using d = s · c is an option in (9). Also, ρs+1 ≤
pe(s · c)(s + 1)c, since the highest price for which supply s + 1 is needed is at most pe(s · c)
and the highest demand for which supply s + 1 is needed is (s + 1)c. The two inequalities
can be combined to give:

ρs+1

(s + 1)c ≤ pe(s · c) ≤ ρ

s · c
,

which completes the proof. ◀

The demand curve (10) by definition satisfies the property that only a multiple of c

buyers will show up under any price. Then, the j-th such group of c buyers can be replaced
with a single buyer with value ρj/j. By Lemma 20 these ρj/j values are nonincreasing, as
necessary for demand curves. Moreover, the optimal revenue obtained by any given number
of supply vehicles remains the same, which suggests the revenue curves are unchanged and
our transformation is completed as desired.

APPROX/RANDOM 2021

26:16 Revenue Maximization in Transportation Networks

References
1 Reza Alijani, Siddhartha Banerjee, Sreenivas Gollapudi, Kostas Kollias, and Kamesh Munagala.

The segmentation-thickness tradeoff in online marketplaces. POMACS, 3(1):18:1–18:26, 2019.
2 Siddhartha Banerjee, Daniel Freund, and Thodoris Lykouris. Pricing and optimization in

shared vehicle systems: An approximation framework. In Proceedings of the 2017 ACM
Conference on Economics and Computation, EC ’17, Cambridge, MA, USA, June 26-30, 2017,
page 517, 2017.

3 Siddhartha Banerjee, Sreenivas Gollapudi, Kostas Kollias, and Kamesh Munagala. Segmenting
two-sided markets. In Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 63–72, 2017.

4 Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. Pricing in ride-sharing platforms:
A queueing-theoretic approach. In Proceedings of the Sixteenth ACM Conference on Economics
and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, page 639, 2015.

5 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-tsp and vehicle routing with time-windows. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages
166–174, 2004.

6 Kostas Bimpikis, Ozan Candogan, and Daniela Sabán. Spatial pricing in ride-sharing networks.
Operations Research, 67(3):744–769, 2019.

7 Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM J.
Comput., 37(2):653–670, 2007.

8 Juan-Camilo Castillo, Dan Knoepfle, and Glen Weyl. Surge pricing solves the wild goose
chase. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17,
Cambridge, MA, USA, June 26-30, 2017, pages 241–242, 2017.

9 Chandra Chekuri, Nitish Korula, and Martin Pál. Improved algorithms for orienteering and
related problems. ACM Trans. Algorithms, 8(3):23:1–23:27, 2012.

10 George B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

11 Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59:345–358, 1992.

12 Hongyao Ma, Fei Fang, and David C. Parkes. Spatio-temporal pricing for ridesharing platforms.
In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix,
AZ, USA, June 24-28, 2019., page 583, 2019.

13 Viswanath Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica, 60(4):1017–
1030, 2011.

14 Michael Ostrovsky and Michael Schwarz. Carpooling and the economics of self-driving cars. In
Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix,
AZ, USA, June 24-28, 2019., pages 581–582, 2019.

15 Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson. Prize-
collecting TSP with a budget constraint. In 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, pages 62:1–62:14, 2017.

16 Duncan Rheingans-Yoo, Scott Duke Kominers, Hongyao Ma, and David C. Parkes. Ridesharing
with driver location preferences. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages
557–564, 2019.

17 Ola Svensson, Jakub Tarnawski, and László A. Végh. A constant-factor approximation
algorithm for the asymmetric traveling salesman problem. J. ACM, 67(6):37:1–37:53, 2020.

18 Adrian Vetta. Nash equilibria in competitive societies, with applications to facility location,
traffic routing and auctions. In 43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, page 416, 2002.

Connected k-Partition of k-Connected Graphs and
c-Claw-Free Graphs
Ralf Borndörfer #

Zuse Institute Berlin, Germany

Katrin Casel #

Hasso Plattner Institute, University of Potsdam, Germany

Davis Issac #

Hasso Plattner Institute, University of Potsdam, Germany

Aikaterini Niklanovits #

Hasso Plattner Institute, University of Potsdam, Germany

Stephan Schwartz #

Zuse Institute Berlin, Germany

Ziena Zeif #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
A connected partition is a partition of the vertices of a graph into sets that induce connected
subgraphs. Such partitions naturally occur in many application areas such as road networks, and
image processing. In these settings, it is often desirable to partition into a fixed number of parts
of roughly of the same size or weight. The resulting computational problem is called Balanced
Connected Partition (BCP). The two classical objectives for BCP are to maximize the weight of
the smallest, or minimize the weight of the largest component. We study BCP on c-claw-free
graphs, the class of graphs that do not have K1,c as an induced subgraph, and present efficient
(c − 1)-approximation algorithms for both objectives. In particular, for 3-claw-free graphs, also
simply known as claw-free graphs, we obtain a 2-approximation. Due to the claw-freeness of line
graphs, this also implies a 2-approximation for the edge-partition version of BCP in general graphs.

A harder connected partition problem arises from demanding a connected partition into k parts
that have (possibly) heterogeneous target weights w1, . . . , wk. In the 1970s Győri and Lovász showed
that if G is k-connected and the target weights sum to the total size of G, such a partition exists.
However, to this day no polynomial algorithm to compute such partitions exists for k > 4. Towards
finding such a partition T1, . . . , Tk in k-connected graphs for general k, we show how to efficiently
compute connected partitions that at least approximately meet the target weights, subject to the
mild assumption that each wi is greater than the weight of the heaviest vertex. In particular, we
give a 3-approximation for both the lower and the upper bounded version i.e. we guarantee that
each Ti has weight at least wi

3 or that each Ti has weight most 3wi, respectively. Also, we present
a both-side bounded version that produces a connected partition where each Ti has size at least
wi
3 and at most max({r, 3})wi, where r ≥ 1 is the ratio between the largest and smallest value in

w1, . . . , wk. In particular for the balanced version, i.e. w1 = w2 =, . . . , = wk, this gives a partition
with 1

3 wi ≤ w(Ti) ≤ 3wi.
2012 ACM Subject Classification Theory of computation → Graph algorithms analysis
Keywords and phrases connected partition, Győri-Lovász, balanced partition, approximation al-
gorithms
Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.27
Category APPROX
Related Version Full Version: https://arxiv.org/abs/2107.04837

Funding This research was partially funded by the HPI Research School on Data Science and
Engineering.
Aikaterini Niklanovits: HPI Research School
Ziena Zeif : HPI Research School

© Ralf Borndörfer, Katrin Casel, Davis Issac, Aikaterini Niklanovits, Stephan Schwartz, and Ziena Zeif;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
mailto:Katrin.Casel@hpi.de
https://orcid.org/0000-0001-6146-8684
mailto:Davis.Issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:Aikaterini.Niklanovits@hpi.de
https://orcid.org/0000-0002-4911-4493
mailto:schwartz@zib.de
https://orcid.org/0000-0003-2901-5065
mailto:Ziena.Zeif@hpi.de
https://orcid.org/0000-0003-0378-1458
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.27
https://arxiv.org/abs/2107.04837
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

1 Introduction

Partitioning a graph into connected subgraphs is a problem that arises in many application
areas such as parallel processing, road network decomposition, image processing, districting
problems, and robotics [34, 35, 4, 1, 39]. Often in these applications, it is required to find
a partition into a specified number k of connected subgraphs. For instance, in the parallel
processing applications, the number of processors is restricted, and in robotics applications,
the number of robots available is restricted. Formally, we call a partition T1, T2, · · · , Tk of
the vertex set of graph, a connected (k-)partition, if the subgraph induced by the vertices in
Ti is connected for each 1 ≤ i ≤ k.

The typical modeling objective in such connected partition problems is to balance sizes
among the k parts. Sometimes one needs to consider a vertex-weighted generalization
e.g. weights representing the required amount of work at the entity corresponding to the
vertex. The two classical balancing objectives for such k-partitions are to maximize the total
weight of the lightest part, or to minimize the weight of the heaviest part. These objectives
yield the following two versions of the balanced connected partition problem (BCP).

Input: A vertex-weighted graph G = (V, E, w) where w : V → N, and k ∈ N.
Task: Find a connected k-partition T1, . . . , Tk of G maximizing mini∈[k] w(Ti)

(minimizing maxi∈[k] w(Ti) resp.).

Max-Min BCP (Min-Max BCP)

On general graphs, both variants of BCP are NP-hard [5], and hence the problems have
been mostly studied from the viewpoint of approximation algorithms [6, 8, 9, 11, 12]. Most
of the known results are for small values of k, and there are some results also for special
classes like grid graphs or graphs of bounded treewidth (see related work section for further
details). The currently best known polynomial-time approximation for general graphs for
any k is a 3-approximation for both Max-Min and Min-Max BCP by Casel et. al. [6].

Intuitively, an obstacle for getting a balanced connected partition is a large induced star,
i.e. a tree with one internal node and c leaves, denoted by K1,c. We say a graph is c-claw-free
or K1,c-free if it does not contain an induced K1,c as subgraph. For such graphs, we give a
very efficient (c − 1)-approximation algorithm for both the min-max and max-min objective.
In particular by setting c = 3, we get a 2-approximation on K1,3-free graphs, better known
as claw-free graphs.

Claw free graphs have been widely studied by Seymour and Chudnovsky in a series of
seven papers under the name Claw-free graphs I-VII ([14]-[20]), who also provide a structure
theorem for these graphs [21]. Some interesting examples of such graphs are line graphs,
proper circular interval graphs and de-Brujin graphs [22]. Apart from their structural
properties, claw-free graphs have been studied in the context of obtaining efficient algorithms
for several interesting problems, see e.g. [27, 24, 23].

Although, for c > 3 our algorithm gives a worse guarantee than the algorithm by Casel
et. al. [6], we note that their algorithm runs in O(log(X∗)k2|V ||E|) time for Max-Min BCP
and in O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

time for Min-Max BCP, where
X∗ denotes the optimum value and wmax := maxv∈V w(v) the maximum weight of a vertex,
whereas our algorithms give an O(log(X∗)|E|) runtime for Max-Min BCP and an O(|E|)
runtime for Min-Max BCP. Moreover, our algorithms are less technical and hence much
easier to implement. We prove the following statements.

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:3

▶ Theorem 1. Given a vertex-weighted K1,c-free graph G = (V, E, w) and k ∈ N, a (c − 1)-
approximation for Min-Max BCP can be computed in O(|E|) time.

▶ Theorem 2. Given a vertex-weighted K1,c-free graph G = (V, E, w) and k ∈ N, a (c − 1)-
approximation for Max-Min BCP can be computed in time O(log(X∗)|E|), where X∗ is the
optimum value.

Since line graphs are K1,3-free, these results directly imply efficient approximations for
the following edge-partition versions of BCP. A k-partition of the edges of a graph, is called a
connected edge k-partition, if the subgraph induced by the edges in each part is connected. In
the problem Min-Max (Max-Min) balanced connected edge partition (BCEP), one searches
for a connected edge k-partition of an edge-weighted graph minimizing the maximum (resp.
maximimzing the minimum) weight of the parts. This problem is equivalent to finding a
connected k-partition of the vertices in the line graph of the input graph. The best known
approximation for BCEP is for graphs with no edge weight larger than w(G)/2k. For such
graphs, [13] give an algorithm that finds a connected edge k-partition, such that the weight of
the heaviest subgraph is at most twice as large as the weight of the lightest subgraph, implying
a 2-approximation for Min-Max and Max-Min BCEP. In comparison, our algorithms
achieve the same approximation guarantee without restrictions on the edge weights.

▶ Corollary 3. Min-Max BCEP and Max-Min BCEP have 2-approximations in polynomial
time.

An extension of BCP is demanding for fixed (possibly heterogeneous) size targets for
each of the k parts. More precisely, given a graph G and w1, . . . , wk with

∑k
i=1 wi = n, the

task is to find a partition T1, · · · , Tk where each Ti has size wi and induces a connected
subgraph. Such a connected k-partition with the fixed target weights exists for G only if G

meets certain structural properties; a K1,3 for example has no connected 2-partition T1, T2
with |T1| = |T2| = 2. A characterization of when such a connected partition always exists was
independently proved by Győri [26] and Lovász [32]: They showed that in any k-connected
graph a connected k-partition satisfying the target weights always exists. This result is the
famous Győri-Lovász Theorem (GL theorem, for short):

▶ Theorem 4 (Győri-Lovász Theorem [26, 32]). Given a k-connected graph G = (V, E, w),
n1, . . . , nk ∈ N such that

∑k
i=1 ni = |V |, and k terminal vertices t1, · · · , tk ∈ V , there exists

a connected k-partition T1, · · · , Tk of V such that for each i ∈ [k], |Ti| = wi and ti ∈ Ti.

Recently, the theorem was generalized to vertex-weighted graphs as:

▶ Theorem 5 (Weighted Győri-Lovász Theorem [7, 10, 28]). Given a vertex-weighted k-
connected graph G = (V, E, w), w1, . . . , wk ∈ N such that

∑k
i=1 wi = w(V), and k terminal

vertices t1, · · · , tk, there exists a connected k-partition T1, · · · , Tk of V such that wi −wmax <

w(Ti) < wi + wmax, and ti ∈ Ti for each i ∈ [k], where wmax is the largest vertex weight.

We refer to the partition guaranteed by the (weighted) GL theorem as GL partition. We will
however not consider the terminal vertices in the GL partitions in this work.

The GL theorem has found some applications in the field of algorithms. Chen et. al. [10]
use it for proving the existence of low-congestion confluent flows in k-connected graphs.
Further, Löwenstein et. al. [33] and Chandran et. al. [7] use it for finding spanning trees with
low spanning tree congestion. Perhaps, the reason why such a strong combinatorial statement
has not found further applications is that we do not know how to efficiently compute GL

APPROX/RANDOM 2021

27:4 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

partitions. About five decades after the discovery of the GL theorem, polynomial time
algorithms for finding a GL partition (even in the unweighted case without terminals) are
only known for k ≤ 4 [37, 38, 28]. The fastest algorithm for general k takes Ω(2n) time [7, 29].
Neither are there any impossibility results to exclude efficient computability of such partitions.
Even when k is part of the input, a polynomial time algorithm is not ruled out.

The absence of efficient algorithms for finding exact GL partitions motivates finding
GL-style partitions that approximately satisfy the weight targets. In this paper we present
polynomial time algorithms for such approximations. First we give an algorithm for a
“half-bounded” GL partition, in the sense that we can guarantee an approximate upper or
lower bound on the weight of the parts.

▶ Theorem 6. Let G = (V, E, w) be a k-connected vertex-weighted graph and w1, . . . , wk ∈ N
with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v). A connected k-partition T1, . . . , Tk

of V such that either w(Ti) ≥ 1
3 wi for every i ∈ [k] (lower-bound version) or w(Ti) ≤ 3wi

for every i ∈ [k] (upper-bound version) can be computed in time O(k|V |2|E|).

We then extend this result to a lower and upper bounded partition.

▶ Theorem 7. Let G = (V, E, w) be a k-connected vertex-weighted graph and w1, . . . , wk ∈ N
with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v), and r := maxi∈[k] wi

minj∈[k] wj
. Then, a

connected k-partition T1, . . . , Tk of V such that 1
3 wi ≤ w(Ti) ≤ max{r, 3}wi for every i ∈ [k]

can be found in time O(k|V |2|E|).

In particular, Theorem 7 implies the following approximately balanced partition of
k-connected graphs.

▶ Corollary 8. Let G = (V, E, w) be a k-connected vertex-weighted graph such that w(G) ≥
k maxv∈V w(v). Then, a connected k-partition T1, . . . , Tk of V such that 1

3

⌊
w(G)

k

⌋
≤ w(Ti) ≤

3
⌈

w(G)
k

⌉
for every i ∈ [k] can be found in time O(k|V |2|E|).

To the best of our knowledge, these are the first polynomial time algorithms that
approximate the GL theorem. We believe that such an efficient approximation will result in
the theorem being used for developing algorithms in the future. Especially, we are hopeful
that the both-side approximation for balanced connected partition of k-connected graphs
will find applications. We remark, however that for the above mentioned applications of
confluent flows and spanning tree congestion, the terminal vertices are essential and hence
our algorithms cannot be used. An interesting future direction would be to extend our results
to the setting with terminals.

Observe that Corollary 8 in some sense yields a 3-approximation simultaneously for
Min-Max and Max-Min BCP in k-connected graphs. In this regard, it is interesting to
note that the +/−wmax slack given in the weighted GL theorem is enough to retain hardness
in the following sense: even for k = 2, Min-Max BCP and Max-Min BCP remain strongly
NP-hard when restricted to 2-connected graphs; and the corresponding hardness-proof given
in [8] also constructs an instance with w(G) ≥ k maxv∈V w(v). This hardness can be extended
to k-connected graphs for any fixed k ≥ 2 (see [8][Theorem 3] for more details).

Lastly, we point out that this paper is only a short version and refer the reader for more
technical details and complete proofs to the full version of it.

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:5

1.1 Related work
Both variants of BCP were first introduced for trees [36, 31]. Under this restriction, a linear
time algorithm was provided for both variants in [25]. This is particularly important since
different heuristics transform the original instance to a tree to efficiently solve the problem,
see [13, 39]. For both variants of BCP, a 3-approximation is given in [6], which is the best
known approximation in polynomial time. With respect to lower bounds, it is known that
there exists no approximation for Max-Min BCP with a ratio below 6/5, unless P = NP [8].
For the unweighted case, a k

2 -approximation for Min-Max BCP with k ≥ 3, is given in [11].
Balanced connected partitions for fixed small values of k, denoted BCPk, have also been

studied extensively. The restriction BCP2, i.e. balanced connected bipartition, is already
NP-hard [5]. On the positive side, a 4

3 -approximation for Max-Min BCP2 is given in [12],
and in [11] this result is used to derive a 5

4 -approximation for Min-Max BCP2. Considering
tripartitions, Max-Min BCP3 and Min-Max BCP3 can be approximated with ratios 5

3
and 3

2 , respectively [9].
Regarding special graph classes, BCP has been investigated in grid graphs and series-

parallel graphs. While it was shown that BCP is NP-hard for arbitrary grid graphs [2],
the Max-Min BCP can be solved in polynomial time for ladders, i.e., grid graphs with
two rows [3]. For the class of series-parallel graphs, Ito et. al. [30] observed that BCP
remains weakly NP-hard (by a simple reduction from the Partition problem) and gave a
pseudo-polynomial-time algorithm for both variants of BCP. They also showed that their
algorithm can be extended to graphs with bounded tree-width.

The GL Theorem was independently proved by Győri [26] and Lovász [32]. Győri used an
elementary graph theoretic approach while Lovász used ideas from topology. Lovász’s proof
also works for directed graphs. The Győri-Lovász Theorem is extended to weighted directed
graphs by Chen et. al. [10] and Győri’s original proof was generalized to weighted undirected
graphs by Chandran et. al. [7]. Both papers only gave upper bounds of wi + wmax on the
weight of partition Ti and did not provide any lower bounds. Later Hoyer [28] showed that
the method of Chandran et. al. [7] can be also extended to give the lower bound wi − wmax,
even for directed graphs. Polynomial algorithms to also compute GL partitions are only
known for the particular cases k = 2, 3, 4 [37, 38, 28] and all k ≥ 5 are still open.

2 Preliminaries

By N we denote the natural numbers without zero. We use [k] to denote the set {1, . . . , k}.
All the graphs that we refer to in this paper are simple, finite and connected. Consider

a graph G = (V, E). We denote by V (G) and E(G) the set of vertices and edges of G

respectively, and if the graph we refer to is clear, we may simply write V and E. For a set of
vertex sets S ⊆ 2V we use V (S) to denote

⋃
S∈S S. We denote an edge e = {u, v} ∈ E(G)

by uv and the neighborhood of a vertex v ∈ V in G by NG (v) = {u ∈ V | uv ∈ E(G)}.
Similarly we denote the neighborhood of a vertex set V ′ ⊆ V in G by NG (V ′), that is⋃

v∈V ′ NG (v) \ V ′. We may omit the subscript G when the graph is clear from the context.
We use ∆(G) to denote the maximum degree of G.

We denote a vertex-weighted graph by G = (V, E, w) where w is a function assigning
integer weights to vertices w : V → N, and V and E are vertex and edge sets. We denote
by wmin and by wmax, minv∈V w (v) and maxv∈V w (v), respectively. For any V ′ ⊆ V , we use
w(V ′) to denote the sum of weights of the vertices in V ′. For a subgraph H of G we use
w (H) to denote w(V (H)), and refer to it as the weight of the subgraph H. For a rooted
tree T and a vertex x in T , we use Tx to denote the rooted subtree of T rooted at x.

APPROX/RANDOM 2021

27:6 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

For V ′ ⊆ V we denote by G[V ′] the graph induced by V ′, i.e. G[V ′] = (V ′, E′) with
E′ = E ∩(V ′ ×V ′). For vertex-weighted graphs, induced subgraphs inherit the vertex-weights
given by w. For V ′ ⊆ V we also use G − V ′ to denote the subgraph G[V \ V ′]. Similarly,
if V ′ is a singleton {v} we also write G − v. For graphs G1 and G2, we use G1 ∪ G2 to denote
the graph on vertices V (G1) ∪ V (G2) with edge set E(G1) ∪ E(G2).

Let U = {U1, . . . , Ur} be such that each Ui ⊆ V (G). We call U a connected packing
of V (G) if each G[Ui] is connected, and the sets in U are pairwise disjoint. A connected
packing U is called connected vertex partition (CVP) of V , if also ∪r

i=1Ui = V (G). We denote
a CVP that has k vertex sets as CVPk. For any U ′ ⊆ U , we define V (U ′) :=

⋃
U ′∈U ′ U ′,

and the weight w (U ′) := w (V (U ′)). Let I be an interval. If U is a CVP and w (Ui) ∈ I
for all i ∈ [r], then we say that U is an I-connected vertex (r-)partition (I-CVPk or just
I-CVP) of V . If U is a connected-packing and w (Ui) ∈ I for all i ∈ [r], then we say that U
is a I-connected packing of V .

3 Approximation for BCP on c-claw-free graphs

In this section we give an idea of how to prove Theorems 1 and 2 by giving a (c − 1)-
approximation for Max-Min BCP and Min-Max BCP on K1,c-free graphs. We assume
c ≥ 3 as c ≤ 2 gives trivial graph classes. We first show that a connected partition for
K1,c-free graphs with parts of size in [λ, (c − 1)λ) for some fixed λ can be found in linear
time. For Max-Min BCP, this algorithm has to be called many times while doing a binary
search for the optimum value. We point out that it is not difficult to adapt these algorithms
to unconnected graphs achieving the same approximation results.

Exploiting that each vertex in any DFS-tree of a K1,c-free graph has at most c − 1
children, we can carefully extract connected components of a fixed size while also maintaining
a DFS-tree for the remaining graph. Also, this can be done very efficiently, as stated in the
following result.

▶ Lemma 9. Given a K1,c-free graph G and a DFS-tree of G. For any w(G) ≥ λ ≥ wmax,
there is an algorithm that finds a connected vertex set S such that λ ≤ w(S) < (c − 1)λ and
G − S is connected, in O(|V |) time. Furthermore, the algorithm finds a DFS-tree of G − S.

We use BalancedPartition to denote the algorithm that exhaustively applies Lemma 9.
Observe that BalancedPartition produces a connected partition S1, . . . , Sm where w(Si) ∈
[λ, (c − 1)λ) for every i ∈ [m − 1] and w(Sm) < (c − 1)λ in linear time, where the achieved
runtime follows by saving already processed subtrees.
Theorem 1 now follows from running BalancedPartition with λ = max{wmax, w(G)

k }. Note
that this choice of λ is a trivial lower bound for the optimum value.

As already mentioned, to prove Theorem 2, we first need to find an input parameter λ

for Algorithm BalancedPartition that provides the desired (c − 1)-approximation.
Let (G, k) be an instance of Max-Min BCP, where G is a K1,c-free graph. Let X∗

be the optimal value for the instance (G, k). For any given X ≤ w(G)/k, we design an
algorithm that either gives a [⌊X/(c − 1)⌋, ∞)-CVPk, or reports that X > X∗. Note that
X∗ ≤ w(G)/k. Once we have this procedure in hand, a binary search for the largest X in
the interval (0, ⌈w(G)/k⌉] for which we find a [⌊X/(c − 1)⌋, ∞)-CVPk can be used to obtain
an approximate solution for Max-Min BCP.

Algorithm MaxMinApx. First remove all vertices of weight more than λ = ⌊X/(c − 1)⌋
and save them in H. Then save the connected components of weight less than λ in Q.

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:7

Let V = {V1, . . . , Vℓ} be the connected components of G − (H ∪ V (Q)). Apply algorithm
BalancedPartition on each G[Vi] with λ as input parameter to obtain Si = {Si

1, . . . , Si
mi

}
for every i ∈ [ℓ]. If for some i ∈ [ℓ] the weight w(Smi

) is less than λ, then merge this
vertex set with Smi−1 and accordingly update Si. Further, compute a (λ, ∞)-CVP|H| SH

of G[H ∪ V (Q)] as follows: for each h ∈ H, we have a set Sh ∈ SH with h ∈ Sh; we add
each Q ∈ Q to some Sh such that h ∈ N(Q). Let S = SH ∪

⋃ℓ
i=1 Si. If |S| ≥ k, then merge

connected sets arbitrarily in S until |S| = k and return S. If |S| < k, report that X > X∗.

We point out that a [λ, ∞)-CVPj with j > k, can easily be transformed to a [λ, ∞)-
CVPk, since the input graph is connected. It is not hard to see that if algorithm MaxMinApx
returns S then this is a [λ, ∞)-CVPk of V . The most complicated part of proving that
MaxMinApx works correctly is showing that if it terminates with |S| < k and reports X > X∗

that this is indeed true.

▶ Lemma 10. If Algorithm MaxMinApx terminates with |S| < k, then X > X∗.

Proof. Let H, Q, V = {V1, . . . , Vℓ} be the computed vertices and connected vertex sets in
the algorithm for λ = ⌊X/(c − 1)⌋, respectively. Recall that w(Vi) ≥ λ for every Vi ∈ V and
w(Q) < λ for every Q ∈ Q. Let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution of (G, k), i.e., S∗

is an [X∗, ∞)-CVPk of V . Consider the sets VH∪Q := {S∗
i ∈ S∗|S∗

i ∩ (H ∪ V (Q)) ̸= ∅},
V1 := {S∗

i ∈ S∗|S∗
i ∩ V1 ̸= ∅} \ VH∪Q, . . . , Vℓ := {S∗

i ∈ S∗|S∗
i ∩ Vℓ ̸= ∅} \ VH∪Q. We claim

that these sets are a partition of S∗. This follows directly from the fact that H separates
all Vi ∈ V and all Q ∈ Q from each other. That is, for an i ∈ [k] and j ∈ [ℓ] the connected
vertex set S∗

i with S∗
i ∩ Vj ̸= ∅ and S∗

i ∩ V \ Vj ̸= ∅ contains at least one h ∈ H and hence
S∗

i ∈ VH∪Q. Otherwise, if S∗
i ⊆ Vj , then S∗

i ∈ Vj .
Suppose MaxMinApx terminates with |S| < k although X ≤ X∗. We show that

∣∣VH∪Q
∣∣ ≤

|H| and
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ], implying that |S∗| ≤ |H| +
∑ℓ

i=1 |Si| = |S| < k, which
contradicts |S∗| = k.

First, we show
∣∣SH∪Q

∣∣ ≤ |H|. For this, it is sufficient to prove that S∗
i ∩ H ̸= ∅ for

each S∗
i ∈ VH∪Q as S∗ is a partition of V . We prove this by contradiction. Suppose

there is an S∗
i ∈ VH∪Q, such that S∗

i ∩ H = ∅. This implies that S∗
i ⊆ Q for some

Q ∈ Q, since H separates every Q ∈ Q from every other Q′ ∈ Q \ {Q} and from the
vertices V \ (H ∪ V (Q)). Thus, w(S∗

i) ≤ w(Q) < λ by the definition of Q and therefore
w(S∗

i) < λ = ⌊X/(c − 1)⌋ ≤ ⌊X∗/(c − 1)⌋, contradicting mini∈[k] w(S∗
i) = X∗.

It remains to show that
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ]. Fix an i ∈ [ℓ] and let G[Vi] with λ

be the input when calling algorithm BalancedPartition. Observe that the input is valid,
since G[Vi] is connected by definition and w(G[Vi]) ≥ λ ≥ maxv∈Vi w(v) as H contains all
vertices that have weight more than λ. Algorithm BalancedPartition provides a CVP
Si = {Si

1, . . . , Si
mi

} of Vi with w(Si
j) ∈ [λ, (c−1)λ) for every j ∈ [mi−1] and w(Si

mi
) < (c−1)λ.

Consider Si before merging, i.e. we do not merge Si
mi

to Si
mi−1 in the algorithm MaxMinApx

if w(Smi) < λ. That is, w(Sm) < λ is possible, and we need to show
∣∣Vi

∣∣ ≤ mi − 1 = |Si| − 1.
Observe for S∗ ∈ Vi that S∗ ⊆ Vi, i.e.

∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗). As a result, we have

|Si|X ≥ |Si|(c − 1)λ >
∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗) ≥ |Vi|X∗. Consequently, by X ≤ X∗

we obtain |Vi| < |Si|, which leads to |Vi| ≤ |Si| − 1. ◀

4 Approximation of the Győri-Lovász Theorem for k-connected Graphs

Our algorithms for the approximate GL theorems are based mainly on the following com-
binatorial lemma concerning certain vertex separators, that leads to useful structures in

APPROX/RANDOM 2021

27:8 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

k-connected graphs. Let G = (V, E, w) be a connected vertex-weighted graph and let λ be
an integer. We say s ∈ V is a λ-separator if all connected components of G − {s} weigh less
than λ. We say G is λ-dividable if there is a [λ, ∞)-CVP2 of V .

▶ Lemma 11 ([6]). Let G = (V, E, w) be a connected vertex-weighted graph and let λ > wmax
be an integer. If w(G) > 3(λ − 1), then either G is λ-dividable or there is a λ-separator.
Furthermore, finding the connected vertex sets in case G is λ-dividable and finding the
λ-separator in the other case can be done in O(|V | |E|) time.

4.1 Bounded Partition for k-connected Graphs

In this section, we give an algorithm for computing approximate GL partitions with one-side
approximation bound (either lower bound or upper bound), thus proving Theorem 6. For
this, we first use the following theorem, from which Theorem 6 follows as below.

▶ Theorem 12. Let G = (V, E, w) be a k-connected vertex-weighted graph and let w1, . . . , wk ∈
N with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v). A set of connected vertex sets

T = {T1, . . . , Tℓ} with ℓ ≤ k and αwi ≤ w(Ti) ≤ 3αwi for every i ∈ [ℓ] can be computed in
time O(k|V |2|E|). Moreover, if ℓ < k, then T is also a CVP of V .

By Theorem 12 we can derive Theorem 6 using α = 1/3 and α = 1 for the lower bound
and upper bounded version, respectively.

In the following we always assume that w1, . . . , wk is sorted in descending order. To
now give the algorithm proving Theorem 12, we make use of Lemma 11. For this, we first
need to ensure that wmax < αwk. Therefore, we perform a preprocessing step until we
reach an instance that satisfies wmax < αwk. Suppose wmax ≥ αwℓ, where ℓ is the smallest
index in [k] that satisfies this inequality. We remove a vertex vmax with w(vmax) = wmax
from G and wℓ from W. Further, we set Tℓ = {vmax} and consider the set for index ℓ to
be finished, i.e., we now aim to find a set T = {T1, . . . , Tℓ−1, Tℓ+1, . . . , Tk} according to
W = {w1, . . . , wℓ−1, wℓ+1, . . . , wk}. Observe that since we only deleted one vertex, G now is
at least (k − 1)-connected, and |W| = k − 1. Note that since wmax ≤ wk ≤ wℓ ≤ 3αwℓ, we
have w(Tℓ) ∈ [αwℓ, 3αwℓ] as required. Also, we obtain w(G) ≥

∑
wj∈W wj after removing

wℓ from W and vmax from G.
After this preprocessing, we can assume that we have a k-connected graph G = (V, E, w)

and natural numbers w1, . . . , wk sorted in descending order, where
∑k

i=1 wi ≤ w(G) and
wmax < αwk.

On such a graph G we then gradually build a packing T with the help of Lemma 11.
During our algorithm to build T we ensure that at each step T = {T1, T2, . . . , Ti−1} where
each Tj ∈ T is a connected vertex set with weight in [αwj , 3αwj] for each j ∈ [i − 1]. We
then search in the remaining graph for the next set Ti and always use G to denote the
graph G \ V (T). We say a connected subgraph is i-small if it has weight less than αwi

and i-big otherwise. In case we reach a situation, where G has no connected component
that is i-big, we have to alter the already built sets T1, T2, . . . , Ti−1 to build Ti. For this,
we use Ta to denote the set of all Tj ∈ T that have no (αwj)-separator, and Tb to denote
the set of all Tj ∈ T that have an (αwj)-separator. For Tj ∈ Tb with an (αwj)-separator s

we use C(Tj) to denote the connected components of G[Tj \ {s}] (if there is more than one
(αwj)-separator, fix one of them arbitrarily). The following Algorithm BoundedGL formally
explains our routine to build T .

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:9

Algorithm BoundedGL

1. Initialize T := ∅ as container for the desired connected-vertex-packing T1, . . . , Tk of G

and initialize i := 1 as an increment-variable.
2. While G = G \ V (T) is not the empty graph: //main loop

a. Find a connected vertex set Ti having weight in [αwi, 3αwi], add Ti to T , and increment
i by one. If i = k + 1 then terminate the algorithm.
// See Lemma 14 for correctness of this step

b. While G is not empty and has no i-big connected component: //inner loop
Pick an i-small connected component Q of G. Pick a Tj ∈ T such that either Tj ∈ Ta

and Q has an edge to Tj (Case 1), or Tj ∈ Tb and Q has an edge to some component
Q′ ∈ C(Tj) (Case 2). // The occurrence of at least one of these cases is
shown in Lemma 15.
If w(Tj ∪ Q) ≤ 3αwj then update Tj to Tj ∪ Q. Otherwise:
i. Case 1 (Tj ∈ Ta): Apply the following Divide-routine on Tj ∪ Q: Use Lemma 11

to compute a [αwj , ∞)-CVP2 V1, V2 of Tj ∪ Q. Set Tj = V2 (i.e. V1 goes to G).
ii. Case 2 (Tj ∈ Tb): remove Q′ from Tj (i.e. Q′ goes back to G) if Tj ∪ Q is not

αwj-dividable. Otherwise, apply divide routine on Tj ∪ Q.

To prove the correctness of the algorithm, we will show that the following invariant is
maintained.

▶ Lemma 13. Algorithm BoundedGL maintains a packing T = {T1, T2, . . . , Ti−1} where each
Tj ∈ T is a connected vertex set having weight in [αwj , 3αwj].

Towards proving this we use the following fact.

▶ Lemma 14. Whenever the divide routine in algorithm BoundedGL is to be executed, there
is at least one i-big component in G.

Proof. When i = 1 i.e. in the first main loop iteration, this holds because G = G is connected
and αw1 ≤ w1 ≤

∑k
i=1 wi ≤ w(G). For the subsequent iterations, the divide routine is only

applied after the inner loop is terminated which only happens if either G is empty or has an
i-big component. In case G is empty, then the algorithm terminates. So, if the algorithm
applies the divide routine in the inner loop, then G has an i-big component. ◀

Proof of Lemma 13. We increment i only in Step 2a. Before incrementing i, we add Ti to
T while ensuring that w(Ti) ∈ [αwi, 3αwi] and G[Ti] is connected. In Lemma 14, we prove
that whenever the divide routine is about to be executed, there is an i-big component in
G, ensuring the existence of such a Ti. Once a Tj is added to T , it is then modified only in
Step 2b. So let us look into how it gets modified in Step 2b. If the condition w(Tj ∪Q) ≤ 3αwi

is satisfied then it is clear that the new Tj = Tj ∪ Q also satisfies the weight constraints.
Since Q has an edge to Tj and Tj and Q each were connected, it is also clear that the new Tj

remains connected. So now consider the case when w(Tj ∪ Q) > 3αwi. In Case 1 (Tj ∈ Ta),
we call the divide routine and the new Tj is the set V2 returned by the routine. The set
V2 is connected due to the property of the divide routine. To see that it also satisfies the
weight constraints, observe that w(V1 ∪ V2) is at most 4αwj as w(Tj) was at most 3αwj and
w(Q) < αwi ≤ αwj . Since w(V1), w(V2) ≥ αwj , we then have w(V2) ∈ [αwj , 3αwj]. So it
only remains to consider Case 2 (Tj ∈ Tb). The case when Tj ∪ Q is αwj-dividable is analog
to Case 1. We know w(Q′) < αwj by definition. Also, since w(Tj ∪ Q) was more than 3αwj

and w(Q) < αwj , we have that w(Tj) was at least 2αwj . Thus the new Tj = Tj \ Q′ has
weight in [αwj , 3αwj]. Also, the new Tj is connected by the definition of Q′. ◀

APPROX/RANDOM 2021

27:10 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

It is clear from the algorithm that termination occurs only if G is empty or i = k+1. Then
using Lemma 13, it is clear that T contains the required packing as claimed in Theorem 12,
provided that Step 2b runs correctly and the inner loop terminates, which we prove in the
two lemmas below.

▶ Lemma 15. In Step 2b at least Case 1 or Case 2 occurs.

Proof. Suppose Case 1 does not occur i.e., Q does not have an edge to any Tj ∈ Ta. For
Tj ∈ Tb, let sj denote the fixed (αwj)-separator vertex. Since G is k-connected and |T | < k,
there is an edge from Q to at least one vertex in

⋃
Tj∈Tb

Tj \ {sj}. Thus, Case 2 occurs. ◀

▶ Lemma 16. The inner loop runs correctly and terminates after at most |V |2 iterations.

Proof. The occurrence of one of the two cases in Step 2b is shown in Lemma 15. For the
correctness of Case 1, observe that we can use Lemma 11 to divide Tj ∪ Q, as Tj ∪ Q cannot
have an (αwj)-separator (this would give an (αwj)-separator for Tj implying that Tj ∈ Tb).
It remains to prove that the inner loop terminates as claimed. If Step 2(b)i is executed, then
an i-big component is created in G as G now contains V1 returned by the divide-routine, and
hence the loop is terminated. The same yields if we apply the divide routine in Step 2(b)ii.
So, suppose the inner loop never executes the divide routine. In the other cases, either a
connected component is deleted from G or new vertices are added to a connected component
in G. Also note that new connected components are not introduced to G and vertices are not
deleted from existing connected components (except when the whole connected component
is removed; also, two or more connected components may merge due to the introduction of
new vertices to G). Thus, after |V |2 iterations either there is an i-big component or G is
empty. ◀

It is tempting to think that one could use Theorem 12 to derive a CVP T = {T1, . . . , Tk}
such that αwi ≤ w(Ti) ≤ 3αwi for each i ∈ [k]. If Algorithm BoundedGL terminates with
ℓ < k, then T is a partition of the vertices in G, and we only have trouble with the lower
bound on Tj for ℓ < j ≤ k. Otherwise, if it terminates with ℓ = k, then T satisfies all lower
bounds, but might not be a partition. Assigning the remaining vertices in G to turn T into
a CVP in this case might yield violations of the upper bound. Since α = 1 yields the first,
and α = 1

3 the second case, one might think that choosing the correct α in between would
result in a CVP with ℓ = k. Unfortunately, Algorithm BoundedGL does not have a monotone
behaviour w.r.t. α ∈ (1

3 , 1) in the sense that for two values 1
3 < α1 < α2 < 1, the case ℓ = k

for α1 does not imply ℓ = k for α2. Thus, even if we could prove the existence of an optimal
value for α, we have no way to search for it.

4.2 Both-side Bounded Partition for k-connected Graphs
In this section, we give the algorithms to derive Theorem 7 by providing a both-side bounded
approximate GL partition. For achieving a simultaneous lower and upper bounded partition,
as a starting point, we apply Theorem 12 with α = 1

3 obtaining a lower and upper bounded
packing T = {T1, . . . , Tk} with 1

3 wi ≤ w(Ti) ≤ wi for every i ∈ [k]. As long as T is not a CVP
of V yet, we transfer a subset of the remaining vertices V \V (T) through a path in an auxiliary
graph to elements in T , while making sure that for each i, 1

3 wi ≤ w(Ti) ≤ max{r, 3}w(Ti).
We call one such transfer a transferring-iteration. We define T ∗ := {T1, T2, . . . , Tj} where j is
the smallest number such that w(Ti) ≥ wi for i ∈ [j] and w(Tj+1) < wj+1. In case of wa = wb

and w(Ta) ≥ wa, but w(Tb) < wb we assume that a < b. Note that this is easily realizable
by a relabeling of indices. Observe that T ∗ = ∅ if w(T1) < w1. As a measure of progress,

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:11

we guarantee in each transferring-iteration that either the cardinality of T ∗ increases, or
the number of vertices in V (T) increases. Also, the cardinality of T ∗ is non-decreasing
throughout the algorithm. Note that if Ti ∈ T ∗ for all i, then it follows that w(Ti) = wi for
all i and moreover, T is a CVP.

Let T = {T1, . . . , Tk} be a connected packing of V in G with w(Ti) ≤ max{r, 3}wi for
every i ∈ [k]. We use Q to denote the vertex sets forming the connected components of
G[V \ V (T)]. We define T + := {Ti ∈ T | w(Ti) ≥ wi} and T − := T \ T +. Note that
T ∗ ⊆ T +. Analogous to section 4.1, we define T +

a as the set of Ti ∈ T + that do not have a
wi-separator vertex and T +

b to be the ones in T + having a wi-separator. For Ti ∈ T +
b , we

use s(Ti) to denote its wi-separator (if there are multiple we fix one arbitrarily) and C(Ti)
to denote the vertex sets forming the connected components of G[Ti \ {s(Ti)}]. We say a
vertex v ∈ V or a vertex set V ′ ⊆ V is T -assigned if v ∈ V (T) or V ′ ⊆ V (T), respectively.
That is, the set of T -assigned vertices is V (T) and V (Q) is the set of not T -assigned vertices.
We say T is pack-satisfied if |T | = k, each Tj ∈ T is connected, w(Tj) ∈ [1

3 wj , max{r, 3}wj],
and the vertex sets in T are pairwise disjoint.

We define the transfer-graph H = (VH , EH) as VH := (
⋃

T ∈T +
b

C(T)) ∪ T +
a ∪ T − ∪ Q and

EH := {(V1, V2) ∈
(VH

2
)

| NG(V1) ∩ V2 ̸= ∅}.

Algorithm DoubleBoundedGL

1. Apply Theorem 12 with α = 1
3 on G to obtain a connected packing T = {T1, . . . , Tk}

with w(Ti) ≥ 1
3 wi for every i ∈ [k].

2. While Q ̸= ∅:
a. Find a minimal path in H from Q to T −. Let this path be P Ti

Q where Q ∈ Q and
Ti ∈ T −.
// Note that all vertices in P Ti

Q except the start and end vertex are
in T +

a ∪
⋃

T ∈T +
b

C(T) by minimality of the path.
b. Execute the TransferVertices routine given below, which augments vertices through

the path P Ti

Q such that T stays pack-satisfied, and either |T ∗| increases, or |T ∗| remains
the same and the number of T -assigned vertices increases.

We need some more notations for describing the TransferVertices routine. For V ′
H ⊆ VH

and T ′ ⊆ T we define T ′(V ′
H) as the set {Ti ∈ T ′ | V (Ti) ∩ V (V ′

H) ̸= ∅}. For H ′ ⊆ H we
define T ′(H ′) := T ′(VH(H ′)), and V (H ′) := V (VH(H ′)). With |P Ti

Q | we denote the length of
the path P Ti

Q , i.e. the number of edges in P Ti

Q . We define P ℓ
Q as the vertex with distance ℓ to

Q in P Ti

Q , where P 0
Q = Q, and define T (P ℓ

Q) for ℓ ∈ [|P Ti

Q |] as the function which returns Tj

with P ℓ
Q ⊆ Tj . For T ′ ⊆ T we define I(T ′) := {i | Ti ∈ T ′}.

The TransferVertices routine transfers vertices through the path P Ti

Q . Our input is a
pack-satisfied T and a P Ti

Q path according to Step 2b in algorithm DoubleBoundedGL. By the
minimality of the path T Ti

Q , it is clear that VH(P Ti

Q) \ {Q, Ti} ⊆ T +
a ∪

⋃
T ∈T +

b
C(T). That is,

except for the destination Ti we run only through vertex sets from T + in T (P Ti

Q). Roughly,
our goal is to transfer vertices of V (P Ti

Q − Ti) to Ti, thereby changing the division of the
vertex sets T (P Ti

Q) and preserving the vertex sets in T ∗.
We often need to do a truncate operation on sets Tj with w(Tj) > max{r, 3}wj . We

mean by truncate Tj that we remove vertices from Tj until wj ≤ w(Tj) ≤ max{r, 3}wj such
that Tj remains connected. This can be done by removing a non-separator vertex from Tj

until the weight drops below max{r, 3}w(Tj). Note that any connected graph has at least
one non-separator vertex. Since wmax ≤ wj we know that the weight does not decrease below
wj during the last deletion.

APPROX/RANDOM 2021

27:12 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

Algorithm TransferVertices

1. Initialize X := Q and let u = min(I(T −)).
2. For ℓ = 1 to |P Ti

Q | do:
a. Let Tj = T (P ℓ

Q).
b. If w(X) ≥ wu: set Tu = X. Truncate Tu if necessary and terminate the algorithm.
c. If w(X ∪ Tj) ≤ max{r, 3}wj : update Tj to X ∪ Tj and terminate the algorithm.
d. If Tj /∈ T ∗: Set T ′

j = Tj ∪ X, Tj = Tu and Tu = T ′
j . Truncate Tj and Tu if necessary

and terminate the algorithm.
e. If Tj ∈ T +

a : divide Tj ∪ X into connected vertex sets V1, V2 with w(V1), w(V2) ≥ wj

using the construction given by Lemma 11. Set Tj = V1 and Tu = V2. Truncate Tj

and Tu if necessary and terminate the algorithm.
f. We know Tj ∈ T +

b ∩ T ∗. Set X = X ∪ P ℓ
Q and remove P ℓ

Q from Tj .

References
1 Curtis A Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs a comparative

survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1:13–22, 1998.
2 Ronald Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. Max-min partitioning of

grid graphs into connected components. Networks: An International Journal, 32(2):115–125,
1998.

3 Ronald Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. A polynomial-time
algorithm for max-min partitioning of ladders. Theory of Computing Systems, 34(4):353–374,
2001.

4 Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.

5 Paolo M Camerini, Giulia Galbiati, and Francesco Maffioli. On the complexity of finding
multi-constrained spanning trees. Discrete Applied Mathematics, 5(1):39–50, 1983.

6 Katrin Casel, Tobias Friedrich, Davis Issac, Aikaterini Niklanovits, and Ziena Zeif. Balanced
crown decomposition for connectivity constraints. arXiv preprint arXiv:2011.04528, 2020.

7 L. Sunil Chandran, Yun Kuen Cheung, and Davis Issac. Spanning tree congestion and
computation of generalized györi-lovász partition. In 45th International Colloquium on
Automata, Languages, and Programming, volume 107 of LIPIcs, pages 32:1–32:14, 2018.

8 Frédéric Chataigner, Liliane Benning Salgado, and Yoshiko Wakabayashi. Approximation and
inapproximability results on balanced connected partitions of graphs. Discrete Mathematics
and Theoretical Computer Science, 9(1), 2007. URL: http://dmtcs.episciences.org/384.

9 Guangting Chen, Yong Chen, Zhi-Zhong Chen, Guohui Lin, Tian Liu, and An Zhang. Approx-
imation algorithms for the maximally balanced connected graph tripartition problem. Journal
of Combinatorial Optimization, pages 1–21, 2020.

10 Jiangzhuo Chen, Robert D Kleinberg, László Lovász, Rajmohan Rajaraman, Ravi Sundaram,
and Adrian Vetta. (almost) tight bounds and existence theorems for single-commodity confluent
flows. Journal of the ACM (JACM), 54(4):16, 2007.

11 Yong Chen, Zhi-Zhong Chen, Guohui Lin, Yao Xu, and An Zhang. Approximation algorithms
for maximally balanced connected graph partition. In International Conference on Combinat-
orial Optimization and Applications, pages 130–141. Springer, 2019.

12 Janka Chlebíková. Approximating the maximally balanced connected partition problem in
graphs. Information Processing Letters, 60(5):225–230, 1996.

13 An-Chiang Chu, Bang Ye Wu, and Kun-Mao Chao. A linear-time algorithm for finding an edge-
partition with max-min ratio at most two. Discrete Applied Mathematics, 161(7-8):932–943,
2013.

14 Maria Chudnovsky and Paul Seymour. Claw-free graphs. I. orientable prismatic graphs.
Journal of Combinatorial Theory, Series B, 97(6):867–903, 2007.

http://dmtcs.episciences.org/384

R. Borndörfer, K. Casel, D. Issac, A. Niklanovits, S. Schwartz, and Z. Zeif 27:13

15 Maria Chudnovsky and Paul Seymour. Claw-free graphs. II. non-orientable prismatic graphs.
Journal of Combinatorial Theory, Series B, 98(2):249–290, 2008.

16 Maria Chudnovsky and Paul Seymour. Claw-free graphs. III. circular interval graphs. Journal
of Combinatorial Theory, Series B, 98(4):812–834, 2008.

17 Maria Chudnovsky and Paul Seymour. Claw-free graphs. IV. decomposition theorem. Journal
of Combinatorial Theory, Series B, 98(5):839–938, 2008.

18 Maria Chudnovsky and Paul Seymour. Claw-free graphs. V. global structure. Journal of
Combinatorial Theory, Series B, 98(6):1373–1410, 2008.

19 Maria Chudnovsky and Paul Seymour. Claw-free graphs VI. colouring. Journal of Combinat-
orial Theory, Series B, 100(6):560–572, 2010.

20 Maria Chudnovsky and Paul Seymour. Claw-free graphs. VII. quasi-line graphs. Journal of
Combinatorial Theory, Series B, 102(6):1267–1294, 2012.

21 Maria Chudnovsky and Paul D Seymour. The structure of claw-free graphs. Surveys in
combinatorics, 327:153–171, 2005.

22 Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply de bruijn graphs to
genome assembly. Nature biotechnology, 29(11):987–991, 2011.

23 Marek Cygan, Geevarghese Philip, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry
Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free graphs. Theoretical
Computer Science, 412(50):6982–7000, 2011.

24 Yuri Faenza, Gianpaolo Oriolo, and Gautier Stauffer. Solving the weighted stable set problem
in claw-free graphs via decomposition. Journal of the ACM (JACM), 61(4):1–41, 2014.

25 Greg N. Frederickson. Optimal algorithms for tree partitioning. In Proceedings of the Second
Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pages 168–177. ACM/SIAM,
1991. URL: http://dl.acm.org/citation.cfm?id=127787.127822.

26 E Gyori. On division of graphs to connected subgraphs, combinatorics. In Colloquia Mathem-
atica Societatis Janos Bolyai, 1976, 1976.

27 Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized complexity of
induced graph matching on claw-free graphs. Algorithmica, 70(3):513–560, 2014.

28 Alexander Hoyer. On the Independent Spanning Tree Conjectures and Related Problems. PhD
thesis, Georgia Institute of Technology, 2019.

29 Davis Issac. On some covering, partition and connectivity problems in graphs. PhD thesis,
Saarländische Universitäts-und Landesbibliothek, 2019.

30 Takehiro Ito, Xiao Zhou, and Takao Nishizeki. Partitioning a graph of bounded tree-width
to connected subgraphs of almost uniform size. Journal of discrete algorithms, 4(1):142–154,
2006.

31 Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm. SIAM Journal on
Computing, 6(1):151–154, 1977.

32 László Lovász. A homology theory for spanning tress of a graph. Acta Mathematica Academiae
Scientiarum Hungarica, 30(3-4):241–251, 1977.

33 Christian Löwenstein, Dieter Rautenbach, and Friedrich Regen. On spanning tree congestion.
Discrete mathematics, 309(13):4653–4655, 2009.

34 Mario Lucertini, Yehoshua Perl, and Bruno Simeone. Most uniform path partitioning and its
use in image processing. Discrete Applied Mathematics, 42(2-3):227–256, 1993.

35 Rolf H Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning graphs to speedup dijkstra’s algorithm. Journal of Experimental Algorithmics
(JEA), 11:2–8, 2007.

36 Yehoshua Perl and Stephen R Schach. Max-min tree partitioning. Journal of the ACM
(JACM), 28(1):5–15, 1981.

37 Hitoshi Suzuki, Naomi Takahashi, and Takao Nishizeki. A linear algorithm for bipartition of
biconnected graphs. Information Processing Letters, 33(5):227–231, 1990.

APPROX/RANDOM 2021

http://dl.acm.org/citation.cfm?id=127787.127822

27:14 Connected k-Part. of k-Conn. & c-Claw-Free Graphs

38 Koichi Wada and Kimio Kawaguchi. Efficient algorithms for tripartitioning triconnected
graphs and 3-edge-connected graphs. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 132–143. Springer, 1993.

39 Xing Zhou, Huaimin Wang, Bo Ding, Tianjiang Hu, and Suning Shang. Balanced connected task
allocations for multi-robot systems: An exact flow-based integer program and an approximate
tree-based genetic algorithm. Expert Systems with Applications, 116:10–20, 2019.

Better Pseudodistributions and Derandomization
for Space-Bounded Computation
William M. Hoza # Ñ

Simons Institute for the Theory of Computing, Berkeley, CA, USA

Abstract
Three decades ago, Nisan constructed an explicit pseudorandom generator (PRG) that fools width-n
length-n read-once branching programs (ROBPs) with error ε and seed length O(log2 n + log n ·
log(1/ε)) [19]. Nisan’s generator remains the best explicit PRG known for this important model of
computation. However, a recent line of work starting with Braverman, Cohen, and Garg [6, 8, 10, 22]
has shown how to construct weighted pseudorandom generators (WPRGs, aka pseudorandom
pseudodistribution generators) with better seed lengths than Nisan’s generator when the error
parameter ε is small.

In this work, we present an explicit WPRG for width-n length-n ROBPs with seed length
O(log2 n + log(1/ε)). Our seed length eliminates log log factors from prior constructions, and our
generator completes this line of research in the sense that further improvements would require
beating Nisan’s generator in the standard constant-error regime. Our technique is a variation of a
recently-discovered reduction that converts moderate-error PRGs into low-error WPRGs [10, 22].
Our version of the reduction uses averaging samplers.

We also point out that as a consequence of the recent work on WPRGs, any randomized space-S
decision algorithm can be simulated deterministically in space O

(
S3/2/

√
log S

)
. This is a slight

improvement over Saks and Zhou’s celebrated O(S3/2) bound [23]. For this application, our improved
WPRG is not necessary.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Complexity classes

Keywords and phrases Weighted pseudorandom generator, pseudorandom pseudodistribution, read-
once branching program, derandomization, space complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.28

Category RANDOM

Funding This paper is based on research conducted while the author was a graduate student at the
University of Texas at Austin, supported by the NSF GRFP under Grant DGE-1610403 and by a
Harrington Fellowship from UT Austin.

Acknowledgements I thank David Zuckerman for helpful comments on a draft of this paper. I thank
Alicia Torres Hoza for suggesting ways to cut down on footnotes.

1 Introduction

1.1 Derandomization
Randomization is a versatile technique in algorithm design. However, random bits are
not always available. Therefore, we would like to deterministically simulate randomized
algorithms as efficiently as possible. In this paper, we focus on space efficiency. After fixing
its input, the output of a small-space algorithm as a function of its random bits can be
computed by a read-once branching program (ROBP).

▶ Definition 1.1 (ROBP). A width-w length-n ROBP is a directed graph consisting of n + 1
layers of vertices V0, . . . , Vn with w vertices in each layer. For each i ∈ [n], each vertex in
Vi−1 has two outgoing edges labeled 0 and 1 leading to Vi. On input x ∈ {0, 1}n, the program

© William M. Hoza;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 28; pp. 28:1–28:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:whoza@utexas.edu
https://williamhoza.com/tcs/
https://orcid.org/0000-0001-5162-9181
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Better Pseudodistributions and Derandomization for Space-Bounded Computation

starts at a designated start vertex vstart ∈ V0, then reads the bits x1, . . . , xn in order and
traverses the corresponding edges. The program accepts or rejects depending on whether the
final vertex in this path is a designated accept vertex vacc ∈ Vn. In this way, the program
computes a function f : {0, 1}n → {0, 1}.

Arguably, the most important case is w = n, which captures (log n)-space randomized
algorithms that always halt. To derandomize such an algorithm, we would like to estimate
the expectation of the corresponding ROBP on a uniform random input.

1.2 Pseudorandom Generators
The traditional approach to derandomization is to design a pseudorandom generator (PRG).

▶ Definition 1.2 (PRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for
F is a function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,∣∣∣∣ E

x∈{0,1}r
[f(G(x))] − E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.

Here r is the seed length of G.

By the probabilistic method, there exists a (nonexplicit) PRG for width-n length-n ROBPs
with seed length O(log(n/ε)). A corresponding explicit1 construction would imply a complete
derandomization of space-bounded computation (L = BPL), because we could determinis-
tically estimate the expectation of a given ROBP f by computing 2−r ·

∑
x∈{0,1}r f(G(x)).

Babai, Nisan, and Szegedy designed the first explicit PRG for width-n length-n ROBPs [4],
with seed length

2O(
√

log n) · log(1/ε).

In a subsequent breakthrough [19], Nisan designed a PRG with a much better seed length of

O(log2 n + log n · log(1/ε)).

1.3 Weighted PRGs
In the decades since Nisan’s work [19], despite intense effort, the problem of designing PRGs
for width-n length-n ROBPs has stubbornly resisted further attacks. Nisan’s PRG [19]
remains the best explicit PRG known for this model. However, PRGs are not the only
possible approach to derandomization. Braverman, Cohen, and Garg recently introduced an
intriguing generalization of PRGs called weighted pseudorandom generators (WPRGs), aka
pseudorandom pseudodistribution generators [6].

▶ Definition 1.3 (WPRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-WPRG
for F is a pair of functions (G, ρ), where G : {0, 1}r → {0, 1}n and ρ : {0, 1}r → R, such that
for every f ∈ F ,∣∣∣∣ E

x∈{0,1}r
[ρ(x) · f(G(x))] − E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.

Here r is the seed length of (G, ρ). If ρ maps {0, 1}r → [−K, K], we say the WPRG is
K-bounded.

1 We say that a function G : {0, 1}r → {0, 1}n is explicit if it can be computed in space O(r). More
precisely, we are considering a family of functions indexed by one or more parameters (e.g., n and ε).
The algorithm for computing G is given both the parameters and the input to G.

W. M. Hoza 28:3

A standard (“unweighted”) PRG is the case ρ(x) ≡ 1. Just like an unweighted PRG, a
WPRG for ROBPs can be used to estimate the expectation of a given ROBP f , because
we can compute 2−r ·

∑
x∈{0,1}r ρ(x) · f(G(x)). As long as r is small and G and ρ are both

efficiently computable, this is still an efficient derandomization. Thus, optimal WPRGs
for ROBPs would immediately imply L = BPL. Furthermore, WPRGs imply hitting set
generators (HSGs).

▶ Definition 1.4 (HSG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-HSG for F
is a function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,

E
x∈{0,1}n

[f(x)] ≥ ε =⇒ ∃x ∈ {0, 1}r, f(G(x)) = 1.

If (G, ρ) is an ε-WPRG for F , then G is an ε′-HSG for F for any ε′ > ε [6]. HSGs
have been studied since the 80s [2], but prior to Braverman, Cohen, and Garg’s work [6],
no explicit HSG for width-n length-n ROBPs was known that was any better than Nisan’s
PRG (except when ε is extremely small; see Table 1). For these reasons, it was exciting
when Braverman, Cohen, and Garg presented an explicit WPRG that fools width-n length-n
ROBPs [6] with seed length

Õ(log2 n + log(1/ε)),

which is better than Nisan’s PRG’s seed length when ε ≪ 1/ poly(n).
Admittedly, Braverman, Cohen, and Garg’s result [6] did not yet imply an improved

derandomization of space-bounded computation, but still, their innovative and complex
work provides valuable insights. The additional flexibility in the definition of a WPRG
means that WPRGs can be easier to construct compared to unweighted PRGs. In fact,
in one setting (unbounded-width permutation ROBPs with a single accept vertex), Pyne
and Vadhan recently showed that there is an explicit WPRG [22] with a seed length that
is provably impossible to attain by unweighted PRGs [12], a testament to the power of the
WPRG approach to derandomization.

Subsequent to Braverman, Cohen, and Garg’s work [6], Chattopadhyay and Liao gave a
simpler WPRG construction [8] that fools width-n length-n ROBPs with the improved seed
length

Õ(log2 n) + O(log(1/ε)). (1)

Very recently, Cohen, Doron, Renard, Sberlo, and Ta-Shma [10] and Pyne and Vadhan [22]
independently obtained an even simpler WPRG that fools width-n length-n ROBPs with
seed length

O(log2 n) + Õ(log(1/ε)). (2)

(These last two constructions and analyses are nearly identical [10, 22].)

1.4 Main Result: An Improved WPRG
In this work, we present another WPRG for ROBPs with a better seed length.

▶ Theorem 1.5. For any w, n ∈ N and ε > 0, there is an explicit ε-WPRG for width-w
length-n ROBPs with seed length O(log(wn) log n + log(1/ε)). Furthermore, the WPRG is
poly(1/ε)-bounded.

APPROX/RANDOM 2021

28:4 Better Pseudodistributions and Derandomization for Space-Bounded Computation

Table 1 Known PRGs, WPRGs, and HSGs for width-n length-n ROBPs. As a reminder,
PRG =⇒ WPRG =⇒ HSG.

Seed length Type of generator Reference
Õ
(√

n
)

+ O(log(1/ε)) HSG [2]2

2O
(√

log n
)

· log(1/ε) PRG [4]
O(log2 n + log(1/ε) · log n) PRG [19]
Õ(log2 n + log(1/ε)) WPRG [6]
O(log2 n + log(1/ε)) HSG [14]
Õ(log2 n) + O(log(1/ε)) WPRG [8]
O(log2 n) + Õ(log(1/ε)) WPRG [10, 22]
O(log2 n + log(1/ε)) WPRG This work
O(log n + log(1/ε)) PRG Optimal (non-explicit)

When w = n, our WPRG has seed length O(log2 n + log(1/ε)), giving the “best of both
worlds” compared to Equations (1) and (2). Our WPRG is the first to achieve seed length
O(log2 n) with error n− log n. Furthermore, our WPRG represents the completion of the
research project of designing WPRGs for width-n length-n ROBPs while focusing on the
seed length’s dependence on ε [6, 8, 10, 22]. After all, even an HSG must have seed length
at least Ω(log(1/ε)), so obtaining a better WPRG for width-n length-n ROBPs requires
beating Nisan’s generator in the traditional, challenging constant-error regime. (That being
said, see Section 5.)

Our WPRG generalizes some other recent work on the small-ε regime. Hoza and
Zuckerman constructed an explicit ε-HSG for width-n length-n ROBPs with seed length
O(log2 n + log(1/ε)) [14], which follows also from our WPRG. Meanwhile, Cheng and Hoza
gave a deterministic algorithm for estimating E[f] ± ε in space O(log2 n + log(1/ε)) given
query access to a constant-width ROBP f [9]; Theorem 1.5 immediately implies such an
algorithm for the more general case of polynomial-width ROBPs.

1.5 Derandomization that Beats the Saks-Zhou Bound
Next we turn to the general problem of derandomizing space-S decision algorithms, whether
by PRGs, WPRGs, HSGs, or any other method. Early work [24, 16, 5] showed that these
algorithms can be simulated deterministically in space O(S2) (in fact these early papers show
how to simulate more powerful models). Saks and Zhou gave an improved simulation that
runs in space O(S3/2) [23], which has remained unbeaten for decades. We point out that as
a consequence of the recent progress on WPRGs, it is now possible to slightly improve the
bound.

▶ Theorem 1.6. For any function S(N) ≥ log N , we have

BPSPACE(S) ⊆ DSPACE
(

S3/2
√

log S

)
.

2 For any w ∈ N, Ajtai, Komlos, and Szemeredi designed an explicit (1/w)-HSG for width-w length-n
ROBPs where n = O(log2 w/ log log w) with optimal seed length O(log w) [2]. Turning things around,
for any n ∈ N and ε > 0, we can let w = 2

√
n log n/ε and get an explicit ε-HSG for width-w length-n

ROBPs (hence also for width-n length-n ROBPs) with seed length O(
√

n log n + log(1/ε)).

W. M. Hoza 28:5

(We use N to denote the input length, reserving n to denote the length of an ROBP.
Recall that BPSPACE(S) is the class of languages that can be decided by randomized
algorithms that run in space O(S) and always halt.3) Admittedly, O(S3/2/

√
log S) is barely

any better than Saks and Zhou’s O(S3/2) bound [23]. However, we hope that Theorem 1.6
might break a “psychological barrier” by demonstrating that the Saks-Zhou algorithm [23]
has room for improvement.

Our improved WPRG is not necessary for proving Theorem 1.6. Instead, Theorem 1.6
follows by combining several prior works [23, 3, 17, 8, 10, 22].

1.6 Overview of Proofs
1.6.1 Overview of our Improved WPRG
The proof of Theorem 1.5 is similar to the recent WPRG constructions by Cohen et al. and
Pyne and Vadhan [10, 22]. Say we would like to fool some width-n length-n ROBP f with
low error ε ≪ 1/ poly(n). The starting point is a PRG G that fools ROBPs with moderate
error 1/ poly(n). Building on work by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [1], Cohen et al. and Pyne and Vadhan [10, 22] showed a bound of the form∣∣∣∣∣E[f] −

K∑
i=1

σi · E[f(Ai)]

∣∣∣∣∣ ≤ ε, (3)

where K = poly(1/ε), each σi = ±1, and each random variable Ai is a concatenation of
O
(

log(1/ε)
log n

)
truncations of independent samples from G. From here, we could immediately

obtain an ε-WPRG by taking G to be Nisan’s generator [19], but such a WPRG would
have seed length Ω(log(1/ε) · log n) due to the cost of sampling Ai via independent seeds
to Nisan’s generator. To get a better seed length, we would like to use correlated seeds to
Nisan’s generator.

The approach of Cohen et al. and Pyne and Vadhan [10, 22] is to use the Impagliazzo-
Nisan-Wigderson (INW) PRG [15] to generate a pseudorandom sequence of seeds to Nisan’s
generator. Because the INW generator is non-optimal, this approach leads to the seed length
O(log2 n + log(1/ε) log logn(1/ε)).

Our approach is based on a simple observation. The proof of Equation (3) does not
actually require that G fool all width-n length-n ROBPs. Indeed, Equation (3) holds under
the weaker assumption that G fools all subprograms of the specific ROBP f that we are
analyzing.

To exploit this observation, we apply a trick that uses an “averaging sampler” Samp. We
start with a PRG G0 for width-n length-n ROBPs with moderate error 1/ poly(n) and seed
length O(log2 n), such as Nisan’s generator [19]. Our WPRG selects a string x of length
O(log2 n + log(1/ε)) uniformly at random. The sampler condition implies that for any ROBP
f , with high probability over x, the PRG G(y) def= G0(Samp(x, y)) fools all subprograms of f

with error 1/ poly(n) and optimal seed length O(log n). Our WPRG now applies Equation (3)
to G rather than G0. Because G has such a short seed length, sampling Ai only costs us
O(log(1/ε)) truly random bits now, which we can afford. (Similar tricks have been used
previously in space-bounded derandomization [20, 3, 14].)

3 In the older literature, the notation “BPSPACE(S)” refers to a different model where the algo-
rithm is not required to always halt. The class that we study in this paper is sometimes denoted
“BPHSPACE(S)” in older papers.

APPROX/RANDOM 2021

28:6 Better Pseudodistributions and Derandomization for Space-Bounded Computation

In general, our reduction converts any PRG for width-w length-n ROBPs with error
1/ poly(wn) and seed length r into a WPRG for width-w length-n ROBPs with any desired
error ε and seed length O(r + log(wn/ε)). Our reduction is incomparable with the prior
reduction by Cohen, Doron, Renard, Sberlo, and Ta-Shma and Pyne and Vadhan [10, 22],
because we get a better seed length, but we require the initial PRG to have error 1/ poly(wn),
whereas the prior reduction merely requires the initial PRG to have error 1/ poly(n). (This
is shown by Cohen et al. [10], who give a slightly tighter analysis compared to Pyne and
Vadhan [22].)

We also take this opportunity to give a slightly different perspective on the proof of
Equation (3), the basis of both our reduction and the earlier reduction [10, 22]. The original
proof of Equation (3) is based on “preconditioned Richardson iteration,” a method for
improving the accuracy of an approximate matrix inverse [1, 10, 22]. Cohen et al. pointed
out that the proof has a resemblance to the notion of local consistency errors introduced
by Cheng and Hoza [9]. We show how Equation (3) can be understood in terms of local
consistency without bringing any matrices into the picture. As we explain in Appendix B,
this is not a substantially different proof, but rather a different way of thinking about the
same proof. We hope that this alternative perspective might yield new insights in the future.

1.6.2 Overview of our Improved Derandomization
The proof of Theorem 1.6 (simulating randomized space S in deterministic space o(S3/2))
builds on Saks and Zhou’s algorithm [23]. To derandomize space-(log w) algorithms, Saks
and Zhou rely heavily on Nisan’s PRG for width-w length-n ROBPs. Crucially, Saks and
Zhou set n to be much smaller than w. To fool such programs with error ε, Nisan’s PRG
has seed length O(log(wn/ε) log n), so by choosing n = 2O(

√
log w) and ε = 1/ poly(w), the

seed length of Nisan’s PRG is only O(log3/2 w). The crux of Saks and Zhou’s work [23] is
a clever method of reusing a seed of this PRG many times to derandomize a (log w)-space
algorithm even though it might use up to w random bits.

Saks and Zhou’s work therefore provides extra motivation for studying width-w length-n
ROBPs when n ≪ w. These programs correspond to algorithms that only use a small
amount of randomness. In this “low-randomness” regime, PRGs have long been known
that are slightly better than Nisan’s PRG. Most famously, Nisan and Zuckerman designed a
PRG for the case n = polylog w with error 2− log0.99 w and optimal seed length O(log w) [21].
Later, Armoni designed a PRG that interpolates between Nisan’s PRG [19] and the Nisan-
Zuckerman PRG [21], suitable for the regime polylog w ≪ n ≪ w [3]. Using extractors that
were not available to Armoni at the time of his work [3], Armoni’s PRG can be implemented
[17] to have seed length

O

(
log(wn/ε) log n

max{1, log log w − log log(n/ε)}

)
.

For n ≪ w and ε = 1/ poly(n), this is better than Nisan’s PRG by a factor of Θ(log log w).
Furthermore, although Saks and Zhou [23] relied on the specific structure of Nisan’s PRG

[19], Armoni showed how to modify the Saks-Zhou algorithm to use any generic PRG for
ROBPs [3]. It is therefore natural to try to improve the Saks-Zhou theorem by replacing
Nisan’s PRG with Armoni’s, and indeed, it has been suggested that Theorem 1.6 follows
already from Armoni’s work.4

4 I have heard a speaker make this claim during an oral presentation, but the speaker clarified that they

W. M. Hoza 28:7

However, it seems that Theorem 1.6 does not follow directly from Armoni’s work. The
trouble is the error parameter. For the Saks-Zhou method to work, it seems to be necessary
that the PRG has error 1/ poly(w) rather than 1/ poly(n). When ε = 1/ poly(w), Armoni’s
PRG is no better than Nisan’s PRG, so we get no improvement. Armoni himself understood
this issue and did not claim to beat the Saks-Zhou bound in the general case. Instead,
he showed how to use his PRG to get an improved derandomization of low-randomness
algorithms [3].

Today, however, we have new tools for fooling ROBPs with low error. In particular, we
can use the recent error reduction procedure due to Cohen et al. and Pyne and Vadhan
[10, 22]. Cohen et al. show how to convert a PRG for width-w length-n ROBPs with error
1/ poly(n) and seed length r into a WPRG for width-w length-n ROBPs with any desired
error ε and seed length r + Õ(log(w/ε)) [10]. Applying this reduction to Armoni’s PRG with
n = 2

√
log w·log log w (slightly larger than the choice in Saks and Zhou’s original work [23]),

we obtain a WPRG for width-w length-n ROBPs with error 1/ poly(w) and seed length

O

(
log3/2 w√
log log w

)
+ Õ(log w) = O

(
log3/2 w√
log log w

)
.

Meanwhile, Chattopadhyay and Liao showed [8] that WPRGs can be used in place of
PRGs in Saks and Zhou’s algorithm, provided the WPRG is poly(w)-bounded. The WPRG
from Cohen et al.’s reduction [10] is indeed poly(1/ε)-bounded, completing the proof of
Theorem 1.6. The more detailed proof is in Appendix A.

1.7 WPRGs vs. HSGs
We remark that the proof of Theorem 1.6 sheds light on the relative strengths of HSGs
and WPRGs. Cheng and Hoza recently showed that optimal HSGs would imply L = BPL
[9], which might cause one to question whether WPRGs have value above and beyond the
value of HSGs. Chattopadhyay and Liao addressed this concern by showing that WPRGs
could hypothetically be used in the Saks-Zhou algorithm to prove a new and improved
derandomization of space-bounded computation [8], whereas it is still not known how to use
HSGs in the Saks-Zhou algorithm. Theorem 1.6 makes the hypothetical possibility envisioned
by Chattopadhyay and Liao a reality5 and thereby demonstrates the strength of the WPRG
approach to derandomization.

2 Preliminaries

2.1 Pseudodistributions
For most of our analysis, we will work with pseudodistributions rather than the WPRG
formalism. For our purposes, a pseudodistribution is a generalization of a probability
distribution in which probabilities are replaced with “pseudoprobabilities,” which are arbitrary
real numbers that do not necessarily sum to one.

were not familiar with a careful proof and were merely communicating what someone else had said. I
am also aware of an instance in which this claim was made in typeset lecture notes, but the claim was
removed after a revision.

5 To be clear, we only achieve derandomization in space O(S3/2/
√

log S), whereas Chattopadhyay and
Liao proposed a route toward the much better bound O(S4/3) [8], developing an earlier proposal by
Braverman, Cohen, and Garg [6].

APPROX/RANDOM 2021

28:8 Better Pseudodistributions and Derandomization for Space-Bounded Computation

▶ Definition 2.1 (Pseudodistribution). A pseudodistribution over {0, 1}n is a formal real
linear combination of n-bit strings,6 i.e., a sum of the form

A =
R∑

i=1
ai · x(i),

where ai ∈ R and x(i) ∈ {0, 1}n. A probability distribution over {0, 1}n is the special case
that ai ≥ 0 and

∑R
i=1 ai = 1. We define Un to be the uniform distribution over {0, 1}n, i.e.,

Un =
∑

x∈{0,1}n 2−n ·x. We often identify a function f on {0, 1}n with the induced probability
distribution f(Un). We define the pseudoexpectation of a function f : {0, 1}n → R under the
pseudodistribution A by

Ẽ[f(A)] =
R∑

i=1
ai · f(x(i)).

We say that A fools f with error ε if
∣∣∣E[f] − Ẽ[f(A)]

∣∣∣ ≤ ε.

▶ Definition 2.2 (Operations on Pseudodistributions). Linear combinations of pseudodistribu-
tions over {0, 1}n are defined in the natural way. The tensor product of two pseudodistribu-
tions is given by(

R∑
i=1

ai · x(i)

)
⊗

 R′∑
j=1

bj · y(j)

 =
R∑

i=1

R′∑
j=1

aibj · (x(i) ◦ y(j)),

where ◦ denotes concatenation. Thus if A is a pseudodistribution over {0, 1}n and B is a
pseudodistribution over {0, 1}n′ , then A ⊗ B is a pseudodistribution over {0, 1}n+n′ .

The following facts are easy to verify.

▶ Proposition 2.3. Let A and B be pseudodistributions over {0, 1}n, let c ∈ R, and let
f : {0, 1}n → R. Then Ẽ[f(A + cB)] = Ẽ[f(A)] + c · Ẽ[f(B)].

▶ Proposition 2.4. For b ∈ {0, 1}, let nb ∈ N, let Ab be a pseudodistribution over {0, 1}nb ,
and let fb : {0, 1}nb → R. Let f(x, y) = f0(x) · f1(y). Then

Ẽ[f(A0 ⊗ A1)] = Ẽ[f0(A0)] · Ẽ[f1(A1)].

2.2 Weighted PRGs
As discussed in Section 1, a WPRG is a pair (G, ρ), where G : {0, 1}r → {0, 1}n and
ρ : {0, 1}r → R. Each WPRG has a corresponding pseudodistribution, just as a PRG has a
corresponding distribution.

▶ Definition 2.5 (Pseudodistribution Sampled by a WPRG). If (G, ρ) is a WPRG with seed
length r, the pseudodistribution sampled by (G, ρ) is A =

∑
x∈{0,1}r 2−r · ρ(x) · G(x). Note

that (G, ρ) is an ε-WPRG for f if and only if A fools f with error ε.

6 Equivalently, A is a vector in the n-fold tensor product space R2 ⊗ · · · ⊗ R2 ∼= R2n

. The reader might
find it helpful to make an analogy with quantum computing; recall that a pure state of an n-qubit
system is a vector in the n-fold tensor product space C2 ⊗ · · · ⊗C2 ∼= C2n

. We could even have used ket
notation for pseudodistributions: A =

∑R

i=1 ai · |x(i)⟩.

W. M. Hoza 28:9

WPRGs can be combined in the same ways as pseudodistributions. Consideration of these
operations will help us verify the seed length, boundedness, and efficiency of our WPRG.

▶ Definition 2.6 (Operations on WPRGs). Suppose we have two WPRGs (G0, ρ0) and
(G1, ρ1), where Gb : {0, 1}rb → {0, 1}nb and ρb : {0, 1}rb → R. We define the tensor product
(G0, ρ0) ⊗ (G1, ρ1) to be a WPRG (G, ρ) with seed length r0 + r1 given by

G(x, y) = G0(x) ◦ G1(y) ρ(x, y) = ρ0(x) · ρ1(y).

If n0 = n1, we define the sum (G0, ρ0) + (G1, ρ1) to be a WPRG (G, ρ) with seed length r + 1
given by

G(x, b) = Gb(x) ρ(x, b) = 2 · ρb(x).

(There is a factor of 2 because in the definition of WPRGs, we look at an expectation over seeds
rather than a sum.) For a WPRG (G, ρ) and a real number c, we define c · (G, ρ) = (G, ρ′),
where ρ′(x) = c ·ρ(x). Under these definitions, if (Gb, ρb) samples from the pseudodistribution
Ab over {0, 1}nb , then (G0, ρ0) ⊗ (G1, ρ1) samples from A0 ⊗ A1, and if n0 = n1, then
(G0, ρ0) + c · (G1, ρ1) samples from A0 + cA1. Furthermore, if (Gb, ρb) is Kb-bounded, then
(G0, ρ0) ⊗ (G1, ρ1) is (K0K1)-bounded; if (G0, ρ0) and (G1, ρ1) are both K-bounded, then
(G0, ρ0) + (G1, ρ1) is (2K)-bounded; if (G, ρ) is K-bounded, then c · (G, ρ) is (cK)-bounded.

2.3 Applying Pseudodistributions to ROBPs

Let f be an ROBP with layers V0, . . . , Vn. Let u ∈ Vi and v ∈ Vj . When j ≥ i, we define
the subprogram fu→v : {0, 1}j−i → {0, 1} to be the length-(j − i) ROBP obtained from f by
setting u to be the start vertex and v to be the accept vertex. For convenience, we extend
fu→v to a function fu→v : {0, 1}≥j−i → {0, 1} that ignores all but the first j − i bits of its
input.

If A is a pseudodistribution over {0, 1}d with i + d ≥ j, we define A[u → v] to be the
pseudoprobability of reaching v from u using A, i.e., A[u → v] = Ẽ[fu→v(A)]. We extend
the definition by defining A[u → v] = 0 when i > j.

2.4 Local Consistency

As mentioned in Section 1.6.1, we will present a WPRG analysis based on the notion of local
consistency introduced by Cheng and Hoza [9]. The idea behind local consistency is that we
measure the quality of a pseudodistribution by using it to estimate E[fu→v] in two different
ways and comparing the results.

▶ Definition 2.7 (Local Consistency Error). Let f be an ROBP with layers V0, . . . , Vn. Let
u ∈ Vi and v ∈ Vj with i < j, and let A be a pseudodistribution over {0, 1}d with i + d ≥ j.
The local consistency error LCErru→v(A) is defined by

LCErru→v(A) =

 ∑
t∈Vj−1

A[u → t] · U1[t → v]

− A[u → v].

We extend the definition by setting LCErru→v(A) = 0 when j ≤ i. We say that A is α-locally
consistent with respect to f if for every u, v we have | LCErru→v(A)| ≤ α.

APPROX/RANDOM 2021

28:10 Better Pseudodistributions and Derandomization for Space-Bounded Computation

Note that Un is 0-locally consistent. As we explain in Appendix B, local consistency is
closely connected to approximating the inverse of the random walk Laplacian matrix of f .
Cheng and Hoza’s work [9] shows that local consistency and fooling are equivalent, up to
some loss in the error parameter [9]. We repeat the argument here for clarity.

▶ Lemma 2.8. Let A be a pseudodistribution over {0, 1}n and let f be a width-w length-n
ROBP.
1. If A fools every subprogram fu→v of f with error α, then A is (2wα)-locally consistent

with respect to f .
2. If A is ε-locally consistent with respect to f , then A fools every subprogram fu→v of f

with error wnε.

Proof. First, suppose A fools every subprogram fu→v with error α. Then if u ∈ Vi and
v ∈ Vj with i < j, we have

| LCErru→v(A)| =

∣∣∣∣∣∣A[u → v] −
∑

t∈Vj−1

A[u → t] · U1[t → v]

∣∣∣∣∣∣
≤ |A[u → v] − Un[u → v]| +

∣∣∣∣∣∣Un[u → v] −
∑

t∈Vj−1

A[u → t] · U1[t → v]

∣∣∣∣∣∣
≤ α +

∑
t∈Vj−1

|Un[u → t] − A[u → t]| · U1[t → v]

≤ (w + 1)α ≤ 2wα.

Conversely, suppose A is ε-locally consistent with respect to f . Then for any u ∈ Vi and any
j > i,

∑
v∈Vj

|A[u → v] − Un[u → v]| ≤
∑
v∈Vj

∣∣∣∣∣∣
∑

t∈Vj−1

A[u → t]U1[t → v] − Un[u → v]

∣∣∣∣∣∣+ ε

≤ wε +

∑
v∈Vj

∑
t∈Vj−1

|A[u → t] − Un[u → t]| · U1[t → v]

= wε +
∑

t∈Vj−1

|A[u → t] − Un[u → t]| ·
∑
v∈Vj

U1[t → v]

= wε +
∑

t∈Vj−1

|A[u → t] − Un[u → t]|.

By induction on j − i, it follows that∑
v∈Vj

|A[u → v] − Un[u → v]| ≤ wnε,

and hence A fools every subprogram with error wnε. ◀

We remark that there is a version of Lemma 2.8 that eliminates both factors of w. To
obtain such bounds, one can consider the sum over all v ∈ Vj of each type of error u → v.
We have no need of this more refined analysis, so we omit the details.

W. M. Hoza 28:11

3 Amplifying Local Consistency

Let G be a given pseudodistribution over {0, 1}n. (Ultimately we will take G to be a
probability distribution, but this stage of the construction makes sense in the more general
setting of pseudodistributions.) We will show how to combine multiple samples from G to
improve its local consistency. Throughout this section, fix a length-n ROBP f with layers
V = V0 ∪ · · · ∪ Vn, and for convenience, define Vi = ∅ when i > n.

3.1 Construction
For each d ≤ n, define Gd to be the pseudodistribution obtained by drawing a sample from
G and truncating to the first d bits. That is, if G =

∑R
i=1 ai · x(i), then

Gd =
R∑

i=1
ai · x

(i)
1...d. (4)

For d ∈ [n], define a pseudodistribution ∆d over {0, 1}d by

∆d = Gd−1 ⊗ U1 − Gd.

The definition of ∆d should remind the reader of local consistency errors. (See Lemma 3.2.)
Now we define a “multi-hop” generalization of ∆d. For d ∈ [n] and m ∈ [d], define a
pseudodistribution ∆(m)

d over {0, 1}d by

∆(m)
d =

∑
d1+···+dm=d

∆d1 ⊗ · · · ⊗ ∆dm
,

where the sum is over all m-tuples of positive integers (d1, . . . , dm) that sum to d. Next, for
each m ≥ 1, define a pseudodistribution T (m) over {0, 1}n by

T (m) =
n∑

d=m

∆(m)
d ⊗ Gn−d,

and finally, for each m ≥ 0, define a pseudodistribution G(m) over {0, 1}n by

G(m) = G +
m∑

i=1
T (i) = G +

m∑
i=1

n∑
d=m

∆(i)
d ⊗ Gn−d.

We will show that as m gets large, G(m) becomes increasingly locally consistent.

3.2 Analysis
For m ≥ 1, define a “multi-hop” generalization of local consistency errors by

LCErr(m)
u→v(G) =

∑
u=u0,u1,...,um=v

m∏
j=1

LCErruj−1→uj
(G),

where the sum is over all sequences of m + 1 vertices starting with u and ending with v. Our
goal in this section is to prove the following exact formula for the local consistency errors of
G(m) in terms of the local consistency errors of G.

▶ Lemma 3.1. For any two vertices u, v and any m ≥ 0, we have LCErru→v(G(m)) =
LCErr(m+1)

u→v (G).

APPROX/RANDOM 2021

28:12 Better Pseudodistributions and Derandomization for Space-Bounded Computation

Let us briefly pause to marvel at this phenomenon. In most settings, when several
imperfect ingredients are combined, we expect that the errors will compound on each other,
so the combination has more error than any individual ingredient. We typically consider
ourselves lucky if we can prove that the errors compund mildly. The remarkable feature of
Lemma 3.1 is that it involves products of errors, i.e., the local consistency errors of G are
actually combining in our favor !

Toward proving Lemma 3.1, we begin by analyzing ∆d. It is immediate from the definitions
that if u ∈ Vi and v ∈ Vi+d, then ∆d[u → v] = LCErru→v(G). More generally, we have the
following formula.

▶ Lemma 3.2. Let d ∈ [n] and i, j ≤ n. Let u ∈ Vi and v ∈ Vj and let A be a pseudodistri-
bution over {0, 1}n−d. Then

(∆d ⊗ A)[u → v] =
∑

t∈Vi+d

LCErru→t(G) · A[t → v]. (5)

Proof. For the first case, suppose i + d ≤ j. Then for any x ∈ {0, 1}d and any y ∈ {0, 1}n−d,
we have fu→v(x, y) =

∑
t∈Vi+d

fu→t(x) · ft→v(y). Therefore, for any pseudodistribution B

over {0, 1}d whatsoever, we have

(B ⊗ A)[u → v] =
∑

t∈Vi+d

B[u → t] · A[t → v].

Since ∆d[u → t] = LCErru→t(G), we are done in this case.
For the second case, suppose i + d > j. Then either i > j, or else the pseudodistributions

Gd−1 ⊗ U1 ⊗ A and Gd ⊗ A agree on their first j − i bits.7 Either way, (∆d ⊗ A)[u → v] = 0.
Meanwhile, for each t ∈ Vi+d, trivially A[t → v] = 0, so both sides of Equation (5) are zero
in this case. ◀

More generally, we have the following relationship between ∆(m)
d and LCErr(m).

▶ Lemma 3.3. Let d ∈ [n], m ∈ [d], and i, j ≤ n and m ≥ 0. Let u ∈ Vi and v ∈ Vj and let
A be a pseudodistribution over {0, 1}n−d. Then

(∆(m)
d ⊗ A)[u → v] =

∑
t∈Vi+d

LCErr(m)
u→t(G) · A[t → v].

Proof. The base case m = 1 was proven in Lemma 3.2. For the inductive step, note that

∆(m+1)
d =

d−1∑
k=m

∆(m)
k ⊗ ∆d−k,

7 I.e., the induced pseudodistributions on the first j − i bits (see Equation (4)) are identical.

W. M. Hoza 28:13

so

(∆(m+1)
d ⊗ A)[u → v]

=
d−1∑
k=m

(∆(m)
k ⊗ ∆d−k ⊗ A)[u → v] (Linearity)

=
d−1∑
k=m

∑
s∈Vi+k

LCErr(m)
u→s(G) · (∆d−k ⊗ A)[s → v] (Induction)

=
d−1∑
k=m

∑
s∈Vi+k

∑
t∈Vi+d

LCErr(m)
u→s(G) · LCErrs→t(G) · A[t → v] (Lemma 3.2)

=
∑

t∈Vi+d

LCErr(m+1)
u→t (G) · A[t → v]. ◀

Proof of Lemma 3.1. For any u ∈ Vj and v ∈ Vk, by Lemma 3.3,

T (m)[u → v] =
n∑

d=m

∑
t∈Vj+d

LCErr(m)
u→t(G) · G[t → v] =

∑
t∈V

LCErr(m)
u→t(G) · G[t → v].

Therefore, if u ∈ Vj and v ∈ Vk with j < k, then

LCErru→v(T (m))

=

 ∑
s∈Vk−1

T (m)[u → s] · U1[s → v]

− T (m)[u → v]

=

 ∑
s∈Vk−1

∑
t∈V

LCErr(m)
u→t(G) · G[t → s] · U1[s → v]

−
∑
t∈V

LCErr(m)
u→t(G) · G[t → v]

=
∑
t∈V

LCErr(m)
u→t(G) ·

 ∑
s∈Vk−1

G[t → s] · U1[s → v]

− G[t → v]

︸ ︷︷ ︸

(∗)

.

Quantity (∗) is exactly the local consistency error LCErrt→v(G), except in one edge case:
when t = v, LCErrt→t(G) = 0, whereas (∗) = −1. Therefore,

LCErru→v(T (m)) =
(∑

t∈V

LCErr(m)
u→t(G) · LCErrt→v(G)

)
− LCErr(m)

u→v(G)

= LCErr(m+1)
u→v (G) − LCErr(m)

u→v(G).

Thus, we get a telescoping sum:

LCErru→v(G(m)) = LCErru→v(G) +
m∑

i=1
LCErru→v(T (i))

= LCErru→v(G) +
m∑

i=1

(
LCErr(i+1)

u→v (G) − LCErr(i)
u→v(G)

)
= LCErr(m+1)

u→v (G).

(If j ≥ k, then LCErru→v(G(m)) = LCErr(m+1)
u→v (G) = 0, so the lemma holds trivially in this

case.) ◀

APPROX/RANDOM 2021

28:14 Better Pseudodistributions and Derandomization for Space-Bounded Computation

The following corollary corresponds to Equation (3).

▶ Corollary 3.4. If G fools every subprogram fu→v with error α, then for every m ≥ 0, G(m)

fools f with error wn · (2w2nα)m+1.

Proof. For any u and v, by Lemma 3.1,

| LCErru→v(G(m))| = | LCErr(m+1)
u→v (G)|

≤
∑

u=u0,u1,...,um+1=v

m+1∏
j=1

| LCErrui−1→ui(G)|

≤ (wn)m · (2wα)m+1 (Lemma 2.8)
≤ (2w2nα)m+1.

The corollary follows by Lemma 2.8. ◀

We reiterate that Corollary 3.4 follows already from the work of Cohen et al. and Pyne
and Vadhan [10, 22], and indeed the proof we have given is not substantially different (see
Appendix B). In keeping with our remark after Lemma 2.8, we also remark that there is a
version of Corollary 3.4 that eliminates the factors of w by assuming that for each layer j,
the sum of errors |G[u → v] − Un[u → v]| over all v ∈ Vj is at most α. We omit the details.

4 Our Improved WPRG for ROBPs

In this section, we will show how to convert a moderate-error PRG for width-w length-n
ROBPs into a low-error WPRG for width-w length-n ROBPs. If the given PRG has error
1/ poly(wn) and seed length r, then for any ε > 0, we will obtain a WPRG with error ε and
seed length O(r + log(wn/ε)).

4.1 Construction
Recall the standard notion of an averaging sampler, which is essentially equivalent to a
seeded randomness extractor [25].

▶ Definition 4.1 (Sampler). A function Samp : {0, 1}ℓ ×{0, 1}q → {0, 1}r is an (α, γ)-sampler
if for every function f : {0, 1}r → [0, 1],

Pr
x∈{0,1}ℓ

∣∣∣∣∣∣E[f] − 2−q
∑

y∈{0,1}q

f(Samp(x, y))

∣∣∣∣∣∣ ≤ α

 ≥ 1 − γ.

Let α = 1
4w3n2 and let G : {0, 1}r → {0, 1}n be a given α-PRG for width-w length-n

ROBPs. Define

m =
⌈

log(wn/ε)
log(wn)

⌉
and γ = ε

2w2n2 · ((8n)m+1 + 1) =
(ε

wn

)O(1)
,

and let Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r be an (α, γ)-sampler. For each x ∈ {0, 1}ℓ, let Gx

be the distribution G(Samp(x, Uq)), and let G
(m)
x be the corresponding pseudodistribution

with amplified local consistency as defined in Section 3.1. Our final pseudodistribution G′ is
G

(m)
x for a uniform random x, i.e.,

G′ =
∑

x∈{0,1}ℓ

2−ℓ · G(m)
x .

W. M. Hoza 28:15

4.2 Correctness
▷ Claim 4.2. If f is a width-w length-n ROBP, then G′ fools f with error ε.

Proof. For each pair of vertices u, v, since G is an α-PRG for width-w ROBPs, G fools fu→v

with error α. Therefore, by the sampler condition, with probability 1 − γ over a uniform
random choice of x, Gx fools fu→v with error 2α. Let BAD be the set of x such that there
exist vertices u, v such that Gx does not (2α)-fool fu→v. By the union bound,

|BAD| ≤ γ · w2n2 · 2ℓ = ε

2 · ((8n)m+1 + 1) · 2ℓ.

For any x, unpacking the definitions, we see that G
(m)
x has the form

∑K
i=1 ±Ai, where

K ≤ (m + 1) · (n + 1) · (n + 1)m · 2m ≤ (8n)m+1

and each Ai is a tensor product of probability distributions. Therefore, for x ∈ BAD (indeed
for all x), we have

∣∣∣Ẽ[f(G(m)
x)]

∣∣∣ ≤ (8n)m+1. Meanwhile, for x ̸∈ BAD, by Corollary 3.4,

∣∣∣Ẽ[f(G(m)
x)] − E[f]

∣∣∣ ≤ wn · (4w2nα)m+1 = wn ·
(

1
wn

)m+1
<

ε

2 .

Therefore, overall,

∣∣∣Ẽ[f(G′)] − E[f]
∣∣∣ =

∣∣∣∣∣∣
∑

x∈BAD
2−ℓ · (Ẽ[f(G(m)

x)] − E[f]) +
∑

x ̸∈BAD
2−ℓ · (Ẽ[f(G(m)

x)] − E[f])

∣∣∣∣∣∣
≤

∑
x∈BAD

2−ℓ
(∣∣∣Ẽ[f(G(m)

x)]
∣∣∣+ 1

)
+
∑

x ̸∈BAD
2−ℓ ·

∣∣∣Ẽ[f(G(m)
x)] − E[f]

∣∣∣
≤ 2−ℓ · |BAD| · ((8n)m+1 + 1) + ε

2
≤ ε. ◁

4.3 Explicitness and Seed Length
We will instantiate Samp using the following explicit sampler.

▶ Theorem 4.3 ([8, Appendix B]). For every r ∈ N and every α, γ > 0, there exists an
(α, γ)-sampler Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r with ℓ = r + O(log(1/γ) + log(1/α)) and
q = O(log(1/α) + log log(1/γ)), such that given r, α, γ, x, and y, the value Samp(x, y) can
be computed in space O(r + log(1/α) + log(1/γ)).

Proof of Theorem 1.5. Taking Samp to be the sampler of Theorem 4.3, we get ℓ = O(r +
log(1/γ)) = O(r + log(wn/ε)) and q = O(log(wn) + log log(1/ε)). For a fixed x ∈ {0, 1}ℓ, as
mentioned in the proof of Claim 4.2, G

(m)
x has the form

∑K
i=1 ±Ai, where

K ≤ (8n)m+1 ≤ poly(n/ε),

and each Ai is a tensor product of at most 2m + 1 terms, each of which is either (Gx)d for
some value of d or else U1. Using the constructions of Definition 2.6, we can sample G

(m)
x by

a WPRG with seed length O(log K + mq), and we can sample G′ by a WPRG with seed
length

ℓ + O(log K + mq) = O

(
r + log(wn/ε) ·

(
1 + log log(1/ε)

log(wn)

))
= O(r + log(wn/ε)),

APPROX/RANDOM 2021

28:16 Better Pseudodistributions and Derandomization for Space-Bounded Computation

where the last equality holds without loss of generality, because either ε > 2−n, in which
case log log(1/ε) < log(wn), or else ε ≤ 2−n, in which case we can achieve seed length
O(r + log(wn/ε)) by simply sampling a truly random n-bit string. Furthermore, as discussed
in Definition 2.6, our WPRG is (2K)-bounded,8 and we can assume without loss of generality
that ε < 1/n (since otherwise G itself would be a suitable WPRG), so our WPRG is indeed
poly(1/ε)-bounded.

Finally, pick G to be Nisan’s generator [19]. Then

r = O(log(wn/α) log n) = O(log(wn) log n),

so our WPRG has seed length O(log(wn) log n+log(1/ε)) as claimed. Explicitness is clear. ◀

We remark that because of the specific structure of Nisan’s generator [19], the sampler
is actually not necessary. Instead, we can let x be the description of the hash functions in
Nisan’s generator and let y be the input to the hash functions.

5 Directions for Further Research

As we mentioned in Section 1.4, getting a better WPRG for width-n length-n ROBPs requires
beating Nisan’s PRG in the standard constant-error regime. However, there are cases where
focusing on error dependence might still be fruitful:

Recall that Nisan and Zuckerman designed a PRG for width-w length-n ROBPs when n =
polylog w with optimal seed length O(log w) [21] but non-optimal error 2− log0.99 w. There
are known ε-HSGs for this setting with seed length O(log w) even when ε = 1/ poly(w)
[2, 14]; can we match that seed length by a WPRG? The WPRG construction presented
in this paper does not seem to work, because if G has seed length o(log w), then it
seems to have too much error for the local consistency amplification procedure G(m) to
work, whereas if G has seed length Ω(log w), then we cannot afford to sample multiple
independent seeds.
Currently, the best explicit PRGs for width-3 ROBPs and constant-width regular ROBPs
have seed length Õ(log n · log(1/ε)) [18, 11, 7]. In a similar spirit as Pyne and Vadhan’s
recent work on permutation ROBPs [22], can we design WPRGs for these models with
error 1/ poly(n) and seed length o(log2 n)?

We also wonder whether there are other applications of recent WPRG constructions. For
example, recall that Nisan showed BPL ⊆ DTISP(poly(n), log2 n) [20]. Can we somehow
use WPRGs to simulate BPL by a deterministic algorithm that simultaneously uses poly(n)
time and o(log2 n) space?

References
1 AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron Sidford, and

Salil Vadhan. High-precision estimation of random walks in small space. In Proceedings of
the 61st Symposium on Foundations of Computer Science (FOCS), pages 1295–1306, 2020.
doi:10.1109/FOCS46700.2020.00123.

2 Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in logspace. In
Proceedings of the 19th Symposium on Theory of Computing (STOC), pages 132–140, 1987.
doi:10.1145/28395.28410.

8 The factor of 2 is because the number of terms in the sum might not be a power of two, so we might
need to pad with dummy terms.

https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1145/28395.28410

W. M. Hoza 28:17

3 Roy Armoni. On the derandomization of space-bounded computations. In Proceedings of the
2nd International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 47–59, 1998. doi:10.1007/3-540-49543-6_5.

4 László Babai, Noam Nisant, and Márió Szegedy. Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. Journal of Computer and System Sciences,
45(2):204–232, 1992. doi:10.1016/0022-0000(92)90047-M.

5 A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and
space-bounded probabilistic machines. Information and Control, 58(1-3):113–136, 1983. doi:
10.1016/S0019-9958(83)80060-6.

6 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM Journal on Computing,
49(5):STOC18–242–STOC18–299, 2020. doi:10.1137/18M1197734.

7 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014. doi:
10.1137/120875673.

8 Eshan Chattopadhyay and Jyun-Jie Liao. Optimal Error Pseudodistributions for Read-Once
Branching Programs. In Proceedings of the 35th Computational Complexity Conference (CCC),
pages 25:1–25:27, 2020. doi:10.4230/LIPIcs.CCC.2020.25.

9 Kuan Cheng and William M. Hoza. Hitting Sets Give Two-Sided Derandomization of Small
Space. In Proceedings of the 35th Computational Complexity Conference (CCC), pages 10:1–
10:25, 2020. doi:10.4230/LIPIcs.CCC.2020.10.

10 Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error Reduction
For Weighted PRGs Against Read Once Branching Programs, 2021. URL: https://eccc.
weizmann.ac.il/report/2021/020/.

11 Anindya De. Pseudorandomness for permutation and regular branching programs. In Pro-
ceedings of the 26th Conference on Computational Complexity (CCC), pages 221–231, 2011.
doi:10.1109/CCC.2011.23.

12 William M. Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom Generators for Unbounded-
Width Permutation Branching Programs. In Proceedings of the 12th Innovations in Theoretical
Computer Science Conference (ITCS), pages 7:1–7:20, 2021. doi:10.4230/LIPIcs.ITCS.2021.
7.

13 William M. Hoza and Chris Umans. Targeted pseudorandom generators, simulation advice
generators, and derandomizing logspace. SIAM Journal on Computing, pages STOC17–281–
STOC17–304, 2021. doi:10.1137/17M1145707.

14 William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.
SIAM Journal on Computing, 49(4):811–820, 2020. doi:10.1137/19M1268707.

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Symposium on Theory of Computing (STOC), pages
356–364, 1994. doi:10.1145/195058.195190.

16 H. Jung. Relationships between probabilistic and deterministic tape complexity. In Proceedings
of the 10th Symposium on Mathematical Foundations of Computer Science (MFCS), pages
339–346, 1981. doi:10.1007/3-540-10856-4_101.

17 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. Revisiting norm estimation in data
streams, 2008. arXiv:0811.3648.

18 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Proceedings of the 51st Symposium on Theory of Computing (STOC), pages
626–637, 2019. doi:10.1145/3313276.3316319.

19 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

20 Noam Nisan. RL ⊆ SC. Computational Complexity, 4(1):1–11, 1994. doi:10.1007/
BF01205052.

APPROX/RANDOM 2021

https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/S0019-9958(83)80060-6
https://doi.org/10.1016/S0019-9958(83)80060-6
https://doi.org/10.1137/18M1197734
https://doi.org/10.1137/120875673
https://doi.org/10.1137/120875673
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://doi.org/10.4230/LIPIcs.CCC.2020.10
https://eccc.weizmann.ac.il/report/2021/020/
https://eccc.weizmann.ac.il/report/2021/020/
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.4230/LIPIcs.ITCS.2021.7
https://doi.org/10.1137/17M1145707
https://doi.org/10.1137/19M1268707
https://doi.org/10.1145/195058.195190
https://doi.org/10.1007/3-540-10856-4_101
http://arxiv.org/abs/0811.3648
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/BF01305237
https://doi.org/10.1007/BF01205052
https://doi.org/10.1007/BF01205052

28:18 Better Pseudodistributions and Derandomization for Space-Bounded Computation

21 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.

22 Edward Pyne and Salil Vadhan. Pseudodistributions That Beat All Pseudorandom Generators,
2021. URL: https://eccc.weizmann.ac.il/report/2021/019/.

23 Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, 1999. doi:10.1006/jcss.1998.1616.

24 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

25 David Zuckerman. Randomness-optimal oblivious sampling. Random Structures & Algorithms,
11(4):345–367, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;
2-Z.

A Derandomization Beyond Saks-Zhou

In this section, we show that randomized space-S decision algorithms can be simulated
deterministically in space O(S3/2/

√
log S) (Theorem 1.6). As outlined in Section 1.6.2, the

proof does not involve any significant new ideas, but rather amounts to combining several
previous works and choosing parameters. For that reason, we will refrain from fully describing
the Saks-Zhou method. Instead, we will focus on assisting readers who are already familiar
with Saks and Zhou’s work [23] (but who are not necessarily comfortable with WPRGs)
in verifying Theorem 1.6. Readers who are not familiar with Saks and Zhou’s work are
encouraged to read Chattopadhyay and Liao’s discussion of the Saks-Zhou method in the
context of WPRGs [8] or Saks and Zhou’s original paper [23].

Let G denote Nisan’s PRG [19]. Recall that Saks and Zhou [23] exploited the fact that
the seed of Nisan’s PRG can be split into two parts (x, y), where x = O(log w log n) and
y = O(log w); for a fixed ROBP f , if we pick x at random, then with high probability,
E[f] ≈ 2−r ·

∑
y f(G(x, y)). This method of estimating E[f] has a key technical feature,

which is that each time we read a bit of the input of f , we only need to be using O(log w)
bits of work space (not counting the string x, which we think of as being on a read-only
random tape). This feature is beneficial, because in the context of the Saks-Zhou algorithm
[23], the program f is computed recursively, so we would like to use as little space as possible
while the recursive computation is taking place. (See the work of Hoza and Umans for further
discussion [13].)

Armoni generalized Saks and Zhou’s methods by showing that any explicit PRG for ROBPs
implies a method of estimating E[f] with the same key feature [3]. Later, Chattopadhyay
and Liao generalized further by showing that the same holds for any polynomially-bounded
explicit WPRG [8]. For clarity, we repeat the argument here (in a slightly different form). It
is convenient to generalize the definition of ROBPs to allow a large alphabet.

▶ Definition A.1 (ROBP over a large alphabet). A width-w length-n ROBP over the alphabet
Σ is defined as in Definition 1.1, except that each vertex in Vi−1 has |Σ| outgoing edges
leading to Vi, labeled with the symbols in Σ. The program computes a function f : Σn → {0, 1}
in the natural way.

▶ Lemma A.2 ([8]). Let n = n(w), K = K(w), r = r(w), a = a(w), and ε = ε(w) be
functions, each of which can be constructed in space O(r). Suppose that for every w ∈ N,
there is a K-bounded ε-WPRG (G, ρ) for width-w length-n ROBPs over the alphabet {0, 1}a

with seed length r that can be computed in space O(r). Then there is an algorithm for
estimating the expectation of a given width-w length-n ROBP f over the alphabet {0, 1}a

with the following properties.

https://doi.org/10.1006/jcss.1996.0004
https://eccc.weizmann.ac.il/report/2021/019/
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z

W. M. Hoza 28:19

1. The algorithm uses r + O(log(Kw/ε)) random bits from a read-only two-way9 random
tape, and with probability 1 − ε/w2 it outputs a value that is within ±2ε of E[f].

2. The algorithm uses O(r + a + log(Kwn/ε)) bits of work space. Furthermore, whenever
the algorithm reads a bit of the description of f , it first deletes all but O(a + log(Kwn/ε))
bits of its work space.

Proof. Let Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r be the (ε/(2K), ε/w2)-sampler of Theorem 4.3.
To estimate E[f], we pick x ∈ {0, 1}ℓ uniformly at random, and then we output

2−q ·
∑

y∈{0,1}q

ρ(Samp(x, y)) · f(G(Samp(x, y))).

To prove that this works, define g : {0, 1}r → [−K, K] by g(z) = ρ(z) · f(G(z)). The sampler
condition implies that with probability 1 − ε/w2 over the choice of x, we have∣∣∣∣∣∣E[g] − 2−q

∑
y∈{0,1}q

g(Samp(x, y))

∣∣∣∣∣∣ ≤ ε.

Meanwhile, the WPRG condition implies that |E[g] − E[f]| ≤ ε. Thus, with probability
1 − ε/w2, our algorithm outputs E[f] ± 2ε.

Now let us analyze the efficiency of the algorithm. The number of random bits we use
is clearly ℓ = r + O(log(Kw/ε)). The total space used is O(r) bits to compute G and
ρ, plus O(r log(Kw/ε)) bits to compute Samp, plus O(log(wn)) bits to keep track of our
simulation of f , plus O(q) = O(log(K/ε) + log log w) bits for summing over all y, which is
a total of O(r + a + log(Kwn/ε)) bits. Prior to reading a bit of the description of f , we
only need to be storing the O(log(wn)) bits that keep track of our simulation of f , plus the
O(q) = O(log(K/ε) + log log w) bits for summing over all y, plus a single a-bit symbol of
the string G(Samp(x, y)) (namely, the single symbol that we are currently feeding into our
simulation of f), which is a total of O(a + log(wnK/ε)) bits. ◀

Having established Lemma A.2, we can now compute the space complexity of the
derandomization obtained by plugging any efficient WPRG into the Saks-Zhou framework.

▶ Theorem A.3 ([23, 8]). Let n = n(w), K = K(w), and r = r(w) be monotone increasing
functions, each of which can be constructed in space O(r), with n ≤ w. Define ε = w−8 and
a = ⌈4 log w⌉. Suppose that for every w ∈ N, there exists a K-bounded ε-WPRG for width-
(w + 1) length-n ROBPs over the alphabet {0, 1}a with seed length r that can be computed in
space O(r). Then

BPL ⊆
⋃
c∈N

DSPACE
(

r(N c) + log(N · K(N c)) · log N

log(n(N c))

)
,

where N denotes the input length.

Proof outline. Suppose we are interested in computing the n-th power of a given substochas-
tic matrix M ∈ Rw×w, where each entry has a bits of precision. We can easily construct a
width-(w + 1) length-n ROBP f over the alphabet {0, 1}a such that for each i, j ∈ [w], if we

9 I.e., the algorithm is allowed to go back and re-read random bits as many times as it likes, unlike the
standard model of randomized space-bounded computation in which the random tape must be read a
single time from left to right.

APPROX/RANDOM 2021

28:20 Better Pseudodistributions and Derandomization for Space-Bounded Computation

let ui be the i-th vertex in the first layer of f and we let vj be the j-th vertex in the final
layer of f , then E[fui→vj

] = (Mn)i,j . Using Lemma A.2, we can compute each such value
E[fui→vj

] to within ±2ε with failure probability ε/w2. In this way, we compute a matrix
P ∈ Rw×w such that ∥P − Mn∥max ≤ 2ε. We can reuse the same random bits for each
entry of the matrix, so our algorithm uses r + O(log(Kw/ε)) random bits from a read-only
two-way random tape and succeeds with probability 1 − ε. Furthermore, this algorithm uses
O(r + a + log(Kwn/ε)) bits of work space, and whenever it reads a bit of the description of
M , it first deletes all but O(a + log(Kwn/ε)) bits of its workspace.

Now, consider some randomized log-space algorithm that we wish to derandomize. There
is a constant c such that the acceptance probability of the BPL algorithm on an input of
length N is an entry in Mw, where w = N c and M ∈ {0, 1

2 , 1}w×w is an easily-computable
stochastic matrix. We have discussed a randomized algorithm for approximating Mn. The
technique of Saks and Zhou [23] implies [8] an algorithm for computing Mw. As a reminder,
the approach is to repeatedly take approximate n-th powers, reusing the same random bits
each time and randomly rounding each entry of the matrix to a bits of precision after each
iteration to resolve dependency issues. The number of iterations is log w

log n . The algorithm
can be implemented to have failure probability O(w3 · (2aε + 2−a)) and approximation error
O(w22−a), using

O

(
r + log(Kw/ε) + a · log w

log n

)
random bits and

O

(
r + (a + log(Kwn/ε)) · log w

log n

)
bits of space [8, Lemma 43]. By our choices ε = w−8 and a = ⌈4 log w⌉, the failure
probability is O(1/w), the approximation error is O(1/w2), the number of random bits
is O(r + log(Kw) + log2 w

log n), and the space complexity is O(r + log(Kw) log w
log n). Trying all

possibilities for the random tape completes the proof. ◀

Next, we identify the WPRG family that we will plug into Theorem A.3.

▶ Theorem A.4 ([3, 17, 10]). For every w ∈ N, there exists a K-bounded ε-WPRG for
width-(w + 1) length-n ROBPs over the alphabet {0, 1}⌈4 log w⌉ with seed length r that can be
computed in space O(r), where

n = exp
(⌈√

log w · log log w
⌉)

, ε = w−8,

r ≤ O

(
log3/2 w√
log log w

)
, K ≤ poly(w).

Proof. For any w, n, a, α, Armoni designed an α-PRG for width-(w + 1) length-n ROBPs
over the alphabet {0, 1}a [3]; with an optimization due to Kane, Nelson, and Woodruff [17],
this PRG has seed length

r = O

(
a + log(wn/α) log n

max{1, log log w − log log(n/α)}

)
and can be computed in space O(r). For n = exp

(⌈√
log w · log log w

⌉)
, α = 1/ poly(n), and

a = O(log w), this seed length becomes

r = O

(
log3/2 w√
log log w

)
.

W. M. Hoza 28:21

Now we apply an error reduction procedure that converts this moderate-error PRG into
a low-error WPRG. Specifically, we will use the reduction due to Cohen, Doron, Renard,
Sberlo, and Ta-Shma [10]. Given a PRG for width-w length-n ROBPs over the alphabet
{0, 1}a with error 1/(10n2) and seed length r, they show [10, Corollary 15] how to construct
a WPRG for width-w length-n ROBPs over the alphabet {0, 1}a with any desired error ε

and seed length r + O(log(w/ε) log logn(1/ε)). Furthermore, if the PRG can be computed in
space O(r), then the WPRG can be computed in space O(r + log logn(1/ε) · (log log(w/ε))2).
Cohen et al. did not explicitly mention it, but by inspection it is easy to see that their
WPRG is poly(1/ε)-bounded for the same reason that our main WPRG (Theorem 1.5) is
poly(1/ε)-bounded. Since ε = 1/ poly(w), the seed length is r + Õ(log w) = O(r), the space
complexity is O(r + poly(log log w)) = O(r), and the WPRG is poly(w)-bounded. ◀

▶ Corollary A.5. BPL ⊆ DSPACE
(

log3/2 N/
√

log log N
)

, where N denotes the input
length.

Proof. Plugging the WPRG of Theorem A.4 into Theorem A.3, we get a space bound of

O

(
log3/2(N c)√
log log(N c)

+ log(N · NO(c)) · log N√
log(N c) · log log(N c)

)
,

which simplifies to O
(

log3/2 N/
√

log log N
)

. ◀

Now we generalize Corollary A.5 to the case of BPSPACE(S). When S is space-
constructible, the generalization is a standard padding argument. We now show that
BPSPACE(S) is contained in DSPACE

(
S3/2/

√
log S

)
for any S(N) ≥ log N , whether

space-constructible or not.

Proof of Theorem 1.6. Observe that the proof of Corollary A.5 extends to promise problems.
In particular, for any constants 0 ≤ a < b ≤ 1, there is a deterministic algorithm Da,b such
that if f is a width-w length-w ROBP over the binary alphabet, then

E[f] ≤ a =⇒ Da,b(f) = 0,

E[f] ≥ b =⇒ Da,b(f) = 1,

and Da,b(f) runs in space O
(

log3/2 w/
√

log log w
)

.
Let A be a Turing machine witnessing membership of a language in BPSPACE(S).

For N ∈ N, y ∈ {0, 1}N , and s ∈ N, there exists a width-w length-w ROBP Ey,s, where
w = O(N · 2s), such that Ey,s(x) = 1 if and only if the computation A(y, x) ever touches
more than s cells of the work tape. Furthermore, for the same value of w, there exists a
width-w length-w ROBP fy,s such that if Ey,s(x) = 0, then fy,s(x) = A(y, x) ∈ {0, 1}. Given
y and s, these two ROBPs can be constructed deterministically in space O(s + log N).

On input y, our deterministic algorithm tries each s = 1, 2, 3, . . . until it finds the first s

such that D0,0.01(Ey,s) = 0. Then, our deterministic algorithm outputs D0.4,0.6(fy,s). This
works, because if D0,0.01(Ey,s) = 0, then E[Ey,s] < 0.01, so E[fy,s] is within ±0.01 of the
acceptance probability of A(y). Furthermore, our algorithm will find a suitable s satisfying
s ≤ S(N), because E[Ey,S(N)] = 0. Therefore, the space complexity of our algorithm is
at most O(log3/2 w/

√
log log w), where w = O(N · 2S(N)) = 2O(S(N)). This space bound is

O
(

S(N)3/2/
√

log S(N)
)

as desired. ◀

APPROX/RANDOM 2021

28:22 Better Pseudodistributions and Derandomization for Space-Bounded Computation

B Local Consistency vs. Approximate Inverse Laplacian

Cohen et al. noted that their WPRG construction is reminiscent of local consistency errors
[10]. We now briefly elaborate on the connection, for the sake of readers who are familiar with
how prior work used preconditioned Richardson iteration to decrease error in space-bounded
derandomization [1, 10, 22].

Prior works [1, 10, 22] looked at the transition probability matrix W associated with
a width-w length-n ROBP f , considered as a directed graph on (n + 1) · w vertices. This
matrix W is an (n + 1)w × (n + 1)w block matrix of the form

W =

0 M1 0 · · · 0
0 0 M2 · · · 0
...

. . .
...

0 0 0
. . . Mn

0 0 0 · · · 0

 ,

where Mi ∈ {0, 1
2 , 1}w×w is the transition probability matrix for Vi−1 × Vi. Let L = I − W

(the Laplacian matrix). Then L is invertible with inverse

L−1 =

M0...0 M0...1 M0...2 · · · M0...n

0 M1...1 M1...2 · · · M1...n

...
. . .

...

0 0 0
. . . Mn−1...n

0 0 0 · · · Mn...n

 ,

where Mi...j = Mi ·Mi+1 · · · Mj , i.e., Mi...j is the stochastic matrix containing the probabilities
Un[u → v] for u ∈ Vi and v ∈ Vj . We are interested in obtaining an approximation L̂−1 to L,
say

L̂−1 =

M̂0...0 M̂0...1 M̂0...2 · · · M̂0...n

0 M̂1...1 M̂1...2 · · · M̂1...n

...
. . .

...

0 0 0
. . . M̂n−1...n

0 0 0 · · · M̂n...n

,

where each M̂i...j is a matrix of estimates for the probabilities Un[u → v] with u ∈ Vi and
v ∈ Vj . The approach taken by prior work [1, 10, 22] is to use preconditioned Richardson
iteration to convert a moderate-error approximation of L−1 into a low-error approximation
of L−1.

The crucial point is that in this analysis, the approximation quality is measured by
comparing L̂−1L to I rather than comparing L−1 and L̂−1 directly. The error matrix
E

def= I − L̂−1L is given by

E =

0 E0...1 E0...2 · · · E0...n

0 0 E1...2 · · · E1...n

...
. . .

...

0 0 0
. . . En−1...n

0 0 0 · · · 0

 ,

W. M. Hoza 28:23

where

Ei...j = M̂i...j−1Mj − M̂i...j .

Thus, E is precisely the matrix of local consistency errors. (This is also plain from one of
Pyne and Vadhan’s lemmas [22, Lemma 4.6].)

APPROX/RANDOM 2021

On the Hardness of Average-Case k-SUM
Zvika Brakerski #

Weizmann Institute of Science, Rehovot, Israel

Noah Stephens-Davidowitz #

Cornell University, Ithaca, NY, USA

Vinod Vaikuntanathan #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
In this work, we show the first worst-case to average-case reduction for the classical k-SUM problem.
A k-SUM instance is a collection of m integers, and the goal of the k-SUM problem is to find a
subset of k integers that sums to 0. In the average-case version, the m elements are chosen uniformly
at random from some interval [−u, u].

We consider the total setting where m is sufficiently large (with respect to u and k), so that we
are guaranteed (with high probability) that solutions must exist. In particular, m = uΩ(1/k) suffices
for totality. Much of the appeal of k-SUM, in particular connections to problems in computational
geometry, extends to the total setting.

The best known algorithm in the average-case total setting is due to Wagner (following the
approach of Blum-Kalai-Wasserman), and achieves a running time of uΘ(1/ log k) when m = uΘ(1/ log k).
This beats the known (conditional) lower bounds for worst-case k-SUM, raising the natural question
of whether it can be improved even further. However, in this work, we show a matching average-case
lower bound, by showing a reduction from worst-case lattice problems, thus introducing a new
family of techniques into the field of fine-grained complexity. In particular, we show that any
algorithm solving average-case k-SUM on m elements in time uo(1/ log k) will give a super-polynomial
improvement in the complexity of algorithms for lattice problems.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases k-SUM, fine-grained complexity, average-case hardness

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.29

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2010.08821

Funding Zvika Brakerski: Supported by the Binational Science Foundation (Grant No. 2016726),
and by the European Union Horizon 2020 Research and Innovation Program via ERC Project
REACT (Grant 756482) and via Project PROMETHEUS (Grant 780701).
Noah Stephens-Davidowitz : Supported in part by NSF Grants CNS-1350619, CNS-1414119 and
CNS-1718161, Microsoft Faculty Fellowship and an MIT/IBM grant.
Vinod Vaikuntanathan: Supported in part by NSF Grants CNS-1350619, CNS-1414119 and CNS-
1718161, Microsoft Faculty Fellowship and an MIT/IBM grant.

1 Introduction

The k-SUM problem is a parameterized version of the classical subset sum problem. Given
a collection of m integers a1, . . . , am, the k-SUM problem asks if there is some subset of
cardinality k that sums to zero.1 This problem (especially for k = 3, but more generally for

1 This is the homogeneous version of k-SUM. One could also define the inhomogeneous version where the
instance consists also of a target integer t, and the goal is to produce a subset of k elements that sums

© Zvika Brakerski, Noah Stephens-Davidowitz, and Vinod Vaikuntanathan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 29; pp. 29:1–29:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zvika.brakerski@weizmann.ac.il
mailto:noahsd@gmail.com
mailto:vinodv@csail.mit.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.29
https://arxiv.org/abs/2010.08821
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On the Hardness of Average-Case k-SUM

arbitrary constant k) has been influential in computational geometry, where reductions from
k-SUM have been used to show the conditional hardness of a large class of problems [16, 17].
More generally it has been used in computational complexity, where it has formed the basis
for several fine-grained hardness results [33, 2, 38, 28]. We refer the reader to the extensive
survey of Vassilevska-Williams [37] for an exposition of this line of work. The k-SUM problem
has also been extensively studied in the cryptanalysis community (see, e.g., [36, 12, 10]).

We know two very different algorithms for k-SUM: a meet-in-the-middle algorithm that
achieves run-time O(m⌈k/2⌉) [23], and dynamic programming or FFT-based algorithms that
achieve run-time Õ(um) [11] where u is the largest absolute value of the integers ai (A
sequence of recent works [27, 14, 8, 25] improve the latter to Õ(u + m)). Note that the latter
algorithms outperform the former when u ≪ m⌈k/2⌉, in what is sometimes called the dense
regime of parameters, a point that we will come back to shortly.

In terms of hardness results for k-SUM, the work of Pǎtraşcu and Williams [34] shows that
an algorithm that solves the problem in time mo(k) for all m will give us better algorithms
for SAT, in particular refuting the exponential time hypothesis (ETH). The recent work of
Abboud, Bringmann, Hermelin and Shabtay [1] shows that a u1−ε-time algorithm (for any
constant ε > 0) would refute the strong exponential-time hypothesis (SETH). So, we know
that the two algorithms described above are essentially optimal, at least in the worst case.

The focus of this work is the natural average-case version of k-SUM where the problem
instance a1, . . . , am is chosen independently and uniformly at random from an interval [−u, u].
We call this the average-case k-SUM problem. In this setting, deciding whether a k-SUM
solution exists is in many cases trivial. In particular, if

(
m
k

)
≪ u then a union bound

argument shows that the probability of a solution existing approaches 0. We refer to this
as the sparse regime of the problem. In contrast, if

(
m
k

)
is sufficiently larger than u, then a

hashing argument guarantees the existence of many solutions, with high probability over the
instance. (See Lemma 14.) As already mentioned above, we refer to this as the dense regime.

Notwithstanding this triviality, we notice that in the dense regime one could still consider
the search problem of finding a k-SUM solution. The search problem seems to retain its
hardness even in the dense setting and is the focus of our work. Since we consider the search
version of the problem, we also refer to the dense regime as the total regime, as the associated
search problem has a solution with high probability.

The average-case total problem is not quite as hard as the worst-case version (at least
assuming SETH), since (slight variants of) Wagner’s generalized birthday algorithm [36] and
the Blum-Kalai-Wasserman algorithm [12] show how to solve this problem in time uO(1/ log k)

(when m = uΩ(1/ log k)). This contrasts with the u1−ε lower bound of [1] in the worst case.
(The BKW/Wagner algorithm was originally stated in a slightly different setting, so we
restate it in Section 4.) This leaves the question of how much easier the average case is
compared to the worst case. Given that the lower bounds from the worst-case setting are
not a barrier here, it is a-priori unclear what is the best running time in this setting. Can we
improve on [12, 36]?

1.1 Our Results
In this work we characterize the hardness of average-case k-SUM in the total regime by
presenting a (conditional) lower bound that matches the uO(1/ log k) upper bound described
above, up to the hidden constant in the exponent.

to t. In the worst-case world, the two versions are equivalent.

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:3

In more detail, our main result shows that average-case k-SUM is indeed hard to solve,
under the assumption that worst-case lattice problems are hard to approximate. We thus
introduce a new family of techniques into the study of the hardness of the k-SUM problem.
Concretely, this lower bound shows that a uo(1/ log k)-time algorithm for average-case k-SUM
(in the dense regime) implies a 2o(n)-time n1+ε-approximation algorithm for the shortest
independent vectors problem (SIVP) over an n-dimensional lattice, a lattice problem for
which the best known algorithms run in time 2Ω(n) [4, 3]. E.g., while Wagner’s algorithm
runs in time essentially linear in m when m = uΩ(1/ log k), we show that such behavior
for m = uo(1/ log k) would imply faster algorithms for SIVP. (One can think of our lower
bound as ruling out linear-time algorithms for m = uo(1/ log k), or more generally ruling out
uo(1/ log k)-time algorithms for any m. Indeed, notice that the problem only gets easier as m

becomes larger, so that lower bounds against linear-time algorithms for such large choices
of m immediately implies lower bounds against uo(1/ log k)-time algorithms for any m. We
therefore switch freely between these two perspectives.)

It is widely believed that no faster algorithm can be found for SIVP. In particular, finding
a 2o(n)-time algorithm for SIVP, would have major consequences in lattice-based cryptography
both in theory and in practice [32, 6, 7].

We also note in the appendix that some of the connections between k-SUM and geometric
problems from [16, 17] carry over to the dense setting as well. This shows an interesting
(and not previously known, as far as we could find) connection between approximate short
vectors in lattices, and computational geometry.

1.2 Our Techniques
The starting point of our reduction is the well known worst-case to average-case reductions
in the lattice world, pioneered by Ajtai [5, 31, 19, 18]. These reductions show that the
approximate shortest independent vectors (SIVP) problem, a standard problem in the lattice
world, is at least as hard in the worst case as a certain problem called short integer solutions
(SIS) on the average. The definition of lattices and the approximate shortest vector problem
is not crucial for the current discussion, however we note again that the best algorithms on
n-dimensional lattices that compute any poly(n)-approximation to SIVP run in time 2Ω(n).
(We refer the curious reader to, e.g., [31, 35], Section 2.3, and the references therein for more
background on lattices and lattice problems.)

In the (one-dimensional) average-case SIS problem with parameters m, Q and β, one
is given random integers a1, . . . , am ∈ ZQ and the goal is to find a non-zero integer linear
combination x = (x1, . . . , xm) ∈ Zm such that

∑
i∈[m] aixi = 0 (mod Q) and x is short,

namely ||x||1 ≤ β. Thus, this is exactly the modular subset sum problem (i.e. subset sum over
the group ZQ), except with weights larger than 1. The parameters of the problem live in the
dense/total regime where such solutions are guaranteed to exist with high probability. The
worst-case to average-case reductions state that an average-case SIS solver for a sufficently
large Q, namely Q = (βn)Ω(n), gives us an Õ(

√
n log m · β)-approximate algorithm for SIVP.

(We refer the reader to Theorem 10 for a more precise statement.)
Our main technical contribution is an average-case to average-case reduction from the

SIS problem to the k-SUM problem. We show this by exhibiting a reduction from SIS to
modular k-SUM (i.e. k-SUM over the group ZQ), and one from modular k-SUM to k-SUM.
The latter is easy to see (in the dense regime): indeed, if you have a k-subset that sums to 0,
it also sums to 0 (mod Q) for any Q. Henceforth in this discussion, when we say k-SUM, we
will mean modular k-SUM.

APPROX/RANDOM 2021

29:4 On the Hardness of Average-Case k-SUM

To reduce from SIS with parameters m, Q, β to k-SUM on m numbers over ZQ, we start
with a simple, seemingly trivial, idea. SIS and k-SUM are so similar that perhaps one
could simply run the k-SUM algorithm on the SIS instance. Unfortunately, this fails. For a
k-SUM solution to exist, m has to be at least roughly Q1/k = nΩ(n/k). But, this could only
possibly give us an approximate SIVP algorithm that runs in time nΩ(n/k) (where we are
most interested in constant k), since the reduction from SIVP has to at least write down the
m samples. This is a meaningless outcome since, as we discussed before, there are algorithms
for approximate SIVP that run in time 2O(n).

Fortunately, ideas from the BKW algorithm [12] for subset sum (and the closely related
algorithm from [36] for k-SUM) come to our rescue. We will start with SIS modulo Q = qL

for some q and L that we will choose later. ([18] showed that worst-case to average-case
reductions work for any sufficiently large Q, including Q = qL.)

The BKW algorithm iteratively produces subsets that sum to 0 modulo qi for i = 1, . . . , L,
finally producing SIS solutions modulo Q. To begin with, observe that for a k-subset-sum to
exist modulo q, it suffices that m ≈ q1/k ≪ Q1/k, potentially getting us out of the conundrum
from before. In particular, we will set q ≈ 2n log k, L ≈ log n/ log k, therefore Q = qL ≈ nn

as needed. We will also set m ≈ qε/ log k ≈ 2εn for a large enough ε so that solutions exist
(since mk ≫ q). Furthermore, a hypothetical k-SUM algorithm mod q that performs better
than BKW/Wagner – that is, runs in time qo(1/ log k) = 2o(n) – is potentially useful to us.

With this ray of optimism, let us assume that we can run the k-SUM algorithm many
times to get several, m many, subsets Sj that sum to 0 modulo q. (We will return to, and
remove, this unrealistic assumption soon.) That is,

bj :=
∑
i∈Sj

ai = 0 (mod q)

The BKW/Wagner approach would then be to use the (b1, . . . , bm) to generate (c1, . . . , cm)
that are 0 (mod q2), and so on. Note that ci are a linear combination of a1, . . . , am with
weight k2. At the end of the iterations, we will obtain at least one linear combination of
(a1, . . . , am) of weight β = kL that sums to 0 modulo qL = Q, solving SIS. (We also need to
make sure that this is a non-zero linear combination, which follows since the coefficients of
all intermediate linear combinations are positive.)

This would finish the reduction, except that we need to remove our unrealistic assumption
that we can use the k-SUM oracle to get many k-subsets of (a1, . . . , am) that sum to 0.
For one, the assumption is unrealistic because if we feed the k-SUM oracle with the same
(a1, . . . , am) (mod q) twice, we will likely get the same k-SUM solution. On the other hand,
using a fresh random instance for every invocation of the k-SUM oracle will require m to be
too large (essentially returning to the trivial idea above). A natural idea is to observe that
each k-SUM solution touches a very small part of the instance. Therefore, one could hope
to first receive a k-SUM ai1 + . . . + aik

from the oracle, and in the next iteration, use as
input {a1, . . . , am} \ {ai1 , . . . , aik

}, which is nearly as large as the original set. Unfortunately,
continuing like this cannot work in general. The distributions of the successive instances
that we feed to the oracle will no longer be uniform, and even worse, the oracle itself can
choose which elements to remove from our set. A malicious oracle could therefore prevent us
from obtaining many k-SUMs in this way, even if the oracle has high success probability on
uniform input. (One can even imagine that the fastest algorithm for k-SUM would actually
yield such a malicious oracle. E.g., if an algorithm has a “preference” for some types of
k-SUMs over others, then running the algorithm repeatedly in this way could eventually
deplete the input of such k-SUMs, causing the algorithm to fail.)

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:5

Instead, our key idea is rather simple, namely to resort to (re)randomization. Given an
instance (a1, . . . , am) ∈ Zm

q , we compute many random subset sums to generate (a′
1, . . . , a′

m) ∈
Zm

q . That is, we choose k-subsets T ′
i ⊆ [m] and let

a′
i =

∑
j∈T ′

i

aj (mod q)

Since q ≫ m1/k, the leftover hash lemma [24] tells us that the a′
i are (statistically close to)

uniformly random mod q. Furthermore, a k-subset sum of (a′
1, . . . , a′

m) will give us a k2-subset
sum of (a1, . . . , am) that sums to 0 (mod q). To obtain a new subset sum of (a1, . . . , am),
simply run this process again choosing fresh subsets T ′′

i to generate (a′′
1 , . . . , a′′

m); and so on.
Eventually, this will give us a β = k2L weight solution to SIS, which is a quadratic factor
worse than before, but good enough for us. (We are glossing over an important technical
detail here, which is how we ensure that the resulting subset sums yield uniformly random
independent elements in qZ/q2Z.)

To finish the analysis of the reduction, observe that it calls the k-SUM oracle ≈ mL

times. Assuming the oracle runs in time qo(1/ log k), this gives us a 2o(n)-time algorithm for
approximate SIVP. The approximation factor is Õ(

√
n log m · β) ≈ n3. (In the sequel, we

achieve n1+o(1) by a careful choice of parameters.)
Interestingly, our reduction re-imagines the BKW/Wagner algorithm as a reduction from

the SIS problem to k-SUM, where the original algorithm is achieved (in retrospect) by
plugging in the trivial algorithm for 2-SUM. Of course, the algorithm is much simpler than
the reduction (in particular, there is no need for re-randomization) since we don’t need to
account for “malicious” k-SUM solvers. Our main technical contribution can therefore be
viewed as making the ideas from the BKW/Wagner algorithm (ideas which are now ubiquitous
in the study of algorithms for subset sum and lattice problems) work as a reduction – i.e.,
with an arbitrary average-case k-SUM oracle.

1.3 Open Problems and Future Directions
Our work introduces the powerful toolkit of lattice problems into the field of average-case
fine-grained complexity, and raises several natural directions for further research.

First is the question of whether a result analogous to what we show holds in the sparse/-
planted regime as well. A possible theorem here would rule out an mo(k)-time algorithm for
k-SUM, assuming the hardness of lattice problems. To the best of our knowledge, in the
sparse/planted regime it is not known whether the average-case problem is easier than the
worst-case problem as in the dense regime.

Second is the question of whether we can obtain average-case hardness of k-SUM for
concrete small constants k, perhaps even k = 3. Our hardness result is asymptotic in k.

Third is the question of whether we can show the average-case hardness of natural
distributions over combinatorial and computational-geometric problems, given their connection
to k-SUM. In this vein, we show a simple reduction to (perhaps not the most natural
distribution on) the (Q, m, d)-plane problem in Appendix A, but we believe much more can
be said. More generally, now that we have shown average-case hardness of k-SUM, it is
natural to try to reduce average-case k-SUM to other natural average-case problems.

1.4 Other Related Works
There are now quite a few works that study average-case fine-grained hardness of problems in
P . We mention a few. First, Ball, Rosen, Sabin, and Vasudevan [9] showed a reduction from
SAT to an (average-case) variant of the orthogonal vectors problem. They demonstrated
that sub-quadratic algorithms for their problem would refute SETH.

APPROX/RANDOM 2021

29:6 On the Hardness of Average-Case k-SUM

There is also a sequence of works on the average-case hardness of counting k-cliques. The
work of Goldreich and Rothblum [20, 21] shows worst-case to average-case self-reductions for
the problem of counting k-cliques (and other problems in P). Boix-Adserà, Brennan, and
Bresler proved the same result for Gn,p [13], and Hirahara and Shimizu recently showed that
it is even hard to count the number of k-cliques with even a small probability of success [22].
In contrast, our reductions go from the worst-case of one problem (SIVP) to the average-case
of another (k-SUM). We find it a fascinating problem to show a worst-case to average-case
self-reduction for k-SUM.

Dalirrooyfard, Lincoln, and Vassilevska Williams [15] recently proved fine-grained average-
case hardness for many different problems in P under various complexity-theoretic assump-
tions. In particular, they show fine-grained average-case hardness of counting the number of
solutions of a non-standard factored variant of k-SUM under well-studied fine-grained hard-
ness assumptions. In contrast, we show fine-grained average-case hardness of the standard
search k-SUM problem under an assumption that is well-studied in the lattice community but
perhaps not previously considered in the fine-grained complexity world. So, our conclusion is
more natural – both because it works for a search problem rather than a counting problem
and because it works with the standard notion of k-SUM rather than a factored variant –
but we rely on a less-standard assumption.

For the lattice expert, we remark that if one unwraps our reduction from SIVP to SIS and
then to k-SUM, we obtain a structure that is superficially similar to [30]. However, in their
setting, they do not need to reuse samples and therefore do not need the re-randomization
technique, which is the key new idea in this work.

More generally, there are many works that use BKW/Wagner-style techniques together
with a specific solver for k-SUM or subset sum to solve various lattice problems. (See, for
example, [29, 30, 26].) In contrast, we show a generic reduction from SIVP to average-case
k-SUM that can be instantiated with any average-case k-SUM oracle.

1.5 Organization of the Paper

Section 3 describes the modular variant of k-SUM as well as the standard k-SUM (over the
integers), shows their totality on average, and reductions between them. For completeness,
we describe the BKW/Wagner algorithm in Section 4. We remark that while the standard
descriptions of the algorithm refer to finite groups, we need one additional trick (namely,
Lemma 15) to obtain the algorithm over the integers. Finally, our main result, the worst-
case to average-case reduction is described in Section 5. The connection to computational
geometry is provided in Appendix A.

2 Preliminaries

We write log for the logarithm base two and ln for the natural logarithm. We write(
m
k

)
:= m!

(m−k)!k! for the binomial coefficient.

2.1 Probability

We make little to no distinction between random variables and their associated distributions.
For two random variables X, Y over some set S, we write ∆(X, Y) :=

∑
z∈S | Pr[X =

z] − Pr[Y = z]| for the statistical distance between X and Y . For a finite set S, we write US

for the uniform distribution over S.

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:7

Recall that a set of functions H ⊆ {h : X → Y } is a universal family of hash functions
from X to Y if for any distinct x, x′ ∈ X

Pr
h∼H

[h(x) = h(x′)] ≤ 1/|Y | .

▶ Lemma 1 (Leftover hash lemma, [24]). If H is a universal family of hash functions from
X to Y , then

Pr[∆(h(UX), UY) ≥ β] ≤ β ,

where the probability is over a random choice of h ∼ H and β := (|Y |/|X|)1/4.

▶ Lemma 2. For any positive integers Q, m, let H be the family of hash functions from
{0, 1}m to ZQ given by ha(x) = ⟨a, x⟩ mod Q for all a ∈ Zm

Q . Then, H is a universal family
of hash functions.

Proof. Let x, y ∈ {0, 1}m be distinct vectors, and suppose without loss of generality that
x1 = 1 and y1 = 0. We write a′ ∈ Zm−1

Q for the vector obtained by removing the first
coordinate from a and a1 for the first coordinate itself. Similarly, we write x′, y′ ∈ {0, 1}m−1

for the vectors x, y with their first coordinate removed. Then,

Pr[⟨a, x⟩ = ⟨a, y⟩ mod Q] = Pr[⟨a′, x′⟩ + a1 = ⟨a′, y′⟩ mod Q]
= Pr[a1 = ⟨a′, y′ − x′⟩ mod Q] = 1/Q ,

where the probability is over the random choice of a ∈ Zm
Q . The last equality follows from

the fact that a1 ∈ ZQ is uniformly random and independent of a′. ◀

▶ Corollary 3. For any positive integers Q, m and any subset X ⊆ {0, 1}m,

Pr
a∼Zm

Q

[∆(⟨a, UX⟩ mod Q, UZQ
) ≥ β] ≤ β ,

where β := (Q/|X|)1/4.

▶ Corollary 4. Let a := (a1, . . . , aM) ∈ ZM
Q be sampled uniformly at random, and let

S1, . . . , SM ′ ⊂ [M] be sampled independently and uniformly at random with |Si| = t. Let
ci :=

∑
j∈Si

aj mod Q. Then, (a, c) := (a1, . . . , aM , c1, . . . , cM ′) is within statistical distance
δ of a uniformly random element in ZM+M ′

Q , where

δ := (M ′ + 1) · Q1/4 ·
(

M

t

)−1/4
≤ (M ′ + 1) ·

(
Qtt

M t

)1/4
.

Proof. Let Xt := {x ∈ {0, 1}M : ∥x∥1 = t}, and notice that |Xt| =
(

M
t

)
. Call a good

if ∆(⟨a, UXt
⟩ mod Q, UZQ

) ≤ β := Q1/4/|Xt|1/4. From Corollary 3, we see that A is good
except with probability at most β.

Finally, notice that the ci are distributed exactly as independent samples from ⟨a, UXt
⟩.

Therefore, if a is good, each of the ci is within statistical distance β of an independent
uniform sample. The result then follows from the union bound. ◀

APPROX/RANDOM 2021

29:8 On the Hardness of Average-Case k-SUM

2.2 Hitting probabilities
▶ Definition 5. For a := (a1, . . . , aM) ∈ ZM

Q , c := (c1, . . . , cM ′) ∈ ZM ′

Q , I ⊂ [M], J ⊂ [M ′],
and a positive integer t, the t-hitting probability of a, c, I, and J is defined as follows. For
each j ∈ J , sample a uniformly random Sj ∈

([M]
t

)
with

∑
i∈Sj

ai = cj . (If no such Sj exists,
then we define the hitting probability to be 1.) The hitting probability is then

pa,c,I,J,t := Pr[∃ j, j′ ∈ J such that Sj ∩ I ̸= ∅ or Sj ∩ Sj′ ̸= ∅] .

▶ Lemma 6. For any positive integers Q, M, t and 0 < ε < 1,

Pr
a∼ZM

Q
,c∼ZQ

[
pa,c,t ≥ 1 + ε

1 − ε
· t

M

]
≤ 4Q1/4

ε ·
(

M−1
t−1

)1/4 .

where

pa,c,t := pa,c,{1},{1},t .

Proof. We have

pa,c,t = Pr
x∼Xt

[x1 = 1 | ⟨a, x⟩ = c mod Q] ,

where Xt := {x ∈ {0, 1}M : ∥x∥1 = t}. Therefore,

pa,c,t = Pr
x∼Xt

[x1 = 1] · Pr
x∼Xt

[⟨a, x⟩ = c mod Q | x1 = 1]/ Pr
x∼Xt

[⟨a, x⟩ = c mod Q]

= t

M
· Pr

x′∼X′
t−1

[⟨a−1, x′⟩ = c − a1 mod Q]/ Pr
x∼Xt

[⟨a, x⟩ = c mod Q] ,

where a−1 is a with its first coordinate removed and X ′
t−1 := {x ∈ {0, 1}M−1 : ∥x∥1 = t−1}.

So, let

pa,c := Pr
x∈Xt

[⟨a, x⟩ = c mod Q] ,

and

p′
a,c := Pr

x′∈X′
t−1

[⟨a−1, x′⟩ = c − a1 mod Q] .

As in the proof of Corollary 4, we see that

∑
c∈ZQ

|pa,c − 1/Q| = ∆(⟨a, UXt⟩ mod Q, UZQ
) ≤ Q1/4/

(
M

t

)1/4
(1)

except with probability at most Q1/4/
(

M
t

)1/4 over a. Similarly,

∑
c∈ZQ

|p′
a,c − 1/Q| = ∆(⟨a−1, UX′

t−1⟩ mod Q, UZQ
) ≤ Q1/4/

(
M − 1
t − 1

)1/4
(2)

except with probability at most Q1/4/
(

M−1
t−1

)1/4 over a.
So, suppose that a satisfies Eq. (1) and Eq. (2). Then, by Markov’s inequality,

Pr
c∈ZQ

[pa,c ≥ (1 − ε)/Q] ≤ Q1/4

ε ·
(

M
t

)1/4

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:9

for any 0 < ε < 1, and similarly,

Pr
c∈ZQ

[p′
a,c ≤ (1 + r)/Q] ≤ Q1/4

ε ·
(

M−1
t−1

)1/4 .

Therefore, for such a,

Pr[pa,c,t ≥ (1 + ε)t/((1 − ε)M)] ≤ 2Q1/4

ε ·
(

M−1
t−1

)1/4 .

The result then follows by union bound. ◀

By repeated applications of union bound, we derive the following corollary.

▶ Corollary 7. For any positive integers Q, M, M ′, t, v, v′ and 0 < ε < 1, let a ∼ ZM
Q and

c ∼ ZM ′

Q be sampled uniformly at random. Then,

pa,c,I,J,t ≤ (v + tv′) · v′ · 1 + ε

1 − ε
· t

M

for all I ∈
([M]

≤v

)
, J ∈

([M ′]
≤v′

)
except with probability at most

4MM ′ Q1/4

ε ·
(

M−1
t−1

)1/4 .

Proof. Let η := maxi,j pa,c,{i},{j},t. By union bound, for any set I, we have

pa,c,I,{j},t ≤
∑
i∈I

pa,c,{i},{j},t ≤ |I| · η .

Fix some set J . Let Sj be as in the definition of the hitting probability, and let I−j :=
I ∪

⋃
j′∈J\{j} Sj′ . Notice that |I−j | ≤ |I| + t|J |. Then,

pa,c,I,J,t ≤
∑
j∈J

pa,c,I−j ,{j},t ≤ (|I| + t|J |) · |J | · η .

Finally, by union bound and Lemma 6, we have

η ≤ 1 + ε

1 − ε
· r

M

except with probability at most

4MM ′ Q1/4

ε ·
(

M−1
t−1

)1/4 .

The result follows. ◀

2.3 Lattices and Lattice Problems
▶ Definition 8 (Shortest Independent Vectors Problem). For an approximation factor γ :=
γ(n) ≥ 1, γ-SIVP is the search problem defined as follows. Given a lattice L ⊂ Rn, output n

linearly independent lattice vectors which all have length at most γ(n) times the minimum
possible, λn(L).

APPROX/RANDOM 2021

29:10 On the Hardness of Average-Case k-SUM

▶ Definition 9 (Short Integer Solutions). For integers m, Q, β, the (average-case) short
integer solutions problem SIS(m, Q, β) is defined by m integers a1, . . . , am drawn uniformly
at random and independently from ZQ, and the goal is to come up with a non-zero vector
x = (x1, . . . , xm) where∑

i∈[m]

xiai = 0 (mod Q) and ||x||1 :=
m∑

i=1
|xi| ≤ α

Following the seminal work of Ajtai [5], there have been several works that show how to
solve the worst-case γ-SIVP problem given an algorithm for the average-case SIS problem.
We will use the most recent one due to Gama et al. [18] (specialized to the case of cyclic
groups for simplicity).

▶ Theorem 10 (Worst-Case to Average-Case Reduction for SIS [31, 18]). Let n, Q, β ∈ N
where Q = (βn)Ω(n). If there is an algorithm for the average-case SIS problem SIS(m, Q, β)
over ZQ that runs in time T , then there is an (m + T) · poly(n)-time algorithm for worst-case
Õ(

√
n log m · β)-SIVP on any n-dimensional lattice L.

3 Variants of Average-case k-SUM: Totality and Reductions

We define two variants of average-case k-SUM, one over the integers (which is the standard
version of k-SUM) and one over the finite group ZQ of integers modulo Q. We show that the
hardness of the two problems is tied together, which will allow us to use the modular version
for our results down the line.

▶ Definition 11 (Average-case k-SUM). For positive integers m, k ≥ 2 and u ≥ 1, the
average-case k-SUM(u, m) problem is the search problem defined as follows. The input is
a1, . . . , am ∈ [−u, u] chosen uniformly and independently at random, and the goal is to find
k distinct indices i1, . . . , ik such that ai1 , . . . , aik

with ai1 + · · · + aik
= 0.

We define the modular version of the problem where the instance consists of numbers
chosen at random from the finite additive group ZQ of numbers modulo Q. This will appear
as an intermediate problem in our algorithm in Section 4 and our worst-case to average-case
reduction in Section 5.

▶ Definition 12 (Average-case Modular k-SUM). For integers m, k ≥ 2 and integer modulus
Q ≥ 2, the average-case k-SUM(ZQ, m) problem is the search problem defined as follows.
The input is a1, . . . , am ∼ ZQ chosen uniformly and independently at random, and the goal is
to find k distinct indices i1, . . . , ik such that ai1 , . . . , aik

with ai1 + · · · + aik
= 0 (mod Q).

We highlight the distinction in our notation for the two problems. The former (non-
modular version) is denoted k-SUM(u, m) (the first parameter is the bound u on the absolute
value of the elements), whereas the latter is denoted k-SUM(ZQ, m) (the first parameter
indicates the group on which the problem is defined). The second parameter always refers to
the number of elements in the instance.

We now show that the modular problem is total when
(

m
k

)
≳ Q and is unlikely to have a

solution when
(

m
k

)
≲ Q.

▶ Lemma 13. If a1, . . . , am ∼ ZQ are sampled uniformly at random, and Ek is the event
that there exist distinct indices i1, . . . , ik with ai1 + · · · + aik

= 0 (mod Q), then

1 − Q/

(
m

k

)
≤ Pr[Ek] ≤

(
m

k

)
/Q .

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:11

Proof. Notice that for fixed indices i1, . . . , ik, the probability that ai1 +· · ·+aik
= 0 is exactly

1/Q. The upper bound then follows from a union bound over all
(

m
k

)
k-tuples of indices.

Furthermore, notice that i1, . . . , ik and j1, . . . , jk, the event that ai1 +· · ·+aik
= 0 (mod Q) is

independent of the event that aj1 +· · ·+ajk
= 0 (mod Q) as long as {i1, . . . , ik} ≠ {j1, . . . , jk}.

The lower bound then follows from Chebyshev’s inequality. ◀

▶ Lemma 14. If a1, . . . , am ∼ [−u, u] are sampled uniformly at random, and Ek is the event
that there exist distinct indices i1, . . . , ik with ai1 + · · · + aik

= 0, then

1 − e−α ≤ Pr[Ek] ≤
(

m

k

)
/(2u + 1) ,

where

α := 1
4k + 2 ·

⌊ m

k(20u + 10)1/k

⌋
≈ m/(k2u1/k) .

Proof. The upper bound follows immediately from the upper bound in Lemma 13 together
with the observation that elements that sum to zero over the integers must sum to zero
modulo Q := 2u + 1 as well.

Let m′ := k(10Q)1/k. Let E′
k be the event that there exist distinct indices i1, . . . , ik ≤ m′

with ai1 + · · · + aik
= 0. Notice that

Pr[Ek] ≥ 1 − (1 − Pr[E′
k])⌊m/m′⌋ ≥ 1 − exp(−⌊m/m′⌋ Pr[E′

k]) .

So, it suffices to show that

Pr[E′
k] ≥

1 − Q/
(

m′

k

)
2k + 1 ≥ 1

4k + 2 .

By Lemma 13, we know that with probability at least 1 − Q/
(

m′

k

)
, there exists a k-SUM

that sums to zero modulo Q in the first m′ elements. I.e., ai1 + · · · + aik
= ℓQ for some

ℓ ∈ {−k, −k + 1, . . . , k − 1, k} and i1, . . . , ik ≤ m′. We wish to argue that ℓ = 0 is at least as
likely as ℓ = i for any i.

Let p(k′, s) := Pr[a1 + · · · + ak′ = s] for integers k′, s. Notice that for s ≥ 0, we have

p(k′ + 1, s) − p(k′ + 1, s + 1) =
(
p(k′, −(s + u)) − p(k′, s + u + 1)

)
/(2u + 1)

=
(
p(k′, s + u) − p(k′, s + u + 1)

)
/(2u + 1) .

It then follows from a simple induction argument that p(k, s + 1) ≤ p(k, s). In particular,
p(k, ℓQ) ≤ p(k, 0) for any ℓ. Therefore, letting E′

k,Q be the event that the first m′ elements
contain a k-SUM modulo Q, we have

Pr[E′
k] ≥ Pr[E′

k,Q] · Pr[ai1 + · · · + aik
= 0 | ai1 + · · · + aik

= 0 (mod Q)]

≥
Pr[E′

k,Q]
2k + 1 .

Finally, by Lemma 13, we have

Pr[E′
k,Q] ≥ 1 − Q/

(
m′

k

)
≥ 1/2 ,

as needed. ◀

APPROX/RANDOM 2021

29:12 On the Hardness of Average-Case k-SUM

3.1 From k-SUM to Modular k-SUM and Back
We first show that an algorithm for the modular k-SUM problem gives us an algorithm
for the k-SUM problem. A consequence of this is that when we describe the algorithm for
k-SUM in Section 4, we will focus on the modular variant.

▶ Lemma 15. Let u be a positive integer and let Q = 2u + 1. If there is an algorithm for
the k-SUM(ZQ, m) that runs in time T and succeeds with probability p, then there is an
algorithm for 2k-SUM(u, 2m) that runs in time O(T) and succeeds with probability at least
p2/k.

Proof. Let A be the purported algorithm for k-SUM(ZQ, m). The algorithm for
2k-SUM(u, 2m) receives 2m integers a1, . . . , a2m in the range [−u, u] and works as follows.
We use the natural embedding to associate elements in ZQ with elements in [−u, u], so we
may think of a1, . . . , a2m also as elements in ZQ (simply by considering their coset modulo
Q).

Run A on a1, . . . , am to obtain a k-subset S1. If A does not succeed, then fail.
Run A on −am+1, . . . , −a2m to obtain a k-subset S2. If A does not succeed, then fail.
If

∑
i∈S1

ai = −
∑

i∈S2
ai, output S1 ∪ S2 as the 2k-subset. Fail otherwise.

It is clear that the run-time is O(T) and that if the algorithm does not fail then it indeed
outputs a valid 2k-sum. It suffices to bound the probability that the algorithm succeeds.

Since the first two steps run A on independent and identically distributed input, we can
deduce that the probability that both succeed is p2, and in the case that both succeed, their
output satisfies∑

i∈S1

ai = α1Q and
∑
i∈S1

ai = α2Q

for some integers α1, α2 ∈ (−k/2, k/2), which are independent and identically distributed
random variables. The probability that α1 = α2 is therefore at least 1/k, since the collision
probability of a random variable is bounded by the inverse of its support size. If this happens
then,

∑
i∈S1

ai =
∑

i∈S2
ai and the algorithm succeeds. Thus, we conclude that our algorithm

succeeds with probability at least p2/k. ◀

Finally, we show a proof in the other direction. Namely, that an algorithm for the k-SUM
problem gives us an algorithm for the modular k-SUM problem. We will use this when we
describe the worst-case to average-case reduction in Section 5.

▶ Lemma 16. For m ≥ k · u2/k, if there is an algorithm for k-SUM(u, m) that runs in time
T and succeeds with probability p, then there is an algorithm for k-SUM(Z2u+1, m) that runs
in time T and succeeds with probability p.

Proof. Let A be the purported algorithm for k-SUM(u, m). The algorithm for
k-SUM(Z2u+1, m) receives m integers a1, . . . , a2m ∈ Z2u+1 and works as follows.

As before, identify Z2u+1 with the interval [−u, u] and run A on a1, . . . , am. We can then
simply output the resulting k-subset S. In particular, if

∑
i∈S ai = 0, then we of course have∑

i∈S ai = 0 mod 2u + 1.
Clearly, the success probability of the resulting algorithm is at least p, since the input to

A is distributed uniformly. ◀

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:13

4 The uO(1/ log k)-time Algorithm for Average-case k-SUM

In this section, we describe a variant of the Blum-Kalai-Wasserman algorithm [12] for the
average-case k-SUM problem that runs in time uO(1/ log k).

▶ Theorem 17. There is a Õ(2ℓq2)-time algorithm that solves average-case 2ℓ-SUM(Zqℓ , m)
for m = Θ̃(2ℓq2).

Proof. On input a1, . . . , am ∈ Zqℓ with m := 1000ℓ2q22ℓ log q = Θ̃(2ℓq2), the algorithm
behaves as follows. Let L1 := (a1, . . . , am). For i = 1, . . . , ℓ, the algorithm groups the
elements in Li according to their value modulo qi. It then greedily groups them into mi+1
disjoint points (a, b) with a + b = 0 mod qi. It sets Li+1 to be the list of sums of these
pairs (and records the indices of the 2i input elements that sum to a + b). If at any point
the algorithm fails to find such pairs, it simply fails; otherwise, the algorithm outputs the
elements ai1 , · · · , ai2ℓ

satisfying
∑

aij
= 0 mod qℓ found in the last step.

The running time of the algorithm is clearly poly(ℓ, log q, log m)m as claimed. To prove
correctness, we need to show that at each step the algorithm is likely to succeed in populating
the list Li+1 with at least mi := (ℓ2 − i2)/ℓ2 · m/2i−1 elements, since clearly the algorithm
outputs a valid 2ℓ-SUM in this case.

Suppose that the algorithm succeeds up to the point where it populates Li. Let Li =
(b1, . . . , bmi

), and b′
i := (bi/qi−1) mod q, where the division by qi−1 is possible because

bi = 0 mod qi−1 by assumption. Notice that the b′
i are independent and uniformly random.

For j ∈ Zq, let cj := |{i : b′
i = j mod q}|. Notice that the algorithm successfully populates

Li+1 if and only if∑
j∈Zq

min{cj , c−j}/2 ≥ mi+1 .

By the Chernoff-Hoeffding bound, we have that

Pr
[
cj < mi/q − 10

√
mi log mi

]
≤ 1/m2

i

It follows that∑
j

min{cj , c−j}/2 ≥ q min{cj}/2 ≥ mi/2 − 5q
√

mi log mi ≥ mi+1

except with probability at most 1/mi. By union bound, we see that the algorithm succeeds
in populating every list except with probability at most

∑
1/mi ≪ 1/10, as needed. ◀

Combining this with Lemma 15 (the reduction from k-SUM to modular k-SUM), we
obtain the following corollary.

▶ Corollary 18. For u = (qℓ − 1)/2 for odd q and k = 2ℓ+1, there is a uO(1/ log k)-time
algorithm for k-SUM(u, m) for m = uΘ(1/ log k).

5 From Worst-case Lattice Problems to Average-case k-SUM

In this section, we describe our main result, namely a worst-case to average-case reduction
for k-SUM. We state the theorem below.

APPROX/RANDOM 2021

29:14 On the Hardness of Average-Case k-SUM

▶ Theorem 19. Let k, m, u, n be positive integers, and 0 < ε < ε′ where

u = k2(1+ε′)cn/ε′
andm = uε/(2 log k)

for some universal constant c > 0. If there is an algorithm for average-case k-SUM(u, m)
that runs in time TkSUM = TkSUM(k, u, m), then there is an algorithm for the worst-case n1+ε′-
approximate shortest independent vectors problem (SIVP) that runs in time 2O(εn/ε′+log n) ·
TkSUM.

When we say that a k-SUM algorithm succeeds, we mean that it outputs a k-subset
of the input that sums to 0 with probability 1 − δ for some tiny δ. This can be achieved
starting from an algorithm that succeeds with (some small) probability p by repeating, at
the expense of a multiplicative factor of 1/p · log(1/δ) in the run-time. We ignore such issues
for this exposition, and assume that the algorithm outputs a k-sum with probability 1 − δ

for a tiny δ.
Before we proceed to the proof, a few remarks on the parameters of Theorem 19 are in

order. First, note that the parameter settings imply that mk ≫ u, therefore putting us in the
total regime of parameters for k-SUM. Secondly, setting ε′ = 100 (say), we get the following
consequence: if there is a k-SUM algorithm that, on input m = uε/(2 log k) numbers, runs in
time roughly m, then we have an n101-approximate SIVP algorithm that runs in time ≈ 2εcn.
Now, ε is the “knob” that one can turn to make the SIVP algorithm run faster, assuming a
correspondingly fast k-SUM algorithm that works with a correspondingly smaller instance.

Proof. The theorem follows from the following observations:
First, by Theorem 10, there is a reduction from Õ(

√
n log m′ · β)-approximate SIVP

to SIS(m′, Q, β), where we take m′ := ⌈k10cn/(kε′)n10⌉. The reduction produces SIS
instances over ZQ where Q ≥ (βn)cn for some constant c, and works as long as the SIS
algorithm produces solutions of ℓ1 norm at most β. If the SIS algorithm runs in time
TSIS = TSIS(m′, Q, β), the SIVP algorithm runs in time (m′ + TSIS) · poly(n). We take
β := nε′ .
Second, as our main technical contribution, we show in Lemma 20 how to reduce
SIS to k-SUM. Note that Theorem 10 gives us the freedom to pick Q, as long as it
is sufficiently large. We will set Q = qr where r = ⌊ε′ log n/(2 log k)⌋ for a prime
q ≈ u ≈ (βn)cn/r ≈ k2(1+ε′)cn/ε′ .
Now, Lemma 20 (with k = t) shows a reduction from SIS(m′, Q, β) to 2k-SUM(Zq, m)
(provided that m′ ≫ q1/kk4r/km4/k, which holds in this case). The reduction produces a
SIS solution with ℓ1 norm bounded by k2r ≤ β.
The running time of the resulting algorithm is

rm′(m · poly(k, log q) + 10TkSUM) ≈ 2O(εn/ε′+log n) · TkSUM .

Finally, by Lemma 16, we know that modular 2k-SUM over Zq can be reduced to k-SUM
over the integers in the interval [−u, u] for u ≈ q with essentially no overhead.

This finishes the proof. ◀

The following lemma shows our main reduction from SIS to k-SUM. In particular, taking
k = t, m′ ≫ (m4q)1/k · (10k)4r (so that δ is small), and m ≫ q1/k (so that k-SUM(Zq, m) is
total) gives a roughly rmm′-time reduction from SIS over Zqr to k-SUM over Zq with high
success probability.

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:15

▶ Lemma 20. Let m, m′, k, r, t be positive integers and q > (tk)r a prime, and let
Q = qr. If there is an algorithm that solves (average-case) k-SUM(Zq, m) in time T

with success probability p, then there is an algorithm that solves SIS(m′, Q, β) in time
r · m′(m · poly(k, t, log q) + 10T)/p with success probability at least 1 − δ and produces
a solution with ℓ1 norm β ≤ (tk)r, where

δ := 100rm(m′)2

p
· q1/4

(m′/(10tk)2r+1)t/4 .

Proof. At a high level, the idea is to run a variant of the Blum-Kalai-Wasserman [12]
algorithm where in each iteration, we call a k-SUM oracle. In particular, on input a1, . . . , am′ ,
the algorithm operates as follows.

In the beginning of the ith iteration, the algorithm starts with a sequence of

mi := ⌈m′/(10t2k2)i−1⌉

numbers ai,1, . . . , ai,mi
. The invariant is that ai,j = 0 (mod qi−1) for all j. It then

generates disjoint Si,1, . . . , Si,mi+1 ⊆ [mi] such that |Si,ℓ| ≤ kt and
∑

j∈Si,ℓ
ai,j = 0

(mod qi), in a way that we will describe below.
As the base case, for i = 1, a1,j = aj , the input itself, and the invariant is vacuous.
In the ith iteration, we apply the re-randomization lemma (Corollary 4), computing subsets
of t randomly chosen elements from ai,1, . . . , ai,mi , to generate m∗

i := 10m⌈mi+1/p⌉
numbers ci,1, . . . , ci,m∗

i
.

Let di,j = ci,j/qi−1 (mod q) ∈ Zq. Note that this is well-defined because each ci,j = 0
(mod qi−1).
Divide the di,j into 10⌈mi+1/p⌉ disjoint blocks of m elements each, set ℓ = 1. For
each block, feed the block to the k-SUM algorithm to obtain di,j1 , . . . , di,jk

. This yields
corresponding subsets S∗

1 , . . . , S∗
k ∈

([mi]
t

)
such that

∑
j∈S∗

x
ai,j/qi−1 = di,jx

(mod q). If
di,j1 + · · · + di,jk

= 0 (mod q) and the sets S∗
1 , . . . S∗

k , Si,1, . . . , Si,ℓ−1 are pairwise disjoint,
then set Si,ℓ :=

⋃
S∗

x and increment ℓ.
If ℓ ≤ mi+1, the algorithm fails. Otherwise, take ai+1,ℓ :=

∑
j∈Si,ℓ

ai,j for ℓ = 1, . . . , mi+1.
At the end of the rth iteration we obtain a (kt)r-subset of the a1, . . . , am′ that sums to 0
(mod Q).

We now analyze the correctness, run-time and the quality of output of this reduction.
The reduction calls the k-SUM oracle

∑
m∗

i /m ≤ 20rm′/p times. The rest of the
operations take rmm′poly(k, t, log q)/p time for a total of r · m′(mpoly(k, t, log q) + 10T)/p

time, as claimed. Furthermore, the ℓ1 norm of the solution is β ≤ (tk)r, as claimed.
Finally, we show that the algorithm succeeds with the claimed probability. Since the

sets Si,ℓ are disjoint and do not depend on ai,j − (ai,j mod qi), it follows from a simple
induction argument that at each step the ai,j are uniformly random and independent elements
from qi−1Z/qrZ. Therefore, by Corollary 4, the statistical distance of the collection of all
di,j (for a given i) from uniformly random variables that are independent of the ai,j is
δi ≤ (m∗

i + 1) · (qtt

mt
i
)1/4. In total, the statistical distance of all samples from uniform is then

at most
∑

δi < δ/3 for our choice of parameters. So, up to statistical distance δ/3, we can
treat the di,j as uniformly random and independent elements.

It remains to show that, assuming that the di,j are uniformly random and independent,
then we will find disjoint sets Si,1, . . . , Si,mi+1 with

∑
j∈Si,ℓ

di,j = 0 (mod q) at each step
except with probability at most 2δ/3. Let bi := (ai,1/qi−1 mod q, . . . , ai,mi

/qi−1 mod q). By
Corollary 7, we have

pbi,di,I,J,t ≤ 10t2k2mi+1/mi ≤ 1/2

APPROX/RANDOM 2021

29:16 On the Hardness of Average-Case k-SUM

for all I ∈
([mi]

≤v

)
and J ∈

([m∗
i]

≤v

)
except with probability at most 10mim

∗
i q1/4/

(
mi−1
t−1

)1/4
< δ/3

for v := tkmi+1 ≥ |T |, v′ := k, and ε := 1/2.
So, suppose this holds. Notice that Pr[di,j1 + · · · + di,jk

= 0 (mod q)] = p by definition.
And, conditioned on di,j1 , . . . , di,jk

, the S∗
x are independent and uniformly random subject

to the constraint that
∑

j∈S∗
x

ai,j/qi−1 = di,jx
(mod q). Therefore, the probability that

S∗
1 , . . . , S∗

k , I := Si,1 ∪ · · · ∪ Si,ℓ−1 are pairwise disjoint in this case is exactly

pbi,di,I,J,t ≤ 1/2 ,

where J := {j1, . . . , jk}. So, each time we call the oracle, we increment ℓ with probability at
least p/2. It follows from the Chernoff-Hoeffding bound that we increment ℓ at least mi+1
times except with probability at most e−mi+1/100 ≪ δ/3.

Putting everything together, we see that the algorithm fails with probability at most δ,
as claimed. ◀

References
1 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower

bounds for subset sum and bicriteria path. In SODA, 2019.
2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In FOCS, 2014.
3 Divesh Aggarwal and Eldon Chung. A note on the concrete hardness of the shortest independent

vector in lattices. Information Processing Letters, 167, 2021.
4 Divesh Aggarwal, Jianwei Li, Phong Q. Nguyen, and Noah Stephens-Davidowitz. Slide

reduction, revisited—Filling the gaps in SVP approximation. In CRYPTO, 2020. URL:
https://arxiv.org/abs/1908.03724.

5 Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
6 Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of Learning with

Errors. J. Mathematical Cryptology, 9(3), 2015. URL: http://eprint.iacr.org/2015/046.
7 Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum key

exchange — A new hope. In USENIX Security Symposium, 2016.
8 Kyriakos Axiotis, Arturs Backurs, Ce Jin, Christos Tzamos, and Hongxun Wu. Fast modular

subset sum using linear sketching. In SODA, 2019.
9 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case

fine-grained hardness. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, STOC,
2017.

10 Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard
knapsacks. In CRYPTO, 2011.

11 Richard Bellman. Notes on the theory of dynamic programming iv - maximization over discrete
sets. Naval Research Logistics Quarterly, 3:67–70, 1956. doi:10.1002/nav.3800030107.

12 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003. doi:10.1145/792538.792543.

13 E. Boix-Adserà, M. Brennan, and G. Bresler. The average-case complexity of counting cliques
in Erdős-Rényi hypergraphs. In FOCS, 2019.

14 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Philip N.
Klein, editor, SODA, 2017.

15 Mina Dalirrooyfard, Andrea Lincoln, and V. Vassilevska Williams. New techniques for proving
fine-grained average-case hardness. In FOCS, 2020.

16 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry, 5(3), 1995. URL: http://www.sciencedirect.com/
science/article/pii/0925772195000222.

https://arxiv.org/abs/1908.03724
http://eprint.iacr.org/2015/046
https://doi.org/10.1002/nav.3800030107
https://doi.org/10.1145/792538.792543
http://www.sciencedirect.com/science/article/pii/0925772195000222
http://www.sciencedirect.com/science/article/pii/0925772195000222

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:17

17 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Computational Geometry, 45(4), 2012. URL: http://www.sciencedirect.com/
science/article/pii/S0925772111000927.

18 Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie. Structural lattice
reduction: Generalized worst-case to average-case reductions and homomorphic cryptosystems.
In Marc Fischlin and Jean-Sébastien Coron, editors, Eurocrypt, 2016.

19 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008. URL: https://eprint.iacr.org/2007/432.

20 Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-case
reductions and direct interactive proof systems. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9,
2018, pages 77–88. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.00017.

21 Oded Goldreich and Guy N. Rothblum. Worst-case to average-case reductions for subclasses
of P. In Oded Goldreich, editor, Computational Complexity and Property Testing - On the
Interplay Between Randomness and Computation, volume 12050 of Lecture Notes in Computer
Science, pages 249–295. Springer, 2020. doi:10.1007/978-3-030-43662-9_15.

22 Shuichi Hirahara and Nobutaka Shimizu. Nearly optimal average-case complexity of counting
bicliques under SETH, 2020. arXiv:2010.05822.

23 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. J. ACM, 21(2):277–292, 1974. doi:10.1145/321812.321823.

24 Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In David S. Johnson, editor, STOC, 1989.

25 Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm
for subset sum. In SOSA, 2019.

26 Paul Kirchner and Pierre-Alain Fouque. Time-memory trade-off for lattice enumeration in a
ball, 2016.

27 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset
sum. In Philip N. Klein, editor, SODA, 2017.

28 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjecture.
In SODA, 2016.

29 Ravi Kumar and D. Sivakumar. On polynomial-factor approximations to the shortest lattice
vector length. SIAM J. Discrete Math., 16(3):422–425, 2003.

30 Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parameters. In
CRYPTO, 2013.

31 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal of Computing, 37(1), 2007.

32 NIST. Post-quantum cryptography standardization. URL: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography.

33 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In STOC, 2010.
34 Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In SODA,

2010.
35 Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical

Computer Science, 10(4), 2016.
36 David A. Wagner. A generalized birthday problem. In CRYPTO, 2002.
37 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In Proceedings of the International Congress of Mathematicians (ICM 2018). 2018.
38 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted

subgraphs. SIAM J. Comput., 42(3):831–854, 2013. doi:10.1137/09076619X.

APPROX/RANDOM 2021

http://www.sciencedirect.com/science/article/pii/S0925772111000927
http://www.sciencedirect.com/science/article/pii/S0925772111000927
https://eprint.iacr.org/2007/432
https://doi.org/10.1109/FOCS.2018.00017
https://doi.org/10.1007/978-3-030-43662-9_15
http://arxiv.org/abs/2010.05822
https://doi.org/10.1145/321812.321823
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1137/09076619X

29:18 On the Hardness of Average-Case k-SUM

A Total k-SUM and Computational Geometry

Here, we show that one of the main results in [16, 17] can be extended meaningfully to our
setting, i.e., to the case of search k-sum over ZQ with

(
m
k

)
≫ Q. (In [16, 17], Gajentaan

and Overmars only considered decisional 3-SUM.) Specifically, we will reduce the following
problem to k-SUM in this regime.

▶ Definition 21. For d ≥ 1 and Q, m ≥ 2 with Q prime, the (Q, m, d)-Plane problem is
the following search problem. The input is a1, . . . , am ∈ Zd+1

Q . The goal is to find distinct
ai1 , . . . , aid+2 that lie in a d-dimensional affine hyperplane over the field ZQ. (In other words,
aid+1 − aid+2 can be written as a linear combination of ai1 − aid+2 , . . . , aid

− aid+2 over ZQ.)

▶ Lemma 22. For d ≥ 1 and Q, m ≥ 2 with Q prime, there is a reduction from (d +
2)-SUM(ZQ, m) to (Q, m, d)-Plane.

Proof. Let fd : ZQ → Zd+1
Q be the map fd(a) := (a, a2, a3, . . . , ad, ad+2). E.g., f1(a) =

(a, a3), f2(a) = (a, a2, a4), etc. On input a1, . . . , am ∈ ZQ, the reduction simply calls
its (Q, m, d)-Plane oracle on fd(a1), . . . , fd(am) ∈ Fd+1

Q , receiving as output distinct indices
i1, . . . , id+2 such that fd(ai1), . . . , fd(aid+2) lie in a d-dimensional affine hyperplane (assuming
that such indices exist). The reduction simply outputs these indices, i.e., it claims that
ai1 + · · · + aid+2 = 0 mod Q.

Notice that d + 2 points b1, . . . , bd+2 ∈ Zd+1
Q lie in a d-dimensional affine hyperplane if

and only if the matrix (b1 −bd+2, b2 −bd+2, . . . , bd+1 −bd+2) ∈ Z(d+1)×(d+1)
Q has determinant

zero. (Here, we have used the fact that ZQ is a field.) So, we consider the matrix

M := M(b1, . . . , bd+2) :=

b1 − bd+2 b2 − bd+2 · · · bd+1 − bd+2
b2

1 − b2
d+2 b2

2 − b2
d+2 · · · b2

d+1 − b2
d+2

...
...

. . .
...

bd
1 − bd

d+2 bd
2 − bd

d+2 · · · bd
d+1 − bd

d+2
bd+2

1 − bd+2
d+2 bd+2

2 − bd+2
d+2 · · · bd+2

d+1 − bd+2
d+2

 ∈ F(d+1)×(d+1)
Q .

We claim that

det(M) = (−1)d(b1 + · · · + bd+2) ·
∏
i<j

(bj − bi) ,

The result then follows, since this is zero if and only if bi = bj for some i ̸= j or b1 +
· · · + bd+2 = 0. Since by definition the (Q, m, d)-Plane oracle only outputs distinct vectors
on a hyperplane, this means that its output must correspond to distinct elements with
ai1 + · · · + aid+2 = 0 mod Q.

To prove that the determinant has the appropriate form, we first notice that without loss
of generality we may take bd+2 = 0. Next, we define

M ′ := M ′(b1, . . . , bd+1) :=

b1 b2 · · · bd+1
b2

1 b2
2 · · · b2

d+1
...

...
. . .

...
bd

1 bd
2 · · · bd

d+1
bd+1

1 bd+1
2 · · · bd+1

d+1 .

 ∈ F(d+1)×(d+1)
Q

This is just a Vandermonde matrix with columns scaled up by bi. So, its determinant is a
scaling of the Vandermonde determinant,

det(M ′) = b1 · · · bd+1 ·
∏
i<j

(bj − bi) .

Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan 29:19

Finally, we recall Cramer’s rule, which in particular tells us that

det(M) = pd+1 det(M ′)

for the unique p := (p1, . . . , pd+1) ∈ Zd+1
Q satisfying pT M ′ = (bd+2

1 , . . . , bd+2
d+1). I.e., the

coordinates of p form the polynomial p(x) := p1 + p2x + · · · + pd+1xd such that p(bi) = bd+1
i .

The result follows by noting that pi = (−1)i−1 ∑
S∈([d+1]

d+2−i)
∏

j∈S bj . In particular, pd+1 =
(−1)d(b1 + · · · + bd+1), as needed. ◀

APPROX/RANDOM 2021

Improved Hitting Set for Orbit of ROABPs
Vishwas Bhargava # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Sumanta Ghosh # Ñ

Department of Computer Science, IIT Bombay, India

Abstract
The orbit of an n-variate polynomial f(x) over a field F is the set {f(Ax+b) | A ∈ GL(n,F) and b ∈
Fn}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this
paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic
branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater
than d, we construct a hitting set of size (ndw)O(w2 log n·min{w2,d log w}) for the orbit of ROABPs in
unknown variable order where d is the individual degree and w is the width of ROABPs. We also
give a hitting set of size (ndw)O(min{w2,d log w}) for the orbit of polynomials computed by w-width
ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey
[43] who gave an (ndw)O(d log w) size hitting set for the orbit of commutative ROABPs (a subclass
of any-order ROABPs) and (nw)O(w6 log n) size hitting set for the orbit of multilinear ROABPs.
Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an
open problem by [43] and this work solves it in small width setting.

We prove some new rank concentration results by establishing low-cone concentration for the
polynomials over vector spaces, and they strengthen some previously known low-support based rank
concentrations shown in [17]. These new low-cone concentration results are crucial in our hitting set
construction, and may be of independent interest. To the best of our knowledge, this is the first
time when low-cone rank concentration has been used for designing hitting sets.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing
methodologies → Algebraic algorithms

Keywords and phrases Hitting Set, Low Cone Concentration, Orbits, PIT, ROABP

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.30

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/062

Funding Vishwas Bhargava: Research supported in part by the Simons Collaboration on Algorithms
and Geometry and NSF grant CCF-1909683.

Acknowledgements The authors would like to thank the anonymous referees for useful comments
that improved the presentation of the results.

1 Introduction

Polynomial identity testing (PIT) problem is a fundamental problem in the area of algebraic
circuit complexity. PIT is the problem of deciding whether a given multivariate polynomial
is identically zero, where the input is given as an algebraic formula, circuit or other computa-
tional models like algebraic branching program. One way of testing zeroness of a polynomial
is to check whether the coefficients of all the monomials are zero. However, the polynomial
computed by a circuit or a branching program may have, in the worst-case, an exponential
number of monomials compared to its size. Hence, by computing the explicit polynomial
from the input, we cannot solve PIT problem in polynomial time. However, evaluating the
polynomial at a point can be done in polynomial time of the input size. This helps us to

© Vishwas Bhargava and Sumanta Ghosh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 30; pp. 30:1–30:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vishwas1384@gmail.com
https://sites.google.com/view/vishwas
mailto:besusumanta@gmail.com
https://sites.google.com/view/sumghosh/home
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.30
https://eccc.weizmann.ac.il/report/2021/062
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Improved Hitting Set for Orbit of ROABPs

get a polynomial time randomized algorithm for PIT by evaluating the input circuit at a
random point, since any nonzero polynomial evaluated at a random point gives a nonzero
value with high probability [10, 57, 49]. However, finding a deterministic polynomial time
algorithm for PIT is a long-standing open question in algebraic complexity theory.

PIT captures several problems in algebra and combinatorics. For example, parallel
algorithms for perfect matching [55, 35, 14, 54], primality testing [2], multivariate polynomial
factorization [31], and many other problems [50, 11, 22]. PIT also has strong connection to
circuit lower bounds [25, 26, 13, 7, 21]. See [45, 53, 48] for surveys on PIT.

PIT problem is studied in two different settings: 1) whitebox, where we are allowed to
access the internal structure of the circuit, and 2) blackbox, where only evaluation of the
circuit at points is allowed. Deterministic blackbox PIT for an n-variate circuit class is
equivalent to efficiently finding a set of points H ⊆ Fn, called a hitting-set, such that for any
nonzero P in that circuit class, the set H contains a point at which P ̸= 0 1. In this work,
we only focus on the blackbox model.

Despite a lot of effort, little progress has been made on the PIT problem in general.
However, efficient deterministic PIT algorithms are known for many special circuit models.
For example, blackbox PIT for depth-2 circuits (or sparse polynomials) [6, 30, 34], PIT
algorithms for depth-3 circuits with bounded top fan-in [12, 29, 28, 27, 46, 47, 48], depth-3
diagonal circuits [44, 17, 16] and various other subclasses of depth-3 circuits [42, 1, 9], PIT for
the subclasses of depth-4 circuits [3, 5, 15, 32, 40] and certain types of symbolic determinants
[14, 54, 24].

The focus of this work is on the model of read-once oblivious algebraic branching programs
(ROABPs). An ROABP is a product of matrices

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for some permutation π on [n] for each i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)]
can be viewed as a polynomial over the matrix algebra. The permutation π is called the
variable order of the ROABP. One reason to be interested in ROABP is that derandomizing
blackbox PIT for ROABP can be viewed as an algebraic analogue of the RL vs. L question.
Besides that, the ROABP model is surprisingly rich and powerful. It captures several other
interesting circuit classes such as sparse polynomials or depth-two circuits, depth-three
powering circuits (symmetric tensors), set-multilinear depth-three circuits (tensors), and
semi-diagonal depth-3 circuits [19]. Some notable polynomials such as the iterated matrix
multiplication polynomial, the elementary and the power symmetric polynomials, and the
sum-product polynomials can be computed by linear size ROABPs. Hitting sets for ROABPs
have also led to the derandomization of an interesting case of the Noether Normalization
Lemma [38, 18], and to hitting sets for non-commutative algebraic branching programs [19].

PIT question for ROABPs and its variants has been widely studied. There are three
parameters associated with an ROABP: the number of variables n, the size of the matrices
w called width and the individual degree d which is the maximum possible degree of any
variable. First, [41] gave a polynomial time whitebox PIT algorithm for this model. [19]
first gave (ndw)O(log n) size hitting set for ROABPs when the variable order is known. Later,
[17] gave an (ndw)O(d log w·log n) size hitting for ROABPs with unknown variable order, and
subsequently, [1] gave an improved hitting set of size (ndw)O(log n) for this model. For zero or
large characteristic fields, [22] gave an ndwlog n size hitting sets for the known order ROABPs

1 When F is a finite field, we are allowed to go some suitable extension K of F and pick points from Kn.

V. Bhargava and S. Ghosh 30:3

and the size becomes polynomially large when the width is constant. Better hitting set is
known for a special class of ROABPs, called any-order ROABP. A polynomial f is computable
by a w-width any-order ROABP, if for every permutation π on [n], f is computable by a
w-width ROABP. The notion of any-order ROABP subsumes the notion of commutative
ROABP. An ROABP is called commutative ROABP if the polynomial computed by it
remains unchanged under any permutation of the matrices involved in the product. [17] gave
two different constructions of hitting sets of size (ndw)O(log w) and dO(log w) · (nw)O(log log w)

for any-order ROABPs 2. Later, [22] gives an improved hitting set of size (ndw)O(log log w)

for this model. Recently, [20] gives improved hitting sets for both ROABPs and any-order
ROABPs. Compared to the previous constructions, the size of hitting sets in [20] have finer
dependence on the parameters of ROABPs. However, the construction of polynomial size
hitting sets for ROABPs and its variants is still open.

In this work, we study the PIT question for the orbit of ROABPs. The orbit of an n-
variate polynomial f(x) over a field F, denoted by orbit(f), is the set of polynomials obtained
by applying invertible affine transformations on the variables of f , that is, orbit(f) =
{f(Ax + b) | A ∈ GL(n,F), and b ∈ Fn}. The orbit of a polynomial class C, denoted by
orbit(C), is the union of the orbits of the polynomials in the class. Apart from being a
natural question to study the sturdiness of the known techniques (and improving them),
designing hitting sets for the orbits of polynomial families and circuit classes is interesting
for the following reasons:

As observed by [43], the affine projections of “simple” polynomials have great expressive
power. The set of affine projections of an n-variate polynomial f(x) over a field F is
aproj(f) := {f(Ax + b) | A ∈ Fn×n and b ∈ Fn}. Formally, they show that if the
characteristic of F is zero, the set of affine projections of an n-variate polynomial f(x)
over a field F lies inside the Zariski closure of the orbit of f (denoted by orbit(f)),
that is aproj(f) ⊆ orbit(f). This observation has some interesting implications. For
instance, using the above observation one can show that, the entire class of depth-
3 circuits ΣΠΣ with top fan-in s and degree d is contained in aproj(SPs,d), where
SPs,d :=

∑
i∈[s]

∏
j∈[d] xi,j is a very structured s-sparse polynomial. The orbit closure of

ROABPs is also very powerful, in fact they are as powerful as general ABPs. This can be
seen by observing, the iterated matrix multiplication polynomial IMMw,d is computable
by a linear-size ROABP, yet every polynomial computable by a size-s general algebraic
branching program is in aproj(IMMs,s). For more polynomial families whose orbit closures
contain interesting circuit classes, see [36].
For an n-variate polynomial f over a field F, let V(f) denotes the variety (that is, zero
locus) of f . Hitting set construction for an n-variate polynomial class C is the problem of
picking a set of points H such that for each polynomial f ∈ C, H is not entirely contained
in V(f). On the other hand, Constructing hitting sets for the orbits of a polynomial class
C is the task of finding a small set of points H such that for every f ∈ C, H is not entirely
contained in the set {Aa + b | a ∈ V(f), A ∈ GL(n,F) and b ∈ Fn}. This ensures that
H will be independent to the choice of coordinate system, making it mathematically and
geometrically robust.

For a more detailed discussion on the reasons for studying hitting set of orbits, see [43].

Hitting set construction for orbits of circuit classes is very recent, somewhat simultaneously
Medini and Shpilka [36] and Saha and Thankey [43] started exploring PIT for the orbit of
various polynomial classes. Medini and Shpilka [36] gave a quasi-polynomial size hitting

2 In [17], any-order ROABPs are referred by “commutative ROABPs”.

APPROX/RANDOM 2021

30:4 Improved Hitting Set for Orbit of ROABPs

set for the orbits of sparse polynomials (
∑ ∏

circuits) and read-once formulas (ROFs).
Saha and Thankey [43] gave hitting sets for the orbits of ROABPs and constant-read (more
generally, constant-occur) formulas. Concretely, [43] gave an (ndw)d log w size hitting set for
the orbit of n-variate individual degree d width w commutative ROABPs. They also gave an
(nw)O(w6 log n) size hitting set for the orbit of n-variate multilinear polynomials computed
by width w ROABPs. Building on this, they also gave quasi-polynomial size hitting set for
constant-depth constant-occur formulas whose leaves are labeled by s-sparse polynomials
with constant individual degree. In this work, we design hitting sets for the orbit of ROABPs
and any-order ROABPs. Our results significantly improve the dependence on individual
degree in the size of hitting sets in comparison to [43], from exponential to polynomial.

1.1 Our Results
First, we define the models studied in this paper. Algebraic branching programs (ABPs)
were defined by Nisan in [39]. In this paper, we study a variant of ABPs known as read-once
oblivious ABPs (ROABPs). While Nisan defined ABPs using directed graphs, we use a
more conventional definition using product of matrices. Let f(x1, . . . , xn) be an n-variate
individual degree d polynomial over a field F. Let π be a permutation on [n]. We say f is
computed by a width w ROABP with variable order π, if f can be written as

f = aT ·M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)) · c,

where a, c ∈ Fw×1 and for all i ∈ [n], Mi(xπ(i)) ∈ Fw×w[xπ(i)] can be viewed as a polynomial
in xπ(i) over the matrix algebra with degree at most d. We say f is computable by a w-width
any order ROABP, if for every permutation π on [n], f is computable by a width w ROABP.
We say f is computed by a width w commutative ROABP, if all Mi(xπ(i))’s are polynomials
over a commutative sub-algebra of the matrix algebra. For example, consider the coefficients
of each Mi are diagonal matrices. One can observe that the set of polynomials computed
by w-width commutative ROABPs are also computable by w-width any-order ROABPs.
However, the converse direction is unknown to us. All PIT algorithms for ROABPs are
designed by analyzing the coefficient space of M1(xπ(1))M2(xπ(2)) · · ·Mn(xπ(n)).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs.
Let f(x) be an n-variate polynomial over a field F. The orbit of f , denoted by orbit(f), is
the set {f(Ax + b) | A ∈ GL(n,F) and b ∈ Fn}. For a polynomial class C, the orbit of C,
denoted by orbit(C), is the union of orbits of all the polynomials in C. Now, we describe our
result for the orbit of any-order ROABPs.

▶ Theorem 1. Let F be a field of characteristic zero or greater than d. Let C be the set of
n-variate polynomials over F with individual degree at most d and computable by a width w

any-order ROABP. Then, there exists a hitting set for orbit(C) computable in time (ndw)O(ℓ)

where ℓ = min{w2, 2d log w}.

Comparison with previous works

As far as we know, this is the first result addressing the orbit of any-order ROABPs, and
it subsumes the commutative ROABP result of Saha and Thankey [43]. They gave an
(ndw)O(d log w) size hitting set for the orbit of commutative ROABPs. In fact, our result
strengthens [43] in “low width” setting. Concretely, if the individual degree is poly(log n),
[43] gives quasi-polynomial time PIT for the orbit of commutative ROABPs. However,
when d ≥ n, their algorithm does not give any non-trivial PIT for the orbit of commutative

V. Bhargava and S. Ghosh 30:5

ROABPs. On the other hand, our result gives quasi-polynomial time PIT for the orbit
of any-order ROABPs when min{d, w} = poly(log n). Also, for constant width any-order
ROABPs with unbounded individual degree, our result gives a polynomial time PIT for its
orbit. However, [43] gives polynomial time PIT for the orbit commutative ROABPs when
both d and w are constants. Thus, our result has much better dependence on the individual
degree in comparison with [43].

Now, we describe our result regarding the orbit of ROABPs.

▶ Theorem 2. Let F be a field of characteristic zero or greater than d. Let C be the set of
n-variate polynomials over F with individual degree at most d and computable by a width
w ROABP. Then there exists a hitting set for orbit(C) computable in time (ndw)O(ℓ) where
ℓ = (w2 log n) ·min{w2, 2d log w}.

Comparison with previous works

Saha and Thankey [43] gave an (nw)O(w6 log n) time PIT for the orbit of multilinear poly-
nomials computed by ROABPs. Therefore, our result can be seen as the first one which
gives PIT for the orbit of ROABPs with unbounded individual degree. Irrespective of the
value of the individual degree, our result gives a quasi-polynomial time PIT for the orbit of
ROABPs when the width w = poly(log n). Also, the time complexity of our algorithm has
better dependence on the width of ROABPs in comparison with [43].

Remark

Our results in this paper continue to hold even if we consider a more generalized definition
for the orbit of an n-variate polynomial f(x), that is orbit(f) = {f(Ay + b) | m ≥
n, A ∈ Fn×m with rank n and b ∈ Fn} where y = (y1, . . . , ym). However, we work with
the conventional definition of the orbit of polynomials for the simplicity of exposition, and
because the proofs of the results with the generalized definition of orbit is almost the same
as the proofs given in this paper.

1.2 Proof techniques
First, we briefly sketch the abstract framework followed by the proofs of our results. Let
C be a set of n-variate polynomials in y = (y1, . . . , yn) with individual degree at most d.
Then orbit(C) is the set of n-variate polynomials in x = (x1, . . . , xn) is defined as follows: for
all f(x) ∈ orbit(C) there exists a polynomial h(y) ∈ C, an invertible linear transformation
L(x) = (ℓ1, . . . , ℓn) from Fn to Fn and a point b ∈ Fn such that

f(x) = h(L(x) + b).

In this paper, we design hitting sets for the orbits of ROABPs and any-order ROABPs.
Hitting sets for ROABPs are constructed by designing a “smartly” chosen shift g(t) (a low
variate polynomial map) such that when we shift any polynomial h(y) computable by a
small size ROABP, then there exists a “low-support” monomial (with nonzero coefficient) in
h(x + g). Note that, it is straightforward to construct hitting sets when such a low-support
monomial (with nonzero coefficient) exists. However, this approach does not directly work
for a polynomial f(x) = h(L(x) + b) in the orbit of ROABPs as shifting f has a slightly
different effect. Note,

f(x + g) = h(L(x + g) + b) = h(L(x) + L ◦ g + b).

APPROX/RANDOM 2021

30:6 Improved Hitting Set for Orbit of ROABPs

That is, the shift gets composed with the affine transformation L(x)+b. The main idea in our
construction is to choose a shift such that the transformed shift (for any affine transformation)
is also “smart”. That is, for any invertible linear transformation L(x) and b ∈ Fn, there
exists a “low-support” monomial (with nonzero coefficient) in f(x + g) = h(L(x) + L ◦g + b).

Let g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn and h′(y) = h(y + L ◦g + b).
Note that, f ′(x) := f(x + g) = h′(L(x)). Our abstract format to design hitting sets for the
orbits of ROABPs and any-order ROABPs has the following two steps.
Step 1: First we find some suitable low degree polynomial map g in few variables (compare

to n) such that for all invertible linear transformation L(x) and b ∈ Fn, after shifting
h(y) ∈ C by L ◦ g + b, the new polynomial h′(y) = h(y + L ◦ g + b) has the following
property: for some small positive integer k, hom≤k(h′(y)) is a nonzero polynomial in
y over the field F(t), where hom≤k(·) denotes the degree up to k part of the input
polynomial. This step, more specifically the construction of g(t), heavily relies on the
structure of C.

Step 2: Since L(x) is an invertible linear transformation, all ℓi’s are algebraically independent.
Also, hom≤k(f ′) = hom≤k(h′)(L(x)). Therefore, hom≤k(f ′) is a nonzero polynomial in
x over the field F(t). This implies that there exists a monomial xe =

∏n
i=1 xei

i such that
the support of e is at most k and the coefficient of xe in f ′ is a nonzero polynomial in
t. There are well known constructions of hitting sets for polynomials like f ′(x). For
example, combining Lemma 23 and Observation 17 we get a hitting set for f ′ of size
around (nd)O(m+k). Thus, we design a hitting set for orbit(C). This step is independent
of the polynomial class C.

For instance, assume that C is the set of n-variate polynomials with individual degree
and sparsity are at most d and s, respectively. Then, from [15], after shifting any polynomial
h(y) ∈ C by an ααα = (α1, . . . , αn) with all αi’s are nonzero the following holds: there exists
a monomial ye such that the support of e is at most log s and its coefficient in h(y + ααα)
is nonzero. Let g(t) be the polynomial map from F to Fn defined as (t, t2, . . . , tn) and
b = (b1, . . . , bn). Then, each ℓi(g) + bi is a nonzero polynomial. Therefore, there exists
a monomial ye of support-size at most log s such that its coefficient in h′(y) is a nonzero
polynomial in t. Since the individual degree is at most d, the degree of ye is at most ≤ d log s.
Now from the step 2, there exists a monomial in x of support-size at most d log s such that
its coefficient in f ′ is a nonzero polynomial in t. Thus, we have a hitting set for orbit(C) of
size (nd)O(d log s). This gives a different (and much simpler) hitting set construction than [43,
Theorem 7] for the orbit of sparse polynomials with low individual degree.

Stronger rank concentration results

We describe some stronger rank concentration results, which will be very useful in designing
our hitting sets for the orbits of ROABPs and any-order ROABPs. Let G(x) be an n-variate
polynomial over the vector space Fk. The coefficient space of G is the vector space spanned
by the coefficients (from Fk) in G. In general, the coefficient space of G can be spanned
by the coefficients of any arbitrary set of monomials. In rank concentration, our goal is
to construct a polynomial map g(t) such that after shifting G(x) by g(t), the coefficient
space of the new polynomial G′(x) = G(x + g) is spanned the coefficients of a “small” set of
monomials S. For example,
1. if S is the set of monomials whose support-size is ≤ ℓ, we say G′ has ℓ-support concentration.

The support-size of a monomial is the number of variables appearing in it.

V. Bhargava and S. Ghosh 30:7

2. if S is the set of monomials whose cone-size is ≤ ℓ, we say G′ has ℓ-cone concentration.
The cone-size of a monomial is the number of monomials dividing it.

3. if S is the set of monomials which is closed under sub-monomials, we say G′ has a
cone-closed basis.

The notion of rank-concentration was introduced in [4]. Subsequently, many PIT results
are obtained based on “low-support” rank concentration [4, 17, 23, 22, 43]. Later, [16]
introduced the notion of cone concentration and cone-closed basis. Among the three notions
of rank concentrations, cone-closed basis is stronger than the other two, then comes cone
concentration and after that support concentration. More specifically, cone-closed basis of
G′ implies that it has also k-cone concentration, and k-concentration for G′ implies it has
also log k-support concentration. For more details about the relation between these three
notions of rank concentrations see Lemma 26. The notion of cone concentration is important
for designing our improved hitting sets over [43]. Although the notion of cone concentration
was first introduced in [16] and they showed some low-cone concentration result, we are not
are aware of any “non-trivial” application of them in designing PIT algorithms. Therefore,
to the best of our knowledge, this is the first time when the notion of cone concentration is
used in designing PIT algorithms.

In this work, we strengthen some of the rank concentration results shown in [17, 16].
[17] showed that if G(x) is shifted by t = (t1, . . . , tn), the new polynomial G(x + t) has
log k-support concentration over the field F(t). Moreover, they showed that if G is shifted by a
n-wise independent monomial map g′(s, t), then the new shifted polynomial has log k-support
concentration. A polynomial map g′(s, t) from Fm × Fm′ to Fn is called ℓ-wise independent
monomial map if for every S ⊆ [n] of size ≤ ℓ there exists an ααα ∈ Fm such that polynomials
{g′(ααα, t)e}supp(e)⊆S are distinct monomials in t. Later, [16] showed that G(x + t) has a
cone-closed basis. Their result can also be extended to show that G(x + g′) has a cone-closed
basis when g′ is an n-wise independent monomial map. However, when we take composition
of g′ with an invertible affine transformation, that is b + L ◦ g′ where b ∈ Fn and L(x) is
an invertible linear transformation from Fn to Fn, the n-wise independence property of g′

breaks down. Therefore, the previous rank concentration results are not helpful in designing
hitting sets for the orbits of circuit classes. We strengthen the rank concentration results of
[17, 16] in the following way: After shifting G by a polynomial map g′ = (g1, . . . , gn) such
that all gi’s are algebraically independent, the new polynomial has a cone-closed basis, hence
k-cone concentration. Observe that the n-wise independence property implies the algebraic
independence property needed in our hypothesis. Therefore, our hypothesis is weaker than
the hypothesis used in [17, 16]. Also, algebraic independence property of g′ preserves even
after composing it with invertible affine transformations. For details see Lemma 4. This rank
concentration result will be helpful in designing the hitting sets for the orbit of any-order
ROABPs.

We show one more rank concentration result which will help in designing PIT algorithms
for the orbit of ROABPs. Assume that the coefficients of the monomials of total degree up
to D spans the coefficient space of G. Let g′(s, t) be a total degree D independent monomial
map from Fm × Fm′ to Fn, that is, there exists an ααα ∈ Fm such that the polynomials
{g′(ααα, t)e}|e|1≤D are distinct monomials in t. Then [17] showed that if G(x) is shifted by
ug′, then the new shifted polynomial has log k-support concentration over the field F(u, s, t).
Our rank concentration result differs from [17] in the following ways:
1. Our hypothesis is slightly stronger than [17]. Instead of total degree D independent

monomial map, we assume that g′(s, t) is a total degree Dk independent monomial map.

APPROX/RANDOM 2021

30:8 Improved Hitting Set for Orbit of ROABPs

2. On the other hand, we strengthen the conclusion as follows: for every invertible linear
transformation L(x) from Fn to Fn, if we shift G by uL ◦ g′, then the new shifted
polynomial has a cone-closed basis over the field F(u, s, t).

For details see Lemma 5.

Proof idea of Theorem 1

Suppose that C is the set of all n-variate polynomials in y with individual degree at most
d and computed by width w any-order ROABPs. Let f(x) be an n-variate polynomial in
orbit(C). Then there exists a polynomial h(y) ∈ C, an invertible linear transformation L(x)
and a point b ∈ Fn such that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w with individual degree at most d

and computed by a width w any-order ROABP such that

h(y) = aT ·G(y) · c,

where a, c ∈ Fw.
Now we will describe the first step of aforementioned abstract format. First, we show

how to achieve w2-cone concentration in G(y). Let g(t) = (g1, . . . , gn) be a polynomial map
from Fm to Fn such that for any S ⊆ [n] of size k := ⌈2 log w + 1⌉, the set of polynomials
{gi | i ∈ S} are algebraically independent. Then, in Lemma 6, we prove that G(y + g) has
w2-cone concentration over the field F (t). It strengthens the rank-concentration result for
any-order ROABPs shown in [17, Theorem 4.1]. They showed that if we shift G by a k-wise
independent monomial map, then the new polynomial has 2 log w-support concentration.
Next, in Lemma 7, we show that for any invertible linear transformation L(x) and b ∈ Fn, the
polynomial map defined as the composition of L(x) + b and Shpilka-Volkovich generator GSV

n,k

(see Definition 21, or [51]), that is L ◦ GSV
n,k + b, satisfies the property required for achieving

w2-cone concentration in G(y). Therefore, G(y + L ◦ GSV
n,k + b) has w2-cone concentration.

This implies that there exists a monomial ye of cone-size ≤ w2 such that the coefficient of
ye in h′(y) = h(y + L ◦ GSV

n,k + b) is nonzero. For any monomial of cone-size ≤ w2, its degree
is less than w2 and the support set is of size at most 2 log w. Since the individual degree is
at most d, the degree of ye is at most ℓ where ℓ := min{w2, d log w}. Therefore, hom≤ℓ(h′)
is nonzero. Now we apply the step two of the abstract format, which is independent of C,
and get our desired hitting set for orbit(C).

Proof idea of Theorem 2

Suppose that C is the set of all n-variate polynomials in y with individual degree at most d

and computed by width w ROABPs. Let f(x) be an n-variate polynomial in orbit(C). Then
there exists a polynomial h(y) ∈ C, an invertible linear transformation L(x) and b ∈ Fn such
that

f(x) = h(L(x) + b).

Since h(y) ∈ C, there exists a polynomial G(y) ∈ F[y]w×w and a permutation π on [n] such
that

h(y) = aT ·G(y) · c and G(y) =
n∏

i=1
Mi(xπ(i))

where a, c ∈ Fw and for all i ∈ [n], Mi(xπ(i)) is a polynomial in F[xπ(i)]w×w.

V. Bhargava and S. Ghosh 30:9

Now like any-order ROABPs, we want to achieve w2-cone concentration in G(y). However,
our approach here will be different from any-order ROABPs. Here, we strengthen the “merge-
and-reduce” approach of [17] in the following ways:
1. In [17], the polynomial maps hj (for j = 0, 1, . . . , ⌈log n⌉) were inductively constructed

such that after shifting G by hj , in the new polynomial G(x + hj), the product of any 2j

consecutive matrices have 2 log w-support concentration. We strengthen this result by
showing w2-cone concentration at each inductive step.

2. At each induction step, since we are dealing with polynomials in orbit (of ROABPs), we
not only need to construct a polynomial map which helps to achieve w2-cone concentration,
but its composition with any invertible affine transformation also helps to achieve the
same property.

In [17], hj was constructed as follows: h0 = 0 and for all j ∈ [⌈log n⌉], hj = hj−1 +
ujg(sj , tj) where g(sj , tj) is a total degree 4d log w independent monomial map from Fm×Fm′

to Fn. They showed that the product of any 2j consecutive matrices in G(y + hj) has 2 log w-
support concentration over the field F((uk, sk, tk)k∈[j]).

Our definition of hj is very close to the definition used in [17]. For j = 0, hj = (t, t2, . . . , tn)
and for all j ∈ [⌈log n⌉], hj = hj−1+ujg(sj , tj) where g(sj , tj) is a total degree D independent
monomial map from Fm × Fm′ to Fn where D = 2w2 · min{w2, 2d log w}. We show that
for every invertible linear transformation L(x) from Fn to Fn and b ∈ Fn, the product
of any 2j consecutive matrices in G(y + L ◦ hj + b) has a cone-closed basis, hence has
w2-cone concentration, over the field F(t, (uk, sk, tk)k∈[j]). Our rank concentration results
play an important role in proving this property of hj . For more details see Lemma 9 and 10.
There are many known constructions of total degree D independent monomial map with
m = m′ = O(D). For example see Lemma 20. After constructing a polynomial map which
gives w2-cone concentration in G(y), the rest of the proof will be similar to what we did for
the any-order ROABP case.

Notations

By N we denote the set of natural numbers. For any positive integer n, [n] denotes the set
{1, 2, . . . , n}. For a variable tuple x = (x1, . . . , xn) and a tuple e = (e1, . . . , en) ∈ Nn, xe

denotes the monomial
∏n

i=1 xei
i . The degree, or total degree, of xe is |e|1 =

∑n
i=1 ei and the

individual degree of xe is |e|∞ = maxi∈[n] ei. The support of xe is the subset S of [n] such
that i ∈ S if and only if ei > 0, and the support-size denotes the cardinality of S. The cone
of xe is the set of monomials which divide it and the cone-size is the cardinality of that set,
that is

∏n
i=1(ei + 1). A monomial xf is called a sub-monomial of xe, if xe divides xf , that is

ei ≤ fi for all i ∈ [n]. A set of monomials B is called cone-closed if for every monomial in B

all its sub-monomials are also in B. For a polynomial f in x and a monomial xe, coeff (xe)
denotes the coefficient of xe in f .

2 Achieving Cone-closed basis by shift

In this section, we show our rank concentration results for polynomials over the vector space
Fk. By Mn,d, we denote the set of n-variate monomials with individual degree at most d. We
also use Mn,d to denote the exponent vectors for those monomials since there is one-to-one
correspondence between monomials and their exponent vectors. For any a, b ∈ Nn with
a = (a1, . . . , an) and b = (b1, . . . , bn),

(a
b
)

denotes
∏n

i=1
(

ai

bi

)
.

APPROX/RANDOM 2021

30:10 Improved Hitting Set for Orbit of ROABPs

Let G(x) be an n-variate polynomial over Fk with individual degree at most d. After
shifting G(x) by z, the coefficients of the shifted polynomial G′(x) = G(x + z) can be written
as follows: for all e ∈Mn,d,

coefxe(G′) =
∑

f∈Mn,d

(
f
e

)
coefxf (G)zf−e.

The above equation can be written in matrix form as follows:

F ′(z) = W −1(z)TW (z)F, (1)

where
F and F ′(z) are the matrices with entries from F and F[z], respectively. The rows of
both the matrices are indexed by the elements of Mn,d, and for any monomial e ∈Mn,d,
the rows indexed by e in F and F ′ are coefxe(G) and coefxe(G′), respectively.
W (z) be the diagonal matrix whose rows and columns are indexed by the elements of
Mn,d and for all e ∈Mn,d, W (z)e,e = ze.
T is a square matrix such that the rows and columns are indexed by Mn,d and for all
e, f ∈Mn,d, Te,f =

(f
e
)
. In the literature, T is known as transfer matrix.

In the following lemma, we recall a property of transfer matrix from [16].

▶ Lemma 3 (Lemma 17 [16]). Let F be a field of characteristic 0 or greater than d. Then,
for every B ⊆Mn,d, there exists a cone-closed set A ⊆Mn,d with |A| = |B| such that TA,B

is full rank over F.

Next, we show our first rank concentration result. Informally, we prove that if G(x) is
shifted by algebraically independent polynomials, the new polynomial has a cone-closed basis.

▶ Lemma 4. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ Fk[x] be an
n-variate polynomial with individual degree at most d. Let g(z) = (g1, . . . , gn) be a polynomial
map from Fn to Fn such that all gi’s are algebraically independent. Then G(x + g) has a
cone-closed basis over F(z).

Proof. First we show that G′(x) = G(x + z) has a cone-closed basis over F(z). This part of
our proof closely follows the proof outline of [16, Theorem 2]. From Equation 1, we know
that the shifted polynomial G(x + z) yields the following matrix equation:

F ′(z) = W (z)−1TW (z)F.

Let k′ be the rank of the matrix F . Then we divide our proof in two cases:

Case 1 (k′ < k). We reduce this case to the other one where k′ = k. Since the rank of F is
k′, there exists a S ⊆ [k] of size k′ such that FM,S is full rank where M = Mn,d. Let GS(x)
and G′

S(x) be the projections of G(x) and G′(x) on the coordinates indexed by S. Then
G′

S(x) = GS(x + z). One can observe that for any set of monomials A, if their coefficients in
GS(x) forms a basis for its coefficient space, then their coefficients in G(x) also forms a basis
for the coefficients space of G(x). Similarly, this is also true between G′

S(x) and G′(x). Now
from the case 2, G′

S(x) has a cone-closed basis over F(z), that is, there exists a cone-closed
set of monomials A such that their coefficients in G′

S(x) forms a basis for its coefficient space.
This implies that G′(x) also has a cone-closed basis over F(z).

V. Bhargava and S. Ghosh 30:11

Case 2 (k′ = k). The rows of F are indexed by the monomials in Mn,d. Fix a monomial
ordering ≺ on the monomials in z. For example, assume ≺ is the lexicographic monomial
ordering. Then, from Lemma 13, we have a unique subset B of Mn,d with the following
properties: rank(FB,[k]) = k, and for every other subset C of Mn,d with rank(FC,[k]) = k,∏

e∈B

ze ≺
∏

e′∈C

ze′
.

Using Lemma 3, we have a cone-closed subset A of Mn,d such that TA,B has full rank. Now

det(F ′(z)A,[k]) = det(W (z)A,A)−1 · det((TW (z)F)A,[k]). (2)

Applying Lemma 14, we get that

det((TW (z)F)A,[k]) =
∑

C∈(Mn,d
k

)
det(TA,C) det(FC,[k])

∏
e∈C

ze. (3)

For every C ∈
(

Mn,d

k

)
\ {B} such that FC,[k] is a full rank matrix, the following holds:∏

e∈B ze ≺
∏

e′∈C ze′ . Therefore, the coefficient of
∏

e∈B ze in the above polynomial does not
get cancelled by other monomials. Also, the coefficient of

∏
e∈B ze, det(TA,B) det(FB,[k]) ̸=

0. Therefore, the polynomial det((TW (z)F)A,[k]) is a nonzero polynomial in z. Also,
det(W (z)A,A)−1 is a nonzero element in F(z) since det(W (z)A,A) is a nonzero polynomial in
z. Therefore, det(F ′(z)A,[k]) is nonzero in F(z). This implies that G′(x) = G(x + z) has a
cone-closed basis over F(z).

Now we show that G(x + g) has a cone-closed basis over F(z). In Equation 2, since
both det(W (z)A,A) and det((TW (z)F)A,[k]) are nonzero polynomials in z. Therefore, after
evaluating them on any n algebraically independent polynomials, they will remain nonzero.
Thus, det(F ′(g)A,[k]) remains nonzero. This implies that for the polynomial G(x + g), the
coefficients of the monomials in A form a cone-closed basis (over F(z)) for its coefficient
space. ◀

The above lemma combined Lemma 26 implies that the polynomial G(x + g) also has
k-cone concentration over F(t). Here, we would like to mention that although the above
rank concentration result is described in terms of cone-closed basis, to design our hitting
sets, proving k-cone concentration property of G(x + g) is sufficient. The similar thing is
also true for our next rank concentration result.

▶ Lemma 5. Let F be a field of characteristic zero or greater than d. Let G(x) be an n-variate
individual degree ≤ d polynomial over Fk such that the coefficients of all the monomials of
total degree up to D spans the coefficient space of G. For some N ≥ n, let L(y) = (ℓ1, . . . , ℓn)
be a linear transformation from FN to Fn such that all ℓi’s are linearly independent. Let
g(s, t) be a total degree Dk independent monomial map from Fm×Fm′ to FN . Then G(x+g′),
where g′ = uL ◦ g, has a cone-closed basis over F (u, s, t).

For proof of the above lemma see Section B.

3 Hitting set for orbit of any-order ROABPs

In this section, we describe our hitting set for the orbit of any-order ROABPs. As mentioned
earlier, the notion of low-cone concentration plays an important role is designing our hitting
sets. We begin by showing that for w-width n-variate any-order ROABPs, w2-cone concen-
tration can be established by showing w2-cone concentration for every Ω(log w)-size subset
of variables.

APPROX/RANDOM 2021

30:12 Improved Hitting Set for Orbit of ROABPs

▶ Lemma 6. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w be
an n-variate polynomial over F with individual degree at most d and computed by a w-width
any-order ROABP. Let ℓ = ⌊2 log w⌋+ 1. Let g(t) = (g1, . . . , gn) be a polynomial map such
that for all S ⊆ [n] of size ℓ, the polynomials {gi | i ∈ S} are algebraically independent.
Then G(x + g) has w2-cone concentration over F(t).

For proof of the above lemma see the full version. Our next lemma, using Shpilka-
Volkovich generator (Definition 21), gives the construction of a polynomial map which
satisfies the condition of the above lemma.

▶ Lemma 7. Let L(x) = (ℓ1, . . . , ℓn) be an invertible linear transformation from Fn to Fn.
Let b be a point in Fn. For some k ≤ n, let g(s, t) = (g1, . . . , gn) be the polynomial map from
Fk × Fk to Fn, defined as g = L ◦ GSV

n,k + b. Then for all S ⊆ [n] of size k, the polynomials
{gi | i ∈ S} are algebraically independent.

For proof of the above lemma the full version. Combining the above two lemmas, we get the
following.

▶ Corollary 8. Let F be a field of characteristic 0 or greater than d. Let G(x) ∈ F[x]w×w

be an n-variate polynomial with individual degree at most d and computed by a width w

any-order ROABP. Let L(x) be an invertible linear transformation from Fn to Fn and b
be a point in Fn. Let k = ⌊2 log w⌋+ 1 and g = L ◦ GSV

n,k + b. Then G(x + g) has w2-cone
concentration over F (s, t).

Proof. Let g(s, t) = (g1, . . . , gn). From Lemma 7, for every subset S ⊆ [n] of size k, the
polynomials {gi | i ∈ S} are algebraically independent. Therefore, using Lemma 6, we get
that G(x + g) has w2-cone concentration over F(s, t). ◀

Now we describe the construction of our hitting set for the orbit of any-order ROABPs.

Proof of Theorem 1. Let f(x) be an n-variate individual degree ≤ d polynomial which is in
the orbit of width w any-order ROABPs. Then, there exists an n-variate individual degree
≤ d polynomial G(y) ∈ Fw×w[y] computed by a width w any-order ROABP, an invertible
linear transformation L(x) from Fn to Fn and a point b ∈ Fn such that

f(x) = aT ·G(L + b) · c,

where a, c ∈ Fn. Let g(s, t) = L ◦ GSV
n,k + b where k = ⌊2 log w⌋+ 1, and let

h(y) = aT ·G(y + g) · c.

This implies that

f ′(x) = f(x + GSV
n,k) = h(L(x)). (4)

From Corollary 8, G(y + g) has w2-cone concentration over F(s, t). This implies that there
exists a monomial ye in h with cone-size ≤ w2 such that coefye(h) is nonzero. For a monomial
of cone-size ≤ w2, its total degree is less than w2 and the support-size is ≤ log w2. Since the
individual degree of each variable in G(y) is at most d, Therefore, the degree of ye is ≤ ℓ

where ℓ = min{w2, 2d log w}. Hence, hom≤ℓ(h(y)) is a nonzero polynomial in y. Since

hom≤ℓ(h(L(x))) = (hom≤ℓ(h))(L(x)),

V. Bhargava and S. Ghosh 30:13

from Lemma 24, hom≤ℓ(h(L(x))) is a nonzero polynomial. Therefore, from Equation 4,
hom≤ℓ(f ′(x)) is a nonzero polynomial over F(s, t). This implies that there exists a monomial
xe of support-size ≤ ℓ such that its coefficient in f ′ is nonzero. Thus, from Lemma 23,
f ′(GSV

n,ℓ) = f(GSV
n,k+ℓ) is a k + ℓ-variate nonzero polynomial over F. The total degree of f is

at most nd, and from Observation 22, the individual degree of each coordinate of GSV
n,k+ℓ is

at most n. Also, GSV
n,k+ℓ is poly(ndw)-explicit. Thus, from Observation 17, f has a hitting

set computable in time (ndw)O(ℓ). ◀

4 Hitting Set for orbit of ROABPs

Here, we discuss the construction of our hitting set for the orbit of ROABPs. Towards
that, first we need to construct some polynomial map which helps us in achieving low-cone
concentration for ROABPs. At this step, we also have to be more careful as we are dealing
with the orbit of ROABPs. Lemma 10 describes inductive construction of a polynomial map,
by taking sum of logarithmically many variable disjoint copies of total degree D independent
monomial maps (Definition 19) for some small D, such that the following holds: by shifting its
composition with any invertible affine transformation we can achieve low-cone concentration
for ROABPs. We begin by showing how to achieve cone-closed basis for the product of two
polynomials in a disjoint set of variables, with the property that each polynomial also has a
cone-closed basis.

▶ Lemma 9. Let y and z be two disjoint sets of variables. Let G(y) ∈ F[y]w×w and
H(z) ∈ F[z]w×w be two n-variate individual degree ≤ d polynomials such that both have cone-
closed bases. Let L(x) = (ℓ1, . . . , ℓ|y⊔z|) be a linear transformation from F|x| to F|y| × F|z|

such that all ℓis are linearly independent. Let D = 2w2 · min{w2, 2d log w}, g(s, t) be a
total degree D independent monomial map form F|s| × F|t| to F|x|, and g′ = uL ◦ g. Then
G(y + g′|y)H(z + g′|z) has a cone-closed basis over F (u, s, t), where g′|y and g′|z are the
restrictions of g′ over y and z, respectively.

For proof of the above lemma see the full version. Applying the above lemma repeatedly,
the next one gives the construction of a polynomial map which helps us to achieve low-cone
concentration for ROABPs.

▶ Lemma 10. Let n ≥ 0, N = 2n and d, w ≥ 1. Let D = 2w2 ·min{w2, 2d log w}. Let g(s, t)
be a total degree D independent monomial map from Fm×Fm′ to FN . Let t0 = (t, t2, . . . , tN).
Let

Gn,d,w = t0 +
n∑

i=1
uig(si, ti),

where all si’s and ti’s are disjoint set of variables.
Let π be permutation on [N]. Let F (x) =

∏N
i=1 Mi(xπ(i)) such that each Mi(xπ(i)) is a

polynomial in Fw×w[xπ(i)] with individual degree at most d. Then for every invertible linear
transformation L(x) from FN to FN and b ∈ FN , F (x + b + L ◦ Gn,d,w) has a cone-closed
basis over the field F(t, (ui, si, ti)i∈[n]).

Proof. Let L(x) = (ℓ1, . . . , ℓN). Let h0 = b + L(t0), and for all k ∈ [n],

hk = hk−1 + ukL ◦ g(tk, sk).

Then hn = b + L ◦ Gn,d,w. For all 1 ≤ i ≤ j ≤ N , let

Fij [x] =
j∏

r=i

Mr(xπ(r)).

APPROX/RANDOM 2021

30:14 Improved Hitting Set for Orbit of ROABPs

Using induction, we show that for all k ∈ {0, 1, . . . , n} and i, j ∈ [n] with j − i + 1 = 2k,
Fij [x + hk] has a cone-closed basis over F(t, (ui, si, ti)i∈[k]).

For k = 0. Let b = (b1, . . . , bN). We need to show that for all i ∈ [N], Mi(xπ(i) +ℓπ(i)(t0)+
bπ(i)) has a cone-closed basis over F(t). Since L(x) is an invertible linear transformation,
each ℓi is a nonzero linear polynomial over x. Therefore, ℓi(t0) is a non-contant polynomial
in t. Hence, using Lemma 3, for all i ∈ [N], Mi(xπ(i) + ℓπ(i)(t0) + bπ(i)) has a cone-closed
basis over F(t).

For k > 0. Let i, j ∈ [N] such that j − i + 1 = 2k. Let y and z be a partition of the
variables (xπ(i), . . . , xπ(j)) into two equal halves such that they respect the permutation π.
Then Fij [x] can be written as G(y)H(z) where G(y) ∈ F[y]w×w and H(z) ∈ F[z]w×w. From
the induction hypothesis, we know that both

G′(y) = G(y + hk−1|y) and H ′(z) = H(z + hk−1|z)

have cone-closed bases over F(t, (ui, si, ti)i∈[k−1]). Let F ′
ij(x) = G′(y)H ′(z). Then, using

Lemma 9,

Fij(x + hk) = F ′
ij(x + ukL ◦ g(sk, tk))

has a cone-closed basis over F(t, (ui, si, ti)i∈[k]). This completes our proof. ◀

From Lemma 20, using Klivans-Spielman generator (Lemma 18), we can construct a total
degree D independent monomial map. Therefore, Klivans-Spielman generator combined with
the above lemma we get the following corollary.

▶ Corollary 11. Let n ≥ 0, N = 2n and d, w ≥ 1. Let D = 2w2 ·min{w2, 2d log w}. Let

G′
n,d,w = t0 +

n∑
i=1

uiGKS
N,d,ND (si, ti). (5)

Let π be permutation on [N]. Let F (x) =
∏N

i=1 Mi(xπ(i)) such that each Mi(xπ(i)) is a
polynomial in F[xπ(i)]w×w with individual degree at most d. Then,
1. for every invertible linear transformation L(x) from FN to FN and b ∈ FN , the polynomial

F (x + b + L ◦ G′
n,d,w) has a cone-closed basis over the field F(t, (ui, si, ti)i∈[n]).

2. b + G′
n,d,w is a polynomial map from F× (F× Fm × Fm)n to FN where m = O(D).

3. G′
n,d,w is poly(dND)-explicit polynomial map and its each coordinate is a polynomial of

individual degree at most poly(dN).

Proof. From Lemma 20, GKS
N,d,ND (s, t) is a poly(NDd)-explicit total degree D independent

monomial map from Fm × Fm to FN , where m = O(D). Also, each coordinate of GKS
N,d,ND is

a polynomial of individual degree at most poly(dN). Now this combined with Lemma 10
prove the above corollary. ◀

Now we describe the construction of hitting set for orbit of ROABPs.

Proof of Theorem 2. Let f(x) be an n-variate individual degree ≤ d polynomial which
is in the orbit of width w ROABPs. Then, there exists an n-variate individual degree
≤ d polynomial G(y) ∈ F[y]w×w computed by a w-width ROABP, an invertible linear
transformation L(x) from Fn to Fn and b ∈ Fn such that

f(x) = aT ·G(L(x) + b) · c,

V. Bhargava and S. Ghosh 30:15

where a, c ∈ Fn. Let D = 2w2 ·min{w2, d log w2}. Let G′
⌈log n⌉,d,w be defined as Equation 5

in Corollary 11, that is

G′
⌈log n⌉,d,w = t0 +

⌈log n⌉∑
i=1

uiGKS
n,d,nD (si, ti),

where t0 = (t, t2, . . . , tn). Then, G′
⌈log n⌉,d,w is a polynomial map from F×(F×Fm×F m)⌈log n⌉

to Fn where m = O(D). This implies that the number of variables used in G′
⌈log n⌉,d,w is

O(D log n). Let

g(y) = aT ·G(y + b + L ◦ G′
⌈log n⌉,d,w) · c.

Then

f ′(x) = f(x + G′
⌈log n⌉,d,w) = g(L(x)). (6)

From Corollary 11,

G′(y) = G(y + b + L ◦ G′
⌈log n⌉,d,w)

has a cone-closed basis over F(t, (ui, si, ti)i∈[⌈log n⌉]). Therefore, from Lemma 26, G′(y) has
also w2-cone concentration. This implies that g(y) has a monomial of nonzero coefficient and
its cone-size is at most w2. For every monomial of cone-size at most w2, its degree is also at
most w2 and its support-size is at most 2 log w. Therefore, for every monomial of cone-size
≤ w2 and individual degree ≤ d, its degree is at most k = min{w2, 2d log w}. Therefore,
hom≤k(g(y)) is a nonzero polynomial in y over F(t, (ui, si, ti)i∈[⌈log n⌉]). Since

hom≤k(g(L(x))) = (hom≤k(g))(L(x)),

from Lemma 24, hom≤k(g(L(x))) is also nonzero polynomial. Therefore, from Equation 6,
hom≤k(f ′(x)) is also a nonzero polynomial. This implies that there exists a monomial xe of
support-size at most k such that coefxe(f ′) is nonzero. Thus, from Lemma 23,

f ′(GSV
n,k) = f(GSV

n,k + G′
⌈log n⌉,d,w)

is a nonzero polynomial. Let G = GSV
n,k + G′

⌈log n⌉,d,w. Then, G is a polynomial map in
O(kw2 log n) many variables and the individual degree of each coordinate is at most poly(ndw).
Since both GSV

n,k and G′
⌈log n⌉,d,w both are poly(ndw)-explicit, G is also poly(ndw)-explicit.

Thus, applying Observation 17, we have a hitting set for f computable in time (ndw)O(ℓ)

where ℓ = (w2 log n) ·min{w2, d log w2}. ◀

5 Conclusion

In this paper, we studied the hitting set problem for the orbits of ROABPs and any-order
ROABPs. We have designed improved hitting sets for these two polynomial classes. In
low-width but high-individual-degree setting, our hitting sets are more efficient than the
previous ones given by Saha and Thankey. On the technical front, we have shown some
stronger rank concentration results by establishing low-cone concentration for polynomials
over vector spaces. These new rank concentration results have played a significant role in
designing our hitting sets. However, our hitting sets for the orbits of ROABPs and any-order
ROABPs are yet to match the time complexity of hitting sets known for ROABPs and its
variants. Therefore, it is an interesting open question to close this gap.

APPROX/RANDOM 2021

30:16 Improved Hitting Set for Orbit of ROABPs

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697, 2015.
2 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of mathematics,

pages 781–793, 2004.
3 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian hits

circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence
degree-k circuits. In STOC, pages 599–614, 2012.

4 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-
depth-∆ formulas. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 321–330, 2013.

5 M. Beecken, J. Mittmann, and N. Saxena. Algebraic Independence and Blackbox Identity
Testing. Inf. Comput., 222:2–19, 2013. (Conference version in ICALP 2011).

6 Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynominal interpolation (extended abstract). In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 301–309,
1988. doi:10.1145/62212.62241.

7 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for bounded
depth arithmetic circuits. In 33rd Computational Complexity Conference, CCC 2018, June 22-
24, 2018, San Diego, CA, USA, pages 13:1–13:17, 2018. doi:10.4230/LIPIcs.CCC.2018.13.

8 David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Springer Publishing
Company, Incorporated, 4th edition, 2015.

9 Rafael Mendes de Oliveira, Amir Shpilka, and Ben Lee Volk. Subexponential size hitting sets
for bounded depth multilinear formulas. In 30th Conference on Computational Complexity,
CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages 304–322, 2015. doi:10.4230/
LIPIcs.CCC.2015.304.

10 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

11 Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence of Polynomials
under Shifts. In 41st International Colloquium on Automata, Languages, and Programming,
Part I, volume 8572 of Lecture Notes in Computer Science, pages 417–428, 2014. doi:
10.1007/978-3-662-43948-7_35.

12 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007. doi:10.1137/
05063605X.

13 Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. Comput., 39(4):1279–1293, 2009. doi:10.1137/080735850.

14 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-NC. In 48th Annual ACM Symposium on Theory of Computing, pages 754–763, 2016.

15 Michael A Forbes. Deterministic divisibility testing via shifted partial derivatives. In 56th
Annual Symposium on Foundations of Computer Science, pages 451–465, 2015.

16 Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity testing of log-
variate circuits. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 54:1–54:16, 2018.

17 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Pseudorandomness for
multilinear read-once algebraic branching programs, in any order. Electron. Colloquium
Comput. Complex., 20:132, 2013. Conference version is accepted in STOC 2014. URL:
http://eccc.hpi-web.de/report/2013/132.

18 Michael A Forbes and Amir Shpilka. Explicit noether normalization for simultaneous conjuga-
tion via polynomial identity testing. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 527–542. Springer, 2013.

https://doi.org/10.1145/62212.62241
https://doi.org/10.4230/LIPIcs.CCC.2018.13
https://doi.org/10.4230/LIPIcs.CCC.2015.304
https://doi.org/10.4230/LIPIcs.CCC.2015.304
https://doi.org/10.1007/978-3-662-43948-7_35
https://doi.org/10.1007/978-3-662-43948-7_35
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/05063605X
https://doi.org/10.1137/080735850
http://eccc.hpi-web.de/report/2013/132

V. Bhargava and S. Ghosh 30:17

19 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.34.

20 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Jaroslaw Byrka
and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Confer-
ence, volume 176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.4.

21 Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. Derandomization from
algebraic hardness. Electronic Colloquium on Computational Complexity (ECCC), 26:65, 2019.
Preliminary version in FOCS 2019. URL: https://eccc.weizmann.ac.il/report/2019/065/.

22 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and any-
order, read-once oblivious arithmetic branching programs. Theory of Computing, 13(2):1–21,
2017.

23 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity
testing for sum of read-once oblivious arithmetic branching programs. In 30th Conference
on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, pages
323–346, 2015. doi:10.4230/LIPIcs.CCC.2015.323.

24 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 821–830, 2017.

25 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April
28-30, 1980, Los Angeles, California, USA, pages 262–272, 1980.

26 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. Preliminary
version in the 35th Annual ACM Symposium on Theory of Computing (STOC), 2003. doi:
10.1007/s00037-004-0182-6.

27 Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333–364, 2011.
doi:10.1007/s00493-011-2537-3.

28 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 198–207, 2009. doi:10.1109/FOCS.2009.67.

29 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007.

30 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July
6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001. doi:10.1145/380752.380801.

31 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and deterministic multivariate polynomial factorization. In IEEE 29th Conference
on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages
169–180, 2014.

32 Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic rank. Theory
of Computing, 13(1):1–33, 2017. Preliminary version in the 31st Conference on Computational
Complexity (CCC), 2016. doi:10.4086/toc.2017.v013a006.

33 Mrinal Kumar and Ben Lee Volk. A polynomial degree bound on equations for non-rigid
matrices and small linear circuits. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 9:1–9:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ITCS.2021.9.

APPROX/RANDOM 2021

https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4
https://eccc.weizmann.ac.il/report/2019/065/
https://doi.org/10.4230/LIPIcs.CCC.2015.323
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00493-011-2537-3
https://doi.org/10.1109/FOCS.2009.67
https://doi.org/10.1145/380752.380801
https://doi.org/10.4086/toc.2017.v013a006
https://doi.org/10.4230/LIPIcs.ITCS.2021.9
https://doi.org/10.4230/LIPIcs.ITCS.2021.9

30:18 Improved Hitting Set for Orbit of ROABPs

34 Richard J. Lipton and Nisheeth K. Vishnoi. Deterministic identity testing for multivariate
polynomials. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 756–760, 2003.

35 László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79,
pages 565–574, 1979.

36 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vpe and
ΣΠΣ circuits. CoRR, abs/2102.05632, 2021. arXiv:2102.05632.

37 Daniel Minahan and Ilya Volkovich. Complete derandomization of identity testing and recon-
struction of read-once formulas. In Ryan O’Donnell, editor, 32nd Computational Complexity
Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 32:1–32:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.32.

38 Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between blackbox deran-
domization of polynomial identity testing and derandomization of Noether’s normalization
lemma. In FOCS, pages 629–638, 2012.

39 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. Preliminary version in the 36th Annual
Symposium on Foundations of Computer Science (FOCS), 1995. doi:10.1007/BF01294256.

40 Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over pos-
itive characteristic: New criterion and applications to locally low-algebraic-rank circuits.
Computational Complexity, 27(4):617–670, 2018. Preliminary version in the 41st Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS), 2016.
doi:10.1007/s00037-018-0167-5.

41 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

42 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity testing,
sparse factorization and duality. Computational Complexity, 22(1):39–69, 2013.

43 Chandan Saha and Bhargav Thankey. Hitting sets for orbits of circuit classes and polynomial
families. Electron. Colloquium Comput. Complex., 28:15, 2021. URL: https://eccc.weizmann.
ac.il/report/2021/015.

44 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In ICALP, volume 5125 of
Lecture Notes in Computer Science, pages 60–71. Springer, 2008.

45 Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79, 2009.
46 Nitin Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. SIAM

J. Comput., 40(1):200–224, 2011. doi:10.1137/090770679.
47 Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3

circuits: The field doesn’t matter. SIAM Journal on Computing, 41(5):1285–1298, 2012.
48 Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Improved

blackbox identity test for depth-3 circuits. J. ACM, 60(5):33:1–33:33, 2013. doi:10.1145/
2528403.

49 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

50 Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations of Computer Science, St.
Louis, Missouri, USA, October 22-24, 1990, Volume I, pages 11–15, 1990. doi:10.1109/FSCS.
1990.89519.

51 Amir Shpilka and Ilya Volkovich. Improved polynomial identity testing for read-once formulas.
In Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, 12th International
Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA,
USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture Notes in Computer Science,
pages 700–713. Springer, 2009. doi:10.1007/978-3-642-03685-9_52.

52 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Comput. Complex.,
24(3):477–532, 2015. doi:10.1007/s00037-015-0105-8.

http://arxiv.org/abs/2102.05632
https://doi.org/10.4230/LIPIcs.CCC.2017.32
https://doi.org/10.1007/BF01294256
https://doi.org/10.1007/s00037-018-0167-5
https://doi.org/10.1007/s00037-005-0188-8
https://eccc.weizmann.ac.il/report/2021/015
https://eccc.weizmann.ac.il/report/2021/015
https://doi.org/10.1137/090770679
https://doi.org/10.1145/2528403
https://doi.org/10.1145/2528403
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1007/978-3-642-03685-9_52
https://doi.org/10.1007/s00037-015-0105-8

V. Bhargava and S. Ghosh 30:19

53 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

54 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 696–707, 2017. doi:10.1109/FOCS.2017.70.

55 W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
s1-22(2):107–111, 1947.

56 Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula. Linear Algebra
and its Applications, 184:79–82, 1993.

57 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, pages
216–226, 1979.

A Preliminaries

We start with the following observation.

▶ Observation 12. For a monomial of cone-size at most k, its degree is less that k and the
support-size is at most log k.

A monomial ordering is a total ordering on the set of all monomials in x with following
properties:
1. for all a ∈ Nn \ {0 = (0, . . . , 0)}, 1 ≺ xa.
2. for all a, b, c ∈ Nn, if xa ≺ xb then xa+c ≺ xb+c.
For more on monomial ordering, see [8, Chapter 2].

Suppose that M is a matrix whose rows and columns are indexed by A and B, respectively.
Then for every S ⊆ A and T ⊆ B, MS,T denotes the submatrix of M with rows and columns
are indexed by S and T , respectively. The next lemma is a well known phenomenon in
matroid theory which, informally, says that given distinct weights to the elements of a
matroid there exists a unique minimum weight base. Here, we describe it in a language
which is suitable for our context.

▶ Lemma 13. Let k be a positive integer and Mn,d be the set of all n-variate monomials
in x with individual degree ≤ d. Let M be a matrix over F of rank r such that its rows
are indexed by [k] and the columns are indexed by Mn,d. Let ≺ be a monomial ordering
on the set of monomials in x. Then there exists a unique subset B ⊆ Mn,d of size r

such that rank(M[k],B) = r and for every other subset B′ ⊆ Mn,d with rank(M[k],B′) = r,∏
e∈B xe ≺

∏
e′∈B′ xe′ .

Here we give a very brief sketch of the proof. Using the monomial ordering ≺, greedily
choose r linealy independent columns of M as follows: at each step pick the least ≺-indexed
column of M such that it increases the rank of the chosen vectors, and denote that set by
B = {m1, . . . , mr} with m1 ≺ · · · ≺ mr. Let B′ be another subset of Mn,d with r linearly
independent columns of M , and B′ = {m′

1, . . . , m′
r} with m′

1 ≺ · · · ≺ m′
r. Then one can

show that B ⪯ B′ point-wise, that is mi ⪯ m′
i for all i ∈ [r], and there exists an i0 ∈ [r] such

that mi0 ≺ m′
i0

. This implies that
∏

i∈[r] mi ≺
∏

i∈[r] m′
i. For more details one can see [17,

Lemma 5.2 and 5.3].
Next, we give an expression for the product of a “fat” matrix with a “tall” matrix. It is

known as Cauchy-Binet formula. It will be useful to prove the rank concentration results in
Section 2.

APPROX/RANDOM 2021

https://doi.org/10.1109/FOCS.2017.70

30:20 Improved Hitting Set for Orbit of ROABPs

▶ Lemma 14 (Cauchy-Binet formula, [56]). Let n ≥ m be two positive integers. Let M and
N two m× n and n×m matrices, respectively, over F. Then

det(AB) =
∑

S∈([n]
m)

det(M[m],S) · det(MS,[m]).

A.1 Hitting sets
▶ Definition 15. Let C be a set of n-variate polynomials over a field F. A set of points
H ⊆ Fn is called a hitting set for C if for every polynomial f ∈ C, f is nonzero if and only
if there exists a point ααα ∈ H such that f(ααα) ̸= 0.

We say a hitting set H is computable in time T if there exists an algorithm which computes
all the points in the set H in time T . When F is a finite field, we are allowed to pick points
from Kn where K is a polynomially large extension of F. In PIT literature, a common method
of designing hitting sets is via hitting set generator.

▶ Definition 16. Let C be a set of n-variate polynomial class over a field F. A polynomial
map g(t) from Fm to Fn is called hitting set generator for C if for every f ∈ C, f is nonzero
if and only if f(g) ̸= 0.

Furthermore, g(t) is called t(m, n)-explicit if there exists an n-output circuit which
computes g(t) and the circuit is computable in t(m, n) time.

Hitting set generators immediately give us hitting sets.

▶ Observation 17. Let C be an n-variate polynomial class over a field F such that the degree
of each polynomial is at most d. Let g(t) : Fm ← Fn be a hitting set generator for C such
that the individual degree of each coordinate of g is at most r. Let S be a subset of F of
size dr + 1. Then H := g(Sm) is a hitting set for C. Moreover, if g(t) is t-explicit then the
hitting set H is computable in poly(t(dr)m) time.

Proof. Since g is a hitting set generator for C and each coordinate of g is a m-variate
polynomial, for every nonzero f ∈ C, f(g) is a nonzero m-variate polynomial. Also, the
individual degree of f(g) is at most dr. Thus, there exists a point ααα ∈ Sm such that
f(g(ααα)) ̸= 0. Therefore, H is a hitting set for C. Since g is t-explicit, each point in H is
computable in time poly(t). Therefore, H is computable in time poly(t(dr)m). ◀

A.2 Some useful polynomial maps
Suppose that g(t) = (g1, . . . , gn) be a polynomial map from Fm to Fn. Then, we say g is a
t(m, n)-explicit polynomial map if there exists an n-output circuit C which computes the
polynomials (g1, . . . , gn) and the circuit C is computable in time t(m, n). Let g(y) be a
polynomial map from Fm to Fn and h(x) = (h1, . . . , hk) be a polynomial map from Fn to
Fk. Then h ◦ g denotes the composition of g with h, that is h(g) = (h1(g), . . . , hk(g)). A
polynomial map L(x) = (ℓ1, . . . , ℓn) from Fn to Fn is called an invertible linear transformation
if each ℓi is a linear polynomial of form ℓi1x1 + . . .+ℓinxn and all ℓi’s are linearly independent.
An invertible affine transformation is a polynomial map of form L(x) + b where L(x) is an
invertible linear transformation and b ∈ Fn. Next, we describe some well known polynomial
maps and their properties which are frequently used in designing PIT algorithms, and they
also will be useful for us. First, we describe the generator for sparse polynomial due to
Klivans and Spielman [30].

V. Bhargava and S. Ghosh 30:21

▶ Lemma 18 (Klivans-Spielman generator [30]). Let n, d, s, m be positive integers such that
m = Θ(lognd s). Let F be a field of size ≥ poly(nd). Then there exists a poly(nd)-explicit
polynomial map GKS

n,d,s(s, t) from Fm × Fm to Fn such that
1. for all i ∈ [n], (GKS

n,d,s)i is a polynomial of individual degree ≤ poly(nd).
2. for every subset S of at most s monomials in n-variables with individual degree at most

d, there exists an ααα ∈ Fm such that the polynomials {(GKS
n,d,s(ααα, t))e}e∈S are nonzero,

distinct monomials in t.
The above generator is a slight variation of the construction given in [30], but it can be
constructed from their techniques. For a proof-sketch see [17, Theorem 2.3]. Next, we define
total degree D independent monomial map from [17].

▶ Definition 19. For some positive integers n and D, a polynomial map g(s, t) from Fm×Fm′

to Fn is called total degree D independent monomial map if there exists an ααα ∈ Fm such
that the polynomials {g(ααα, t)e}|e|1≤D are nonzero, distinct monomials in t.

In the following lemma, we describe a construction of total degree D independent monomial
map using Klivans-Spielman generator.

▶ Lemma 20. Let n, d, D be positive integers. Let |F| ≥ poly(nd). Then, GKS
n,d,nD is a

poly(ndD)-explicit total degree D independent monomial map from Fm × Fm to Fn where
m = O(D).

For proof see [17, Lemma 6.4]. Next, we describe a polynomial map introduced by Shpilka
and Volkovich [51]. It is a widely used tool in PIT and other related results [51, 17, 52, 37,
33, 36, 43], and also crucial for proving our results.

▶ Definition 21 (Shpilka-Volkovich generator [51]). Fix a positive integer n and a set of
n distinct elements A = {α1, . . . , αn} ⊆ F. Let Li(t) be the ith Lagrange interpolation
polynomial for the set A. That is, Li(t) is a univariate polynomial of degree n− 1 such that
Li(αj) = δij. Let s = (s1, . . . , sk) and t = (t1, . . . , tk). Then GSV

n,k (s, t) is the polynomial
map from Fk × Fk to Fn defined as follows: for all i ∈ [n]

(GSV
n,k)i =

k∑
j=1

Li(sj)tj .

The above definition gives the following properties of Shpilka-Volkovich generator.

▶ Observation 22. Fix a set of k distinct elements S = {i1, . . . , ik} ⊆ [n]. Let ααα =
(αi1 , . . . , αik

). Then, for all j ∈ [k], (GSV
n,k (ααα, t))ij

= tj, and the other coordinates of
GSV

n,k (ααα, t) are zero. Furthermore, for all i ∈ [n], the degree of the polynomial (GSV
n,k)i is at

most n.

Using Shpilka-Volkovich generator, the following lemma describes a nonzeroness preserving
variable reduction for polynomials having a “low-support” monomial with nonzero coefficient.

▶ Lemma 23. Let f(x) be an n-variate polynomial over F such that there exists a monomial
xe with nonzero coefficient in f and the support-size of e is at most ℓ. Then f ◦ GSV

n,ℓ ̸= 0.

Proof. Let {xi1 , . . . , xiℓ
} be the support set of the monomial xe. Then, from Observation 22,

there exists an ααα ∈ Fα such that for all j ∈ [ℓ], (GSV
n,ℓ (ααα, t))ij = tj and the other coordinates

of GSV
n,ℓ (ααα, t) are zero. This implies that f(GSV

n,ℓ (ααα, t)) ̸= 0, and therefore f ◦ GSV
n,ℓ ̸= 0. ◀

APPROX/RANDOM 2021

30:22 Improved Hitting Set for Orbit of ROABPs

A.3 Algebraic independence
Suppose that A = {g1, . . . , gk} is a set of n-variate polynomials over a field F. We say that
the set of polynomials A are algebraically dependent over F if there exists a nonzero k-variate
polynomial A(z1, . . . , zk) over F such that A(g1, . . . , gk) = 0. Otherwise, they are called
algebraically independent (over F). In the following lemma, we describe a well known criteria
regarding algebraic independence of a set of linear polynomials.

▶ Lemma 24. Let m ≥ n be two positive integers. Let L(x) = (ℓ1, . . . , ℓn) be a linear
transformation from Fm to Fn such that all ℓi’s are linearly independent. Then, all ℓi’s are
also algebraically independent.

Proof. For the sake of contradiction, assume that all ℓi’s are not algebraically independent.
Then there exists a nonzero polynomial A(z1, . . . , zn) such that A(L(x)) = A(ℓ1, . . . , ℓn) = 0.
Let x = (x1, . . . , xm) and A′(x) = A(L(x)). Since all ℓi’s are linearly independent, there
exists a tuple of linear polynomials U(x) = (u1, . . . , um) and a subset {i1, . . . , in} of [m] such
that for all j ∈ [n],

ℓj(U(x)) = xij
.

This implies that A′(U(x)) = A(xi1 , . . . , xim) = 0 which is a contradiction. Therefore, all
ℓi’s are algebraically independent. ◀

A.4 Various notions of rank concentration
We define various notions of rank concentration and show the relation between them. Suppose
that G(x) be an n-variate polynomial over the vector space Fk. The coefficient space of G is
the vector space spanned by the coefficient vectors of G.

▶ Definition 25 (Rank Concentration). We say that G has
1. ℓ-support concentration if there exists a set of monomials B such that the support-size of

each monomial in B is at most ℓ and their coefficients form a basis for the coefficient
space of G.

2. ℓ-cone concentration if there exists a set of monomials B such that the cone-size of each
monomial in B is at most ℓ and their coefficients form a basis for the coefficient space of
G.

3. a cone-closed basis if there is a cone-closed set of monomials B whose coefficients in G

form a basis of the coefficient space of G.

In the next lemma, we show that cone-closed basis notion subsumes the other two notions
of rank concentration.

▶ Lemma 26. Let G(x) be a polynomial in F[x]k. Suppose that G(x) has a cone-closed basis.
Then, G(x) has k-cone concentration and log k-support concentration.

Proof. Let B be a cone-closed set of monomials whose coefficients in G form a basis for
the coefficient space of G. Since the cardinality of B is at most k and it is closed under
submonomials, the cone-size of each monomial B is at most k. Therefore, G has k-cone
concentration.

Let m ∈ B and S be the support set of m. Let m′ be the monomial defined as
m′ =

∏
i∈S xi. Since B is cone-closed, every sub-monomial m′ is also in B. Thus the

cardinality of S can be at most log k. Therefore, G has log k-support concentration. ◀

V. Bhargava and S. Ghosh 30:23

B Proof of Lemma 5

Proof of Lemma 5. First we study the shifted polynomial G′(x) = G(x + uz). To do so, we
revisit the proof of our Lemma 4. There we considered the lexicographic monomial ordering
over the monomials in z. Here we consider the deg-lex monomial ordering, that is, first order
the monomials from lower degree to higher degree and then within each degree arrange them
in lexicographic order. Like Equation 1, the matrix equation for the shifted polynomial G′(x)
will be

F ′(uz) = W −1(uz)TW (uz)F, (7)

that is scaling of each variable in Equation 1 by u. Applying Lemma 13, let B be the unique
subset of Mn,d such that the rows of F indexed by B form the least basis for the row-space
of F with respect to the deg-lex monomial ordering. From the hypothesis of the lemma,
there exists a subset C ⊆ Mn,d such that the rows in F indexed by C forms a basis for
the row-space of F (same as the coefficient space of G) and deg(C) =

∑
e∈C |e|1 ≤ Dk.

Therefore, deg(B) is also ≤ Dk since the rows indexed by B forms the least basis (with
respect to deg-lex monomial ordering) for the row-space of F . As promised by Lemma 3, let
A be a cone-closed subset of Mn,d such that TA,B is full rank. Now we see how Equation 2
and 3 in the proof of Lemma 4 change here. Like Equation 2, we get

det(F ′(uz)A,[k]) = det(W (uz)A,A)−1 · det((TW (uz)F)A,[k]) (8)

and Equation 3 changes as follows:

det((TW (uz)F)A,[k]) =
∑

i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FC,[k])
∏
e∈C

ze

 ui. (9)

Since B is the least basis (with respect to deg-lex monomial ordering), the coefficient of
udeg(B) is a nonzero degree deg(B) homogeneous polynomial in z. Thus, det(F ′(uz)A,[k])
is a nonzero-polynomial in (u, z). This implies the coefficients of the monomials in A is a
cone-close basis for G(x + uz). For G(x + uL), the polynomial det((TW (uL)F)A,[k]) looks
like the following:

det((TW (uL)F)A,[k]) =
∑

i

 ∑
C∈(Mn,d

k
):deg(C)=i

det(TA,C) det(FA,C)
∏
e∈C

Le

 ui.

Since all ℓi’s are linearly independent, from Lemma 24, they are also algebraically independent.
Therefore, the coefficient of udeg(B) in det((TW (uL)F)A,[k]) is also a nonzero degree deg(B)
homogeneous polynomial in y. Also, deg(B) ≤ Dk. Therefore, after substituting z by L ◦ g
in Equation 9, we get det((TW (g′)F)A,[k]) which is a nonzero polynomial in (u, s, t). Since
det(W (g′)) is also a nonzero polynoimal in (u, s, t), det(F ′(g′)A,[k]) is nonzero in F(u, s, t).
This implies that G(x + g′) has a cone-closed basis over F(u, s, t). ◀

APPROX/RANDOM 2021

A New Notion of Commutativity for the
Algorithmic Lovász Local Lemma
David G. Harris #

University of Maryland, College Park, MD, USA

Fotis Iliopoulos #

Institute for Advanced Study, Princeton, NJ, USA

Vladimir Kolmogorov #

Institute of Science and Technology, Klosterneuburg, Austria

Abstract
The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used
to establish the existence of objects that satisfy certain properties. The breakthrough paper of
Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of
stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as
a sufficient condition for this type of algorithms to converge fast.

Besides conditions for convergence, many other natural questions can be asked about algorithms;
for instance, “are they parallelizable?”, “how many solutions can they output?”, “what is the
expected “weight” of a solution?”. These questions and more have been answered for a class of
LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and
more general notion of commutativity (essentially matrix commutativity) which allows us to show a
number of new refined properties of LLL-inspired local search algorithms with significantly simpler
proofs.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Mathem-
atics of computing → Combinatorics

Keywords and phrases Lovász Local Lemma, Resampling, Moser-Tardos algorithm, latin transversal,
commutativity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.31

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2008.05569

Funding Fotis Iliopoulos: This material is based upon work directly supported by the IAS Fund for
Math and indirectly supported by the National Science Foundation Grant No. CCF-1900460. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
also supported by the National Science Foundation Grant No. CCF-1815328.
Vladimir Kolmogorov: Supported by the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 616160.

1 Introduction

The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can
be used to establish the existence of objects that satisfy certain properties [9]. At a high
level, it states that given a collection of bad events in a probability space µ, if each bad-event
is not too likely and, further, is independent of most other bad events, then the probability
of avoiding all of them is strictly positive.

© David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 31; pp. 31:1–31:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidgharris29@gmail.com
mailto:fotios@ias.edu
mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.31
https://arxiv.org/abs/2008.05569
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

In its simplest, “symmetric” form, it states that if each bad-event has probability at most
p and is dependent with at most d others, where epd ≤ 1, then with positive probability no
bad-events become true. In particular, a configuration avoiding all the bad-events exists.
Although the LLL applies to general probability spaces, most constructions in combinatorics
use a simpler setting we refer to as the variable version LLL. Here, the probability space µ is
a cartesian product with n independent variables, and each bad-event is determined by a
subset of the variables. Two bad-events may conflict if they depend on a common variable.

For example, consider a CNF formula with n variables where each clause has k literals
and each variable appears in at most L clauses. For each clause c we can define the bad
event Bc that c is violated in a chosen assignment of the variables. For a uniformly random
variable assignment, each bad-event has probability p = 2−k and affects at most d ≤ kL

others. So when L ≤ 2k

ek , the formula is satisfiable; crucially, this criterion does not depend
on the number of variables n.

A generalization known as the Lopsided LLL (LLLL) allows bad-events to be positively
correlated with others; this is as good as independence for the purposes of the LLL. Some
notable probability spaces satisfying the LLLL include the uniform distribution on permuta-
tions and the variable setting, where two bad-events B, B′ are dependent only if they disagree
on the value of a common variable.

In a seminal work, Moser & Tardos [25] presented a simple local search algorithm to
make the variable-version LLLL constructive. This algorithm can be described as follows:

Algorithm 1 The Moser-Tardos (MT) resampling algorithm.
1: Draw the state σ from distribution µ

2: while some bad-event is true on σ do
3: Select, arbitrarily, a bad-event B true on σ

4: Resample, according to distribution µ, all variables in σ affecting B

Moser & Tardos showed that if the symmetric LLL criterion (or more general asymmetric
criterion) is satisfied, then this algorithm quickly converges. Following this work, a large
effort has been devoted to making different variants of the LLL constructive. This research
has taken many directions, including further analysis of Algorithm 1 and its connection to
different LLL criteria [6, 22, 26].

One line of research has been to use variants of Algorithm 1 for general probability
spaces beyond the variable LLL. These include applications of the LLL to permutations and
matchings of the clique [1, 2, 17, 21, 19] as well as settings not directly connected to the LLL
itself [3, 7, 18]. At a high level of generality, we summarize this in the following framework.
There is a discrete state space Ω, with a collection F of subsets (which we call flaws) of Ω.
There is also some problem-specific randomized procedure called the resampling oracle Rf

for each flaw f ; it takes some random action to attempt to “fix” that flaw, resulting in a new
state σ′ ← Rf (σ). With these ingredients, we define the general local search algorithm as
follows:

Algorithm 2 The general local search algorithm.
1: Draw the state σ from some distribution µ

2: while some flaw holds on σ do
3: Select a flaw f of σ, according to some rule S.
4: Update σ ← Rf (σ).

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:3

We refer to Algorithm 2 throughout as the Search Algorithm. The most important
question about its behavior is whether it converges to a flawless object. But, there are other
important questions to ask; for instance, “is it parallelizable?”, “how many solutions can it
output?”, “what is the expected “weight” of a solution?”. These questions and more have been
answered for the Moser-Tardos algorithm in a long series of papers [6, 8, 11, 12, 15, 16, 22, 25].
As a prominent example, the result of Haeupler, Saha and Srinivasan [12], as well as follow-up
work of Harris and Srinivasan [14, 16], allows one to argue about the dynamics of Algorithm 1,
resulting in several new applications such as estimating the entropy of the output distribution,
partially avoiding bad events and dealing with super-polynomially many bad events.

There is one important difference between Algorithm 1 and Algorithm 2: the choice of
which flaw to resample, if multiple flaws are simultaneously true. The flaw selection rule
S in the Search Algorithm should select a flaw f ∋ σ at each time t; it may depend on the
prior states and may be randomized. The original MT algorithm allows nearly complete
freedom for this. For general resampling oracles, S is much more constrained; only a few
relatively rigid rules are known to guarantee convergence, such as selecting the flaw of least
index [19]. However, in [23], Kolmogorov identified a general property called commutativity
that allows a free choice for S. This free choice, seemingly a minor detail, turns out to play
a key role in extending the additional properties of the MT algorithm to the general Search
Algorithm. For instance, it leads to parallel algorithms [23] and to bounds on the output
distribution [20].

At a high level, our goal is to provide a more conceptual, algebraic explanation for the
commutativity properties of resampling oracles and their role in the Search Algorithm. We
do this by introducing a notion of commutativity, essentially matrix commutativity, that is
both more general and simpler than the definition in [23]. Most of our results had already
been shown, in slightly weaker forms, in prior works [23, 20, 14]. However, the proofs were
computationally heavy and narrowly targeted to certain probability spaces, with numerous
technical side conditions and restrictions.

Before we provide formal definitions, let us give some intuition. For each flaw f , consider
an |Ω| × |Ω| transition matrix Af . Each row of Af describes the probability distribution
obtained by resampling f at a given state σ. We call the resampling oracle commutative if
the transition matrices commute for any pair of flaws which are “independent” (in the LLL
sense). We show a number of results for such oracles:

1. We obtain bounds on the distribution of the state at the termination of the Search
Algorithm. These bounds are comparable to the LLL-distribution, i.e., the distribution
induced by conditioning on avoiding all bad events. Similar results, albeit with a number
of additional technical restrictions, had been shown in [20] for the original definition of
commutativity.

2. For some probability spaces, stronger and specialized distributional bounds are available,
beyond the “generic” LLL bounds [14]. Previously, these had been shown with ad-hoc
arguments specialized to each probability space. Our construction recovers most of these
results automatically.

3. We develop a generic parallel implementation of the Search Algorithm. This extends
results of [23, 15], with simpler and more general proofs.

4. In many settings, flaws are formed from smaller “atomic” events [15]. We show that,
if the atomic events satisfy the generalized commutativity definition, then so do the
larger “composed” events. This natural property did not seem to hold for the original
commutativity definition of [23].

APPROX/RANDOM 2021

31:4 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

1.1 Example application: latin transversals
As a motivating example, let us examine a classic combinatorial problem of latin transversals.
Consider an n× n array C, wherein each entry of C has a color. A latin transversal of C is
a permutation π over {1, . . . , n} such that all the colors C(i, πi) are distinct for i = 1, . . . , n.

The “lopsided” variant of the LLL was first developed by Erdős & Spencer [10] for this
problem. The underlying probability space is the uniform distribution on permutations. For
each pair of cells (x1, y1), (x2, y2) of the same color, there is a corresponding flaw defined by
πx1 = y1 ∧ πx2 = y2. They showed that if each color appears at most ∆ = n

4e times, then
the LLL criteria are satisfied and a transversal exists. The cluster-expansion criterion [5]
tightens this to ∆ = 27n

256 , which is the strongest bound currently known.
This construction has been a motivating example for much of the research on the

algorithmic LLL, particularly for “exotic” probability spaces (beyond the variable setting).
In particular, [17] showed that the Search Algorithm generates a latin transversal π under
the same conditions as the existential LLLL. One of the main applications in this paper is to
show that π has nice distributional properties. In particular, we show the following:

▶ Theorem 1. If each color appears at most 27
256 n times in the array, then the Search

Algorithm generates a latin transversal π where, for every pair (x, y), we have 0.53/n ≤
Pr(πx = y) ≤ 1.36/n.

The upper bound improves quantitatively over a similar bound of [14]; to the best of our
knowledge, no non-trivial lower bound of any kind could previously be shown. Intriguingly,
such bounds are not known to hold for the LLL-distribution itself.

To better situate Theorem 1, note that Alon, Spencer, & Tetali [4] showed that there is a
(minuscule) universal constant β > 0 with the following property. If each color appears at
most ∆ = βn times in the array and n is a power of two, then the array can be partitioned
into n independent transversals. In this case, if we randomly select one transversal from this
list, we would have Pr(πx = y) = 1/n. Theorem 1 can be regarded as a simplified fractional
analogue of their result, i.e. we fractionally decompose the given array into O(n) transversals,
such that Pr(πx = y) = Θ(1/n) for all pairs x, y. Furthermore, we achieve this guarantee
automatically, merely by running the Search Algorithm.

1.2 Overview of our approach
Although it will require significant definitions and technical development to state our results
formally, let us try to provide a high-level summary here. As a starting point, consider the
MT algorithm. Moser & Tardos [25] used a construction referred to as a witness tree for
the analysis: for each resampling of a bad-event B at a given time, there is a corresponding
witness tree which records an “explanation” of why B was true at that time. More properly,
it provides a history of all the prior resamplings which affected the variables involved in B.

The main technical lemma governing the behavior of the MT algorithm is the “Witness
Tree Lemma,” which states that the probability of producing a given witness tree is at most
the product of the probabilities of the corresponding events. The bounds on the algorithm
runtime, as well as parallel algorithms and distributional properties, then follow from a union
bound over witness trees.

Versions of this Witness Tree Lemma have been shown for some variants of the MT
algorithm [13, 18] Iliopoulos [20] further showed that it held for general spaces which satisfy
the commutativity property; this, in turn, leads to the nice algorithmic properties such as
parallel algorithms.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:5

Our main technical innovation is to generalize the Witness Tree Lemma. Instead of
keeping track of a scalar product of probabilities in a witness tree, we instead consider a
matrix product. We bound the probability of a given witness tree (or, more properly, a slight
generalization known as the witness DAG) in terms of the products of the transition matrices
of the corresponding flaws. Commutativity can thus be rephrased and simplified in terms of
matrix commutativity for the transition matrices.

At the end, we obtain the scalar form of the Witness Tree Lemma by projecting everything
to a one-dimensional space. For this, we take advantage of some methods of [3] for viewing
the evolution of the Search Algorithm in terms of spectral bounds.

2 Background and Basic Definitions

Throughout the paper we consider implementations of the Search Algorithm. For each
flaw f , state σ ∈ f , and state σ′ ∈ Ω, we define Af [σ, σ′] to be the probability that
applying the resampling oracle Rf to σ yields state σ′, i.e. Af [σ, σ′] = Pr(Rf (σ) = σ′). For
σ /∈ f , we define Af [σ, σ′] = 0. We sometimes write σ

f−→ σ′ to denote that the algorithm
resamples flaw f at σ and moves to σ′. Observe that, for any vector θ over Ω, there holds
||θ⊤Af ||1 =

∑
σ∈f θ[σ] ≤ ||θ⊤||1. Thus, the matrix Af is substochastic.

We define a trajectory T to be a finite or countably infinite sequence of the states and
flaws of the form (σ0, f1, σ1, f2, . . . ,), and len(T) is its length (possibly len(T) = ∞). We
define the shift of T to be (σ1, f2, σ2, f3, . . . ,). We define T̂ to be the sequence states and
flaws resampled during the Search Algorithm, i.e. σi is the state at time i and flaw fi ∈ σi is
the flaw resampled.

For our purposes, we use an undirected notion of dependence. Formally, we suppose
that we have fixed some symmetric relation ∼ on F , with the property that f ∼ f for all f

and for every distinct pair of flaws f ̸∼ g, we are guaranteed that resampling flaw f cannot
introduce g or vice-versa, i.e. Rf never maps a state Ω − g into g and likewise Rg never
maps a state from Ω− f into f . We define Γ(f) to be the set of flaws g with f ∼ g, and we
also define Γ(f) = Γ(f) \ {f}.

We say that a set I ⊆ F is stable if f ̸∼ g for all distinct pairs f, g ∈ I.
For an arbitrary event E ⊆ Ω, we define eE to be the indicator vector for E, i.e. eE [σ] = 1

if σ ∈ E and eEσ = 0 otherwise. For a state σ ∈ Ω, we write eσ as shorthand for e{σ}, i.e.
the basis vector which has a 1 in position σ and zero elsewhere.

For vectors or matrices u, v we write u ⪯ v if u[i] ≤ v[i] for all entries i. We write u ∝ v

if there is some scalar value c with u = cv.

Regenerating oracles. The Moser-Tardos algorithm and extensions to other probability
spaces can be viewed in terms of regenerating oracles [19], i.e. each resampling action Rf

should convert the distribution of µ conditioned on f into the unconditional distribution
µ. We provide more detail later in Section 4, but, we can summarize this crisply with our
matrix notation: the resampling oracle R is regenerating if µ is a left-eigenvector of each
matrix Af , with associated eigenvalue µ(f), i.e.

∀f µ⊤Af = µ(f) · µ⊤ (1)

2.1 The new commutativity definition
The original definition of commutativity given by Kolmogorov [23] required that for every
f ≁ g ∈ F , there is an injective mapping from state transitions σ1

f−→ σ2
g−→ σ3 to state

transitions σ1
g−→ σ′

2
f−→ σ3, so that Af [σ1, σ2]Ag[σ2, σ3] = Ag[σ1, σ′

2]Af [σ′
2, σ3].

APPROX/RANDOM 2021

31:6 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

This definition is cumbersome, as well as lacking important symmetry and invariance
properties. As one of the major contributions of this paper, we introduce a more natural
notion of algorithmic commutativity that is also more general than the notion of [23].

▶ Definition 2 (Transition matrix commutativity). We say that the resampling oracle is
transition matrix commutative with respect to dependence relation ∼ if Af Ag = AgAf , for
every f, g ∈ F such that f ≁ g.

▶ Observation 3. If the resampling oracle is commutative in the sense of [23], then it is
transition matrix commutative.

Proof. Consider f ̸∼ g and states σ, σ′. By symmetry, we need to show that Af Ag[σ, σ′] ≤
AgAf [σ, σ′]. Since f ̸∼ g, we can see that both the LHS and RHS are zero unless σ ∈ f ∩ g.

Let V denote the set of states σ′′ with Af [σ, σ′′]Ag[σ′′, σ′] > 0. By defini-
tion, there is an injective function F : V → Ω such that Af [σ, σ′′]Ag[σ′′, σ′] =
Ag[σ, F (σ′′)]Af [F (σ′′), σ′]. Therefore, we have (Af Ag)[σ, σ′] =

∑
σ′′∈V Af [σ, σ′′]Ag[σ′′, σ′] =∑

σ′′∈V Ag[σ, F (σ′′)]Af [F (σ′′), σ′].
Since F is injective, each term Ag[σ, τ]Af [τ, σ′] is counted at most once in this sum with

τ = F (σ′′). So (Af Ag)[σ, σ′] ≤
∑

τ∈f Ag[σ, τ]Af [τ, σ′] = (AgAf)[σ, σ′]. ◀

For brevity, we say commutative to mean transition matrix commutative throughout this
paper; by contrast, we refer to the previous notion as commutative in the sense of [23].

When this definition applies, we define AI to be the matrix
∏

f∈I Af for a stable set I;
note that this product is well-defined (without specifying ordering of I) since the matrices
Af all commute.

For the remainder of this paper, we assume that the resampling oracle R is
transition-matrix commutative unless explicitly stated otherwise.

3 Witness DAGs and matrix bounds

In this section, we study witness DAGs, a key graph structure developed in [11] for analyzing
the evolution of commutative resampling oracles. The main result of this section is Lemma 5,
which is a generalization of the Witness Tree Lemma described in the introduction. Notably,
while our result is more general, its proof is significantly simpler. At a high level, the
role of a witness DAG is to give an “explanation” of why a certain flaw appeared during
the execution of the algorithm. To bound the probability that flaw f appears during the
algorithm execution, we simply add up the probabilities of all the witness DAGs that explain
it.

Formally, we define a witness DAG (abbreviated wdag) to be a directed acyclic graph
G, where each vertex v ∈ G has a label L(v) from F , and such that for all pairs of vertices
v, w ∈ G, there is an edge between v and w (in either direction) if and only if L(v) ∼ L(w).
For a wdag G with sink nodes v1, . . . , vk, note that L(v1), . . . , L(vk) are all distinct and
{L(v1), . . . , L(vk)} is a stable set which we denote by sink(G). We say that a flaw f is
unrelated to a wdag G if there is no node v ∈ G with L(v) ∼ f .

We define H to be the collection of all wdags, and we define H(I) to be the collection
of all such wdags with sink(H) = I. With some abuse of notation, we also write H(f) as
shorthand for H({f}).

There is a key connection between wdags and the transition matrices. For any wdag H,
we define an associated |Ω| × |Ω| matrix AH inductively as follows. If H = ∅, then AH is
the identity matrix on Ω. Otherwise, we choose an arbitrary source node v of H and set
AH = AL(v)AH−v.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:7

▶ Proposition 4. The definition of AH does not depend on the chosen source node v.
Furthermore, there is an enumeration of the nodes of H as v1, . . . , vt such that AH =
AL(v1) · · ·AL(vt).

Proof. Let us show the first property by induction on |H|. When |H| = 0 this is vacuously
true. For induction case, suppose H has two source nodes v1, v2. We need to show that we
get the same value by recursing on v1 or v2, i.e AL(v1)AH−v1 = AL(v2)AH−v2 .

We can apply the induction hypothesis to H − v1 and H − v2, noting that v2 is a source
node of H−v1 and v1 is a source node of H−v2. We get AH−v1 = AL(v2)AH−v1−v2 , AH−v2 =
AL(v1)AH−v1−v2 . Thus, in order to show AL(v1)AH−v1 = AL(v2)AH−v2 , it suffices to show
that AL(v1)AL(v2) = AL(v2)AL(v1). Since v1, v2 are both source nodes, we have L(v1) ̸∼ L(v2).
Thus, this follows from commutativity.

For the second property, we have AH = AL(v1)AH−v1 for a source node v. Recursively
peeling away vertices gives AH = AL(v1)AL(v2) . . . AL(vt). ◀

As a warm-up, we first show how to use wdags to bound the number of resamplings
performed in commutative algorithms. This will allow us to show bounds on the expected
runtime of the Search Algorithm as well as allowing parallel implementations. The main
point here is to demonstrate how the new commutativity definition helps with the crucial
task of bounding the probability of appearance of a given wdag.

As in the original proof of Moser & Tardos [25], we will estimate the expected number of
times each flaw f ∈ F is resampled. Consider an execution of the Search Algorithm with
trajectory T . For each time t ≤ len(T), we generate a corresponding wdag GT

t which provides
the history of the tth resampling. Initially, we set GT

t to consist of a singleton node labeled
ft. Then, for s = t− 1, . . . , 1, there are two cases:
1. if wdag GT

t has any node with label g where g ∼ fs, then we add a vertex labeled fs,
with a sink node to all nodes w such that L(w) ∼ fs;

2. Otherwise, if GT
t is unrelated to fs, then we do not modify Gt.

We define GT
[s,t] to be the partial wdag formed only by considering times t, . . . , s; then

GT
t = GT

[1,t] and GT
[t,t] is a singleton node labeled ft and GT

[s,t] is formed by copying GT
[s+1,t]

and adding, or not, a node labeled fs. We say that a wdag H appears if H is isomorphic to
Gt for any value t; with a slight abuse of notation, we write this is simply as Gt = H.

To calculate the expected running time of the Search Algorithm, we sum the wdag
appearance probabilities. One of the main ingredients in the original proof of Moser &
Tardos is that any wdag G appears with probability at most

∏
v∈G µ(L(v)), i.e., the product

of probabilities of the flaws that label its vertices. Their proof depends on properties of the
variable setting and does not extend to other probability spaces.

Our key message is that commutativity allows us to bound the probability of a wdag
appearing by considering the product of transition matrices for flaws that label its vertices.
Specifically, we show the following. (Recall that µ denotes the initial state distribution.)

▶ Lemma 5. For any wdag H, the probability that H appears is at most µ⊤AH 1⃗.

Proof. We first show that if the Search Algorithm runs for at most tmax steps starting with
state σ, where tmax is an arbitrary integer, then H appears with probability at most e⊤

σ AH 1⃗.

We prove this claim by induction on tmax. If tmax = 0, or σ is flawless, the claim can be
easily seen to be hold vacuously.

So suppose that tmax ≥ 1 and S selects a flaw g to resample in σ, and define EH to be
the event that H appears when running the search algorithm A. By conditioning on the
random seed used by the flaw choice strategy S (if any), we may assume that the search
strategy S is deterministic.

APPROX/RANDOM 2021

31:8 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

We can now view the evolution of A as a two-part process: we first resample g, reaching
state σ′ with probability Ag[σ, σ′]. We then execute a new search algorithm A′ starting
at state σ′, wherein the flaw selection rule S′ on history (σ′, σ2, . . . , σt) is the same as the
choice of S on history (σ, σ′, σ2, . . . , σt). Let us denote by G′

s the wdags produced for this
new search algorithm A′.

Suppose that H appears, so that Gs = H for some value s ≤ tmax. In this case, we claim
that one of the two conditions must hold: (i) H has a unique source node v labeled g and
G′

s−1 = H − v; or (ii) g is unrelated to H and G′
s−1 = H. For, suppose that H has another

node w with L(w) ∼ L(v); in this case, when forming the wdag Gs, the rule would be to add
a new node labeled g, which is perforce a source node.

In case (i), then in order for event EH to occur on the original search algorithm A, we
must also have EH−v hold on A′ within t− 1 timesteps. By induction hypothesis, this has
probability at most e⊤

σ′AH−v 1⃗ for a fixed σ′. Summing over σ′ gives a total probability of∑
σ′ Ag[σ, σ′]e⊤

σ′AH−v 1⃗ = e⊤
σ AgAH−v 1⃗ = e⊤

σ AH 1⃗ as required.
In case (ii), then in order for event EH to occur for A, we must also have EH occur for A′

within t − 1 timesteps. By induction hypothesis, this has probability at most e⊤
σ′AH 1⃗ for

a fixed σ′. Summing over σ′ gives a total probability of
∑

σ′ Ag[σ, σ′]e⊤
σ′AH 1⃗ = e⊤

σ AgAH 1⃗.

Since Ag commutes with AH , this is at most e⊤
σ AHAg 1⃗. Since Ag is substochastic, this in

turn is at most e⊤
σ AH 1⃗, which completes the induction.

By countable additivity, we can compute the probability that H ever appears from starting
state σ, as Pr

(∨∞
t=1 GT̂

t = H
)

= limtmax→∞ Pr
(∨tmax

t=1 GT̂
t = H

)
≤ limtmax→∞ e⊤

σ AH 1⃗ =
e⊤

σ AH 1⃗.

Finally, integrating over τ , gives
∑

τ µ[τ]e⊤
τ AH 1⃗ = µ⊤AH 1⃗. ◀

This can be used to show a generalization of the key Witness Tree Lemma of Moser &
Tardos:

▶ Corollary 6. Suppose the resampling oracle is regenerating. Then, for a given wdag H, the
probability that H appears is at most

∏
v∈H µ(L(v)).

Proof. Let f1, . . . , ft be the labels of the vertices in H, ordered from source nodes to sink
nodes. We can write AH = Af1 · · ·Aft

. Since µ is a left-eigenvector of every transition matrix
(see Eq. (1)), we have µ⊤AH 1⃗ = µ⊤Af1 · · ·Aft

1⃗ = µ(f1) · · ·µ(ft)µ⊤1⃗ = µ(f1) · · ·µ(ft). ◀

As we have already discussed, this gives the following important corollary:

▶ Corollary 7. The expected number of steps of the Search Algorithm is at most∑
f∈F

H∈H(f)
µ⊤AH 1⃗.

For example, if the resampling oracle is regenerating, then, the expected number of
steps of the algorithm is at most

∑
f∈F

∑
H∈H(f)

∏
v∈H µ(L(v)), i.e. the usual Witness Tree

Lemma.
We emphasize that we are not aware of any direct proof of Corollary 6; it seems necessary

to first show the matrix bound of Lemma 5, and then project down to scalars. As we show in
Appendix A, under some natural conditions the matrix commutativity property is necessary
to obtain Lemma 5.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:9

4 Estimating weights of wdags

The statement of Lemma 5 in terms of matrix products is very general and powerful, but
difficult for calculations. To use it effectively, we need to bound the sums of the form∑

H∈H

µ⊤AH 1⃗

There are two, quite distinct, issues that arise in this calculation. First, for a given
fixed wdag H, we need to estimate µ⊤AH 1⃗; second, we need to bound the sum of these
quantities over H. The second issue is well-studied and is at the heart of the probabilistic
and algorithmic conditions for the LLL. The first issue is not as familiar. Following [3], we
can bound the matrix product by using a heuristic based on spectral bounds of the matrices
Af . Let us define a quantity called the charge γf for each flaw f as follows.

γf = max
τ∈Ω

∑
σ∈f

µ(σ)
µ(τ) Af [σ, τ] (2)

The following result of [21] illustrates the connection between this measure and the
Lopsided Lovász Local Lemma (LLLL):

▶ Theorem 8 ([21]). For each set S ⊆ F − Γ(f), there holds µ
(
f |

⋂
g∈S g

)
≤ γf .

Moreover, as shown in [2], the charge γf captures the compatibility between resampling
oracle for f and the measure µ. A resampling oracle R with γf = µ(f) for all f , is called a
regenerating oracle [19], as it perfectly removes the conditional of the resampled flaw. (This
is equivalent to satisfying Eq. (1).)

For a wdag H, let us define the scalar value w(H) =
∏

v∈H γL(v). We get the following
estimate for µ⊤AH 1⃗ in terms of w(H):

▶ Theorem 9. For any event E ⊆ Ω we have µ⊤AHeE ≤ µ(E) · w(H). In particular, with
E = Ω, we have µ⊤AH 1⃗ ≤ w(H).

Proof. From definition of γf , it can be observed that µ⊤Af ⪯ γf µ⊤ for any f . In particular,
µ⊤Af · θ ≤ γf θ for any vector θ. Now, by Proposition 4, we can write AH = Af1 . . . Aft

where f1, . . . , ft are the labels of the nodes of H. We thus have:

µ⊤AHeE = µ⊤Af1 . . . AfteE ≤ µ⊤γf1Af2 . . . Aft ≤ · · · ≤ γf1 . . . γftµ
⊤eE = w(H)µ(E) ◀

In light of Theorem 9, we define for any stable set I the key quantity Ψ(I) =∑
H∈H(I) w(H). We also define Ψ(f) = Ψ({f}) for brevity.

▶ Corollary 10.
1. Any given wdag H appears with probability at most w(H).
2. The expected number of resamplings of any flaw f is at most Ψ(f).
3. The expected runtime of the Search Algorithm is at most

∑
f Ψ(f).

We summarize a few well-known bounds on these quantities.

▶ Proposition 11.
1. (Symmetric criterion) Suppose that γf ≤ p and |Γ(f)| ≤ d for parameters p, d with

epd ≤ 1. Then Ψ(f) ≤ eγf ≤ ep for all f .
2. (Asymmetric criterion) Suppose there is some function x : F → [0, 1) with the property

that γf ≤ x(f)
∏

g∈Γ(f)(1− x(g)) for all f . Then Ψ(f) ≤ x(f)
1−x(f) for all f .

APPROX/RANDOM 2021

31:10 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

3. (Cluster-expansion criterion) Suppose there is some function η : F → [0,∞) with the
property that η(f) ≥ γf ·

∑
I⊆Γ(f)
I stable

∏
g∈I η(g) for all f . Then Ψ(f) ≤ η(f) for all f .

A related quantity is Ψ(I) =
∑

J⊆I Ψ(J). A useful and standard formula (see e.g., [19,
Claim 59]) is that for any set I we have Ψ(I) ≤

∏
f∈I Ψ(f) and Ψ(I) ≤

∏
f∈I(1 + Ψ(f)). We

also write ΨF , ΨF to indicate the role of the flaw set F , if it is relevant.
As an illustration, consider latin transversals. Here, we have a flaw f for each pair of

cells (x1, y1), (x2, y2) of the same color, i.e. πx1 = y1 ∧ πx2 = y2. We denote this by flaw
[(x1, y1), (x2, y2)]. We define the dependency graph by setting f ∼ f ′ if and only if f and
f ′ are mutually incompatible, i.e. f = [(x1, y1), (x2, y2)], f ′ = [(x′

1, y′
1), (x′

2, y′
2)] where either

x1 = x′
1, y1 ̸= y′

1 or x1 ̸= x′
1, y1 = y′

1. We will examine this construction in more detail later
in Section 6.

▶ Proposition 12. Suppose that each color appears at most ∆ = 27
256 n times in the array.

Then the expected number of steps of the Search Algorithm is O(n). Furthermore, Ψ(f) ≤ 256
81n2

for each f .

Proof. We apply the cluster-expansion criterion with η(f) = 256
81n2 for each flaw f . Consider

a flaw f corresponding to cells (x1, y1), (x2, y2), and a stable set I of neighbors of f .. There
can be one or zero elements g of I of the form [(x1, y′

1), (x′
2, y′

2)]. There are n choices for
x1; given that pair (x1, y′

1) is determined, there are at most ∆ − 1 other cells with the
same color. Each such g has η(g) = 256

81n2 . Similar arguments apply to elements in I of
the form [(x′

1, y1), (x′
2, y′

2)] etc. Overall, the sum over stable neighbor sets I is at most
(1 + n(∆− 1) 256

81n2)4.
So we need to show that

256
81n2 ≥

1
n2 · (1 + n(∆− 1) 256

81n2)4

and simple calculations show that this holds for n ≥ 2. (The case n = 1 holds trivially).
Also, the total number of flaws is at most n2(∆ − 1)/2 = O(n3). Thus, the expected

number of steps is at most |F| · 256
81n2 ≤ O(n). ◀

5 Parallel algorithms

Moser & Tardos [25] described a simple parallel version of their resampling algorithm. A
variety of parallel resampling algorithms have also been developed for other probability
spaces [17, 13]. One main benefit of the commutativity property is that it enables much
more general parallel implementations of the Search Algorithm. As a starting point, [23]
discussed a generic framework for parallelization which we summarize as follows:

Algorithm 3 Generic parallel resampling framework.
1: Draw state σ from distribution µ

2: while some flaw holds on σ do
3: Set V ̸= ∅ to be the set of flaws currently holding on σ

4: while V ̸= ∅ do
5: Select, arbitrarily, a flaw f ∈ V .
6: Update σ ← Rσ(σ).
7: Remove from V all flaws g such (i) σ /∈ g; or (ii) f ∼ g

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:11

Each iteration of the main loop (lines 2 – 7) is called a round. We emphasize this is a
sequential algorithm, which can be viewed as a version of the Search Algorithm with an
unusual flaw-selection choice. Most known parallel local search algorithms, including the
original parallel algorithm of Moser & Tardos, fall into this framework. One main result of
[23] is that, when the resampling oracle is commutative (in the sense of [23]), then the total
number of rounds in Algorithm 3 is polylogarithmic with high probability.

Harris [15] further showed a general method for simulating each round in parallel, for
resampling oracles which satisfy a property called obliviousness (see Section 7 for a formal
definition). These two results combine to give an overall RNC search algorithm. We will
now extend these results to our commutative resampling oracles, via bounding the weights
of certain classes of wdags.

We define Vk to be the set of flaws V in round k, and we define the stable set Ik to be
the set of flaws which are actually resampled at round k (i.e. a flaw f selected at some
iteration of line 5). Let bk =

∑
i<k |Ii| be the total number of resamplings made before

round k; thus b1 = 0, and when “serialize” Algorithm 3 and view it as an instance of the
Search Algorithm, the resamplings in round k of Algorithm 3 correspond to the resamplings
at iterations bk + 1, . . . , bk+1 of the Search Algorithm.

▶ Proposition 13. For all f ∈ Vk there exists g ∈ Ik−1 with f ∼ g.

▶ Proposition 14. Consider running Algorithm 3 obtaining trajectory T̂ . Then, for each t

in the range bk + 1, . . . , bk the wdag GT̂
t has depth precisely k.

The proof of Propositions 13 and 14 are nearly identical to results for the variable LLLL
shown in [15]; we omit then here.

▶ Proposition 15. For any f ∈ F and index k ≥ 1, we have Pr(f ∈ Vk) ≤∑
H∈H(f)

depth(H)=k

µ⊤AH 1⃗.

Proof. As we have discussed, Algorithm 3 can be viewed as an instantiation of the Search
Algorithm with a flaw selection rule S. For a fixed f , let us define a new flaw selection rule
Sf as follows: it agrees with S up to round k; it then selects f to resample at round k if
it is true. The behavior for S and Sf is identical up through the first bk−1 resamplings.
Furthermore, Algorithm 3 has f ∈ Vk if and only if the Search Algorithm selects f for
resampling at iteration bk + 1.

Consider the resulting wdag GT̂
t ; by Proposition 14 it has depth k. Furthermore, it has a

sink node labeled f . Thus, if f ∈ Vk, then there is some H ∈ H(f) with depth(H) = k which
appears. To bound the probability of f ∈ Vk, we take a union bound over all such H and
apply Lemma 5. ◀

The usual strategy to bound the sum over wdags H with depth(H) ≥ t is to use an
“inflated” weight function defined as wϵ(H) = w(H)(1 + ϵ)|H|, and corresponding sum
Wϵ =

∑
H∈H wϵ(H) for some ϵ > 0. Using standard calculations as well as the bounds of

Propositions 13,14, 15, one can show the following results:

▶ Proposition 16. With probability at least 1− δ, Algorithm 3 terminates in O(log(1/δ+ϵWϵ)
ϵ)

rounds and has
∑

k |Vk| ≤ O(Wϵ/δ). Furthermore, if the resampling oracle is regenerating
and satisfies the computational requirements given in [15] for input length n, then with
probability 1 − 1/ poly(n) the algorithm of [15] terminates in O(log4(n+ϵWϵ)

ϵ) time on an
EREW PRAM.

APPROX/RANDOM 2021

31:12 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Bounding Wϵ is very similar to bounding
∑

H w(H) = W0, except with a small “slack”
in the charges. For example, using standard estimates (see [11, 23, 3]) we get the following
bounds:

▶ Proposition 17.
1. Suppose that the resampling oracle is regenerating and that the vector of probabilities

p(1+ϵ) still satisfies the LLLL criterion. Then Wϵ/2 ≤ O(m/ϵ). In particular, Algorithm 3
terminates after O(log(m/δ)

ϵ) rounds with probability 1− δ.
2. Suppose that γf ≤ p and |Γ(f)| ≤ d such that epd(1 + ϵ) ≤ 1. Then Wϵ/2 ≤ O(m/ϵ).

Algorithm 3 terminates after O(log(m/δ)
ϵ) rounds with probability at least 1− δ.

6 Distributional properties

The most important consequence of commutativity is that it leads to good bounds on the
distribution of objects generated by the Search Algorithm. Consider an event E in Ω, and
define P (E) to be the probability that E holds in the output of the Search Algorithm. Also
define N(E) to be the expected number of times t such that E is caused to be true at time
t; this includes both the original sampling at time t = 0, or if resampling flaw f at time t

moved the state from E to E. Clearly, there holds P (E) ≤ N(E). We also write PF (E) and
NF (E) to emphasize the dependence on flaw set F .

To obtain the tightest bounds on N(E), and thereby P (E), we will use a more refined
construction of wdags. For this we need several definitions.

We say that a stable set I ⊆ F is orderable for E if there is an enumeration I = {g1, . . . , gr}
such that

∀i = 1, . . . , r Agi
Agi+1 . . . Agr

eE ̸⪯ Agi+1 . . . Agr
eE (3)

We define O(E) to be the collection of stable sets orderable for E. Also, we define Γ̃(E) to
be the set of flaws f ∈ F which can cause E to occur, i.e. f maps some state σ′ /∈ E to
σ ∈ E.

▶ Observation 18. If I ∈ O(E), then I ⊆ Γ̃(E).

With this notation, our main distributional bound will be to show that

N(E) ≤ µ(E)
∑

I∈O(E)

Ψ(I)

For a flaw f and wdag H , we say that f is dominated by a wdag H for E if Af AH 1⃗ ⪯ AH 1⃗.
Consider a trajectory T = (σ0, f1, . . . ,). For each time t where E holds (including possibly
t = 0), we will generate a corresponding wdag JT

t , however, the rule for adding nodes is
slightly more restrictive. See Algorithm 4 for the precise construction.

Algorithm 4 Forming JT
t .

1: Initialize JT
t = ∅

2: for s = t, . . . , 1 do
3: if fs is not dominated by JT

t or if JT
t has a source node labeled fs then

4: Add to JT
t a node vs labeled fs, with an edge from vs to each vj such that fj ∼ fs

We write JT
[s,t] for the wdag JT

t after iteration s, so that JT
[s,t] is derived from JT

[s+1,t] by
adding (or not) a vertex labeled fs. We have JT

t = JT
[1,t] and JT

[t+1,t] = ∅. Also, if E is not
true at time t, we define JT

t = ⊥. We define H′ to be the collection of all wdags that can be
produced in this process.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:13

▶ Proposition 19. Consider a wdag G ∈ H′. If JT
t = G for a trajectory T with t ≥ 1 and

f1 resampled at time 1, then the wdag G′ = JT ′

t−1 for the shifted trajectory T ′ is uniquely
determined according to the following rule:

If G contains a unique source node v labeled f1, then G′ = G− v

Otherwise, G′ = G and f1 is dominated by GT
t

Proof. Since t ≥ 1, Algorithm 4 obtains JT
t by possibly adding a node v1 labeled f1 to

JT ′

t−1. If Algorithm 4 adds node v1 to G′, then f1 is the label of a source node v of JT
t = G,

and G′ = JT
t − v. If Algorithm 4 does not add such node, then JT

t = G′. By the rule for
adding nodes, it must be that G′ does not have a source node labeled f1, and also f1 must be
dominated by JT ′

t−1. Since G′ = JT
t , these imply that f1 is dominated by JT

t = G as well. ◀

Our main result for this construction will be the following:

▶ Lemma 20. For any wdag H ∈ H′, there holds Pr(
∨∞

t=0 Jt = H) ≤ µ⊤AHeE

Proof. Define EH,tmax to be the event that J T̂
t = H holds for some t ≤ tmax during execution

of the Search Algorithm A. By a limiting arugment, it suffices to show that Pr(EH,tmax) ≤
µ⊤AHeE for any integer tmax ≥ 1. We will prove by induction on tmax that, if we start
at any state σ, then Pr(EH,tmax) ≤ e⊤

σ AHeE ; the Lemma then follows by integrating over
starting state σ.

If tmax = 0 or σ is flawless, then EH,tmax is impossible and the desired bound. So suppose
that tmax ≥ 1, and that S selects a flaw g to resample in σ. We can now view the evolution
of A as a two-part process: we first resample g, reaching state σ′ with probability Ag[σ, σ′].
We then execute a new search algorithm A′ starting at state σ′, wherein the flaw selection
rule S′ on history (σ′, σ2, . . . , σr) is the same as the choice of S on history (σ, σ′, σ2, . . . , σr).

Suppose now that EH,tmax holds for A, i.e. J T̂
t = H for some t ≤ tmax. Note that the

actual trajectory T̂ ′ for A′ is given by T̂ ′ which is the shift of T̂ . Thus, by Proposition 19,
one of the two conditions must hold: (i) either H has a unique source node v labeled g and
J T̂ ′

t−1 = H − v; or (ii) H has no such node and J T̂ ′

t−1 = H and g is dominated by H.
In the first case, there must also hold EH−v,tmax−1 for A′. By induction hypothesis, this

has probability at most e⊤
σ′AHeE conditional on a fixed σ′. Summing over σ′, we get a total

probability of
∑

σ′ Ag[σ, σ′]e⊤
σ′AH−veE = e⊤

σ AgAH−veE = e⊤
σ AHeE .

In the second case, there must also hold EH,tmax−1 for A′. By induction hypothesis, this
has probability at most e⊤

σ′AHeE conditional on a fixed σ′. Summing over σ′, we get a total
probability of

∑
σ′ Ag[σ, σ′]e⊤

σ′AHeE = e⊤
σ AgAHeE . Since g is dominated by H for E, this

is at most e⊤
σ AHeE , again completing the induction. ◀

▶ Proposition 21. Suppose that event E is true at times s and t with s < t, but false at
some intermediate time. Then JT

s ̸= JT
t .

Proof. We prove this by induction on s. For the base case s = 0, we have JT
s = ∅. Suppose

for contradiction that JT
t = ∅ as well. Since E is false at an intermediate time but true at

time t, it must become true due to resampling some g at time t′ < t. Clearly also JT
[t′+1,t] = ∅.

Since g makes E be true where it was false, we have g ∈ Γ̃(E). As a result, g is not dominated
for the empty wdag. So the rule for forming JT

t would add a node to JT
[t′,t], contradicting

that JT
t = ∅.

For the induction step, suppose s > 0 and JT
t = JT

s . Let T ′ be the shift of T . By
Proposition 19, both JT ′

s−1 and JT ′

t−1 are updated in the same manner depending on the flaw
f1. Thus, JT ′

s−1 = JT ′

t−1. But this contradicts the induction hypothesis. ◀

APPROX/RANDOM 2021

31:14 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Proposition 22. N(E) ≤
∑

H∈H′ µ⊤AHeE.

Proof. By Proposition 21, for each time t that E switches from false to true, the corresponding
wdag JT

t must be distinct. Thus, the total number of times that E becomes true is at most∑
H∈H′ [[

∨
t≥0 J t̂

t = H]]. Now take expectations and apply Lemma 20. ◀

▶ Proposition 23. For a wdag H ∈ H′, there holds sink(H) ∈ O(E).

Proof. Let us fix some value t where E holds; for s = 1, . . . , t let Hs = JT
[s,t] and Is = sink(Hs),

and so that H1 = H . We claim by induction on s that each wdag Hs has the stated property.
The base case is s = t; this holds since It = ∅ ∈ O(E).

Now consider some s < t, where Hs is formed from Hs+1 by possibly adding a new
node labeled g. The induction step is obvious if Is = Is+1. Thus, we may assume that g is
unrelated to Hs+1 (else it would not form a new sink node.) So the only relevant case is if g

is not dominated by wdag GT
[s,t].

By induction hypothesis, Is+1 ∈ O(E). Then it can be enumerated as Is+1 = {g1, . . . , gr}
to satisfy Eq. (3). Suppose, for contradiction, that Is /∈ O(E). If we enumerate
Is = {g, g1, . . . , gr}, then there would hold θ⊤AgAg1 . . . Agr eE ≤ θ⊤Ag1 . . . Agr eE for all
distributions θ over the states.

Letting V denote the sink nodes of Hs+1, we have AHs+1 = AHs+1−V AV . Then, for any
state σ, we have e⊤

σ AgAHs+1eE = e⊤
σ AgAHs+1−V AV eE = eσAHs+1−V AgAg1 . . . Agr

eE , where
in the last inequality we use the facts that g is unrelated to Hs+1 and that AV = Ag1 . . . Agr

.
By our bound with θ = e⊤

σ AHs+1−V , we see that this is at most eσAHs+1−V Ag1 . . . Agr
eE =

eσAHs+1eE . Hence g is dominated by Gs+1 and we would not add the new node to Hs, a
contradiction. ◀

We now get our desired distributional bounds:

▶ Corollary 24. N(E) ≤ µ(E)
∑

I∈O(E) Ψ(I).

Proof. We have shown N(E) ≤
∑

H∈H′ µ⊤AHeE . Since each H ∈ H′ has sink(H) ∈
O(E), this is at most

∑
I∈O(E)

∑
H∈H(I) µ⊤AHeE . By Theorem 9, this is at most∑

I∈O(E),H∈H(I) w(H)µ(E) = µ(E)
∑

I∈O(E) Ψ(I). ◀

▶ Corollary 25. P (E) ≤ µ(E)
∑

I∈O(E) ΨG(I) where G = {f ∈ F : f ̸⊆ E}.

Proof. Consider the first time that E becomes true, if any. Then, only flaws in G can be
resampled up to that point; if some other flaw with f ⊆ E was resampled, then necessarily
E was true earlier. Up to this time, the behavior of the Search Algorithm is identical to
if had restricted to the flaw set G. So P (E) ≤ NG(E); by Corollary 24 this is at most∑

I∈O(E) ΨG(I). ◀

Since any set I ∈ O(E) is also a subset of Γ̃(E), we have the following crisp corollary:

▶ Corollary 26. P (E) ≤ µ(E)Ψ(Γ̃(E)).

We note that Iliopoulos [20] had previously shown a bound similar to Corollary 26, but it
had three additional technical restrictions: (i) it only worked for commutative resampling
oracles in the sense of [23]; (ii) it additionally required the construction of a commutative
resampling oracle for the event E itself; and (iii) if the resampling oracle is not regenerating,
it gives a strictly worse bound.

The following result shows how to apply these bounds with common LLL criteria.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:15

▶ Proposition 27. Under the criteria of Proposition 11, we have the following estimates for
P (E):
1. If the symmetric criterion holds, then P (E) ≤ µ(E) · ee|Γ̃(E)|p.
2. If function x satisfies the asymmetric criterion, then P (E) ≤ µ(E) ·

∏
f∈Γ̃(E)

1
1−x(f) .

3. If function η satisfies the cluster-expansion criterion, then P (E) ≤ µ(E) ·∑
I∈O(E)

∏
g∈I η(g).

One weakness of distributional bounds such as Corollary 26 is that the definition of Γ̃(E)
is binary: either flaw f cannot possibly cause E, or every occurrence of f must be tracked
to determine if it caused E. The next results allow us to take account of flaws which can
“partially” cause E.

For flaw f and event E, let us define

κ(f, E) = max
σ∈f∩E

e⊤
σ Af eE

e⊤
σ Af eE∪f

Note that κ(f, E) = 0 for f /∈ Γ̃(E), and κ(f, E) ≤ 1 always. Thus, κ(f, E) is a weighted
measure of the extent to which f causes E. Also note that usually e⊤

σ Af ef is small, and the
denominator in the definition of κ(f, E) is close to one.

▶ Theorem 28. P (E) ≤ µ(E) +
∑

f∈G κ(f, E) ·minF ⊇E NG(F ∩ f) where G = {f : f ̸⊆ E}.

Proof. See Appendix B. ◀

We remark that to obtain Theorem 28, we needed to bound N(F ∩f); bounds on P (F ∩f)
alone would not have been enough. This explains why we analyzed the more general quantity.
By applying Theorem 28 to the event E, we can obtain a lower bound on the probability of
E:

▶ Corollary 29. P (E) ≥ µ(E)−
∑

f∈G κ(f, E)·minF ⊆E NG(f−E) where G = {f : f∩E ̸= ∅}.

For example, consider the permutation setting, where the probability space Ω is the
uniform distribution on permutations on n letters, and each flaw has the form g1 ∩ · · · ∩ gk,
where each gi is an atomic event of the form πxi = yi. We then get the following distributional
result:

▶ Theorem 30 ([14]). In the permutation setting, consider an event E = g1 ∩ · · · ∩ gk where
each gi is an atomic event. We have N(E) ≤ (n−k)!

n!
∏k

i=1

(
1 +

∑
f∈F :f∼gi

Ψ(f)
)

.

As another example, consider the setting where the underlying probability space Ω is
the uniform distribution on perfect matchings on the clique Kn, and each flaw has the form
g1 ∩ · · · ∩ gk, where each gi is an atomic event of the form {xi, yi} ⊆ M . We then get the
following distributional result:

▶ Theorem 31. In the settings of perfect matchings of the clique, consider an event E =
g1 ∩ · · · ∩ gk where each gi is an atomic event. We have N(E) ≤ (n−2k−1)!!

(n−1)!!
∏k

i=1

(
1 +∑

f∈F :f∼gi
Ψ(f)

)
.

The work [14] showed (what is essentially) Theorem 30 using a complicated and ad-hoc
analysis based on a variant of witness trees, while Theorem 31 is new. The proofs are deferred
to Appendix C.

Using these bounds, we can show the following estimates on individual entries of π:

APPROX/RANDOM 2021

31:16 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Theorem 32. If each color appears at most ∆ = 27
256 n times in the array, then the Search

Algorithm generates a latin transversal where, for each cell x, y, there holds

17
32n
≤ P (πx = y) ≤ 173

128n

Proof. Define the event E that πx = y. For the upper bound, Theorem 28 (with F = Ω) gives
P (πx = y) ≤ µ(E) +

∑
f∈F NF (f)κ(f, E). Now, consider some flaw f = [(x1, y1), (x2, y2)] ∈

F . The flaw f must involve cell (x, y′) or (x′, y), else η(f, E, Ω) = 0. For a flaw that does so,
we can see that there is a probability of at most 1/(n−1) that the resampling causes E, since
there is at most one possible choice that can cause πx = y. Thus η(f, E, Ω) ≤ 1/(n−1)

1−1/n(n−1) .
By Theorem 30, we have NF (f) ≤ (n−2)!

n!
(
1 +

∑
f ′∈G:f ′∼gi

Ψ(f ′)
)

where g1, g2 are the two
atoms in f . Since Ψ(f ′) ≤ γ = 256

81n2 , and there are at most 2n(∆− 1) choices for f ′, this is
overall at most 1

n(n−1) (1 + 2n(∆− 1)γ).
Since either x1 = x or y1 = y, there are 2n(∆− 1) choices for f . Summing over these, we

get

P (E) ≤ 1
n

+ 2n(∆− 1) · 1
n(n− 1)

(
1 + 2n(∆− 1)γ

)
· 1/(n− 1)

1− 1/n(n− 1) ≤
173

128n

For the lower bound, we use Corollary 29. Letting G denote the flaws which do not
involve cells (x, y′) for y′ ≠ y, or (x′, y) for x′ ̸= x and setting F = E, we have P (E) ≥
µ(E) −

∑
f∈F N(E ∩ f)κ(f, E). Now, consider some such flaw f = [(x1, y1), (x2, y2)]. If

(x1, y2) = (x, y), then in this case, f ∩ E = f and so Theorem 30 implies that NG(f ∩ E) ≤
1

n(n−1) (1 + (∆− 1)γ)(1 + 2n(∆− 1)γ). (We emphasize that, because we are restricting to
G, there are no neighbors which involve cells (x, y′) etc.) Otherwise, if (x, y) is distinct
from (x1, y1), (x2, y2), then f ∩ E = [(x1, y1), (x2, y2), (x, y)] and Theorem 30 implies that
NG(f ∩ E) ≤ 1

n(n−1)(n−2) (1 + (∆− 1)γ)(1 + 2n(∆− 1)γ)2.
There are at most (∆− 1) flaws in the first category, and each trivially has κ(f, E) ≤ 1.

There are at most n2(∆− 1)/2 flaws in the second category; each such flaw f has κ(f, E) ≤
2/n

1−1/n(n−1) , since there are two choices for the cell to swap and in each case there is at most
one way to get πx = y in a swap.

Putting all terms together, and with some algebraic simplifications, we get P (E) ≥
17

32n . ◀

An analogous result can be shown for perfect matchings of the clique; we omit the
proof here.

▶ Theorem 33. Consider an edge-coloring C of the clique Kn, for n an even integer, such
that each color appears on at most ∆ = 27

256 n edges. Then the Search Algorithm generates a
perfect matching M such that C(e) ̸= C(e′) for all distinct edges e, e′ of M . Moreover, for
each edge e, the probability there holds 17

32(n−1) ≤ P (e ∈M) ≤ 173
128(n−1) .

7 Compositional properties for resampling oracles

The flaws and their resampling oracles are often built out of a collection of simpler, “atomic”
events. For example, in the permutation LLL setting, these would be events of the form
πx = y. In [15], Harris described a generic construction when the atomic events satisfy an
additional property referred to as obliviousness. Let us now review this construction, and
how it works with commutativity.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:17

Consider a set A of events, along with a resampling oracle R and a dependency relation ∼.
It is allowed, but not required, to have f ∼ f for f ∈ A. For the compositional construction,
we must define explicitly how the resampling oracle Rf uses the random seed. Specifically,
to resample σ′ ← Rf (σ), we first draw a random seed r from some probability space Rf ,
and then set σ′ = F (σ, r) for some deterministic function F . For brevity, we write this as
σ′ = rσ.

We refer to the elements of A as atoms. These should be thought of as “pre-flaws”, that
is, they have the structural algebraic properties of a resampling oracle, but do not necessarily
satisfy any convergence condition such as the LLLL. We have the following key definition:

▶ Definition 34 (Oblivious resampling oracle [15]). The resampling oracle R is called oblivious
if for every pair f, g ∈ A with f ̸∼ g and for each r ∈ Rf , one of the following two properties
holds:

For all σ ∈ f ∩ g we have rσ ∈ g

For all σ ∈ f ∩ g we have rσ ̸∈ g

We assume throughout this section that R is oblivious. For each f ∈ A and
g1, . . . , gs ∈ A with gi ̸∼ f , we define Rf ;g1,...,gs

to be the set of values r ∈ Rf such that
rσ ∈ g1 ∩ · · · ∩ gt. With some abuse of notation, we also use Rf ;g1,...,gs to refer to the
probability distribution of drawing r from Rf , conditioned on having r in the set Rf ;g1,...,gs

.
Note that in light of Definition 34 this is well-defined irrespective of σ.

For a stable set C ⊆ A, we define ⟨C⟩ to be the intersection of the events in C,
i.e., ⟨C⟩ =

⋂
f∈C f . From A, one can construct an enlarged set of events A = {⟨C⟩ |

C a stable subset of A}. We define the relation ∼ on A by setting ⟨C⟩ ∼ ⟨C ′⟩ iff either
(i) C = C ′ or (ii) there exist f ∈ C, f ′ ∈ C ′ with f ∼ f ′. We also define a corresponding
resampling oracle R on A which will satisfy all its required structural properties. The intent
is to choose the flaw set F to be some arbitrary subset of A.; as before, A does not necessarily
satisfy any LLLL convergence criterion.

To determine R, consider some g = ⟨C⟩ for a stable set C, with some arbitrary enumeration
C = {f1, . . . , ft}. We define Rg to be the probability distribution on tuples r = (r1, . . . , rt)
wherein each ri is drawn independently from Rfi;fi+1,...,fs , and we set rσ = rt . . . r1σ.

▶ Theorem 35 ([15]). Suppose that R is an oblivious resampling oracle for A, which is
not necessarily commutative. Then: R with dependency relation ∼ provides an oblivious
resampling oracle for A. If R is regenerating on A, then the resampling oracle on A is also
regenerating.

It would seem reasonable that if A is commutative, then A would be as well. Unfortu-
nately, we do not know how to show this for the commutativity definition of [23]. For our
commutativity definition, this is easy to show; in addition, A will inherit a number of other
nice properties. This is a good illustration of how the new definition of commutativity is
easier to work with, beyond its advantage of greater generality.

▶ Proposition 36. Suppose that A is oblivious but not necessarily commutative. For a flaw
g = ⟨C⟩, suppose that we have fixed an enumeration C = {f1, . . . , ft} to define Rg. Then
Ag ∝ Af1 . . . Aft

.

Proof. By definition of Rg, we have Ag[σ, σ′] = Pr(rt . . . r1σ = σ′), where each ri is drawn
independently from Rfi;fi+1,...,ft

. Let us define R′
i = Rfi;fi+1,...,ft

and σi = ri . . . r1σ for
i = 0, . . . , t (where σ0 = σ). By enumerating over possible values for σ1, . . . , σt, we get
Ag[σ, σ′] =

∑
σ1,...,σt

σt=σ′

∏t
i=1 Prri∼R′

i
(riσi−1 = σi).

APPROX/RANDOM 2021

31:18 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Note that if σi /∈ fj for some j > i, then the term Prri∼R′
i
(riσi−1 = σi) must be zero,

since ri ∈ R′
i ⊆ Rfi;fj

. So we may restrict the sum to terms with σi ∈ fi+1 ∩ · · · ∩ ft for
all i = 0, . . . , t. For each such term, we have Prri∼R′

i
(riσi−1 = σi) = Prri∼Ri

(riσi−1=σi)
Prri∼Ri

(ri∈R′
i
) =

Afi
[σi−1,σ]

Prri∼Ri
(ri∈R′

i
) . So:

Ag[σ, σ′] =
∑

σ1,...,σt

σt=σ′

Af1 [σ0, σ1] . . . , Aft
[σt−1, σt]∏t

i=1 Prri∼Ri(ri ∈ R′
i)

=

∑
σ1,...,σt

σt=σ′
Af1 [σ0, σ1] . . . , Aft

[σt−1, σt]∏t
i=1 Prri∼Ri(ri ∈ R′

i)

= (cAf1 . . . Aft)[σ, σ′] ◀

▶ Proposition 37. If A is commutative, then the transition matrix Ag for a flaw g = ⟨C⟩
does not depend on the chosen enumeration C = {f1, . . . , ft}.

Proof. By Proposition 36, we have Ag = cA′
g for A′

g = Af1 . . . Aft
. Since the matrices Afi

all commute, A′
g does not depend on the enumeration of C. Furthermore, the constant c can

be determined from A′
g by choosing an arbitrary state σ ∈ g and setting c = 1∑

σ′ A′
g [σ,σ′]

. ◀

▶ Theorem 38. If the resampling oracle is commutative on A, then it is also commutative
on A.

Proof. Let g = ⟨C⟩ and g′ = ⟨C ′⟩ for stable sets C, C ′ such that g ̸∼ g′. So f ̸∼ f ′ for all
f ∈ C and f ′ ∈ C ′. By Proposition 36 we have

AgAg′ = cgcg′

(∏
f∈C

Af

∏
f ′∈C′

Af ′

)
, Ag′Ag = cg′cg

(∏
f ′∈C′

Af ′

∏
f∈C

Af

)
for scalar constants cg, cg′ . All these matrices Af , Af ′ commute, so both quantities are
equal. ◀

Another useful property for such resampling oracles is idempotence. We say that A is
idempotent if A2

f ∝ Af for all f ∈ A. Most of the known commutative resampling oracles,
resampling oracles have this property, including the variable LLLL and the permutation LLL.

▶ Proposition 39. If the resampling oracle is commutative and idempotent on A, then it is
also idempotent on A. Furthermore, for any stable set I = {⟨C1⟩, . . . , ⟨Ck⟩} of A and stable
set J = C1 ∪ · · · ∪ Ck of A, there holds AI ∝ AJ .

Proof. First, let f = ⟨C⟩ for stable set C = {g1, . . . , gk}. Proposition 36 gives A2
f ∝

(Ag1 · · ·Agk
)2. Since the matrices Agi

commute with each other, this gives A2
f ∝ A2

g1
· · ·A2

gk
.

Since A is idempotent, this is proportional to Ag1 · · ·Agk
, which again by Proposition 36 is

proportional to Af .
For the second result, Proposition 36 gives AI ∝

∏k
i=1

∏
g∈Ci

Ag =
∏

g∈J A
ng
g where

ng ≥ 1 is the number of copies of g appearing in C1, . . . , Ck. Since A is idempotent, each
term A

ng
g is proportional to Ag. Hence we have AI ∝

∏
g∈J Ag = AJ . ◀

References
1 Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the

Lovász local lemma. Journal of the ACM, 63(3):Article #22, 2016. doi:10.1145/2818352.

https://doi.org/10.1145/2818352

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:19

2 Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov. A local lemma for focused
stochastic algorithms. SIAM Journal on Computing, 48(5):1583–1602, 2019. doi:10.1137/
16M109332X.

3 Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the Lovász local lemma:
Point to set correlations and their algorithmic applications. In Proc. 60th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 725–744, 2019.

4 Noga Alon, Joel Spencer, and Prasad Tetali. Covering with latin transversals. Discrete applied
mathematics, 57(1):1–10, 1995.

5 Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. An improve-
ment of the Lovász local lemma via cluster expansion. Combinatorics, Probability & Computing,
20(5):709–719, 2011. doi:10.1017/S0963548311000253.

6 Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms
for the Lovász local lemma. SIAM Journal on Computing, 42(6):2132–2155, 2013. doi:
10.1137/100799642.

7 Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approximate
covering integer programs. Random Structures & Algorithms, pages 69–93, 2021.

8 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. Distributed Computing, 30(4):261–280, 2017.

9 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.

10 Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and latin transversals. Discrete
Applied Mathematics, 30(2-3):151–154, 1991. doi:10.1016/0166-218X(91)90040-4.

11 Bernhard Haeupler and David G. Harris. Parallel algorithms and concentration bounds for
the Lovász local lemma via witness DAGs. ACM Transactions on Algorithms, 13(4):Article
#25, 2017.

12 Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. Journal of the ACM, 58(6):Article #28, 2011. doi:10.1145/2049697.
2049702.

13 David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the lopsided
Lovász local lemma. ACM Transactions on Algorithms, 13(1):Article #17, 2016. doi:
10.1145/3015762.

14 David G. Harris. New bounds for the Moser-Tardos distribution. Random Structures &
Algorithms, 57(1):97–131, 2020.

15 David G. Harris. Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász
Local Lemma. ACM Transactions on Algorithms, 17(1):Article #1, 2021.

16 David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-
Tardos distribution. ACM Transactions on Algorithms, 13(3):Article #33, 2017.

17 David G. Harris and Aravind Srinivasan. A constructive Lovász Local Lemma for permutations.
Theory of Computing, 13(1):Article #17, 2017.

18 David G. Harris and Aravind Srinivasan. The Moser–Tardos framework with partial resampling.
Journal of the ACM, 66(5):Article #36, 2019.

19 Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via
resampling oracles. SIAM Journal on Computing, 49(2):394–428, 2020.

20 Fotis Iliopoulos. Commutative algorithms approximate the LLL-distribution. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2018.

21 Fotis Iliopoulos and Alistair Sinclair. Efficiently list-edge coloring multigraphs asymptotically
optimally. In Proc. 14th annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2319–2336, 2020.

22 Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proc. 43rd annual
ACM Symposium on Theory of Computing (STOC), pages 235–244, 2011.

APPROX/RANDOM 2021

https://doi.org/10.1137/16M109332X
https://doi.org/10.1137/16M109332X
https://doi.org/10.1017/S0963548311000253
https://doi.org/10.1137/100799642
https://doi.org/10.1137/100799642
https://doi.org/10.1016/0166-218X(91)90040-4
https://doi.org/10.1145/2049697.2049702
https://doi.org/10.1145/2049697.2049702
https://doi.org/10.1145/3015762
https://doi.org/10.1145/3015762

31:20 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

23 Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. SIAM Journal
on Computing, 47(6):2029–2056, 2018.

24 László Lovász. Submodular functions and convexity. In Mathematical Programming: the State
of the Art, pages 235–257. Springer, 1983.

25 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
Journal of the ACM, 57(2):Article #11, 2010. doi:10.1145/1667053.1667060.

26 Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal
on Discrete Mathematics, 28(2):911–917, 2014. doi:10.1137/110828290.

A Necessity of transition matrix commutativity for Lemma 5

Consider a set of events B∗ with a dependency relation ∼. We say that B∗ is complete if for
each σ ∈ Ω there exists a flaw hσ = {σ} ∈ B∗, and with hσ ∼ g for all g ∈ B∗. Note that
this definition is satisfied if B∗ is generated by atomic events corresponding to permutations,
perfect matchings of hypergraphs, or spanning trees.

We show now that if transition matrix commutativity fails in a complete set of events,
even for a single pair of flaws, then some wdags may appear with probability arbitrarily
higher than their weight. It can be checked that preconditions of the lemma (and thus its
conclusion) apply to some existing resampling oracles, such as the oracle for spanning trees
from [19] and the oracle for perfect matchings of complete s-uniform hypergraphs (for s ≥ 3)
from [15].

▶ Theorem 40. Suppose that B∗ is complete, regenerating, and contains a pair f, g ∈ B∗

with f ≁ g and Af Ag ̸= AgAf . Then for any C > 0 there exists a set of flaws B ⊆ B∗ with
|B| = 3, wdag H with a single sink and a flaw resampling strategy S such that the probability
that H appears in the execution of the algorithm is at least C · w(H) = C ·

∏
v∈H µ(L(v)).

Proof. Consider states σ, τ with Af Ag[σ, τ] ̸= AgAf [σ, τ]. Denote x = Af Ageτ and y =
AgAf eτ , and assume w.l.o.g. that x[σ] < y[σ]. Note that µ⊤Af Ag = µ⊤AgAf = γf γg · µ⊤

since the oracles are regenerating, and therefore µ⊤x = µ⊤y = γf γg · µ[τ] = γf γgγh.
Consider the following strategy S given a current state σ1: (i) if σ1 ̸= σ then prioritize

flaws f, g, h at steps 1,2,3 respectively; (ii) if σ1 = σ then prioritize flaws g, f, h at steps
1,2,3 respectively. We say that the run succeeds if the sequence of addressed flaws is (f, g, h)
in the first case and (g, f, h) in the second case. Clearly, the probability of success equals
e⊤

σ1
Af Ageτ = e⊤

σ1
x in the first case and e⊤

σ1
AgAf eτ = e⊤

σ1
y in the second case. If σ1 is

distributed according to µ then the probability of success is

p = µ[σ] · e⊤
σ y +

∑
σ1∈Ω−{σ}

µ[σ1] · e⊤
σ1

x = µ[σ] · (e⊤
σ y − e⊤

σ x) +
∑

σ1∈Ω
µ[σ1] · e⊤

σ1
x

= µ⊤x + µ[σ] · (y[σ]− x[σ]) > γf γgγh

Furthermore, if the run succeeds then the last state is distributed according to µ (since step
3 resamples h at state τ , and the oracles are regenerating).

Now consider the trajectory which repeats the sequence f, g, h for n times, and the
corresponding wdag H = GT

3n which has a single sink node labeled h. Let Sn be the strategy
S repeated cyclically. From the previous paragraph, the probability that the run starting
with some distribution µ produces H is given by cµ · pn−1, where cµ depends only on the
initial distribution. Note that w(H) = (γf γgγh)n. Choosing n sufficiently large now gives
the claim. ◀

https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/110828290

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:21

B Proof of Theorem 28

First, there is a probability of µ(E) that E is true at time 0. To bound the probability the
E becomes true later, let us say that a pair (f, t) is good if (i) E is false at time t; (ii) f is
reampled at time t; and (iii) either this is the first resampling of f , or if the most recent
resampling of f had occured at time t′ < t, then f had been false at some intermediate time
between t′ + 1 and t. If (f, t) is good, we say it is finalized at time s ≥ t if (i) f is resampled
at time s; (ii) E has been false at all times prior to s; and (iii) f is true at times t, . . . , s.

We claim that if E becomes true, then there is some pair (f, t) which is good and is
finalized at some time s ≥ t. For, suppose that E first becomes true at time s ≥ 1 and that
f is resampled at time s. Going backward in time, look for the earliest time t such that
the same flaw f is resampled at time t and that f remained true between t and s (possibly
t = s). Then (f, t) is good and is finalized at time s.

Now let us fix good pair (f, t). For each s ≥ t, let Es be the event that (f, t) is finalized
by some s′ ≥ s. We claim that Pr(Es) ≤ κ(f, E); furthermore, this probability bound holds
conditional on the full state of the system at times up to s.

By a limiting argument, it suffices to show this bound if we restrict to s ≤ smax for
arbitrary integer smax. For fixed smax, we show it by induction backward on s. The claim
follows immediately from induction if f is not being resampled at time s or if s = smax. If
E is true at time s, then Es is impossible (since (f, t) would have needed to be finalized at
some earlier time s′ < s). Likewise, if there was an intervening time between t and s where
f was false, then Es is impossible.

So, suppose we resample f at time s while E is false and f has remained true for times
t, . . . , s. Let τ ∈ f ∩ E be the state at time s. There are three things that can happen when
resampling f :

E becomes true. This has probability e⊤
τ Af eE . In this case, event Es may have occurred.

E remains false, and f becomes false. This has probability e⊤
τ Af eE∩f . In this case, event

Es is impossible.
E becomes false, and f remains true. This has probability e⊤

τ Af eE∩f . In this case,
in order to Es to occur, it must be that Es+1 holds after resampling f . By induction
hypothesis, this has probability at most κ(f, E).

Overall, we have Pr(Es) ≤ e⊤
τ Af eE · 1 + e⊤

τ Af eE∩f · κ(f, E). This is at most
κ(f, E)eτ Af eE∪f + e⊤

τ Af eE∩f · κ(f, E) ≤ κ(f, E). This concludes the induction.
Now consider any good pair (f, t). Because of the claim, we know that that the probability

that (f, t) is finalized (by any time s ≥ t) is at most κ(f, E), conditional on all other state at
time t. Since this is a necessary condition for E to become true, the overall probability that
E becomes true is at most E[Lf] · κ(f, E), where L is the number of good pairs (f, t). Note
that, between any good pairs (f, t) and (f, t′) for t′ > t, the event F ∩ f is false at least once,
where F is an arbitrary event with F ⊇ E. However, at times t and t′, the event F ∩ f is
true. Thus, F ∩ f is caused to become true at least Lf times, and so by Proposition 22, we
have E[Lf] ≤ NG(F ∩ f).

C Proof of Theorem 30 and Theorem 31

We begin by considering the setting where Ω is the uniform distribution on the permutations
π on [n]. The set A is defined as follows: for each pair (x, y) ∈ [n]× [n], there is atom πx = y,
which we denote by [x, y]. The resampling oracle here, for such an event, is to update the
state π ← (y z)π, where z is uniformly drawn from [n]. (Here and throughout the section,
(y z) denotes the permutation which swaps y and z.) We have [x, y] ∼ [x′, y′] if exactly one

APPROX/RANDOM 2021

31:22 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

of the following holds: (i) x = x′ or (ii) y = y′. Equivalently, this holds iff [x, y] ∩ [x′, y′] = ∅.
See [15] for further details, including a proof that the resampling oracle is commutative and
oblivious.

We begin with a basic observation on how atoms of A interact with events in A.

▶ Proposition 41. Let f = [x, y] be an atom and let E = ⟨C⟩ where C is a stable set of A.
Then Af eE ∝ eE′ , where E′ = ⟨C ′⟩ and stable set C ′ is obtained from C as follows:

If C contains exactly two atoms f1, f2 which are neighbors of f , i.e. f1 = [x, y1] and
f2 = [x2, y], then C ′ = C − {f1, f2} ∪ {[x, y], [x2, y1]}.
If C contains exactly one atom f1 which is a neighbor of f , then C ′ = C − f1 ∪ {f}.
Otherwise, if C contains no neighbors of f , then C ′ = C ∪ {f}.

Proof. Consider state π, and suppose we resample f to obtain π′ = (y z)π. If π /∈ f , then
e⊤

π Af eE = 0 = e⊤
π eE′ . Similarly, for each f ′ ∈ C which is not a neighbor of f , we must have

π ∈ f ′ as otherwise e⊤
π Af eE = 0 = e⊤

π eE′ . In these cases, we also automatically have π′ ∈ f ′

for all such f ′. Thus, we suppose that π ∈ f and also π ∈ f ′ for all f ′ ∈ C − Γ(f). We
consider the following cases in turn:

If C contains two atoms f1, f2, then we claim that π′ ∈ E precisely when z = y1 and
πx2 = y. For, in order to have π′ ∈ f1, we must have π′x = y1. Since πx = y, this
implies that (y z)y = y1, i.e. z = y1. Thus, π′ = (y y1)π. To satisfy f2, we must have
y = π′x2 = (y y1)πx2, i.e. πx2 = y. In this case, we see that e⊤

π Af eE = 1/n for all π and
also e⊤

π eE′ = 1.
Suppose that C contains a neighbor f1 = [x, y1]. In this case, we have π′ ∈ f1 precisely
if y1 = z. Similarly, suppose that C contains a neighbor f2 = [x2, y]. In this case, we
have π′ ∈ f2 precisely if z = πx2. Thus, we have e⊤

π Af eE = 1/n for all such π and also
e⊤

π eE′ = 1.
If C has no neighbors of f , then π′ is in E iff z /∈ {y1, . . . , yk} where C =
{[x1, y1], . . . , [xk, yk]}. Thus e⊤

π Af eE = n−k
n and e⊤

π eE′ = 1 ◀

To understand more complex, multi-atom interactions, let us fix event E = ⟨C⟩ for a
stable set C. For a stable set I ⊆ A, we can form an associated bipartite graph GI , as follows:
the left vertices correspond to C (we call these C-nodes), and the right vertices correspond
to I (we call these I-nodes). It has an edge between f and f ′ iff f ∼ f ′. Observe that since
C and I are stable, the graph GI has degree at most two – each node [x, y] can have one
neighbor of the form [x′, y] and another neighbor of the form [x, y′]. So, GI decomposes into
paths and cycles.

We define τ(I) to be the size of a maximum matching in GI . We also define the active
conditions for I, denoted Active(I) ⊆ A, as follows. First, for each f ∈ I, we also place f

into Active(I). Second, consider some maximal path of GI starting and ending at C-nodes
(which we call a C-path). The path can be written (in one of its two orientations) as

[x1, y1], [x1, y2], [x2, y2], . . . , [xk, yk−1], [xk, yk].

In this case, we also put [xk, y1] into Active(I). (It is possible that k = 1, in which case
[x1, y1] is an isolated C-node.)

For brevity, we define α(I) to be the event ⟨Active(I)⟩ in A. The active conditions
determine the vector AIeE , and also have a number of nice combinatorial properties.

▶ Proposition 42. Let I be a stable set of A. Then the following properties hold:
1. AIeE ∝ eα(I).
2. |Active(I)| = |C|+ |I| − τ(I).
3. Any f ∈ I with τ(I) = τ(I − f) has Active(I) = Active(I − f) ∪ {f}.

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:23

Proof.
1. We show this by induction on I. The base case I = 0 is clear, since then Active(I) = C.

For the induction step, consider f ∈ I. We have AIeE = Af AI−f eE ; by induction
hypothesis, this is proportional to Af e⟨U⟩ where U = Active(I − f). By Proposition 41,
this in turn is proportional to e⟨U ′⟩, where U ′ is formed according to the specific given
rules. We thus need to show that U ′ = Active(I). There are three cases.
If U has no neighbors of f , then U ′ = U ∪ {f}. Furthermore, GI has no changes in its
C-paths compared to GI−f , so Active(I) = Active(I − f) ∪ {f} = U ′.
Next suppose U has one neighbor f ′ = [x′, y′] of f . Since I is a stable set, it must
have f ′ /∈ I, i.e. GI−f contains a C-path with endpoints x′, y′. This C-path now
terminates in a degree-one I-node [x, y] in GI , and hence it is removed from GI . So
Active(I) = Active(I − f)− f ′ ∪ {f} = U ′.
Finally, If U has two neighbors f1 = [x, y1], f2 = [x2, y], then again since I is a stable set
these must correspond to C-paths in GI−f . Thus, there are two C-paths with endpoints
x, y1 and x2, y respectively. Now in GI , there is a new degree-two I-node [x, y]. This
merges the two C-paths into a single new C-path with endpoints x2, y1. Thus again
Active(I) = Active(I − f)− {f1, f2} ∪ {f, [x2, y1]} = U ′.

2. Consider some connected component of GI ; it is a path or cycle with i distinct I-nodes
and c distinct C-nodes, where c ∈ {i − 1, i, i + 1}. If c = i − 1, then it has maximum
matching size t = i − 1 else it has maximum matching size t = i. If c = i + 1, then it
has one additional active condition corresponding to the C-path on its nodes, and thus
has a = i + 1 active conditions; else it has a = i active conditions. In all cases, it can
be checked that a = c + i − t. The claimed formula is obtained by summing over all
components.

3. By part (2), we have τ(I) = τ(I − f) precisely if |Active(I)| = |Active(I − f)|+ 1, i.e.
GI has the same number of C-paths as GI−f . We claim in this case that GI has the
same C-paths as GI−f as well, which will show the claim.
For, if not, then GI would need to gain, and lose, some C-paths compared to GI . The
new I-node [x, y] would need to participate in a new C-path. This can only occur if GI−f

has two C-paths with endpoints [x, y′] and [x′, y]. But in this case, these two existing
C-paths get destroyed in GI , and thus in fact GI has strictly fewer C-paths compared to
GI−f . ◀

▶ Proposition 43. Let I = {f1, . . . , fk} be a stable set in A, where fi = ⟨Fi⟩ for each i.
Consider the stable sets J ′ = F1 ∪ · · · ∪ Fk−1 and J = J ′ ∪ Fk of A. If τ(J ′) = τ(J), then fk

is dominated by I − fk in A.

Proof. Let I ′ = {f1, . . . , fk−1}. t is easily seen that the permutation LLL setting is idemp-
totent. Thus, by Proposition 39, we have AI′ ∝ AJ′ . Combined with Proposition 42(1), this
implies that there is some scalar value p ≥ 0 such that AI′eE = peα(J′). We want to show
that

e⊤
π AIeE ≤ e⊤

π AI′eE (4)

for any state π.
By Proposition 39, we have AI ∝ AJ . Thus, the LHS of Eq. (4) is zero if π /∈ α(J), in

which case the inequality clearly holds. So suppose that π ∈ α(J). By Proposition 42(3),
we have Active(J ′) ⊆ Active(J) since τ(J ′) = τ(J). In this case, also π ∈ α(J ′) so the RHS
of Eq. (4) is equal to p. The LHS can be factored as e⊤

π AIeE =
∑

σ Af [π, σ] · e⊤
σ AI′eE =∑

σ∈α(J ′) Af [π, σ]p. Since matrix Af is substochastic, this is at most p. This establishes the
desired inequality. ◀

APPROX/RANDOM 2021

31:24 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Proposition 44. For any I ∈ O(E), there is an injective function ϕI : I → C with
g ∼ ϕI(g) for all g ∈ I.

Proof. By definition, I can be ordered as I = {f1, . . . , fk}, where fi = ⟨Fi⟩ and such that
each fi is not dominated by {f1, . . . , fi−1}. Let us define Ji = F1 ∪ · · · ∪ Fi for each i. By
Proposition 43, we must have τ(Ji) > τ(Ji−1) for each i. Thus, for each i, there is some
gi ∈ Fi− Ji−1 and some F ′

i ⊆ Fi−{gi} with τ(Ji−1 ∪F ′
i ∪ {gi}) > τ(Ji−1 ∪F ′

i). It is known
(see, e.g. [24, Example 1.4]) that τ is a submodular set function. Hence, we have

1 = τ(Ji−1 ∪ F ′
i ∪ {gi})− τ(Ji−1 ∪ F ′

i) ≤ τ({g1, . . . , gi−1} ∪ {gi})− τ({g1, . . . , gi−1})

since {g1, . . . , gi−1} ⊆ Ji−1.
This implies that τ({g1, . . . , gk}) = k and G{g1,...,gk} has a matching M of size k. We

define the function ϕ by setting ϕ(fi) = ci where gi is matched to ci in M . ◀

We can now obtain Theorem 30.

Proof of Theorem 30. Clearly µ(E) = (n−k)!
n! . To enumerate a set I ∈ O(E), by Proposi-

tion 44, we choose, for each g ∈ C, either zero or one preimages f = ϕ−1
I (g) in I. If we write

Ig for the set of preimages of g, then |Ig| ≤ 1 for all g and I =
⋃

g∈C Ig. Overall, this shows
that ∑

I∈O(E)

Ψ(I) ≤
∑

Ig1 ,...,Igk

Ψ(Ig1 ∪ · · · ∪ Igk
) ≤

∑
Ig1 ,...,Igk

Ψ(Ig1) · · ·Ψ(Igk
)

where the last inequality follows from log-subadditivity of Ψ. This can be written as∏k
i=1

∑
Igi

Ψ(Igi
). The case of Igi

= ∅ contributes 1, and the case of Igi
= {f} contributes

Ψ(f). ◀

We next consider the setting where Ω is the set of perfect matchings M on the clique
on vertex set [n], where n is an even integer. The set A is defined as follows: for each
pair (x, y) ∈ [n] × [n] with x ̸= y, there is an atomic event that M ⊇ {x, y}. We denote
this event by [x, y]; note that [x, y] = [y, x], which is different from the permutation setting.
The resampling oracle, for such an event with x < y, is to update the state by drawing z

uniformly from [n]− x and setting M ← (y z)M . Here, we are using the natural left-group
action of permutations on matchings, i.e. σM = {{σx′, σy′} | {x′, y′} ∈M}.

We have [x, y] ∼ [x′, y′] if |{x, y}∩{x′, y′}| = 1. Equivalently, this holds iff [x, y]∩[x′, y′] =
∅. See [15] for further details, including a proof that this resampling oracle is commutative
and oblivious.

As before, we begin with a basic observation on how atoms of A interact with events in
A.

▶ Proposition 45. Let f = [x, y] be an atom and let E = ⟨C⟩ where C is a stable set of A.
Then Af eE ∝ eE′ , where E′ = ⟨C ′⟩ and stable set C ′ is obtained from C as follows:

If C contains exactly two atoms f1, f2 which are neighbors of f , i.e. f1 = [x, y1] and
f2 = [x2, y], then C ′ = C − {f1, f2} ∪ {[x, y], [x2, y1]}.
If C contains exactly one atom f1 which is a neighbor of f , then C ′ = C − f1 ∪ {f}.
Otherwise, if C contains no neighbors of f , then C ′ = C ∪ {f}.

Proof. Consider state M ∈ f , and suppose we resample f to M ′ = (y z)M where z is drawn
from [n]−x. For each f ′ ∈ C which is not a neighbor of f , we must have M ∈ f ′ as otherwise
e⊤

M Af eE = 0 = e⊤
M eE′ . In these cases, we also automatically have M ′ ∈ f ′ for all such f ′.

Thus, we suppose that M ∈ f and also M ∈ f ′ for all f ′ ∈ C − Γ(f). We consider the
following cases:

D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:25

Suppose that C contains two atoms f1, f2. Then we claim that M ′ ∈ E precisely
when z = y1 and {x2, y} ∈ M . First, we have {x, y1} ∈ M ′ with M ′ = (y z)M iff
z = y1. Thus, M ′ = (y y1)M . To satisfy f2, we must have {x2, y1} ∈ M . In this case,
e⊤

M Af eE = 1/(n− 1) and also e⊤
M eE′ = 1.

Suppose that C contains a neighbor f1 = [x, y1]. In this case, we have M ′ ∈ f1 precisely
if y1 = z. Thus, we have e⊤

M Af eE = 1/(n− 1) and also e⊤
M eE′ = 1.

Suppose C has no neighbors of f . Let C = {[x1, x2], . . . , [x2k−1, x2k]}; we have M ∈ E′

precisely if z /∈ {x1, . . . , x2k}. Since z ̸= x, we thus have e⊤
M Af eE = n−2k+1

n−1 . We also
have e⊤

M eE′ = 1. ◀

To understand multi-atom interactions, let us fix event E = ⟨C⟩ for a stable set C.
For a stable set I ⊆ A, we can form an associated bipartite graph GI , whose left vertices
correspond to C and whose right vertices correspond to I. It has an edge between f and f ′

iff f ∼ f ′. Observe that since C and I are stable, the graph GI has degree at most two –
each node [x, y] can have one neighbor of the form [x′, y] and another neighbor of the form
[x, y′]. So, GI decomposes into paths and cycles.

We define τ(I) to be the size of a maximum matching in GI . We also define Active(I) ⊆
A as follows. First, for each f ∈ I, we also place f into Active(I). Second, consider
some maximal path of GI starting and ending at C-nodes; the path can be written as
[x1, x2], [x2, x3], . . . , [xk−1, xk] for even k. In this case, we also put [x1, xk] into Active(I).

▶ Proposition 46. Let I be a stable set of A. Then the following properties hold:
1. AIeE ∝ eα(I) where α(I) = ⟨Active(I)⟩.
2. |Active(I)| = |C|+ |I| − τ(I).
3. Any f ∈ I with τ(I) = τ(I − f) has Active(I) = Active(I − f) ∪ {f}.

We omit the the proof of Proposition 44, as well as the remainder of the proof of
Theorem 31, as they are precisely analogous to the proof of Theorem 30.

APPROX/RANDOM 2021

From Coupling to Spectral Independence and
Blackbox Comparison with the Down-Up Walk
Kuikui Liu #

University of Washington, Seattle, WA, USA

Abstract
We show that the existence of a “good” coupling w.r.t. Hamming distance for any local Markov
chain on a discrete product space implies rapid mixing of the Glauber dynamics in a blackbox
fashion. More specifically, we only require the expected distance between successive iterates under
the coupling to be summable, as opposed to being one-step contractive in the worst case. Combined
with recent local-to-global arguments [16], we establish asymptotically optimal lower bounds on
the standard and modified log-Sobolev constants for the Glauber dynamics for sampling from spin
systems on bounded-degree graphs when a curvature condition [44] is satisfied. To achieve this, we
use Stein’s method for Markov chains [10, 46] to show that a “good” coupling for a local Markov
chain yields strong bounds on the spectral independence of the distribution in the sense of [6].

Our primary application is to sampling proper list-colorings on bounded-degree graphs. In
particular, combining the coupling for the flip dynamics given by [49, 13] with our techniques,
we show optimal O(n log n) mixing for the Glauber dynamics for sampling proper list-colorings
on any bounded-degree graph with maximum degree ∆ whenever the size of the color lists are
at least

(
11
6 − ϵ

)
∆, where ϵ ≈ 10−5 is small constant. While O(n2) mixing was already known

before, our approach additionally yields Chernoff-type concentration bounds for Hamming Lipschitz
functions in this regime, which was not known before. Our approach is markedly different from prior
works establishing spectral independence for spin systems using spatial mixing [6, 14, 15, 30], which
crucially is still open in this regime for proper list-colorings.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Markov chains, Approximate counting, Spectral independence

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.32

Category RANDOM

Funding Kuikui Liu: The author is supported by NSF grants CCF-1552097, CCF-1907845.

Acknowledgements The author would like to thank their advisor Shayan Oveis Gharan for comments
on a preliminary draft of this paper. We also thank Nima Anari and Pierre Youssef for informing
us that a conjecture posed in a preliminary draft of the paper was already known to be false. We
finally thank the anonymous reviewers for delivering valuable feedback on this paper.

1 Introduction

Given a probability distribution µ on a collection of subsets of a finite universe U with a fixed
size n, one would like to generate (approximate) samples from µ. This problem is widely
encountered in machine learning, statistical physics, and theoretical computer science, and
encompasses many problems as special cases, including distributions over bases of matroids,
discrete probabilistic graphical models, etc. A popular approach used in practice is to run
a Markov chain on supp(µ) whose stationary distribution in µ. The main question then
becomes how quickly does the distribution of the Markov chain converge to stationarity, i.e.
does it mix rapidly?

A particularly natural Markov chain known as the “down-up walk” (or “high-order
walk”) originally studied in the high-dimensional expander community [39, 21, 40, 45, 1] has
recently received a lot of attention due to applications to sampling from discrete log-concave

© Kuikui Liu;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liukui17@cs.washington.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Coupling to Spectral Independence

distributions [4, 18, 3, 5] and spin systems in statistical physics [1, 6, 14, 15, 30, 2, 16]. For
sampling bases of matroids, the down-up walk recovers exactly the bases exchange walk
first studied in [29, 43], and for sampling from discrete graphical models, the down-up walk
recovers exactly the classical Glauber dynamics. One of the main insights in this area is that
to prove rapid mixing of the down-up walk, it suffices to look only at pairwise correlations
between elements, albeit for all conditional distributions of µ (see Definition 13). One
additional advantage behind this approach is that one can prove local-to-global results not
just for the spectral gap [40, 1], but also for the rate of entropy decay [18, 34, 16] and even
for the rate of decay for arbitrary f -divergences [2]. This has led to asymptotically optimal
mixing times for many problems [18, 5, 16] as well as Chernoff-type concentration bounds
for Lipschitz functions.

However, establishing sufficiently strong bounds on pairwise correlations (or, more pre-
cisely, pairwise influences; see Definition 13), remains a challenging problem. Prior works
typically rely on one of three techniques: Oppenheim’s trickle-down theorem [45, 4], spatial
mixing (or correlation decay) [6, 14, 15, 30, 16], or the absence of roots for the multivariate
generating polynomial of µ in a sufficiently large region of the complex plane [2, 17]. However,
there are settings, such as proper list-colorings when the number of colors is less than twice
the maximum degree of the graph, where the trickle-down theorem fails, and where spatial
mixing and the existence of a nice root-free region are not known.

In this work, we show that the classical technique of (path) coupling can be used to
bound these pairwise correlations. In fact, we will show that the existence of a “good”
coupling for any sufficiently “local” dynamics with stationary distribution µ implies spectral
independence for µ in the sense of [6], and hence, rapid mixing of the down-up walk. Hence,
one can view our main result as a blackbox comparison result between any local Markov
chain and the down-up walk.

As our main concrete application, we use the variable-length path coupling devised by
[13] for the flip dynamics, building off work of Vigoda [49], to show O(n log n) mixing of the
Glauber dynamics for sampling proper list-colorings on graphs of maximum degree ∆ ≤ O(1)
whenever the number of available colors is at least

(11
6 − ϵ

)
∆, where ϵ ≈ 10−5 is a small

constant. This mixing time is asymptotically optimal [36]. While O(n2) mixing was known
earlier [31] (see also [49, 13]) by using a spectral gap comparison argument [19], our approach
yields optimal bounds on the rate of entropy decay as well as Chernoff-type concentration
inequalities. As mentioned earlier, strong spatial mixing and the existence of sufficiently
large root-free regions are not known in this regime for proper list-colorings. Along the
way, we make an additional conceptual contribution by answering the natural question of if
Dobrushin-type mixing conditions imply spectral independence.

1.1 Our Contributions

To state our blackbox comparison result, let us first define the down-up walk for sampling from
distributions over homogeneous set systems. We eschew the use of much of the terminology
of high-dimensional expanders so as to simplify the exposition. Let µ be a distribution over(

U
n

)
= {S ⊆ U : |S| = n} for a finite set U and a positive integer n ≥ 11. The down-up walk

1 One can view µ as being a distribution over the facets of a “pure simplicial complex” weighted by µ.
These are a generalization of usual graphs which are studied in geometry, topology, and combinatorics.
The notion of spectral independence (Definition 13) was derived from a high-dimensional notion of
“expansion” for simplicial complexes known as “local spectral expansion” first discovered by [21, 40, 45].

K. Liu 32:3

is described by the following two-step process. If the current state of the chain is S(t), then
we select the next state S(t+1) as follows:
1. Select a uniformly random element i ∈ S.
2. Sample a set S ∈ supp(µ) satisfying S ⊇ S(t) \ {i} with probability proportional to µ(S)

and transition to S(t+1) = S.
As special cases, this class of Markov chains includes the bases exchange walk for matroids
[43] and the Glauber dynamics for distributions over discrete product spaces.

We also define our notion of a “good” coupling and locality precisely here.

▶ Definition 1 (Amortized Convergent Coupling). Fix an irreducible transition probability
matrix P which is reversible w.r.t. a distribution π on a finite state space Ω. Further endow Ω
with a metric d(·, ·). We say a coupling of two faithful copies of the chain (X(t))t≥0, (Y (t))t≥0
is C-amortized convergent w.r.t. d(·, ·) if the following holds for all x, y ∈ Ω:

∞∑
t=0

EX(t),Y (t)

[
d(X(t), Y (t)) | X(0)=x

Y (0)=y

]
≤ C · d(x, y).

▶ Definition 2 (Locality of Dynamics). Fix an irreducible transition probability matrix P

which is reversible w.r.t. a distribution π on a finite state space Ω. Further endow Ω with
a metric d(·, ·). For a positive real number ℓ > 0, we say the dynamics P is ℓ-local w.r.t.
d(·, ·) if

max
x,y∈Ω:P (x,y)>0

d(x, y) ≤ ℓ.

Throughout the paper, unless stated otherwise, we work with Hamming distance. With these
notions in hand, we now state our blackbox comparison result.

▶ Theorem 3 (Blackbox Comparison with Down-Up Walk). Let µ be a distribution on
(

U
n

)
,

where U is a finite universe and n ≥ 1 is a positive integer. For each A ⊆ U with |A| ≤ n − 2
and A ⊆ S for some S ∈ supp(µ), let Pµ|A be some Markov chain on supp(µ | A) with
stationary distribution µ | A. Assume the family of Markov chains {Pµ|A} satisfy the
following:
1. Locality: For some ℓ ≥ 0, Pµ|A is ℓ-local w.r.t. Hamming distance for all A.
2. Good Coupling: For some Cn−k > 0, Pµ|A admits a Cn−k-amortized convergent coupling

w.r.t. Hamming distance for all k and A with |A| = k.
3. Bounded Differences Between Chains: For some C ′

n−k > 0, we have the bound

max
S∈supp(µ|(A∪i))

 ∑
T ̸=S

∣∣Pµ|A(S → T) − Pµ|(A∪i)(S → T)
∣∣ ≤ C ′

n−k,

for all k, i and A with |A| = k.
If ℓ · Cn−k · C ′

n−k ≤ O(1) for all k, then the down-up walk has spectral gap at least n−O(1). If,
in addition, µ is the Gibbs distribution of a spin system (see Section 2.1) on a bounded-degree
graph, then the spectral gap, standard and modified log-Sobolev constants Equation (4) for
the down-up walk are all Ω(1/n).

We refer the reader to Section A and references therein for the importance of lower bounding
the spectral gap, standard and modified log-Sobolev constants, and in particular, their
relation to mixing and concentration.

APPROX/RANDOM 2021

32:4 Coupling to Spectral Independence

▶ Remark 4. While initially it may seem inconvenient to first build an entire family of
Markov chains, one for each conditional distribution, this is very natural for many classes
of distributions, in particular those which are closed under conditioning. As we will see, in
practice, it is easy to obtain bounded differences between chains with C ′

n−k ≲ 1
n−k simply

via brute force calculation. While Cn−k ≳ n − k is often unavoidable, particularly for ℓ-local
chains with ℓ ≤ O(1), we will see that in many settings, we have Cn−k ≲ n − k as well. If
additionally our dynamics are ℓ-local with ℓ ≤ O(1), then the above yields a n−O(1) spectral
gap for the down-up walk. It will turn out that our notion of ℓ-locality can also be relaxed;
see Remark 10.

Our primary concrete application is to sampling proper list-colorings on graphs via the
Glauber dynamics, which may be realized as a down-up walk. In this setting, we compare
with another useful Markov chain known as the flip dynamics. The flip dynamics is ℓ-local
w.r.t. unweighted Hamming distance with ℓ ≤ 12, and was analyzed in [49], who gave
a greedy coupling which is one-step contractive whenever the number of available colors
is at least 11

6 ∆, implying it is C-amortized convergent with C ≤ O(n). [13] tweaked the
parameters of the flip dynamics slightly while preserving locality, and further constructed
a variable-length coupling which contracts by a constant factor every expected O(n) steps
whenever the number of available colors is at least

(11
6 − ϵ

)
∆ for a small constant ϵ ≈ 10−5.

We will show this variable-length coupling is also C-amortized convergent with C ≤ O(n),
and deduce optimal mixing for list-colorings in this regime.

▶ Theorem 5. Let (G, L) be a list-coloring instance where G = (V, E) is a graph of maximum
degree ∆ ≤ O(1) and L = (L(v))v∈V is a collection of color lists. Then for some absolute
constant ϵ ≈ 10−5, if |L(v)| ≥

(11
6 − ϵ

)
∆ for all v ∈ V , then the uniform distribution over

proper list-colorings for (G, L) is (η0, . . . , ηn−2)-spectrally independent where ηk ≤ O(1) for
all k. Furthermore, the spectral gap, standard and modified log-Sobolev constants Equation (4)
for the Glauber dynamics are all Ω(1/n), and the mixing time is O(n log n).

▶ Remark 6. Our running time dependence on ∆ is roughly ∆O(∆c) for a mild constant
c, which is rather poor. The main bottleneck in improving this dependence lies in the
local-to-global result of [16], although our spectral independence bound, which depends
polynomially on ∆, can also be significantly improved.

To prove Theorem 3, we leverage recent local-to-global results [1, 16] (see Theorems 14
and 15 for formal statements), which show that if one has sufficiently strong upper bounds
on the total pairwise correlation

∑
j∈U

∣∣PrS∼µ[j ∈ S] − PrS∼µ|i[j ∈ S]
∣∣, then one can deduce

rapid mixing for the down-up walk [39, 21, 40, 45]. To upper bound these correlations, we
considerably generalize a result simultaneously due to [10, 46], which was discovered in the
context of bounding the Wasserstein 1-distance between Ising models, or more generally, two
measures on the discrete hypercube {−1, +1}n. More specifically, we extend their results in
several different directions:
1. We replace the Glauber dynamics by any local dynamics.
2. We allow the dynamics to admit a coupling which in a sense “contracts on average”, as

opposed to a step-wise contraction in the worst-case.

▶ Theorem 7. Let µ be a distribution on
(

U
n

)
, where U is some finite universe and n ≥ 1 is

a positive integer. Fix an arbitrary i ∈ U . Let Pµ (resp. Pµ|i) be the transition kernel of any
irreducible Markov chain on supp(µ) (resp. supp(µ | i)) which is reversible w.r.t. µ (resp.
supp(µ | i)). Suppose that Pµ is ℓ-local and admits a C-amortized convergent coupling, both

K. Liu 32:5

w.r.t. the Hamming metric dH(·, ·). Then we have the bound

∑
j∈U

∣∣∣∣ Pr
S∼µ

[j ∈ S] − Pr
S∼µ|i

[j ∈ S]
∣∣∣∣ ≤ C · ℓ · max

S∈supp(µ|i)

 ∑
T ̸=S

∣∣Pµ(S → T) − Pµ|i(S → T)
∣∣ .

1.2 Main Technical Result
We now state our main technical result, which provides the most general bound on the
difference between marginals of two distributions µ, ν. We immediately use it to deduce
Theorem 7.

▶ Theorem 8 (Main Technical). Let µ, ν be any two distributions on 2U for a finite set U

with supp(ν) ⊆ supp(µ), where U is a finite universe and n ≥ 1 is a positive integer. Further,
let Pµ (resp. Pν) be the transition kernel of any Markov chain on supp(µ) (resp. supp(ν))
with stationary distribution µ (resp. ν). Assume Pµ is irreducible and reversible w.r.t. µ.
Then we may bound both

∑
j∈U |PrS∼µ[j ∈ S] − PrS∼ν [j ∈ S]| and the 1-Wasserstein distance

W1(µ, ν) (see Definition 11) by the following quantity:

ES∼ν

∑
T ̸=S

|Pµ(S → T) − Pν(S → T)| ·
∞∑

t=0
EX(t),Y (t)

[
dH(X(t), Y (t)) | X(0)=S

Y (0)=T

] ,

where (X(t), Y (t))∞
t=0 is a coupling of the Markov chain Pµ.

▶ Remark 9. The technical condition supp(ν) ⊆ supp(µ) is just for convenience, as it ensures
the transition probability Pµ(S → T) also makes sense when S ∼ ν. This assumption is
certainly satisfied in our application where ν is a conditional distribution of µ.

Proof of Theorem 7. We use Theorem 8 with ν = µ | i to obtain the upper bound

ES∼µ|i

∑
T ̸=S

∣∣Pµ(S → T) − Pµ|i(S → T)
∣∣ ·

∞∑
t=0

EX(t),Y (t)

[
dH(X(t), Y (t)) | X(0)=S

Y (0)=T

]
≤ max

S∈supp(µ|i)

 ∑
T ̸=S

∣∣Pµ(S → T) − Pµ|i(S → T)
∣∣

· ES∼µ|i

[
max

T :Pµ(S→T)>0

∞∑
t=0

EX(t),Y (t)

[
dH(X(t), Y (t)) | X(0)=S

Y (0)=T

]]
︸ ︷︷ ︸

(∗)

.

It suffices to bound (∗) by C · ℓ. Since Pµ admits a C-amortized convergent coupling, we
have that

∞∑
t=0

EX(t),Y (t)

[
dH(X(t), Y (t)) | X(0)=S

Y (0)=T

]
≤ C · dH(S, T).

Hence,

(∗) ≤ C · ES∼µ|i

[
max

T :Pµ(S→T)>0
dH(S, T)

]
≤ C · ℓ. ◀

APPROX/RANDOM 2021

32:6 Coupling to Spectral Independence

▶ Remark 10. One can see from the proof that we only needed that

ES∼µ|i

[
max

T :Pµ(S→T)
dH(S, T)

]
≤ ℓ,

as opposed to the stronger notion of ℓ-locality, where we have maxS,T :Pµ(S→T) dH(S, T) ≤ ℓ.
Thus, in some sense, we only need the dynamics to make local moves “on average”. We leave
it to future work to exploit this additional flexibility.

1.3 Independent Work
The results we obtain here were also independently discovered in [7].

1.4 Organization of the Paper
We state preliminaries on spin systems, spectral independence, etc. in Section 2. We then
move to the proof of our main technical result (Theorem 8) in Section 3. In Section 4, we
apply our techniques to distributions on discrete product spaces. In Section 5, we combine
our techniques with couplings constructed in prior works to obtain spectral independence for
proper list-colorings.

2 Preliminaries

For a positive integer n ≥ 1, we write [n] = {1, . . . , n}. For a distribution µ on some finite
state space Ω, we write supp(µ) = {x ∈ Ω : µ(x) > 0} for the support of µ. For a matrix A,
we write ∥A∥∞ = maxi

∑
j |A(i, j)| for the maximum absolute row sum, and if A has real

eigenvalues, we write λmax(A) for the largest eigenvalue of A.
Throughout, we write G = (V, E) for an undirected graph, and we will write ∆ for the

maximum degree of G. For a finite universe U and S ⊆ U , we write IS for the {0, 1}-indicator
function of S; for an element j ∈ U , we write Ij as opposed to I{j}. If µ is a distribution over(

U
n

)
and S ⊆ U , then we write µ | S for the conditional distribution of µ on

(
U\S

n−|S|
)
, where

(µ | S)(T) ∝ µ(S ∪ T) whenever S ∪ T ∈ supp(µ), S ∩ T = ∅, and (µ | S)(T) = 0 otherwise.
We will measure convergence of our Markov chains using total variation distance, defined

as

dTV(µ, ν) = 1
2

∑
x

|µ(x) − ν(x)| = sup
S⊆Ω

|µ(S) − ν(S)|

for two distributions µ, ν on a common state space Ω. We define the ϵ-mixing time of a
Markov chain P on a state space Ω with stationary distribution π as

tmix(ϵ) def= max
x∈Ω

min{t ≥ 0 : dTV(IxP t, π) ≤ ϵ}.

The mixing time of the chain is defined as tmix(1/4). For the reader’s convenience, in
Section A, we record the relation between mixing, spectral gap, modified and standard
log-Sobolev constants. Finally, we also define the 1-Wasserstein distance.

▶ Definition 11 (1-Wasserstein Distance). Given two probability measures µ, ν on a common
state space Ω endowed with a metric d(·, ·), we define the 1-Wasserstein distance W1(µ, ν)
w.r.t. d(·, ·) by

W1(µ, ν) = sup
f

|Eµf − Eνf | ,

where the supremum is over functions f : Ω → R which are 1-Lipschitz w.r.t. d(·, ·) (i.e.
|f(x) − f(y)| ≤ d(x, y) for all x, y ∈ Ω).

K. Liu 32:7

▶ Remark 12. By Kantorovich duality, one may equivalently define the 1-Wasserstein distance
as

W1(µ, ν) = inf
γ

E(x,y)∼γ [d(x, y)],

where the infimum is overall couplings γ of µ, ν on Ω × Ω.

2.1 Spin Systems
Fix an undirected graph G = (V, E), and a positive integer q ≥ 2. We view [q] as a collection
of possible “spin assignments” for the vertices of G. We also fix a symmetric nonnegative
matrix A ∈ Rq×q

≥0 of “edge interaction activities” and a positive vector h ∈ Rq
>0 of “external

fields”. The Gibbs distribution of the spin system on G = (V, E) with parameters A, h is the
distribution µ = µG,A,h over configurations σ : V → [q] given by

µ(σ) ∝
∏

{u,v}∈E

A(σ(u), σ(v))
∏
v∈V

h(σ(v)),

where the constant of proportionality is the partition function of the system, given by

ZG(A, h) =
∑

σ:V →[q]

∏
{u,v}∈E

A(σ(u), σ(v))
∏
v∈V

h(σ(v)).

Many classical models in statistical physics as well as distributions over often-studied
combinatorial objects on graphs may be found as special cases. Notable examples include the
Ising model on cuts, the hardcore gas model on independent sets, the monomer-dimer model
on matchings, and the zero-temperature antiferromagnetic Potts model on proper colorings.

We call a configuration σ : V → [q] feasible if µ(σ) > 0. For instance, if A has all positive
entries, then all configurations σ : V → [q] are feasible. We call a partial configuration
ξ : S → [q], where S ⊆ V is a subset of vertices, a boundary condition. For such a boundary
condition, we write µ | ξ for the conditional Gibbs distribution on V \ S given by taking µ

and conditioning on the event that the sampled σ ∼ µ satisfies σ(v) = ξ(v) for all v ∈ S.

2.2 Discrete Product Spaces and Homogeneous Set Systems
Fix a collection of finite sets (Ω(v))v∈V , where V is some finite index set with |V | = n, and
consider a measure µ on the product space

∏
v∈V Ω(v). For instance, if Ω(v) = {−1, +1} for

each v ∈ V , then µ is just a measure on the discrete hypercube {−1, +1}V . An important
subclass of examples which we will discuss at length include discrete probabilistic graphical
models, where the index set V is the set of vertices of a (hyper)graph, and the measure µ

designed in such a way that the (hyper)edges represent local interactions between vertices of
the model; see Section 2.1 for more details.

As done in [6, 14, 15, 30], we view µ as a measure on
(

U
n

)
where

U = {(v, ω(v)) : v ∈ V, ω(v) ∈ Ω(v)}.

Note the usual Hamming distance dH(·, ·) on
(

U
n

)
is twice the usual Hamming distance

typically associated with a discrete product space.
We will often write a single vertex-assignment pair (v, c), where v ∈ V and c ∈ Ω(v), as

simply vc. Here, each configuration σ ∈
∏

v∈V Ω(v) corresponds to the set {(v, σ(v)) : v ∈ V }.
In this setting, the down-up walk is precisely the Glauber dynamics (or Gibbs sampler)
for sampling from µ. For each configuration σ ∈

∏
v∈V Ω(v), we transition to the next

configuration by the following process:

APPROX/RANDOM 2021

32:8 Coupling to Spectral Independence

1. Select a uniformly random coordinate v ∈ V .
2. Resample σ(v) according to µ conditioned on σ−v.
Let us make this more concrete. For each σ ∈

∏
v∈V Ω(v) and v ∈ V , we write σ−v for the

partial subconfiguration of σ which only excludes σ(v). For c ∈ Ω(v), we also write σvc for
the configuration obtained by flipping the coordinate of v from σ(v) to c. We may then write
µv(· | σ−v) for the marginal distribution of σ(v) under µ conditioned on σ−v. The transition
kernel of the Glauber dynamics may then be written as

Pµ(σ → σvc) = 1
n

· µv(c | σ−v).

2.3 Spectral Independence and The Down-Up Walk
Here, we formalize spectral independence and its connection with rapid mixing of the down-
up walk. Throughout the paper, we will assume the following connectivity/nondegeneracy
condition. Assuming Theorem 7 holds, we will also give a proof of Theorem 3.

Assumption: The down-up walk for µ and all of its conditional distributions is connected.
In the context of spin systems, this condition is guaranteed by “total connectivity” of the
system parameters (A, h) [16]. For instance, this is satisfied by all “soft-constraint” models
(i.e. those with A > 0), and many “hard-constraint” models such as the hardcore model and
the uniform distribution over proper colorings when q ≥ ∆ + 2.

Let us now formalize spectral independence.

▶ Definition 13 (Pairwise Influence and Spectral Independence [6]). Fix a finite universe U

and a positive integer n ≥ 1. Fix a distribution µ on
(

U
n

)
= {S ⊆ U : |S| = n}. We define

the pairwise influence of an element i on another element j by

Iµ(i → j) def= Pr
S∼µ

[j ∈ S | i ∈ S] − Pr
S∼µ

[j ∈ S].

We write Iµ ∈ RU×U defined by Iµ(i, j) = Iµ(i → j) for the pairwise influence matrix of
µ. We say the distribution µ is η-spectrally independent if λmax(Iµ) ≤ η + 1. We say the
distribution µ is (η0, . . . , ηn−2)-spectrally independent if µ is η0-spectrally independent,
µ | i is η1-spectrally independent for all i ∈ U , and so on.

Often in practice, and in this paper, instead of bounding λmax(Iµ), we will bound

∥Iµ∥∞ = max
i∈U

∑
j∈U

|Iµ(i → j)| ,

which is sufficient since it is well-known that λmax(A) ≤ ∥A∥∞ for any matrix A with real
eigenvalues. The main usefulness of spectral independence is that it implies rapid mixing of
the down-up walk, while only requiring bounds on pairwise correlations. We state the main
local-to-global results most relevant to us here. In the most general setting, we may deduce
an inverse polynomial spectral gap from sufficiently strong spectral independence [21, 40, 1].

▶ Theorem 14 ([1], [6]). Let U be a finite universe, and n ≥ 1 a positive integer. Let µ be a
distribution on

(
U
n

)
which is (η0, . . . , ηn−2)-spectrally independence. Then the down-up walk

on
(

U
n

)
for sampling from µ has spectral gap at least

1
n

n−2∏
k=0

(
1 − ηk

n − k − 1

)
.

In particular, if ηk ≤ O(1) for all k = 0, . . . , n − 2, then we have nO(1)-mixing of the down-up
walk.

K. Liu 32:9

Subject to a certain mild technical condition on the marginals of the distribution µ, one
can transfer spectral independence bounds to “local entropy decay” bounds, and then
employ versions of the local-to-global result for entropy decay [34, 16, 2]. In the setting of
spin systems, one can further take advantage of the bounded-degree assumption to obtain
O(n log n) mixing time upper bounds [16], which are asymptotically optimal [36]. We state
the current state-of-the-art for spin systems on bounded-degree graphs here, as we will need
it in our application to proper list-colorings.

▶ Theorem 15 ([16]). Let (A, h) be the parameters of a spin system, and let G = (V, E) be
a graph with maximum degree at most ∆ ≤ O(1). If the Gibbs distribution µ = µG,A,h is
(η0, . . . , ηn−2)-spectrally independent where ηk ≤ O(1) for all k, then both the standard and
modified log-Sobolev constants of the Glauber dynamics (i.e. the down-up walk) for sampling
from µ are at least Ω(1/n).

We conclude this section with a proof of Theorem 3.

Proof of Theorem 3. By Theorems 14 and 15, it suffices to establish (η0, . . . , ηn−2)-spectral
independence for ηk ≤ O(1) for all k. Fix an arbitrary A ⊆ U with |A| = k ≤ n − 2 and
A ⊆ S for some S ∈ supp(µ). With the locality and coupling assumptions, Theorem 7 shows
that for each i ∈ U , the absolute row sum of Iµ|A for row i is upper bounded by

ℓ · Cn−k · max
S∈supp(µ|i)

 ∑
T ̸=S

∣∣Pµ(S → T) − Pµ|i(S → T)
∣∣ .

Bounded differences between chains then yields the upper bound λmax(Iµ|A) ≤
∥∥Iµ|A

∥∥
∞ ≤

ℓ · Cn−k · C ′
n−k, which is O(1) by assumption. As this holds for all such A, it follows that

ηk ≤ O(1). ◀

3 Stein’s Method for Markov Chains

Our goal in this section is to prove Theorem 8. We follow [10, 46], using what is known as
Stein’s method for Markov chains. Historically, Stein’s method [48] was developed as
a method to bound distances between probability measures, with the primary motivation
being to prove quantitative central limit theorems. [10, 46] adapted this method to bound
the distance between two probability measures µ, ν on the discrete hypercube {−1, +1}n

assuming the Glauber dynamics of either measure admits a contractive coupling. Our main
intuition lies in viewing spectral independence (see Definition 13) as a measure of distance
between different conditionings of the same distribution. Thus, one can try to apply this
method to bound the spectral independence of a distribution. Let us now elucidate this
method.

For a fixed function f : Ω → R, we will construct an auxiliary function h : Ω → R which
satisfies the Poisson equation

h − Pµh = f − Eµf.

Questions concerning Eµf may then be studied by looking at Pµh. The following lemma
constructs h more explicitly.

▶ Lemma 16 (see Lemma 2.1 [10], Lemma 2.3 [46]). Fix an irreducible transition probability
matrix P which is reversible w.r.t. a distribution π on a finite state space Ω. Let (X(t))∞

t=0
be the Markov chain generated by P , and for a fixed function f : Ω → R, define h : Ω → R by

h(x) =
∞∑

t=0
E

[
f(X(t)) − Eπf | X(0) = x

]
.

APPROX/RANDOM 2021

32:10 Coupling to Spectral Independence

Then h is well-defined as a function, and further satisfies the Poisson equation

h − Ph = f − Eπf.

With this lemma in hand, we can immediately prove Theorem 8.

Proof of Theorem 8. Fix a function f : 2U → R, and let h be the solution to the Poisson
equation h − Pµh = f − Eµf given in Lemma 16. Then since ν is stationary w.r.t. Pν , we
have EνPνh = Eνh, so that using the Poisson equation yields

Eν(Pν − Pµ)h = Eνh − Eν [h − f + Eµf] = Eνf − Eµf.

Hence, by the Triangle Inequality, we have that |Eµf − Eνf | ≤ Eν |(Pν − Pµ)h|.
Now, let us bound |(Pν − Pµ)h| entrywise. For each S ∈ supp(ν), using that Pµ(S →

S) = 1 −
∑

T ̸=S Pµ(S → T) (and analogously for Pν),

(Pν − Pµ)h(S)

=
∑

T

(Pν(S → T) − Pµ(S → T)) · h(T)

=
∑
T ̸=S

(Pν(S → T) − Pµ(S → T)) · (h(T) − h(S))

=
∑
T ̸=S

(Pν(S → T) − Pµ(S → T)) ·
∞∑

t=0
EX(t),Y (t)

[
f(Y (t)) − f(X(t)) | X(0)=S

Y (0)=T

]
.

(Lemma 16)

It follows by the Triangle Inequality that

|(Pν − Pµ)h(S)| ≤
∑
T ̸=S

|Pµ(S → T) − Pν(S → T)|

·
∞∑

t=0
EX(t),Y (t)

[∣∣∣f(X(t)) − f(Y (t))
∣∣∣ | X(0)=S

Y (0)=T

]
. (1)

Taking expectations w.r.t. ν finally yields a bound on |Eµf − Eνf |. The bound on the
1-Wasserstein distance follows immediately by taking f to be an arbitrary function which
is 1-Lipschitz the metric dH(·, ·). To obtain the bound on the total difference between
marginals

∑
j∈U |PrS∼µ[j ∈ S] − PrS∼ν [j ∈ S]|, we apply the above inequality to f = Ij

for each j ∈ U and sum over all j ∈ U , noting that dH(S, T) =
∑

j∈U |Ij(S) − Ij(T)| and
Eµf = EµIj = PrS∼µ[j ∈ S] (and analogously for ν). ◀

4 Discrete Ricci Curvature on Product Spaces

In this section, we discuss applications of our results to general distributions on discrete
product spaces. We show that the existence of a contractive coupling w.r.t. Hamming
distance for the Glauber dynamics implies O(1)-spectral independence. Such a condition is
known as a discrete Ricci curvature condition for the dynamics in the sense of [44]. This also
shows that the Dobrushin uniqueness condition implies O(1)-spectral independence. When
combined with the local-to-global result of [16], we resolve an unpublished conjecture due
Peres and Tetali for spin systems on bounded-degree graphs; see [28] and references therein
for recent progress on this conjecture on general graphs. We also give an alternative proof of
the Ω(1/n) lower bound on the standard and modified log-Sobolev constants of the Glauber
dynamics in this setting when a Dobrushin-type condition is satisfied, recovering a result
of [42].

K. Liu 32:11

Classical work on Dobrushin-type conditions [25, 22, 23, 24, 35, 26] yield relatively simple
and direct criteria for rapid mixing of the Glauber dynamics [11, 12]. The main idea here
is intuitively similar to that of spectral independence (although the notion of Dobrushin
influence here historically precedes spectral independence): so long as some measure of
“total influence” is small, then µ is close in some sense to a product distribution, for which
rapid mixing holds. However, prior to our work, the precise relationship between Dobrushin
influence and the notion of pairwise influence used in spectral independence was unclear.
This is an additional conceptual contribution of our work.

▶ Definition 17 (Discrete Ricci Curvature [44]). Fix an irreducible transition probability
matrix P which is reversible w.r.t. a distribution π on a finite state space Ω. Further, endow
Ω with a metric d(·, ·). We define the discrete Ricci curvature of the Markov chain P

w.r.t. the metric space (Ω, d) by

α = inf
x,y∈Ω:x ̸=y

{
1 − W1(P (x → ·), P (y → ·))

d(x, y)

}
,

where W1(·, ·) is again the 1-Wasserstein distance w.r.t. d(·, ·). In other words, for every
pair x, y ∈ Ω, there is a coupling of the transitions P (x → ·), P (y → ·) such that the expected
distance d(·, ·) under the coupling contracts by a (1 − α)-multiplicative factor. In this case,
we will say P admits a (1 − α)-contractive coupling w.r.t. d(·, ·).

▶ Fact 18. Suppose P admits a (1 − α)-contractive coupling w.r.t. d(·, ·). Then this coupling
is C-amortized convergent with C = 1

α .

The following is an immediate application of Theorem 7, and yields a positive resolution
to the Peres-Tetali conjecture for spin systems on bounded-degree graphs.

▶ Theorem 19 (Curvature Implies Spectral Independence on Product Spaces). Let µ be a
measure on a discrete product space Ω =

∏
v∈V Ω(v), where V is a finite index set and

Ω(v) is finite for all v ∈ V . Endow Ω with the Hamming metric dH(·, ·), and let α be the
discrete Ricci curvature of the Glauber dynamics w.r.t. (Ω, dH). Then, the distribution is
(η0, . . . , ηn−2)-spectrally independent where ηk ≤ 4

αn −1 for all k. In particular, if α ≥ Ω(1/n),
then the Glauber dynamics has spectral gap n−O(1). If additionally the measure µ is the Gibbs
distribution of a spin system on a bounded-degree graph, then the spectral gap, standard and
modified log-Sobolev constants for the Glauber dynamics are all Ω(1/n).

Note that since the Glauber dynamics only updates the assignment to a single v ∈ V in each
step, it must be that α ≤ O(1/n). Theorem 19 follows almost immediately from Fact 18 and
a straightforward calculation involving the entries of the transition matrix of the Glauber
dynamics. In the interest of space, we provide the proof in Section B.

4.1 Dobrushin Uniqueness and Spectral Independence
We now use Theorem 19 to show that Dobrushin’s uniqueness condition implies spectral
independence.

▶ Definition 20 (Dobrushin Influence). Fix a probability measure on a finite product space∏
v∈V Ω(v), where V is a finite indexing set. For each u ∈ V , let Du be the collection of

pairs τ, σ ∈
∏

v∈V Ω(v) such that τ−u = σ−u while τ(u) ̸= σ(u). For distinct u, v ∈ V , we
may then define the Dobrushin influence of u on v by

ρµ(u → v) = max
(τ,σ)∈Du

dTV(µv(· | τ−v), µv(· | σ−v)).

APPROX/RANDOM 2021

32:12 Coupling to Spectral Independence

We write ρµ = (ρµ(u → v))u,v ∈ RV ×V for the Dobrushin influence matrix. We say the
distribution µ satisfies the Dobrushin uniqueness condition if

∥ρµ∥1
def= max

u∈V

∑
v∈V

ρµ(u → v) < 1.

A straightforward application of the path coupling technique of [11, 12] shows that if
∥ρµ∥1 < 1, then there is a coupling for the Glauber dynamics which is one-step contractive
w.r.t. Hamming distance. We state this well-known implication formally here, and refer to
[26] for the proof.

▶ Fact 21. Let µ be a distribution on some finite product space
∏

v∈V Ω(v), where V is a
finite index set. If ∥ρµ∥1 ≤ γ < 1, then the Glauber dynamics is (1 − α)-contractive w.r.t.
Hamming distance with α = 1

n (1 − γ).

In particular, combining Theorem 19 and Fact 21 immediately yields spectral independence
under the Dobrushin uniqueness condition. Combined with Theorem 15, this additionally
recovers a version of a result due to [42], which says that a weaker ℓ2-version of the Dobrushin
uniqueness condition (see also [35, 26]) implies a Ω(1/n) log-Sobolev constant for the Glauber
dynamics.

▶ Corollary 22 (Dobrushin Uniqueness Implies Spectral Independence). Let µ be a distribution
on some finite product space

∏
v∈V Ω(v), where V is a finite index set. If ∥ρµ∥1 ≤ γ < 1,

then µ is (η0, . . . , ηn−2)-spectrally independent with ηk ≤ 4
1−γ − 1 for all k. If additionally

the measure µ is the Gibbs distribution of a spin system on a bounded-degree graph, then the
spectral gap, standard and modified log-Sobolev constants for the Glauber dynamics are all
Ω(1/n).

5 Spectral Independence for Proper List-Colorings

We now specialize to the setting of proper list-colorings of a graph. Formally, we fix a graph
G = (V, E), a collection of color lists (L(v))v∈V . We call a configuration σ ∈

∏
v∈V L(v)

a list-coloring of G. We say a list-coloring σ is proper if σ(u) ̸= σ(v) whenever u ̸= v are
neighbors. Throughout, we will let ∆ denote the maximum degree of G, and we assume
∆ ≤ O(1). We also assume there is a positive integer q ≥ ∆ + 2 such that L(v) ⊆ [q] for all
v ∈ V .

A well-known result due to [38] using path coupling shows that if |L(v)| > 2∆ for all
v ∈ V , then there is a contractive one-step coupling for the Glauber dynamics which yields
O(n log n) mixing. As noted in [16], one can adapt the argument of [32] to obtain strong
spatial mixing when |L(v)| > 2∆, and use the arguments of [15, 30] to deduce spectral
independence in this regime. However, it is still open whether one can obtain strong spatial
mixing below the 2∆ threshold; see [32, 27] for results going below 2∆ on special classes of
graphs.

In the seminal work of Vigoda [49], it was shown that there is a contractive one-step
coupling for a different local Markov chain known as the flip dynamics whenever |L(v)| ≥ 11

6 ∆.
This threshold was further improved to |L(v)| ≥

(11
6 − ϵ

)
∆ in a recent breakthrough by [13],

this time using a more sophisticated variable-length coupling. Both works further showed
that Glauber dynamics mixes in O(n2) time in this regime using a spectral gap comparison
argument [19].

Our goal is to use these coupling results along with Theorem 7 to obtain spectral
independence for the uniform distribution over proper list-colorings in the regime |L(v)| ≥

K. Liu 32:13

(11
6 − ϵ

)
∆. Combined with Theorem 15, we improve the previous O(n2) mixing time bound

to the optimal O(n log n), as well as show Chernoff-type concentration bounds for Lipschitz
functions, which were not known before.

5.1 The Flip Dynamics
We follow the presentation in [13], which generalizes the flip dynamics analyzed in [49] to
list-colorings. Fix a list-coloring σ. We say a path u = w1, . . . , wℓ = v in G is an alternating
path from u to v using colors σ(u), c if for all i, we have σwi

∈ {σ(u), c} and σwi
̸= σwi+1 .

For a fixed list-coloring σ, v ∈ V and color c, we define the Kempe component for σ, v, c

by the following subset of vertices.

Sσ(u, c) =
{

v ∈ V : ∃ alternating path from u
to v using σ(u),c

}
.

Given σ and a Kempe component S = Sσ(u, c), we define σS to be the coloring obtained by
“flipping” the color assigned to vertices in {v ∈ S : σ(v) = σ(u)} to c, and the color assigned
to vertices in {v ∈ S : σ(v) = c} to σ(u). Note that σS need not be a proper list-coloring; we
say a Kempe component S = Sσ(u, c) is flippable if the coloring σS is a proper list-coloring.

For each j ∈ N, let 0 ≤ pj ≤ 1 be a tunable parameter to be determined later. We define
the flip dynamics with flip parameters {pj}j∈N for sampling proper list-colorings as follows:
Given the current list-coloring σ(t−1), we generate the next list-coloring σ(t) by the following
two-step process:
1. Select a uniformly random vertex v(t) ∈ V , and a uniformly random color c(t) ∈ L(v(t)).
2. If the Kempe component S = Sσ(t−1)(v(t), c(t)) is flippable, set σ(t) = σ

(t−1)
S with

probability pj

j and σ(t) = σ(t−1) otherwise, where j = |S|.
We write Pµ,flip for the transition probability matrix of the flip dynamics. It is straightforward
to verify that the stationary distribution of the flip dynamics is uniform over proper list-
colorings, regardless of the choice of the flip parameters. One can recover the Wang-Swendsen-
Kotecký Markov chain by setting pj = j for all j ∈ N [50].

[49] showed that with flip parameters

p1 = 1 p2 = 13
42 p3 = 1

6 p4 = 2
21 p5 = 1

21 p6 = 1
84 pj = 0, ∀j ≥ 7, (2)

there is a one-step coupling which is contractive w.r.t. Hamming distance whenever |L(v)| ≥
11
6 ∆. [13] showed using linear programming arguments that this is optimal in the sense that

when |L(v)| < 11
6 , there is no choice of the flip parameters which has a one-step contractive

coupling w.r.t. Hamming distance. They additionally construct an explicit family of hard
instances witnessing optimality.

One of the key insights of [13] is that the optimal choice of flip parameters comes out
of the solution to a linear program, with the objective value of the program governing the
contraction properties of the coupling. By solving this linear program, they show that for
the following choice of flip parameters

p̂1 = 1 p̂2 ≈ 0.296706 p̂3 ≈ 0.166762 p̂4 ≈ 0.101790
p̂5 ≈ 0.058475 p̂6 = 0.025989 pj = 0, ∀j ≥ 7, (3)

there is a variable-length coupling such that the Hamming distance contracts by a constant
factor every O(n) steps in expectation. One can thus expect that the coupling is C-amortized
convergent with C ≤ O(n).

We formalize their main coupling result in the following subsection. For the moment, we
state two intermediate lemmas, and show how they imply Theorem 5.

APPROX/RANDOM 2021

32:14 Coupling to Spectral Independence

▶ Lemma 23. Assume the input graph G = (V, E) has maximum degree ∆ ≤ O(1). Then,
the flip dynamics with parameters given in Equation (3) satisfy the following:

max
τ∈supp(µ|uc)

∑
σ ̸=τ

∣∣Pµ,flip(τ → σ) − Pµ|uc,flip(τ → σ)
∣∣ ≤ O(1/n).

▶ Lemma 24. Let (G, L) be a list-coloring instance, where ∆ ≤ O(1) and |L(v)| ≥ λ∗∆ for
all v ∈ V , where λ∗ = 11

6 − ϵ and ϵ ≈ 10−5 is a small constant. Then the flip dynamics with
parameters given in Equation (3) admits a C-amortized convergent coupling w.r.t. Hamming
distance where C ≤ O(n).

Proof of Theorem 5. The flip dynamics is clearly O(1)-local w.r.t. Hamming distance since
only Kempe components of size at most 6 can be flipped. (η0, . . . , ηn−2)-spectral independence
where ηk ≤ O(1) for all k then follows immediately by combining Lemma 23 and Lemma 24
with Theorem 3. The lower bounds on the spectral gap, standard and modified log-Sobolev
constants then follow from Theorem 15. ◀

We provide the proof of Lemma 23 in Section B. At this point, all that remains is to
prove Lemma 24, which we do using the variable-length path coupling constructed in [13].

5.2 Variable-Length Path Coupling: Proof of Lemma 24
To begin, we first define the notion of variable-length coupling following [37, 13].

▶ Definition 25 (Path-Generating Set). For a finite state space Ω, a path generating set is
a subset S ⊆

(Ω
2
)

such that the undirected graph (Ω, S) is connected. We let dS(·, ·) denote
the induced shortest-path metric on Ω, and write d(·, ·) when the path generating set S is
clear from context. We also write x ∼ y whenever {x, y} ∈ S.

▶ Definition 26 (Variable-Length Path Coupling [37]). Fix an irreducible transition probability
matrix P which is reversible w.r.t. a distribution π on a finite state space Ω, and let d(·, ·) be
a metric on Ω induced by a path generating set S ⊆

(Ω
2
)
. For every pair of starting states

x(0), y(0) ∈ Ω with x(0) ∼ y(0), we let (x, y, T) = (x(x(0), y(0)), y(x(0), y(0)), T (x(0), y(0)))
denote a random variable where T is a (potentially random) nonnegative integer and x =
(x(0), x(1), . . . , x(T)), y = (y(0), y(1), . . . , y(T)) are length-T sequences of states in Ω.

For every integer t ≥ 0 and every pair of neighboring states x(0) ∼ y(0), define random
variables xt, yt by the following experiment. Sample (x, y, T), and set xt = x(t), yt = y(t) if t ≤
T , and sample xt ∼ P t−T (x(T), ·), yt ∼ P t−T (y(T), ·) if t > T . We say the random variable
(x, y, T) is a variable-length path coupling for P if xt ∼ P t(x(0), ·), yt ∼ P t(y(0), ·) for
every integer t ≥ 0 and every pair of neighboring states x(0) ∼ y(0). In this case, we say
that x, y are individually faithful copies. If T = t with probability 1 for some nonnegative
integer t ≥ 0, we say that (x, y, T) is a t-step path coupling.

▶ Remark 27. In our application to colorings, the random time T will be a stopping time in
the sense that its value only depends on the past, i.e. x(0), y(0), . . . , x(t), y(t) for t ≤ T .

Given a variable-length path coupling, [37] showed one can construct a full coupling, general-
izing the original path coupling theorem of [11, 12]. Furthermore, the contraction properties
of the full coupling are inherited from the path coupling. While the original statement in
[37] merely states rapid mixing given a variable-length path coupling, its proof implies the
following.

K. Liu 32:15

▶ Theorem 28 (Proof of Corollary 4 from [37]). Let (x, y, T) be a variable-length path coupling
w.r.t. a path generating set S for a reversible Markov chain P on a state space Ω with
stationary distribution π. Let

α
def= 1 − max

{x(0),y(0)}∈S
E[dH(x(T), y(T))]

W
def= max

{x(0),y(0)}∈S,t≤T
dH(x(t), y(t))

β
def= max

{x(0),y(0)}∈S
E[T].

Assume 0 < α < 1. Then there is a full M -step coupling with M = ⌈ 2βW
α ⌉ such that for all

pairs x(0), y(0), which need not be neighbors in S, we have the inequality

E[dH(x(M), y(M)) | x(0), y(0)] ≤
(

1 − α

2

)
· dH(x(0), y(0)).

Given this, all we need now is a good variable-length path coupling. This is given by the
following result due to [13].

▶ Theorem 29 ([13]). Let (G, L) be a list-coloring instance, where G = (V, E) is a graph
with maximum degree ∆ ≤ O(1), and L = (L(v))v∈V is a collection of color lists. Let
the path generating set S be given by the set of pairs {τ, σ} such that τ, σ differ on the
coloring of exactly one vertex. Assume |L(v)| ≥ λ∗∆ for all v ∈ V where λ∗ = 11

6 − ϵ for an
absolute constant ϵ ≈ 10−5. Then there exists a variable-length path coupling (τ , σ, T) for
the flip dynamics w.r.t. S with flip parameters given in Equation (3), where T is the first
time such that the Hamming distance changes, such that α = q−λ∗∆

q−∆−2 = Θ(1), W = 13 and
β ≤ qn

q−∆−2 ≤ O(n)

With these tools in hand, we may now finally prove Lemma 24 and complete the proof of
Theorem 5.

Proof of Lemma 24. First, note that the path generating set S generates the Hamming
metric dH(·, ·) on proper list-colorings. Now, given the variable-length path coupling furnished
by Theorem 29, we use Theorem 28 to construct an M -step coupling with M = ⌈ 2βW

α ⌉ ≤ O(n)
which contracts with rate 1 − α every M steps, where α is is a constant independent of n.
Under this coupling, for every k = 0, . . . , M − 1 and every positive integer j, we have that

Eτ (jM+k),σ(jM+k)

[
dH(τ (jM+k), σ(jM+k)) | τ (k), σ(k)

]
≤

(
1 − α

2

)
Eτ ((j−1)M+k),σ((j−1)M+k)

[
dH(τ ((j−1)M+k), σ((j−1)M+k)) | τ (k), σ(k)

]
≤ . . .

≤
(

1 − α

2

)j

· dH(τ (k), σ(k)),

where τ (0) = τ, σ(0) = σ are arbitrary starting states, which need not be neighbors under S.

APPROX/RANDOM 2021

32:16 Coupling to Spectral Independence

It follows that
∞∑

t=0
Eτ (t),σ(t)

[
dH(τ (t), σ(t)) | τ (0)=τ

σ(0)=σ

]
≤

M−1∑
k=0

∞∑
j=0

Eτ (jM+k),σ(jM+k)

[
dH(τ (jM+k), σ(jM+k)) | τ (k), σ(k)

]

≤
M−1∑
k=0

E
[
dH(τ (k), σ(k)) | τ (0), σ(0)

] ∞∑
j=0

(
1 − α

2

)j

= 2
α

M−1∑
k=0

E
[
dH(τ (k), σ(k)) | τ (0), σ(0)

]
≤ 2M

α
dH(τ (0), σ(0)) (∗)

≤ O(n) · dH(τ (0), σ(0)).

To justify (∗), note that T is the first time the Hamming distance changes, and that each
time the Hamming distance changes, the expected Hamming distance contracts by a factor
of 1 − α. ◀

6 Future Directions

Two concrete open problems are to bring down the required number of colors from
(11

6 − ϵ
)

∆
to ∆ + 2, and to remove the bounded-degree assumption, both in this work and in [16].
Another interesting question is if spectral independence implies any useful notion of correlation
decay, such as strong spatial mixing, or the absence of zeros for partition function in a
large region. This is relevant particularly for proper list-colorings, where we showed spectral
independence when q ≥

(11
6 − ϵ

)
∆, but correlation decay and absence of zeros are both open

in general when number of colors is below 2∆.
We also reiterate that one feature of our approach which we haven’t exploited is that in

order to obtain O(1)-spectral independence, it suffices for the Markov chain admitting the
nice coupling to merely update O(1)-coordinates in a single move “on average”, as opposed
to the worst-case starting state; see Remark 10. We leave it to future work to see if this can
be exploited.

References
1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, page 1198–1211, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384317.

2 Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong. Frac-
tionally log-concave and sector-stable polynomials: Counting planar matchings and more. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2021, page 433–446, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3406325.3451123.

3 Nima Anari and Michal Derezinski. Isotropy and log-concave polynomials: Accelerated
sampling and high-precision counting of matroid bases. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 1331–1344, Los Alamitos, CA, USA,
November 2020. IEEE Computer Society.

https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1145/3406325.3451123

K. Liu 32:17

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
ii: High-dimensional walks and an fpras for counting bases of a matroid. In Proceedings of the
51st Annual ACM SIGACT Symposium on the Theory Computing, STOC 2019, pages 1–12, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316385.

5 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong.
Log-concave polynomials iv: Approximate exchange, tight mixing times, and near-optimal
sampling of forests. In Proceedings of the 53rd Annual ACM SIGACT Symposium on the
Theory Computing, STOC 2021, New York, NY, USA, 2021. Association for Computing
Machinery.

6 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1319–1330, 2020. doi:10.1109/FOCS46700.
2020.00125.

7 Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and
Eric Vigoda. On mixing of markov chains: Coupling, spectral independence, and entropy
factorization. arXiv preprint arXiv:2103.07459, 2021.

8 Sergey Bobkov and Prasad Tetali. Modified log-sobolev inequalities, mixing and hypercontrac-
tivity. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, page 287–296, New York, NY, USA, 2003. Association for Computing Machinery.

9 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 1 edition, 2016.

10 Guy Bresler and Dheeraj Nagaraj. Stein’s method for stationary distributions of markov
chains and application to ising models. Annals of Applied Probability, 29(5), 2019.

11 R. Bubley and M. Dyer. Path coupling: A technique for proving rapid mixing in markov
chains. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science,
FOCS ’97, pages 223–, Washington, DC, USA, 1997. IEEE Computer Society. URL: http:
//dl.acm.org/citation.cfm?id=795663.796353.

12 R. Bubley and M. E. Dyer. Path coupling, dobrushin uniqueness, and approximate counting.
Technical report, University of Leeds, 1997.

13 Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved
bounds for randomly sampling colorings via linear programming. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 2216–2234, USA,
2019. Society for Industrial and Applied Mathematics.

14 Z. Chen, K. Liu, and E. Vigoda. Rapid mixing of glauber dynamics up to uniqueness via
contraction. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 1307–1318, 2020.

15 Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Rapid Mixing for
Colorings via Spectral Independence, page 1548–1557. Society for Industrial and Applied
Mathematics, USA, 2021.

16 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, page 1537–1550, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3406325.3451035.

17 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and
applications to holant-type problems. arXiv preprint arXiv:2106.03366, 2021.

18 M. Cryan, H. Guo, and G. Mousa. Modified log-sobolev inequalities for strongly log-concave
distributions. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1358–1370, 2019.

19 Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible markov chains.
Annals of Applied Probability, 3(3):696–730, 1993.

20 Persi Diaconis and Laurent Saloff-Coste. Logarithmic sobolev inequalities for finite markov
chains. Annals of Applied Probability, 6(3), August 1996.

APPROX/RANDOM 2021

https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1109/FOCS46700.2020.00125
http://dl.acm.org/citation.cfm?id=795663.796353
http://dl.acm.org/citation.cfm?id=795663.796353
https://doi.org/10.1145/3406325.3451035

32:18 Coupling to Spectral Independence

21 I. Dinur and T. Kaufman. High dimensional expanders imply agreement expanders. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 974–985,
2017.

22 R. L. Dobrushin and S. B. Shlosman. Completely Analytical Gibbs Fields, pages 371–403.
Birkhäuser Boston, Boston, MA, 1985.

23 R. L. Dobrushin and S. B. Shlosman. Constructive Criterion for the Uniqueness of Gibbs
Field, pages 347–370. Birkhäuser Boston, Boston, MA, 1985.

24 R. L. Dobrushin and S. B. Shlosman. Completely analytical interactions: Constructive
description. Journal of Statistical Physics, 46(5):983–1014, 1987.

25 Roland Lvovich Dobrushin. Prescribing a system of random variables by conditional distribu-
tions. Theory of Probability and its Applications, 15(3):458–486, 1970.

26 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Matrix norms and rapid mixing for
spin systems. The Annals of Applied Probability, 19(1):71–107, 2009.

27 Charilaos Efthymiou, Andreas Galanis, Thomas P. Hayes, Daniel Stefankovic, and Eric
Vigoda. Improved Strong Spatial Mixing for Colorings on Trees. In Dimitris Achlioptas and
László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 48:1–48:16, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.48.

28 Ronen Eldan, James R. Lee, and Joseph Lehec. Transport-entropy inequalities and curvature
in discrete-space markov chains. A Journey Through Discrete Mathematics, pages 391–406,
2017.

29 Tomás Feder and Milena Mihail. Balanced matroids. In STOC, pages 26–38, 1992.
30 Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid Mixing from Spectral

Independence beyond the Boolean Domain, page 1558–1577. Society for Industrial and Applied
Mathematics, USA, 2021.

31 Alan Frieze and Eric Vigoda. A survey on the use of markov chains to randomly sample
colourings. Combinatorica, January 2007. doi:10.1093/acprof:oso/9780198571278.003.
0004.

32 David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring of
graphs. Random Struct. Algorithms, 46(4):599–613, 2015. doi:10.1002/rsa.20518.

33 Sharad Goel. Modified logarithmic sobolev inequalities for some models of random walk.
Stochastic Processes and their Applications, 114:51–79, 2004.

34 Heng Guo and Giorgos Mousa. Local-to-global contraction in simplicial complexes. arXiv
preprint arXiv:2012.14317, 2020.

35 Thomas P. Hayes. A simple condition implying rapid mixing of single-site dynamics on spin
systems. FOCS, pages 39–46, 2006.

36 Thomas P. Hayes and Alistair Sinclair. A general lower bound for mixing of single-site
dynamics on graphs. Annals of Applied Probability, 17(3):931–952, 2007.

37 Thomas P. Hayes and Eric Vigoda. Variable length path coupling. Random Structures and
Algorithms, 31:251–272, 2007.

38 Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree
graph. Random Struct. Algorithms, 7(2):157–165, 1995.

39 Tali Kaufman and David Mass. High dimensional random walks and colorful expansion. In
ITCS, pages 4:1–4:27, 2017.

40 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap. In
APPROX/RANDOM, pages 47:1–47:17, 2018.

41 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2 edition, 2017.

42 Katalin Marton. Logarithmic sobolev inequalities in discrete product spaces. Combinatorics,
Probability and Computing, 28(6):919–935, 2019. doi:10.1017/S0963548319000099.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://doi.org/10.1093/acprof:oso/9780198571278.003.0004
https://doi.org/10.1093/acprof:oso/9780198571278.003.0004
https://doi.org/10.1002/rsa.20518
https://doi.org/10.1017/S0963548319000099

K. Liu 32:19

43 M. Mihail and U. Vazirani. On the expansion of 0/1 polytopes. Journal of Combinatorial
Theory, 1989.

44 Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional
Analysis, 256:810–864, February 2009.

45 Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part i:
Descent of spectral gaps. Discrete and Computational Geometry, 59(2):293–330, 2018.

46 Gesine Reinert and Nathan Ross. Approximating stationary distributions of fast mixing glauber
dynamics, with applications to exponential random graphs. Annals of Applied Probability, 29,
2019.

47 Marcus D. Sammer. Aspects of Mass Transportation in Discrete Concentration Inequalities.
PhD thesis, Georgia Institute of Technology, April 2005.

48 Charles Stein. A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, pages 583–602, 1972.

49 Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical Physics, 41,
2000.

50 Jian-Sheng Wang, Robert H. Swendsen, and Roman Kotecký. Antiferromagnetic potts models.
Phys. Rev. Lett., 63:109–112, July 1989. doi:10.1103/PhysRevLett.63.109.

A Variance and Entropy Decay

While we primarily use prior results on the spectral gap, and standard and modified log-
Sobolev constants as blackboxes, to keep this paper self-contained, we define these constants
here, and state their relevance to mixing and concentration. Fix a Markov kernel P on a
finite state space Ω which reversible w.r.t. a distribution π. We may define an inner product
using π by ⟨f, g⟩π = Eπ[fg]. This inner product together with the kernel P induces a positive
semidefinite quadratic form known as the Dirichlet form, defined as EP (f, g) = ⟨f, (I − P)g⟩π.
The variance of a function f : Ω → R is given by Varπ(f) = Eπ(f2) − Eπ(f)2, while the
entropy of a function f : Ω → R≥0 is given by Entπ(f) = Eπ(f log f) − Eπ(f) logEπ(f).

With these notions in hand, we may now define the following constants:

(Spectral Gap) λ(P) def= inf
f ̸=0

E(f, f)
Varπ(f)

(Modified Log-Sobolev Constant) ρ(P) def= inf
f≥0

E(f, log f)
Entπ(f)

(Standard Log-Sobolev Constant) κ(P) def= inf
f≥0

E(
√

f,
√

f)
Entπ(f) . (4)

It is known that 4κ(P) ≤ ρ(P) ≤ 2λ(P) [8], with lower bounds on κ(P) being the most
difficult to establish. For the reader’s convenience, we collect some well-known relations
between these constants, mixing, and concentration.

▶ Proposition 30 (Mixing and Concentration). We have the following bounds on the mixing
time of a Markov chain with transition probability matrix P and stationary distribution π.

tmix(ϵ) ≤ 1
λ(P)

(
1
2 log 1

πmin
+ log 1

2ϵ

)
[41]

tmix(ϵ) ≤ 1
ρ(P)

(
log log 1

πmin
+ log 1

2ϵ2

)
[8]

tmix(ϵ) ≤ 1
4κ(P)

(
log log 1

πmin
+ log 1

2ϵ2

)
. [20]

APPROX/RANDOM 2021

https://doi.org/10.1103/PhysRevLett.63.109

32:20 Coupling to Spectral Independence

Furthermore, for every function f : Ω → R which is 1-Lipschitz w.r.t. graph distance under
P , we have the following Chernoff-type concentration inequalities [33, 47, 9].

Pr[f ≥ Eπ(f) + ϵ] ≤ exp
(

−ρ(P)ϵ2

2v(f)

)
Pr[f ≥ Eπ(f) + ϵ] ≤ exp

(
−κ(P)ϵ2

2v(f)

)
,

where

v(f) def= max
x∈Ω

∑
y∈Ω

P (x → y) · (f(x) − f(y))2

 .

B Missing Proofs

Proof of Theorem 19. We show that η0 ≤ 4
αn − 1. The bound ηk ≤ 4

αn − 1 follows by the
same argument by instead considering the Glauber dynamics for the conditional distributions
µ | A of µ. Because the Glauber dynamics only updates at most one coordinate in each
step, it is 2-local w.r.t. dH(·, ·). By Fact 18, we also have there is a C-amortized convergent
coupling with C = 1

α . It follows from Theorem 7 that

∑
v∈V

∑
c′∈Ω(v)

∣∣∣∣ Pr
σ∼µ

[σ(v) = c′ | σ(u) = c] − Pr
σ∼µ

[σ(v) = c′]
∣∣∣∣

≤ 2
α

max
σ∈supp(µ|uc)

∑
τ ̸=σ

∣∣Pµ(σ → τ) − Pµ|uc(σ → τ)
∣∣ .

Now, by the definition of the Glauber dynamics, for each σ ∈ supp(µ | uc), we have∑
τ ̸=σ

∣∣Pµ(σ → τ) − Pµ|uc(σ → τ)
∣∣

=
∑
v∈V

∑
c′∈L(v):c′ ̸=σ(v)

∣∣∣∣ 1
n

µv(c′ | σ−v) − 1
n − 1µv

uc(c′ | σ−v)
∣∣∣∣

=
∑

v∈V :v ̸=u

∑
c′∈L(v):c′ ̸=σ(v)

(
1

n − 1 − 1
n

)
µv(c′ | σ−v) +

∑
c′∈L(u):c′ ̸=c

1
n

µv(c′ | σ−v)

≤ 2
n

.

The claim for the spectral gap in the case α ≥ Ω(1/n) follows by combining with Theorem 14.
The final claim for spin systems on bounded-degree graphs follows by combining with
Theorem 15. ◀

Proof of Lemma 23. The main detail one must be careful of is that the flip dynamics for
sampling from µ | uc always leaves the color for u fixed to c. Hence, flipping any Kempe
component containing u leads to potentially different list-colorings under Pµ,flip versus
Pµ|uc,flip. However, since we only flip components of O(1)-size, this isn’t an issue for us.

Fix a τ with τ(u) = c, and let B(u, 6) denote the set of vertices of shortest path distance
at most 6 away from u in G. Since we only flip Kempe components of size at most 6, we
have that for any v ∈ V \ B(u, 6) and c ∈ L(u), the flippable Kempe component Sτ (v, c′)

K. Liu 32:21

does not contain u, and hence, flipping it leads to the same list-coloring under Pµ,flip and
Pµ|vc,flip. Hence, we have∑

σ ̸=τ

∣∣Pµ,flip(τ → σ) − Pµ|uc,flip(τ → σ)
∣∣

=
∑

v∈V :v /∈B(u,6)

∑
c′∈L(v)

1
|L(v)| ·

(
1
n

− 1
n − 1

)
· p|Sτ (v,c′)|

+
∑

v∈B(u,6)

∑
c′∈[q]

∣∣Pµ,flip(τ → σ) − Pµ|uc,flip(τ → σ)
∣∣

≤ n − |B(u, 6)|
n(n − 1) + |B(u, 6)|

n

≤ |B(u, 6)| + 1
n

≲
∆6

n

≤ O(1/n). (Bounded-degree assumption)

◀

▶ Remark 31. As one can see in the proof from the factor of ∆6, we have made no attempt
to optimize constants.

APPROX/RANDOM 2021

Singularity of Random Integer Matrices with Large
Entries
Sankeerth Rao Karingula #

Department of Computer Science, University of California San Diego, CA, USA

Shachar Lovett #

Department of Computer Science, University of California San Diego, CA, USA

Abstract
We study the singularity probability of random integer matrices. Concretely, the probability that a
random n × n matrix, with integer entries chosen uniformly from {−m, . . . , m}, is singular. This
problem has been well studied in two regimes: large n and constant m; or large m and constant n.
In this paper, we extend previous techniques to handle the regime where both n, m are large. We
show that the probability that such a matrix is singular is m−cn for some absolute constant c > 0.
We also provide some connections of our result to coding theory.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Coding Theory, Random matrix theory, Singularity probability MDS codes,
Error correction codes, Littlewood Offord, Fourier Analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.33

Category RANDOM

Funding Sankeerth Rao Karingula: Research supported by NSF CCF award 1614023.
Shachar Lovett: Research supported by NSF CCF award 1614023.

Acknowledgements We would like to thank Roman Vershynin and Konstantin Tikhomirov for
helpful discussions.

1 Introduction

In this paper we study the probability that a random n × n matrix with uniform integer
entries in {−m, . . . , m} is singular. Note that the probability that such a matrix is singular
is at least (2m + 1)−n, which is the probability that its first two rows are the same. We show
that this bound is tight, up to polynomial factors.

▶ Theorem 1 (Singularity of random matrices). Let n, m ≥ 1. Let M be an n × n random
integer matrix with entries chosen uniformly in {−m, . . . , m}. Then for some absolute
constant c > 0,

Pr[M is singular] ≤ m−cn.

Note that if instead we chose M to be a random n × n matrix over a finite field Fq, then
the probability that M is singular would be about 1/q, independent of how large n is. This
is the main point of difference between random matrices over integers and over finite fields
- the singularity probability over integers decreases as the matrix becomes larger, whereas
over finite fields it stabilizes.

© Sankeerth Rao Karingula and Shachar Lovett;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sankeerth1729@gmail.com
https://orcid.org/0000-0003-2212-4322
mailto:slovett@ucsd.edu
https://orcid.org/0000-0003-4552-1443
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Singularity of Random Integer Matrices with Large Entries

1.1 Connections to coding theory - alphabet size for MDS codes
Our motivation for proving Theorem 1 is a connection to coding theory. More specifically,
the question of what alphabet size is needed for Maximum Distance Separable (MDS) codes
over the integers.

Coding theory is the study of error correction codes. Codes are widely used in many
applications, such as data compression, cryptography, error detection and correction, data
transmission and data storage. Algorithms needed to implement codes perform arithmetic
operations over an underlying alphabet, and hence their computational complexity is con-
strained by this alphabet size. Thus, understanding the alphabet size needed to support
a given code structure is a central question in coding theory. By far, the most common
approach to design codes is to use linear codes over finite fields. Our results in this paper
help with investigating the possibility of designing codes over integers. In particular, we
study the alphabet size needed to support basic code structures, and focus on the most basic
and well-studied family of codes - Maximum Distance Separable (MDS) codes.

An MDS code is a code with the best possible tradeoff between the message length,
codeword length and minimal distance. Concretely, an (n, k, d)-code is a code with message
length k, codeword length n and minimal distance d. The Singleton bound [16] gives that
d ≤ n − k + 1. MDS codes are codes achieving this bound, namely (n, k, d)-codes with
d = n−k +1. If we consider linear codes, then it is well-known that MDS codes are generated
by the row span of MDS matrices.

▶ Definition 2 (MDS matrix). Let n ≥ k. A k × n matrix is called an MDS matrix if any k

columns in it are linearly independent. Equivalently, if any k × k minor of it is nonsingular.

Note that MDS matrices can be defined over finite fields or over the integers. If we define
them over a finite field Fq, then it is well-known that a linear field size is needed to support
MDS matrices. Concretely, if we assume n ≥ k+2, then it is known that q ≥ max(k, n−k+1)
(see for example the introduction of [1] for a proof). In particular, this implies that q ≥ n/2.
Reed-Solomon codes can be constructed over fields of size q ≥ n − 1, which is tight up to
a factor of two. The MDS conjecture of Segre [15] speculates that this is indeed the best
possible (except for a few special cases), and Ball [1] proved this over prime finite fields. In
summary, over finite fields a linear field size q = Θ(n) is both necessary and sufficient.

We show that over the integers, MDS matrices exist over much smaller alphabet sizes.

▶ Theorem 3 (MDS matrices over integers). Let n ≥ k. There exist k × n MDS matrices over
integers whose entries are in {−m, . . . , m}, where m ≤ (cn/k)c for some absolute constant
c > 0.

The typical regime in coding theory is that of linear rate and linear distance; namely,
where k = αn for some constant α ∈ (0, 1). Note that in this regime Theorem 3 shows that
MDS codes over the integers exist with a constant alphabet size, which is in stark contrast
with the case over finite fields. It is easy to see that Theorem 3 is best possible, up to the
unspecified constant c.

Theorem 3 follows directly from Theorem 1.

Proof of Theorem 3. Let M be a random k × n matrix with entries chosen uniformly from
{−m, . . . , m}. The number of k × k minors for M is

(
n
k

)
, and the probability that each one

is singular is at most m−ck by Theorem 1. Thus

Pr[M is not MDS] ≤
(

n

k

)
m−ck ≤

(en

k

)k

m−ck =
(en

kmc

)k

.

In particular, this probability is at most 2−k (say) whenever m ≥ (2en/k)1/c. ◀

S. R. Karingula and S. Lovett 33:3

The following claim shows that the bound in Theorem 3 is best possible, up to the value
of the unspecified constant c.

▷ Claim 4. Let n ≥ k ≥ 2. Let M be a k × n MDS matrix whose entries are in an alphabet
Σ. Then |Σ| ≥

√
n/k.

Proof. Let Pi = (M1,i, M2,i) ∈ Σ2 denote the first two elements in the i-th column of M . If
n > |Σ|2k, then there must be k distinct columns i1, . . . , ik ∈ [n] such that Pi1 = . . . = Pik

.
But then M cannot be an MDS matrix, as the k × k minor formed by taking these columns
has the first two rows being a scalar multiple of each other, and hence cannot be nonsingular.

◁

Note that the proof of Theorem 3 is by choosing the matrix M randomly, and showing
that with high probability it will be an MDS matrix. This is another aspect in which codes
over integers seem to be different from codes over finite fields. Constructing MDS matrices
over finite fields seems to require algebraic constructions (such as Reed-Solomon codes),
unless the field size is exponential in n; whereas over the integers, random matrices work
well even for very small entries.

1.2 Related works on the singularity of random matrices

Most previous works in random matrix theory focused on random matrices whose entries are
sampled independently from distributions with bounded tail behaviour. The most studied
case is that of random sign matrices, namely with uniform {−1, 1} entries. Komlós [7] proved
that the probability that a random n × n sign matrix is singular is o(1) as n → ∞, which
already is a nontrivial result. It took nearly 30 years until Kahn, Komlós and Szemerédi [5]
improved the bound to cn for some constant c ∈ (0, 1). A sequence of works [2, 17, 18]
improved the value of the constant c, and recently Tikhomirov [19] proved that c = 1/2+o(1),
which is best possible, as the probability that the first two rows of the matrix are equal
is 2−n. For more general distributions, Rudelson and Vershynin [12,13] proved that if the
entries of an n × n matrix are sampled from a sub-Gaussian distribution, then the probability
it is singular is at most cn for some c ∈ (0, 1).

The other regime, of large m and constant n, was less explored. The only work we are
aware of is by Katznelson [6] which gave a bound of the form cnm−n for some constant cn

depending on n. While having optimal dependence on m for constant n, it has a caveat - it
only applies in the regime where m is much larger than n (more precisely, for every fixed n,
in the limit of large m).

A recent work that did address the regime of both large n and large m, but for a different
entry distribution, is that of Vempala, Wang and Woodruff [20]. Fix µ ∈ (0, 1), and let Dµ

be a distribution over {−1, 0, 1} with Dµ(0) = 1 − µ, Dµ(1) = Dµ(−1) = µ/2. Let M be a
random n × n matrix, whose entries are the sum of m independent copies of Dµ. They show
that the probability that M is singular is at most m−cn for some constant c = c(µ) > 0.

With respect to the connection to coding theory, we note that this result is sufficient
to prove Theorem 3. However, we view the entry distribution in Theorem 1 (uniform in
{−m, . . . , m}) as more natural for coding applications. In fact, we conjecture that any entry
distribution that doesn’t give too much probability to any specific element would do, see
Conjecture 5 for the details.

APPROX/RANDOM 2021

33:4 Singularity of Random Integer Matrices with Large Entries

1.3 Proof techniques

We prove Theorem 1 following the approach of Rudelson and Vershynin [12,13], in particular
following the lecture notes of Rudelson [11] modified appropriately to handle the case of large
m. On the other hand, Vempala et al. [20] follow the approach of Kahn et al. [5] and Tao
and Vu [18]. We briefly discuss the difference between the two approaches below.

At a high level, both approaches aim to study “approximate periodicity” of random
vectors. However, they take different routes. The first approach is more direct, using the
notion of Lowest Common Denominator (LCD) to define and study approximate periodicity.
The second approach is indirect, using Fourier analysis. Fourier analytic techniques seem
useful when the underlying entry distribution has well-behaved Fourier tails; for example,
this is the case for the distribution considered in [20], where the entries are a sum of m

independent copies of a distribution over {−1, 0, 1}. However, the distribution we consider in
this paper, uniform in {−m, . . . , m}, has less well-behaved Fourier tails, and Fourier analytic
techniques seem less suited to analyze it.

1.4 Directions for further research and applications

Singularity of matrices over general distributions

As we discussed above, most works on the singularity of random matrices give a bound on the
singularity of cn for some absolute constant c ∈ (0, 1). Theorem 1 shows that if the entries are
uniformly sampled from {−m, . . . , m}, we can take c = 1/poly(m). We speculate that this is
an instance of a much more general phenomena - the singularity probability is determined
by the anti-concentration of the underlying entries distribution. Given a distribution D
over R, define its max-probability as ∥D∥∞ = maxx D(x). For example, if D is the uniform
distribution over {−m, . . . , m}, then ∥D∥∞ = 1/(2m + 1).

▶ Conjecture 5. Let D be a distribution over R and set p = ∥D∥∞. Let M be a random
n × n matrix with independent entries from D. Then for some absolute constant c > 0,

Pr[M is singular] ≤ pcn.

One can even speculate a more general conjecture, where each entry comes from a different
underlying distribution, as long as they all have bounded max-probability.

Applications to coding theory

We view Theorem 3 as a first step towards the study of codes over integers. There are many
intriguing questions that arise in coding theory, once we showed that random integer matrices
are MDS with high probability.

Explicit constructions. A natural question is to give an explicit construction of MDS
matrices over integers with small integer values. Concretely, when k = αn for some
constant α ∈ (0, 1), to give an explicit construction of a k ×n MDS matrix with a constant
alphabet size (namely, independent of n).
Algorithms. The next natural question, once there are explicit constructions, is to
design efficient decoding algorithms for such codes. In particular, it would be intriguing
to see if the smaller alphabet size can be utilized to obtain improved runtime (even by
logarithmic factors).

S. R. Karingula and S. Lovett 33:5

Paper Outline

We prove Theorem 1 in the remainder of the paper. We start with a high-level overview of
our framework in Section 2. We compute some preliminary estimates in Section 3, define
and study incompressible vectors in Section 4, define the LCD condition in Section 5, where
we also prove some properties of it, and bound the LCD of random vectors in Section 6. We
put all the ingredients together and complete the proof in Section 7.

2 General approach

We will follow the general approach of Rudelson [11] with several modifications needed to
obtain effective bounds for large m.

Notation

It will be convenient to scale the entries to be in [−1, 1]; we denote by D the uniform
distribution over {a/m : a ∈ {−m, . . . , m}}. We denote by Dn the distribution over n-
dimensional vectors with independent entries from D, and by Dn×n the distribution over
n × n matrices with independent entries from D. We denote by Sn−1 the unit sphere in Rn,
namely Sn−1 = {x ∈ Rn : ∥x∥2 = 1}. We will use the c, c′, c0, etc, to denote unspecified
positive constants. Note that the same letter (e.g. c) can mean different unspecified constants
in different lemmas.

We may assume that n, m are large enough

We will assume throughout the proof that n, m are large enough; concretely, for any absolute
constants n0, m0, we may assume that n ≥ n0, m ≥ m0, and this would only effect the value
of the constant c in Theorem 1.

To see why, consider first the regime of constant m and large n. The distribution D is
symmetric and bounded in [−1, 1]. The results of [12] show that in such a case,

Pr[M is singular] ≤ cn

for some absolute constant c ∈ (0, 1). This proves Theorem 1 for any constant m.
The other regime is that of constant n and large m. While we may appeal to the result

of Katznelson [6] in this regime, which gives a sharp bound of cnm−n, there is a much
simpler argument that gives a bound of the order of 1/m which is good enough to establish
Theorem 1 in this regime. As the determinant of an n × n matrix is a polynomial of degree
n, the Schwartz-Zippel lemma [14,21] gives

Pr[M is singular] = Pr[det(M) = 0] ≤ n

m
.

In particular, for constant n and large m, this probability is of the order of 1/m, which is
consistent with the claimed bound of Theorem 1 (taking c < 1/n).

General approach

Let M ∼ Dn×n, and let X1, . . . , Xn denote its rows. If M is singular, then one of the rows
belongs to the span of the other rows. By symmetry we have

Pr[M is singular] ≤ n · Pr[Xn ∈ Span(X1, . . . , Xn−1)].

APPROX/RANDOM 2021

33:6 Singularity of Random Integer Matrices with Large Entries

Let X∗ be any unit vector orthogonal to X1, . . . , Xn−1 (if there are multiple ones, choose
one in some deterministic way). We call it a random normal vector. We will shorthand
X = Xn. Observe that X, X∗ are independent. Thus we can bound

Pr[M is singular] ≤ n · Pr[⟨X∗, X⟩ = 0].

To do so, we will show that unless X∗ belongs to a set of “bad” vectors, then the above
probability is at most m−cn, and that the probability that X∗ is bad is also at most m−cn.

3 Preliminary estimates

We establish some preliminary estimates in this section, which will be needed later in the
proof.

Maximal eigenvalues of random matrices

The first ingredient is bounding the spectral norm of M . In fact, we would need this bound
for rectangular matrices. Given an n × k matrix R we denote its spectral norm as ∥R∥ =
max{∥Rx∥2 : x ∈ Sk−1}. Note that ∥R∥ = ∥RT ∥ since ∥R∥ = maxx∈Sk−1,y∈Sn−1 yT Rx.

The following claim is a special case of [11, proposition 4.4], who showed that it holds for
any symmetric distribution D supported in [−1, 1].

▷ Claim 6. Let R ∼ Dn×k for n ≥ k. Then for any λ > 0,

Pr[∥R∥ ≥ λ
√

n] ≤ 2−cλ2k.

Anti-concentration of projections

Next, we need anti-concentration results for projections of Dn. To begin with we consider
projections of the uniform distribution over the solid cube [−1, 1]n.

▷ Claim 7. Let U ∼ [−1, 1]n be uniformly distributed. Then for every x ∈ Sn−1 and ε > 0,

Pr
u

[|⟨U, x⟩| ≤ ε] ≤ cε.

Proof. The uniform distribution U ∼ [−1, 1]n is a log-concave distribution. Let S = ⟨U, x⟩ and
note that S is a projection of U along the direction x. The Prékopa–Leindler inequality [8,10]
states that projections of log-concave distributions are log-concave, and so S is a log-concave
distribution. Carbery and Wright [3, Theorem 8] show that the required anti-concentration
bound holds for any log-concave distribution. ◁

We extend this anti-concentration to the discrete case using a coupling argument. Here
and throughout, we denote by log(·) logarithm in base 2.

▷ Claim 8. Let X ∼ Dn and set ε0 =
√

log m

m . Then for every x ∈ Sn−1 and ε ≥ ε0,

Pr [|⟨X, x⟩| ≤ ε] ≤ cε.

Proof. We apply a coupling argument between the uniform distribution in [−1, 1]n and Dn.
Sample X ∼ Dn, Y ∼ [−1, 1]n and set Z = X +Y/2m. Observe that Z is uniform in the solid
cube [−1 − 1/2m, 1 + 1/2m]n. Next, fix ε > 0 and observe that ⟨X, x⟩ = ⟨Z, x⟩ − ⟨Y, x⟩/2m.
Thus we can bound

Pr[|⟨X, x⟩| ≤ ε] ≤ Pr[|⟨Z, x⟩| ≤ 2ε] + Pr[|⟨Y, x⟩| ≥ 2εm].

S. R. Karingula and S. Lovett 33:7

For the first term, Claim 7 bounds its probability by c1ε. For the second term, the Chernoff
bound bounds its probability for ε ≥ ε0 by 1/m. As we have 1/m ≤ ε, the claim follows.

◁

Tensorization lemma

We also need the following “tensorization lemma” [11, Lemma 6.5].

▷ Claim 9. Let Y1, . . . , Yn be independent real-valued random variables. Assume for some
K, ε0 > 0 that

Pr[|Yi| ≤ ε] ≤ Kε for all ε ≥ ε0.

Then

Pr
[

n∑
i=1

Y 2
i ≤ ε2n

]
≤ (cKε)n for all ε ≥ ε0.

Nets

A set of unit vectors N ⊂ Sn−1 is called an ε-net, for ε > 0, if it satisfies:

∀x ∈ Sn−1 ∃y ∈ N ∥x − y∥2 ≤ ε.

The following claim bounds the size of such a net. For a proof see for example [9, Lemma
2.6].

▷ Claim 10. For any ε > 0, there exists a ε-net N ⊂ Sn−1 of size |N | ≤ (3/ε)n.

Integer points in ball

We need a bound on the number of integer vectors in a ball of a given radius. Let Bn(r) =
{x ∈ Rn : ∥x∥2 ≤ r} denote the ball of radius r in Rn. The following bound is well known.

▷ Claim 11. The number of integer vectors in Bn(r) is at most
(

1 + cr√
n

)n

.

4 Compressible vectors

The first set of “bad” vectors that we want to rule out are vectors which are close to sparse.
A vector u ∈ Rn is k-sparse if it has at most k nonzero coordinates.

▶ Definition 12 (Compressible vectors). Let α, β ∈ (0, 1). A unit vector x ∈ Sn−1 is called
(α, β)-compressible if it can be expressed as x = u + v, where u is (αn)-sparse and ∥v∥2 ≤ β.
Otherwise, we say that x is (α, β)-incompressible.

We will later choose α, β, but we note here that α will be a small enough absolute constant
and β a small polynomial in 1/m. Concrete values that work are α = 1/50, β = 1/

√
m.

We will implicitly assume that both n, m are large enough; concretely, at various places we
assume that αn ≥ 2.

The main lemma we prove in this section is the following.

▶ Lemma 13. Let α ∈ (0, 1/8), β ∈ (ε0, 1/2) where ε0 =
√

log m

m . Then

Pr [X∗ is (α, β)-compressible] ≤ (cβ)n/8.

APPROX/RANDOM 2021

33:8 Singularity of Random Integer Matrices with Large Entries

We need a bound on the smallest singular value of a rectangular matrix.

▷ Claim 14. Let R ∼ Dn×k for n ≥ k. Then for every x ∈ Sk−1 and ε ≥ ε0,

Pr
[
∥Rx∥2 ≤ ε

√
n

]
≤ (cε)n/2.

Proof. Assume ∥Rx∥2 < ε
√

n. This implies that |(Rx)i| ≤ 2ε for at least n/2 coordinates
i ∈ [n]. Note that for each fixed i, the value (Rx)i is distributed as ⟨X, x⟩ for some X ∼ Dk.
Applying Claim 8 and the union bound over the choice of the n/2 coordinates gives

Pr
[
∥Rx∥2 ≤ ε

√
n

]
≤ 2n(c1ε)n/2 = (cε)n/2. ◁

▷ Claim 15. Let R ∼ Dn×k for n ≥ 8k. Then for every ε ≥ ε0,

Pr
[

min
x∈Sk−1

∥Rx∥2 ≤ ε
√

n

]
≤ (cε)n/4

.

Proof. We may assume that ε ≤ 1 by taking c ≥ 1. Let N be an (ε2)-net in Sk−1 of size
|N | ≤ (3/ε2)k, as given by Claim 10. Let E1 denote the event that there exists y ∈ N for
which ∥Ry∥2 ≤ 2ε

√
n. Applying Claim 14 and a union bound gives

Pr [E1] ≤ (3/ε2)k · (c1ε)n/2 ≤ (c2ε)n/4,

where we used the assumption n ≥ 8k. Let E2 denote the event that ∥R∥ ≥ λ
√

n for
λ =

√
log(1/ε). Claim 6 shows that Pr[E2] ≤ (c3ε)n. We next show that if E1, E2 don’t

hold then the condition of the claim also doesn’t hold, namely that ∥Rx∥2 > ε
√

n for all
x ∈ Sk−1.

Let x ∈ Sk−1 be arbitrary and let y ∈ N be such that ∥x − y∥2 ≤ ε2. Then

∥Rx∥2 ≥ ∥Ry∥2 − ∥R∥ · ∥x − y∥2 ≥ (2ε − ε2λ)
√

n.

It can be verified that for ε ≤ 1 we have ελ ≤ 1, which implies that ∥Rx∥2 ≥ ε
√

n. ◁

We will now use these two claims to prove Lemma 13.

Proof of Lemma 13. Let M ′ be the (n − 1) × n matrix with rows X1, . . . , Xn−1. Assume
that there exists an (α, β)-compressible vector x ∈ Sn−1 in the kernel of M ′. By definition,
x = u + v where u is (αn)-sparse and ∥v∥2 ≤ β. In particular, M ′(u + v) = 0 and hence
∥M ′u∥2 = ∥M ′v∥2. In addition, ∥u∥2 ≥ ∥x∥2 − ∥v∥2 ≥ 1/2 since x is a unit vector and
∥v∥2 ≤ β ≤ 1/2.

Let E denote the event that ∥M ′∥ ≥ λ
√

n for λ = c1
√

log(1/β), where we choose c1 ≥ 1
large enough so that by Claim 6, Pr[E] ≤ βn. Note that as we assume β ≤ 1/2 we have
λ ≥ c1 ≥ 1. Assuming that E doesn’t hold, we have

∥M ′u∥2 = ∥M ′v∥2 ≤ ∥M ′∥ · ∥v∥2 ≤ λβ
√

n.

In particular, y = u/∥u∥2 is an (αn)-sparse unit vector that satisfies ∥M ′y∥2 ≤ 2λβ
√

n. We
next bound the probability that such a vector exists.

Let ε = 2λβ, and note that ε ≥ ε0 since β ≥ ε0 and λ ≥ 1. There are
(

n
αn

)
options for

the support of y. Let I = {i : yi ̸= 0} denote a possible support, set k = |I| and let R be an
(n − 1) × k matrix with columns (Yi : i ∈ I). As α < 1/8 we have n − 1 ≥ 8k. Thus we can
apply Claim 15 and obtain that

Pr
[
¬E ∧ ∃y ∈ Sk−1, ∥Ry∥2 ≤ ε

√
n

]
≤ (c2ε)n/4 =

(
c3β

√
log 1/β

)n/4
.

Note that for β ≤ 1 we have β log(1/β) ≤ 1 and hence the above bound is at most (c4β)n/8.
To conclude, we union bound over the choices for I, the number of which is

(
n

αn

)
≤ 2n.

Thus we can bound the total probability by 2n(c4β)n/8 = (c5β)n/8. ◀

S. R. Karingula and S. Lovett 33:9

5 The LCD condition

In this section we will introduce the notion of the Lowest Common Denominator (LCD) of a
vector, which is a variant of the LCD definition in [11]. Informally, the LCD of a vector is a
robust notion of “almost periodicity”; concretely, it is the least multiple where most of its
entries are close to integers.

Given x ∈ Rn let x = [x] + {x} be its decomposition into integer and fractional parts,
where [x] ∈ Zn and {x} ∈ [−1/2, 1/2]n.

▶ Definition 16 (Least common denominator (LCD)). Let α, β ∈ (0, 1). Given a unit vector
x ∈ Sn−1, its least common denominator (LCD), denoted LCDα,β(x), is the infimum of D > 0
such that we can decompose {Dx} = u + v, where u is (αn)-sparse and ∥v∥2 ≤ β min(D,

√
n).

▷ Claim 17. Assume x ∈ Sn−1 is (5α, β)-incompressible. Then LCDα,β(x) >
√

αn.

Proof. Let D = LCDα,β(x) and assume towards a contradiction that D ≤
√

αn. Let y = Dx.
As ∥y∥2

2 ≤ αn there are at most 4αn coordinates i ∈ [n] where |yi| ≥ 1/2. In all other
coordinates {yi} = yi, and hence y − {y} is (4αn)-sparse. By assumption we can decompose
{y} = u + v where u is (αn)-sparse and ∥v∥2 ≤ βD. This implies that we can decompose
y = u′ + v where u′ is (5αn)-sparse. Thus, we can decompose x = y/D as x = u′′ + v′′, where
u′′ = u/D is (5αn)-sparse and v′′ = v/D satisfies ∥v′′∥2 ≤ β. This violates the assumption
that x is (5α, β)-incompressible. ◁

Our main goal in this section is to prove the following lemma, which extends Claim 8
assuming x has large LCD. To get intuition, we note that the lemma below is useful as
long as β ≪ γ ≪ 1. We will later set γ =

√
β to be such a choice. In particular, if we set

β = m−1/2 then we have γ = m−1/4.

▶ Lemma 18. Let X ∼ Dn. Let α, β, γ ∈ (0, 1/2), x ∈ Sn−1 be (α, γ)-incompressible and
set D = LCDα,β(x). Then for every ε ≥ 1/2πmD, it holds that

Pr [|⟨X, x⟩| ≤ ε] ≤ c

(
ε

γ
+ 1

(αβm)αn

)
.

The proof of Lemma 18 relies on Esseen’s lemma [4].

▶ Lemma 19 (Esseen’s Lemma). Let Y be a real-valued random variable. Let ϕY (t) = E[eitY]
denote the characteristic function of Y . Then for any ε > 0, it holds that

Pr[|Y | ≤ ε] ≤ cε

∫ 1/ε

−1/ε

|ϕY (t)|dt.

Before proving Lemma 18, we need some auxiliary claims. Fix some x ∈ Sn−1, let X ∼ Dn

and let Y = ⟨X, x⟩. In order to apply Lemma 19, we need to compute the characteristic
function of Y .

▷ Claim 20. Let X ∼ Dn, x ∈ Sn−1 and set Y = ⟨X, x⟩. For t ∈ R it holds that

|ϕY (t)| =
n∏

k=1
F

(
xkt

2πm

)
where F : R → R is defined as follows:

F (y) =
∣∣∣∣ sin ((2m + 1)πy)
(2m + 1) sin(πy)

∣∣∣∣ .

APPROX/RANDOM 2021

33:10 Singularity of Random Integer Matrices with Large Entries

Proof. We have Y =
∑

xiξi where ξ1, . . . , ξn ∼ D are independent. Hence

ϕY (t) =
n∏

k=1
E[eixkξkt].

Next we compute

E[eixkξkt] = 1
2m + 1

m∑
ℓ=−m

eixk(ℓ/m)t = 1
2m + 1 ·

sin(2m+1
2m xkt)

sin(1
2m xkt)

.

Hence∣∣E[eitxkξk]
∣∣ = F

(
xkt

2πm

)
. ◁

The next claim proves some basic properties of the function F .

▷ Claim 21. The function F satisfies the following properties:
1. F is symmetric: F (y) = F (−y) for all y ∈ R.
2. F is invariant to shifts by integers: F (y) = F ({y}) for y ∈ R.
3. F is bounded: F (y) ∈ [0, 1] for all y ∈ R.
4. F (y) ≤ G(my) for y ∈ [0, 1/2], where G : R+ → [0, 1] is defined as follows:

G(y) =
{

e−ηy2 if y ∈ [0, 1]
e−η

y if y ≥ 1

Here, η > 0 is an absolute constant. Note that G is decreasing.

Proof. The first three claims follow immediately from the definition of F in Claim 20. In
order to prove the last claim, we will prove that F (y) ≤ c1

my for y ∈ [1/m, 1/2] for some
c1 ∈ (0, 1); and that F (y) ≤ exp(−c2(my)2) for y ∈ [0, 1/m] for some c2 > 0. The claim then
follows by taking η = min(ln(1/c1), c2).

First, note that F (y) ≤ 1
(2m+1)| sin(πy)| . Using Taylor expansion at 0, we get for y ∈ [0, 1/2]

that

sin (πy) ≥ πy − π3y3

6 ≥ πy

2 .

In particular, F (y) ≤ 1
πmy , which gives the desired bound for c1 = 1/π.

Next, note that F (y) = 1
2m+1 | sin((2m + 1)πy) · csc(πy)|. The Laurent series of csc(x)

at x ̸= 0 is csc(x) = 1
x + x

6 + 7x3

360 + 31x5

15120 + Θ(x7) and the Taylor series for sin(x) is
sin(x) = x− x3

3! + x5

5! +Θ(x7). So for y ∈ [0, 1/m] we have F (y) ≤ 1−c2(my)2 ≤ exp(−c2(my)2).
◁

We also need the following claim, which shows that incompressible vectors retain a large
fraction of their norm when restricted to small coordinates. We use the following notation:
given x ∈ Rn and a set of coordinates J ⊂ [n], we denote by x|J ∈ RJ the restriction of x to
coordinates in J .

▷ Claim 22. Let x ∈ Sn−1 be (α, γ)-incompressible. Let J =
{

i : xi ≤ 1√
αn−1

}
. Then

∥x|J∥2
2 ≥ ∥x|J∥2

∞ + γ2.

S. R. Karingula and S. Lovett 33:11

Proof. Let Jc = [n] \ J . Since x is a unit vector, we have |Jc| ≤ αn − 1. Let j ∈ J be such
that |xj | is maximal and take K = J \ {j}. Then |Kc| ≤ αn, and since we assume that x is
(α, γ)-incompressible, we have ∥x|K∥2 ≥ γ. This completes the proof, since

∥x|J∥2
2 − ∥x|J∥2

∞ = ∥x|J∥2
2 − x2

j = ∥x|K∥2
2 ≥ γ2. ◁

We would need the following lemma in the computations later on.

▶ Lemma 23. Let γ, δ > 0. Let x ∈ Rn be a vector such that ∥x∥∞ ≤ δ and ∥x∥2
2 ≥ ∥x∥2

∞+γ2.
Let T = πm/δ. Then

I =
∫ T

0

n∏
i=1

F

(
xit

2πm

)
dt ≤ c

γ
.

Proof. To simplify the proof, we may assume by Claim 21(1) that xi ≥ 0 for all i. Reorder
the coordinates of x so that x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. Observe that for xi ∈ [0, T]
we have xit

2πm ∈ [0, 1/2] and hence we can apply Claim 21(4) and bound each term by
F

(
xit

2πm

)
≤ G

(
xit
2π

)
. Thus

I ≤
∫ T

0

n∏
i=1

G

(
xit

2π

)
dt = 2π

∫ T/2π

0

n∏
i=1

G(xit)dt ≤ 2π

∫ ∞

0

n∏
i=1

G(xit)dt.

We bound this last integral. Let ti = 1/xi so that t1 ≤ t2 ≤ . . . ≤ tn. For simplicity
of notation set t0 = 0, tn+1 = ∞. We break the computation of the integral to intervals
[tk, tk+1) for k = 0, . . . , n, and denote by Ik the integral in each interval:

Ik =
∫ tk+1

tk

n∏
i=1

G(xit)dt =
∫ tk+1

tk

k∏
i=1

e−η

xit
·

n∏
i=k+1

e−ηt2x2
i dt = e−ηk

∫ tk+1

tk

e
−ηt2

∑n

i=k+1
x2

i

tk
∏k

i=1 xi

dt.

Fix k and consider first the case that
∑n

i=k+1 x2
i ≥ γ2/2. In this case, using the fact that

xit ≥ 1 for i ∈ [k] and t ∈ [tk, tk+1], we can bound Ik by

Ik ≤ e−ηk

∫ tk+1

tk

e−ηγ2t2/2dt ≤ e−ηk

∫ ∞

0
e−ηγ2t2/2dt ≤ c1e−ηk

γ
.

Next, consider the case that
∑n

i=k+1 x2
i < γ2/2, which means that

∑k
i=1 x2

i > ∥x∥2
2 −

γ2/2 ≥ ∥x∥2
∞ + γ2/2. Observe that this is impossible for k = 0 or k = 1, and hence we may

assume k ≥ 2. In this case we bound

Ik ≤ e−ηk

∫ tk+1

tk

1
tk

∏k
i=1 xi

dt ≤ e−ηk

∫ ∞

tk

1
tk

∏k
i=1 xi

dt =
e−ηkxk−1

k

(k − 1)
∏k

i=1 xi

≤ e−ηk

(k − 1)x1
.

By our assumption,
∑k

i=1 x2
i ≥ γ2/2 and hence x2

1 ≥ γ2/2k. Thus we can bound

Ik ≤ e−ηk

(k − 1)γ/
√

2k
≤ c2e−ηk

γ
.

Overall, we bounded the integral by

I ≤ 2π
n∑

k=0
Ik ≤ 2π max(c1, c2)

n∑
k=0

e−ηk

γ
≤ c

γ
,

where we used the fact that c1, c2, η > 0 are all absolute constants. ◀

APPROX/RANDOM 2021

33:12 Singularity of Random Integer Matrices with Large Entries

Now we have all the ingredients to complete proof of Lemma 18.

Proof of Lemma 18. Let Y = ⟨X, x⟩. Lemma 19 and Claim 20 give the bound

Pr[|Y | ≤ ε] ≤ c1εI,

where I is the following integral:

I =
∫ 1/ε

0

n∏
i=1

F

(
xit

2πm

)
dt.

Let T = πm
√

αn − 1. We will bound the integral in the regime [0, T] and [T, 1/ε], and
denote the corresponding integrals by I1, I2.

Consider first the integral I1 in [0, T]. Let δ = 1/
√

αn − 1 and take J = {i : xi ≤ δ}.
Observe that by Claim 21(3), we can bound F

(
xit

2πm

)
≤ 1 for i /∈ J . Thus

I1 =
∫ T

0

n∏
i=1

F

(
xit

2πm

)
dt ≤

∫ T

0

∏
i∈J

F

(
xit

2πm

)
dt.

Next, as we assume that x is (α, γ)-incompressible, Claim 22 gives that ∥x|J∥2
2 ≥ ∥x|J∥2

∞ +γ2.
Applying Lemma 23 to x|J , we bound the first integral by

I1 ≤ c2

γ
.

Next, consider the second integral I2 in [T, 1/ε]. We will apply the LCD assumption
to uniformly bound the integrand in this range. Given t ∈ [T, 1/ε], let y(t) =

{
xt

2πm

}
∈

[−1/2, 1/2]n, β(t) = β min(t/
√

n, 1) and J(t) = {i ∈ [n] : |y(t)i| ≥ β(t)}. As t ≤ 1/ε ≤
2πmD, we have that t

2πm ≤ D = LCDα,β(x), and hence |J(t)| ≥ αn. Applying Claim 21,
we bound the integrand by

n∏
i=1

F

(
xit

2πm

)
=

n∏
i=1

F (yi) ≤
∏

i∈J(t)

F (yi) ≤
∏

i∈J(t)

G(myi) ≤
∏

i∈J(t)

G(mβ(t)) ≤ G(mβ(t))αn.

Following up on this, we have

β(t) ≥ β(T) = β

√
αn − 1√

n
≥ β

√
α/2 ≥ αβ,

where we used the assumptions that αn ≥ 2 and α ≤ 1/2. We may assume that αβm ≥ 1,
otherwise the conclusion of the lemma is trivial. In that case we have by Claim 21(4) that

G(mβ(t)) ≤ G(αβm) ≤ 1
αβm

.

Thus we can bound the integral I2 by

I2 =
∫ 1/ε

T

n∏
i=1

F

(
xit

2πm

)
dt ≤ 1/ε

(αβm)αn
.

Overall, we get

Pr[|Y | ≤ ε] ≤ c1εI = c1ε(I1 + I2) ≤ c1c2ε

γ
+ c1

(αβm)αn
. ◀

S. R. Karingula and S. Lovett 33:13

6 Bounding the LCD

Our main goal in this section is to prove that a random normal vector X∗ has large LCD
with high probability. Let M ′ denote the (n − 1) × n matrix with rows X1, . . . , Xn−1. Let
D0 =

√
αn and D1 = β(αβm)αn in this section.

▶ Lemma 24. Let α ∈ (0, 1/40), β ∈ (0, 1/2) and D ∈ (1, D1). Then

Pr[LCDα,β(X∗) ≤ D] ≤ D2 (1/αc)n
βcn

for some absolute constant c ∈ (0, 1).

We set γ =
√

β throughout the section. We first condition on a number of bad events not
holding. Define:

E1 =
[
∥M∥ ≥

√
n log(1/β)

]
E2 = [X∗ is (5α, β) -compressible]
E3 = [X∗ is (α, γ) -compressible]

Applying Claim 6 for E1, and Lemma 13 for E2, E3, we get that

Pr[E1 or E2 or E3] ≤ βcn.

Thus, we will assume in this section that none of E1, E2, E3 hold. Assuming ¬E2, Claim 17
yields that LCDα,β(X∗) ≥ D0. For D ≥ D0 define

SD =
{

x ∈ Sn−1 : LCDα,β(x) ∈ [D, 2D] and x is (α, γ) -incompressible
}

.

The following is an analog of Lemma 7.2 in [11].

▷ Claim 25. Let D ≥ D0 and set ν = 6β
√

n/D. There exists a ν-net ND ⊂ SD of size

|ND| ≤ (D/β)
(

cD√
αn

)n

(1/β)αn.

Namely, for each x ∈ SD there exists y ∈ ND that satisfies ∥x − y∥2 ≤ ν.

Proof. Let x ∈ SD and shorthand D(x) = LCDα,β(x). By definition, we can decompose
{D(x)x} = u + v where u is (αn)-sparse and ∥v∥2 ≤ β min(D,

√
n) ≤ β

√
n.

Let W denote the set of (αn)-sparse vectors w ∈ [−1/2, 1/2]n such that each wi is
an integer multiple of β. Then |W | ≤

(
n

αn

)
(1/β)αn, and there exists w ∈ W such that

∥u − w∥∞ ≤ β, which implies ∥u − w∥2 ≤ β
√

n. This implies that

∥{D(x)x} − w∥2 ≤ 2β
√

n.

Next, consider [D(x)x] ∈ Zn. As |[a]| ≤ 2|a| for all a ∈ Z, we have ∥[D(x)x]∥2 ≤
2D(x)∥x∥2 ≤ 4D. Let Z = {z ∈ Zn : ∥z∥2 ≤ 4D}. Then [D(x)x] ∈ Z, and Claim 11 bounds
|Z| ≤

(
1 + c1D√

n

)n

. So there is z ∈ Z such that

∥D(x)x − z − w∥2 ≤ 2β
√

n.

Next, let R be set of integer multiples of β in the range [D, 2D], so that |R| ≤ D/β and
there exists r ∈ R with |D(x) − r| ≤ β. As ∥x∥2 = 1 we have

∥rx − z − w∥2 ≤ 2β
√

n + β ≤ 3β
√

n.

APPROX/RANDOM 2021

33:14 Singularity of Random Integer Matrices with Large Entries

Finally, define the set

Y = {(z + w)/r : z ∈ Z, w ∈ W, r ∈ R}.

Then there exists y ∈ Y such that

∥x − y∥2 ≤ 3β
√

n/D = ν/2.

Take a maximal set ND ⊂ SD which is ν-separated. That is, for any x′, x′′ ∈ ND we have
∥x′ − x′′∥2 > ν. Note that by maximality, ND is a ν-net in SD. Next, note that |ND| ≤ |Y |,
as any point x ∈ ND must be (ν/2)-close to a distinct point in Y . To conclude, we need to
bound |Y |. We have

|Y | ≤ |W ||Z||R| ≤
(

n

αn

)
(1/β)αn ·

(
1 + cD√

n

)n

· (D/β).

As D ≥ D0 =
√

αn we can simplify 1 + cD√
n

≤ (c+1)D√
αn

. We can trivially bound
(

n
αn

)
≤ 2n.

Hence

|ND| ≤ |Y | ≤ (D/β)
(

2(c + 1)D√
αn

)n

(1/β)αn. ◁

▷ Claim 26. For any D ∈ [D0, D1] we have

Pr [X∗ ∈ SD and ¬E1] ≤ D2 (c/α)n
βn/8.

Proof. First, note that we may assume β ≤ β0 for any absolute constant β0 ∈ (0, 1), by
choosing the constant c > 0 large enough to compensate for that (namely, taking c ≥ 1/β0).
In particular, setting β0 = 2−20 works.

If X∗ ∈ SD then there exists y ∈ ND such that ∥X∗ − y∥2 ≤ ν for ν = 6β
√

n/D. By
definition of X∗ we have M ′X∗ = 0, and as we assume that ¬E1 hold, we have

∥M ′y∥2 ≤ ∥M ′∥∥X∗ − y∥2 ≤ ν
√

n log(1/β).

Set β1 = 6β
√

log(1/β). The assumption β ≤ β0 implies that β1 ≤ β3/4. Set δ = β3/4√
n/D.

We will bound the probability that there exists y ∈ ND such that ∥M ′y∥2 ≤ δ
√

n.
Fix y ∈ ND, let X ∼ Dn, and define p(ε) = Pr[|⟨X, y⟩|] ≤ ε. As y ∈ ND ⊂ SD we have

that y is (α, γ)-incompressible, and hence we can apply Lemma 18, which gives

p(ε) ≤ c1

(
ε

γ
+ 1

(αβm)αn

)
for all ε ≥ 1/2πmD.

Next, we restrict attention to only ε ≥ δ, and note that in this regime the first term is
dominant (since D ≤ D1 we have δ ≥ β3/4√

n/D1 ≥ 1/(αβm)αn). We can then simplify the
bound as

p(ε) ≤ c2ε

γ
for all ε ≥ δ.

Applying Claim 9, and recalling that we set γ =
√

β, gives

Pr
[
∥M ′y∥2 ≤ δ

√
n

]
≤

(
c3δ

γ

)n−1
=

(
c4β1/4√

n

D

)n−1

.

S. R. Karingula and S. Lovett 33:15

Union bounding over all y ∈ ND, using Claim 25 to bound its size, gives

Pr[∃y ∈ ND, ∥M ′y∥2 ≤ δ
√

n] ≤ (D/β)
(

cD√
αn

)n

(1/β)αn ·
(

c4β1/4√
n

D

)n−1

≤ D2 (
c5/

√
α

)n
βn/4−αn−2.

Our assumption α < 1/40 and the implicit assumption αn ≥ 2 imply that αn + 2 ≤ n/8,
which simplifies the above bound to the claimed bound. ◁

We are now in place to prove Lemma 24.

Proof of Lemma 24. We may assume that non of E1, E2, E3 hold, as the probability that
any of them hold is at most βc1n for some absolute constant c1 ∈ (0, 1). This in particular
implies that LCDα,β(X∗) ≥ D0. Fix D ∈ [D0, D1]. As D ≤ D1 we can applying Claim 26 to
Di = 2iD0 as long as Di ≤ D/2. Summing the results we get

Pr [LCDα,β(X∗) ≤ D and ¬E1, ¬E2, ¬E3] ≤ (2D)2(c2/α)nβn/8.

Thus overall we have

Pr [LCDα,β(X∗) ≤ D] ≤ βc1n + (2D)2(c2/α)nβn/8.

The lemma follows by taking c ∈ (0, 1) small enough. ◀

7 Completing the proof

We now prove Theorem 1.

Proof of Theorem 1. Fix α = 1/50, β = 1/
√

m and assume m ≥ m0 for a large enough
constant m0 to be determined soon. Let D to be determined soon. Lemma 24 gives

Pr[LCDα,β(X∗) ≤ D] ≤ D2(1/αc1)nβc1n.

As α is constant, and using the choice β = 1/
√

m, we can simplify the bound as follows. For
a small enough constant c ∈ (0, 1), setting D = mcn and c2 = 1/αc1, we have

Pr[LCDα,β(X∗) ≤ mcn] ≤ m2cncn
2 m−(c1/2)n ≤ cn

2 m−(c1/2−2c)n ≤ cn
2 m−cn.

Assuming m ≥ m0 for a large enough constant m0, we can simplify this bound further as

Pr[LCDα,β(X∗) ≤ mcn] ≤ m−(c/2)n.

Next, assume D = LCDα,β(X∗) ≥ mcn. In this case, Lemma 18 for ε = 1/2πmD gives
that

Pr[⟨X∗, X⟩ = 0] ≤ Pr[|⟨X∗, X⟩| ≤ ε] ≤ c3

(
ε

γ
+ 1

(αβm)αn

)
≤ m−c′n

for some c′ ∈ (0, 1). Overall we obtain the desired bound. ◀

APPROX/RANDOM 2021

33:16 Singularity of Random Integer Matrices with Large Entries

References
1 Simeon Ball. On sets of vectors of a finite vector space in which every subset of basis size is a

basis. Journal of the European Mathematical Society, 14(3):733–748, 2012.
2 Jean Bourgain, Van H Vu, and Philip Matchett Wood. On the singularity probability of

discrete random matrices. Journal of Functional Analysis, 258(2):559–603, 2010.
3 Anthony Carbery and James Wright. Distributional and Lq norm inequalities for polynomials

over convex bodies in Rn. Mathematical research letters, 8(3):233–248, 2001.
4 CG Esseen. On the Kolmogorov-Rogozin inequality for the concentration function. Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 5(3):210–216, 1966.
5 Jeff Kahn, János Komlós, and Endre Szemerédi. On the probability that a random ±1-matrix

is singular. Journal of the American Mathematical Society, 8(1):223–240, 1995.
6 Yonathan Katznelson. Singular matrices and a uniform bound for congruence groups of

SLn(Z). Duke Mathematical Journal, 69(1):121–136, 1993.
7 János Komlós. On determinant of (0, 1) matrices. Studia Science Mathematics Hungarica,

2:7–21, 1967.
8 L Leindler. On a certain converse of Hölder’s inequality. In Proceedings of the 1971 Oberwolfach

Conference, BirkhHuser Verlag. Basel-Stuttgart, 1972.
9 Vitali D Milman and Gideon Schechtman. Asymptotic theory of finite dimensional normed

spaces: Isoperimetric inequalities in riemannian manifolds, volume 1200. Springer, 2009.
10 András Prékopa. On logarithmic concave measures and functions. Acta Scientiarum Mathem-

aticarum, 34:335–343, 1973.
11 Mark Rudelson. Lecture notes on non-asymptotic theory of random matrices, 2013.
12 Mark Rudelson and Roman Vershynin. The Littlewood–Offord problem and invertibility of

random matrices. Advances in Mathematics, 218(2):600–633, 2008.
13 Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme

singular values. In Proceedings of the International Congress of Mathematicians 2010 (ICM
2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures,
pages 1576–1602. World Scientific, 2010.

14 Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 27(4):701–717, 1980.

15 Beniamino Segre. Curve razionali normali ek-archi negli spazi finiti. Annali di Matematica
Pura ed Applicata, 39(1):357–379, 1955.

16 Richard Singleton. Maximum distance q-nary codes. IEEE Transactions on Information
Theory, 10(2):116–118, 1964.

17 Terence Tao and Van Vu. On random ±1 matrices: singularity and determinant. Random
Structures & Algorithms, 28(1):1–23, 2006.

18 Terence Tao and Van Vu. On the singularity probability of random Bernoulli matrices. Journal
of the American Mathematical Society, 20(3):603–628, 2007.

19 Konstantin Tikhomirov. Singularity of random Bernoulli matrices. Annals of Mathematics,
191(2):593–634, 2020.

20 Santosh S Vempala, Ruosong Wang, and David P Woodruff. The communication complexity
of optimization. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1733–1752. SIAM, 2020.

21 Richard Zippel. Probabilistic algorithms for sparse polynomials. In International symposium
on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

Interplay Between Graph Isomorphism and Earth
Mover’s Distance in the Query and
Communication Worlds
Sourav Chakraborty # Ñ

Indian Statistical Institute, Kolkata, India

Arijit Ghosh # Ñ

Indian Statistical Institute, Kolkata, India

Gopinath Mishra # Ñ

Indian Statistical Institute, Kolkata, India

Sayantan Sen # Ñ

Indian Statistical Institute, Kolkata, India

Abstract
The graph isomorphism distance between two graphs Gu and Gk is the fraction of entries in the
adjacency matrix that has to be changed to make Gu isomorphic to Gk. We study the problem of
estimating, up to a constant additive factor, the graph isomorphism distance between two graphs
in the query model. In other words, if Gk is a known graph and Gu is an unknown graph whose
adjacency matrix has to be accessed by querying the entries, what is the query complexity for testing
whether the graph isomorphism distance between Gu and Gk is less than γ1 or more than γ2, where
γ1 and γ2 are two constants with 0 ≤ γ1 < γ2 ≤ 1. It is also called the tolerant property testing of
graph isomorphism in the dense graph model. The non-tolerant version (where γ1 is 0) has been
studied by Fischer and Matsliah (SICOMP’08).

In this paper, we prove a (interesting) connection between tolerant graph isomorphism testing
and tolerant testing of the well studied Earth Mover’s Distance (EMD). We prove that deciding
tolerant graph isomorphism is equivalent to deciding tolerant EMD testing between multi-sets in
the query setting. Moreover, the reductions between tolerant graph isomorphism and tolerant
EMD testing (in query setting) can also be extended directly to work in the two party Alice-Bob
communication model (where Alice and Bob have one graph each and they want to solve tolerant
graph isomorphism problem by communicating bits), and possibly in other sublinear models as well.

Testing tolerant EMD between two probability distributions is equivalent to testing EMD between
two multi-sets, where the multiplicity of each element is taken appropriately, and we sample elements
from the unknown multi-set with replacement. In this paper, our (main) contribution is to introduce
the problem of (tolerant) EMD testing between multi-sets (over Hamming cube) when we get samples
from the unknown multi-set without replacement and to show that this variant of tolerant testing of
EMD is as hard as tolerant testing of graph isomorphism between two graphs. Thus, while testing of
equivalence between distributions is at the heart of the non-tolerant testing of graph isomorphism,
we are showing that the estimation of the EMD over a Hamming cube (when we are allowed to
sample without replacement) is at the heart of tolerant graph isomorphism. We believe that the
introduction of the problem of testing EMD between multi-sets (when we get samples without
replacement) opens an entirely new direction in the world of testing properties of distributions.
2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms
Keywords and phrases Graph Isomorphism, Earth Mover Distance, Query Complexity
Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.34
Category RANDOM
Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/135/

Acknowledgements The authors would like to thank an anonymous reviewer for pointing out
a mistake in an earlier version of this paper, as well as the reviewers of RANDOM for various
suggestions that improved the presentation of the paper.

© Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 34; pp. 34:1–34:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sourav@isical.ac.in
https://www.isical.ac.in/~sourav/
mailto:arijitiitkgpster@gmail.com
https://sites.google.com/site/homepagearijitghosh/
mailto:gopianjan117@gmail.com
https://sites.google.com/view/gopinathmishra/
mailto:sayantan789@gmail.com
https://sites.google.com/view/sayantans
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.34
https://eccc.weizmann.ac.il/report/2020/135/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Graph Isomorphism and EMD

1 Introduction

Graph isomorphism (GI) has been one of the most celebrated problems in computer science.
Roughly speaking, the graph isomorphism problem asks whether two graphs are structure-
preserving. Namely, given two graphs Gu and Gk, graph isomorphism of Gu and Gk is a
bijection ψ : V (Gu) → V (Gk) such that for all pair of vertices u, v ∈ V (Gu), the edges
{u, v} ∈ E(Gu) if and only if {ψ(u), ψ(v)} ∈ E(Gk) 1. One central open problem in
complexity theory is whether the graph isomorphism problem can be solved in polynomial
time. Recently in a breakthrough result, Babai [5] proved that the graph isomorphism
problem could be decided in quasi-polynomial time.

For a central problem like the graph isomorphism, naturally, one would like to understand
its (and related problems) computational complexity for various models of computation.
While most of the focus has been on the standard time complexity in the RAM model for
various classes of graphs (and hyper-graphs), other complexity measures like space complexity,
parameterized complexity, and query complexity have also been studied over the past few
decades (see the Dagstuhl Report [7] and PhD thesis of Sun [24]).

A natural extension of the GI problem is to estimate the “graph isomorphism distance”
between two graphs. In other words, given two graphs Gu and Gk, what fraction of edges
are necessary to add or delete to make the graphs isomorphic.

▶ Definition 1.1. Let Gu = (Vu, Eu) and Gk = (Vk, Ek) be two graphs with |Vu| = |Vk| = n.
Given a bijection ϕ : Vu → Vk, the distance between the graphs Gu and Gk with respect to
the bijection ϕ is

dϕ(Gu, Gk) := |{(u, v) : Exactly one among (u, v) ∈ Eu or (ϕ(u), ϕ(v)) ∈ Ek holds}| .

The Graph Isomorphism Distance (or GI-distance in short) between graphs Gu and Gk

is defined as min
ϕ:Vu→Vk

dϕ(Gu, Gk)/n2, and is denoted by δGI(Gu, Gk) (we will use d(Gu, Gk)

to mean n2δGI(Gu, Gk)).

The problem of computing GI-distance between two graphs is known to be #P -hard [18].
The next natural question is:

What is the complexity for approximating (either by a constant additive or multiplicative
factor) the graph isomorphism distance between two graphs?

In [18], it was also proven that the problem of computing GI-distance between two
graphs is APX-hard. So, approximating δGI(Gu, Gk) up to a constant multiplicative factor is
NP -hard. In this paper, we study this problem of approximating (up to a constant additive
factor) the GI-distance between two graphs in the query model and two party communication
complexity model.

1.1 Property Testing of Graph Isomorphism
Formally speaking, the main problem is: given two graphs Gu and Gk and an approximation
parameter ζ ∈ (0, 1), the goal is to output an estimate α such that

δGI(Gu, Gk) − ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

1 In a graph G, V (G) and E(G) denote the sets of vertices and edges in G, respectively.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:3

In the query model, the problem is equivalent (up to a constant factor) to the tolerant
property testing of graph isomorphism in the dense graph model (introduced in the work of
Parnas, Ron and Rubinfeld [21]). For 0 ≤ γ < 1, two graphs Gu and Gk, with n vertices, are
called γ-close or γ-far to isomorphic2 if d(Gu, Gk) ≤ γn2 or d(Gu, Gk) ≥ γn2, respectively.
In (γ1, γ2)-tolerant GI testing, we are given two graphs Gu and Gk, and two parameters
0 ≤ γ1 < γ2 ≤ 1, with the guarantee that either the graphs are γ1-close or γ2-far. One of the
graphs (usually denoted as Gu) is accessed by querying the entries of its adjacency matrix.
In contrast, the other graph (usually denoted as Gk

3) is known to the query algorithm,
and no cost for accessing the entries of the adjacency matrix of Gk is incurred. The query
complexity is the number of queries (to the adjacency matrix of Gu) that are required for
testing, (with correctness probability at least 2/3 4), whether Gu and Gk are γ1-close or
γ2-far. The query algorithm is assumed to have unbounded computational power.

The non-tolerant property testing version of the graph isomorphism problem (that is,
when γ1 = 0) was first studied by Fischer and Matsliah [13] and subsequently, Babai
and Chakraborty [6] studied the non-tolerant property testing version of the hypergraph
isomorphism problem. Recently, the non-tolerant testing of GI has been considered in various
other models (like Goldreich [15] studied the problem for the bounded degree graph model of
property testing and Levi and Medina [17] considered the problem in the distributed setting).
However, the tolerant version of the problem remains elusive and it is surprising that the
tolerant version of a fundamental problem like graph isomorphism (in query model) is not
addressed in the literature, though the non-tolerant version of GI testing problem has been
resolved more than a decade ago in [13] (when one graph is unknown). On a different note,
there are also studies of non-tolerant version of graph isomorphism testing in the literature
when both the graphs are unknown [13, 19]. We will not discuss much about that case as
the main focus of this paper is different.

Before proceeding further, we want to note that there is a simple algorithm with query
complexity Õ(n) for tolerant testing of graph isomorphism (when one of the graphs is known
in advance). Basically, one goes over all possible n! bijections ϕ : Vu → Vk and estimates the
distance between Gu and Gk with respect to the permutation. The samples may be reused5,
and hence we have the following observation.

▶ Observation 1.2. Given a known graph Gk and an unknown graph Gu and any approxim-
ation parameter ζ ∈ (0, 1), there is a query algorithm that makes Õ (n) queries and outputs
a number α such that, with probability at least 2/3, the following holds:

δGI(Gu, Gk) − ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

But obtaining a lower bound matching (at least up to a polylog factor) the upper bound of
Observation 1.2 is not at all obvious. This paper’s main contribution is to show an equivalence
between tolerant testing of graph isomorphism and tolerant EMD testing between multi-sets
(in the query setting).

2 As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far
respectively.

3 Gu and Gk denote the unknown and known graphs, respectively.
4 The correctness probability can be made any 1 − δ by incurring a multiplicative factor of O(log 1

δ) in
the query complexity.

5 If the samples are Θ(log(n!)), then the error probability can be bounded using the union bound.

APPROX/RANDOM 2021

34:4 Graph Isomorphism and EMD

Like many other property testing problems, the core difficulty in the testing of GI is
understanding certain properties of distributions. In the case of the non-tolerant version of
GI, it has been shown in [13] that the core problem is testing the variation distance between
two distributions. Their upper bound result can be restated as: if there is a property testing
algorithm, with query complexity q(n) for testing equivalence between two distributions,
on support size n 6, then GI can be tested using Õ(q(n)) queries, where the tilde hides a
polylogarithmic factor of n (number of vertices). And since the query complexity for testing
identity of distributions (from [8], [20], [1], [26]) is known to be O(

√
n

ϵ2), the query complexity
for non tolerant GI-testing is Õ(

√
n).

In the lower bound proof of [13], there is no direct reduction of the graph isomorphism
problem to the variation distance problem. But it is important to note that lower bound
proofs for both of these problems use the tightness of the birthday paradox. So, in some
sense, one can say that the heart of the non-tolerant testing of GI is in testing variation
distance between two distributions.

1.2 Earth Mover’s Distance (EMD)
Let H = {0, 1}n be a Hamming cube of dimension n, and p, q be two probability distributions
on H. The Earth Mover’s Distance between p and q is denoted by EMD(p, q) and defined
as the optimum solution to the following linear program:

Minimize
∑

i,j∈H

fijdH(i, j) Subject to
∑
j∈H

fij = p(i) ∀i ∈ H, and
∑
i∈H

fij = q(j) ∀j ∈ H.

A standard way to think of sampling from any probability distribution is to consider
it as a multi-set of elements with appropriate multiplicities, and samples are drawn with
replacement from that multi-set. While estimating EMD between two multi-sets, although
the most natural way to access the unknown multi-set is sampling with replacement, we
introduce the problem of tolerant EMD testing over multi-sets with the access of samples
without replacement.

▶ Definition 1.3 (EMD over multi-sets while sampling with and without replace-
ment). Let S1 and S2 denote two multi-sets, over n-dimensional Hamming cube H = {0, 1}n

such that |S1| = |S2| = n. Consider the two distributions p1 and p2 over the Hamming cube
H that are naturally defined by the sets S1 and S2 where for all x ∈ H probability of x in p1
(and p2) is the number of occurrences of x in S1 (and S2) divided by n. We then define the
EMD between the multi-sets S1 and S2 as

EMD(S1, S1) ≜ n · EMD(p1, p2).

The problem of estimating the EMD over multi-sets while sampling with (or without)
replacement means designing an algorithm, that given any two constants β1, β2 such that
0 ≤ β1 < β2 ≤ 1, a known multi-set Sk and access to the unknown multi-set Su by sampling
with (or without) replacement, decides whether EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥
β2n

2 with probability at least 2/3. Note that estimating the EMD over multi-sets while
sampling with replacement is exactly same as estimating EMD between the distributions pu

and pk with samples drawn according to pu.

6 Testing identity between two distributions means to test if the unknown distribution (from where the
samples are drawn) is identical to the known distribution or if the variation distance between them
more than ϵ.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:5

We will denote by QWREMD(n, β1, β2) (and QWoREMD(n, β1, β2)) the number of
samples with (or without) replacement required to decide the above from the unknown
multi-set Su. For ease of presentation, we will write QWoREMD(n) (QWREMD(n))
instead of QWoREMD(n, β1, β2) (QWREMD(n, β1, β2)) when the proximity parameters
are clear from the context.

Earth Mover’s Distance (EMD) is a fundamental metric over the space of distributions
supported on a fixed metric space. Estimating EMD between two distributions, up to a
multiplicative factor, has been extensively studied in mathematics and computer science. It
is closely related to the embedding of the EMD metric into a ℓ1 metric. Even the problem
of estimation of EMD between distributions up to an additive factor has been well studied,
for reference see [12], [23]. The hardness of estimating EMD between distributions depends
heavily on the structure of the domain on which the distributions are supported. In [12],
the authors have proved a lower bound of Ω((∆/ϵ)d) on the query complexity for estimating
(up to an additive error of ϵ) EMD between two distributions supported on the real cube
[0,∆]d. At the same time, it is not hard to see that if the support has certain structures,
estimating EMD may be easy. In this paper, we focus on the estimation of EMD between
two distribution when the metric space is the Hamming cube.

As noted earlier, sample access to a probability distribution is precisely the same as
uniform sampling from a multi-set with replacement. Thus, from the results of Valiant
and Valiant [25], it can be shown that the sample complexity for estimating the EMD
between two distribution over the Hamming cube of dimension n is Ω(n/ log n). In other
words, QWREMD(n) = Ω(n/ log n), and this is tight ignoring polynomial factor in log n
(See Theorem B.10 of Appendix B). But what about QWoREMD(n)? To the best of our
knowledge, the sample complexity measure when the distributions are accessed by sampling a
multi-set without replacement has never been studied before (for testing/estimating distances
between distributions/multi-sets). However, it is interesting to note that, sampling without
replacement model has been considered before in a different context by Raskhodnikova, Ron,
Shpilka and Smith [22] for proving a lower bound of distinct elements problem. Also, recently
Goldreich [15] considered a similar sampling without replacement model while studying the
non-tolerant graph isomorphism in the bounded degree model.

Coming back to our context, it can be proven that: if QWoREMD(n) = o(
√
n), then

QWREMD(n) = o(
√
n) (See Proposition B.7 of Appendix B). As QWREMD(n) = Ω(n

log n),
we have a lower bound of Ω(

√
n) on QWoREMD(n). To the best of our knowledge, there

is no known better lower bound than Ω(
√
n) for QWoREMD(n), although a lower bound

of Ω(n
log n) exists for QWREMD(n) (using observation in [12]). We verified that the proof

of [27] also goes through for QWoREMD(n) as well (See Theorem 1.5). We now present
the following conjecture:

▶ Conjecture 1. There exist two constants β1 and β2 with 0 < β1 < β2 < 1 such that in
order to decide whether EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥ β2n
2, with probability at

least 2/3, Ω
(

n
poly(log n)

)
samples without replacement from the unknown multi-set Su are

necessary.

One of our main contributions in this paper is introducing this complexity measure of
QWoREMD(n) as well as the above conjecture. In the rest of the paper, we focus on
exploring the connection between QWoREMD(n) and the query complexity of tolerant
GI-testing. For a formal discussion on EMD over Hamming cube, please refer to Appendix B.

APPROX/RANDOM 2021

34:6 Graph Isomorphism and EMD

1.3 Our Results
Our main result of this paper is that we prove estimating GI-distance is as hard as tolerant
EMD testing over multi-sets with the access of samples without replacement over the
unknown multi-set Su, ignoring polynomial factors of log n.

▶ Theorem 1.4 (Main Result). Let Gk and Gu denote the known and the unknown graphs
on n vertices, respectively, and QGI(Gu, Gk) denotes the number of adjacency queries to
Gu, required by the best algorithm that takes two constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and
decides whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥ γ2n
2 with probability at least 2/3. Then

QGI(Gu, Gk) = Θ̃
(
QWoREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1
and log n.

1.3.1 Implication of Theorem 1.4 to Query Complexity of Tolerant GI
It is interesting to note that our lower bound proof is via a pure reduction from tolerant
graph isomorphism to tolerant testing of EMD of multi-sets over the Hamming cube using
samples without replacement. Thus our reductions also hold for other computational models
such as the communication complexity model. Regarding the lower bound on the sample
complexity of tolerant EMD testing of multi-sets (in the with replacement model), using
observation in [12], we note that the tolerant EMD testing is as hard as tolerant testing of
variation distance. In [27], they gave a lower bound of Ω(n1−o(1)) on the sample complexity
for tolerant ℓ1 testing. Although the proof of [27] uses samples with replacement (when we
think of a distribution as a multi-set), it can be verified that the proof also works for samples
without replacement.

▶ Theorem 1.5 (Follows from [27]). For any constants 0 < α < β < 1, distinguishing between
distribution pairs with statistical distance less than α from those with distance greater than β

requires n1−o(1) samples without replacement.

From Theorem 1.5, a similar lower bound follows for tolerant EMD testing of multi-sets
without replacement. Thus, from Theorem 1.4, we have the following corollary:

▶ Corollary 1.6. Let Gk and Gu be the known and unknown graphs on n vertices, respectively.
For any constants 0 < γ1 < γ2 < 1, distinguishing between isomorphism distance of
d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 requires n1−o(1) queries to the adjacency matrix

of Gu. On the other hand, for any constants 0 < γ1 < γ2 < 1, distinguishing between
isomorphism distance of d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 can be done in Õ(n)

queries.

The lower bound of [27] was later improved to Ω(n
log n) in [25]. However, the arguments

of [25] are much more delicate and it is not completely clear to us whether their result of
Ω(n

log n) can be carried over to the without replacement setting, even if we allow a loss of
polylogarithmic factor. So, we propose the following conjecture:

▶ Conjecture 2. Let Gk and Gu be the known and unknown graphs on n vertices, respectively.
For any constants 0 < γ1 < γ2 < 1, distinguishing between isomorphism distance of
d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 requires Ω(n

log n) queries to the adjacency matrix
of Gu.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:7

Note that Conjecture 1 and Conjecture 2 are equivalent. Besides, the difference between
sampling with and without replacement is much more subtle. Freedman [14] has shown
the difference when we sample elements with replacement from a set and that without
replacement from the same set. However, when the number of samples is o(

√
n), the

distribution of answers to the queries when samples are drawn with replacement is very
close (in ℓ1 distance) to the distribution of answers to the queries when samples are drawn
without replacement. Thus, following Proposition B.7 along with Theorem 1.4, we can get
an alternative proof of the following lower bound proved by Fischer and Matsliah [13].

▶ Corollary 1.7 (Fischer and Matsliah [13]). There exists a constant ζ ∈ (0, 1) such that
any query algorithm that decides, with probability at least 2/3, if a known graph Gk and an
unknown graph Gu is isomorphic or γ-far from isomorphic, with γ ≤ ζ, must make Ω(

√
n)

queries.

1.3.2 Implication of Theorem 1.4 to Communication Complexity of
Tolerant GI

One of the central models of computation (particularly in the context of theoretical computer
science) is the 2-player communication game introduced by Yao [28] in 1979. Communication
complexity is one of the most studied complexity measures and has wide-ranging applications
in many different areas of computer science. But surprisingly, as far as we know, the
communication complexity problem of GI (where Alice has graph Ga and Bob has graph Gb,
and they want to decide if Ga and Gb are isomorphic) has never been studied. One of the
main reasons may be that, in the communication setup, the standard GI problem reduces to
the string equality checking problem, and hence GI in the (randomized) communication setup
is not that interesting anymore, since the randomized communication complexity, trivially,
becomes O(1) (see the full version for the proof).

But when it comes to tolerant GI testing, the communication version is not at all obvious.
So, if Alice and Bob are given two graphs Ga and Gb respectively, what is the (randomized)
communication complexity for checking if d(Ga, Gb) ≤ γ1n

2 or d(Ga, Gb) ≥ γ2n
2? While

we don’t have a complete answer to this question yet, the following theorem holds from
Theorem 1.2:

▶ Theorem 1.8 (Informally stated). If Alice and Bob are given two graphs Ga and Gb with n
vertices respectively and the (randomized) communication complexity for checking if the graphs
are γ1-close or γ2-far is c(n, γ1, γ2) then the following holds: There exists an absolute constant
C such that if Alice and Bob are given two n-grained distributions 7 over the Cn-dimension
Hamming cube, then the (randomized) communication complexity of checking if the Earth
Mover’s Distance between the distributions is at most β1n or at least β2n is Θ̃ (c(n, γ′

1, γ
′
2)),

where γ′
1 and γ′

2 are constants that depend only on β1 and β2, and Θ̃ (·) hides multiplicative
factor of poly (log n).

Theorem 1.8 says that the communication complexity of solving tolerant graph isomorph-
ism and tolerant EMD testing are essentially the same, ignoring the polylog factor. Note
that in the case of the communication setting, the distinction between with replacement
and without replacement is not present. Also, it is important to point out that the lower
bounds on tolerant EMD in the sampling model ([27] and [25]) does not give a lower bound

7 The probability of each element in the sample space is an integer multiple of 1
n .

APPROX/RANDOM 2021

34:8 Graph Isomorphism and EMD

in the communication setting. Though the tolerant graph isomorphism problem has not been
addressed at all in the literature of communication complexity, EMD (for different metric
spaces) has been considered in communication, streaming, and sketching models [16, 3, 2, 4].
However, the EMD problem that we have considered in this paper is different from those
considered in the literature, and we believe that it will be of independent interest.

We also observe that the deterministic communication complexity of graph isomorphism
is Ω(n2) even for the non-tolerant setting.

▶ Theorem 1.9. Deterministic communication complexity of non-tolerant version of Graph
Isomorphism testing (hence the tolerant version) is Θ(n2).

The proof of the above theorem is present in the full version of the paper [10].

Organization of the paper. In Section 2, we discuss the proof techniques of our main
results. We prove the lower bound part (tolerant graph isomorphism is as hard as tolerant
EMD testing) and upper bound part (tolerant EMD testing is as hard as tolerant graph
isomorphism) of Theorem 1.4 in Sections 3 and 4 respectively. We finally conclude in Section
5. For space constraint, we could not add all possible proofs. Please see [10] for the full
version of the paper.

Notations. All graphs considered here are undirected, unweighted, and have no self-loops
or parallel edges. For a graph G(V,E), V (G) and E(G) will denote the vertex set and the
edge set of G, respectively. Since we are considering undirected graphs, we write an edge
(u, v) ∈ E(G) as {u, v}. The Hamming distance between two points x and y in a Hamming
cube {0, 1}k will be denoted by dH(x, y).

2 Discussion on our proof of Theorem 1.4

2.1 Reduction from tolerant EMD testing to tolerant graph
isomorphism testing (Lower bound part of Theorem 1.4)

In this reduction, we crucially use the fact that the multi-sets are composed of elements from
the Hamming cube. The reduction is based upon an involved gadget construction. In fact,
we prove the lower bound for a slightly more powerful query model rather than the standard
adjacency matrix query model. The most interesting part of our lower bound proof is that
thanks to our reduction, we get to observe the importance of the model of accessing the
multi-set without replacement in the context of EMD testing.

Now, we discuss the overview of our reduction. Let Sk and Su denote the known and the
unknown multi-sets, over a Hamming cube {0, 1}d (of dimension d) with d = Θ(n), having n
elements each. To start with, let us assume that we know both Sk and Su. We will construct
two graphs Gk and Gu on d+ n vertices as follows:

The vertex set of Gk (and Gu) are partitioned into two sets Ak and Bk (and Au and Bu)
with |Ak| = |Au| = n and |Bk| = |Bu| = d.
The graph induced by Ak is a clique, and similarly the graph induced by Au is a clique.
The graphs induced by Bk and Bu are copies of a special graph with certain nice
properties which enable our reduction to work. The existence of such a graph is proved
(in Lemma 3.3) using a probabilistic argument.
Finally, for the cross edges between Ak and Bk (and Au and Bu), we have: there is an
edge between the i-th vertex of Ak (or Au) and the j-th vertex of Bk (or Bu) if and only
if the j-th coordinate of the i-th element of Sk (or Su) is 1.
Finally, a random permutation π is applied to the vertices of Gu.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:9

The permutation π is not known to the GI-tester. Note that we can construct Gk explicitly
as Sk is known. However, that is not the same with Gu as Su is unknown. But since we know
the permutation π, any query to the adjacency matrix of the graph Gu can be answered by a
single query to one bit of Su. But unfortunately we don’t have query access to Su, and only
have sample access to Su. To deal with this problem, it is easier to consider a slightly more
powerful query. Say, the GI-tester wants to query the (i, j)-th bit of the graph Gu. Of course,
if both i and j are in Au or both are in Bu, we can answer without even sampling from Su.
But if i is in Au and j is in Bu, then what we intend to do is to give the whole neighborhood
of i in Bu as the answer to the query. This would be like neighbourhood query in a bipartite
graph. But the question remains: how do we intend to answer the query by sampling. The
key observation here is that since the GI-tester does not know the permutation π that was
applied to the vertices in Gu, to its eye, all the vertices that have not been touched so far
look same. So, every time it queries for (i, j), where i ∈ Au and j ∈ Bu, either of the two
cases can happen:

Either, previously a query of the form (i, j1) was asked where j1 is also in Bu, but in that
case, it must have already got the answer of (i, j) as we must have given all the neighbors
of i in Bu. So in that case, we can give back the same answer without sampling.

Or, previously i did not participate in any query of the form (i, j1) where j1 is in Bu. In
this case, to the GI-tester’s eye, i is just a new vertex from Au. We can then sample
without replacement from Su and whatever sample of the multi-set we have, we can
assume that it is the element i and answer accordingly. Note that this is the exact place
where sampling without replacement is crucial.

To complete our proof, we need to prove how the GI-distance between Gk and Gu is
connected to the EMD between Sk and Su. Consider the set Φ of all Special bijections
from V (Gk) to V (Gu) that maps Ak into Au and Bk into Bu such that the i-th vertex of
Bk is mapped to the i-th vertex of Bu. Observe that dΦ(Gk, Gu) = 2 ·EMD(Sk, Su), where
dΦ(Gk, Gu) = min

ϕ∈Φ
dϕ(Gk, Gu) (See [10], Lemma 3.5 for a formal proof). The factor 2 is

because of the way we define dϕ(Gk, Gu) (See Definition 1.1). This implies that tolerant
isomorphism testing between Gk and Gu is at least as hard as tolerant EMD testing between
Sk and Su if we restrict the bijection from V (Gk) to V (Gu) to be a Special bijection. The
reduction works for all possible bijections, because of the careful choice of the subgraph of
Gk (and Gu) induced by Bk (and Bu), thus ensuring d(Gk, Gu) is close to dΦ(Gk, Gu) (See
[10] Lemma 3.6 for a formal proof).

One might compare our proof technique to the lower bound proof of (non-tolerant) testing
of GI from [13]. In [13], Ω (

√
n) lower bound was proved directly (using Yao’s lemma) by

constructing two distributions of YES instances and NO instances - the construction of the
YES and NO instances were inspired from the tightness of the birthday paradox, which was
also the core idea behind the lower bound proof of the equivalence testing of two probability
distributions. But, there was no direct reduction from GI testing to equivalence testing of
two probability distributions. But in our lower bound proof, we establish a direct reduction
to estimating EMD of multi-sets on the Hamming cube with access to samples without
replacement. This can be of much importance, mainly while considering other models of
computation, like in the communication model. From our reduction, we can obtain an
alternative proof of Ω(

√
n) lower bound for the (non-tolerant) GI testing via the Ω(

√
n)

lower bound of the equivalence testing of distributions, as pointed out in Corollary 1.7.

APPROX/RANDOM 2021

34:10 Graph Isomorphism and EMD

2.2 Reduction from tolerant graph isomorphism to tolerant EMD
testing (Upper bound part of Theorem 1.4)

Given a known graph Gk and query access to an unknown graph Gu (both on n vertices),
we present an algorithm for tolerant testing of graph isomorphism between Gk and Gu by
using a tolerant EMD tester (for distributions over H) as a blackbox. Note that this will
prove the upper bound part of Theorem 1.4.

Algorithm for tolerant graph isomorphism using algorithm for tolerant EMD
testing as a black box:

Our testing algorithm is inspired by the algorithm of Fischer and Matsliah [13] for
non-tolerant GI testing. But our algorithm significantly differs from that of Fischer-Matsliah
in some crucial points. As we explain the high level picture of our algorithm, we will point
out some of the crucial differences.

We split our algorithm into three phases. In Phase 1, we first choose a O
(

1
γ2−γ1

)
size

collection of random subset of vertices, i.e, coresets Cu from the unknown graph Gu where
each Cu ∈ Cu is of size O(log n). Thereafter we find all embeddings of Cu inside the known
graph Gk. Let the embeddings be η1, η2, . . . , ηJ where Ci

k = ηi(Cu). Now each Cu (as well
as each Ci

k) defines a label distribution of the vertices of Gu (as well as Gk). Let us denote
the set of labels as XCu

(and YCi
k
). Now we test if the EMD between XCu

and YCi
k

is close
or far for each i ∈ [J] (See Claim 4.2). We keep only those (Cu, ηi) for Phase 2 such that
EMD(XCu

, YCi
k
) ≤

(
γ1 + γ2−γ1

2000
)
n |Cu|.

Although Phase 1 of our algorithm is similar to the algorithm of [13], there is a striking
difference. Since the authors of [13] were testing the non-tolerant version of graph isomorphism,
they were testing the identity of the label distributions of XCu

and YCi
k
. However, since we

are solving the tolerant version of the problem, we need to allow some error among the label
distributions. We need to pass only those placements of Cu that under good bijections do not
produce much error and testing of tolerant EMD fits exactly for this purpose. It is worth
noting that Fischer-Matsliah uses an equivalence tester in their algorithm to identify the
placements that do not produce “any” error. But, the proof of correctness of the algorithm
would not go through even if we use the tolerant testing of the equivalence of distributions.
The use of EMD in this phase is crucial for the proof of correctness of our algorithm to hold.

In Phase 2, we choose O
(

log2 n
(γ2−γ1)3

)
many vertices from the unknown graph Gu randomly

and call it W . We further find the labels of all the vertices of W under Cu-labelling by
querying the corresponding entries of Gu for each Cu that has passed Phase 1. Then we try
to match the vertices of W to the set of all possible labels {l1, l2, . . . , lt} of the vertices of
Gk under Ci

k-labelling where Ci
k = ηi(Cu), for those ηi that have passed Phase 1. Ideally, we

would like to find a mapping ψ : W → {l1, l2, . . . , lt} such that the total distance between
the labels of the matched vertices is not too large. If no such ψ is possible, we reject the
current embedding and try some other embedding that has passed Phase 1.

In Phase 3, we construct a random partial bijection ϕ̂ : W → V (Gk) that maps the
vertices of W to the vertices of Gk while preserving the labels according to ψ. We achieve this
by mapping each w ∈ W to one vertex of Gk randomly that has same label as determined
by ψ. Finally, we randomly pair the vertices of W and find the fraction of edge mismatches
between the paired up vertices of W and ϕ̂(W). If this fraction is at most 5γ1 + 3

5 (γ2 − γ1),
we accept and say that Gu and Gk are γ1-close. If there is no such embedding of any Cu ∈ Cu

that achieves this, we report that Gu and Gk are γ2-far.
The proofs of completeness and soundness follow kind of similar route as Fischer-Matsliah’s

proof but the arguments are way more complicated. Many things that were trivial or obvious

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:11

in the non-tolerant setting become major hurdles in the tolerant setting, and we overcome
them with significantly difficult technical arguments. The proofs are present in the full
version of the paper [10].

3 Tolerant graph isomorphism is as hard as tolerant EMD testing

In this section, we prove that it is necessary to perform Ω
(
QWoREMD(n)

)
many queries

to the adjacency matrix of Gu to solve (γ1, γ2)-tolerant GI testing of Gk and Gu.

▶ Theorem 3.1 (Restatement of the lower bound part of Theorem 1.4). Let Gk be the known
and Gu be the unknown graph on n vertices, where n ∈ N is sufficiently large. There exists a
constant ϵISO ∈ (0, 1) such that for any given constants γ1, γ2 with 0 < γ1 < γ2 < ϵISO, any
algorithm that decides whether the graphs are γ1-close or γ2-far, requires QWoREMD(n)
adjacency queries to the unknown graph Gu where QWoREMD is as defined in Definition 1.3.

In Section 2.1, we have discussed an overview of of our idea to prove the above theorem.
To prove Theorem 3.1, we show a reduction from tolerant GI testing to tolerant EMD testing
over multi-sets when we have samples without replacement from the unknown multi-set.

▶ Lemma 3.2. Suppose there is a constant ϵ0 ∈
(
0, 1

2
)

such that for all constants γ1, γ2
with 0 < γ1 < γ2 < ϵ0 and any constant T ∈ N, the following holds: There exists a (γ1, γ2)-
tolerant tester for GI that, given a known graph Gk and an unknown graph Gu with |V (Gu)| =
|V (Gk)| = (T + 1)n, can distinguish whether d(Gu, Gk) ≤ γ1Tn

2 or d(Gu, Gk) ≥ γ2Tn
2 by

performing Q adjacency queries to Gu.
Then, for any constants β1 and β2 with 0 < β1 < β2 <

ϵ0
2 , the following holds where

κ = β2−β1
8 and Tκ = ⌈ 30

κ(2−κ) ⌉. There is a tolerant tester for EMD such that, given a known
and an unknown multi-set Sk and Su respectively, of the Hamming cube {0, 1}Tκn with |Sk| =
|Su| = n, can distinguish whether EMD(Sk, Su) ≤ β1Tκn

2 or EMD(Sk, Su) ≥ β2Tκn
2 with

Q many samples without replacement from Su.

▶ Remark 1. Observe that Lemma 3.2 talks about tolerant EMD testing between multi-sets
with n elements over a Hamming cube of dimension Tκn. But Theorem 3.1 states the lower
bound of QWoREMD(n), that is, of tolerant EMD testing of multi-sets with n elements
over a Hamming cube of dimension n. However, the query complexity of EMD testing
increases with the dimension of the Hamming cube (See Proposition B.9). So, we will be
done with the proof of Theorem 3.1 by proving Lemma 3.2.

3.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 3.2
To define the necessary reduction for the proof of Lemma 3.2, we need to show the existence
of a graph Gp satisfying some unique properties.

▶ Lemma 3.3. Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = ⌈ 6s
κ(2−κ) ⌉ and

sufficiently large n ∈ N 8, there exists a graph Gp with Cκ,sn many vertices such that the
following conditions hold.

(i) The degree of each vertex in Gp is at least ((1 − κ)Cκ,s + 1)n− 1.
(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct)

vertices in Gp is at least sn− 2.

8 The lower bound of n is a constant that depends on κ and s.

APPROX/RANDOM 2021

34:12 Graph Isomorphism and EMD

The proof of Lemma 3.3 uses probabilistic method (See [10] for the proof). Let
ALG(γ1, γ2, T) be the algorithm that takes γ1 and γ2 with 0 < γ1 < γ2 < ϵ0 as input
and decides whether d(Gk, Gu) ≤ γ1Tn

2 or d(Gk, Gu) ≥ γ2Tn
2, where |V (Gk)| = |V (Gu)| =

(T + 1)n. Now we show that for any two constants β1 and β2 with 0 < β1 < β2 < ϵ0
2 ,

κ = β2−β1
8 and Tκ = ⌈ 6s

κ(2−κ) ⌉, there exists an algorithm A(β1, β2, κ, Tκ) that can test
whether two multi-sets Sk and Su over the Tκn-dimensional Hamming cube have EMD less
than Tκβ1n

2 or more than Tκβ2n
2 with Q many queries to the multi-set Su. To be specific,

algorithm A(β1, β2, κ, Tκ) for EMD testing will use algorithm ALG(γ1, γ2, T) for (γ1, γ2)-
tolerant GI such that γ1 = 2β1, γ2 = 2β2 − 2κ and T = Tκ. Note that, as 0 < β1 < β2 <

ϵ0
2

and κ = β2−β1
8 , 0 < γ1 < γ2 < ϵ0 holds. The details of the reduction, that is, algorithm A is

described below. Because of space constraint, we are not presenting the proof of correctness
of the reduction in this extended abstract. Please refer to our full version [10].

Description of the reduction

Input: A known multi-set Sk = {k1, . . . , kn} over HTκn = {0, 1}Tκn and query access to an
unknown multi-set Su = {u1, . . . , un} over HTκn.

Goal: To decide whether EMD(Sk, Su) ≤ Tκβ1n
2 or EMD(Sk, Su) ≥ Tκβ2n

2.
Construction of Gk and Gu from Sk and Su: Let us first construct the graph Gk from

Sk. Gk has (Tκ + 1)n vertices partitioned into two parts Ak = {a1, . . . , an} and Bk =
{b1, . . . , bTκn}. Now the edges of Gk are described as follows:
Gk[Ak] is a clique with n vertices.
Gk[Bk] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3 with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.
For the cross edges between the vertices in Ak and Bk, we add the edge (ai, bj) to
E(Gk) if and only if the j-th coordinate of ki is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that the graph Gk constructed above is unique for a given multi-set Sk. The graph
Gu with the vertex sets Au = {a′

1, . . . , a
′
n} and Bu = {b′

1, . . . , b
′
Tκn} is constructed from the

multi-set Su in a similar fashion, but at the end, the vertices of Au are permuted using a
random permutation. So,

Gu[Au] is a clique with n vertices.
Gu[Bu] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3, with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.
Let us first pick a random permutation π on [n]. For the cross edges between the vertices
in Au and Bu, we add the edge (a′

π(i), bj) to E(Gu) if and only if the j-th coordinate of
ui is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that our final objective is to prove a lower bound on the query complexity for
tolerant testing of GI, that is, when we have an adjacency query access to Gu. We will
instead show that the lower bound holds even if we have the following query access, named
as Au-neighborhood-query: the tester can choose a vertex a′

i ∈ Au and in one go obtain the
information about the entire neighborhood of a′

i in Bu.
Observe that the only part of Gu that is not known to the tester is the cross edges

between Au and Bu. So, in this case, the Au-neighborhood query is way more stronger than
the standard queries to Gu, and a lower bound for the Au-neighborhood query would imply
a lower bound on adjacency query.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:13

Simulating Queries to Gu by samples drawn from Su without replacement
Following the above discussion, we will only have to show how to simulate Au-neighborhood
queries using samples drawn from Su without replacement. So, we can assume that the
queries are of the form: what are the neighbors of a′

i in Bu? And since in each query the
entire neighborhood of a′

i is obtained, the tester would pick different a′
i for every query. Note

that in Gu, by construction, the vertices of Au were permuted using a random permutation.
So, from the point of view of the tester, the a′

i are just randomly drawn from Au minus the
set of a′

i already queried. In other word, the a′
i are just randomly drawn from Au without

replacement. Now because of the way the edges between Au and Bu are constructed, the
neighborhood of a random a′

i drawn from Au without replacement is same as obtaining
random samples from Su without replacement. It is also important to note that because of
the randomness, the queries made by the tester are actually non-adaptive.

Description of algorithm A for testing EMD(Sk, Su)
Run ALG on Gk and Gu with parameters γ1 = 2β1 and γ2 = 2β2 − 2κ. If ALG reports
d(Gk, Gu) ≤ Tκγ1n

2, output that EMD(Sk, Su) ≤ Tκβ1n
2. Similarly, if ALG reports that

d(Gk, Gu) ≥ Tκγ2n
2, then output EMD(Sk, Su) ≥ Tκβ2n

2.

4 Tolerant EMD testing is as hard as tolerant graph isomorphism
testing

In this section, we prove the following theorem, that discusses about algorithm for tolerant
graph isomorphism testing with a blackbox access to tolerant EMD testing over multi-sets.

▶ Theorem 4.1 (Restatement of the upper bound part of Theorem 1.4). Let Gk and Gu be the
known and unknown graphs, respectively. There exists an algorithm that takes parameters γ1
and γ2 as input such that 0 ≤ γ1 < γ2 ≤ 1, performs Õ

(
QWoREMD(n)

)
many queries to

the adjacency matrix of Gu for appropriate β1 and β2 depending on γ1 and γ2, and decides
whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥ γ2n
2, with probability at least 2/3. Here Õ(·)

hides a polynomial factor in 1
β2−β1

and log n.

▶ Remark 2. The theorem stated above works for any γ1, γ2 such that 0 ≤ γ1 < γ2 ≤ 1.
However, for simplicity of representation, we have assumed γ2 ≥ 11γ1.

▶ Remark 3. Note that Theorem 4.1 can also be stated in terms of QWREMD(n) as
QWoREMD(n) ≤ QWREMD(n) as we can simulate samples with replacement when we
have query access to samples without replacement (See Proposition B.5).

Our algorithm for tolerant GI testing, as stated in Theorem 4.1, uses a special kind of
tolerant EMD tester over multi-sets: we know t many multi-sets, one multi-set is unknown
and two parameters ϵ1 and ϵ2 are given; the objective is to test tolerant EMD of each known
multi-set with the unknown one. The following theorem gives us the special EMD tester.

▶ Theorem 4.2. Let H = {0, 1}n be a n-dimensional Hamming cube. Let {Si
k : i ∈ [t]}∪{Su}

denote the multi-sets with n elements from H where {Si
k : i ∈ [t]} denote the set of t many

known multi-sets and Su denotes the unknown multi-set. There exists an algorithm AlG-
EMD that takes two proximity parameters ϵ1, ϵ2 with 0 ≤ ϵ1 < ϵ2 ≤ 1 and a δ ∈ (0, 1) as
input and decides whether EMD(Su, S

i
k) ≤ ϵ1n

2 or EMD(Su, S
i
k) ≥ ϵ2n

2, with probability
at least 1 − δ, for each i ∈ [t]. Moreover, AlG-EMD uses QWoREMD(n) · O

(
log t

δ

)
many

samples without replacement from Su.

APPROX/RANDOM 2021

34:14 Graph Isomorphism and EMD

The above theorem follows from the definition of QWoREMD(n) (See Definition 1.3)
along with union bound and standard argument for amplifying the success probability.

▶ Remark 4. The algorithm of Theorem 4.1, to be discussed in Section 4.1, formulates
a tolerant EMD instance of multi-sets having n elements in H = {0, 1}d, where d =
O (log n/(γ2 − γ1)). But ALG-EMD is an algorithm for tolerant EMD testing between two
multi-sets having n elements in {0, 1}n. This is not a problem as the query complexity of
EMD is an increasing function in dimension (See Proposition B.9 in Appendix B). Moreover,
the algorithm in Section 4.1 calls ALG-EMD with parameters ϵ1 = (γ1 + γ2−γ1

2000), ϵ2 = γ2/5,
t = 2O(log2 n/(γ2−γ1)) and δ is a suitable constant depending upon γ1 and γ2, where γ1 and
γ2 are parameters as stated in Theorem 4.1. So, each call to ALG-EMD, in our context,
makes Õ

(
QWoREMD(n)

)
many queries.

4.1 Algorithm for tolerant graph isomorphism testing
For our algorithm, we need the following definitions of label and embedding.

▶ Definition 4.3. (Label of a vertex) Given a graph G and C ⊂ V (G) = {c1, . . . c|C|}, the
C-labelling of V (G) is a function LC : V (G) → {0, 1}|C| such that the i-th entry of LC(v)
is 1 if and only if v is a neighbor of ci ∈ C. Also, LC(v) is referred as the label of v under
C-labelling of V (G).

▶ Definition 4.4. (Embedding of a Vertex Set into another Vertex Set) Let Gu and Gk be
two graphs. Consider A ⊆ V (Gu) and B ⊆ V (Gk) such that |A| ≤ |B|. An injective mapping
η from A to B is referred as an embedding of A into B.

Now we present our query algorithm TolerantGI(Gu, Gk, γ1, γ2) that comprises three
phases. The technical overview of the algorithm is already presented in Section 2.2

Formal Description of TolerantGI(Gu, Gk, γ1, γ2):
The three phases of our algorithm are as follows:

4.1.1 Phase 1
The first phase of our algorithm consists of the following three steps.
Step 1 First we sample a collection Cu of O (log n) sized random subsets of V (Gu) with

|Cu| = O(1
γ2−γ1

). We perform Step 2 and Step 3 for each Cu ∈ Cu.
Step 2 We determine all possible embeddings, that is, η1, . . . , ηJ , of Cu into V (Gk), where

J =
(

n
O(log n)

)
≤ 2O(log2 n). For each i ∈ [J], let Ci

k be the set of images of Cu under the
i-th embedding of Cu into V (Gk), that is, Ci

k = ηi(Cu). For all i ∈ [J], we construct the
multi-set YCi

k
that contains Ci

k-labellings of all the vertices of Gk.
Step 3 Now for each vertex v ∈ V (Gu), there is a Cu-labelling of v. Let XCu

be the
multi-set of Cu-labellings of all the vertices in V (Gu). However, XCu is unknown to
the algorithm. We call ALG-EMD (as stated in Theorem 4.2) by setting parameters
as described in Remark 4 to decide whether EMD(XCu , YCi

k
) ≤ (γ1 + γ2−γ1

2000)n |Cu| or
EMD(XCu

, YCi
k
) ≥ γ2n |Cu| /5, for each i ∈ [J]. Let us pair up Cu’s and their accepted

embeddings into Gk and call the set Γ, that is,

Γ =
{

(Cu, ηi) | ALG-EMD decides EMD(XCu
, YCi

k
) ≤ (γ1 + γ2 − γ1

2000)n |Cu|
}
.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:15

4.1.2 Phase 2
In the second phase, the algorithm performs the following two steps.
Step 1 We sample a subset W of O(log2 n/(γ2 − γ1)3) vertices randomly from Gu.
Step 2 For each (Cu, ηi) ∈ Γ that has passed Phase 1, we perform the following steps:

(i) We find the Ci
k = ηi(Cu)-labelling of the vertices of Gk. Let l1, . . . , lt be the labels of

the vertices where t = 2|Ci
k| and Vj ⊆ V (Gk) be the set of vertices with label lj .

(ii) We define a matrix M of size |W | × 2|Ci
k| where each row represents the label of a

vertex w ∈ W and each column represents one of the possible Ci
k-labelling of V (Gk) 9.

The (i, j)-th entry of M is defined as: Mij = dH(LCu
(wi), lj).

(iii) We choose a function ψ : W → {l1, . . . lt} randomly satisfying∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W | and |{w : ψ(w) = lj}| ≤ |Vj | ∀ j ∈ [t]. (1)

Let ΓW be the set of tuples such that

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ and ψ satisfies Equation (1)} .

4.1.3 Phase 3
The third phase of our algorithm comprises the following four steps.
Step 1 We randomly pair up the vertices of W . Let {(a1, b1), . . . , (ap, bp)} be the pairs of

the vertices, where p = O(log2 n/(γ2 − γ1)3). We now determine which (ai, bi) pairs form
edges in Gu by querying the corresponding entries of the adjacency matrix of Gu.

Step 2 For each (Cu, ηi, ψ) ∈ ΓW that has passed Phase 2, we perform Step 3 and Step 4
as follows.

Step 3 We choose an embedding ϕ̂ : W → V (Gk) randomly, satisfying ϕ̂(w) ∈ Vj if and only
if ψ(w) = lj and modulo permutation of the vertices in Vj for all j ∈ [t]. In other words,
we map each w ∈ W to a vertex in Gk randomly having ψ(w) = lj as its Ci

k-labelling in
Gk.

Step 4 We find the fraction ζ(Cu, ηi, ψ, ϕ̂) =
∣∣{(ai, bi) : 1(ai,bi) = 1}

∣∣ /p, where 1(ai,bi) = 1
if exactly one among (ai, bi) ∈ E(Gu) and (ϕ̂(ai), ϕ̂(bi)) ∈ E(Gk) holds.
If ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 + 3

5 (γ2 − γ1), then HALT and REPORT that Gu and Gk are
γ1-close.

While executing Step 3 and Step 4 for each tuple in ΓW , if we did not HALT, then we
HALT now and REPORT that Gu and Gk are γ2-far.

5 Conclusion

In this paper, we proved that the query complexity of tolerant GI testing between a known
graph Gk and an unknown graph Gu is the same as (up to polylogarithmic factor) tolerant
testing of EMD between a known multi-set Sk and an unknown multi-set Su when we have

9 Let Cu =
{

x1, . . . , xO(log n/(γ2−γ1))
}

. Note that for each wi ∈ W , LCu
(wi) ∈ {0, 1}O(log n/(γ2−γ1))

such that the j-th coordinate is 1 if and only if wi is a neighbour of xj , where i ∈
[
O(log2 n/(γ2 − γ1)3)

]
and j ∈ [O (log n/(γ2 − γ1))]. Similarly, lj ∈ {0, 1}O(log n/(γ2−γ1)) such that the i-th coordinate of lj is
1 if and only if η(xi) is a neighbour of v ∈ Vj , where j ∈

[
2|Ci

k|
]
.

APPROX/RANDOM 2021

34:16 Graph Isomorphism and EMD

samples without replacement from Su. In Lemma B.10, we have shown that the sample
complexity of testing of EMD between a known multi-set Sk and an unknown multi-set
Su when we have samples with replacement from Su is Ω(n/ log n). Thus the natural open
question is

What is the query complexity of tolerant EMD testing when we have samples without
replacement from the unknown multi-set?

As mentioned before, it is interesting to note that our lower bound proof is via a pure
reduction from tolerant graph isomorphism to tolerant testing of EMD of multi-sets over
the Hamming cube using samples without replacement. Using our lower bound technique
(and Proposition B.7), we can get an alternative proof of Fischer and Matsliah’s lower bound
result for testing non-tolerant graph isomorphism [13]. Our upper bound proof is also a pure
reduction from tolerant testing of EMD of multi-sets over the Hamming cube to tolerant
graph isomorphism problem. Thus our reductions also hold for other computational models
such as the communication complexity model. So, in the communication model (that is, when
Alice and Bob have graphs Ga and Gb respectively and they want to estimate the GI-distance
between them), the amount of bits of communication is same (up to a polylogarithmic
factors) to the problem of estimating the EMD between two distributions over Hamming
cube, where Alice and Bob have access to one distribution each. The question we would like
to pose is:

What is the randomized communication complexity of testing tolerant
graph isomorphism problem?

Fischer and Matsliah [13] studied the non-tolerant version of the graph isomorphism
problem in two scenarios: (i) one graph is known and the other graph is unknown, (ii) both
the graphs are unknown. They resolved the query complexity of (i), whereas Onak and
Sun [19] resolved (ii). With this paper, we initiate the study of tolerant graph isomorphism
problem in the query and communication world. So, another natural open question to look
for is:

What is the query complexity of tolerant graph isomorphism
when both the graphs are unknown?

References
1 Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for

properties of distributions. arXiv preprint arXiv:1507.05952, 2015.
2 Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for

earth-mover distance, with applications. In 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, pages 324–330. IEEE, 2009.

3 Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In SODA, volume 8, pages 343–352, 2008.

4 Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and embedding are
equivalent for norms. SIAM Journal on Computing, 47(3):890–916, 2018.

5 László Babai. Graph Isomorphism in Quasipolynomial Time. In Proceedings of the 48th
Annual ACM symposium on Theory of Computing, STOC, pages 684–697, 2016.

6 Laszlo Babai and Sourav Chakraborty. Property Testing of Equivalence under a Permutation
Group Action. ACM Transactions on Computation Theory (ToCT), 2010.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:17

7 László Babai, Anuj Dawar, Pascal Schweitzer, and Jacobo Torán. The Graph Isomorphism
Problem (Dagstuhl Seminar 15511). Dagstuhl Reports, 5(12):1–17, 2015. doi:10.4230/DagRep.
5.12.1.

8 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing Random Variables for Independence and Identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, FOCS, pages 442–451, 2001.

9 Clément L Canonne. A survey on distribution testing: Your data is big. but is it blue? Theory
of Computing, pages 1–100, 2020.

10 Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen. Interplay between
graph isomorphism and earth mover’s distance in the query and communication worlds. In
Electron. Colloquium Comput. Complex., volume 27, page 135, 2020.

11 Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer Science
& Business Media, 2012.

12 Khanh Do Ba, Huy L Nguyen, Huy N Nguyen, and Ronitt Rubinfeld. Sublinear time algorithms
for earth mover’s distance. Theory of Computing Systems, 48(2):428–442, 2011.

13 Eldar Fischer and Arie Matsliah. Testing Graph Isomorphism. SIAM Journal on Computing,
38(1):207–225, 2008.

14 David Freedman. A remark on the difference between sampling with and without replacement.
Journal of the American Statistical Association, 72(359):681–681, 1977.

15 Oded Goldreich. Testing isomorphism in the bounded-degree graph model. Electron. Colloquium
Comput. Complex., 26:102, 2019. URL: https://eccc.weizmann.ac.il/report/2019/102.

16 Subhash Khot and Assaf Naor. Nonembeddability theorems via fourier analysis. Mathematische
Annalen, 334(4):821–852, 2006.

17 Reut Levi and Moti Medina. Distributed testing of graph isomorphism in the congest model.
arXiv preprint arXiv:2003.00468, 2020.

18 Chih-Long Lin. Hardness of Approximating Graph Transformation Problem. In Proceedings
of the 5th International Symposium on Algorithms and Computation, ISAAC,, pages 74–82,
1994.

19 Krzysztof Onak and Xiaorui Sun. The Query Complexity of Graph Isomorphism: Bypassing
Distribution Testing Lower Bounds. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 165–171, 2018.

20 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

21 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

22 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

23 Shashank Singh and Barnabás Póczos. Minimax distribution estimation in wasserstein distance.
arXiv preprint arXiv:1802.08855, 2018.

24 Xiaorui Sun. On the Isomorphism Testing of Graphs. PhD thesis, Columbia University, 2016.
25 Gregory Valiant and Paul Valiant. The Power of Linear Estimators. In Proceedings of the

52nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 403–412,
2011.

26 Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. SIAM Journal on Computing, 46(1):429–455, 2017.

27 Paul Valiant. Testing Symmetric Properties of Distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

28 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium on

APPROX/RANDOM 2021

https://doi.org/10.4230/DagRep.5.12.1
https://doi.org/10.4230/DagRep.5.12.1
https://eccc.weizmann.ac.il/report/2019/102

34:18 Graph Isomorphism and EMD

Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213. ACM,
1979. doi:10.1145/800135.804414.

A Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel
edges. For a graph G(V,E), V (G) and E(G) will denote the vertex set and the edge set of
G, respectively. Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G)
as {u, v}. The Hamming distance between two points x and y in a Hamming cube {0, 1}k

will be denoted by dH(x, y).

A.1 Notion of distance between two graphs

First let us define the notion of Decider of a vertex and then the notion of distance
between two graphs, using decider of vertices, that is conceptually same as that of Graph
Isomorphism Distance defined in Definition 1.1.

▶ Definition A.1. (Decider of a vertex) Given two graphs Gk and Gu and a bijection
ϕ : V (Gu) → V (Gk), Decider of a vertex x ∈ V (Gu) with respect to ϕ is defined as the set
of vertices of Gu that create the edge difference in x and ϕ(x)’s neighbourhood in Gu and
Gk, respectively. Formally,

Deciderϕ(x) := {y ∈ V (Gu) : one of the edges {x, y} and {ϕ(x), ϕ(y)} is not present}

▶ Definition A.2. (Distance between two graphs) Let Gu and Gk be two graphs and
ϕ : V (Gu) → V (Gk) be a bijection from the vertex set of Gu to that of Gk. The distance
between Gu and Gk under ϕ is defined as the sum of the sizes of the deciders of all the
vertices in Gu, that is,

dϕ(Gu, Gk) :=
∑

x∈V (Gu)

|Deciderϕ(x)| .

The distance between two graphs Gu and Gk is the minimum distance under all possible
bijections ϕ from V (Gu) to V (Gk), that is, d(Gu, Gk) := min

ϕ
dϕ(Gu, Gk).

▶ Remark 5. Recall the definition of δGI(Gu, Gk), Graph Isomorphism Distance between
Gu and Gk, that is given in Definition 1.1. Observe that d(Gu, Gk) = 2

(
n
2
)
δGI(Gu, Gk).

Though, d(Gu, Gk) and δGI(Gu, Gk) represent the same thing, conceptually, we will do our
calculations by using d(Gu, Gk) for simplicity of presentation.

Next we define the concept of closeness between two graphs.

▶ Definition A.3. (Close and far) For γ ∈ [0, 1), two graphs Gu and Gk with n vertices
are γ-close to isomorphic if d(Gu, Gk) ≤ γn2. Otherwise, we say Gu and Gk are γ-far from
being isomorphic. 10

10 By abuse of notation, we will say Gu and Gk are γ-far when d(Gu, Gk) ≥ γn2.

https://doi.org/10.1145/800135.804414

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:19

A.2 Property Testing of Distribution Properties
Understanding different properties of probability distributions have been an active area of
research in property testing (For reference, see [9]). The authors studied these problems
assuming random sample access from the unknown distributions. Considering the relation
between the distributions and their corresponding representative multi-sets, we can say that
all these results hold for multi-sets along with access over sampling with replacement.

Although it seems that the change of query model from sample with replacement to sample
without replacement does not make much difference, following the work of Freedman [14],
we know that the variation distance between probability distributions when accessed via
samples with and without replacement, becomes arbitrary close to 1/2 when the number
of samples is Ω(

√
n). Because of this reason, many techniques developed for sampling with

replacement for various problems no longer work anymore. Most importantly, proving any
lower bound better than Ω(

√
n) is often nontrivial.

B Earth Mover’s Distance (EMD) over Hamming Cube

In this section, we study some properties of Earth Mover’s distance (EMD) over probability
distributions and multi-sets, which are crucial in the context of both our lower and upper
bound. Before proceeding to the discussion on EMD, let us first recall the definition of ℓ1
distance between two distributions.

▶ Definition B.1 (ℓ1 distance between two distributions). Let p and q be two probability
distributions over [n]. The ℓ1 distance between p and q is defined as

dl1(p, q) =
n∑

i=1
|p(i) − q(i)|

▶ Definition B.2 (EMD between two probability distributions). Let H = {0, 1}d be a Hamming
cube of dimension d, and p, q be two probability distributions on H. The EMD between p

and q is denoted by EMD(p, q) and defined as the optimum solution to the following linear
program:

Minimize
∑

x,y∈H

fxydH(x, y)

Subject to
∑
y∈H

fxy = p(x) ∀x ∈ H, and
∑
x∈H

fxy = q(y) ∀y ∈ H.

Now we define EMD between two multi-sets.

▶ Definition B.3 (EMD between two multi-sets). Let S1, S2 be two multi-sets on a Hamming
cube H = {0, 1}d of dimension d with |S1| = |S2|. The EMD between S1 and S2 is denoted
by EMD(S1, S2) and defined as EMD(S1, S2) = min

ϕ:S1→S2

∑
x∈S1

dH(x, ϕ(x)) where ϕ is a

bijection from S1 to S2.

Note that an unknown distribution p is accessed by taking samples from p. However, a
multi-set is accessed as follows:

▶ Definition B.4 (Query accesses to multi-sets). A multi-set S of n elements is accessed in
one of the following ways:

APPROX/RANDOM 2021

34:20 Graph Isomorphism and EMD

Sample Access with replacement: Each element of S is reported uniformly at random
independent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where Q ≤ n.
The answer to the first query, say s1, is an element from S chosen uniformly at random.
For any 2 ≤ i ≤ Q, the answer of the i-th query is an element chosen uniformly at random
from S \ {s1, . . . , si−1}. Here sj , 1 ≤ j ≤ Q, denotes the answer to the j-th query.

Although sampling with replacement is more natural query model, we need sampling without
replacement for our lower bound proof. We now note that we can simulate samples with
replacement when we have samples without replacement.

▶ Proposition B.5 (Simulating samples with replacement from samples without replacement).
Given Q many samples without replacement from an unknown multi-set Su with n elements,
we can simulate Q many samples with replacement from Su where Q ≤ n.

For a formal proof of the above proposition, see [10]. The following observation connects
the EMD between two probability distributions with that of between two multi-sets.

▶ Observation B.6. Let p, q be two K-grained probability distributions 11 on a n dimensional
Hamming cubeH = {0, 1}n. Then p and q induces two multi-sets S1 and S2 onH , respectively,
as follows. S1 (S2) is the multi-set containing x ∈ H with multiplicity p(x)K (q(x)K) for
each x ∈ H. Moreover, EMD(p, q) = EMD(S1,S2)

K .

See [10] for a formal proof.

▶ Remark 6. Note that sample access from a probability distribution is exactly same as
uniform sampling from a multi-set with replacement.

▶ Proposition B.7. Let D be the set of all multi-sets of size n over a universe [m]; let Sk

and Su in D denote the known and unknown multi-sets over [n]; and Prop : D × D → {0, 1}
be a boolean function. Then the following holds:

If there exists an algorithm that determines Prop by Q many samples without replace-
ment from Su with probability at least 2/3, then there exists an algorithm that determines
Prop by min{Q,

√
min{n,m}} many samples with replacement from Su with probability at

least 2/3 − o(1).

This follows from the fact that when Q = o(
√
n) and DW R (DW oR) be the probability

distribution over all the subsets having Q elements from [n] with (without) replacement,
the ℓ1 distance between DW R and DW oR is o(1).

▶ Definition B.8 (EMD over multi-sets while sampling with and without replacement). Let
Sk and Su denote the known and the unknown multi-sets, respectively, over n-dimensional
Hamming cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the two distributions pu

and pk over the Hamming cube H that are naturally defined by the sets Su and Sk where
for all x ∈ H probability of x in pu (and pk) is the number of occurrences of x in Su (and
Sk) divided by n. We then define the EMD between the multi-sets Su and Sk as

EMD(Su, Sk) ≜ n · EMD(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or without)
replacement means designing an algorithm, that given any two constants β1, β2 such that
0 ≤ β1 < β2 ≤ 1, and access to the unknown set Su by sampling with (or without)

11 The probability of each element in the sample space is an integer multiple of 1
K .

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:21

replacement decides whether EMD(Sk, Su) ≤ β1n
2 or EMD(Sk, Su) ≥ β2n

2 with probability
at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly
same as estimating EMD between the distributions pu and pk with samples drawn according
to pu.

Let QWREMD(n, d, β1, β2) (and QWoREMD(n, d, β1, β2)) denote the number of
samples with (and without) replacement required to decide the above from the unknown
multi-set Su. For ease of presentation, we write QWoREMD(n, d) (QWREMD(n, d))
instead of QWoREMD(n, d) (QWREMD(n, β1, β2)) when the proximity parameters are
clear from the context.

▶ Proposition B.9 (Query complexity of EMD increases with number of points as well as
dimension). Let n, n1, n2, d, d1, d2 ∈ N be such that d1 ≤ d2 and n1 ≤ n2. Then

(i) QWREMD(n1, d) ≤ QWREMD(n2, d);
(ii) QWoREMD(n1, d) ≤ QWoREMD(n2, d);
(iii) QWREMD(n, d1) ≤ QWREMD(n, d2); and
(iv) QWoREMD(n, d1) ≤ QWoREMD(n, d2).

▶ Remark 7. For d = n (as considered in Definition 1.3), QWoREMD(n, d) (and
QWREMD(n, d)) are denoted as QWoREMD(n) (and QWREMD(n)).

Now let us state the lower bound of QWREMD(n).

▶ Theorem B.10. QWREMD(n) = Ω(n
log n).

Thus following Proposition B.7, we have

▶ Theorem B.11. QWoREMD(n) = Ω(
√
n).

Note that an upper bound of QWoREMD(n) = Õ(n) is trivial. In the rest of the section,
we focus on proving Theorem B.10 that states the lower bound on QWREMD(n). We also
provide an upper bound for QWREMD(n) at Lemma B.16 that shows that Õ(n) many
samples with replacement from Su to estimate QWREMD(n). Note that by Remark 6, it
is enough to show the following lemma that states the lower bound for tolerant EMD testing
between two distributions.

▶ Lemma B.12. Let S be a subset of a Hamming cube H = {0, 1}n such that the minimum
distance between any pair of points in S is at least n

2 . Also, let p and q be two known
and unknown distributions, respectively, supported over a subset of S. Then there exists a
constant ϵEMD such that the following holds. Given two constants β1, β2 with 0 < β1 <

β2 < ϵEMD(c), Ω
(

n
log n

)
samples from the distribution q are necessary in order to decide

whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n. More over, ϵEMD = 1−ϵℓ1
4 , where ϵℓ1 is

the constant that is mentioned in Theorem B.14.

To prove the above lower bound, let us first consider the following lower bound for tolerant
ℓ1 testing between two probability distributions.

▶ Theorem B.13 (Valiant and Valiant [25]). Let p and q be two known and unknown probability
distributions respectively over [n]. There is an absolute constant ϵ such that in order to decide
whether ∥p − q∥1 ≤ ϵ or ∥p − q∥1 ≥ 1 − ϵ, Ω(n

log n) samples, from the distribution q, are
necessary. 12

12 Note that this is rephrasing of the result proved in [25]. For reference, see Chapter 5 of the survey by
Canonne [9].

APPROX/RANDOM 2021

34:22 Graph Isomorphism and EMD

Now, we restate the above result for our purpose.

▶ Theorem B.14. Let p and q be two known and unknown probability distributions, having
support size n, over a Hamming cube H = {0, 1}n. There is an absolute constant ϵℓ1 such
that in order to decide whether ∥p− q∥1 ≤ α1 or ∥p− q∥1 ≥ α2 with 0 < α1 < α2 ≤ 1 − ϵℓ1 ,
Ω(n

log n) samples, from the distribution q, are necessary.

As noted earlier, we will prove Theorem B.10 by using Lemma B.14. However, The-
orem B.10 is regarding EMD between two distributions whereas Lemma B.14 is regarding ℓ1
distance between two distributions. The following observation (from [12]) gives a connection
between EMD between two distributions with the ℓ1 distance between them, which will be
required in lower bound proof.

▶ Proposition B.15 ([12]). Let (M,D) be a finite metric space and p and q be two probability
distributions on M . Minimum distance between any two points of M is ∆min and diameter
of M is ∆max. Then the following condition holds:

∥p− q∥1∆min

2 ≤ EMD(p, q) ≤ ∥p− q∥1∆max

2 .

Note that the above proposition gives interesting result when ∆max
∆min

is bounded by a constant.
Note that S ⊂ {0, 1}n satisfies ∆max

∆min
≤ 2.

Proof of Lemma B.12. In S ⊂ H = {0, 1}n, the pairwise Hamming distance between any
two elements in S is at least n

2 , to have ∆max
∆min

≤ 2 in our context. It is well known that
|S| = Ω(n). We will show that if there exists an algorithm A that decides EMD(p, q) ≤ β1n

or EMD(p, q) ≥ β2n by using t samples from q, then there exists an algorithm P that
decides whether ∥p− q∥1 ≤ α1 or ∥p− q∥1 ≥ α2 by using t samples from q, where α1 = 2β1
and α2 = 4β2. Note that we have 0 < β1 < β2 <

1−ϵℓ1
4 . So, 0 < α1 < α2 < 1 − ϵℓ1 , which

satisfies the requirement of Theorem B.14.

Algorithm P:

(1) First run algorithm A.
(2) If the output of algorithm A is EMD(p, q) ≤ β1n, algorithm P returns ∥p− q∥1 ≤ α1.
(3) If the output of algorithm A is EMD(p, q) ≥ β2n, algorithm P returns ∥p− q∥1 ≥ α2.

To complete the proof, we only need to show that P gives desired output with probability
at least 2/3. The result then follows from Theorem B.14.

Let us first consider the case ∥p− q∥1 ≤ α1. Then by Observation B.15, we can say that
EMD(p, q) ≤ α1n

2 = β1n. Therefore algorithm A will output that EMD(p, q) ≤ β1n. This
implies that the algorithm P will output ∥p− q∥1 ≤ α1.

Now, let us consider the case ∥p − q∥1 ≥ α2. Using the fact that any pair elements in
S ⊂ H is at least n

2 along with Observation B.15, we get EMD(p, q) ≥ α2n
4 = β2n. This

implies P will output ∥p− q∥1 ≥ α2. ◀

Till now, we were discussing the proof of Lemma B.12 that states QWREMD(n) =
Ω(n

log n). The lower bound is almost tight, up to a polynomial factor of log n. The upper
bound is stated in the following observation.

▶ Observation B.16. QWREMD(n) = Õ(n), where Õ(·) hides a polynomial factor in
1

β2−β1
and log n.

S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:23

Instead of proving the above observation, we prove the following lemma that states the upper
bound of tolerant EMD testing between two distributions when we know one distribution
and have sample access to the unknown distribution. By Remark 6, we will be done with
the proof of Observation B.16.

▶ Lemma B.17. Let H = {0, 1}n be a n-dimensional Hamming cube, and let p and q denote
two known and unknown n-grained distribution over H. There exists an algorithm that
takes two parameters β1, β2 with 0 ≤ β1 < β2 ≤ 1 and a δ ∈ (0, 1) as input and decides
whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n with probability at least 1−δ. Moreover, the
algorithm AlG-EMD queries for Õ(n) many samples from q, where Õ(·) hides a polynomial
factor in 1

β2−β1
and log n.

Proof. Let ϵ be a constant less than (β2 − β1). We construct a probability distribution q′

such that the ℓ1 distance between q and q′ will be at most ϵ, that is,
∑

i∈[L]
|q(i) − q′(i)| ≤ ϵ.

Note that such a q′ can be constructed with probability at least 1 − δ by querying for
Õ (n) many samples of q which follows from [11]. Then, we find EMD(p, q′). Observe that
|EMD(p, q) − EMD(p, q′)| ≤ ϵn

2 . This is because

|EMD(p, q) − EMD(p, q′)| ≤ |EMD(p, q′) + EMD(q′, q) − EMD(p, q′)|
≤ EMD(q, q′)

≤ ϵd

2 (By Proposition B.15)

As EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n, by the above observation, we will get
either EMD(p, q′) ≤

(
β1 + ϵ

2
)
n or EMD(p, q′) ≥

(
β1 + ϵ

2
)
n, respectively. By our choice

of ϵ < β2 − β1, we can decide EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n from the value of
EMD(p, q′). ◀

APPROX/RANDOM 2021

The Product of Gaussian Matrices Is Close to
Gaussian
Yi Li #

Division of Mathematical Sciences, Nanyang Technological University, Singapore, Singapore

David P. Woodruff #

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We study the distribution of the matrix product G1G2 · · · Gr of r independent Gaussian matrices
of various sizes, where Gi is di−1 × di, and we denote p = d0, q = dr, and require d1 = dr−1. Here
the entries in each Gi are standard normal random variables with mean 0 and variance 1. Such
products arise in the study of wireless communication, dynamical systems, and quantum transport,
among other places. We show that, provided each di, i = 1, . . . , r, satisfies di ≥ Cp · q, where
C ≥ C0 for a constant C0 > 0 depending on r, then the matrix product G1G2 · · · Gr has variation
distance at most δ to a p × q matrix G of i.i.d. standard normal random variables with mean 0
and variance

∏r−1
i=1 di. Here δ → 0 as C → ∞. Moreover, we show a converse for constant r that if

di < C′ max{p, q}1/2 min{p, q}3/2 for some i, then this total variation distance is at least δ′, for an
absolute constant δ′ > 0 depending on C′ and r. This converse is best possible when p = Θ(q).

2012 ACM Subject Classification Mathematics of computing → Probability and statistics

Keywords and phrases random matrix theory, total variation distance, matrix product

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.35

Category RANDOM

Funding Yi Li: Supported in part by Singapore Ministry of Education (AcRF) Tier 2 grant
MOE2018-T2-1-013.
David P. Woodruff : Supported in part by Office of Naval Research (ONR) grant N00014-18-1-256
and a Simons Investigator Award.

Acknowledgements D. Woodruff would like to thank Sébastien Bubeck, Sitan Chen, and Jerry Li
for many helpful discussions.

1 Introduction

Random matrices play a central role in many areas of theoretical, applied, and computational
mathematics. One particular application is dimensionality reduction, whereby one often
chooses a rectangular random matrix G ∈ Rm×n, m ≪ n, and computes G · x for a fixed
vector x ∈ Rn. Indeed, this is the setting in compressed sensing and sparse recovery [12],
randomized numerical linear algebra [18, 20, 36], and sketching algorithms for data streams
[25]. Often G is chosen to be a Gaussian matrix, and in particular, an m × n matrix with
entries that are i.i.d. normal random variables with mean 0 and variance 1, denoted by
N(0, 1). Indeed, in compressed sensing, such matrices can be shown to satisfy the Restricted
Isometry Property (RIP) [10], while in randomized numerical linear algebra, in certain
applications such as support vector machines [29] and non-negative matrix factorization [19],
their performance is shown to often outperform that of other sketching matrices.

Our focus in this paper will be on understanding the product of two or more Gaussian
matrices. Such products arise naturally in different applications. For example, in the over-
constrained ridge regression problem minx ∥Ax − b∥2

2 + λ∥x∥2
2, the design matrix A ∈ Rn×d,

© Yi Li and David P. Woodruff;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 35; pp. 35:1–35:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yili@ntu.edu.sg
https://orcid.org/0000-0002-6420-653X
mailto:dwoodruf@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 The Product of Gaussian Matrices Is Close to Gaussian

n ≫ d, is itself often assumed to be Gaussian (see, e.g., [26]). In this case, the “sketch-and-
solve” algorithmic framework for regression [32] would compute G · A and G · b for an m × n

Gaussian matrix G with m ≈ sdλ, where sdλ is the so-called statistical dimension [2], and
solve for the x which minimizes ∥G · Ax − G · b∥2

2 + λ∥x∥2
2. While computing G · A is slower

than computing the corresponding matrix product for other kinds of sketching matrices G, it
often has application-specific [29, 19] as well as statistical benefits [31]. Notice that G · A is
the product of two independent Gaussian matrices, and in particular, G has a small number
of rows while A has a small number of columns – this is precisely the rectangular case we will
study below. Other applications in randomized numerical linear algebra where the product
of two Gaussian matrices arises is when one computes the product of a Gaussian sketching
matrix and Gaussian noise in a spiked identity covariance model [37].

The product of two or more Gaussian matrices also arises in diverse fields such as multiple-
input multiple-output (MIMO) wireless communication channels [24]. Indeed, similar to the
above regression problem in which one wants to reconstruct an underlying vector x, in such
settings one observes the vector y = G1 · · · Gr · x + η, where x is the transmitted signal and η

is background noise. This setting corresponds to the situation in which there are r scattering
environments separated by major obstacles, and the dimensions of the Gi correspond to the
number of “keyholes” [24]. To determine the mutual information of this channel, one needs
to understand the singular values of the matrix G1 · · · Gr. If one can show the distribution
of this product is close to that of a Gaussian distribution in total variation distance, then
one can use the wide range of results known for the spectrum of a single Gaussian matrix
(see, e.g., [35]). Other applications of products of Gaussian matrices include disordered spin
chains [11, 3, 15], stability of large complex dynamical systems [22, 21], symplectic maps
and Hamiltonian mechanics [11, 4, 28], quantum transport in disordered wires [23, 13], and
quantum chromodynamics [27]; we refer the reader to [14, 1] for an overview.

The main question we ask in this work is:

What is the distribution of the product G1G2 · · · Gr of r independent Gaussian matrices of
various sizes, where Gi is di−1 × di?

Our main interest in the question above will be when G1 has a small number p = d0 of rows,
and Gr has a small number q = dr of columns. Despite the large body of work on random
matrix theory (see, e.g., [34] for a survey), we are not aware of any work which attempts to
bound the total variation distance of the entire distribution of G1G2 · · · Gr to a Gaussian
distribution itself.

1.1 Our Results
Formally, we consider the problem of distinguishing the product of normalized Gaussian
matrices

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
from a single normalized Gaussian matrix

A1 = 1√
d1

G1.

We show that, when r is a constant, with constant probability we cannot distinguish the
distributions of these two random matrices when di ≫ p, q for all i; and, conversely, with
constant probability, we can distinguish these two distributions when the di are not large
enough.

Y. Li and D. P. Woodruff 35:3

▶ Theorem 1 (Main theorem). Suppose that di ≥ max{p, q} for all i and dr−1 = d1.
(a) It holds that

dT V (Ar, A1) ≤ C1

r−1∑
i=1

√
pq

di
,

where dT V (Ar, A1) denotes the total variation distance between Ar and A1, and C1 > 0
is an absolute constant.

(b) If p, q, d1, . . . , dr further satisfy that

r−1∑
j=1

1
dj

≥ Cr
2

max{p, q} 1
2 min{p, q} 3

2
,

where C2 > 0 is an absolute constant, then dT V (Ar, A1) ≥ 2/3.

Part (a) states that dT V (Ar, A1) < 2/3 when di ≥ C ′
1pq for all i for a constant

C ′
1 depending on r. The converse in (b) implies that dT V (Ar, A1) ≥ 2/3 when di ≤

C ′
2 max{p, q}1/2 min{p, q}3/2 for some i for a constant C ′

2 depending on r. When p = Θ(q)
and r is a constant, we obtain a dichotomy (up to a constant factor) for the conditions on
p, q and di.

1.2 Our Techniques
Upper Bound. We start by explaining our main insight as to why the distribution of a
product G1 · G2 of a p × d matrix G1 of i.i.d. N(0, 1) random variables and a d × q matrix
G2 of i.i.d. N(0, 1) random variables has low variation distance to the distribution of a
p × q matrix A of i.i.d. N(0, d) random variables. One could try to directly understand the
probability density function as was done in the case of Wishart matrices in [7, 30], which
corresponds to the setting when G1 = G2. However, there are certain algebraic simplifications
in the case of the Wishart distribution that seem much less tractable when manipulating the
density function of the product of independent Gaussians [9]. Another approach would be to
try to use entropic methods as in [8, 6]. Such arguments try to reveal entries of the product
G1 · G2 one-by-one, arguing that for most conditionings of previous entries, the new entry
still looks like an independent Gaussian. However, the entries are clearly not independent –
if (G1 · G2)i,j has large absolute value, then (G1 · G2)i,j′ is more likely to be large in absolute
value, as it could indicate that the i-th row of G1 has large norm. One could try to first
condition on the norms of all rows of G1 and columns of G2, but additional issues arise when
one looks at submatrices: if (G1 · G2)i,j , (G1 · G2)i,j′ , and (G1 · G2)i′,j are all large, then it
could mean the i-th row of G1 and the i′-th row of G1 are correlated with each other, since
they both are correlated with the j-th column of G2. Consequently, since (G1 · G2)i,j′ is
large, it could make it more likely that (G1 · G2)i′,j′ has large absolute value. This makes
the entropic method difficult to apply in this context.

Our upper bound instead leverages beautiful work of Jiang [16] and Jiang and Ma [17]
which bounds the total variation distance between the distribution of an r × ℓ submatrix
of a random d × d orthogonal matrix (orthonormal rows and columns) and an r × ℓ matrix
with i.i.d. N(0, 1/d) entries. Their work shows that if r · ℓ/d → 0 as d → ∞, then the total
variation distance between these two matrix ensembles goes to 0. It is not immediately
clear how to apply such results in our context. First of all, which submatrix should we be
looking at? Note though, that if V T is a p× d uniformly random (Haar measure) matrix with
orthonormal rows, and E is a d × q uniformly random matrix with orthonormal columns,

APPROX/RANDOM 2021

35:4 The Product of Gaussian Matrices Is Close to Gaussian

then by rotational invariance, V T E is identically distributed to a p × q submatrix of a d × d

random orthonormal matrix. Thus, setting r = p and ℓ = q in the above results, they imply
that V T E is close in variation distance to a p × q matrix H with i.i.d. N(0, 1/d) entries.
Given G1 and G2, one could then write them in their singular value decomposition, obtaining
G1 = UΣV T and G2 = ETF T . Then V T and E are independent and well-known to be
uniformly random p × d and d × q orthonormal matrices, respectively. Thus G1 · G2 is close in
total variation distance to UΣHTF T . However, this does not immediately help either, as it is
not clear what the distribution of this matrix is. Instead, the “right” way to utilize the results
above is to (1) observe that G1 · G2 = UΣV T G2 is identically distributed as UΣX, where X

is a matrix of i.i.d. normal random variables, given the rotational invariance of the Gaussian
distribution. Then (2) X is itself close to a product W T Z where W T is a random p × d

matrix with orthonormal rows, and Z is a random d × q matrix with orthonormal columns,
by the above results. Thus, G1 · G2 is close to UΣW T Z. Then (3) UΣW T has the same
distribution as G1, so UΣW T Z is close to G′

1Z, where G′
1 and G1 are identically distributed,

and G′
1 is independent of Z. Finally, (4) G′

1Z is identically distributed as a matrix A1 of
standard normal random variables because G′

1 is Gaussian and Z has orthonormal columns,
by rotational invariance of the Gaussian distribution.

We hope that this provides a general method for arguments involving Gaussian matrices -
in step (2) we had the quantity UΣX, where X was a Gaussian matrix, and then viewed
X as a product of a short-fat random orthonormal matrix W T and a tall-thin random
orthonormal matrix Z. Our proof for the product of more than 2 matrices recursively uses
similar ideas, and bounds the growth in variation distance as a function of the number r of
matrices involved in the product.

Lower Bound. For our lower bound for constant r, we show that the fourth power of the
Schatten 4-norm of a matrix, namely, ∥X∥4

S4
= tr((XT X)2), can be used to distinguish a

product Ar of r Gaussian matrices and a single Gaussian matrix A1. We use Chebyshev’s
inequality, for which we need to find the expectation and variance of tr((XT X)2) for X = Ar

and X = A1.
Let us consider the expectation first. An idea is to calculate the expectation re-

cursively, that is, for a fixed matrix M and a Gaussian random matrix G we express
E tr(((MG)T (MG))2) in terms of E tr((MT M)2). The real situation turns out to be slightly
more complicated. Instead of expressing E tr(((MG)T (MG))2) in terms of E tr((MT M)2)
directly, we decompose E tr(((MG)T (MG))2) into the sum of expectations of a few functions
in terms of M , say,

E tr(((MG)T (MG))2) = E f1(M) + E f2(M) + · · · + E fs(M)

and build up the recurrence relations for E f1(MG), . . . ,E fs(MG) in terms of E f1(M),
E f2(M), ..., E fs(M). It turns out that the recurrence relations are all linear, i.e.,

E fi(MG) =
s∑

j=1
aij E fj(M), i = 1, . . . , s, (1)

whence we can solve for E fi(Ar) and obtaining the desired expectation E tr((AT
r Ar)2).

Now we turn to variance. One could try to apply the same idea of finding recurrence
relations for Var(Q) = E(Q2) − (EQ)2 (where Q = tr(((MG)T (MG))2)), but it quickly
becomes intractable for the E(Q2) term as it involves products of eight entries of M , which
all need to be handled carefully as to avoid any loose bounds; note, the subtraction of (EQ)2

Y. Li and D. P. Woodruff 35:5

is critically needed to obtain a small upper bound on Var(Q) and thus loose bounds on E(Q2)
would not suffice. For a tractable calculation, we keep the product of entries of M to 4th
order throughout, without involving any terms of 8th order. To do so, we invoke the law of
total variance,

Var
M,G

(tr((MG)T (MG))2) = E
M

(
Var

G
(tr((GT MT MG)2))

∣∣∣M)+Var
M

(
E
G

tr((GT MT MG)2)
∣∣∣M) . (2)

For the first term on the right-hand side, we use Poincaré’s inequality to upper bound it.
Poincaré’s inequality for the Gaussian measure states that

Var
g∼N(0,Im)

(f(g)) ≤ C E
g∼N(0,Im)

∥∇f(g)∥2
2

for a differentiable function f on Rm. Here we can simply let f(X) = tr((MX)T (MX))2)
and calculate E ∥∇f(G)∥2

2. This is tractable since E ∥∇f(G)∥2
2 involves the products of at

most 4 entries of M , and we can use the recursive idea for the expectation above to express

E ∥∇f(G)∥2
2 =

∑
i

aij E gi(M)

for a few functions gi’s and establish a recurrence relation for each gi.
The second term on the right-hand side of (2) can be dealt with by plugging in (1), and

turns out to depend on a new quantity Var(tr2(MT M)). We again apply the recursive idea
and the law of total variance to

Var
M,G

(tr2(GT MT MG)) = E
M

(
Var

G
(tr2((GT MT MG))

∣∣∣M)
+ Var

M

(
E
G

tr2(GT MT MG)
∣∣∣M)

.

Again, the first term on the right-hand side can be handled by Poincaré’s inequality
and the second-term turns out to depend on Var(tr((MT M)2)), which is crucial. We
have now obtained a double recurrence involving inequalities on Var(tr((MT M)2)) and
Var(tr2((MT M)2)), from which we can solve for an upper bound on Var(tr(AT

r Ar)2). This
upper bound, however, grows exponentially in r, which is impossible to improve due to our
use of Poincaré’s inequality.

2 Preliminaries

Notation. For a random variable X and a probability distribution D, we use X ∼ D to
denote that X is subject to D. For two random variables X and Y defined on the same
sample space, we write X

d= Y if X and Y are identically distributed.
We use Gm,n to denote the distribution of m×n Gaussian random matrices of i.i.d. entries

N(0, 1) and Om,n to denote the uniform distribution (Haar) of an m × n random matrix
with orthonormal rows. For a distribution D on a linear space and a scaling factor α ∈ R,
we use αD to denote the distribution of αX, where X ∼ D.

For two probability measures µ and ν on the Borel algebra F of Rm, the total variation
distance between µ and ν is defined as

dT V (µ, ν) = sup
A∈F

|µ(A) − ν(A)| = 1
2

∫
Rm

∣∣∣∣dµ

dν
− 1
∣∣∣∣ dν.

If ν is absolutely continuous with respect to µ, one can define the Kullback-Leibler Divergence
between µ and ν as

DKL(µ∥ν) =
∫
Rm

dµ

dν
log2

dµ

dν
dν.

If ν is not absolutely continuous with respect to µ, we define DKL(µ∥ν) = ∞.

APPROX/RANDOM 2021

35:6 The Product of Gaussian Matrices Is Close to Gaussian

When µ and ν correspond to two random variables X and Y , respectively, we also write
dT V (µ, ν) and DKL(µ∥ν) as dT V (X, Y) and DKL(X∥Y), respectively.

The following is the well-known relation between the Kullback-Leibler divergence and the
total variation distance between two probability measures.

▶ Lemma 2 (Pinsker’s Inequality [5, Theorem 4.19]). dT V (µ, ν) ≤
√

1
2 DKL(µ∥ν).

The following result, concerning the distance between the submatrix of a properly scaled
Gaussian random matrix and a submatrix of a random orthogonal matrix, is due to Jiang
and Ma [17].

▶ Lemma 3 ([17]). Let G ∼ Gd,d and Z ∼ Od,d. Suppose that p, q ≤ d and Ĝ is the top-left
p × q block of G and Ẑ the top-left p × q block of Z. Then

dKL

(
1√
d

Ĝ

∥∥∥∥ Ẑ

)
≤ C

pq

d
, (3)

where C > 0 is an absolute constant.

The original paper [17] does not state explicitly the bound in (3) and only states that
the Kullback-Leibler divergence tends to 0 as d → ∞. A careful examination of the proof
of [17, Theorem 1(i)], by keeping track of the order of the various o(1) terms, reveals the
quantitative bound (3).

Useful Inequalities. We list two useful inequalities below.

▶ Lemma 4 (Poincaré’s inequality for Gaussian measure [5, Theorem 3.20]). Let X ∼ N(0, In)
be the standard n-dimensional Gaussian distribution and f : Rn → R be any continuously
differentiable function. Then

Var(f(X)) ≤ E
(

∥∇f(X)∥2
2

)
.

▶ Lemma 5 (Trace inequality, [33]). Let A and B be symmetric, positive semidefinite matrices
and k be a positive integer. Then

tr((AB)k) ≤ min
{

∥A∥k
op tr(Bk), ∥B∥k

op tr(Ak)
}

.

3 Upper Bound

Let r ≥ 2 be an integer. Suppose that G1, . . . , Gr are independent Gaussian random matrices,
where Gi ∼ Gdi−1,di

and d0 = p, dr = q and dr−1 = d1. Consider the product of normalized
Gaussian matrices

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
and a single normalized Gaussian random matrix

A1 = 1√
d1

G′
1

where G′
1 ∼ Gp,q. In this section, we shall show that when p, q ≪ di for all i, we cannot

distinguish Ar from A1 with constant probability.
For notational convenience, let Wi = 1√

di
Gi for i ≤ r and Wr = 1√

d1
Gr. Assume that

pq ≤ βdi for some constant β for all i. Our question is to find the total variation distance
between the matrix product W1W2 · · · Wr and the product W1Wr of two matrices.

Y. Li and D. P. Woodruff 35:7

▶ Lemma 6. Let p, q, d, d′ be positive integers satisfying that pq ≤ βd and pq ≤ βd′ for some
constant β < 1. Suppose that A ∈ Rp×d, G ∼ 1√

d
Gd,d′ , and L ∼ Od′,d. Further suppose that

G and L are independent. Let Z ∼ Oq,d be independent of A, G and L. Then

dT V (AGL, AZT) ≤ C

√
pq

d
,

where C > 0 is an absolute constant.
Proof. Let A = UΣV T be its singular value decomposition, where V has dimension d × p.
Then

AGL = UΣ(V T GL) d= UΣX,

where X is a p × q random matrix of i.i.d. N(0, 1/d) entries. Suppose that Z̃ consists of the
top p rows of ZT . Then

AZT = UΣ(V T ZT) d= UΣZ̃.

Note that X and Z are independent of U and Σ. It follows from Lemma 3 that

dKL(AGL∥AZT) = dKL(UΣX∥UΣZ̃) = dKL(X∥Z̃) ≤ C
pq

d
,

where C > 0 is an absolute constant. The result follows from Pinsker’s inequality (Lemma 2).
◀

The next theorem follows from the lemma above.
▶ Theorem 7. It holds that

dT V (W1 · · · Wr, W1Wr) ≤ C
r∑

i=1

√
pq

di
,

where C > 0 is an absolute constant.
Proof. Let Wr = UΣV T and Xi ∼ Oq,di

, independent from each other and from the Wi’s.
Applying the preceding lemma with A = W1 · · · Wr−2, G = Wr−1 and L = U , we have

dT V (W1 · · · Wr−2Wr−1Wr, W1 · · · Wr−2XT
r−1ΣV T) ≤ C

√
pq

dr−1
,

Next, applying the preceding lemma with A = W1 · · · Wr−3, G = Wr−1 and L = Xr, we have

dT V (W1 · · · Wr−2XrΣV T , W1 · · · Wr−3XT
r−2ΣV T) ≤ C

√
pq

dr−2
,

Iterating this procedure, we have in the end that

dT V (W1W2X3ΣV T , W1X2ΣV T) ≤ C

√
pq

d2
.

Since U , Σ and V are independent and X2
d= U , it holds that X2ΣV T d= Wr. Therefore,

dT V (W1 · · · Wr, W1Wr) ≤ C
r−1∑
i=2

√
pq

di
. ◀

Repeating the same argument for W1Wr, we obtain the following corollary immediately.
▶ Corollary 8. It holds that

dT V (Ar, A1) ≤ C
r−1∑
i=1

√
pq

di
,

where C > 0 is an absolute constant.

APPROX/RANDOM 2021

35:8 The Product of Gaussian Matrices Is Close to Gaussian

4 Lower Bound

Suppose that r is a constant. We shall show that one can distinguish the product of r

Gaussian random matrices

Ar =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
,

from one Gaussian random matrix

A1 = 1√
d1

G′
1

when the intermediate dimensions d1, . . . , dr−1 are not large enough. Considering h(X) =
tr((XT X)2), it suffices to show that one can distinguish h(Ar) and h(A1) with a constant
probability for constant r. By Chebyshev’s inequality, it suffices to show that

max
{√

Var(h(A1)),
√

Var(h(Ar))
}

≤ c(Eh(Ar) − Eh(A1))

for a small constant c. We calculate that:

▶ Lemma 9. Suppose that r is a constant, di ≥ max{p, q} for all i = 1, . . . , r. When
p, q, d1, . . . , dr → ∞,

Eh(Ar) = pq(p + q + 1)
d2

r

+ (1 + o(1))pq(p − 1)(q − 1)
d2

r

r−1∑
j=1

1
dj

.

▶ Lemma 10. Suppose that r is a constant, di ≥ max{p, q} for all i = 1, . . . , r. There exists
an absolute constant C such that, when p, q, d1, . . . , dr are sufficently large,

Var(h(Ar)) ≤ Cr(p3q + pq3)
d4

1
.

We conclude with the following theorem, which can be seen as a tight converse to
Corollary 8 up to a constant factor on the conditions for p, q, d1, . . . , dr.

▶ Theorem 11. Suppose that r is a constant and di ≥ max{p, q} for all i = 1, . . . , r. Further
suppose that d1 = dr. When p, q, d1, . . . , dr are sufficiently large and satisfy that

r−1∑
j=1

1
dj

≥ Cr

max{p, q} 1
2 min{p, q} 3

2
,

where C > 0 is some absolute constant, with probability at least 2/3, one can distinguish Ar

from A1.

4.1 Calculation of the Mean
Suppose that A is a p × q random matrix, and is rotationally invariant under left- and
right-multiplication by orthogonal matrices. We define

S1(p, q) = EA4
11 (diagonal)

S2(p, q) = EA4
21 (off-diagonal)

S3(p, q) = EA2
i1A2

j1 (i ̸= j) (same column)

Y. Li and D. P. Woodruff 35:9

S4(p, q) = EA2
1iA

2
1j (i ̸= j) (same row)

S5(p, q) = EA2
1iA

2
2j (i ̸= j)

S6(p, q) = EAikAilAjkAjl (i ̸= j, k ̸= l) (rectangle)

Since A is left- and right-invariant under rotations, these quantities are well-defined. Then

E tr((AT A)2) = E
∑

1≤i,j≤q

(AT A)2
ij =

q∑
i=1

E(AT A)2
ii +

∑
1≤i,j≤q,i ̸=j

E(AT A)2
ij

= q E(AT A)2
11 + q(q − 1)E(AT A)2

12

and

E(AT A)2
11 = E

(p∑
i=1

A2
i1

)2
=

p∑
i=1

EA4
i1 +

∑
1≤i,j≤p,i ̸=j

EA2
i1A2

j1

= EA4
11 + (p − 1)EA4

21 + p(p − 1)EA2
11A2

21

=: S1(p, q) + (p − 1)S2(p, q) + p(p − 1)S3(p, q)

E(AT A)2
12 = E

(p∑
i=1

Ai1Ai2

)2
=

p∑
i=1

EA2
i1A2

i2 +
∑

1≤i,j≤p,i ̸=j

EAi1Ai2Aj1Aj2

= pS4(p, q) + p(p − 1)S6(p, q).

When S1(p, q) = S2(p, q), we have

E tr((AT A)2) = q(pS1(p, q) + p(p − 1)S3(p, q)) + q(q − 1)(pS4(p, q) + p(p − 1)S6(p, q))
= pqS1(p, q)+pq(p−1)S3(p, q)+pq(q−1)S4(p, q)+p(p−1)q(q−1)S6(p, q).

When A = G, we have

S1(p, q) = S2(p, q) = 3, S3(p, q) = S4(p, q) = S5(p, q) = 1, S6(p, q) = 0
and so

E tr((AT A)2) = 3pq + pq(p − 1) + pq(q − 1) = pq(p + q + 1).

Next, consider A = BG, where B is a p × d random matrix and G a d × q random matrix of
i.i.d. N(0, 1) entries. The following proposition is easy to verify, and its proof is postponed
to Appendix A.

▶ Proposition 12. It holds that EA4
21 = EA4

11.

Suppose that the associated functions of B are named T1, T2, T3, T4, T6, T5. Then we can
calculate that (detailed calculations can be found in Appendix B)

S1(p, q) = 3dT1(p, d) + 3d(d − 1)T4(p, d)
S3(p, q) = 3dT3(p, d) + d(d − 1)T5(p, d) + 2d(d − 1)T6(p, d)
S4(p, q) = dT1(p, d) + d(d − 1)T4(p, d)
S5(p, q) = dT3(p, d) + d(d − 1)T5(p, d)
S6(p, q) = dT3(p, d) + d(d − 1)T6(p, d)

It is clear that S1, S3, S4, S5, S6 depend only on d (not on p and q) if T1, T3, T4, T5, T6 do so.
Furthermore, if T1 = 3T4 then we have S1 = 3S4 and thus S4 = d(d + 2)T4. If T3 = 2T6 + T5
then S3 = d(d + 2)T3 and S3 = 2S6 + S5. Hence, if T3 = T4 then S3 = S4. We can verify

APPROX/RANDOM 2021

35:10 The Product of Gaussian Matrices Is Close to Gaussian

that all these conditions are satisfied with one Gaussian matrix and we can iterate it to
obtain these quantities for the product of r Gaussian matrices with intermediate dimensions
d1, d2, . . . , dr−1. We have that

S3 = S4 =
r−1∏
i=1

di(di + 2), S1 = 3S4, S6 =
r−1∑
j=1

(
j−1∏
i=1

di(di + 2)
)

dj

 r−1∏
i=j+1

di(di − 1)

 .

Therefore, normalizing the i-th matrix by 1/
√

di, that is,

A =
(

1√
d1

G1

)(
1√
d2

G2

)
· · ·

(
1√
dr−1

Gr−1

)(
1√
d1

Gr

)
,

we have for constant r that

E tr((AT A)2) = 1
d2

1d2
2 · · · d2

r−1d2
1

(pq(p + q + 1)S3 + pq(p − 1)(q − 1)S6)

≈ pq(p + q + 1)
d2

r

+ pq(p − 1)(q − 1)
d2

r

r−1∑
j=1

1
dj

.

(4)

4.2 Calculation of the Variance
Let M ∈ Rp×p be a random symmetric matrix, and let G ∈ Rp×q be a random matrix of i.i.d.
N(0, 1) entries. We want to find the variance of tr((GT MG)2). The detailed calculations of
some steps can be found in Appendix C.

Our starting point is the law of total variance, which states that

Var(tr((GT MG)2)) = E
M

(
Var

G
(tr((GT MG)2))

∣∣∣M)
+ Var

M

(
E
G

tr((GT MG)2)
∣∣∣M)

(5)

Step 1a. We shall handle each term separately. Consider the first term, which we shall
bound using the Poincaré inequality for Gaussian measures. Define f(X) = tr((XT MX)2),
where X ∈ Rp×q. We shall calculate ∇f .

f(X) =
∥∥XT MX

∥∥2
F

=
∑

1≤i,j≤q

(XT MX)2
ij =

∑
1≤i,j≤q

(∑
1≤k,l≤p

MklXkiXlj

)2
.

Then

∂f

∂Xrs
=

∑
1≤i,j≤q

2
(∑

1≤u,v≤p

MuvXuiXvj

)(∑
1≤k,l≤p

∂

∂Xrs
(MklXkiXlj)

)
.

Note that

∂

∂Xrs
(MklXkiXlj) =

MklXlj , (k, i) = (r, s) and (l, j) ̸= (r, s)
MklXki, (k, i) ̸= (r, s) and (l, j) = (r, s)
2MrrXrs, (k, i) = (r, s) and (l, j) = (r, s)
0, otherwise.

we have that

∂f

∂Xrs
= 4

 ∑
1≤u,v≤p

MuvXusXvs

MrrXrs + 2
∑

(l,j) ̸=(r,s)

 ∑
1≤u,v≤p

MuvXusXvj

MrlXlj

Y. Li and D. P. Woodruff 35:11

+ 2
∑

(k,i) ̸=(r,s)

 ∑
1≤u,v≤p

MuvXuiXvs

MkrXki

= 4

 ∑
1≤u,v≤p

MuvXusXvs

MrrXrs +
∑

(l,j)̸=(r,s)

(∑
u,v

MuvXusXvj

)
MrlXlj

= 4

∑
l,j

(∑
u,v

MuvXusXvj

)
MrlXlj .

Next we calculate E(∂f/∂Xrs)2 when X is i.i.d. Gaussian.(
1
4

∂f

∂Xrs

)2
=
∑
l,j

l′,j′

∑
u,v

u′,v′

MuvMu′v′MrlMrl′ EXusXu′sXvjXljXv′j′Xl′j′

We discuss different cases of j, j′, s.
When j ̸= j′ ≠ s, it must hold that u = u′, v = l and v′ = l′ for a possible nonzero

contribution, and the total contribution in this case is at most q(q − 1)B(1)
r,s , where

B(1)
r,s =

∑
1≤l,l′≤p

∑
u

MulMul′MrlMrl′ =
∑

u

⟨Mu,·, Mr,·⟩2.

When j = j′ ≠ s, it must hold that u = u′ for a possible nonzero contribution, and the
total contribution in this case is at most (q − 1)B(2)

r,s , where

B(2)
r,s =

∑
l,l′

∑
u,v,v′

MuvMuv′MrlMrl′ EX2
usXvjXljXv′jXl′j

= ∥M∥2
F ∥Mr,·∥2

2 + 2
∑

u

⟨Mu,·, Mr,·⟩2.

When j = s ̸= j′, it must hold that v′ = l′ for possible nonzero contribution, and the
total contribution in this case is at most (q − 1)B(3)

r,s , where

B(3)
r,s =

∑
j′ ̸=s

∑
l,l′

∑
u,v

MuvMu′l′MrlMrl′ EXusXu′sXvsXlsX2
l′j′

=
∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Mll′)MrlMrl′ .

When j = j′ = s, the nonzero contribution is

B(4)
r,s =

∑
l,l′

∑
u,v

u′,v′

MuvMu′v′MrlMrl′ EXusXu′sXvsXlsXv′sXl′s.

Since u, u′, v, v′, l, l′ needs to be paired, the only case which is not covered by B
(1)
rs , B

(3)
rs and

B
(3)
rs is when u = v, u′ = v′ and l = l′, in which case the contribution is at most∑

l

∑
u,u′

MuuMu′u′M2
rl EX2

usX2
u′sX2

ls ≲ tr2(M) ∥Mr,·∥2
2 .

Hence

B(4)
r,s ≲ B(1)

r,s + B(2)
r,s + B(3)

r,s + tr2(M) ∥Mr,·∥2
2 .

APPROX/RANDOM 2021

35:12 The Product of Gaussian Matrices Is Close to Gaussian

It follows that∑
r,s

B(1)
r,s = q

∑
u,r

⟨Mu,·, Mr,·⟩2 = q tr(M4)

∑
r,s

B(2)
r,s = q

∑
r

∥M∥2
F ∥Mr,·∥2

2 + 2q
∑
u,r

⟨Mu,·, Mr,·⟩2 = q ∥M∥4
F + 2q tr(M4)

∑
r,s

B(3)
r,s =

∑
r,s

∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Ml′l′)MrlMrl′

≤ 2q tr(M4) + q tr(M) ∥M∥F

√
tr(M4)

Note that tr(M4) ≤ tr2(M2) = ∥M∥4
F . Hence

1
16 E ∥∇f∥2

2 ≤
∑
r,s

((q − 1)(q − 2)B(1)
rs + (q − 1)B(2)

rs + (q − 1)B(3)
rs + B(4)

rs)

≲
∑
r,s

(q2B(1)
rs + qB(2)

rs + qB(3)
rs + tr2(M) ∥Mr,·∥2

2)

≲ q3 tr(M4) + q2 ∥M∥4
F + q2 tr(M) ∥M∥F

√
tr(M4) + q tr2(M) ∥M∥2

F .

By the Gaussian Poincaré inequality,

Var
G

(tr((GT MG)2)|M)

≲ E ∥∇f∥2
2

≲ q3 tr(M4) + q2 ∥M∥4
F + q2 tr(M) ∥M∥F

√
tr(M4) + q tr2(M) ∥M∥2

F .

(6)

For the terms on the right-hand side, we calculate that (using the trace inequality (Lemma 5))

E tr((GT MG)4) = E tr((MGGT)4) ≤ E
∥∥GGT

∥∥4
op

tr(M4) = E ∥G∥8
op tr(M4)

≲ max{p, q}4 tr(M4),

E
∥∥GT MG

∥∥4
F

≤ E ∥G∥8
op ∥M∥4

F ≲ max{p, q}4 ∥M∥4
F ,

E tr2(GT MG)
∥∥GT MG

∥∥2
F

≤ E ∥G∥8
op tr2(M) ∥M∥2

F ≲ max{p, q}4 tr2(M) ∥M∥2
F

and

E tr(GT MG)
∥∥GT MG

∥∥
F

√
tr((GT MG)4)

≤ E ∥G∥2
op tr(G) · ∥G∥2

op ∥M∥2
F ·
√

∥G∥8
op tr(M4)

= E ∥G∥8
op tr(M) ∥M∥F

√
tr(M4)

≲ max{p, q}4 tr(M) ∥M∥F

√
tr(M4).

This implies that each term on the right-hand of (6) grows geometrically.

Step 1b. Next we deal with the second term in (5). We have

E
G

tr
(
(GT MG)2) =

∑
i,j

E
G

(GT MG)2
ij =

∑
i,j

E
G

(∑
k,l

MklGkiGlj

)2

=
∑
i,j

∑
k,l,k′,l′

MklMk′l′ E
G

GkiGljGk′iGl′j .

Y. Li and D. P. Woodruff 35:13

When i ≠ j, for non-zero contribution, it must hold that k = l and k′ = l′ and thus the
nonzero contribution is∑

i̸=j

∑
k,l

M2
kl = q(q − 1) ∥M∥2

F .

When i = j, the contribution is∑
i

∑
k,l,k′,l′

MklMk′l′ EGkiGliGk′iGl′i = 2q ∥M∥2
F + q tr2(M). (7)

Hence

E
G

tr
(
(GT MG)2) = q(q + 1) ∥M∥2

F + q tr2(M)

and when M is random,

Var
(
E tr((GT MG)2)

∣∣M)
= Var

(
q(q + 1) ∥M∥2

F + q tr2(M)
)

≤ q2(q + 1)2 Var(∥M∥2
F) + q2 Var(tr2(M)) + 2q2(q + 1)

√
Var(∥M∥2

F) Var(tr2(M)).

(8)

Step 2a. Note that the Var(tr2(M)) term on the right-hand side of (8). To bound this
term, we examine the variance of g(G), where g(X) = tr2(XT MX). We shall again calculate
∇g. Note that

∂g

∂Xrs
= 2 tr(XT MX)

∑
i

∑
k,l

Mkl
∂

∂Xrs
XkiXli

and

∂

∂Xrs
(XkiXli) =

Xli, (k, i) = (r, s) and (l, i) ̸= (r, s)
Xki, (k, i) ̸= (r, s) and (l, i) = (r, s)
2Xrs, (k, i) = (r, s) and (l, i) = (r, s)
0, otherwise.

We have

∂g

∂Xrs
= 4 tr(XT MX)

∑
l

MrlXls = 4
∑

1≤j≤q
1≤l,u,v≤p

MuvMrlXlsXujXvj

Next we calculate E(∂g/∂Xrs)2 when X is i.i.d. Gaussian.(
1
4

∂g

∂Xrs

)2
=

∑
j,l,u,v

j′,l′,u′,v′

MuvMu′v′MrlMrl′ EXlsXl′sXujXvjXu′j′Xv′j′

In order for the expectation in the summand to be non-zero, we must have one of the following
cases: (1) s ̸= j ̸= j′, (2) s = j ̸= j′, (3) s = j′ ̸= j, (4) s ̸= j = j′, (5) s = j = j′. We
calculate the contribution in each case below.

APPROX/RANDOM 2021

35:14 The Product of Gaussian Matrices Is Close to Gaussian

Case 1: it must hold that l = l′, u = v and u′ = v′. The contribution is (q − 1)(q − 2)B(1)
rs ,

where

B(1)
rs =

∑
l,u,u′

MuuMu′u′M2
rl = tr2(M) ∥Mr,·∥2

2 .

Case 2: it must hold that u′ = v′. The contribution is (q − 1)B(2)
rs , where

B(2)
rs =

∑
l,l′,u,u′,v

MuvMu′u′MrlMrl′ EXlsXl′sXusXvsX2
u′j′

= tr(M)
(

tr(M) ∥Mr,·∥2
2 + 2

∑
l,l′

Mll′MrlMrl′

)
Case 3: this gives the same bound as Case 2.
Case 4: it must hold that l = l′. The contribution is (q − 1)B(4)

rs , where

B(4)
rs =

∑
l,u,u′,v,v′

MuvMu′v′M2
rl EXujXvjXu′jXv′j = 3 ∥Mr,·∥2

2 ∥M∥2
F

Case 5: the contribution is B
(5)
rs , where

B(5)
rs =

∑
l,u,v

l′,u′,v′

MuvMu′v′MrlMrl′ EXlsXusXvsXl′sXu′sXv′s.

The only uncovered case is l = u′, l′ = v, u = v′ and its symmetries. In such a case the
contribution is at most

C
∑
l,u,v

MuvMluMrlMrv = C
∑

u

⟨Mr,·, Mu,·⟩2.

Note that∑
r,s

B(1)
rs = q tr2(M) ∥M∥2

F ,

∑
r,s

B(2)
rs = q tr2(M) ∥M∥2

F + 2q tr(M)
∑
l,l′

Mll′⟨Ml,·, Ml′,·⟩

≤ q tr2(M) ∥M∥2
F + 2q tr(M) ∥M∥F

√
tr(M4),∑

r,s

B(4)
rs = q ∥M∥4

F ,

∑
r,s

B(5)
rs ≲

∑
r,s

B(1)
rs +

∑
r,s

B(2)
rs + tr(M4).

Therefore,
1
16 E ∥∇g∥2

2 ≤
∑
r,s

((q − 1)(q − 2)B(1)
rs + (q − 1)B(2)

rs + (q − 1)B(4)
rs + B(5)

rs)

≲ q3 tr2(M) ∥M∥2
F + q2 tr(M) ∥M∥F

√
tr(M4) + q2 ∥M∥4

F + q tr(M4).

By Poincaré’s inequality,

Var
G

(tr2(GT MG))

≲ E ∥∇g∥2
2

≲ q3 tr2(M) ∥M∥2
F + q2 tr(M) ∥M∥F

√
tr(M4) + q2 ∥M∥4

F + q tr(M4).

(9)

Similar to before, each term on the right-hand side grows geometrically.

Y. Li and D. P. Woodruff 35:15

Step 2b. Next we deal with VarM (EG tr2 (GT MG
)

|M).

E tr2 (GT MG
)

= E
(∑

i,k,l

MklGkiGli

)2
=
∑
i,j

∑
k,l,k′,l′

MklMk′l′ EGkiGliGk′jGl′j .

When i ≠ j, for non-zero contribution, it must hold that k = l and k′ = l′ and thus the
nonzero contribution is∑

i̸=j

∑
k,k′

MkkMk′k′ = q(q − 1) tr2(M).

When i = j, the contribution is (this is exactly the same as (7) in Step 1b.)∑
i

∑
k,k′,l,l′

MklMk′l′ EGkiGliGk′iGl′i = 2q ∥M∥2
F + q tr2(M).

Hence

E tr2 (GT MG
)

= 2q ∥M∥2
F + q2 tr2(M)

and when M is random,

Var
(
E tr2(GT MG)

∣∣M)
= Var

(
2q ∥M∥2

F + q2 tr2(M)
)

≤ 4q2 Var(∥M∥2
F) + q4 Var(tr2(M)) + 2q3

√
Var(∥M∥2

F) Var(tr2(M)).

(10)

Step 3. Let Ur denote the variance of tr((AT
r Ar)2) and Vr the variance of tr2(AT

r Ar).
Combining (5), (6), (8), (9), (10), we have the following recurrence relations, where
C1, C2, C3, C4 > 0 are absolute constants.

Ur+1 ≤ C1Pr + 2Ur + 1
d2

r

Vr + 3
dr

√
UrVr

Vr+1 ≤ C2Qr + 1
d2

r

Ur + Vr + 2
dr

√
UrVr

Pr+1 ≤ C3Pr

Qr+1 ≤ C4Qr

U0 = V0 = 0

In the base case, set M = Ip (the p × p identity matrix in (6)) and note that the second term
in (5) vanishes. We see that P1 ≲ (p3q + pq3)/d4

1 after proper normalization. (Alternatively
we can calculate this precisely, see Appendix D.) Similarly we have Q1 ≲ p3q3/d4

1. Note that
Q1/d2

1 ≲ (p3q + pq3)/d4
1. Now, we can solve that

Ur+1 ≤ Cr p3q + pq3

d4
1

for some absolute constant C > 0.

APPROX/RANDOM 2021

35:16 The Product of Gaussian Matrices Is Close to Gaussian

References
1 Gernot Akemann and Jesper R Ipsen. Recent exact and asymptotic results for products of

independent random matrices. Acta Physica Polonica B, pages 1747–1784, 2015.
2 Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression with

statistical guarantees. In Proceedings of the 28th International Conference on Neural Inform-
ation Processing Systems - Volume 1, NIPS’15, page 775–783, Cambridge, MA, USA, 2015.
MIT Press.

3 Richard Bellman. Limit theorems for non-commutative operations. I. Duke Mathematical
Journal, 21(3):491–500, 1954.

4 Giancarlo Benettin. Power-law behavior of lyapunov exponents in some conservative dynamical
systems. Physica D: Nonlinear Phenomena, 13(1-2):211–220, 1984.

5 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

6 Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. Phase transitions for detecting latent
geometry in random graphs. Probability Theory and Related Fields, pages 1215–1289, 2020.
doi:10.1007/s00440-020-00998-3.

7 Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Z. Rácz. Testing for high-dimensional
geometry in random graphs. Random Structures & Algorithms, 49(3):503–532, 2016. doi:
10.1002/rsa.20633.

8 Sébastien Bubeck and Shirshendu Ganguly. Entropic CLT and Phase Transition in High-
dimensional Wishart Matrices. International Mathematics Research Notices, 2018(2):588–606,
December 2016. doi:10.1093/imrn/rnw243.

9 Z. Burda, R. A. Janik, and B. Waclaw. Spectrum of the product of independent random
gaussian matrices. Physical Review E, 81(4), April 2010. doi:10.1103/physreve.81.041132.

10 Emmanuel J Candes. The restricted isometry property and its implications for compressed
sensing. Comptes rendus mathematique, 346(9-10):589–592, 2008.

11 Andrea Crisanti, Giovanni Paladin, and Angelo Vulpiani. Products of random matrices: in
Statistical Physics, volume 104. Springer Science & Business Media, 2012.

12 David L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

13 S. Iida, H.A. Weidenmüller, and J.A. Zuk. Statistical scattering theory, the supersymmetry
method and universal conductance fluctuations. Annals of Physics, 200(2):219–270, 1990.

14 Jesper R. Ipsen. Products of independent Gaussian random matrices. PhD thesis, Bielefeld
University, 2015.

15 Hiroshi Ishitani. A central limit theorem for the subadditive process and its application to
products of random matrices. Publications of the Research Institute for Mathematical Sciences,
12(3):565–575, 1977.

16 Tiefeng Jiang. How many entries of a typical orthogonal matrix can be approximated
by independent normals? The Annals of Probability, 34(4):1497–1529, July 2006. doi:
10.1214/009117906000000205.

17 Tiefeng Jiang and Yutao Ma. Distances between random orthogonal matrices and independent
normals. Transactions of the American Mathematical Society, 372(3):1509–1553, 2019. doi:
10.1090/tran/7470.

18 Ravindran Kannan and Santosh Vempala. Spectral algorithms. Now Publishers Inc, 2009.
19 Michael Kapralov, Vamsi Potluru, and David Woodruff. How to fake multiply by a gaussian

matrix. In International Conference on Machine Learning, pages 2101–2110. PMLR, 2016.
20 Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends Mach.

Learn., 3(2):123–224, 2011. doi:10.1561/2200000035.
21 Satya N Majumdar and Grégory Schehr. Top eigenvalue of a random matrix: large deviations

and third order phase transition. Journal of Statistical Mechanics: Theory and Experiment,
2014(1):P01012, 2014.

22 Robert M May. Will a large complex system be stable? Nature, 238(5364):413–414, 1972.

https://doi.org/10.1007/s00440-020-00998-3
https://doi.org/10.1002/rsa.20633
https://doi.org/10.1002/rsa.20633
https://doi.org/10.1093/imrn/rnw243
https://doi.org/10.1103/physreve.81.041132
https://doi.org/10.1214/009117906000000205
https://doi.org/10.1214/009117906000000205
https://doi.org/10.1090/tran/7470
https://doi.org/10.1090/tran/7470
https://doi.org/10.1561/2200000035

Y. Li and D. P. Woodruff 35:17

23 P.A. Mello, P. Pereyra, and N. Kumar. Macroscopic approach to multichannel disordered
conductors. Annals of Physics, 181(2):290–317, 1988.

24 Ralf R Muller. On the asymptotic eigenvalue distribution of concatenated vector-valued fading
channels. IEEE Transactions on Information Theory, 48(7):2086–2091, 2002.

25 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Now
Publishers Inc, 2005.

26 Guillaume Obozinski, Martin J Wainwright, Michael I Jordan, et al. Support union recovery
in high-dimensional multivariate regression. The Annals of Statistics, 39(1):1–47, 2011.

27 James C Osborn. Universal results from an alternate random-matrix model for QCD with a
baryon chemical potential. Physical review letters, 93(22):222001, 2004.

28 G Paladin and A Vulpiani. Scaling law and asymptotic distribution of lyapunov exponents
in conservative dynamical systems with many degrees of freedom. Journal of Physics A:
Mathematical and General, 19(10):1881, 1986.

29 Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, and Petros Drineas. Random
projections for linear support vector machines. ACM Transactions on Knowledge Discovery
from Data (TKDD), 8(4):1–25, 2014.

30 Miklós Z. Rácz and Jacob Richey. A smooth transition from wishart to goe. Journal of
Theoretical Probability, pages 898–906, 2019. doi:10.1007/s10959-018-0808-2.

31 Garvesh Raskutti and Michael W Mahoney. A statistical perspective on randomized sketching
for ordinary least-squares. The Journal of Machine Learning Research, 17(1):7508–7538, 2016.

32 Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
143–152. IEEE, 2006.

33 Khalid Shebrawi and Hussein Albadawi. Trace inequalities for matrices. Bulletin of the
Australian Mathematical Society, 87(1):139–148, 2013. doi:10.1017/S0004972712000627.

34 Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,
2012.

35 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Yonina C. Eldar and Gitta Kutyniok, editors, Compressed Sensing: Theory and Applications,
pages 210–268. Cambridge University Press, 2012. doi:10.1017/CBO9780511794308.006.

36 David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor.
Comput. Sci., 10(1–2):1–157, 2014. doi:10.1561/0400000060.

37 Fan Yang, Sifan Liu, Edgar Dobriban, and David P Woodruff. How to reduce dimension with
PCA and random projections? arXiv:2005.00511 [math.ST], 2020.

A Proof of Proposition 12

Proof. We have

EA4
11 = E

(∑
i

B1iGi1

)4
=
∑

i,j,k,l

EB1iB1jB1kB1l EGi1Gj1Gk1Gl1

= 3
∑

i

EB4
1i + 3

∑
i̸=j

EB2
1iB

2
1j

and

EA4
21 = E

(∑
i

B2iGi1

)4
=
∑

i,j,k,l

EB2iB2jB2kB2l EGi1Gj1Gk1Gl1

= 3
∑

i

EB4
2i + 3

∑
i̸=j

EB2
2iB

2
2j = EA4

11. ◀

APPROX/RANDOM 2021

https://doi.org/10.1007/s10959-018-0808-2
https://doi.org/10.1017/S0004972712000627
https://doi.org/10.1017/CBO9780511794308.006
https://doi.org/10.1561/0400000060

35:18 The Product of Gaussian Matrices Is Close to Gaussian

B Omitted Calculations in Section 4.1

S1(p, q) = 3
∑

i

EB4
1i + 3

∑
i̸=j

EB2
1iB

2
1j = 3dT1(p, d) + 3d(d − 1)T4(p, d)

S3(p, q) = EA2
11A2

21 = E
(∑

i

B1iGi1

)2(∑
k

B2kGk1

)2

=
∑

i,j,k,l

EB1iB1jB2kB2l EGi1Gj1Gk1Gl1

= 3
∑

i

EB2
1iB

2
2i +

∑
i̸=j

EB2
1iB

2
2j + 2

∑
i̸=j

EB1iB2iB1jB2j

= 3dT3(p, d) + d(d − 1)T5(p, d) + 2d(d − 1)T6(p, d)

S4(p, q) = EA2
11A2

12 = E
(∑

i

B1iGi1

)2(∑
k

B1kGk2

)2

=
∑

i,j,k,l

EB1iB1jB1kB1l EGi1Gj1Gk2Gl2

=
∑

i

EB4
1i +

∑
i̸=j

EB2
1iB

2
1j = dT1(p, d) + d(d − 1)T4(p, d).

S5(p, q) = EA2
11A2

22 = E
(∑

i

B1iGi1

)2(∑
k

B2kGk2

)2

=
∑

i,j,k,l

EB1iB1jB2kB2l EGi1Gj1Gk2Gl2

=
∑
i,j

B2
1iB

2
2j = dT3(p, d) + d(d − 1)T5(p, d)

S6(p, q) = EA11A12A21A22 =
∑

i,j,k,l

EB1iB1jB2kB2l EGi1Gj2Gk1Gl2

=
∑

i

EB2
1iB

2
2i +

∑
i̸=j

EB1iB1jB2iB2j

= dT3(p, d) + d(d − 1)T6(p, d)

Y. Li and D. P. Woodruff 35:19

C Omitted Calculations in Section 4.2

In Step 1a.

B(2)
r,s =

∑
l,l′

∑
u,v,v′

MuvMuv′MrlMrl′ EX2
usXvjXljXv′jXl′j

=
∑
l ̸=l′

∑
u

MulMul′MrlMrl′

︸ ︷︷ ︸
v=l ̸=v′=l′

+
∑

l

∑
u

v ̸=l

M2
uvM2

rl

︸ ︷︷ ︸
v=v′ ̸=l=l′

+
∑
l ̸=l′

∑
u

Mul′MulMrlMrl′

︸ ︷︷ ︸
v=l′ ̸=l=v′

+ 3
∑
l,u

M2
ulM

2
rl︸ ︷︷ ︸

v=v′=l=l′

=
(∑

u,v

M2
uv

)(∑
l

M2
rl

)
+ 2

∑
l,l′,u

Mul′MulMrlMrl′

= ∥M∥2
F ∥Mr,·∥2

2 + 2
∑

u

⟨Mu,·, Mr,·⟩2.

B(3)
r,s =

∑
j′ ̸=s

∑
l,l′

∑
u,v

MuvMu′l′MrlMrl′ EXusXu′sXvsXlsX2
l′j′

=
∑
l,l′

∑
u̸=l

MulMul′MrlMrl′

︸ ︷︷ ︸
u=u′ ̸=v=l

+
∑
l,l′

∑
u ̸=l

MuuMll′MrlMrl′

︸ ︷︷ ︸
u=v ̸=u′=l

+
∑
l,l′

∑
v

MlvMvl′MrlMrl′

︸ ︷︷ ︸
u=l ̸=u′=v

+ 3
∑
l,l′

MllMll′MrlMrl′

︸ ︷︷ ︸
u=u′=v=l

=
∑
l,l′

∑
u

(2MulMul′ + MuuMll′)MrlMrl′

=
∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Mll′)MrlMrl′ .

∑
r,s

B(3)
r,s =

∑
r,s

∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Ml′l′)MrlMrl′

= q
∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Mll′)
∑

r

MrlMrl′

= q
∑
l,l′

(2⟨Ml,·, Ml′,·⟩ + tr(M)Mll′)⟨Ml,·, Ml′,·⟩

= q
∑
l,l′

2⟨Ml,·, Ml′,·⟩2 + q tr(M)
∑
l,l′

Mll′⟨Ml,·, Ml′,·⟩

≤ 2q tr(M4) + q tr(M)
(∑

l,l′

M2
ll′

) 1
2
(∑

l,l′

⟨Ml,·, Ml′,·⟩2
) 1

2

≤ 2q tr(M4) + q tr(M) ∥M∥F

√
tr(M4)

APPROX/RANDOM 2021

35:20 The Product of Gaussian Matrices Is Close to Gaussian

In Step 1b.∑
i

∑
k,l

k′,l′

MklMk′l′ EGkiGliGk′iGl′i

=
∑

i

(∑
k ̸=l

M2
kl︸ ︷︷ ︸

k=k′ ̸=l=l′

+
∑
k ̸=l

M2
kl︸ ︷︷ ︸

k=l′ ̸=k′=l

+
∑
k ̸=l

MkkMk′k′

︸ ︷︷ ︸
k=l ̸=k′=l′

+3
∑

k

M2
kk︸ ︷︷ ︸

k=k′=l=l′

)

=
∑

i

(∑
k,l

M2
kl +

∑
k,l

M2
kl +

∑
k,l

MkkMk′k′

)
=
∑

i

(2 ∥M∥2
F + tr2(M))

= 2q ∥M∥2
F + q tr2(M).

In Step 2a.

B(2)
rs =

∑
l,l′,u,u′,v

MuvMu′u′MrlMrl′ EXlsXl′sXusXvsX2
u′j′

=
∑
l ̸=u
u′

MuuMu′u′M2
rl

︸ ︷︷ ︸
l=l′ ̸=u=v

+
∑
l ̸=l′

u′

Mll′Mu′u′MrlMrl′

︸ ︷︷ ︸
l=u̸=l′=v

+
∑
l ̸=l′

u′

Mll′Mu′u′MrlMrl′

︸ ︷︷ ︸
l=v ̸=l′=u

+ 3
∑
l,u′

MllMu′u′M2
rl︸ ︷︷ ︸

l=u=l′=v

= tr(M)

∑
l,u

MuuM2
rl + 2

∑
l,l′

Mll′MrlMrl′

= tr(M)

tr(M) ∥Mr,·∥2
2 + 2

∑
l,l′

Mll′MrlMrl′

B(4)

rs =
∑

l,u,u′,v,v′

MuvMu′v′M2
rl EXujXvjXu′jXv′j

=
(∑

l

M2
rl

)
∑
u,v

M2
uv︸ ︷︷ ︸

u=u′ ̸=v=v′

+
∑
u,v

M2
uv︸ ︷︷ ︸

u=v′ ̸=u=v

+
∑
u,v

M2
uv︸ ︷︷ ︸

u=v ̸=u′=v′

+ 3
∑

u

M2
uu︸ ︷︷ ︸

u=v=u′=v′

= 3

(∑
l

M2
rl

)∑
u,v

M2
u,v

= 3 ∥Mr,·∥2
2 ∥M∥2

F

D Exact Variance when r = 2

Suppose that A is rotationally invariant under both left- and right-multiplication of an
orthogonal matrix. Define

Y. Li and D. P. Woodruff 35:21

U1(p, q) = Var((AT A)2
ii)

U2(p, q) = Var((AT A)2
ij) i ̸= j

U3(p, q) = cov((AT A)2
ii, (AT A)2

ik) i ̸= k (same row, one entry on diagonal)

U4(p, q) = cov((AT A)2
ij , (AT A)2

ik) j ̸= k (same row, both entries off-diagonal)

U5(p, q) = cov((AT A)2
ii, (AT A)2

jj) i ̸= j (diff. rows and cols, both entries on diagonal)

U6(p, q) = cov((AT A)2
ii, (AT A)2

jk) i ̸= j ̸= k (diff. rows and cols, one entry on diagonal)

U7(p, q) = cov((AT A)2
ij , (AT A)2

kl) i ̸= j ̸= k ̸= l (diff. rows and cols, nonsymmetric around diag.)

It is clear that they are well-defined.

Var(tr((AT A)2))

= Var
(∑

i,j

(AT A)2
ij

)
=
∑

i,j,k,l

cov((AT A)2
ij , (AT A)2

kl)

=
∑
i,j

Var((AT A)2
ij) + 2

∑
i

∑
j ̸=l

cov((AT A)2
ij , (AT A)2

il) +
∑
i̸=k
j ̸=l

cov(E(AT A)2
ij , (AT A)2

kl)

= q Var((AT A)2
11) + q(q − 1) Var(E(AT A)2

12)
+ 2

[
2q(q − 1) cov((AT A)2

11, (AT A)2
12) + q(q − 1)(q − 2) cov((AT A)2

12, (AT A)2
13)
]

+ q(q − 1) cov(E(AT A)2
11, (AT A)2

22) + q(q − 1) cov(E(AT A)2
12, (AT A)2

21)
+ 2q(q − 1)(q − 2) cov((AT A)2

11, (AT A)2
23)

+ 2q(q − 1)(q − 2) cov((AT A)2
12, (AT A)2

31)
+ q(q − 1)(q − 2)(q − 3)E(AT A)2

12(AT A)2
34

= qU1(p, q) + q(q − 1)U2(p, q) + 2q(q − 1)(2U3(p, q) + (q − 2)U4(p, q))
+ q(q − 1)(U5(p, q) + U2(p, q)) + 2q(q − 1)(q − 2)(U6(p, q) + U4(p, q))
+ q(q − 1)(q − 2)(q − 3)U7(p, q)

= qU1(p, q) + q(q − 1)(2U2(p, q) + 4U3(p, q) + U5(p, q))
+ 2q(q − 1)(q − 2)(2U4(p, q) + U6(p, q)) + q(q − 1)(q − 2)(q − 3)U7(p, q).

Let us calculate U1, . . . , U7 for a p × q Gaussian random matrix G.

U1(p, q) = E(GT G)4
11 − (E(GT G)2

11)2 = E ∥G1∥8
2 − (E ∥G1∥4

2)2

= p(p + 2)(p + 4)(p + 6) − (p(p + 2))2

= 8p(p + 2)(p + 3)

U2(p, q) = E(GT G)4
12 − (E(GT G)2

12)2 = E

(∑
r

Gr1Gr2

)4

− (E⟨G1, G2⟩2)2

=
∑

r,s,t,u

EGr1Gs1Gt1Gu1Gr2Gs2Gt2Gu2 − p2

= 3
∑
r ̸=t

EG2
r1G2

t1G2
r2G2

t2 +
∑

r

G4
r1G4

r2 − p2

= 3p(p − 1) + 9p − p2 = 2p(p + 3).

APPROX/RANDOM 2021

35:22 The Product of Gaussian Matrices Is Close to Gaussian

U3(p, q) = E(GT G)2
11(GT G)2

12 − E(GT G)2
11 E(GT G)2

12

= E(GT
1 G1)2GT

1 G2GT
2 G1 − E ∥G1∥4

2 E⟨G1, G2⟩2

= E(GT
1 G1)2GT

1 (EG2GT
2)G1 − p(p + 2) · p

= E(GT
1 G1)3 − p2(p + 2)

= E ∥G1∥6
2 − p2(p + 2) = p(p + 2)(p + 4) − p2(p + 2) = 4p(p + 2)

U4(p, q) = E(GT G)2
12(GT G)2

13 − E(GT G)2
12 E(GT G)2

13

= EGT
1 G2GT

2 G1GT
1 G3GT

3 G1 − p2

= EGT
1 E(G2GT

2)G1GT
1 E(G3GT

3)G1 − p2

= E(GT
1 G1)2 − p2 = E ∥G1∥4

2 − p2 = p(p + 2) − p2 = 2p

U5(p, q) = E(GT G)2
11(GT G)2

22 − E(GT G)2
11 E(GT G)2

22

= E ∥G1∥4
2 ∥G2∥4

2 − E ∥G1∥4
2 ∥G2∥4

2 = 0
U6(p, q) = E(GT G)2

11(GT G)2
23 − E(GT G)2

11 E(GT G)2
23

= E ∥G1∥4
2 ⟨G2, G3⟩2 − E ∥G1∥4

2 E⟨G2, G3⟩2 = 0
U7(p, q) = E(GT G)2

12(GT G)2
34 − E(GT G)2

12 E(GT G)2
34

= E⟨G1, G2⟩2⟨G3, G4⟩2 − E⟨G1, G2⟩2 E⟨G3, G4⟩2 = 0

Therefore

Var(tr((GT G)2)) = qU1 + q(q − 1)(2U2 + 4U3 + U5) + 2q(q − 1)(q − 2)(2U4 + U6)
+ q(q − 1)(q − 2)(q − 3)U7

= qU1 + q(q − 1)(2U2 + 4U3) + 4q(q − 1)(q − 2)U4

= 4pq(5 + 5p + 5q + 2p2 + 5pq + 2q2).

When r = 2, recalling that E(A2 − A1) = (1 + o(1))p2q2/d3 (see (4)), we have that√
Var(tr((1√

d
GT · 1√

d
G)2))

p2q2/d3 ≤ 6d

max{p, q} 1
2 min{p, q} 3

2
.

If the right-hand side above is at most a small constant c, we can distinguish A2 from A1
with probability at least a constant.

Fast Mixing via Polymers for Random Graphs with
Unbounded Degree
Andreas Galanis #

Department of Computer Science, University of Oxford, UK

Leslie Ann Goldberg #

Department of Computer Science, University of Oxford, UK

James Stewart #

Department of Computer Science, University of Oxford, UK

Abstract
The polymer model framework is a classical tool from statistical mechanics that has recently been
used to obtain approximation algorithms for spin systems on classes of bounded-degree graphs;
examples include the ferromagnetic Potts model on expanders and on the grid. One of the key
ingredients in the analysis of polymer models is controlling the growth rate of the number of
polymers, which has been typically achieved so far by invoking the bounded-degree assumption.
Nevertheless, this assumption is often restrictive and obstructs the applicability of the method to
more general graphs. For example, sparse random graphs typically have bounded average degree
and good expansion properties, but they include vertices with unbounded degree, and therefore are
excluded from the current polymer-model framework.

We develop a less restrictive framework for polymer models that relaxes the standard bounded-
degree assumption, by reworking the relevant polymer models from the edge perspective. The edge
perspective allows us to bound the growth rate of the number of polymers in terms of the total
degree of polymers, which in turn can be related more easily to the expansion properties of the
underlying graph. To apply our methods, we consider random graphs with unbounded degrees from
a fixed degree sequence (with minimum degree at least 3) and obtain approximation algorithms for
the ferromagnetic Potts model, which is a standard benchmark for polymer models. Our techniques
also extend to more general spin systems.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures; Theory of computation → Design and analysis of algorithms

Keywords and phrases Markov chains, approximate counting, Potts model, expander graphs, random
graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.36

Category RANDOM

Related Version A full version with all proofs can be found at : https://arxiv.org/abs/2105.00524

1 Introduction

The polymer model framework [21, 14] is a classical tool from statistical mechanics which has
recently been used to obtain efficient approximation algorithms for analysing spin systems
(such as the Potts model) in parameter regimes where standard algorithmic approaches are
provably inefficient/inaccurate on general graphs. These algorithms apply to certain classes
of graphs that typically have sufficiently strong expansion properties relative to their local
growth rates. Typically, the local growth rate is restricted by a bounded-degree assumption.
Examples of such classes include bounded-degree expanders [20, 22, 7, 5, 6, 2, 10, 15] and
the d-dimensional grid [16, 4, 20, 17]. The purpose of this work is to expand the current
framework for applying polymer models by relaxing the bounded-degree assumption and
using alternative methods to capture the growth of the graph.

© Andreas Galanis, Leslie Ann Goldberg, and James Stewart;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.galanis@cs.ox.ac.uk
mailto:leslie.goldberg@cs.ox.ac.uk
mailto:james.stewart@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.36
https://arxiv.org/abs/2105.00524
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

To briefly review the current framework, we use as a running example the q-state
ferromagnetic Potts model with parameter β > 0. For a graph G = (VG, EG), the set ΩG,q of
configurations of the model is the set of all (not necessarily proper) q-colourings σ of VG using
the set of colours [q] = {1, . . . , q} where q ≥ 3. The weight of a colouring σ is w(σ) = eβmG(σ)

where mG(σ) is the number of monochromatic edges under σ. The so-called partition function
Z = ZG,q,β is the aggregate weight of all σ and the Gibbs distribution µ = µG,q,β is the
probability distribution on the set of all σ, in which each σ has mass proportional to its
weight, i.e., µ(σ) = w(σ)/Z. We will study the computational problems of approximating
the partition function and approximately sampling from the Gibbs distribution. In general,
these problems are computationally hard (#BIS-hard) when the parameter β is sufficiently
large [13, 12].

The recent works [16, 20] introduced a framework based on polymer models that bypasses
the worst-case hardness, on classes of bounded-degree graphs with expansion properties. The
rough intuition for the Potts model is that, for large β, due to the expansion properties, the
colourings with non-negligible weight are close to the so-called ground-states of the model,
i.e., the q configurations in which all vertices get the same colour. Polymer models capture
the deviation of configurations from these ground states. Given a ground state with colour r,
a polymer is a connected set of vertices, none of which is coloured with r, and a polymer
configuration (with respect to the ground state r) corresponds to the set of all polymers
(see Example 4 for more details). The Potts model can then be decomposed into q polymer
models, each of which can be studied using relatively streamlined algorithmic methods
(based on interpolation [1] and Markov chains). This framework has already found multiple
algorithmic applications in far more general settings [16, 4, 17, 20, 19, 22, 7, 9, 5, 6, 10, 15].

Despite these advances, the current applications of polymer models rely crucially on the
fact that the maximum degree of the underlying graph is bounded. This fact is used to
control the number of polymers of a given size (which is crucially needed for the algorithmic
analysis). As a result of this limitation, applications to several other interesting classes of
graphs are ruled out, excluding for example sparse random graphs, which have bounded
average degree and good expansion properties, but include vertices with unbounded degree.

1.1 Main Results
In this paper, we propose a framework for polymer models that overcomes the bounded-
degree limitations of previous algorithms, by revisiting the Markov chain approach of [7]. We
introduce a new condition which requires that the weight of each polymer decays exponentially
in its total degree (the sum of the degrees of the vertices in the polymer) instead of decaying
exponentially in the polymer’s size. This new condition allows us to prove rapid mixing for
a Markov chain which is an adapted edge-version of the so-called polymer dynamics of [7].
Crucially, the fact that the new condition is formulated in terms of the total degree of a
polymer allows us to relax the assumption that the instance has bounded degree.

As an application of our method, we consider the q-state ferromagnetic Potts model on
sparse random graphs of unbounded degree with a given degree sequence, as detailed below.

▶ Definition 1. Let d be a positive real number and n be a positive integer. We define Dn,d

to be the set of all degree sequences {x1, x2, ..., xn} that satisfy
1. For all i ∈ [n], 3 ≤ xi ≤ nρ where ρ = 1

50 , and
2.

∑
i∈[n] x2

i ≤ dn.
We write G ∼ G(n, x⃗) to indicate that G is a graph chosen uniformly at random from the
set of all simple n-vertex graphs with degree sequence x⃗. G satisfies a property with high
probability (whp) if the probability that G satisfies the property is 1 − o(1), as a function of n

(uniformly over x⃗).

A. Galanis, L. A. Goldberg, and J. Stewart 36:3

Note that Dn,d is empty unless d ≥ 9. The assumption that all degrees are greater than
or equal to 3 (rather than 2) guarantees that the random graph G is connected and has
good expansion properties. The degree lower bound also means that our results do not apply
to Erdős-Rényi random graphs. The upper bound on the degrees is mild and can in fact
be relaxed somewhat further (but in general cannot be made to be linear in n due to the
sparsity assumption in Item 2).

We give an efficient algorithm for approximately sampling1 from and approximating the
partition function2 of the ferromagnetic Potts model on random graphs with a given degree
sequence for all sufficiently large β.

▶ Theorem 2. Let d be a real number and q ≥ 3 be an integer. For the ferromagnetic
Potts model, there is β0 such that for all β ≥ β0 there is a poly-time approximate sampling
algorithm for µG,q,β and an FPRAS for ZG,q,β that work with high probability on random
graphs G ∼ G(n, x⃗) for any degree sequence x⃗ ∈ Dn,d.

▶ Remark 3. Note that β0 depends on d and q, and our arguments later (see Remark 17)
show that β0 = Cd log d log q for some C > 0 (independent of d or q). If the desired accuracy
ε is at least e−n then the running time of the sampling algorithm is O

(
n log n

ε log 1
ε

)
and the

running time of the FPRAS is O
(
n2(log n

ε)3)
.

We further remark that the bounded-degree assumption has also been relaxed in [17] for
the ferromagnetic Potts model on lattice graphs; the approach therein however is tailored to a
certain flow representation of the Potts model, which is used as a basis for the corresponding
polymer models and therefore does not extend to general spin systems. Our approach applies
to general polymer models as detailed in the next section and our focus on the ferromagnetic
Potts model is mainly to illustrate the method without further technical overhead; the
approach for example can be adapted to general spin systems on bipartite random graphs
with a given degree sequence (analogously to [10]).

2 Polymers

The main technique that we use to prove Theorem 2 is to refine the polymer framework
by introducing a new polymer sampling condition which requires that the weight of each
polymer decays exponentially in its total degree. In order to state the new condition we first
give some relevant definitions.

Let G = (VG, EG) be a graph – we refer to G as the “host graph” of the polymer
model. Let [q] = {1, . . . , q} be a set of spins and g = {gv}v∈VG

specify a set of ground-state
spins for the vertices, i.e., gv ⊆ [q] for each v ∈ VG. A polymer is a pair γ = (Vγ , σγ)
consisting of a connected set of vertices Vγ and an assignment σγ : Vγ → [q] such that
σγ(v) ∈ [q]\gv. Let PG be the set of all polymers. A polymer model for the host graph G is
specified by a subset of allowed polymers CG ⊆ PG, and a weight function wG : CG → R≥0.
For polymers γ, γ′ ∈ PG, we write γ ∼ γ′ to denote that γ, γ′ are compatible, i.e., that

1 A polynomial-time approximate sampling algorithm for µG,q,β is an algorithm that, given an accuracy
parameter ε > 0 and a graph G = (VG, EG) as input, outputs a sample from a probability distribution
that is within total variation distance ε of µG,q,β , in time poly(|VG|, 1/ε).

2 Given an accuracy parameter ε > 0, we say that Ẑ is an ε-approximation to the quantity Z if
e−εZ ≤ Ẑ ≤ eεZ. A fully polynomial randomised approximation scheme (FPRAS) for ZG,q,β is a
randomised algorithm that, given an accuracy parameter ε > 0 and a graph G = (VG, EG) as input,
outputs a random variable that is an ε-approximation to ZG,q,β with probability at least 3/4, in time
poly(|VG|, 1/ε).

APPROX/RANDOM 2021

36:4 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

for every u ∈ γ and u′ ∈ γ the graph distance in G between u and u′ is at least 2.
We define ΩG = {Γ ⊆ CG | ∀γ, γ′ ∈ Γ, γ ∼ γ′} to be the set of all sets of mutually
compatible polymers of CG; elements of ΩG are called polymer configurations. We define the
partition function as ZG =

∑
Γ∈ΩG

∏
γ∈Γ wG(γ), and the Gibbs distribution on Γ ∈ ΩG as

µG(Γ) =
∏

γ∈Γ wG(γ)/ZG. We use (CG, wG) to denote the polymer model.

▶ Example 4 (The polymer model (Cr
G,q, wG,β), [20]). Consider the q-state ferromagnetic

Potts model with parameter β, and let r ∈ [q] be a colour. Let G be a graph and set gv = {r}
for every v ∈ VG. The weight of a polymer γ = (Vγ , σγ) is defined as wG,β(γ) = e−βBγ ,
where Bγ denotes the number of edges from Vγ to VG\Vγ plus the number of edges of G

with both endpoints in Vγ that are bichromatic under σγ . We let Pr
G,q denote the set of all

polymers and the set of allowed polymers Cr
G,q to be the set of polymers γ ∈ Pr

G,q such that
|Vγ | < |VG|/2. Note that a polymer configuration Γ consisting of the polymers γ1, . . . , γk

corresponds to a colouring σ, where a vertex v takes the colour σγi
(v) if v ∈ Vγi

for some
i ∈ [k], and the colour r otherwise; moreover, eβ|EG| ∏

i∈[k] wG(γi) = wG(σ).

Polymer models have been used to approximate the partition function of spin systems on
bounded-degree host graphs. There are several existing algorithmic frameworks which can be
used to sample from these resulting polymer models. One such deterministic algorithm uses
the polynomial interpolation method of Barvinok [1] combined with the cluster expansion to
approximate the partition function of the polymer model (see [16] for more details). Typical
running times for these deterministic algorithms are of the form nO(log(∆)), where ∆ is the
maximum degree of the host graph, though for polymer models these have been improved to
give a running time of n1+o∆(1), see [20]. Another approach, described in Section 4 of the
full version [11], uses a Markov chain called the polymer dynamics to sample from µG (see
also [7] for more details). The running times of algorithms obtained using the Markov chain
approach are usually faster and of the form O(n log n). Both of these approaches work for
roughly the same range of parameters, and the essential condition required is that the weight
of each polymer decays exponentially in the number of vertices it contains. To obtain our
results, we give a simple generic way to modify this condition, as detailed below.

For a vertex v ∈ VG we write degG(v) to denote the degree of v in G, and for a vertex
subset S ⊆ VG we write degG(S) to denote

∑
v∈S degG(v).

▶ Definition 5. Let q ≥ 2 be an integer, G be a class of graphs, and FG = {(CG, wG) | G ∈ G}
be a family of q-spin polymer models. We say that FG satisfies the polymer sampling condition
with constant τ ≥ 3 log(8e3(q − 1)) if wG(γ) ≤ e−τ degG(Vγ) for all G ∈ G and all γ ∈ CG.3

Using Definition 5, we will show (Lemma 8, below) that if a “computationally feasible”
family of polymer models on a class of graphs G satisfies this new condition, then there is
an efficient algorithm which, given a graph G ∈ G, approximately samples from the Gibbs
distribution of the polymer model corresponding to G.

The new polymer sampling condition in Definition 5 is analogous to the original one in [7]
except that the original condition requires the weight of a polymer to decay exponentially in
its size, and in particular that the constant τ is sufficiently big relative to the maximum degree
of G. The new condition relaxes this, allowing us to choose the constant τ in Definition 5 so
that it does not depend on the maximum degree of the host graph, which is how we overcome
the limitations of previous work. Technically, the improvement comes from the fact that
previous work relies on bounding the number of connected vertex subsets of a given size

3 Unless we specify otherwise, the base of all logarithms in this paper is assumed to be e.

A. Galanis, L. A. Goldberg, and J. Stewart 36:5

(with bounds that depend on the maximum degree of the graph), but here we are able to
instead rely on the following lemma which bounds the number of connected vertex subsets
with a given total degree and this enables us to avoid restricting the maximum degree of the
graph. The new condition, which replaces the notion of “size” with total degree, fits well
with the original abstract polymer model framework of [21], where the notion of the “size” of
a polymer is an abstract function.

▶ Lemma 6. Let G = (VG, EG) be a graph, v ∈ VG, and ℓ ≥ 1 be an integer. The number of
connected vertex subsets S ⊆ VG such that v ∈ S and degG(S) = ℓ is at most (2e)2ℓ−1.

In addition to the bound on the number of connected vertex subsets in Lemma 6, we will
use the fact that these connected vertex subsets can be enumerated in time exponential in
the total degree ℓ (see Lemma 21 of the full version). Although the bound in Lemma 6 is
exponential in ℓ, this will be mitigated by the fact that the new polymer sampling condition
ensures that the weight of each polymer is exponentially small in its total degree. The new
polymer sampling condition therefore allows us to prove that the following condition holds –
this condition is analogous to the polymer mixing condition of [7], except that we consider
edges instead of vertices. For a polymer γ ∈ PG, let Eγ denote the set of edges of G with at
least one endpoint in Vγ .

▶ Definition 7. Let q ≥ 2 be an integer, G be a class of graphs, and FG = {(CG, wG) | G ∈ G}
be a family of q-spin polymer models. We say that FG satisfies the polymer mixing condition
with constant θ ∈ (0, 1) if

∑
γ′≁γ |Eγ′ | · wG(γ′) ≤ θ|Eγ | for all G ∈ G and all γ ∈ CG.

In contrast to the conditions in [7], the two new conditions consider edges since we
modify the polymer dynamics algorithm to sample edges instead of vertices. Subject to these
new conditions, the techniques of [7] can be adapted to show that the modified polymer
dynamics mixes rapidly, therefore giving the efficient algorithm for sampling from the Gibbs
distribution of a polymer model. We give the details of the modified dynamics in Section 4
of the full version [11].

Finally, in order to use the modified polymer dynamics as an efficient algorithm for
computing an approximate sample from µG, we will need a mild computational condition
for polymers. More precisely, we say that a family of polymer models {(CG, wG) | G ∈ G}
is computationally feasible if for all G ∈ G and all γ ∈ PG, it is possible to decide whether
γ ∈ CG and to compute wG(γ), if it is, in O(edegG(Vγ)) time. Computational feasibility
serves exactly the same purpose as it did in Definition 3 of [7], which requires that the same
operations are able to be carried out in time depending on |Vγ | (instead of degG(Vγ) that we
use here).

In Section 4 of the full version [11], we prove the following lemma which gives an
efficient algorithm for sampling4 from the Gibbs distribution of a polymer model and for
approximating its partition function. In order to prove the lemma, we extend the polymer
dynamics algorithm of [7] to the unbounded degree setting. The proof of the lemma uses
the fact (see Lemma 18 of the full version) that the polymer sampling condition implies the
polymer mixing condition.

4 Given an accuracy parameter ε > 0, we say that a random variable X is an ε-sample from the probability
distribution µ if the total variation distance between the distribution of X and µ is at most ε.

APPROX/RANDOM 2021

36:6 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

▶ Lemma 8. Let q ≥ 2 be an integer, G be a class of graphs, and FG be a family of
computationally feasible q-spin polymer models satisfying the polymer sampling condition.

There are randomised algorithms which, given as input a graph G ∈ G with m edges and
an accuracy parameter ε > 0, output an ε-sample from µG in O

(
m log m

ε log 1
ε

)
time, and an

ε-approximation to ZG, with probability at least 3/4, in O
(
m2 log(m

ε)3)
time.

We next give the proof of Lemma 6 which is one of the key technical ingredients allowing
us to relax the bounded-degree restriction and to remove the dependence of the constant τ

in Definition 5 on the maximum degree of the host graph, as noted earlier.

Proof of Lemma 6. Let N(G, v, ℓ) be the set of subtrees T = (VT , ET) of G such that
v ∈ VT , degG(VT) = ℓ. We will show that |N(G, v, ℓ)| ≤ (2e)2ℓ−1, which gives us the desired
result for the following reason. Let S ⊆ VG be a connected vertex subset such that v ∈ S

and degG(S) = ℓ. Since S is connected, it has at least one spanning tree T = (VT = S, ET)
such that v ∈ VT and degG(VT) = ℓ. Since S is the unique connected vertex subset that T

spans, this gives us an injective map from the set of all connected vertex subsets containing
v with total degree ℓ, to N(G, v, ℓ).

We now give an injective map from N(G, v, ℓ) to T ∗(2ℓ, 3) – the set of subtrees of size
2ℓ that contain the root, of the infinite rooted 3-regular tree. By a result of Bollobás [3,
p. 129], we know that |T ∗(2ℓ, 3)| is at most (2e)2ℓ−1. Let T = (VT , ET) be a subtree from
N(G, v, ℓ). We will map T to a rooted subtree T ′ = (VT ′ , ET ′) from T ∗(2ℓ, 3). For each
vertex of VG, fix an ordering of its neighbours. In the infinite rooted 3-regular tree, label the
edges incident to the root with {1, 2, 3}, and for each other vertex label the edges connecting
it to its two children with {1, 2}. As we construct T ′, we will label its edges so that it is
clear which subtree from T ∗(2ℓ, 3) we are constructing, we will also label some of its vertices.
We construct T ′ as follows (see Figure 1 for an example of the following construction).
1. Add the root to VT ′ and label it v.
2. While there is a labelled vertex of T ′ (call its label u) such that u has a child w in T

but no vertex of T ′ is labelled w, then we do the following. First, we create a path P of
length degG(u) where each edge is labelled 1. We then connect the vertex of T ′ labelled
u to P via an edge labelled 1. Finally, for 1 ≤ i ≤ degG(u), we connect a vertex labelled
w to the ith vertex of P via an edge labelled 2, if w is the ith neighbour of u in G and w

is a child of u in T .

u

u1 u2 u3 u4 u5 u6

(a) Neighbourhood of u in G.

u

u1 u3 u5 u6

(b) Neighbourhood of u in T .

u

u1

u3

u5

u6

1

1

1

1

1

1

2

2

2

2

(c) Neighbourhood of u in T ′.

Figure 1 Constructing T ′.

A. Galanis, L. A. Goldberg, and J. Stewart 36:7

Each T ∈ N(G, v, ℓ) maps to a different T ′ ∈ T ∗(2ℓ, 3). When constructing T ′, we used
edge labels from {1, 2, 3}, therefore the maximum degree of T ′ is 3. For each v ∈ VT , we added
at most 2 degG(v) vertices to T ′, therefore the size of T ′ is at most 2 degG(VT) = 2ℓ. ◀

3 Application to unbounded-degree graphs

Let α > 0 be a real number. We say that a graph G is an α-total-degree expander if, for all
connected vertex subsets S ⊆ VG with |S| ≤ |VG|/2, we have eG(S, Sc) ≥ α degG(S), where
eG(S, Sc) denotes the number of edges with one endpoint in S and the other in Sc := VG \ S.
Let Gα denote the set of all α-total-degree expanders. Note, every connected G ∈ Gα is also
an α-expander (i.e., eG(S, Sc) ≥ α|S|).

When β is sufficiently large, the polymer model from Example 4 satisfies the polymer
sampling condition (Definition 5) with constant τ = αβ. To see this, consider γ ∈ Cr

G,q and
observe that since Bγ ≥ eG(Vγ , V c

γ) and |Vγ | < |VG|/2, it follows that

wG,β(γ) ≤ exp {−αβ degG(Vγ)} = e−τ degG(Vγ), (1)

where τ ≥ 3 log(8e3(q − 1)) if β ≥ 3
α log(8e3(q − 1)).

We may therefore apply Lemma 8 in order to efficiently sample from the ferromagnetic
Potts model and to estimate ZG for G ∈ Gα, provided that β is sufficiently large. The proof
of the following theorem is in Section 5 of the full version [11].

▶ Theorem 9. Let α > 0 be a real number. Let q ≥ 3 be an integer and β ≥ 3
α log(8e3(q − 1))

be a real. For the Potts model on G ∈ Gα, there is a poly-time approximate sampling algorithm
for µG,q,β and an FPRAS for ZG,q,β.

In fact, for n = |VG| and m = |EG|, if the desired accuracy ε satisfies ε ≥ e−n then
the running time of the sampler is O(m log m

ε log 1
ε) and the running time of the FPRAS is

O
(
m2(log m

ε)3)
.

3.1 Expansion of random graphs with specified degree sequences
Let d be a real number. In this section, we will show that a graph G ∼ G(n, x⃗) for a degree
sequence x⃗ ∈ Dn,d is whp an α-total-degree-expander for some constant α > 0, i.e., that
G ∈ Gα.

To work with G ∼ G(n, x⃗), we consider the standard configuration model, where a random
multigraph H = (VH , EH) with the given degree sequence x⃗ is sampled by the following
process. For each i ∈ [n], we attach xi half-edges to the vertex i. We then sample a uniformly
random perfect matching on the half-edges to give EH . This uniformly random perfect
matching can be sampled by performing the following until no half-edges remain: choose
any remaining half-edge, choose another remaining half-edge uniformly at random, then
pair these two half-edges and remove them from the set of remaining half-edges. We write
H ∼ CM(n, x⃗). Note, for two vertices i, j ∈ VH such that i ̸= j, the probability that a half
edge attached to i and a half edge attached to j are paired is

p{i,j} = xixj

2m − 1 , where m = 1
2

∑n
k=1 xk, (2)

and similarly the probability that two half-edges of i are connected is p{i,i} = xi(xi−1)
2m(2m−1) .

We first prove results about CM(n, x⃗), since asymptotic properties of CM(n, x⃗) can easily
be transferred back to G(n, x⃗) using the following straightforward consequence of [18, Theorem
1.1]. A proof is included in the full version [11] for completeness.

APPROX/RANDOM 2021

36:8 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

▶ Lemma 10. Let d be a positive real number. For every positive integer n, let En be a set
of n-vertex multigraphs. If, for some x⃗ ∈ Dn,d, G ∼ G(n, x⃗) and H ∼ CM(n, x⃗) then the
following is true. If H ∈ En with high probability, then G ∈ En with high probability.

For a (multi)graph H = (VH , EH) we define the tree-excess to be tH = |EH | − (|VH | − 1);
that is, the number of edges more than a tree that H has. First, we show that multigraphs
drawn from the configuration model have locally bounded tree excess.

▶ Lemma 11. Let d be a positive real number. The following is true with high probability
when H = (VH , EH) is drawn from CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d.
For all connected vertex sets S ⊆ VH with |S| ≤ (log n)2 and degH(S) ≥ 36, we have that
tH[S] ≤ 1

6 degH(S).

Proof. For positive integers k and ℓ, and a non-negative integer t, let the random variable
Xk,ℓ,t denote the number of connected vertex subsets S ⊆ VH such that |S| = k, degH(S) = ℓ,
and tH[S] = t. To prove the lemma, we will show that whp∑

k≤⌊(log n)2⌋

∑
ℓ≥36

∑
t≥⌊ℓ/6⌋+1

Xk,ℓ,t = 0.

In fact, we can further restrict the range of summation. From the lower bound in Item 1
of Definition 1, we have that xi ≥ 3 for all i, and therefore ℓ ≥ 3k. Item 2 shows that∑

i xi ≤ dn, and therefore ℓ ≤ dn and t ≤ ℓ/2 ≤ dn/2. So, consider any integer ℓ in the
range 36 ≤ ℓ ≤ dn, any integer k in the range 1 ≤ k ≤ min{(log n)2, ℓ/3}, and any integer
t > ℓ/6. There are at most

(
n
k

)
vertex subsets S ⊆ VH with |S| = k and degG(S) = ℓ. Let

j = k − 1 + t be the number of edges with both endpoints in S. Given such a set S, there
are at most

(
ℓ

2j

)
possibilities for the set of half-edges in these j edges. On a given set of

2j half-edges, there are (2j − 1)!! = (2j)!
2jj! perfect matchings. Using the upper bound on the

degrees from Item 1 of Definition 1, the probability that a set of j edges is present in H is at
most

n2ρ

2m − 1
n2ρ

2m − 3 · · · n2ρ

2m − 2j + 1 ≤
(

n2ρ

2m − 2j

)j

≤
(

n2ρ

n

)j

,

where the final inequality follows from the fact that k ≤ (log n)2 and therefore that 2m−2j ≥
degG(Sc) ≥ 3|Sc| = 3(n − k) > n (as long as n is sufficiently big). We also have that(

ℓ

2j

)
· (2j)!

2jj! <
ℓ!

(ℓ − 2j)!j! <
ℓ2jej

jj
≤

(
eℓ2

t

)j

.

Putting everything together, it follows that

E[Xk,ℓ,t] ≤
(

n

k

) (
eℓ2

t

)k−1+t (
n2ρ

n

)k−1+t

<

(
e2ℓ2

t

)k−1+t
n2ρ(k−1+t)

nt−1 .

Furthermore, since t > ℓ/6, k < 2t, and (by the upper bound in Item 1 of Definition 1)
ℓ ≤ knρ ≤ n2ρ, we have that

E[Xk,ℓ,t] <
(6e2n4ρ)3t−1

nt−1 . (3)

Let

X =
dn∑

ℓ=36

⌊min{(log n)2,ℓ/3}⌋∑
k=1

⌊dn/2⌋∑
t=⌊ℓ/6⌋+1

Xk,ℓ,t.

A. Galanis, L. A. Goldberg, and J. Stewart 36:9

Since t > ℓ/6 ≥ 6, it follows that t ≥ 7. For big enough n, (3) shows that E[Xk,ℓ,t] ≤
n13ρt/nt−1. Since ρ ≤ 2/91 and t ≥ 7, 1 − 13ρ ≥ 5/7 ≥ 5/t so 13ρt ≤ t − 5 and E[Xk,ℓ,t] is
at most n−4. Taking a union bound over all permissible values for ℓ, k, and t, we find that
E[X] = o(1). Applying Markov’s inequality, we have that Pr(X > 0) = Pr(X ≥ 1) ≤ E[X] =
o(1), and the result follows. ◀

To obtain the expansion bounds in Lemmas 13 and 14, we require the following result
from [8, Proposition 4.5]. Although this result is stated in [8] in terms of the random
graph model, it is first proved for the configuration model, so this is how we state it. Also,
Fountoulakis and Reed require that the vector x⃗ be in Dn,d but this is only important for
lifting their result to the random graph model, so it is not relevant for us.

▶ Lemma 12. (Fountoulakis, Reed) Let H = (VH , EH) be drawn from CM(n, x⃗) for some
length-n degree sequence x⃗. For any set S ⊆ VH we have Pr(eH(S, Sc) = 0) ≤

(
m

degH (S)/2
)−1,

where m = 1
2

∑
i xi.

Note that Fountoulakis and Reed’s lemma was stated for S such that degH(S) is even,
but if degH(S) is odd, it is not possible to have eH(S, Sc) = 0. Next, we show that in
a multigraph H drawn from the configuration model, small vertex subsets satisfy certain
expansion properties.

▶ Lemma 13. Let d be a positive real number. The following is true with high probability
when H = (VH , EH) is drawn from CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d.
For all connected vertex sets S ⊆ VH with |S| ≤ (log n)2, we have that eH(S, Sc) ≥ |S|/4.

Proof. For positive integers k and ℓ, and a non-negative integer j, let the random variable
Xk,j,ℓ denote the number of connected vertex subsets S ⊆ VH with |S| = k, eH(S, Sc) = j,
and degH(S) = ℓ. By Item 1 of Definition 1, we need only consider ℓ satisfying 3k ≤ ℓ ≤ knρ.
Let

X =
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

Xk,j,ℓ.

To prove the lemma we will show that X = 0, whp. Consider any integer k in the range
1 ≤ k ≤ (log n)2, any integer j in the range 0 ≤ j < k/4, and any integer ℓ in the range
3k ≤ ℓ ≤ knρ. There are at most

(
n
k

)
candidates for vertex sets S with |S| = k and

degH(S) = ℓ. There are then at most
(

ℓ
j

)
choices for the j half-edges emanating from vertices

of S that will be matched with half-edges emanating from vertices of Sc, once H is drawn.
Applying Lemma 12 to the degree sequence derived from x⃗ by removing the j half-edges (and
their partners), the probability that the remaining ℓ − j half-edges are matched amongst
themselves is at most

(
m′

(ℓ − j)/2

)−1
≤

(
(ℓ − j)

2m′

) (ℓ−j)
2

≤
(

knρ

n

) 11k
8

,

where 2m′ = (
∑n

i=1 xi) − 2j and the last inequality follows (for big enough n) since 11k/4 ≤

APPROX/RANDOM 2021

36:10 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

ℓ − j ≤ knρ and 2m′ ≥ 3n − 2j > n. We therefore have that

E[X] ≤
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

(
n

k

)(
ℓ

j

) (
knρ

n

) 11k
8

≤
⌊(log n)2⌋∑

k=1

⌊k/4⌋∑
j=0

⌊knρ⌋∑
ℓ=3k

(ne
k

)k
(

eℓ

j

)j (
knρ

n

) 11k
8

≤
⌊(log n)2⌋∑

k=1

(
(log n)O(1)nρ(2+11/8)

n3/8

)k

.

This is o(1) since ρ < 1/9. Applying Markov’s inequality, we have that Pr(X > 0) = Pr(X ≥
1) = o(1), and the result follows. ◀

The next lemma handles the expansion of sets S with relative big size.

▶ Lemma 14. Let d be a positive real number. There is a positive real number α (depending
on d) such that the following is true with high probability when H = (VH , EH) is drawn from
CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d. For all connected vertex sets S ⊆ VH

with (log n)2 ≤ |S| ≤ n/2, we have that eH(S, Sc) ≥ α degH(S).

Proof. We will give the proof for vertex sets S ⊆ VH with (log n)2 ≤ |S| ≤ n/2 and
degH(S) > max{100d|S|, n/2}, the cases where degH(S) ≤ max{100d|S|, n/2} follow by
arguments that are close to those in [8], and are given in the full version [11].

Let C = 104d. By the Cauchy-Schwarz inequality, we have that |S|
∑

i∈S x2
i ≥

(degH(S))2 ≥ 104d2|S|2, so using Item 2 of Definition 1 which ensures that
∑

i∈S x2
i ≤ dn,

we find that |S| ≤ n/C.
Let f = (eC)1/C . The number of sets S satisfying |S| ≤ n/C is at most n

(
n

n/C

)
≤ nfn

since there are at most n possibilities for |S| to consider, and for each of them
(

n
|S|

)
≤

(
n

n/C

)
.

Fix any set S ⊆ VH with |S| ≤ n/C and consider the random construction of H , starting
from half-edges in Sc (and choosing their mates in the pairing). Let

j =
⌊

degH(Sc)
2

⌋
≥

⌊
3|Sc|

2

⌋
≥

⌊
3n

(
1 − 1

C

)
2

⌋
≥

3n
(
1 − 2

C

)
2 ,

where the first inequality uses the fact that each xi is at least 3 (from Item 1 of Definition 1)
and the final inequality uses the fact that n is sufficiently large.

Note that the process initiates a pairing from at least j half-edges in Sc. For each i ∈ [j],
let Yi be the indicator random variable for the event that the i’th half-edge from which
pairing is initiated connects to an endpoint in S (conditioned on the pairings of the first i − 1
half-edges initiated from Sc).

Let ε = 3(1 − 2/C)/(8d) ≤ 1/2. Recall from Item 2 in Definition 1 that
∑n

i=1 xi ≤ dn.
For any t ∈ [j] satisfying

∑t−1
i=1 Yt < εn/2 we have

Pr(Yt = 1) ≥ degH(S) − εn/2
dn

>
1 − ε

2d
≥ 1

4d
.

Now let X1, . . . , Xj be i.i.d. Bernoulli random variables which are 1 with probability 1/(4d).
We can couple the evolution of these variables so that, for any t ∈ [j] satisfying

∑t−1
i=1 Yi <

εn/2, we have
∑t

i=1 Yi ≥
∑t

i=1 Xi. We conclude that Pr(
∑j

i=1 Yi < εn/2) ≤ Pr(
∑j

i=1 Xi <

εn/2).

A. Galanis, L. A. Goldberg, and J. Stewart 36:11

To conclude we will show that nfn Pr(
∑j

i=1 Xi < εn/2) = o(1), implying that we can
take α = ε/(2d) since εn/2 = αdn ≥ α degH(S).

Let X =
∑j

i=1 Xi and δ = 1/2. Note that E[X] = j/(4d) and that

(1 − δ)j
4d

≥
(1 − δ)3n

(
1 − 2

C

)
8d

= εn

2 .

By a Chernoff bound, Pr(X ≤ εn/2) ≤ Pr(X ≤ (1 − δ)j/(4d)) ≤ exp(−jδ2/(8d)).
To conclude that nfn exp(−jδ2/(8d)) = o(1) we observe that f < exp(3(1−2/C)δ2/(16d)).

Taking α = ε/(2d), we conclude the proof. ◀

We can now prove the following result, which establishes the desired expansion properties
of the multigraphs generated by the configuration model.

▶ Lemma 15. Let d be a positive real number. There is a positive real number α (depending
on d) such that the following is true with high probability when H = (VH , EH) is drawn from
CM(n, x⃗) uniformly over all degree sequences x⃗ ∈ Dn,d. For all connected vertex sets S ⊆ VH

with |S| ≤ n/2, we have that eH(S, Sc) ≥ α degH(S).

Proof. We consider three cases.
Case 1. Consider all connected subsets S ⊆ VH with (log n)2 ≤ |S| ≤ n/2. By Lemma 14

there is a positive real number α′ such that, whp, every such subset S has eH(S, Sc) ≥
α′ degH(S).

Case 2. Consider all connected subsets S ⊆ VH with |S| ≤ (log n)2 and degH(S) ≥ 36.
Consider first those subsets S with |S| ≤ 1

6 degH(S). We have that

eH(S, Sc) = degH(S) − 2(tH[S] + |S| − 1) ≥ 2
3 degH(S) − 2|S| ≥ 1

3 degH(S),

by Lemma 11 and our assumption on the size of S.
Now consider those subsets S with |S| > 1

6 degH(S), then by Lemma 13, we have that
eH(S, Sc) ≥ |S|/4 ≥ degH(S)/24.

Case 3. Finally, consider connected subsets S ⊆ VH with |S| ≤ (log n)2 and degH(S) < 36.
By Lemma 13, we have that eH(S, Sc) ≥ |S|/4 ≥ 1/4 = 36/144 > degH(S)/144.

The result follows from the three cases by taking α = min{1/144, α′} = α′. ◀

Using the definition of Gα and Lemma 10, we have the following corollary of Lemma 15.

▶ Corollary 16. Let d be a real number. There is a positive real number α (depending on d)
such that the following holds. With high probability, when G ∼ G(n, x⃗) for some x⃗ ∈ Dn,d, it
holds that G ∈ Gα.

Combining Corollary 16 with Theorem 9 implies our main theorem.

▶ Theorem 2. Let d be a real number and q ≥ 3 be an integer. For the ferromagnetic
Potts model, there is β0 such that for all β ≥ β0 there is a poly-time approximate sampling
algorithm for µG,q,β and an FPRAS for ZG,q,β that work with high probability on random
graphs G ∼ G(n, x⃗) for any degree sequence x⃗ ∈ Dn,d.

Proof. Let d be a real number and let q ≥ 2 be an integer. Let α be the positive real number
from Corollary 16. Let β0 = 3

α log(8e3(q − 1)).
Consider x⃗ ∈ Dn,d and let G be drawn from G(n, x⃗). By Corollary 16, G ∈ Gα whp. The

result then follows by using the algorithms from Theorem 9. ◀

APPROX/RANDOM 2021

36:12 Fast Mixing via Polymers for Random Graphs with Unbounded Degree

▶ Remark 17. The bounds on β in Remark 3 follow from the choice of β0 in the proof of
Theorem 2 and from the fact that α = O(1

d log d) which follows from the proofs of Lemmas 14
and 15. The running time bounds in Remark 3 come from those in Theorem 9 using the fact
that |EG| = O(n) which follows from Item 2 of Definition 1.

References
1 Alexander Barvinok. Combinatorics and complexity of partition functions, volume 9. Springer,

2016.
2 Alexander Barvinok and Guus Regts. Weighted counting of solutions to sparse systems of

equations. Combinatorics, Probability and Computing, 28(5):696–719, 2019.
3 Béla Bollobás. The art of mathematics: Coffee time in Memphis. Cambridge University Press,

2006.
4 Christian Borgs, Jennifer Chayes, Tyler Helmuth, Will Perkins, and Prasad Tetali. Efficient

sampling and counting algorithms for the Potts model on Zd at all temperatures. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 738–751, 2020.

5 Sarah Cannon and Will Perkins. Counting independent sets in unbalanced bipartite graphs. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1456–1466, 2020.

6 Charles Carlson, Ewan Davies, and Alexandra Kolla. Efficient algorithms for the potts model
on small-set expanders. arXiv preprint arXiv:2003.01154, 2020.

7 Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric
Vigoda. Fast algorithms at low temperatures via Markov chains. Random Struct. Algorithms,
58(2):294–321, 2021. Theorems 5 and 6 from arxiv.org/abs/1901.0665.

8 Nikolaos Fountoulakis and Bruce A Reed. The evolution of the mixing rate of a simple
random walk on the giant component of a random graph. Random Structures & Algorithms,
33(1):68–86, 2008.

9 Tobias Friedrich, Andreas Göbel, Martin S. Krejca, and Marcus Pappik. A spectral independ-
ence view on hard-spheres via block dynamics, 2021. arXiv:2102.07443.

10 Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Algorithms for General
Spin Systems on Bipartite Expanders. In 45th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2020), pages 37:1–37:14, 2020.

11 Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast mixing via polymers for
random graphs with unbounded degree. CoRR, abs/2105.00524, 2021. arXiv:2105.00524.

12 Andreas Galanis, Daniel Stefankovic, Eric Vigoda, and Linji Yang. Ferromagnetic Potts model:
Refined #BIS-hardness and related results. SIAM Journal on Computing, 45(6):2004–2065,
2016.

13 Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the ferro-
magnetic Potts model. Journal of the ACM, 59(5):1–31, 2012.

14 Christian Gruber and Hervé Kunz. General properties of polymer systems. Communications
in Mathematical Physics, 22(2):133–161, 1971.

15 Tyler Helmuth, Matthew Jenssen, and Will Perkins. Finite-size scaling, phase coexistence, and
algorithms for the random cluster model on random graphs. arXiv preprint arXiv:2006.11580,
2020.

16 Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov–Sinai theory. Probability
Theory and Related Fields, 176(3):851–895, 2020.

17 Jeroen Huijben, Viresh Patel, and Guus Regts. Sampling from the low temperature Potts
model through a Markov chain on flows. CoRR, abs/2103.07360, 2021. arXiv:2103.07360.

18 Svante Janson. The probability that a random multigraph is simple. II. Journal of Applied
Probability, 51(A):123–137, 2014.

19 Matthew Jenssen and Peter Keevash. Homomorphisms from the torus, 2020. arXiv:2009.
08315.

http://arxiv.org/abs/2102.07443
http://arxiv.org/abs/2105.00524
http://arxiv.org/abs/2103.07360
http://arxiv.org/abs/2009.08315
http://arxiv.org/abs/2009.08315

A. Galanis, L. A. Goldberg, and J. Stewart 36:13

20 Matthew Jenssen, Peter Keevash, and Will Perkins. Algorithms for #BIS-hard problems on
expander graphs. SIAM Journal on Computing, 49(4):681–710, 2020.

21 Roman Koteckỳ and David Preiss. Cluster expansion for abstract polymer models. Commu-
nications in Mathematical Physics, 103(3):491–498, 1986.

22 Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao. Counting independent sets and colorings
on random regular bipartite graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), pages 34:1–34:12,
2019.

APPROX/RANDOM 2021

Deterministic Approximate Counting of Polynomial
Threshold Functions via a Derandomized
Regularity Lemma
Rocco A. Servedio #

Columbia University, New York, NY, USA

Li-Yang Tan #

Stanford University, CA, USA

Abstract
We study the problem of deterministically approximating the number of satisfying assignments of
a polynomial threshold function (PTF) over Boolean space. We present and analyze a scheme for
transforming such algorithms for PTFs over Gaussian space into algorithms for the more challenging
and more standard setting of Boolean space. Applying this transformation to existing algorithms
for Gaussian space leads to new algorithms for Boolean space that improve on prior state-of-the-art
results due to Meka and Zuckerman [19] and Kane [13]. Our approach is based on a bias-preserving
derandomization of Meka and Zuckerman’s regularity lemma for polynomials [19] using the [23]
pseudorandom generator for PTFs.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Derandomization, Polynomial threshold functions, deterministic approximate
counting

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.37

Category RANDOM

Funding Rocco A. Servedio: NSF grants CCF-1814873, IIS-1838154, CCF-1563155, and Simons
Collaboration on Algorithms and Geometry.
Li-Yang Tan: NSF CAREER award CCF-1942123.

Acknowledgements This material is based upon work supported by the National Science Foundation
under grant numbers listed above. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation (NSF).

1 Introduction

Unconditional derandomization has emerged as a major topic of inquiry in complexity theory
over the past several decades. One important strand in this study is the development of
deterministic algorithms that can perform approximate counting for various function classes:
given the description of a function f ∈ C and an accuracy parameter ϵ > 0, deterministically
output an estimate of the acceptance probability of f (i.e. Prx←{−1,1}n [f(x) = 1]) that is
additively accurate to within ±ϵ. This problem is trivially easy to solve with a randomized
algorithm, but is much more challenging if a deterministic algorithm is required. Indeed,
recall that the P vs. BPP problem is essentially equivalent to solving the deterministic
approximate counting problem for C being the class of all polynomial-size circuits (and
ϵ = 0.1).

In this work we focus on the class of low-degree polynomial threshold functions, an
important class of functions that has been the subject of intensive study in unconditional
derandomization in recent years [5, 12, 11, 13, 16, 19, 14, 3, 4, 15, 9, 10, 17, 23, 22].

© Rocco A. Servedio and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rocco@cs.columbia.edu
mailto:liyang@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Deterministic Approximate Counting of Polynomial Threshold Functions

1.1 Background: Deterministic approximate counting algorithms for
PTFs

A degree-d polynomial threshold function (PTF) is a function f(x) = sign(p(x)) where
p(x1, . . . , xn) is a polynomial of degree at most d and sign : R → {−1, 1} outputs 1 iff its
argument is nonnegative. Deterministic approximate counting algorithms for PTFs have
been well studied in a number of different works, and the following table summarizes the
runtimes of the fastest known algorithms prior to this work:

Table 1 Prior work on deterministic approximate counting algorithms for degree-d PTFs. In
the runtime of [13], Od(·) hides an Ackermann-type dependence on d, and likewise, in the runtime
of [4], Od,ϵ(·) hides an Ackermann-type dependence on d and 1/ϵ. With the exception of [4], all
these algorithms are based on the construction of pseudorandom generators for PTFs.

Reference Runtime

[19] n(d/ϵ)O(d)

[13] nOd(poly(1/ϵ))

[4] Od,ϵ(1) · nO(d)

[17] poly(n) · exp(2Õ(
√

log(1/ϵ))) for d = 2

[23] exp(2
√

d log n) · quasipoly(1/ϵ)

1.1.1 Algorithms for PTFs over Gaussian space
A fruitful theme that has emerged in the study of PTFs concerns the relationship between
PTFs in the standard setting of Boolean space – PTFs over {−1, 1}n endowed with the
uniform distribution – and PTFs in the setting of Gaussian space: PTFs over Rn endowed
with the Gaussian measure N(0, 1)n.

The Gaussian setting enjoys numerous useful features that are not afforded by the Boolean
setting, most of them owing to the continuous nature of Rn and the rotational invariance of
the Gaussian measure. In fact, the problem of approximate counting of degree-d PTFs over
Gaussian space (i.e. approximating Prg←N(0,1)n [f(g) = 1] where f is a degree-d PTF) can
be seen to be a special case of the same problem over Boolean space, in the sense that an
algorithm for the latter setting can be used to obtain an algorithm with a comparable runtime
for the former setting. (This is a consequence of the invariance principle [20].) For this
reason, many works have focused on the special case of designing deterministic approximate
counting algorithms for PTFs over Gaussian space. There are by now a number of results
in this setting for which no counterparts are yet known for the more challenging Boolean
setting:

Contrasting the state of the art over Boolean and Gaussian space. Comparing Tables 1
and 2, we note that the runtime of [12] is strictly better than those of [19]’s and [13]’s
algorithms for the Boolean setting; the runtime of [14] is strictly better than that of [13];
the runtime of [3] is strictly better than that of [17]; and the runtime of [22] remains
subexponential for d = 2Ω̃(

√
log n), whereas all algorithms for the Boolean setting trivialize

once d = Ω(log n).

R. A. Servedio and L.-Y. Tan 37:3

Table 2 Current best deterministic approximate counting algorithms for degree-d PTFs over
Gaussian space. With the exception of [3], all these algorithms are based on the construction of
pseudorandom generators for PTFs over Gaussian space.

Reference Running time

[12] n2O(d)·poly(1/ϵ)

[14] nOd,κ(1/ϵ)κ

for all κ > 0

[3] poly(n, 1/ϵ) for d = 2

[22] n(d/ϵ)O(log d)

1.2 This work: Upgrading algorithms for Gaussian space into ones for
Boolean space

In this work we establish a new connection between the derandomization of PTFs over
Boolean and Gaussian space. We leverage this connection to transform existing deterministic
approximate counting algorithms for the Gaussian setting (i.e. those summarized in Table 2)
into new state-of-the-art deterministic algorithms for approximate counting of PTFs for the
more challenging Boolean setting, improving upon those summarized in Table 1.

The runtimes of our new algorithms improve upon the prior state of the art for a broad
range of parameters. For d = Θ(1), we obtain a strict improvement for all ϵ satisfying
2−Θ(

√
log n) ≤ ϵ ≤ on(1). For d = ωn(1), we obtain a strict improvement for all ϵ satisfying

d log(d/ϵ) ≤ Θ(log n). We now give precise statements of the runtimes of our new algorithms,
and provide example parameter settings that highlight the main qualitative advantages of
these new runtimes.

1.3 Our results: New deterministic approximate counting algorithms for
PTFs over Boolean space

First, by instantiating our framework with [12]’s algorithm for the Gaussian setting, we
obtain the following algorithm for the Boolean setting:

▶ Theorem 1. There is a deterministic algorithm for ϵ-approximate counting n-variable
degree-d PTFs over Boolean space that runs in time

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ).

This runtime is a strict improvement of [19]’s runtime and very nearly matches the
n2O(d)·poly(1/ϵ) running time of the [12] algorithm for Gaussian space. For any ϵ =
Θ(1/polylog(n)), our runtime remains npolylog(n) for d as large as Ω̃(log log n), whereas
the runtimes of all previous algorithms for the Boolean setting exceed npolylog(n) once d is
even a slightly superconstant function of n.

Next, by instantiating our framework with [14]’s algorithm for the Gaussian setting, we
obtain the following algorithm for the Boolean setting:

APPROX/RANDOM 2021

37:4 Deterministic Approximate Counting of Polynomial Threshold Functions

▶ Theorem 2. For all κ > 0, there is a deterministic algorithm for ϵ-approximate counting
n-variable degree-d PTFs over Boolean space that runs in time

nOd,κ(1/ϵ)κ

.

This runtime is a strict improvement of [13]’s runtime and matches that of [14]’s algorithm
for the Gaussian setting. For arbitrarily large constants c, d ∈ N and ϵ = 1/(log n)c, our
runtime is barely superpolynomial, nO((log n)κ) for any arbitrarily small constant κ > 0,
whereas all previous algorithms for the Boolean setting run in time at least n(log n)Ω(c) or
n(log n)Ω(d) .

Table 3 Our new algorithms for deterministic approximate counting of degree-d PTFs over
Boolean space. The runtime of Theorem 1 is a strict improvement of [19]’s; the runtime of Theorem 2
is a strict improvement of [13]’s, and matches that of [14]’s algorithm for Gaussian space.

Runtime
Follows by instantiating

our framework with:

Theorem 1 exp
(
2O(d

√
log(d/ϵ))) · n2O(d)·poly(1/ϵ) [12]’s Gaussian PRG

Theorem 2 nOd,κ(1/ϵ)κ

[14]’s Gaussian PRG

Finally, we remark that:
Our framework can also be instantiated with [3]’s algorithm for degree-2 PTFs in the
Gaussian setting to recover [17]’s PRG-based algorithm for degree-2 PTFs in the Boolean
setting (and in fact, we are able to improve it slightly by eliminating the polylog(1/ϵ)
factor suppressed by the Õ(·) in its runtime);
Our framework can also be instantiated with [22]’s algorithm for degree-d PTFs in the
Gaussian setting, yielding a deterministic algorithm for degree-d PTFs over Boolean space
that runs in time exp

(
2O(d
√

log(d/ϵ))) · n(d/ϵ)O(log d)
. Like Theorem 1, this runtime is a

strict improvement of [19]’s runtime.

1.4 Our approach: Derandomizing Meka and Zuckerman’s regularity
lemma

Our main new tool is a derandomization of the [19] regularity lemma. To explain what this
means, we begin by recalling the basics of the original [19] regularity lemma.

A multivariate polynomial p is said to be regular if, intuitively, no variable has high
influence (we give precise definitions in Section 2). Let us recall the original [19] regularity
lemma: given any degree-d polynomial over {−1, 1}n, it gives an efficient (deterministic)
algorithm which builds a not-too-large decision tree such that at almost every leaf ρ, the
resulting polynomial pρ (p restricted according the partial assignment corresponding to that
leaf) is such that either (i) pρ is regular, or (ii) sign(pρ) is close to either the constant +1
function or the constant −1 function.1

1 We note that a similar regularity lemma was given in simultaneous work of [6] (see also [18]); that work
employed a slightly different technical definition of what it means for a polynomial to be “regular”,
and it gave a similar algorithm to build a decision tree with similar properties for that related notion.
However, in the current work for technical reasons it is essential that we use the [19] notion of regularity;
we explain this in more detail in Remark 22 in Appendix B.2.

R. A. Servedio and L.-Y. Tan 37:5

The [19] regularity lemma is useful for derandomization because it lets one reduce the
general Boolean case to the “regular” Boolean case, which can be easier because sophisticated
mathematical tools like central limit theorems and invariance principles can be brought to
bear on regular polynomials over {−1, 1}n to relate them to the corresponding polynomials
over the Gaussian domain. Indeed, the [19] regularity lemma and related results play an
important role in a number of PRG and approximate counting results for polynomial threshold
functions, including the works of [19, 13, 4] mentioned above. However there is often a
substantial algorithmic cost associated with the use of a regularity lemma, because building
the decision tree (or equivalently, exploring all of its leaves) can be relatively expensive.

Our derandomization of the regularity lemma. The above-described standard strategy of
building and visiting all of the leaves of a decision tree corresponds to using true uniform
randomness to choose a path through the decision tree. The intuition behind our derandom-
ized version of the regularity lemma is as follows: by choosing a path through the decision
tree according to a suitable pseudorandom distribution, it is possible, from an algorithmic
perspective, to “build and visit only a tiny fraction of the leaves of the decision tree.” This
can be much more efficient than visiting all leaves.

Intuitively, the leaves that our derandomized regularity lemma constructs are determined
by the output of a PRG for degree-d PTFs over m variables where m is the depth of the
decision tree.2 As our analysis shows, for the purpose of deterministic approximate counting
for the original PTF sign(p), it suffices to do deterministic approximate counting on just the
PTFs sign(pρ) for these (relatively few) leaves ρ.

More precisely, we prove a general result, Theorem 15, which encapsulates the above
approach. It outputs a collection of restrictions (which can be thought of as a very small
subset of the leaves of the decision tree that the original regularity lemma constructs) with
the following property: given an accurate estimate of the fraction of assignments satisfying
sign(pρ) for each restriction ρ in the collection, combining these estimates in the obvious way
gives an accurate estimate of the overall fraction of inputs in {−1, 1}n that satisfy the original
PTF sign(p). Moreover (and crucially), each restriction ρ in the collection is such that either
the restricted polynomial pρ is highly regular, or else sign(pρ) is a close-to-constant function.

For the purpose of deterministic approximate counting, restrictions where sign(pρ) is
a close-to-constant function are easy to handle, and thanks to the invariance principle, at
restrictions where pρ is regular we can do Gaussian deterministic approximate counting
and the resulting estimate of Prg←N(0,1)n [sign(pρ(g)) = 1] will be an accurate estimate
of Prx←{−1,1}n [sign(pρ(x))] for the Boolean problem. Thus, the overall running time of
the deterministic approximate counting algorithm we obtain from the regularity lemma is
essentially the running time of (i) “fooling Boolean PTFs over few variables” (to build the
tree) times the running time of (ii) “Gaussian determinstic approximate counting” (to handle
the regular leaves).

1.4.1 Applying the derandomized regularity lemma
To obtain an efficient deterministic approximate counting algorithm from this approach, in
part (i) above it is okay to use a PRG with a relatively poor dependence on the number of
variables, since the number of variables is quite small. Such a generator is provided for us by

2 This is actually an oversimplification: the regularity lemma works in a sequence of “atomic stages” to
build a tree, and our approach actually works by derandomizing each atomic stage separately. The cost
of a single atomic stage provides the dominant contribution to the overall cost, though, so the intuition
is correct.

APPROX/RANDOM 2021

37:6 Deterministic Approximate Counting of Polynomial Threshold Functions

the [23] PRG (or rather a slight variant of it which we need for technical reasons); we can
afford this generator’s poor dependence on the number of variables, and using it lets us take
advantage of its better dependence on the other parameters (it is clear from Table 1 that [23]
has a better dependence on both d and ϵ than any of the other algorithms in that table).

By applying our derandomized regularity lemma with (essentially) the [23] PRG for part
(i) and the Gaussian result of [12] for part (ii), we obtain Theorem 1. By using instead [14]’s
algorithm for the Gaussian setting for part (ii), we obtain Theorem 2.

2 Preliminaries

We start by establishing some basic notation. We write [n] to denote {1, 2, . . . , n} and
[k, ℓ] to denote {k, k + 1, . . . , ℓ}. We use bold font to denote random variables. We write
E[X] and Var[X] to denote expectation and variance of a random variable X and write
EX←D[X], VarX←D[X], and the like to indicate that the random variable X has distribution
D. If S is a finite set then “X ← S” means that X is distributed uniformly over S; if no
distribution is specified for a random variable taking values in {−1, 1}n then the implied
distribution is uniform over {−1, 1}n. For x ∈ {−1, 1}n and A ⊆ [n] we write xA to denote
(xi)i∈A.

For a function f : {−1, 1}n → R and q ≥ 1, we denote by ∥f∥q its ℓq norm with
respect to the uniform distribution, i.e., ∥f∥q

def= E[|p(x)|q]1/q = Ex←{−1,1}n [|p(x)|q]1/q.

We write ∥f∥q,D to denote its ℓq norm with respect to the distribution D, i.e. ∥f∥q,D
def=

Ex←D[|p(x)|q]1/q.

For Boolean-valued functions f, g : {−1, 1}n → {−1, 1} the distance between f and g,
denoted dist(f, g), is Pr[f(x) ̸= g(x)].

2.1 Fourier analysis of Boolean functions
Fourier Analysis over {−1, 1}n and Influences. We consider functions f : {−1, 1}n → R,
and we think of the inputs x to f as being distributed according to the uniform probability
distribution. The set of such functions forms a 2n-dimensional real inner product space
with inner product given by ⟨f, g⟩ = E[f(x)g(x)]. The set of functions (χS)S⊆[n] defined
by χS(x) =

∏
i∈S xi forms a complete orthonormal basis for this space. Given a function

f : {−1, 1}n → R we define its Fourier coefficients by f̂(S) def= E[f(x)χS(x)], and we have
that f(x) =

∑
S f̂(S)χS(x). We refer to the maximum |S| over all nonzero f̂(S) as the

Fourier degree of f.

As a consequence of orthonormality we have Plancherel’s identity ⟨f, g⟩ =
∑

S f̂(S)ĝ(S),
which has as a special case Parseval’s identity, E[f(x)2] =

∑
S f̂(S)2. From this it follows

that for every f : {−1, 1}n → {−1, 1} we have
∑

S f̂(S)2 = 1. We recall the well-known
fact that the total influence Inf(f) of any Boolean function equals

∑
S f̂(S)2|S|. Note that,

in this setting, the expectation and the variance can be expressed in terms of the Fourier
coefficients of f by E[f] = f̂(∅) and Var[f] =

∑
∅̸=S⊆[n] f̂(S)2.

Let f : {−1, 1}n → R and f(x) =
∑

S f̂(S)χS(x) be its Fourier expansion. The
influence of variable i on f is Infi(f) def=

∑
S∋i f̂(S)2, and the total influence of f is Inf(f) =∑n

i=1 Infi(f).

Bounded independence and bounded uniformity distributions. A distribution D on
{−1, 1}n is said to be k-wise independent if any collection of k distinct coordinates i1, . . . , ik

are such that xi1 , . . . , xik
are independent when x← D. If each xi additionally is uniform

R. A. Servedio and L.-Y. Tan 37:7

over {−1, 1}, then the distribution D is said to be k-wise uniform. We note that if D is a
k-wise uniform distribution over {−1, 1}n, then for any degree-k polynomial p, it holds by
linearity of expectation that

E
z←D

[p(z)] = E
x←{−1,1}n

[p(x)], (1)

and hence if D is (qk)-wise uniform for even q, it holds that

∥p∥q = ∥p∥q,D. (2)

Useful probability bounds. We first recall the (2,4)-Hypercontractivity theorem of [2, 7]:

▶ Theorem 3 ((2,4)-Hypercontractivity, special case of Theorem 9.21 of [21] / Lemma 4.3 of
[8]). Let p : {−1, 1}n → R be a degree-d multilinear polynomial. Then

∥p∥4 ≤ 3d/2 · ∥p∥2.

For our purposes we will need a derandomized version of Theorem 3, where the expectations
are with respect to a suitable pseudorandom distribution. As an immediate consequence of
Equation (2), we obtain the following corollary of Theorem 3:

▶ Corollary 4 ((2,4)-Hypercontractivity for bounded-uniformity distributions). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial. If D is a 4d-wise uniform distribution
over {−1, 1}n, then

∥p∥4,D ≤ 3d/2 · ∥p∥2,D.

We will need the following fact, which is a consequence of (2, 4)-hypercontractivity
and states that a low-degree polynomial must exceed its expectation with nonnegligible
probability:

▶ Fact 5 (Lemma 5.4 of [8]). Let p : {−1, 1}n → R be a degree-d multilinear polynomial
normalized so that Var[p] = 1. Then there is an absolute constant C > 0 such that

Pr
x←{−1,1}n

[
p(x) ≥ E[p] + 2−Cd

]
≥ 2−O(d).

We will also need a derandomized version of Fact 5:

▶ Fact 6 (Fact 5 for bounded-uniformity distributions). Let p : {−1, 1}n → R be a degree-d
multilinear polynomial normalized so that Var[p] = 1. If D is a 4d-wise uniform distribution
over {−1, 1}n, then there is an absolute constant C > 0 such that

Pr
x←{−1,1}n

[
p(x) ≥ E[p] + 2−Cd

]
≥ 2−O(d).

For the sake of completeness, we include the short proof of Fact 6 in Appendix A.

Invariance. We recall the invariance principle of Mossel, O’Donnell and Oleszkiewicz,
specifically Theorem 3.19 under hypothesis H4 in [20]:

▶ Theorem 7 ([20]). Let p(x) =
∑

S⊆[n],|S|≤d p̂(S)χS(x) be a degree-d multilinear polynomial
with Var[p] = 1. Suppose each coordinate i ∈ [n] has Infi(p) ≤ τ . Then,

sup
t∈R

∣∣∣∣ Pr
x←{−1,1}n

[p(x) ≤ t]− Pr
G←N(0,1)n

[p(G) ≤ t]
∣∣∣∣ ≤ O(dτ1/(8d)).

APPROX/RANDOM 2021

37:8 Deterministic Approximate Counting of Polynomial Threshold Functions

2.2 PTFs, regularity, and the critical index
▶ Definition 8 (Regularity). We say that a degree-d polynomial p is τ -regular if√√√√ n∑

j=i

Infi(p)2 ≤ τ
n∑

j=1
Infj(p).

▶ Definition 9 (τ -critical index). Let p be a degree-d polynomial, and assume (without loss
of generality) that the variables of p are ordered so that Inf1(p) ≥ Inf2(p) ≥ . . . ≥ Infn(p).
The τ -critical index of p is the least i such that

Infi+1(p) ≤ τ2
n∑

j=i+1
Infj(p).

3 Derandomizing Meka and Zuckerman’s regularity lemma

3.1 Overview of [19]’s regularity lemma and its proof
In this subsection we state Meka and Zuckerman’s regularity lemma for low-degree polyno-
mials [19], and recall its key elements at a level of detail which will enable us to build on
those elements.

▶ Lemma 10 (Implicit in the proof of Lemma 5.17 of [19]). There is a deterministic algorithm
which, on input a degree-d polynomial p and parameters τ, ϵ, δ, outputs a decision tree of
depth

depth(d, τ, ϵ, δ) := 2O(d)

τ2 · log(1
δ) log(1

ϵ)

with the following property: with probability 1− ϵ, a random path down the tree reaches a
leaf ρ such that pρ is either
1. τ -regular, or
2. the PTF sign(pρ) is δ-close to the constant function sign(E[pρ]).

The running time of this tree construction algorithm is poly(nd, 2depth(d,τ,ϵ,δ)).

The algorithm of [19] recursively constructs the tree in a sequence of simple “atomic
steps”. We now describe how a single atomic step works. Consider a leaf ρ of the decision
tree; initially the leaf ρ is simply the root of the tree corresponding to the empty restriction.
The algorithm behaves differently depending on how large the τ -critical index of pρ is:

Large critical index. If the polynomial pρ has “large” τ -critical index (larger than a
parameter K which is 2O(d) log(1/δ)/τ2) then an “atomic step” consists of fixing the K

variables which have the highest influence in pρ, i.e. replacing the current leaf with a complete
depth-K decision tree that exhaustively queries those variables. The key to the analysis of
this case is the following structural result, which is Lemma 5.2 of [8]:

▶ Lemma 11 (restatement of [8]’s Lemma 5.2: Large critical index). There is a universal
constant C1 > 0 such that the following holds. Let p : {−1, 1}n → R be a degree-d multilinear
polynomial with τ -critical index at least K := 2C1d log(1/δ)/τ2. Then

Pr
ρ←{−1,1}[K]

[
Var[pρ] ≤ δ E[pρ]2

]
≥ 2−O(d),

and consequently by Chebyshev’s inequality,

Pr
ρ←{−1,1}[K]

[
sign(pρ) is δ-close to sign(E[pρ])

]
≥ 2−O(d).

R. A. Servedio and L.-Y. Tan 37:9

Small critical index. If the polynomial has small τ -critical index (smaller than K), then
an “atomic step” consists of fixing the “head” variables [k] up to the critical index (again
building a complete decision tree over those k ≤ K variables). The key to the analysis of
this case is the following structural result, which is Lemma 5.1 of [8]:

▶ Lemma 12 (restatement of [8]’s Lemma 5.1: Small critical index). Let p : {−1, 1}n → R be
a degree-d multilinear polynomial with τ -critical index k ∈ [n]. Then

Pr
ρ←{−1,1}[k]

[
pρ is τ ′-regular

]
≥ 2−O(d), where τ ′ ≤ 2O(d) · τ .

Given these two results, a relatively straightforward analysis (which is in fact a special case
of the analysis we give in the subsequent subsections) shows that after at most 2O(d) log(1/ϵ)
levels of these “atomic steps”, at most an ϵ fraction of paths will not have terminated either
in a close-to-constant leaf or a regular leaf.

3.2 The high level idea of our approach: Derandomizing each “atomic
step” in a bias-preserving manner

The first important technical ingredient of our approach is in the following two lemmas,
Lemma 13 and 14, which give derandomized versions of Lemma 11 and 12 respectively.
Intuitively, these results say that in each of Lemma 11 and 12, rather than considering the
uniform distribution over all restrictions fixing [K] and [k] respectively, it suffices to consider
instead a suitable pseudorandom distribution over restrictions.

▶ Lemma 13 (Bounded uniformity suffices for Lemma 11: Large critical index). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial with τ -critical index at least K :=
2C1d log(1/δ)/τ2, where C1 is the universal constant from Lemma 11. Let D be a 4d-wise
uniform distribution over {−1, 1}K . Then

Pr
ρ←D

[
Var[pρ] ≤ δ E[pρ]2

]
≥ 2−O(d),

and consequently by Chebyshev’s inequality,

Pr
ρ←D

[
sign(pρ) is δ-close to sign(E[pρ])

]
≥ 2−O(d).

▶ Lemma 14 (Bounded uniformity suffices for Lemma 12: Small critical index). Let p :
{−1, 1}n → R be a degree-d multilinear polynomial with τ -critical index k ∈ [n]. Let D be a
4d-wise uniform distribution over {−1, 1}k. Then

Pr
ρ←D

[
pρ is τ ′-regular

]
≥ 2−O(d), where τ ′ ≤ 2O(d) · τ .

We prove Lemma 13 in Appendix B.1 and prove Lemma 14 in Appendix B.2. Combining
these results with a PRG that fools degree-d PTFs over m variables (where “m” should be
thought of as ≪ n), we establish our bias-preserving derandomized regularity lemma:

▶ Theorem 15 (Bias-preserving derandomization of [19]’s regularity lemma, Lemma 10). Let
GPTF be a PRG with seed length s(m, d, η) that

(i) is 4d-wise uniform and
(ii) η-fools degree-d PTFs over m variables.

APPROX/RANDOM 2021

37:10 Deterministic Approximate Counting of Polynomial Threshold Functions

There is a deterministic algorithm Build-Restrictions which, on input a degree-d polyno-
mial p : {−1, 1}n → R and parameters ϵ, δ, and τ , outputs a collection R of restrictions,

|R| ≤ exp(s(m, d, η) · 2O(d) log(1
ϵ))

where

m ≤ 2O(d)

τ2 log(1
δ) and η = ϵ

2O(d) log(1
ϵ)

with the following property: with probability 1−ϵ over a draw ρ← R, the restricted polynomial
pρ is either
1. τ -regular, or
2. the PTF sign(pρ) is δ-close to the constant function sign(E[pρ]).
Furthermore the collection of restrictions R is bias-preserving, in the sense that∣∣∣ E

ρ←R

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ ϵ. (3)

The running time of Build-Restrictions is poly(nd, |R|).

We prove Theorem 15 in Section 3.3. At a high level, the argument is an extension of the
analysis that establishes the original regularity lemma of [19] from Lemma 11 and 12.

In Section 4 we apply Theorem 15 to obtain new deterministic approximate counting
results for degree-d Boolean PTFs. We do this by instantiating the pseudorandom generator
GPTF using (a slight variant of) the [23] pseudorandom generator, and by using invariance
principles and pseudorandom generators for Gaussian PTFs to obtain the required estimates
of Ex←{−1,1}n [sign(pρ)] for the regular polynomials pρ.

3.3 Proof of Theorem 15: Bias-preserving derandomization of [19]’s
regularity lemma

We start with a simple fact about bias preservation:

▶ Fact 16 (Bias preservation). Let p : {−1, 1}n → R be a degree-d polynomial and let H⊔T be
a partition of [n] into two disjoint sets. Let D be a pseudorandom distribution over {−1, 1}H

that η-fools degree-d PTFs over the variables in H. Then∣∣∣∣∣∣∣ E
x←{−1,1}H

y←{−1,1}T

[sign(p(x, y)]− E
z←D

y←{−1,1}T

[sign(p(z, y)]

∣∣∣∣∣∣∣ ≤ η. (4)

Proof. This follows directly from the fact that for any fixed outcome y ∈ {−1, 1}T , the
function sign(py(x)) = sign(p(x, y)) is a degree-d PTF over the variables in H (i.e. the class
of degree-d PTFs is closed under restrictions). ◀

The following will be the key subroutine for our algorithm:

▶ Lemma 17 (Single atomic step). Let GPTF be a PRG with seed length s(m, d, η) that
(i) is 4d-wise uniform and
(ii) η-fools degree-d PTFs over m variables.

R. A. Servedio and L.-Y. Tan 37:11

There is a universal constant C2 > 0 such that the following holds. There is a deter-
ministic algorithm Build-Restrictions-Atomic which, on input a degree-d polynomial
p : {−1, 1}n → R and parameters δ, η, and τ , outputs a collection Ratomic(p) of restrictions,

|Ratomic(p)| ≤ exp(s(m, d, η)), m ≤ 2O(d)

τ2 log(1
δ)

with the following property: with probability ≥ 2−C2d over a draw ρ ← Ratomic(p), the
restricted polynomial pρ is either
1. τ -regular, or
2. satisfies Var[pρ] ≤ δ E[pρ]2, and consequently by Chebyshev’s inequality, the PTF sign(pρ)

is δ-close to the constant function sign(E[pρ]).
Furthermore, this collection of restrictions Ratomic(p) is bias-preserving, in the sense that:∣∣∣ E

ρ←Ratomic(p)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ η. (5)

The running time of Build-Restrictions-Atomic is poly(nd, |Ratomic(p)|).

Proof. Define τ := τ · 2−C3d where C3 > 0 is a universal constant that we will set later. The
algorithm Build-Restrictions-Atomic begins by computing Infi(p) for all i ∈ [n], which
can be done deterministically in time poly(nd) via the Fourier formula Infi(p) =

∑
S∋i p̂(S)2.

With these values, the algorithm then determines whether the τ -critical index of p is large
(i.e. at least K := 2C1d log(1/δ)/τ2 where C1 is the universal constant from Lemma 11) or
small (i.e. at most k < K). Let H ⊆ [n] be the K most influential variables of p in the
case where p has large τ -critical index and the k most influential ones otherwise, and let
T := [n] \H.

We define Ratomic(p) to be the set of all restrictions ρ ∈ {−1, 1}H × {∗}T such that
ρH ∈ range(GPTF), where GPTF is a PRG with seed length s(|H|, d, η) that is 4d-wise uniform
and η-fools degree-d PTFs over {−1, 1}H . Note that the size of Ratomic(p) is indeed as
claimed in the statement of the lemma:

|Ratomic(p)| ≤ exp(s(|H|, d, η)),

where |H| ≤ |range(GPTF)| ≤ 2O(d)

τ2 log(1
δ) = 2O(d)

τ2 log(1
δ).

By the 4d-uniformity of GPTF and our definition of H , it follows from Lemma 13 and 14 that
with probability ≥ 2−O(d) over a draw ρ← Ratomic, the restricted polynomial pρ is either
1. (2O(d) · τ)-regular, or
2. satisfies Var[pρ] ≤ δ E[pρ]2, and consequently by Chebyshev’s inequality, the PTF

sign(pρ) is δ-close to the constant function sign(E[pρ]).
We choose the universal constant C3 to ensure that 2O(d) · τ = 2O(d) · τ · 2−C3d ≤ τ .
Finally, using the fact that GPTF η-fools degree-d PTFs over {−1, 1}H , Equation (5) follows
from Fact 16 and this completes the proof. ◀

3.3.1 Composing single atomic steps: Proof of Theorem 15 given
Lemma 17

At a very high level, Theorem 15 follows by recursive applications of Lemma 17.
Given a degree-d polynomial p, Build-Restrictions begins by calling the subroutine
Build-Restrictions-Atomic of Lemma 17, which returns a set Ratomic(p) =: R(1) of
exp(s(m, d, η)) many restrictions satisfying the conclusion of Lemma 17. We call a restriction

APPROX/RANDOM 2021

37:12 Deterministic Approximate Counting of Polynomial Threshold Functions

ρ ∈ Ratomic(p) good if pρ is either τ -regular or satisfies Var[pρ] ≤ δ E[pρ]2 (i.e. if pρ satisfies
the conclusion of Lemma 17), and we call ρ bad otherwise. By Lemma 17, we have that

Pr
ρ←R(1)

[ρ is good] ≥ 2−C2d

and∣∣∣ E
ρ←R(1)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ η.

Build-Restrictions cycles through all ρ ∈ Ratomic(p) and determines if each is good or bad.
Note that this can be done deterministically in overall time |Ratomic(p)| · poly(nd) via the
Fourier formulas Infi(q) =

∑
S∋i q̂(S)2 and Var(q) =

∑
S ̸=∅ q̂(S)2. For each bad restriction

ρ, Build-Restrictions recursively calls the subroutine Build-Restrictions-Atomic
on the restricted polynomial pρ, obtaining another set Ratomic(pρ) of exp(s(m, d, η)) many
restrictions satisfying the conclusion of Lemma 17. Consider the overall set of restrictions
comprising of the good restrictions in Ratomic(p), along with the the bad ρ ∈ Ratomic(p)
extended by those in Ratomic(pρ), i.e.

R(2) := {ρ : ρ ∈ Ratomic(p) is good} ∪ {ρ ◦ ρ′ : ρ ∈ Ratomic(p) is bad, ρ′ ∈ Ratomic(pρ)}.

We have that

Pr
ρ←R(2)

[ρ is good] = 1− Pr
ρ←R(2)

[ρ is bad]

= 1− Pr
ρ←R(1)

[ρ is bad] · Pr
ρ←R(1)

ρ′←Ratomic(pρ)

[ρ′ is bad | ρ is bad]

≥ 1− (1− 2−C2d)2,

where C2 is the universal constant from Lemma 17, and∣∣∣ E
ρ←R(2)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ 2η.

Iterating this argument and defining R(j) analogously for j > 2, we have that

Pr
ρ←R(j)

[ρ is good] ≥ 1− (1− 2−C2d)j (6)

and∣∣∣ E
ρ←R(j)

[
E

x←{−1,1}n
[sign(pρ(x))]

]
− E

x←{−1,1}n
[sign(p(x))]

∣∣∣ ≤ jη. (7)

By choosing j = 2O(d) log(1/ϵ) we can make the RHS of Equation (6) at least 1 − ϵ, and
by our choice of η = ϵ/2O(d) log(1/ϵ) we have that the RHS of Equation (7) is at most ϵ.
Finally, we note that

|R(j)| ≤ exp(s(m, d, η) · j) = exp(s(m, d, η) · 2O(d) log(1
ϵ))

and this completes the proof of Theorem 15 given Lemma 17. ◀

R. A. Servedio and L.-Y. Tan 37:13

4 Instantiating our derandomized regularity lemma: Proofs of
Theorems 1 and 2

4.1 The GPTF PRG
To apply Theorem 15 we need a PRG GPTF that (i) is 4d-wise uniform, and (ii) η-fools degree-
d PTFs over {−1, 1}m. Since m (the number of variables) is quite small in Theorem 15, the
idea is to use a PRG which has a poor dependence on this parameter but a good dependence
on the error parameter η and the degree parameter d, since we will be able to take advantages
of these good dependences on η and d while not having to “pay too much” for the poor
dependence on m.

As mentioned earlier, the PRG for degree-d PTFs from [23] is well suited to the purpose of
achieving item (ii) above with good parameters for us. We recall the performance guarantee
of [23]:

▶ Theorem 18 (Special case3 of Theorem 2 of [23]). There is an efficient explicit PRG with
seed length 2O(

√
d log m) + polylog(1/η) that η-fools the class of degree-d PTFs over {−1, 1}m.

Regarding item (i), it is not clear that the [23] PRG is 4d-wise uniform but we can
easily augment it to be 4d-wise uniform by simply performing a bitwise XOR with a 4d-wise
uniform distribution. The correctness of this is ensured by the following simple lemma:

▶ Lemma 19. Let G1 : {−1, 1}s1 → {−1, 1}m be a PRG that ϵ-fools the class of degree-d
PTFs over {−1, 1}m. Let G2 : {−1, 1}s2 → {−1, 1}m be such that the distribution of G2(r)
is k-wise uniform for r uniform random over {−1, 1}s2 . Define G : {−1, 1}s1+s2 → {−1, 1}m

by

(G(r1, r2))j = (G(r1))j · (G(r2))j for j ∈ [m].

Then (i) G ϵ-fools the class of degree-d PTFs over {−1, 1}m, and (ii) G(r1, r2) is k-wise
uniform for (r1, r2) uniform random over {−1, 1}s1+s2 .

Proof. For (i), observe that if p(x1, . . . , xm) is a degree-d polynomial, then for any fixed
a ∈ {−1, 1}m the function q(x1, . . . , xm) = p(a1x1, . . . , amxm) is also a degree-d polynomial.
It follows that for any fixed setting of r1 ∈ {−1, 1}s2 , the distribution

(G(r1, r2))r1←{−1,1}s1 = ((G(r1))1 · (G(r2))1, . . . , (G(r1))m · (G(r2))m)r1←{−1,1}s1

ϵ-fools the class of degree-d PTFs over {−1, 1}m, and (i) follows directly from this.
For (ii), similarly observe that if X = (X1, . . . , Xm) is a k-wise uniform random variable

over {−1, 1}m then for any fixed a ∈ {−1, 1}m, the random variable (a1X1, . . . , amXm) is
also k-wise uniform. It follows that for any fixed setting of r1 ∈ {−1, 1}s1 , the distribution

(G(r1, r2))r2←{−1,1}s2 = ((G(r1))1 · (G(r2))1, . . . , (G(r1))m · (G(r2))m)r2←{−1,1}s2

is k-wise uniform, and (ii) follows directly from this. ◀

3 Theorem 2 of [23] gives a PRG with seed length 2O(
√

log S) + polylog(1/η) that η-fools the class of size-S
Threshold-of-AC0 circuits. The current statement follows as a special case of this by observing that
any degree-d m-variable PTF can be viewed as a Threshold-of-AND circuit of size at most S = O(md),
since there are at most

(
m
0

)
+ · · · +

(
m
d

)
many ANDs over at most d out of m input variables.

APPROX/RANDOM 2021

37:14 Deterministic Approximate Counting of Polynomial Threshold Functions

Recalling the well-known fact (see e.g. [24]) that there are simple explicit pseudorandom
generators with seed length O(k log m) that output k-wise independent distributions over
{−1, 1}m, we get the following corollary of Theorem 18:

▶ Corollary 20. There is an efficient explicit PRG GPTF with seed length s(m, d, η) =
2O(
√

d log m) + polylog(1/η) that is 4d-wise uniform and η-fools the class of degree-d PTFs
over {−1, 1}m.

4.2 Proof of Theorem 1
Recall that to prove Theorem 1, we must give a deterministic algorithm for ϵ-approximate
counting n-variable degree-d PTFs over Boolean space that runs in time

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ).

The algorithm operates in two stages. In the first stage, it runs the Build-Restrictions
procedure given in Theorem 15 with its “ϵ” and “δ” parameters both set to ϵ, its “τ” parameter
set to (ϵ/d)O(d), and GPTF being the PRG given in Corollary 20. With these parameter
settings the “m” of Theorem 15 is m = (d/ϵ)O(d) and the “η” is η = ϵ

2O(d) log(1
ϵ)

. Recall that

the running time of Build-Restrictions is

poly(nd, exp(s(m, d, η) · 2O(d) log(1
ϵ)))

= poly(nd, exp((2O(d
√

log(d/ϵ)) + poly(d, log(1/ϵ))) · 2O(d) log(1
ϵ)))

= poly(nd, exp(2O(d
√

log(d/ϵ)))), (8)

and that Build-Restrictions outputs a set R of at most

exp(s(m, d, η) · 2O(d) log(1
ϵ)) = exp(2O(d

√
log(d/ϵ)))

many restrictions.
In the second stage, the algorithm exhaustively iterates over each restriction ρ ∈ R. For

each ρ ∈ R it computes a value vρ as follows:

1. First, it computes Infi(pρ) for all variables i that were not fixed by the restriction ρ

(recall that this can be done deterministically in time poly(nd) via the Fourier formula
Infi(pρ) =

∑
S∋i p̂ρ(S)2. It uses these computed influences to determine whether or not

pρ is τ -regular according to Definition 8 (recall that τ = (ϵ/d)O(d)).
2. If pρ is τ -regular, then it runs the [12] deterministic PRG-based algorithm for Gaussian

space (recall Table 2) to obtain a ±ϵ-accurate estimate of Eg∼N(0,1)n [sign(pρ(g)]. (Recall
that the [12] algorithm takes time n2O(d)·poly(1/ϵ).) It sets vρ to be the output of this
algorithm.

3. Otherwise, if pρ is not τ -regular, it simply sets vρ to be the value sign(E[pρ]) =
sign(p̂ρ(∅)) ∈ {−1, 1}.

The final value v returned by the algorithm is the average over all ρ ∈ R of the values vρ.

From Equation (8) and item (2) above we have that the running time of the algorithm is

exp
(
2O(d
√

log(d/ϵ))) · n2O(d)·poly(1/ϵ),

as claimed in Theorem 1. To conclude the proof it remains only to argue that v is indeed
within an additive ±O(ϵ) of the true value of Ex←{−1,1}n [sign(p(x))]. Recalling Equation (3)

R. A. Servedio and L.-Y. Tan 37:15

and the fact that at most an ϵ fraction of restrictions ρ ∈ R are such that neither is pρ

τ -regular nor is sign(pρ) δ-close (i.e. ϵ-close) to the constant function sign(E[pρ]), using item
(2) above it suffices to show that for every ρ such that pρ is τ -regular, it holds that∣∣∣∣ E

g∼N(0,1)
[sign(pρ(g)]− E

x∼{−1,1}n
[sign(pρ(x)]

∣∣∣∣ ≤ O(ϵ).

Since pρ is τ -regular, we have that

max
i∈[n]

Infi(pρ) ≤

√√√√ n∑
j=i

Infi(pρ)2 ≤ τ
n∑

j=1
Infj(pρ) ≤ τd ·Var[pρ],

where the last inequality uses that the total influence of a degree-d polynomial is at most d

times its variance. Hence by the invariance principle (Theorem 7), we have that∣∣∣∣ E
g∼N(0,1)

[sign(pρ(g)]− E
x∼{−1,1}n

[sign(pρ(x)]
∣∣∣∣ ≤ O(d(τd)1/8d) = O(ϵ)

as desired, where the last inequality is by our choice of τ = (ϵ/d)O(d). This concludes the
proof of Theorem 1. ◀

4.3 Proof of Theorem 2
To prove Theorem 2, we must give a deterministic algorithm for ϵ-approximate counting
n-variable degree-d PTFs over Boolean space that runs in time nOd,κ(1/ϵ)κ

.

The first stage of the algorithm here is identical to the first stage of the algorithm in
the previous subsection, with the same parameter settings and running time. The second
stage differs only in item (2), where now in the τ -regular case we run the [14] deterministic
PRG-based algorithm for Gaussian space, which runs in time nOd,κ(1/ϵ)κ

.

The analysis of correctness (showing that the output of this algorithm is ±O(ϵ)-close to
the right value) is identical to the previous subsection. The running time of the algorithm is
exp

(
2O(d
√

log(d/ϵ))) · nOd,κ(1/ϵ)κ , where we recall that the function of d and 1/κ hidden by
the big-Oh notation is very fast-growing, in fact of Ackermann type. We now observe that
the first component of the running time, exp

(
2O(d
√

log(d/ϵ))), is asymptotically dominated
by the second nOd,κ(1/ϵ)κ component, which gives us the final claimed nOd,κ(1/ϵ)κ runtime.
We establish this by comparing d and ϵ as follows:

If d is less than (log(1/ϵ))1/3, then the first component exp
(
2O(d
√

log(d/ϵ))) is less than
exp(2(log(1/ϵ))0.9), whereas the second expression is nOd,κ(1)·(1/ϵ)κ ≥ exp(Od,κ(1) · (1/ϵ)κ).
For (1/ϵ)κ to be as small as 2(log(1/ϵ))0.9 we would need κ ≤ (log(1/ϵ))−0.1, but having κ

be this small means that the Od,κ(1) factor will make Od,κ(1) · (1/ϵ)κ much bigger than
2(log(1/ϵ))0.9 .
If d is larger than (log(1/ϵ))1/3, then the first expression exp

(
2O(d
√

log(d/ϵ))) is less than
exp(2d3), whereas the second expression is still at least exp(Od,κ(1) · (1/ϵ)κ). Irrespective
of the value of κ, the Od,κ(1) in this second expression asymptotically dominates exp(2d3).

This concludes the proof of Theorem 2. ◀

References
1 Noga Alon, Gregory Gutin, and Michael Krivelevich. Algorithms with large domination ratio.

J. Algorithms, 50(1):118–134, 2004.

APPROX/RANDOM 2021

37:16 Deterministic Approximate Counting of Polynomial Threshold Functions

2 Aline Bonami. Etude des coefficients Fourier des fonctiones de Lp(G). Ann. Inst. Fourier
(Grenoble), 20(2):335–402, 1970.

3 Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. Deterministic approximate counting
for juntas of degree-2 polynomial threshold functions. In Proceedings of the 29th Annual
Conference on Computational Complexity (CCC), pages 229–240. IEEE, 2014.

4 Anindya De and Rocco A. Servedio. Efficient deterministic approximate counting for low-degree
polynomial threshold functions. In Proceedings of the 46th Annual Symposium on Theory of
Computing (STOC), pages 832–841, 2014.

5 Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-2
threshold functions. In Proc. 51st IEEE Symposium on Foundations of Computer Science
(FOCS), pages 11–20, 2010.

6 Ilias Diakonikolas, Rocco A. Servedio, Li-Yang Tan, and Andrew Wan. A regularity lemma and
low-weight approximators for low-degree polynomial threshold functions. Theory of Computing,
10:27–53, 2014.

7 Leonard Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.
8 Prahladh Harsha, Adam Klivans, and Raghu Meka. Bounding the sensitivity of poly-

nomial threshold functions. Theory of Computing, 10(1):1–26, 2014. URL: http://www.
theoryofcomputing.org/articles/v010a001.

9 Valentine Kabanets, Daniel M Kane, and Zhenjian Lu. A polynomial restriction lemma with
applications. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 615–628, 2017.

10 Valentine Kabanets and Zhenjian Lu. Satisfiability and Derandomization for Small Polynomial
Threshold Circuits. In Proceedings of the 22nd International Conference on Randomization
and Computation (RANDOM), volume 116, pages 46:1–46:19, 2018.

11 Daniel Kane. k-independent Gaussians fool polynomial threshold functions. In Proceedings of
the 26th Conference on Computational Complexity (CCC), pages 252–261, 2011.

12 Daniel Kane. A small PRG for polynomial threshold functions of Gaussians. In Proceedings
of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 257–266,
2011.

13 Daniel Kane. A structure theorem for poorly anticoncentrated Gaussian chaoses and appli-
cations to the study of polynomial threshold functions. In Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 91–100, 2012.

14 Daniel Kane. A pseudorandom generator for polynomial threshold functions of Gaussians with
subpolynomial seed length. In Proceedings of the 29th Annual Conference on Computational
Complexity (CCC), pages 217–228, 2014.

15 Daniel Kane. A polylogarithmic PRG for degree 2 threshold functions in the Gaussian setting.
In Proceedings of the 30th Conference on Computational Complexity (CCC), pages 567–581,
2015.

16 Daniel Kane and Raghu Meka. A PRG for Lipschitz functions of polynomials with applications
to sparsest cut. In Proceedings of the 45th Annual Symposium on Theory of Computing
(STOC), pages 1–10, 2013.

17 Daniel Kane and Sankeerth Rao. A PRG for Boolean PTF of degree 2 with seed length
subpolynomial in ε and logarithmic in n. In Proceedings of the 33rd Computational Complexity
Conference (CCC), pages 2:1–2:24, 2018.

18 Daniel M. Kane. The Correct Exponent for the Gotsman-Linial Conjecture. computational
complexity, 23:151–175, 2014.

19 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM Journal on Computing, 42(3):1275–1301, 2013.

20 Elchannan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: Invariance and optimality. Annals of Mathematics, 171:295–341, 2010.

21 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. Available
at http://analysisofbooleanfunctions.net/.

http://www.theoryofcomputing.org/articles/v010a001
http://www.theoryofcomputing.org/articles/v010a001
http://analysisofbooleanfunctions.net/

R. A. Servedio and L.-Y. Tan 37:17

22 Ryan O’Donnell, Rocco A. Servedio, and Li-Yang Tan. Fooling Gaussian PTFs via Local
Hyperconcentration. In Proceedings of the 51st Annual Symposium on Theory of Computing
(STOC), 2020. to appear.

23 Rocco A. Servedio and Li-Yang Tan. Luby-Velickovic-Wigderson Revisited: Improved Cor-
relation Bounds and Pseudorandom Generators for Depth-Two Circuits. In Proceedings of
the 22nd International Conference on Randomization and Computation (RANDOM), pages
56:1–56:20, 2018.

24 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

A Proof of Fact 6

Let p : {−1, 1}n → R be a degree-d multilinear polynomial normalized so that Var[p] (which is
equal to

∑
∅̸=S,|S|≤d p̂(S)2) equals 1, and let D be a 4d-wise uniform distribution over {−1, 1}n.

We consider the mean-zero random variable p(z)−E[p(z)] = p(z)− p̂(∅), where z ← D. We
have that E[p(z)] = 0, E[p(z)2] = Varz[p(z)] = Varx←{−1,1}n [p(x)] = 1, and by Corollary 4
(derandomized (2,4)-Hypercontractivity), we further have that E[p(z)4] ≤ 9d E[p(z)2]2 = 9d.

Fact 6 now follows from the following simple fact:

▶ Fact 21 ([1], Lemma 3.2). Let A be a real valued random variable satisfying E[A] =
0, E[A2] = 1 and E[A4] ≤ b. Then Pr[A ≥ 1/(4

√
b)] ≥ 1/(44/3b).

B Proof of Lemma 13 and Lemma 14

B.1 Proof of Lemma 13 (derandomized Lemma 5.2 of [8]: large critical
index)

We express p(x) as q(x) + r(x) + E[p], where

q(x) =
∑

S ̸⊆K

p̂(S)χS(x) and r(x) =
∑

S⊆K

S ̸=∅

p̂(S)χS(x).

[8]’s Lemma 5.2 follows from the following two claims:
1. For every constant c there is a sufficiently large constant C1 such that if K :=

2C1d log(1/δ)/τ2, then

E
ρ←{−1,1}K

[Var(pρ)] ≤ δ · 2−cd · E
ρ←{−1,1}K

[r(ρ)2]. (9)

(This is [8]’s Claim 5.6.) Consequently, by Markov’s inequality, for all constants c and c′

we can again choose C1 to be sufficiently large to ensure that

Pr
ρ←{−1,1}K

[
Var(pρ) ≤ δ · 2−cd E

ρ←{−1,1}K
[r(ρ)2]

]
≥ 1− 2−c′d. (10)

2. There are constants b and b′ such that

Pr
ρ←{−1,1}K

[
E[pρ]2 ≥ 2−bd E

ρ←{−1,1}K
[r(ρ)2]

]
≥ 2−b′d, (11)

which follows from an application of Lemma 5.4 of [8].

APPROX/RANDOM 2021

37:18 Deterministic Approximate Counting of Polynomial Threshold Functions

The proof of Lemma 13 follows [8]’s proof of their Lemma 5.2 almost exactly. The only
changes are that:

the functions ρ 7→ Var(pρ) and ρ 7→ r(ρ)2 are degree 2d polynomials in ρ, and hence Equa-
tions (9) and (10) both hold for ρ drawn from any 2d-wise independent distribution over
{−1, 1}K ;
we use our derandomized version of Lemma 5.4 of [8], namely Fact 6, in place of Lemma 5.4
of [8] to deduce that Equation (11) also holds for ρ drawn from any 2d-wise independent
distribution over {−1, 1}K .

The rest of the proof is unchanged.

B.2 Proof of Lemma 14 (derandomized Lemma 5.1 of [8]: small critical
index)

The proof of Lemma 14 follows [8]’s proof of their Lemma 5.1 almost exactly. The only
changes are that

we use our derandomized version of (2,4)-Hypercontractivity, namely Corollary 4, in
place of (2,4)-Hypercontractivity (Lemma 4.3 of [8], which is used in the line immediately
following Equation (5.1) of their paper);
we use our derandomized version of Lemma 5.4 of [8], namely Fact 6, in place of Lemma 5.4
of [8], which is used two lines after Equation (5.2) of their paper.

The rest of the proof is unchanged.
▶ Remark 22 (Motivating our notion of regularity). Recall from Section 1.4 that the works of
[6, 18] use a technically slightly different notion of “regularity.” In those works an n-variable
multivariate polynomial p is considered to be τ -regular if for every i ∈ [n] we have that
Infi(p) ≤ τ ·

∑n
i=1 Infi(p). Intuitively, we may view this as a notion of “regularity-in-ℓ∞”,

and the notion used in the current paper and in [8, 19] as a notion of “regularity-in-ℓ2”.
We remark here that the small critical index case (the subject of Lemma 14 and of

Lemma 5.1 of [8]) is the reason why we need to work with the [8] notion of regularity-in-ℓ2
given in Definition 8 rather than the regularity-in-ℓ∞ notion used in [6, 18]. In more detail,
to handle the small critical index case using the regularity-in-ℓ∞ notion, the analysis of [6, 18]
uses an exponential tail bound for degree-d polynomials (the “degree-d Chernoff bound”,
see Theorem 9.23 of [21]). However, derandomizing this degree-d Chernoff bound requires
dq-wise uniform distributions, where q depends on the parameters with which the degree-d
Chernoff bound is being applied, and it turns out that because of the way that the [6, 18]
arguments employ the degree-d Chernoff bound, this can be prohibitively expensive in our
context. In contrast, recall from Section 2.1 that derandomizing Theorem 3 and Fact 5
(which is all that is needed to establish a derandomized version of the small critical index
case using the regularity-in-ℓ2 notion, as outlined above) can be done using only 4d-wise
uniformity.

Improved Product-Based High-Dimensional
Expanders
Louis Golowich #

Department of Computer Science, Harvard University, Cambridge, MA, USA

Abstract
High-dimensional expanders generalize the notion of expander graphs to higher-dimensional simplicial
complexes. In contrast to expander graphs, only a handful of high-dimensional expander constructions
have been proposed, and no elementary combinatorial construction with near-optimal expansion
is known. In this paper, we introduce an improved combinatorial high-dimensional expander
construction, by modifying a previous construction of Liu, Mohanty, and Yang (ITCS 2020), which
is based on a high-dimensional variant of a tensor product. Our construction achieves a spectral gap
of Ω(1

k2) for random walks on the k-dimensional faces, which is only quadratically worse than the
optimal bound of Θ(1

k
). Previous combinatorial constructions, including that of Liu, Mohanty, and

Yang, only achieved a spectral gap that is exponentially small in k. We also present reasoning that
suggests our construction is optimal among similar product-based constructions.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors

Keywords and phrases High-Dimensional Expander, Expander Graph, Random Walk

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.38

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2105.09358

Acknowledgements The author thanks Salil Vadhan for numerous helpful comments and discussions.

1 Introduction

Graphs that are sparse but well connected, called expander graphs, have numerous ap-
plications in various areas of computer science (see for example [8]). Recently, there has
been much interest in generalizing the notion of expansion to higher-dimensional simplicial
complexes, beginning with the work of Lineal and Meshulam [12], Meshulam and Wallach [17],
and Gromov [7]. While multiple notions of high-dimensional expansion have been intro-
duced (see the survey by Lubotzky [14]), these notions agree in that random simplicial
complexes are not good high-dimensional expanders. In contrast, ordinary random graphs are
near-optimal expanders with high probability. Therefore constructions of high-dimensional
expanders are of particular interest. Early constructions of high-dimensional expanders,
namely Ramanujan complexes [16, 15], were quite mathematically involved, whereas more
simple and combinatorial constructions have been introduced recently.

In this paper, we introduce a modification of the high-dimensional expander construction
of Liu, Mohanty, and Yang [13], which is based on a sort of high-dimensional tensor product.
We then show that this modification gives an exponential improvement in the dependence of
the kth order spectral gap on the dimension k, and we discuss why our results suggest this
modification is optimal among constructions with the same general product structure. These
results also address a question posed by Liu et al. [13] pertaining to the limitations of their
product-based construction.

© Louis Golowich;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lgolowich@college.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.38
https://arxiv.org/abs/2105.09358
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Improved Product-Based High-Dimensional Expanders

1.1 High-dimensional expanders
A high-dimensional expander is a simplicial complex with certain expansion properties. A
simplicial complex is a hypergraph with downward-closed hyperedges, called faces. That
is, a simplicial complex X on n vertices is a collection of faces X ⊂ 2[n], where for any face
σ ∈ X, all subsets of σ are also faces in X. The dimension of a face σ is dim(σ) = |σ| − 1,
and the dimension of X is the maximum dimension of any face in X. The 1-skeleton
of a simplicial complex is the undirected n-vertex graph whose edges are given by the
1-dimensional faces. We restict attention to pure simplicial complexes, meaning that every
face is contained in a face of maximal dimension.

We consider the notion of high-dimensional expansion introduced by Kaufman and Mass
[9], which requires rapid mixing for the high-order “up-down” or “down-up” random walks
on simplicial complexes. The k-dimensional up-down walk on a simplicial complex specifies
transition probabilities for a walk that alternates between faces of dimension k and k + 1.
The 0-dimensional up-down walk is an ordinary lazy random walk on the 1-skeleton of the
simplicial complex. Therefore 1-dimensional expanders are just ordinary (spectral) expander
graphs. The spectral gaps of higher-order walks are difficult to bound directly, so they are
instead typically bounded using a line of work [9, 5, 10, 1], which has shown that a large
spectral gap for high-order walks is implied by good local expansion, that is, good spectral
expansion of a specific set of graphs that describe the local structure of the simplicial complex.
Formal definitions of high-order walks and local expansion are provided in Section 2.

We are interested in constructions of infinite families of high-dimensional expanders with
bounded degree and spectral gap for all dimensions. Specifically, for any fixed H ≥ 1, a
H-dimensional expander family is a family X of H-dimensional simplicial complexes
such that there is no finite upper bound on the number of vertices of elements X ∈ X , and
the following two properties hold:
1. Bounded degree: There exists some d > 0 such that for every X ∈ X , each vertex in X

belongs to at most d faces.
2. Bounded spectral gap: There exists some ν > 0 such that for every X ∈ X and every

0 ≤ k ≤ H − 1, the k-dimensional up-down walk on X has spectral gap ≥ ν.
In general, the spectral gap of the k-dimensional up down walk cannot be greater than 2

k+2
(see for example Proposition 3.3 of [1]). Our goal is to prove good lower bounds for this
spectral gap for specific constructions of H-dimensional expander families. That is, we are
interested in the optimal relationship between dimension and spectral gap, and only require
an arbitrary upper bound on degree. This goal differs from the study of expander graphs,
and specifically Ramanujan graphs, which focuses on the optimal relationship between degree
and spectral gap.

While Kaufman and Mass [9] showed that Ramanujan complexes are high-dimensional
expanders, multiple more elementary constructions have since been introduced [3, 4, 2,
13, 11, 6]. However, only three of these constructions [13, 11, 6] provide constant-degree
high-dimensional expander families of all dimensions. The construction of Kaufman and
Oppenheim [11] and the hyper-regular variant introduced by Friedgut and Iluz [6] are based
on coset geometries, and achieve near-optimal expansion in all dimensions. In contrast,
the construction of Liu et al. [13] is much more elementary, as it consists of a sort of
high-dimensional tensor product between an expander graph and a constant-sized complete
simplicial complex. However, this construction has suboptimal expansion in high dimensions.
Specifically, Alev and Lau [1] showed that the k-dimensional up-down walk on the H-
dimensional construction of Liu et al. [13] has spectral gap at least c

(k+2)2k+2 , where 1 ≤
c ≤ 2 is a constant depending on H and on the expander graph used in the construction.
Note that this bound has exponential dependence on k, in contrast to the optimal linear
dependence Ω(1

k).

L. Golowich 38:3

1.2 Contributions
In this paper, we present a modification of the high-dimensional expander family of Liu et
al. [13], for which we show that the spectral gap of the k-dimensional up-down walk is at least

1
(1+log H)(k+2)(k+1) . This quadratic dependence on k provides an exponential improvement
compared to the spectral gap bound of c

(k+2)2k+2 for the construction of Liu et al. [13]. We
attain this exponential improvement using the same product structure as Liu et al. [13]
while adjusting the weights of faces. Our modified construction also yields improved local
expansion in high dimensions. For every 1 ≤ k ≤ H − 2, we show that the 1-skeleton of
the link of any k-dimensional face in our construction has spectral gap at least k+1

k+2 , an
improvement over the analagous bound of 1

2 for the construction of Liu et al. [13].
The organization of the remainder of this paper is as follows. Section 2 presents preliminary

notions, and Section 3 presents our main construction along with some basic properties.
In Section 4, we compute the local expansion of the construction, from which a result of
Alev and Lau [1] implies rapid mixing of high-order walks. Section 5 discusses potential
generalizations and limitations.

2 Background and preliminaries

This section provides basic definitions pertaining to simplicial complexes and high-dimensional
expanders, as well as relevant past results.

▶ Definition 1. A simplicial complex X on n vertices is a subset X ⊂ 2[n] such that if
σ ∈ X, then all subsets of σ also belong to X. Let X(k) = {σ ∈ X : |σ| = k + 1}, and let
the k-skeleton of X refer to the simplicial complex

⋃
ℓ≤k X(k). The elements of X(k) will

be referred to as k-dimensional faces. The dimension of a simplicial complex is the
maximum dimension of any of its faces, and if each face is contained in a face of maximal
dimension, then the complex is pure. A balanced weight function m : X → R+ on a
pure simplicial complex X is a function such that for every −1 ≤ k < dim(X) and every
σ ∈ X(k),

m(σ) =
∑

τ :σ⊂τ∈X(k+1)

m(τ).

The 1-skeleton of a simplicial complex X with balanced weight function m is the undirected
weighted graph (X(0), X(1), m) that has vertices [n] = X(0), edges X(1), and edge weights
m(e) for e ∈ X(1). The weighted degree of a vertex x in this graph is given by the weight
m(x).

This paper will restrict attention to pure weighted simplicial complexes with balanced
weight functions. In this case, the faces and weight function may be defined only on faces of
maximal dimension, then propagated downwards, and the following useful formula applies.

▶ Lemma 2 ([18]). For every H-dimensional simplicial complex X, every −1 ≤ k ≤ H, and
every σ ∈ X(k),

m(σ) = (H − k)!
∑

τ :σ⊂τ∈X(H)

m(τ).

Just as ordinary expander graph families are specified to have bounded degree, we are
interested in families of simplicial complexes satisfying an analagous notion:

APPROX/RANDOM 2021

38:4 Improved Product-Based High-Dimensional Expanders

▶ Definition 3. A family X of simplicial complexes has bounded degree if there exists some
constant d such that for every X ∈ X and every vertex x ∈ X(0), there are at most d faces
in X that contain x.

The local properties of a simplicial complex are captured by the links of faces, defined
below.

▶ Definition 4. For a simplicial complex X with weight function m, the link Xσ of any
σ ∈ X is the simplicial complex defined by Xσ = {τ \ σ : σ ⊂ τ ∈ X} with weight function
mσ(τ \ σ) = m(τ).

A common theme in the study of high-dimensional expanders is the “local-to-global” paradigm,
which uses bounds on the expansion of the 1-skeletons of links to prove global expansion
properties. To state such local-to-global results, it is first necessary to define graph expansion.

▶ Definition 5. For a graph G, the adjacency matrix is denoted MG, the diagonal degree
matrix is denoted DG, and the random walk matrix is denoted WG = MGD−1

G . The eigenval-
ues of the random walk matrix are denoted from greatest to least by ωi(G) = ωi(WG). The
expansion, or spectral gap, of G is the quantity ν2(G) = ν2(WG) = 1 − ω2(G).

For any n-vertex graph G, all eigenvalues ωi(WG) of the random walk matrix lie in [−1, 1],
and ω1(WG) = 1, so 0 ≤ ν2(G) ≤ 1 + 1

n−1 because
∑

i ωi(WG) = Tr(WG) ≥ 0. Graphs with
spectral gaps closer to 1 are considered “better” expanders.

We now introduce a notion of expansion for simplicial complexes.

▶ Definition 6. For −1 ≤ k ≤ H − 2, the k-dimensional local expansion of a simplicial
complex X with weight function m is the value

ν(k)(X) = min
σ∈X(k)

ν2(Xσ(0), Xσ(1), mσ).

The local expansion of X is the minimum of the k-dimensional local expansion over all
k ≥ 0, while the global expansion equals the (−1)-dimensional local expansion.

That is, the k-dimensional local expansion refers to the lowest expansion of the 1-skeleton of
the link of any k-dimensional face. Note that the terminology k-dimensional local expansion
is nonstandard, but will be useful here. The following result shows that good local expansion
in higher dimensions implies good local expansion in lower dimensions.

▶ Proposition 7 ([18]). Let X be a simplicial complex in which all links of dimension ≥ 1
are connected. Then for every 0 ≤ k ≤ dim(X) − 2,

ν(k−1)(X) ≥ 2 − 1
ν(k)(X)

.

In particular, Proposition 7 implies that if ν(k)(X) ≥ 1 − ϵ, then ν(k−1)(X) ≥ 1 − O(ϵ).
The definition below presents the high-order random walks on simplicial complexes.

▶ Definition 8. Fix a pure H-dimensional simplicial complex X. For −1 ≤ k ≤ H −1, define
the up-step random walk operator W ↑

k ∈ RX(k+1)×X(k) so that for σ ∈ X(k), τ ∈ X(k+1),

W ↑
k (τ, σ) =

{
m(τ)
m(σ) , σ ⊂ τ ∈ X(k + 1)
0, otherwise

L. Golowich 38:5

For 0 ≤ k ≤ H, define the down-step random walk operator W ↓
k ∈ RX(k−1)×X(k) so that

for σ ∈ X(k), τ ∈ X(k − 1),

W ↓
k (τ, σ) =

{
1

k+1 , σ ⊃ τ ∈ X(k − 1)
0, otherwise.

Define the up-down and down-up random walk operators by W ↑↓
k = W ↓

k+1 ◦ W ↑
k and

W ↓↑
k = W ↑

k−1 ◦ W ↓
k respectively.

For context with this definition, consider a 1-dimensional simplicial complex X, which may be
viewed as a weighted, undirected graph. Then the up-step operator W ↑

0 moves from a vertex
to an adjacent edge with probability proportial to its weight, while the down-step operator
W ↓

1 moves from an edge to either of its vertices with probability 1
2 . Thus W ↑↓

0 = W ↓
1 ◦ W ↑

0 is
the ordinary graph lazy random walk operator, with stationary probability 1

2 .
The nonzero elements of the spectra of W ↑↓

k and of W ↓↑
k+1 are identical. Therefore when

studying the expansion of these operators, we restrict attention without loss of generality to
W ↑↓

k .
The spectral gap ν2(W ↑↓

k) gives a measure of high-dimensional expansion. Local expansion,
defined above, provides another notion of high-dimensional expansion. The following result,
which follows the “local-to-global” paradigm, shows that these two notions are closely related.

▶ Theorem 9 ([1]). Let X be an H-dimensional simplicial complex, and let W ↑↓
k refer to

the up-down walk operator on X. Then for every 0 ≤ k ≤ H − 1,

ν2(W ↑↓
k) ≥ 1

k + 2

k−1∏
j=−1

ν(j)(X).

Thus if a simplicial complex has good local expansion, then its high-order walks have large
spectral gaps. We apply this result to show our main high-dimensional expansion bound.

The bound in Theorem 9 is nearly tight for good local expanders:

▶ Proposition 10 ([1]). Let X be an H-dimensional simplicial complex with at least 2(H + 1)
vertices, and let W ↑↓

k refer to the up-down walk operator on X. Then for every 0 ≤ k ≤ H −1,

ν2(W ↑↓
k) ≤ 2

k + 2 .

The main purpose of this paper is to present a construction of high-dimensional expander
families, defined below.

▶ Definition 11. A family X of H-dimensional simplicial complexes is an H-dimensional
expander family if the following conditions hold:
1. For every n ∈ N, there exists some X ∈ X with |X(0)| ≥ n.
2. X has bounded degree.
3. For every 0 ≤ k ≤ H − 1, there exists some νX ,k > 0 such that for every X ∈ X, the

k-dimensional up-down walk operator W ↑↓
k on X satisfies ν2(W ↑↓

k) ≥ νX ,k.
We are interested in constructing high-dimensional expander families X of all dimensions
H with the up-down walk spectral gaps νX ,k close to the upper bound in Proposition 10.
By Theorem 9, item 3 in Definition 11 is implied by a uniform lower bound on the local
expansion ν(k)(X) of all X ∈ X for every −1 ≤ k ≤ H − 1. We use this fact in the analysis
of our construction.

APPROX/RANDOM 2021

38:6 Improved Product-Based High-Dimensional Expanders

3 Construction

The following definition introduces the simplicial complex Z with weight function m considered
in this paper. The construction takes as input an n-vertex graph G, which will typically be
chosen from a family of expanders, as well as a dimension H and a parameter s ≥ H + 1,
the latter of which will typically be taken as s = 2H . The parameters H and s will typically
be treated as fixed values, while G and n vary, so that the construction provides a family of
H-dimensional simplicial complexes.

▶ Definition 12. Let G = (V (G), E(G), wG) be any connected undirected graph on n vertices
with no self-loops. For positive integers H and s, define the H-dimensional simplicial complex
Z with vertex set V (G) × [s] such that

Z(H) = {{(v1, b1), . . . , (vH+1, bH+1)} ⊂ V (G) × [s] :
∃{u, v} ∈ E(G) s.t. {v1, . . . , vH+1} = {u, v} and b1, . . . , bH+1 are all distinct}.

Define a weight function m on Z so that if σ = {(v1, b1), . . . , (vH+1, bH+1)} ∈ Z(H) is such
that |{i : vi = u}| = j and |{i : vi = v}| = H + 1 − j for some edge {u, v} ∈ E(G), then let

m(σ) = wG({u, v})(
H−1
j−1
) .

In words, the H-dimensional faces of Z are those sets of the form {(v1, b1), . . . , (vH+1, bH+1)}
such that all vi are contained in a single edge of G, and such that all bi are distinct. If
the above definition is modified so that the condition {v1, . . . , vH+1} = {u, v} is replaced
with {v1, . . . , vH+1} ⊂ {u, v} and so that m(σ) = 1 for all H-dimensional faces σ, then the
resulting simplicial complex Q is exactly the construction of Liu et al. [13]. The difference
between the weight functions of Z and Q lead to the key insights of this paper. Also note
that here G may be a weighted graph, whereas Liu et al. [13] only considered complexes Q

derived from unweighted graphs.
If G is unweighted so that wG({u, v}) = 1 for all {u, v} ∈ E(G), then every σ ∈ Z has

(H − 1)!m(σ) ∈ N. Thus Z may be viewed as an unweighted simplicial complex, meaning
that all H-dimensional faces have the same weight, but where multiple copies of faces are
permitted.

The simplicial complex Z may be viewed as a sort of high-dimensional tensor product of
the graph G and the s-vertex, H-dimensional complete complex K[s]. In particular, the faces
in Z(H) are exactly those (H +1)-element subsets of V (G)× [s] for which the projection onto
the first component gives an edge in G, and the projection onto the second component gives
a face in K[s](H). For comparison, an analagous property holds for the ordinary graph tensor
product G1 ⊗ G2, in which the edges are given by those pairs of elements of V (G1) × V (G2)
whose projection onto either component gives an edge in the respective graph G1 or G2.

Note that as with Q, the simplicial complex Z has bounded degree with respect to n if
G has bounded degree. In particular, fix some values H and s, and let G be chosen from a
family of bounded degree graphs. For every {u, v} ∈ E(G) and 1 ≤ j ≤ H, by definition

|{σ = {(v1, b1), . . . , (vH+1, bH+1)} ∈ Z(H) : |{i : vi = u}| = j}| =
(

s

H + 1

)(
H + 1

j

)
. (1)

It follows by the definition of m that both the maximum weight and the maximum number
of faces containing any face in Z are bounded by a constant. Furthermore, the number of
faces in Z grows as O(n).

L. Golowich 38:7

An additional consequence of Equation (1) is that while the cardinality of the set on
the left hand side, which equals the sum of the weights of the faces in this set under the
weight function of Q, has an exponential dependence on j, the sum of the weights of the
faces in this set under the weight function of Z is equal to

(
s

H+1
)(

H+1
j

)
/
(

H−1
j−1
)
, which has

only a quadratic dependence on j. This observation provides some initial intuition for the
exponential speedup of high-order walks on Z compared to Q.

From here on, the weight function m and the operators W ↑
k , W ↓

k , W ↑↓
k , W ↓↑

k will always
refer to Z, unless explicitly stated otherwise.

3.1 Main result
Our main result, shown in Section 4, is stated below.

▶ Theorem 13 (Restatement of Corollary 19). Let W ↑↓
k be the up-down walk operator for

the simplicial complex Z of Definition 12. If H ≥ 2, s ≥ 2H, and n ≥ 4, then for every
0 ≤ k ≤ H − 1,

ν2(W ↑↓
k) ≥ ν2(G)

(1 + log H)(k + 2)(k + 1) .

In contrast to this quadratic dependence on k, Alev and Lau [1] showed that the spectral
gap of the k-dimensional up-down walk on Q is at least cν2(G)

(k+2)2k+2 , where c = c(G, H) ∈ [1, 2]
depends on the structure of G. The discussion in Section 3.3 below provides intuition for
why this exponential dependence in k arises for Q, and how the adjusted weights in Z yield
the improved quadratic dependence.

Theorem 3.1 implies that for any fixed H with s = 2H, if G is chosen from a family of
bounded degree expanders with spectral gap ν > 0, the resulting simplicial complexes Z

form a family of H-dimensional expanders with k-dimensional up-down walk spectral gap at
least ν

(1+log H)(k+2)(k+1) . For comparison, an optimal H-dimensional expander family, as is
given by simplicial complexes with optimal local expansion by Theorem 9, achieves a spectral
gap of Ω(1

k) for the k-dimensional up-down walk.

3.2 Decomposition into permutation-invariant subsets
This section formalizes the intuitive notion that the construction of Z treats elements
of [s] interchangeably, and introduces some notation to reflect this symmetry. For any
1 ≤ k ≤ H + 1, the set of (k − 1)-dimensional faces Z(k − 1) may be decomposed as follows.
For any {u, v} ∈ E(G) and 0 ≤ j ≤ k, let

Z((j, k−j)(u,v)) = {{(v1, b1), . . . , (vk, bk)} ∈ Z(H) : |{i : vi = u}| = j, |{i : vi = v}| = k−j}

be the set of all (k − 1)-dimensional faces in Z that contain j vertices in {u} × [s] and k − j

vertices in {v} × [s]. To remove redundancy when j = k, let

Z((k)u) = Z((k, 0)(u,v)).

Then by construction,

Z(k − 1) =
⊔

u∈V (G)

Z((k)u) ⊔
⊔

{u,v}∈E(G),1≤j≤k−1

Z((j, k − j)(u,v)).

This decomposition simply partitions Z into faces that differ only by permutations of [s]:

APPROX/RANDOM 2021

38:8 Improved Product-Based High-Dimensional Expanders

▶ Lemma 14. For every 1 ≤ k ≤ H + 1, there is a group action of S[s] = {permutations π :
[s] → [s]} on the set of faces of Z given by

π({(v1, b1), . . . , (vk, bk)}) = {(v1, π(b1)), . . . , (vk, π(bk))}.

The orbits of this action are exactly the sets Z((j, k − j)(u,v)). The action preserves weights,
that is, m ◦ π = m.

Proof. The construction of Z directly implies that for all π, if σ ∈ Z then π(σ) ∈ Z, so the
group action on Z is well defined. Similarly, for all π, the definition of Z((j, k−j)(u,v)) directly
implies that π(Z((j, k −j)(u,v))) = Z((j, k −j)(u,v)). For any σ = {(v1, b1), . . . , (vk, bk)}, σ′ =
{(v′

1, b′
1), . . . , (v′

k, b′
k)} ∈ Z((j, k − j)(u,v)), if π ∈ S[s] is any permutation such that π({bi :

vi = u}) = {b′
i : v′

i = u} and π({bi : vi = v}) = {b′
i : v′

i = v}, then π(σ) = σ′. Thus
Z((j, k − j)(u,v)) is the orbit of σ under the group action. For any π, to verify that m◦π = m,
note that by definition m is constant over all values of Z((j, H + 1 − j)(u,v)) for any given
0 ≤ j ≤ H + 1 and {u, v} ∈ E(G). Thus for all σ ∈ Z(H), the characterization of the orbits
above implies that m(π(σ)) = m(σ). This equality then extends to σ of any dimension by
Lemma 2. ◀

Loosely speaking, Lemma 14 says that elements of Z((j, k − j)(u,v)) may be treated
interchangably, which in particular permits the following definition.

▶ Definition 15. For all 1 ≤ k ≤ H + 1, 0 ≤ j ≤ k, and {u, v} ∈ E(G), choose any
σ ∈ Z((j, k − j)(u,v)) and define w

(j,k−j)
(u,v) = m(σ). This definition does not depend on the

choice of σ ∈ Z((j, k − j)(u,v)) by Lemma 14. To avoid redundancy, also define w
(k)
(u) = w

(k,0)
(u,v).

Note that m is defined by letting w
(j,H+1−j)
(u,v) = wG({u, v})/

(
H−1
j−1
)
. A basic property of these

weights is that for any 1 ≤ j ≤ k − 1, the ratio w
(j,k−j)
(u,v) /wG({u, v}) is independent of the

choice of edge {u, v} ∈ E(G), as is shown below.

▶ Lemma 16. For all 2 ≤ k ≤ H + 1, 1 ≤ j ≤ k − 1, and {u, v} ∈ E(G),

w
(j,k−j)
(u,v)

wG({u, v}) = (H + 1 − k)!
H+1−k∑

ℓ=0

(
s − k

ℓ

)(
s − k − ℓ

H + 1 − k − ℓ

)
· 1(

H−1
j+ℓ−1

) .

Proof. For any σ ∈ Z((j, k − j)(u,v)), any H-dimensional face τ ⊃ σ must satisfy τ ∈
Z((j + ℓ, H + 1 − j − ℓ)(u,v)) for some 0 ≤ ℓ ≤ H + 1 − k. Therefore by Lemma 2,

m(σ)
wG({u, v}) =

(H + 1 − k)!
∑H+1−k

ℓ=0
∑

σ⊂τ∈Z((j+ℓ,H+1−j−ℓ)(u,v)) m(τ)
wG({u, v})

= (H + 1 − k)!
H+1−k∑

ℓ=0

(
s − k

ℓ

)(
s − k − ℓ

H + 1 − k − ℓ

)
· 1(

H−1
j+ℓ−1

) ,

where the final equality holds because there are exactly
(

s−k
ℓ

)(
s−k−ℓ

H+1−k−ℓ

)
elements τ ∈

Z((j + ℓ, H + 1 − j − ℓ)(u,v)) such that τ ⊃ σ, and for each one m(τ) = w
(j+ℓ,H+1−j−ℓ)
(u,v) =

wG({u, v})/
(

H−1
j+ℓ−1

)
by definition. ◀

L. Golowich 38:9

3.3 Relative weights of overlapping faces
The proposition below determines the relative weights of faces of Z that intersect at all but
one of their vertices. This result is used in Section 4 to determine the local expansion of Z.

▶ Proposition 17. For all 1 ≤ k ≤ H, 1 ≤ j ≤ k − 1, and {u, v} ∈ E(G), it holds that

w
(j+1,k−j)
(u,v)

w
(j,k−j+1)
(u,v)

= j

k − j
.

Furthermore,

w
(k+1)
(u)∑

v∈N(u) w
(k,1)
(u,v)

= k
H∑

i=k+1

1
i
.

Proof. Both statements are shown using induction. For the first equality, the base case
k = H follows by the definition of w

(j,H+1−j)
(u,v) = wG({u, v})/

(
H−1
j−1
)
, so that

w
(j+1,H−j)
(u,v)

w
(j,H−j+1)
(u,v)

=
(

H−1
j−1
)(

H−1
j

) = j

H − j
.

For the inductive step, assume for some 1 ≤ k ≤ H − 1 that it holds for all 1 ≤ j ≤ k that
w

(j+1,k+1−j)
(u,v) /w

(j,k+2−j)
(u,v) = j/(k+1−j). For any 1 ≤ j ≤ k−1 and any σ ∈ Z((j+1, k−j)(u,v)),

by definition any (k + 1)-dimensional face τ ⊃ σ is obtained from σ by adding either a vertex
in {u} × ([s] \ Π[s](σ)) or in {v} × ([s] \ Π[s](σ)). Therefore

w
(j+1,k−j)
(u,v) = m(σ) =

∑
σ⊂τ∈Z(k+1)

m(τ)

=
∑

σ⊂τ∈Z((j+2,k−j)(u,v))

m(τ) +
∑

σ⊂τ∈Z((j+1,k−j+1)(u,v))

m(τ)

= (s − k − 1)(w(j+2,k−j)
(u,v) + w

(j+1,k−j+1)
(u,v)). (2)

Applying the exact same reasoning to a face σ′ ∈ Z((j, k − j + 1)(u,v) gives that

w
(j,k−j+1)
(u,v) = m(σ′) = (s − k − 1)(w(j+1,k−j+1)

(u,v) + w
(j,k−j+2)
(u,v)).

Therefore

w
(j+1,k−j)
(u,v)

w
(j,k−j+1)
(u,v)

=
(s − k − 1)(w(j+2,k−j)

(u,v) + w
(j+1,k−j+1)
(u,v))

(s − k − 1)(w(j+1,k−j+1)
(u,v) + w

(j,k−j+2)
(u,v))

=
w

(j+2,k−j)
(u,v) /w

(j+1,k−j+1)
(u,v) + 1

1 + w
(j,k−j+2)
(u,v) /w

(j+1,k−j+1)
(u,v)

= (j + 1)/(k − j) + 1
1 + (k − j + 1)/j

= j

k − j
,

completing the inductive step; note that the third equality above holds by the inductive
hypothesis.

APPROX/RANDOM 2021

38:10 Improved Product-Based High-Dimensional Expanders

To show the second equality in the proposition statement, first note that the base case k =
H holds immediately as w

(H+1)
(u) = 0 because the definition of the complex Z does not include,

or equivalently assigns zero weight, to faces in Z((H + 1)(u)). For the inductive step, assume
that for some 1 ≤ k ≤ H − 1 it holds that w

(k+2)
(u) /

∑
v∈N(u) w

(k+1,1)
(u,v) = (k + 1)

∑H
i=k+2

1
i . For

any σ ∈ Z((k + 1)(u)), by definition any (k + 1)-dimensional face τ ⊃ σ is obtained from σ

by adding either a vertex in {u} × ([s] \ Π[s](σ)) or in {v} × ([s] \ Π[s](σ)) for some v ∈ N(u).
Therefore

w
(k+1)
(u) = m(σ) =

∑
σ⊂τ∈Z(k+1)

m(τ)

=
∑

σ⊂τ∈Z((k+2)(u))

m(τ) +
∑

v∈N(u)

∑
σ⊂τ∈Z((k+1,1)(u,v))

m(τ)

= (s − k − 1)

w
(k+2)
(u) +

∑
v∈N(u)

w
(k+1,1)
(u,v)

 .

Applying (2) with j = k − 1 gives that

∑
v∈N(u)

w
(k,1)
(u,v) = (s − k − 1)

 ∑
v∈N(u)

w
(k+1,1)
(u,v) +

∑
v∈N(u)

w
(k,2)
(u,v)

 .

Therefore

w
(k+1)
(u)∑

v∈N(u) w
(k,1)
(u,v)

=
(s − k − 1)

(
w

(k+2)
(u) +

∑
v∈N(u) w

(k+1,1)
(u,v)

)
(s − k − 1)

(∑
v∈N(u) w

(k+1,1)
(u,v) +

∑
v∈N(u) w

(k,2)
(u,v)

)
=

w
(k+2)
(u) /

(∑
v∈N(u) w

(k+1,1)
(u,v)

)
+ 1

1 +
(∑

v∈N(u) w
(k,2)
(u,v)

)
/
(∑

v∈N(u) w
(k+1,1)
(u,v)

)
=

(k + 1)
∑H

i=k+2 1/i + 1
1 + 1/k

= k
H∑

i=k+1

1
i
,

completing the inductive step; note that the third equality above holds by the inductive
hypothesis, and because w

(k,2)
(u,v) = w

(k+1,1)
(u,v) /k for all v ∈ N(u) as was shown above. ◀

Proposition 17 provides the key insight for understanding why the spectral gap of the
up-down walk on Z has a quadratic dependence in k, whereas that of Q has an exponential
dependence. For some 2 ≤ k ≤ H, 1 ≤ j ≤ k − 1, {u, v} ∈ E(G), consider an element
σ ∈ Z((j, k − j)(u,v)). Let σ′ ∼ W ↑↓

k−11σ be the random variable for the face obtained by
taking one step in the up-down walk starting at σ. Then σ′ ∈ Z((j′, k − j′)(u,v)) for some
j′ ∈ {j + 1, j, j − 1}. Let Π[s](σ) denote the subset of [s] obtained by projecting the elements
of σ to their second components. If j′ = j + 1, then the up step must add some vertex in
{u} × ([s] \ Π[s](σ)) and the down step must remove some vertex in ({v} × [s]) ∩ σ, while if
j′ = j − 1 then the up step must add some vertex in {v} × ([s] \ Π[s](σ)) and the down step
must remove some vertex in ({u} × [s]) ∩ σ. Thus by the definition of the up- and down-step

L. Golowich 38:11

transition probabilities,

Pr[j′ = j + 1] =
w

(j+1,k−j)
(u,v)

w
(j+1,k−j)
(u,v) + w

(j,k−j+1)
(u,v)

· k − j

k + 1

Pr[j′ = j − 1] =
w

(j,k−j+1)
(u,v)

w
(j+1,k−j)
(u,v) + w

(j,k−j+1)
(u,v)

· j

k + 1 . (3)

For the construction Q of Liu et al. [13], these same expressions hold, but w
(j+1,k−j)
(u,v) =

w
(j,k−j+1)
(u,v) , so that when j is close to 1 or close to k, the transition probabilities in (3) are

heavily skewed to push j′ in the direction of k/2. It is this property that results in an
exponential dependence on k in the kth order up-down walk on Q; the up-down walk becomes
“trapped” in the set of faces contained in {u, v}× [s], with the transition probabilities pushing
away from the “exit routes” Z((k)(u)) and Z((k)(v)).

To understand why the weight function m on Z resolves this issue, observe that for Z,
Proposition 17 implies that both probabilities in (3) equal j(k−j)

k(k+1) . Therefore the events
j′ = j + 1 and j′ = j − 1 are equally likely. Thus the up-down walk moves across the sets
Z((j, k − j)(u,v)) for 1 ≤ j ≤ k − 1 as a lazy random walk on an unweighted, undirected,
(k − 1)-vertex path. The mixing time for such a walk grows quadratically in k, thereby
providing intuition for the quadratic dependence in k for the mixing time of W ↑↓

k−1.
The intuition described above can be formalized to bound the mixing time of the high-

order walks on Z. However, the following section takes a different approach by computing
the local expansion of Z, which leads to tighter bounds on ν2(W ↑↓

k).

4 Local and global expansion

This section analyzes the local and global expansion of Z, which is then used to bound the
mixing time of the up-down random walk using Theorem 9.

▶ Theorem 18. If H ≥ 2, s ≥ 2H, and n ≥ 4, then for every 0 ≤ k ≤ H − 2,

ν(k)(Z) = k + 1
k + 2 .

Furthermore,

ν(−1)(Z) = ν2(G)∑H
ℓ=1 1/ℓ

≥ ν2(G)
1 + log H

.

Note that the local expansion ν(k)(Z) for k ≥ 0 does not depend on G. This property stems
from the fact that the structure of any given link in Z depends only on the local structure of
G, that is, on the weights of edges adjacent to a single vertex.

For comparison, the construction Q of Liu et al. [13] has local expansion ν(k)(Q) = 1
2 in

each dimension k ≥ 0, and has global expansion ν(−1)(Q) approaching 1
2 ν2(G) as H grows

large. It was posed as an open question in Liu et al. [13] whether 1
2 is a natural barrier for

local expansion in graph-product-based constructions. Theorem 18 gives a partial answer to
this question, as although Z sacrifices a factor of O(log H) in global expansion compared
to Q, for all k ≥ 1 the local expansion ν(k)(Z) = k+1

k+2 is an improvement on ν(k)(Q) = 1
2 .

Section 5 provides a discussion suggesting that further improvements in local expansion are
not attainable with a similar graph-product-based construction.

APPROX/RANDOM 2021

38:12 Improved Product-Based High-Dimensional Expanders

The result below applies Theorem 9, shown by Alev and Lau [1], to show that the
improvement in local expansion of Z compared to Q for k ≥ 1 results in an exponential
improvement with respect to k of the spectral gap of the kth order up-down walk.

▶ Corollary 19. Let W ↑↓
k be the up-down walk operator for the simplicial complex Z. If

H ≥ 2, s ≥ 2H, and n ≥ 4, then for all 0 ≤ k ≤ H − 1,

ν2(W ↑↓
k) ≥ ν2(G)

(
∑H

ℓ=1 1/ℓ)(k + 2)(k + 1)
≥ ν2(G)

(1 + log H)(k + 2)(k + 1) .

Proof. Applying Theorem 9 with Theorem 18 gives that

ν2(W ↑↓
k) ≥ 1

k + 2 · ν2(G)∑H
ℓ=1 1/ℓ

k−1∏
j=0

j + 1
j + 2 = ν2(G)

(
∑H

ℓ=1 1/ℓ)(k + 2)(k + 1)
. ◀

Because by definition W ↑↓
k has self loop probabilities of 1/(k + 2), for all i it holds that

ωi(W ↑↓
k) ≥ −k/(k + 2). Therefore assuming that G is chosen from a family of graphs with

bounded ratio of maximum degree to minimum degree, then the mixing time of the random
walk W ↑↓

k grows as O(k2(log H)(log n)
ν2(G)).

In contrast, the spectral gap of the kth order random walk on the construction Q of Liu et
al. [13] was shown in Alev and Lau [1] to grow as Ω(ν2(G)

k2k), for a mixing time of O(k2k log n
ν2(G)).

4.1 Proof of Theorem 18
To prove Theorem 18, we first compute the expansion of the 1-skeleton of every link in Z in
the following lemmas.

▶ Lemma 20. For every 2 ≤ k ≤ H − 1, 1 ≤ j ≤ k − 1, and {u, v} ∈ E(G), every face
σ ∈ Z((j, k − j)(u,v)) satisfies

ω2(Zσ(0), Zσ(1), mσ) = 1
k + 1 .

Proof. Following the method of Liu et al. [13], the proof will proceed by identifying the
1-skeleton of each link of Z with a tensor product of two other graphs, whose spectra can
be analyzed independently. For a face σ ∈ Z((j, k − j)(u,v)), the link Zσ by definition has
vertex set Zσ(0) = {u, v} × ([s] \ Π[s](σ)) and edge set

Zσ(1) = {τ \ σ : σ ⊂ τ ∈ Z(k + 1)} = {{(v1, b1), (v2, b2)} ⊂ Zσ(0) : b1 ̸= b2}.

For such an edge {(v1, b1), (v2, b2)}, let τ = σ ∪ {(v1, b1), (v2, b2)}, so that the edge’s weight
m(τ) may be one of three possible values:

If v1 = v2 = u, then τ ∈ Z((j + 2, k − j)(u,v)), so m(τ) = w
(j+2,k−j)
(u,v) .

If v1 = u, v2 = v, then τ ∈ Z((j + 1, k − j + 1)(u,v)), so m(τ) = w
(j+1,k−j+1)
(u,v) .

If v1 = v2 = v, then τ ∈ Z((j, k − j + 2)(u,v)), so m(τ) = w
(j,k−j+2)
(u,v) .

Therefore letting P be the 2-vertex graph with adjacency matrix

MP =
(

w
(j+2,k−j)
(u,v) w

(j+1,k−j+1)
(u,v)

w
(j+1,k−j+1)
(u,v) w

(j,k−j+2)
(u,v)

)
,

then the graph (Zσ(0), Zσ(1), mσ) described above is exactly given by P ⊗ K[s]\Π[s](σ), where
KV denotes the complete graph without self-loops on vertex set V . By Proposition 17, it holds

L. Golowich 38:13

that w
(j+2,k−j)
(u,v) /w

(j+1,k−j+1)
(u,v) = (j + 1)/(k − j) and w

(j+1,k−j+1)
(u,v) /w

(j,k−j+2)
(u,v) = j/(k − j + 1),

so the random walk matrix of P is given by

WP = 1
k + 1

(
j + 1 j

k − j k − j + 1

)
,

whose second eigenvalue is 1/(k + 1), with eigenvector (1, −1)T . Thus because 1 is the only
positive eigenvalue of WK[s]\Π[s](σ) , it follows that the second eigenvalue of WP ⊗ WK[s]\Π[s](σ)

is 1/(k + 1), as desired. ◀

▶ Lemma 21. If s ≥ 2H, then for every 1 ≤ k ≤ H − 1 and u ∈ V (G), every face
σ ∈ Z((k)(u)) satisfies

ω2(Zσ(0), Zσ(1), mσ) = 1
k + 1 .

Proof. The proof will proceed similarly to that of Lemma 20. Consider a face σ ∈ Z((k)(u)),
and let N(u) = {v1, . . . , vd}. The link Zσ then has vertex set Zσ(0) = ({u} ∪ N(u)) × ([s] \
Π[s](σ)) and edge set

Zσ(1) = {τ \σ : σ ⊂ τ ∈ Z(k+1)} = {{(v, b1), (v′, b2)} ⊂ Zσ(0) : b1 ̸= b2, |{v, v′}\{u}| ≤ 1}.

For such an edge {(v, b1), (v′, b2)}, let τ = σ ∪ {(v, b1), (v′, b2)}, so that there are three
possible cases for the edge’s weight m(τ):

If v = v′ = u, then τ ∈ Z((k + 2)(u)), so m(τ) = w
(k+2)
(u) .

If v = u, v′ = vi for some i, then τ ∈ Z((k + 1, 1)(u,vi)), so m(τ) = w
(k+1,1)
(u,vi) .

If v = v′ = vi for some i, then τ ∈ Z((k, 2)(u,vi)), so m(τ) = w
(k,2)
(u,vi).

Therefore letting S be the (d + 1)-vertex star graph with adjacency matrix

MS =

w
(k+2)
(u) w

(k+1,1)
(u,v1) w

(k+1,1)
(u,v2) · · · w

(k+1,1)
(u,vd)

w
(k+1,1)
(u,v1) w

(k,2)
(u,v1) 0 · · · 0

w
(k+1,1)
(u,v2) 0 w

(k,2)
(u,v2)

...
...

...
. . . 0

w
(k+1,1)
(u,vd) 0 . . . 0 w

(k,2)
(u,vd)

,

it follows that the graph (Zσ(0), Zσ(1), mσ) is exactly given by S ⊗ K[s]\Π[s](σ). Let x =
w

(k+2)
(u) +

∑d
i=1 w

(k+1,1)
(u,vi) , so that by Proposition 17, the random walk matrix of S is therefore

WS =

w
(k+2)
(u) /x k/(k + 1) k/(k + 1) · · · k/(k + 1)

w
(k+1,1)
(u,v1) /x 1/(k + 1) 0 · · · 0

w
(k+1,1)
(u,v2) /x 0 1/(k + 1)

...
...

...
. . . 0

w
(k+1,1)
(u,vd) /x 0 . . . 0 1/(k + 1)

,

Let δi ∈ Rd+1 denote the ith basis vector, so that by this expression for WS , every vector in
the codimension-2 subspace span{⃗1, δ1}⊥ is an eigenvector with eigenvalue 1/(k + 1). The

APPROX/RANDOM 2021

38:14 Improved Product-Based High-Dimensional Expanders

final eigenvector in span{⃗1}⊥ is then given by (w(k+2)
(u) − x, w

(k+1,1)
(u,v1) , . . . , w

(k+1,1)
(u,vd))T , with

eigenvalue

1
k + 1 −

x − w
(k+2)
(u)

x
= 1

k + 1 − 1
1 + (k + 1)

∑H
ℓ=k+2 1/ℓ

,

where the equality above holds by Proposition 17. Thus ω2(S) = 1/(k + 1). Because s ≥ 2H

and k ≤ H − 1, it follows that |[s] \ Π[s](σ)| = s − k ≥ H + 1. Therefore the eigenvalues of
WK[s]\Π[s](σ) are 1 and −1/(s − k − 1), with 0 ≤ 1/(s − k − 1) ≤ 1/H ≤ 1/(k + 1), so it follows
that all eigenvalues of WK[s]\Π[s](σ) that do not equal 1 must have absolute value at most
1/(k + 1). Therefore it follows from ω2(S) = 1/(k + 1) that ω2(S ⊗ K[s]\Π[s](σ)) = 1/(k + 1),
as desired. ◀

▶ Lemma 22. For 1 ≤ i ≤ n, let

ω̃i(G) = 1∑H
ℓ=1 1/ℓ

ωi(G) +
(

1 − 1∑H
ℓ=1 1/ℓ

)
(4)

denote the eigenvalues of a lazy random walk on G. Then

ω2(Z(0), Z(1), m) = max{ω̃2(G), −ω̃n(G)/(s − 1)}.

Proof. Consider any τ = {(u, b1), (v, b2)} ∈ Z(1). If u = v then τ ∈ Z((2)(u)) so that
m(τ) = w

(2)
(u), while if u ̸= v then τ ∈ Z((1, 1)(u,v)) so that m(τ) = w

(1,1)
(u,v). Therefore define

G̃ to be the undirected graph with V (G̃) = V (G), E(G̃) = E(G) ∪ V (G), and with edge
weight function wG̃(·) given for {u, v} ∈ E(G) by wG̃({u, v}) = w

(1,1)
(u,v) and wG̃({u}) = w

(2)
(u).

Then the graph (Z(0), Z(1), m) is exactly given by G̃ ⊗ K[s]. Let WG̃ denote the random
walk matrix of G̃, and let W ′

G̃
denote WG̃ with all diagonal entries zeroed out, and let W ′′

G̃
denote WG̃ with all non-diagonal entries zeroed out, so that WG̃ = W ′

G̃
+ W ′′

G̃
. Then for any

u ∈ V (G),

W ′′
G̃

(u, u) =
w

(2)
(u)

w
(2)
(u) +

∑
v∈N(u) w

(1,1)
(u,v)

= 1

1 +
∑

v∈N(u)
w

(1,1)
(u,v)

w
(2)
(u)

=
∑H

ℓ=2
1
ℓ∑H

ℓ=1
1
ℓ

,

where the final equality holds by Proposition 17. Therefore W ′′
G̃

= (
∑H

ℓ=2
1
ℓ /
∑H

ℓ=1
1
ℓ)I.

Furthermore, for any v ̸= u,(
H∑

ℓ=1

1
ℓ

)
W ′

G̃
(v, u) =

w
(2)
(u) +

∑
v′∈N(u) w

(1,1)
(u,v′)∑

v′∈N(u) w
(1,1)
(u,v′)

·
w

(1,1)
(u,v)

w
(2)
(u) +

∑
v′∈N(u) w

(1,1)
(u,v′)

=
w

(1,1)
(u,v)∑

v′∈N(u) w
(1,1)
(u,v′)

= wG({u, v})∑
v′∈N(u) wG({u, v′})

= WG(v, u),

where the first equality above holds by Proposition 17, and the third equality by Lemma 16.
Thus in summary,

WG̃ = W ′
G̃

+ W ′′
G̃

= 1∑H
ℓ=1 1/ℓ

WG +
(

1 − 1∑H
ℓ=1 1/ℓ

)
I,

L. Golowich 38:15

so WG̃ is simply a lazy instance of the random walk WG, and in particular for all 1 ≤ i ≤ n,

ωi(G̃) = 1∑H
ℓ=1 1/ℓ

ωi(G) +
(

1 − 1∑H
ℓ=1 1/ℓ

)
= ω̃i(G).

Because the eigenvalues of K[s] are 1 and −1/(s − 1), it follows that

ω2(G̃ ⊗ K[s]) = max{ω2(G̃), −ωn(G̃)/(s − 1)},

as desired. ◀

Proof of Theorem 18. For every 0 ≤ k ≤ H − 2, each σ ∈ Z(k) by definition either lies in
Z((j, k + 1 − j)(u,v)) or in Z((k + 1)(u)) for some 1 ≤ j ≤ k and {(u, v)} ∈ E(G). Therefore
Lemma 20 and Lemma 21 together imply that the link of every σ ∈ Z(k) has expansion
ν2(Zσ(0), Zσ(1), mσ) = k+1

k+2 , so

ν(k)(Z) = k + 1
k + 2 .

For the global expansion statement, letting ω̃i(G) be defined as in (4), then by Lemma 22,

ν(−1)(Z) = ν2(Z(0), Z(1), m) = 1 − max{ω̃2(G), −ω̃n(G)/(s − 1)}.

Now because n ≥ 4, H ≥ 2, and s ≥ 4 by assumption, then ω2(G) ≥ −1/3 and
∑H

ℓ=1 1/ℓ ≥
3/2, which implies that ω̃2(G) ≥ 1/9 and ω̃n(G) ≥ −1/3, and thus ω̃2(G) ≥ −ω̃n(G)/(s − 1),
so

ν(−1)(Z) = 1 − ω̃2(G) = ν2(G)∑H
ℓ=1 1/ℓ

≥ ν2(G)
1 + log H

. ◀

5 Discussion and future directions

Given the constructions of ordinary expanders using graph products (e.g. [19]), it seems
natural to investigate simplicial complex product constructions that yield high-dimensional
expanders. From this perspective, the construction Q of Liu et al. [13] is quite interesting,
as it may be viewed as a form of tensor product between a graph G and the complete
simplicial complex on s vertices. The principal drawback with Q lies in the exponential
dependence of the spectral gap Ω(ν2(G)

k2k) of the up-down walk on the dimension k. By
reducing this dependence to quadratic with a spectral gap of Ω(ν2(G)

k2 log H), the construction
Z greatly improves the mixing time of high-dimensional up-down walks, while maintaing
the product-based nature of the construction. However, the optimal spectral gap of the kth
order up-down walk grows as Ω(1

k), which is achieved by Ramanujan complexes and by the
constructions based on coset geometries of Kaufman and Oppenheim [11] and Friedgut and
Iluz [6]. It is therefore natural to ask whether the construction Z can be further optimized
to reduce the quadratic dependence on k to linear. Below, we suggest a negative answer to
this question, by analyzing the implications for local expansion.

The determination of the optimal local expansion for any “graph-product-based con-
struction” was posed as an open question by Liu et al. [13], although no formal definition
for a graph-product-based construction was proposed. For concreteness, fix a dimension H,
and let a graph-product-based construction be one such as Z that takes as input a graph
G, and outputs an H-dimensional simplicial complex with the same faces as Q, but with

APPROX/RANDOM 2021

38:16 Improved Product-Based High-Dimensional Expanders

an arbitrary weight function.1 The following reasoning suggests that no such construction
can improve upon the k-dimensional local expansion ν(k)(Z) = k+1

k+2 of Z. For if some
graph-product-based construction Z ′ were to satisfy ν(k)(Z ′) > k+1+ϵ

k+2+ϵ for some ϵ > 0 when
G is chosen from a family of d-regular expanders, then inductively applying Proposition 7
would imply that ν(j)(Z ′) > j+1+ϵ

j+2+ϵ for all j ≤ k, so that ν(−1)(Z ′) > ϵ
1+ϵ . But as observed

in Section 4, the product-based structure ensures that the link of any face of dimension ≥ 0
obtains its structure from the structure of the neighborhood of a single vertex in G, while the
entire 1-skeleton of Z ′ inherits the global structure of G. Thus if G is instead chosen from a
family of d-regular graphs with sufficiently poor expansion, then the 1-skeleton of Z ′ will
now inherit this poor expansion, so ν(−1)(Z ′) < ϵ

1+ϵ . But all d-regular graphs have the same
local structure in the neighborhood of a vertex, so it will still hold that ν(k)(Z ′) > k+1+ϵ

k+2+ϵ ,
and therefore ν(−1)(Z ′) > ϵ

1+ϵ , a contradiction.
With k-dimensional local expansion ν(k) = k+1

k+2 , the bound from Theorem 9 on the
spectral gap of the k-dimensional up-down walk is at best 1

(k+2)(k+1) . Indeed, a quadratic
dependence on k in mixing time also arose in the discussion in Section 3.3, which shows
how for a given edge {u, v} ∈ G, the k-dimensional up-down walk on a graph-product-based
construction such as Z proceeds within the faces

⋃k
j=1 Z((j, k + 1 − j)(u,v)) analagously to a

random walk on a k-vertex path, which has a mixing time of Ω(k2).2 These observations
suggest that no graph-product-based construction obtains better than a quadratic dependence
on k in the spectral gap of the k-dimensional up-down walk. It is an interesting open problem
to develop alternative combinatorial constructions of high-dimensional expanders that attain
the optimal up-down walk spectral gap of Ω(1

k).

References
1 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, pages 1198–1211, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384317.

2 Michael Chapman, Nati Linial, and Yuval Peled. Expander Graphs — Both Local and Global.
Combinatorica, 40(4):473–509, August 2020. doi:10.1007/s00493-019-4127-8.

3 David Conlon. Hypergraph expanders from Cayley graphs. Israel Journal of Mathematics,
233(1):49–65, 2019. doi:10.1007/s11856-019-1895-1.

4 David Conlon, Jonathan Tidor, and Yufei Zhao. Hypergraph expanders of all uniformities
from Cayley graphs. Proceedings of the London Mathematical Society, 121(5):1311–1336, 2020.
doi:10.1112/plms.12371.

5 I. Dinur and T. Kaufman. High Dimensional Expanders Imply Agreement Expanders. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 974–985,
2017. ISSN: 0272-5428. doi:10.1109/FOCS.2017.94.

6 Ehud Friedgut and Yonatan Iluz. Hyper-regular graphs and high dimensional expanders.
arXiv:2010.03829 [math], October 2020. arXiv: 2010.03829. URL: http://arxiv.org/abs/
2010.03829.

7 Mikhail Gromov. Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics
to Topology Via Algebraic Isoperimetry. Geometric and Functional Analysis, 20(2):416–526,
August 2010. doi:10.1007/s00039-010-0073-8.

1 The reasoning presented here also applies to more general constructions.
2 For graph-product-based constructions other than Z, the analagous path graph may have arbitrary edge

weights. We believe that such paths have mixing time Ω(k2), but we have not proven such a bound.

https://doi.org/10.1145/3357713.3384317
https://doi.org/10.1007/s00493-019-4127-8
https://doi.org/10.1007/s11856-019-1895-1
https://doi.org/10.1112/plms.12371
https://doi.org/10.1109/FOCS.2017.94
http://arxiv.org/abs/2010.03829
http://arxiv.org/abs/2010.03829
https://doi.org/10.1007/s00039-010-0073-8

L. Golowich 38:17

8 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applica-
tions. Bulletin of the American Mathematical Society, 43(4):439–561, 2006. doi:10.1090/
S0273-0979-06-01126-8.

9 Tali Kaufman and David Mass. High Dimensional Random Walks and Colorful Expansion.
In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:27, Dagstuhl, Germany,
2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2017.4.

10 Tali Kaufman and Izhar Oppenheim. High Order Random Walks: Beyond Spectral Gap. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018), volume 116 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 47:1–47:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.47.

11 Tali Kaufman and Izhar Oppenheim. High dimensional expanders and coset geometries.
arXiv:1710.05304 [math], 2020. arXiv: 1710.05304 version: 3. URL: http://arxiv.org/abs/
1710.05304.

12 Nathan Linial and Roy Meshulam. Homological Connectivity Of Random 2-Complexes.
Combinatorica, 26(4):475–487, August 2006. doi:10.1007/s00493-006-0027-9.

13 Siqi Liu, Sidhanth Mohanty, and Elizabeth Yang. High-Dimensional Expanders from Expanders.
In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151
of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:32, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ITCS.2020.12.

14 Alexander Lubotzky. High Dimensional Expanders. In Proceedings of the International
Congress of Mathematicians (ICM 2018), pages 705–730. World Scientific, June 2018. doi:
10.1142/9789813272880_0027.

15 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan
complexes of type Ãd. European Journal of Combinatorics, 26(6):965–993, August 2005.
doi:10.1016/j.ejc.2004.06.007.

16 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type Ãd. Israel
Journal of Mathematics, 149(1):267–299, December 2005. doi:10.1007/BF02772543.

17 R. Meshulam and N. Wallach. Homological connectivity of random k -dimensional complexes:
Homological Connectivity of Random Complexes. Random Structures & Algorithms, 34(3):408–
417, May 2009. doi:10.1002/rsa.20238.

18 Izhar Oppenheim. Local Spectral Expansion Approach to High Dimensional Expanders
Part I: Descent of Spectral Gaps. Discrete & Computational Geometry, 59(2):293–330, 2018.
doi:10.1007/s00454-017-9948-x.

19 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy Waves, the Zig-Zag Graph Product,
and New Constant-Degree Expanders. The Annals of Mathematics, 155(1):157, January 2002.
doi:10.2307/3062153.

APPROX/RANDOM 2021

https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.4230/LIPIcs.ITCS.2017.4
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.47
http://arxiv.org/abs/1710.05304
http://arxiv.org/abs/1710.05304
https://doi.org/10.1007/s00493-006-0027-9
https://doi.org/10.4230/LIPIcs.ITCS.2020.12
https://doi.org/10.4230/LIPIcs.ITCS.2020.12
https://doi.org/10.1142/9789813272880_0027
https://doi.org/10.1142/9789813272880_0027
https://doi.org/10.1016/j.ejc.2004.06.007
https://doi.org/10.1007/BF02772543
https://doi.org/10.1002/rsa.20238
https://doi.org/10.1007/s00454-017-9948-x
https://doi.org/10.2307/3062153

Improved Bounds for Coloring Locally Sparse
Hypergraphs
Fotis Iliopoulos Ñ

Institute for Advanced Study, Princeton, NJ, USA
Princeton University, NJ, USA

Abstract
We show that, for every k ≥ 2, every k-uniform hypergaph of degree ∆ and girth at least 5 is
efficiently (1 + o(1))(k − 1)(∆/ ln ∆)1/(k−1)-list colorable. As an application we obtain the currently
best deterministic algorithm for list-coloring random hypergraphs of bounded average degree.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial struc-
tures; Theory of computation → Pseudorandomness and derandomization; Theory of computation
→ Random search heuristics; Theory of computation → Random network models

Keywords and phrases hypergaph coloring, semi-random method, locally sparse, random hypergraphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.39

Category RANDOM

Related Version Full Version: https://arxiv.org/pdf/2004.02066.pdf

Funding This material is based upon work directly supported by the IAS Fund for Math and
indirectly supported by the National Science Foundation Grant No. CCF-1900460. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation. This work is also
supported by the Simons Collaboration on Algorithms and Geometry

Acknowledgements The author is grateful to Dimitris Achlioptas, Irit Dinur and anonymous
reviewers for detailed comments and feedback.

1 Introduction

In hypergraph coloring one is given a hypergraph H(V, E) and the goal is to find an assignment
of one of q colors to each vertex v ∈ V so that no hyperedge is monochromatic. In the more
general list-coloring problem, a list of q allowed colors is specified for each vertex. A graph is
q-list-colorable if it has a list-coloring no matter how the lists are assigned to each vertex.
The list chromatic number, χℓ(H), is the smallest q for which H is q-list colorable.

Hypergraph coloring is a fundamental constraint satisfaction problem with several applic-
ations in computer science and combinatorics, that has been studied for over 60 years. In
this paper we consider the task of coloring locally sparse hypergraphs and its connection to
coloring sparse random hypegraphs.

A hypergraph is k-uniform if every hyperedge contains exactly k vertices. An i-cycle in a
k-uniform hypergraph is a collection of i distinct hyperedges spanned by at most i(k − 1)
vertices. We say that a k-uniform hypergraph has girth at least g if it contains no i-cycles
for 2 ≤ i < g. Note that if a k-uniform hypergraph has girth at least 3 then every two of its
hyperedges have at most one vertex in common.

The main contribution of this paper is to prove the following theorem.

© Fotis Iliopoulos;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 39; pp. 39:1–39:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.filiop.org
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.39
https://arxiv.org/pdf/2004.02066.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Coloring Locally Sparse Hypergraphs

▶ Theorem 1. Let H by any k-uniform hypergraph, k ≥ 2, of maximum degree ∆ and girth
at least 5. For all ϵ > 0, there exist a positive constant ∆ϵ,k such that if ∆ ≥ ∆ϵ,k, then

χℓ(H) ≤ (1 + ϵ)(k − 1)
(

∆
ln ∆

) 1
k−1

. (1)

Furthermore, if H is a hypergraph on n vertices then there exists a deterministic algorithm
that constructs such a coloring in time polynomial in n.

Theorem 1 is interesting for a number of reasons. First, it generalizes a well-known
result of Kim [20] for coloring graphs of degree ∆ and girth 5, and it implies the classical
theorem of Ajtai, Komlós, Pintz, Spencer and Szemerédi [4] regarding the independence
number of k-uniform hypergraphs of degree ∆ and girth 5. The latter is a seminal result
in combinatorics, with applications in geometry and coding theory [21, 22, 24]. Second,
Theorem 1 is tight up to a constant [8]. Note also that, without the girth assumption, the
best possible bound [11] on the chromatic number of k-uniform hypergraphs is O(∆1/(k−1)),
i.e., it is asymptotically worse than the one of Theorem 1. For example, there exist graphs
of degree ∆ whose chromatic number is exactly ∆ + 1. Third, when it applies, Theorem 1
improves upon a result of Frieze and Mubayi [14] regarding the chromatic number of simple
hypergraphs, who showed (1) with an unspecified large leading constant (of order at least
Ω(k4)). Finally, Theorem 1 can be used to provide the currently best deterministic algorithm
for list-coloring random k-uniform hypergarphs of bounded average degree. We discuss the
connection between locally sparse hypergraphs and sparse random hypergraphs with respect
to the task of coloring in the following section.

1.1 Application to coloring pseudo-random hypergraphs
The random k-uniform hypergraph H(k, n, p) is obtained by choosing each of the

(
n
k

)
k-

element subsets of a vertex set V (|V | = n) independently with probability p. The chosen
subsets are the hyperedges of the hypergraph. Note that for k = 2 we have the usual
definition of the random graph G(n, p). We say that H(k, n, p) has a certain property A

almost surely or with high probability, if the probability that H ∈ H(k, n, p) has A tends to 1
as n → ∞.

In this paper we are interested in H(k, n, d/
(

n
k−1
)
), i.e., the family of random k-uniform

hypergraphs of bounded average degree d. Specifically, we use Theorem 1 to prove the
following theorem.

▶ Theorem 2. For any constants δ ∈ (0, 1), k ≥ 2, there exists dδ,k > 0 such that for
every constant d ≥ dδ,k, almost surely, the random hypergraph H(k, n, d/

(
n

k−1
)
) can be

(1 + δ)(k − 1)(d/ ln d)1/(k−1)-list-colored by a deterministic algorithm whose running time is
polynomial in n.

▶ Remark 3. Note that, for k, d constants, a very standard argument reveals that distribution
H(k, n, d/

(
n

k−1
)
) is essentially equivalent to H(k, n, kdn), namely the uniform distribution

over k-uniform hypergraphs with n vertices and exactly kdn hyperedges. Thus, Theorem 2
extends to that model as well.

We note that previous approaches [3, 23, 31] for list-coloring random k-uniform hyper-
graphs of bounded average degree d are either randomized, or require significantly larger
lists of colors per vertex in order to succeed. Indeed, to the best of our knowledge, current
deterministic approaches require lists of size at least O(k4(d/ ln d)1/(k−1)). Moreover, it is
believed that all efficient algorithms (including randomized ones) require lists of size at
least (1 + o(1))((k − 1)d/ ln d)1/(k−1), as this bound corresponds to the so-called shattering

F. Iliopoulos 39:3

threshold [1, 7, 15] fo coloring sparse random hypergraphs, which is also often referred to
as the “algorithmic barrier” [1]. This threshold arises in a plethora of random constraint
satisfaction problems, and it corresponds to a precise phase transition in the geometry set of
solutions. In all of these problems, we are not aware of any efficient algorithm that works
beyond the algorithmic barrier, despite the fact that solutions exist for constraint-densities
larger than the one in which the shattering phenomenon appears. We refer the reader
to [1, 33] for further details.

In order to prove Theorem 2, we show that random k-uniform hypergraphs of bounded
average degree d can essentially be treated as hypergraphs of girth 5 and maximum degree
d for the purposes of list-coloring, and then apply Theorem 1. In particular, we identify a
pseudo-random family of hypergraphs which we call girth-reducible, and show that almost all
k-uniform hypergraphs of bounded average degree belong in this class. Then we show that
girth-reducible hypergraphs can be colored efficiently using Theorem 1.

Formally, a k-uniform hypergraph H is κ-degenerate if the induced subhypergraph of all
subsets of its vertex set has a vertex of degree at most κ. The degeneracy of a hypergraph H is
the smallest value of κ for which H is κ-degenerate. Note that it is known that κ-degenerate
hypergraphs are (κ + 1)-list colorable and that the degeneracy of a hypergraph can be
computed efficiently by an algorithm that repeatedly removes minimum degree vertices.
Indeed, to list-color a κ-degenerate hypergraph we repeatedly find a vertex with (remaining)
degree at most κ, assign to it a color that does not appear in any of its neighbors so far, and
remove it from the hypergraph. Clearly, if the lists assigned to each vertex are of size at least
κ + 1 this procedure always terminates successfully.

▶ Definition 4. For δ ∈ (0, 1), we say that a k-uniform hypergraph H(V, E) of average degree
d is δ-girth-reducible if its vertex set can be partitioned in two sets, U and V \ U , such that:
(a) U contains all cycles of length at most 4, and all vertices of degree larger than (1 + δ)d;
(b) subhypergraph H[U] is

(
d

ln d

) 1
k−1 -degenerate;

(c) every vertex in V \ U has at most δ
(

d
ln d

) 1
k−1 neighbors in U .

In words, a hypergraph is δ-girth-reducible if its vertex set can be seen as the union of
two parts: A “low-degeneracy” part, which contains all vertices of degree more than (1 + δ)d
and all cycles of lengths at most 4, and a “high-girth” part, which induces a hypergraph of
maximum degree at most (1 + δ)d and girth 5. Moreover, each vertex in the “high-girth”
part has only a few neighbors in the “low-degeneracy” part.

Note that given a δ-girth-reducible hypergraph we can efficiently find the promised
partition (U, V \ U) as follows. We start with U := U0, where U0 is the set of vertices that
either have degree at least (1 + δ)d, or they are contained in a cycle of length at most 4.
Let ∂U denote the vertices in V \ U that violate property (c). While ∂U ̸= ∅, update U as
U := U ∪ ∂U . The correctness of the process lies in the fact that in each step we add to the
current U a set of vertices that must be in the low-degeneracy part of the hypergraph. Observe
also that this process allows us to efficiently check whether a hypergraph is δ-girth-reducible.

We prove the following theorem regarding the list-chromatic number of girth-reducible
hypergraphs.

▶ Theorem 5. For any constants δ ∈ (0, 1) and k ≥ 2, there exists dδ,k > 0 such that if H

is a δ-girth-reducible, k-uniform hypergraph of average degree d ≥ dδ,k, then

χℓ(H) ≤ (1 + ϵ)(k − 1)
(

d

ln d

) 1
k−1

,

where ϵ = 4δ = O(δ). Furthermore, if H is a hypergraph on n vertices then there exists a
deterministic algorithm that constructs such a coloring in time polynomial in n.

APPROX/RANDOM 2021

39:4 Coloring Locally Sparse Hypergraphs

Proof of Theorem 5. Let ϵ = 4δ. Given lists of colors of size (1+ ϵ)(k −1)
(

d
ln d

) 1
k−1 for each

vertex of H , we first color the vertices of U using the greedy algorithm which exploits the low
degeneracy of H [U]. Now each vertex in V − U has at most δ

(
d

ln d

) 1
k−1 forbidden colors in its

list as it has at most that many neighbors in U . We delete these colors from the list. Observe
that if we manage to properly color the induced subgraph H[V \ U] using colors from the
updated lists, then we are done since every hyperedge with vertices both in U and V \ U will
be automatically “satisfied”, i.e., it cannot be monochromatic. Notice now that the updated
list of each vertex still contains at least (1 + 3δ)(k − 1)

(
d

ln d

) 1
k−1 colors, for sufficiently large

d. Since the induced subgraph H[V \ U] is of girth at least 5 and of maximum degree at

most (1 + δ)d, it is efficiently (1 + δ)(k − 1)
(

(1+δ)d
ln((1+δ)d)

) 1
k−1 -list-colorable for sufficiently large

d per Theorem 1. This concludes the proof since (1 + δ)(1 + δ)
1

k−1 < (1 + 3δ). ◀

Moreover, we show that girth-reducibility is a pseudo-random property which is admitted
by almost all sparse k-uniform hypregraphs.

▶ Theorem 6. For any constants δ ∈ (0, 1), k ≥ 2, there exists dδ,k > 0 such that for every
constant d ≥ dδ,k, almost surely, the random hypergraph H(k, n, d/

(
n

k−1
)
) is δ-girth-reducible.

Theorem 6 follows by simple, although somewhat technical, considerations on properties
of sparse random hypergraphs, which are mainly inspired by the results of Alon, Krivelevich
and Sudakov [6] and Łuczak [25]. Observe that combining Theorem 6 with Theorem 5
immediately implies Theorem 2.

Overall, the task of coloring locally sparse hypergraphs is inherently related to the
average-case complexity of coloring. In particular, in this section we showed that Theorem 1
implies a robust algorithm for hypergraph coloring, namely a deterministic procedure that
applies to worst-case k-uniform hypergraphs, while at the same using a number of colors that
is only a (k − 1)-factor away from the algorithmic barrier for random instances (matching
it for k = 2). We remark that this application is inspired by recent results that study the
connection between local sparsity and efficient randomized algorithms for coloring sparse
regular random graphs [26, 2, 10].

1.2 Technical overview
The intuition behind the proof of Theorem 1 comes from the following observation, which
we explain in terms of graph coloring for simplicity. Let G be a triangle-free graph of
degree ∆, and assume that each of its vertices is assigned an arbitrary list of q colors. Fix
a vertex v of G, and consider the random experiment in which the neighborhood of v is
properly list-colored randomly. Since G contains no triangles, this amounts to assigning
to each neighbor of v a color from its list randomly and independently. Assuming that
q ≥ q∗ := (1 + ϵ)∆/ ln ∆, the expected number of available colors for v, i.e., the colors from
the list of v that do not appear in any of its neighbors, is at least q(1 − 1/q)∆ = ω(∆ϵ/2). In
fact, a simple concentration argument reveals that the number of available colors for v in the
end of this experiment is at least ∆ϵ/2 with probability that goes to 1 as ∆ grows. To put it
differently, as long as q ≥ q∗, the vast majority of valid ways to list-color the neighborhood
of v “leaves enough room” to color v without creating any monochromatic edges.

A completely analogous observation regarding the ways to properly color the neighborhood
of a vertex can be made for k-uniform hypergraphs. In order to exploit it we employ the
so-called semi-random method, which is the main tool behind some of the strongest graph
coloring results, e.g., [16, 17, 18, 19, 27, 32], including the one of Kim [20]. The idea is to

F. Iliopoulos 39:5

gradually color the hypergraph in iterations until we reach a point where we can finish the
coloring with a simple, e.g., greedy, algorithm. In its most basic form, each iteration consists
of the following simple procedure (using graph vertex coloring as a canonical example):
Assign to each vertex a color chosen uniformly at random; then uncolor any vertex that
receives the same color as one of its neighbors. Using the Lovász Local Lemma [11] and
concentration inequalities, one typically shows that, with positive probability, the resulting
partial coloring has useful properties that allow for the continuation of the argument in
the next iteration. (In fact, using the Moser-Tardos algorithm [29] this approach yields
efficient, and often times deterministic [9], algorithms.) Specifically, one keeps track of certain
parameters of the current partial coloring and makes sure that, in each iteration, these
parameters evolve almost as if the coloring was totally random. For example, recalling the
heuristic experiment of the previous paragraph, one of the parameters we would like to keep
track of in our case is a lower bound on the number of available colors of each vertex in the
hypergraph: If this parameter evolves “randomly” throughout the process, then the vertices
that remain uncolored in the end are guaranteed to have a non-trivial number of available
colors.

Applications of the semi-random method tend to be technically intense and this is even
more so in our case, where we have to deal with constraints of large arity. Large constraints
introduce several difficulties, but the most important one is that our algorithm has to control
many parameters that interact with each other. Roughly, in order to guarantee the properties
that allow for the continuation of the argument in the next iteration, for each uncolored
vertex v, each color c in the list of v, and each integer r ∈ [k − 1], we should keep track of
a lower bound on the number of adjacent to v hyperedges that have r uncolored vertices
and k − 1 − r vertices colored c. Clearly, these parameters are not independent of each
other throughout the process, and so the main challenge is to design and analyze a coloring
procedure in which all of them, simultaneously, evolve essentially randomly.

1.3 Organization of the paper
The paper is organized as follows. In Section 2 we present the necessary background. In
Section 3 we present the algorithm and state the key lemmas for the proof of Theorem 1.
(The proofs of these lemmas can be found in the full version of our paper). In Section 4 we
prove Theorem 6.

2 Background and preliminaries

In this section we give some background on the technical tools that we will use in our proofs.

2.1 The Lovász Local Lemma
We will find useful the so-called lopsided version of the Lovász Local Lemma [11, 12].

▶ Theorem 7. Consider a set B = {B1, B2, . . . , Bm} of (bad) events. For each B ∈ B, let
D(B) ⊆ B \ {B} be such that Pr[B |

⋂
C∈S C] ≤ Pr[B] for every S ⊆ B \ (D(B) ∪ {B}). If

there is a function x : B → (0, 1) satisfying

Pr[B] ≤ x(B)
∏

C∈D(B)

(1 − x(C)) for all B ∈ B , (2)

then the probability that none of the events in B occurs is at least
∏

B∈B(1 − x(B)) > 0.

APPROX/RANDOM 2021

39:6 Coloring Locally Sparse Hypergraphs

In particular, we will need the following two corollaries of Theorem 7. For their proofs,
the reader is referred to Chapter 19 in [28].

▶ Corollary 8. Consider a set B = {B1, . . . , Bm} of (bad) events. For each B ∈ B, let
D(B) ⊆ B \ {B} be such that Pr[B |

⋂
C∈S C] ≤ Pr[B] for every S ⊆ B \ (D(B) ∪ {B}). If

for every B ∈ B:
(a) Pr[B] ≤ 1

4 ;
(b)

∑
C∈D(B) Pr[C] ≤ 1

4 ,
then the probability that none of the events in B occurs is strictly positive.

▶ Corollary 9. Consider a set B = {B1, B2, . . . , Bm} of (bad) events such that for each
B ∈ B:
(a) Pr[B] ≤ p < 1;
(b) B is mutually independent of a set of all but at most ∆ of the other events.
If 4p∆ ≤ 1 then with positive probability, none of the events in B occur.

2.2 Talagrand’s inequality
We will also need the following version of Talagrand’s inequality [30] whose proof can be
found in [28].

▶ Theorem 10. Let X be a non-negative random variable, not identically 0, which is
determined by n independent trials T1, . . . , Tn, and satisfying the following for some c, r > 0:
1. changing the outcome of any trial can affect X by at most c, and
2. for any s, if X ≥ s then there is a set of at most ws trials whose outcomes certify that

X ≥ s,
then for any 0 ≤ t ≤ E[X],

Pr[|X − E[X]| > t + 60c
√

wE[X]] ≤ 4e− t2
8c2wE[X] .

3 List-coloring high-girth hypergraphs

In this section we describe the algorithm of Theorem 1 and state the key lemmas behind its
analysis. As we already explained, our approach is based on the semi-random method. For
an excellent exposition both of the method and Kim’s result the reader is referred to [28].

We assume without loss of generality that ϵ < 1
10 . Also, it will be convenient to define

the parameter δ := (1 + ϵ)(k − 1) − 1, so that the list of each vertex initially has at least
(1 + δ)(∆

ln ∆)
1

k−1 colors.
We analyze each iteration of our procedure using a probability distribution over the set of

(possibly improper) colorings of the uncolored vertices of H where, additionally, each vertex
is either activated or deactivated. We call a pair of coloring and activation bits assignments
for the uncolored vertices of hypergraph H a state.

Let Vi denote the set of uncolored vertices in the beginning of the i-th iteration. (Initially,
all vertices are uncolored.) For each v ∈ Vi we denote by Lv = Lv(i) the list of colors of v in
the beginning of the i-th iteration. Further, we say that a color c ∈ Lv is available for v in a
state σ if assigning c to v does not cause any hyperedge whose initially uncolored vertices
are all activated in σ to be monochromatic.

For each vertex v, color c ∈ Lv and iteration i, we define a few quantities of interest
that our algorithm will attempt to control. Let ℓi(v) be the size of Lv. Further, for each
r ∈ [k], let Di,r(v, c) denote the set of hyperedges h that contain v and (i) exactly r vertices
{u1, . . . , ur} ⊆ h \ {v} are uncolored and c ∈ Luj

for every j ∈ [r]; (ii) the rest k − 1 − r

vertices other than v are colored c. We define ti,r(v, c) = |Di,r(v, c)|.

F. Iliopoulos 39:7

As it is common in the applications of the semi-random method, we will not attempt
to keep track of the values of ℓi(v) and ti,r(v, c), r ∈ [k − 1], for every vertex v and color c

but, rather, we will focus on their extreme values. In particular, we will define appropriate
Li, Ti,r such that we can show that, for each i, the following property holds at the beginning
of iteration i:
Property P(i): For each vertex v ∈ Vi, color c ∈ Lv and r ∈ [k − 1],

ℓi(v) ≥ Li,

ti,r(v, c) ≤ Ti,r.

As a matter of fact, it would be helpful for our analysis (though not necessary) if the
inequalities defined in P (i) were actually tight. Given that P (i) holds, we can always enforce
this stronger property in a straightforward way as follows. First, for each vertex v such
that ℓi(v) > Li we choose arbitrarily ℓi(v) − Li colors from its list and remove them. Then,
for each vertex v and color c ∈ Li such that ti,r(v, c) < Ti,r we add to the hypergraph
Ti,r − ti,r(v, c) new hyperedges of size r + 1 that contain v and r new “dummy” vertices.
(As it will be evident from the proof, we can always assume that Li, Ti,r are integers, since
our analysis is robust to replacing Li, Ti,r with ⌊Li⌋ and Ti,r with ⌈Ti,r⌉.) We assign each
dummy vertex a list of Li colors: Li − 1 of them are new and do not appear in the list of
any other vertex, and the last one is c.
▶ Remark 11. Dummy vertices are only useful for the purposes of our analysis and can be
removed at the end of the iteration. Indeed, one could use the technique of “equalizing coin
flips” instead. For more details see e.g., [28].
Overall, without loss of generality, at each iteration i our goal will be to guarantee that
P (i + 1) holds assuming Q(i).
Property Q(i): For each vertex v ∈ Vi, color c ∈ Lv and r ∈ [k − 1],

ℓi(v) = Li,

ti,r(v, c) = Ti,r.

An iteration. For the i-th iteration we will apply the Local Lemma with respect to the
probability distribution induced by assigning to each vertex v ∈ Vi a color chosen uniformly
at random from Lv and activating v with probability α = K

ln ∆ , where K = (100k3k)−1. That
is, we will apply the Moser-Tardos algorithm in a configuration space consisting of 2|Vi|
variables corresponding to the color and activation bit of each variable in Vi. (We will define
the family of bad events for each iteration shortly.)

When the execution of the Moser-Tardos algorithm terminates, we will uncolor some of
the vertices in Vi, to get a new partial coloring. In particular, the partial coloring of the
hypergraph, set Vi+1, and the lists of colors for each uncolored vertex in the beginning of
iteration i + 1 are induced as follows. Let σ be the output state of the application of the
Moser-Tardos algorithm in the i-th iteration. The list of each vertex v, Lv(i + 1), is induced
from Lv(i) by removing every non-available color c ∈ Lv(i) for v in σ. We obtain the partial
coloring ϕ for the hypergraph and set Vi+1 for the beginning of iteration i + 1 by removing
the color from every vertex v ∈ Vi which is either deactivated or is assigned a non-available
for it color in σ.

Overall, the i-th iteration of our algorithm can be described at a high-level as follows:
1. Apply the Moser-Tardos algorithm to the probability space induced by assigning to each

vertex v ∈ Vi a color chosen uniformly at random from Lv(i), and activating v with
probability α.

APPROX/RANDOM 2021

39:8 Coloring Locally Sparse Hypergraphs

2. Let σ be the output state of the Moser-Tardos algorithm.
3. For each vertex v ∈ Vi, remove any non-available color c ∈ Lv(i) in σ to get a list Lv(i+1).
4. Uncolor every vertex v ∈ Vi that has either received a non-available color or is deactivated

in σ, to get a new partial coloring ϕ.

Controlling the parameters of interest. Next we describe the recursive definitions for Li

and Ti,r which, as we already explained, will determine the behavior of the parameters ℓi(v)
and ti,r(v, c), respectively.

Initially, L1 = (1 + δ)
(∆

ln ∆
) 1

k−1 , T1,k−1 = ∆ and T1,r = 0 for every r ∈ [k − 2]. Letting

Keepi =
k−1∏
r=1

(
1 −

(
α

Li

)r)Ti,r

, (3)

we define

Li+1 = Li · Keepi − L
2/3
i , (4)

Ti+1,r =
k−1∑
j=r

(
Ti,j ·

(
j

r

)
(Keepi (1 − αKeepi))

r

(
αKeepi

Li

)j−r
)

+3krα−r+1Lr
i

k−1∑
ℓ=1

Ti,ℓ

L2ℓ
i (ln ∆)2ℓ

+

k−1∑
j=r

(
j

r

)
αj−r Ti,j

Lj−r
i

2/3

. (5)

To get some intuition for the recursive definitions (4), (5), observe that Keepi is the
probability that a color c ∈ Lv(i) is present in Lv(i+1) as well. Note further that this implies
that the expected value of ℓi+1(v, c) is Li · Keepi, a fact which motivates (4). Calculations of
similar flavor for E[ti+1,r(v, c)] motivate (5).

The key lemmas. We are almost ready to state the main lemmas that will guarantee that
our procedure eventually reaches a partial list-coloring of H with favorable properties that
will allow us to extend it to a full list-coloring. Before doing so, we need to settle a subtle
issue that has to do with the fact that ti+1,r(v, c) is not sufficiently concentrated around its
expectation. To see this, notice for example that ti+1,1(v, c) drops to zero if v is assigned
c. (Similarly, for r ∈ {2, . . . , k − 1}, if v is assigned c then ti+1,r(v, c) can be affected by
a large amount.) To deal with this problem we will focus instead on variable t′

i+1,r(v, c),
i.e., the number of hyperedges h that contain v and (i) exactly k − r − 1 vertices of h \ {v}
are colored c in the end of iteration i; (ii) the rest r vertices of h \ {v} did not retain their
color during iteration i and, further, c would be available for them if we ignored the color
assigned to v. Observe that if c is not assigned to v then ti+1,r(v, c) = t

′

i+1,r(v, c) and
t′
i+1,r(v, c) ≥ ti+1,r(v, c) otherwise.

The first lemma that we prove estimates the expected value of the parameters at the end
of the i-th iteration. Its proof can be found in the full version of our paper.

▶ Lemma 12. Let Si =
∑k−1

ℓ=1
Ti,ℓ

L2ℓ
i

(ln ∆)2ℓ and Yi,r =
∑k−1

j=r
Ti,j

Lj
i

. If Q(i) holds and for all
1 < j < i, r ∈ [k − 1], Lj ≥ (ln ∆)20(k−1), Ti,r ≥ (ln ∆)20(k−1), then, for every vertex v ∈ Vi+1
and color c ∈ Lv:
(a) E[ℓi+1(v)] = ℓi(v) · Keepi;
(b)

E[t′
i+1,r(v, c)] ≤

k−1∑
j=r

(
Ti,j(v, c) ·

(
j

r

)
(Keepi (1 − αKeepi))

r

(
αKeepi

Li

)j−r
)

+ 3krα−r+1Lr
i Si + O(Yi).

F. Iliopoulos 39:9

The next step is to prove strong concentration around the mean for our random variables
per the following lemma. Its proof can be found in the full version of our paper.

▶ Lemma 13. If Q(i) holds and Li, Ti,r ≥ (ln ∆)20(k−1), r ∈ [k − 1], then for every vertex
v ∈ Vi+1 and color c ∈ Lv,
(a) Pr

[
|ℓi+1(v) − E[ℓi+1(v)]| < L

2/3
i

]
< ∆− ln ∆;

(b) Pr
[
t′
i+1,r(v, c) − E[t′

i+1,r(v, c)] > 1
2

(∑k−1
j=r

(
j
r

)
αj−r Ti,j

Lj−r
i

)2/3
]

< ∆− ln ∆.

Armed with Lemmas 12, 13, a straightforward application of the symmetric Local Lemma,
i.e., Corollary 9, reveals the following.

▶ Lemma 14. With positive probability, P (i) holds for every i such that for all 1 < j < i :
Lj , Tj,r ≥ (ln ∆)20(k−1) and Tj,k−1 ≥ 1

10k2 Lk−1
j .

The proof of Lemma 14 can be found in the full version of our paper.
In analyzing the recursive equations (4), (5), it would be helpful if we could ignore the

“error terms”. The next lemma shows that this is indeed possible. Its proof can be found in
the full version of our paper.

▶ Lemma 15. Define L′
1 = (1 + δ)

(∆
ln ∆
) 1

k−1 , T ′
1,k−1 = ∆, T ′

1,r = 0 for r ∈ [k − 2], and
recursively define

L′
i+1 = L′

i · Keepi,

T ′
i+1,r =

k−1∑
j=r

(
T ′

i,j ·
(

j

r

)
(Keepi · (1 − αKeepi))

r

(
αKeepi

L′
i

)j−r
)

+3krα−r+1Lr
i

k−1∑
ℓ=1

Ti,ℓ

L2ℓ
i (ln ∆)2ℓ

.

If for all 1 < j < i, Lj ≥ (ln ∆)20(k−1), Tj,r ≥ (ln ∆)20(k−1) for every r ∈ [k − 1], and
Tj,k−1 ≥ Lk−1

j

10k2 , then
(a) |Li − L′

i| ≤ (L′
i)

5
6 ;

(b) |Ti,r − T ′
i,r| ≤ (T ′

i,r)
100r

100r+1 .

▶ Remark 16. Note that Keepi in Lemma 15 is still defined in terms of Li, Ti,r and not
L′

i, T ′
i,r. Note also that in the definition of T ′

i+1,r, the second summand is a function of
Ti,ℓ, Li, ℓ ∈ [r − 1], and not T ′

i,ℓ, L′
i.

Using Lemma 15 we are able to prove the following in the full version of our paper.

▶ Lemma 17. There exists i∗ = O(ln ∆ ln ln ∆) such that
(a) For all 1 < i ≤ i∗, Ti,r > (ln ∆)20(k−1), Li ≥ ∆

ϵ/3
(k−1)(1+ϵ/2) , and Ti,k−1 ≥ 1

10k2 Lk−1
i ;

(b) Ti∗+1,r ≤ 1
10k2 Lr

i∗+1, for every r ∈ [k − 1] and Li∗+1 ≥ ∆
ϵ/3

(k−1)(1+ϵ/2) .

Lemmas 14, 17 and 18 imply Theorem 1.

▶ Lemma 18. Let σ be the state promised by Lemma 17. Given σ, we can find a full
list-coloring of H in polynomial time in the number of vertices of H.

APPROX/RANDOM 2021

39:10 Coloring Locally Sparse Hypergraphs

Proof of Theorem 1. We carry out i∗ iterations of our procedure. If P (i) fails to hold for
any iteration i, then we halt. By Lemmas 14 and 17, P (i) (and, therefore, Q(i)) holds with
positive probability for each iteration and so it is possible to perform i∗ iterations. Further,
the fact that our LLL application is within the scope of the so-called variable setting [29]
implies that the deterministic version of the Moser-Tardos algorithm [29, 9] applies and, thus,
we can perform i∗ iterations in polynomial time.

After i∗ iterations we can apply the algorithm of Lemma 18 and complete the list-coloring
of the input hypergraph. ◀

3.1 Proof of Lemma 18
Let Uσ denote the set of uncolored vertices in σ, and Uσ(h) the subset of Uσ that belongs to
a hyperedge h. Our goal is to color the vertices in Uσ to get a full list-coloring.

Towards that end, let Lv = Lv(σ) denote the list of colors for v at σ, and Dr(v, c) :=
Di∗+1,r(v, c) the set of hyperedges (of size ti∗+1,r(v, c)) with r uncolored vertices in σ whose
vertices “compete” for c with v, and recall the conclusion of Lemma 17. Let µ be the
probability distribution induced by giving each vertex v ∈ Uσ a color from Lv uniformly at
random. For every hyperedge h and color c ∈

⋂
u∈h Lu we define Ah,c to be the event that

all vertices of h are colored c. Let A be the family of these (bad) events, and observe that
for every Ah,c ∈ A:

µ (Ah,c) ≤ 1∏
v∈Uσ(h) |Lv(σ)| <

1
4

for large enough ∆, since Li∗+1 = Li∗+1(∆) ∆→∞−−−−→ ∞.
Moreover, let I(Ah,c) denote the set of all bad events Ah′,c′ , where h′ ̸= h, such that

either Uσ(h)∩Uσ(h′) = ∅, or c′ is not in the list of colors of the (necessarily unique) uncolored
vertex that h and h′ share. Notice that conditioning on any the non-occurrence of any set
S ⊆ I(Ah,c) does not increase the probability of Ah,c.

Let D(Ah,c) := A \ I(Ah,c). Lemma 18 follows from Corollary 8 (and can be made
constructive using the deterministic version of the Moser-Tardos algorithm [29, 9]) as, for
every Ah,c ∈ A:

∑
A∈D(Ah,c)

µ(A) ≤
∑

v∈Uσ(h)

∑
c′∈Lv

k−1∑
r=1

∑
h′∈Dr(v,c′)

µ (Ah′,c′)

=
∑

v∈Uσ(h)

∑
c′∈Lv

k−1∑
i=1

∑
h′∈Dr(v,c′)

1∏
u∈Uσ(h′) |Lu|

≤ max
v∈Uσ(h)

k

|Lv|
∑

c′∈Lv

k−1∑
r=1

|Dr(v, c′)|
Lr

i∗+1
(6)

≤ k

10k2 max
v∈Uσ(h)

Lr
i∗+1 · |Lv|

|Lv| · Lr
i∗+1

(7)

≤ 1
10 <

1
4 , (8)

for large enough ∆, concluding the proof. Note that in (6) we used the facts that every
hyperedge has at most k vertices and Li∗+1 ≥ ∆

ϵ/3
(k−1)(1+ϵ/2) , and in (7) we used the fact that

|Dr(v, c′)| ≤ T r
i∗+1 ≤ 1

10k2 Lr
i∗+1.

F. Iliopoulos 39:11

4 A sufficient pseudo-random property for coloring

In this section we present the proof of Theorem 6. To do so, we build on ideas of Alon,
Krivelevich and Sudakov [6] and show that the random hypergraph H(k, n, d/

(
n

k−1
)
) almost

surely admits a few useful features.
The first lemma we prove states that all subgraphs of H(k, n, d/

(
n

k−1
)
) with not too many

vertices are sparse and, therefore, of small degeneracy.

▶ Lemma 19. For every constant k ≥ 2, there exists dk > 0 such that for any constant
d ≥ dk, the random hypergraph H(k, n, d/

(
n

k−1
)
) has the following property almost surely:

Every s ≤ nd− 1
k−1 vertices of H span fewer than s

(
d

(ln d)2

) 1
k−1 hyperedges. Therefore, any

subhypergraph of H induced by a subset V0 ⊂ V of size |V0| ≤ nd− 1
k−1 , is k

(
d

(ln d)2

) 1
k−1 -

degenerate.

Proof. Letting r =
(

d
(ln d)2

) 1
k−1 , we see that the probability that there exists a subset V0 ⊂ V

which violates the statement of the lemma is at most

nd
− 1

k−1∑
i=r

1
k−1

(
n

i

)((i
k

)
ri

)(
d(
n

k−1
))ri

≤
nd

− 1
k−1∑

i=r
1

k−1

[
en

i

(
eik−1

r

)r
(

d(
n

k−1
))r]i

(9)

≤
nd

− 1
k−1∑

i=r
1

k−1

e1+ 1
k−1 (k − 1)

(
d

r

) 1
k−1

(
eik−1d

r
(

n
k−1
))r− 1

k−1
i

= o(1),

for sufficiently large d. Note that in the lefthand side of (9) we used the fact that any subset
of vertices of size s < r

1
k−1 cannot violate the assertion of the lemma, since it can span

at most sk < rs hyperedges. In deriving the final inequality we used that for any pair of
integers α, β, we have that

(
α
β

)
≥
(

α
β

)β

. ◀

Next we show that, as far as the number of vertices of H(k, n, d/
(

n
k−1
)
) that have a

constant degree c is concerned, the degree of each vertex of H is essentially a Poisson random
variable with mean d.

▶ Lemma 20. For constants c ≥ 1, k ≥ 2 and d, let Xc denote the number of vertices of
degree c in H(k, n, d/

(
n

k−1
)
). Then, for c = O(1), with high probability,

Xc ≤ dce−d

c! n

(
1 + O

(
log n√

n

))
.

APPROX/RANDOM 2021

39:12 Coloring Locally Sparse Hypergraphs

Proof. The lemma follows from standard ideas for estimation of the degree distribution of
random graphs (see for example the proof of Theorem 3.3 in [13] for the case k = 2). In
particular, assume that the vertices of H(k, n, d/

(
n

k−1
)
) are labeled 1, 2, . . . , n. Then,

E[Xc] = n Pr[deg(1) = c]

= n

((n−1
k−1
)

c

)(
d(
n

k−1
))c(

1 − d(
n

k−1
))(n−1

k−1)−c

≤ n

((
n−1
k−1
))c

c!

(
1 + O

(
c2(

n−1
k−1
)))(d(

n
k−1
))c

exp
(

−
((

n − 1
k − 1

)
− c

)
d(
n

k−1
))

≤ n
dce−d

c!

(
1 + O

(
1

nk−1

))
.

To show concentration of Xc around its expectation, we will use Chebyshev’s inequality.
In order to do so, we need to estimate Pr[deg(1) = deg(2) = c]. For ℓ ∈ {0, . . . , c}, let Eℓ

1,2
denote the event that there exist exactly ℓ hyperedges that contain both vertices 1 and 2.
Then, letting p = d

(n
k−1)

, we see that

Pr[deg(1) = deg(2) = c] ≤
c∑

ℓ=0
Pr
[
Eℓ

1,2
](((n−1

k−1
)

c − ℓ

)
pc(1 − p)(

n−1
k−1)−c

)2

=
c∑

ℓ=0

((n−2
k−2
)

ℓ

)
pℓ (1 − p)(

n−2
k−2)−ℓ

(((n−1
k−1
)

c − ℓ

)
pc(1 − p)(

n−1
k−1)−c

)2

= Pr[deg(1) = c] · Pr[deg(2) = c]
(

1 + O

(
1

nk−1

))
.

Therefore,

Var[Xc] =
n∑

i=1

n∑
j=1

(Pr[deg(i) = c, deg(j) = c] − Pr[deg(1) = c] Pr[deg(2) = c])

≤
∑

i̸=j=1
O

(
1

nk−1

)
+ E[Xc] = An ,

for some constant A = A(c, d).
Finally, applying the Chebyshev’s inequality, we obtain that, for any t > 0,

Pr
[
|Xc − E[Xc]| ≥ t

√
n
]

≤ A

t2 ,

and, thus, the proof is concluded by choosing t = log n. ◀

Lemma 20 implies the following useful corollary.

▶ Corollary 21. For any constants δ ∈ (0, 1), k ≥ 2, d > 0, let X = X(δ, k, d) denote the
random variable equal to the number of vertices in H(k, n, d/

(
n

k−1
)
) whose degree is in

[(1 + δ)d, 3(k − 1)k−1d]. There exists a constant dδ > 0 such that if d ≥ dδ then, almost
surely, X ≤ n

d2 .

F. Iliopoulos 39:13

Proof. Let Xr denote the number of vertices of degree r in H(k, n, d/
(

n
k−1
)
). Since k, d are

constants, using Lemma 20 and Stirling’s approximation we see that, almost surely,

3(k−1)k−1d∑
r=(1+δ)d

Xr ≤ n

(
1 + O

(
log n√

n

)) 3(k−1)k−1d∑
r=(1+δ)d

dre−d

r!

≤ n(1 + δ)
3(k−1)k−1d∑
r=(1+δ)d

dre−d

√
2πr

(
r
e
)r ≤ n

d2 ,

for sufficiently large d and n. ◀

Using Lemma 19 and Corollary 21 we show that, almost surely, only a small fraction of
vertices of H(k, n, d/

(
n

k−1
)
) have degree that significantly exceeds its average degree.

▶ Lemma 22. For every constants k ≥ 2 and δ ∈ (0, 1), there exists dk,δ > 0 such that for
any constant d ≥ dk,δ, all but at most 2n

d2 vertices of the random hypergraph H(k, n, d/
(

n
k−1
)
)

have degree at most (1 + δ)d, almost surely.

Proof. Corollary 21 implies that the number of vertices with degree in the interval [(1 +
δ)d, 3(k − 1)k−1d] is at most n

d2 , for sufficiently large d.
Suppose now there are more than n

d2 vertices with degree at least 3(k − 1)k−1d. Denote
by S a set containing exactly n

d2 such vertices. According to Lemma 19, almost surely, the
induced subhypergraph H[S] has at most

e(H[S]) ≤
(

d

(ln d)2

) 1
k−1

|S| = n

d2− 1
k−1 (ln d)

2
k−1

hyperedges. Therefore, the number of hyperedges between the sets of vertices S and V \ S is
at least

3(k − 1)k−1d|S| − ke(H[S]) ≥ 2.9(k − 1)k−1n

d
=: N.

However, the probability that H(k, n, d/
(

n
k−1
)
) contains such a subhypergraph is at most

(
n
n
d2

)(nk

d2

N

)(
d(
n

k−1
))N

≤
(
ed2) n

d2

(
nke
d2N

· d(
n

k−1
))N

= o(1),

for sufficiently large d. Note that in deriving the final equality we used that for any pair
of integers α, β, we have that

(
α
β

)
≥
(

α
β

)β

. Therefore, almost surely there are at most n
d2

vertices in G with degree greater than 3(k − 1)k−1d, concluding the proof. ◀

Finally, we show that the neighborhood of a typical vertex of H(k, n, d/
(

n
k−1
)
) is locally

tree-like.

▶ Lemma 23. For every constants k ≥ 2, δ ∈ (0, 1), almost surely, the random hypergraph
H(k, n, d/

(
n

k−1
)
) has a subset U ⊆ V (H) of size at most n1−δ such that the induced hypergraph

H[V \ U] is of girth at least 5.

APPROX/RANDOM 2021

39:14 Coloring Locally Sparse Hypergraphs

Proof. Let Y2, Y3, Y4, denote the number of 2-, 3- and 4-cycles in H(n, k, d/
(

n
k−1
)
), respect-

ively. A straightforward calculation reveals that for i ∈ {2, 3, 4}:

E[Yi] ≤
i(k−1)∑

s=1

(
n

s

)((s
k−1
)

i

)(
d(
n

k−1
))i

≤ i(k − 1)ni(k−1)
(

(i(k − 1))k−1e2(k − 1)k−1

ink−1

)i

= O(1).

By Markov’s inequality this implies that Y2 + Y3 + Y4 ≤ n1−
√

δ almost surely. Denote by U

the union of all 2-, 3- and 4- cycles in H. Then the induced subhypergraph H[V \ U] has
girth at least 5 and, almost surely, |U | ≤ n1−δ. ◀

We are now ready to prove Theorem 6.

Proof of Theorem 6. Our goal will be to find a subset U ⊂ V of size |U | ≤ nd− 1
k−1 that (i)

contains all cycles of length at most 4 and every vertex of degree more than (1 + δ)d; and (ii)

such that, every vertex v in V \ U has at most 9k2
(

d
(ln d)2

) 1
k−1 = o

((
d

ln d

) 1
k−1
)

neighbors

in U . Note that in this case, according to Lemma 19, H[U] is k
(

d
(ln d)2

) 1
k−1 -degenerate,

concluding the proof assuming d is sufficiently large. A similar idea has been used in [5, 6, 25].
Towards that end, let U1 be the set of vertices of degree more than (1 + δ)d, and U2 the

set of vertices that are contained in a 2-,3- or a 4-cycle. Notice that U1, U2, can be found in
polynomial time and, according to Lemmas 22 and 23, the size of U0 := |U1 ∪ U2| is at most
3n
d2 for sufficiently large n and d.

We now start with U := U0 and as long as there exists a vertex v ∈ V \ U having at

least 9k2
(

d
(ln d)2

) 1
k−1 neighbors in U we do the following. Let Sv = {u1, u2, . . . , uN } be the

neighbors of v in U . We choose an arbitrary hyperedge h that contains v and u1 and update
U and Sv by defining U := U ∪ h and Sv := Sv \ h. We keep repeating this operation until
Sv is empty.

This process terminates with |U | < nd− 1
k−1 because, otherwise, we would get a subset

U ⊂ V of size |U | = nd− 1
k−1 spanning more than

1
k

(
n

d
1

k−1
− |U0|

)
× 9k2

(
d

(ln d)2

) 1
k−1

× 1
k

>
n

d
1

k−1
×
(

d

(ln d)2

) 1
k−1

hyperedges, for sufficiently large d. According to Lemma 19 however, H does not contain
any such set almost surely. ◀

References
1 Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In

49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 793–802. IEEE Computer Society, 2008. doi:
10.1109/FOCS.2008.11.

2 Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the lovász local lemma:
Point to set correlations and their algorithmic applications. In David Zuckerman, editor,
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 725–744. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00049.

https://doi.org/10.1109/FOCS.2008.11
https://doi.org/10.1109/FOCS.2008.11
https://doi.org/10.1109/FOCS.2019.00049
https://doi.org/10.1109/FOCS.2019.00049

F. Iliopoulos 39:15

3 Dimitris Achlioptas and Michael Molloy. The analysis of a list-coloring algorithm on a random
graph. In Proceedings 38th Annual Symposium on Foundations of Computer Science, pages
204–212. IEEE, 1997.

4 Miklós Ajtai, János Komlós, Janos Pintz, Joel Spencer, and Endre Szemerédi. Extremal
uncrowded hypergraphs. Journal of Combinatorial Theory, Series A, 32(3):321–335, 1982.

5 Noga Alon and Michael Krivelevich. The concentration of the chromatic number of random
graphs. Combinatorica, 17(3):303–313, 1997.

6 Noga Alon, Michael Krivelevich, and Benny Sudakov. List coloring of random and pseudo-
random graphs. Combinatorica, 19(4):453–472, 1999.

7 Peter Ayre, Amin Coja-Oghlan, and Catherine Greenhill. Hypergraph coloring up to condens-
ation. Random Structures & Algorithms, 54(4):615–652, 2019.

8 Tom Bohman, Alan Frieze, and Dhruv Mubayi. Coloring h-free hypergraphs. Random
Structures & Algorithms, 36(1):11–25, 2010.

9 Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic al-
gorithms for the Lovász local lemma. SIAM J. Comput., 42(6):2132–2155, 2013. doi:
10.1137/100799642.

10 Ewan Davies, Ross J Kang, François Pirot, and Jean-Sébastien Sereni. An algorithmic
framework for coloring locally sparse graphs. arXiv preprint arXiv:2004.07151, 2020.

11 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10.
North-Holland, Amsterdam, 1975.

12 Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and latin transversals. Discrete
Applied Mathematics, 30(2-3):151–154, 1991. doi:10.1016/0166-218X(91)90040-4.

13 Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press,
2016.

14 Alan Frieze and Dhruv Mubayi. Coloring simple hypergraphs. Journal of Combinatorial
Theory, Series B, 103(6):767–794, 2013.

15 Marylou Gabrié, Varsha Dani, Guilhem Semerjian, and Lenka Zdeborová. Phase transitions
in the q-coloring of random hypergraphs. Journal of Physics A: Mathematical and Theoretical,
50(50):505002, 2017.

16 A. Johansson. Asympotic choice number for triangle free graphs, 1996.
17 A. Johansson. The choice number of sparse graphs. Unpublished manuscript, 1996.
18 Jeff Kahn. Asymptotics of the chromatic index for multigraphs. Journal of Combinatorial

Theory, Series B, 68(2):233–254, 1996.
19 Jeff Kahn. Asymptotics of the list-chromatic index for multigraphs. Random Structures &

Algorithms, 17(2):117–156, 2000.
20 Jeong Han Kim. On Brooks’ theorem for sparse graphs. Combinatorics, Probability and

Computing, 4(2):97–132, 1995.
21 János Komlós, János Pintz, and Endre Szemerédi. A lower bound for heilbronn’s problem.

Journal of the London Mathematical Society, 2(1):13–24, 1982.
22 Alexandr Kostochka, Dhruv Mubayi, Vojtěch Rödl, and Prasad Tetali. On the chromatic

number of set systems. Random Structures & Algorithms, 19(2):87–98, 2001.
23 Michael Krivelevich and Benny Sudakov. The chromatic numbers of random hypergraphs.

Random Structures & Algorithms, 12(4):381–403, 1998.
24 Hanno Lefmann. Sparse parity-check matrices over GF (q). Combinatorics, Probability and

Computing, 14(1-2):147–169, 2005.
25 Tomasz Łuczak. The chromatic number of random graphs. Combinatorica, 11(1):45–54, 1991.
26 Michael Molloy. The list chromatic number of graphs with small clique number. Journal of

Combinatorial Theory, Series B, 134:264–284, 2019.
27 Michael Molloy and Bruce Reed. A bound on the total chromatic number. Combinatorica,

18(2):241–280, 1998.

APPROX/RANDOM 2021

https://doi.org/10.1137/100799642
https://doi.org/10.1137/100799642
https://doi.org/10.1016/0166-218X(91)90040-4

39:16 Coloring Locally Sparse Hypergraphs

28 Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method, volume 23 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2002.

29 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):Art. 11, 15, 2010. doi:10.1145/1667053.1667060.

30 Michel Talagrand. Concentration of measure and isoperimetric inequalities in product spaces.
Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques, 81(1):73–205, 1995.

31 Van H Vu. On the choice number of random hypergraphs. Combinatorics Probability and
Computing, 9(1):79–95, 2000.

32 Van H Vu. A general upper bound on the list chromatic number of locally sparse graphs.
Combinatorics, Probability and Computing, 11(1):103–111, 2002.

33 Lenka Zdeborová and Florent Krzakala. Phase transitions in the coloring of random graphs.
Physical Review E, 76(3):031131, 2007.

https://doi.org/10.1145/1667053.1667060

Smoothed Analysis of the Condition Number
Under Low-Rank Perturbations
Rikhav Shah #

University of California at Berkeley, CA, USA

Sandeep Silwal #

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
Let M be an arbitrary n by n matrix of rank n − k. We study the condition number of M plus a
low-rank perturbation UV T where U, V are n by k random Gaussian matrices. Under some necessary
assumptions, it is shown that M + UV T is unlikely to have a large condition number. The main
advantages of this kind of perturbation over the well-studied dense Gaussian perturbation, where
every entry is independently perturbed, is the O(nk) cost to store U, V and the O(nk) increase in
time complexity for performing the matrix-vector multiplication (M + UV T)x. This improves the
Ω(n2) space and time complexity increase required by a dense perturbation, which is especially
burdensome if M is originally sparse. Our results also extend to the case where U and V have rank
larger than k and to symmetric and complex settings. We also give an application to linear systems
solving and perform some numerical experiments. Lastly, barriers in applying low-rank noise to
other problems studied in the smoothed analysis framework are discussed.

2012 ACM Subject Classification Mathematics of computing → Numerical analysis; Theory of
computation → Randomness, geometry and discrete structures

Keywords and phrases Smoothed analysis, condition number, low rank noise

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.40

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2009.01986

Funding Sandeep Silwal: Research supported by the NSF Graduate Research Fellowship under
Grant No. 1122374.

Acknowledgements We thank Sushruth Reddy and Samson Zhou for helpful conversations. We also
thank Piotr Indyk and Arsen Vasilyan for helpful feedback on a draft of the paper.

1 Introduction

The smoothed analysis framework as introduced by Spielman and Teng aims to explain the
performance of algorithms on real world inputs through a hybrid of worse-case and average
case analysis [25]. In this framework, we are given an arbitrary input that is then perturbed
randomly according to some some specified noise model. We apply this framework to study
the condition number of a matrix perturbed with low-rank Gaussian noise. The condition
number is of interest since it influences the behavior of many algorithms in numerical linear
algebra, both in theory and in practice.

To give context to our result, recall that the condition number of a n × n matrix M with
singular values s1(M) ≥ · · · ≥ sn(M) is defined as the ratio s1(M)/sn(M). Generally, a
condition number is “well behaved” if s1(M)/sn(M) = nO(1). It can be shown that under
very mild and natural conditions, we have s1(M) ≤ nO(1). For instance, this readily follows
from Proposition 6 if the entries are not too large compared to the size of M or if the
entries have sufficient tail concentration far from the origin. Since our random variables are

© Rikhav Shah and Sandeep Silwal;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 40; pp. 40:1–40:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rikhav.shah@berkeley.edu
mailto:silwal@mit.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.40
https://arxiv.org/abs/2009.01986
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Gaussians, this easily holds. Therefore, the bulk of the work lies in controlling the smallest
singular value sn(M). Extending a result of Edelman [11], Sankar, Spielman and Teng
showed the following result in [22]:

▶ Theorem 1. There is a constant C > 0 such that the following holds. Let M be an arbitrary
matrix and let Nn be a random matrix whose entries are iid Gaussian. Let Mn = M + Nn.
Then for any t > 0,

P(sn(Mn) ≤ t) ≤ Cn1/2t.

Later, Tao and Vu generalized the above result where the entries of Nn are independent
copies of a general class of random variables that have mean zero and bounded variance
[32, 27].

1.1 Motivation for low-rank noise
The main drawback of these results is that every entry of M must be perturbed by independent
noise. This means that if such a perturbation was carried out in practice, we would need to
first draw n2 random numbers and store them. This is more problematic if M is sparse to
begin with and stored in a data structure utilized for sparse matrices. These observations
lead us to ask if we can achieve well-conditioned matrices with less randomness and less
space. Our results demonstrate the answer is yes by replacing the dense Gaussian ensemble
Nn with a low-rank matrix.

To further motivate our work, we note that in the context of smoothed analysis, Theorem
1 is used to explain the phenomenon that matrices encountered in practice frequently have
“well behaved” condition number. For instance, many matrices can arise out of empirical
observations or measurements which can be subject to some inherent noise.

Similarly, low-rank noise is also natural and arises in many scenarios. Low-rank noise
has been studied as a noise model in least squares [33], compressed sensing [8, 18, 10], and
imaging [15, 26] to name a few applications. In addition, low-rank noise also arises in many
applied sciences model, for instance, see the examples in [1] and references therein where
examples are given for the eigenvalue problem Mx = x+Ex, for a low rank matrix E, arising
in scientific modelling. Furthermore, one of the most frequent properties that matrices in
data science posses is having low rank (see [6, 7, 30, 19] and references within). Thus for
these matrices, the traditional smoothed analysis viewpoint of having a dense perturbation
cannot apply due to their low rank requirement.

Hence, an additional motivation of our work is that studying low-rank noise is a natural
step in smoothed analysis which we initiate.

1.2 Our results
As stated before, we replace the dense Gaussian perturbation Nn with a low-rank perturbation.
Our main result is the following.

▶ Theorem 2 (Theorem 13 simplified). Let 1 ≤ k ≤ n/2 and M be a matrix of rank n − k.
Let U, V be n × k matrices with i.i.d. N (0, 1) entries. Then

P
(

sn(M + UV T) ≤ ε

n k
sn−k(M)

)
≤ C

√
ε + exp(−c n)

so long as sn−k(M) < n for absolute constants C, c > 0.

R. Shah and S. Silwal 40:3

Theorem 2 roughly states that if we add a rank k random perturbation to a rank n − k

matrix, then the smallest k singular values of the matrix improve. The advantage of our
approach is that the matrices U, V can be stored separately from M using O(nk) space. This
is especially useful in the case that M is sparse to begin with and is stored using a data
structure optimized for sparse matrices. Furthermore, a matrix vector product operation
(M + UV T)x can be computed in Time(Mx) + O(nk) time where Time(Mx) is the time
required to compute Mx. For instance, when k = O(1), the extra increase in space and time
complexity is only O(n). This is a significant improvement in both the space required to
store a dense Gaussian random matrix G and computing (M + G)x which are both Ω(n2).
We prove Theorem 2 in Section 3 and discuss the dependence on the terms sn−k(M) and

√
ε

which we show is unavoidable (see remarks 17, 18).
Theorem 2 can be generalized in a variety of ways. First, our result carries over to the

case where we pick the columns of U, V to be from a rotationally invariant distribution, such
as uniform vectors on the unit sphere. We show that our result also carries over to the case
where M is symmetric and we pick U = V to preserve symmetry.

It is natural to ask if a broader family of random variables can be used in Theorem
2. In Section 3.1 we show that our result cannot hold if we pick the entries of U, V to be
from the Rademacher distribution. This is in contrast to the dense perturbation case where
Gaussian random variables can be replaced with a wide variety of other distributions such as
sub-Gaussian random variables (which include Rademachers). On the other hand, we can
get an analogous statement to Theorem 13 if we allow for complex Gaussian perturbations.

▶ Theorem 3 (Theorem 15 simplified). Let 1 ≤ k ≤ n/2 and M be a matrix of rank n − k.
Let U, V be n × k complex matrices with real and imaginary parts in each entry drawn
independently from N (0, 1/2). Then

P
(

sn(M + UV T) ≤ ε

n k
sn−k(M)

)
≤ Cε + exp(−c n)

so long as sn−k(M) < n for absolute constants C, c > 0.

A further natural question to consider is if the low-rank noise model can be studied in
other problems in smoothed analysis. In Section B, we highlight the challenges that arise
when applying low-rank random perturbations to other well studied problems in smoothed
analysis such as the simplex method and k-means clustering. We show that current analysis
methods that work for dense random perturbations for these problems do not carry over to
the low-rank case due to the lack of independence.

Lastly, we note that Theorem 2 requires that if the input matrix M has rank n − k, then
perturbation has rank exactly k. This condition can be relaxed in a couple of ways; first, if
we add a perturbation of rank less than k then the matrix will be singular so there is nothing
to study in this case. On the other hand, adding a rank k′ > k perturbation to a rank n − k

matrix can be thought of as adding a rank (k′ − k) perturbation to a full rank matrix since
the original matrix plus a rank k perturbation will be full rank with probability 1. Then as
explained further in Section 4, we can obtain the following result in this case.

▶ Theorem 4 (Theorem 20 simplified). Let M be a n × n real matrix with rank(M) = n,
smallest singular value sn, and U, V ∈ Rn×k have independent N (0, 1) coordinates. Then for
all ε ∈ (0, 1),

P
(

sn(M + UV T) ≤ ε√
n

)
≤ C

(√
ε

(
1 + 2nk

sn

)
+ 1

(2nk)9/4 + exp(−cnk)
)

.

APPROX/RANDOM 2021

40:4 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

The second way to circumvent Theorem 2 is with the use of Weyl’s perturbation inequality.
To see how it applies, consider the case of k = 1. Decompose M = sn(M)ℓnrT

n +M ′ where ℓn,
rn are the left and right singular vectors associated with sn(M). Then we can view M + uvT

as a random perturbation of M ′ (which has rank n − 1), plus matrix sn(M)ℓnrT
n whose

operator norm is at most sn. We can then apply Theorem 2 to M ′ to bound sn(M ′ + UV T)
in terms of sn−1(M ′) = sn−1(M), and then incur an additional additive sn(M) error by
Weyl’s inequality. Since our ideal use case is when sn(M) is already negligible, the final
bound that we get is comparable to the bound from Theorem 2.

Finally in Section 3.2, we discuss an application of low-rank perturbations to solving
large sparse linear systems and in Section A, we present numerical evidence for our low-rank
error model.

▶ Remark 5. Note that Theorem 1 and the works of Tao and Vu in [32, 27] both prove a
statement of the form P(sn(M +E) ≤ n−A) ≤ n−B where E is the perturbation and A, B are
parameters that depend on the random variables comprising the perturbation. Our statements
in Theorem 2 is also of similar flavor since it shows that P(sn(M +E) ≤ sn−k(M) n−A) ≤ n−B .
Since the theorems of Sankar, Spielman, and Teng and Tao and Vu have found other
applications in smoothed analysis, such as in the analysis of the simplex method and beyond,
we envision that our theorem could also find similar applications. We discuss barriers in
applying the low-rank noise model to other smoothed analysis problems in Section B.

1.3 Previous techniques and our approach
In summary, it is difficult to apply previous techniques in our case since we have shared
randomness across different rows/columns of the matrix. In more detail, all of the previous
techniques used to bound the singular values of a random matrix rely on the controlling the
distance between a row to the span of the other rows. To see why this is relevant, imagine a
singular matrix. In such a case, it is clear that there must exist a row that lies in the span of
the other rows. Therefore, controlling the distance from a row to the span of the other rows
gives control over the smallest singular value.

Controlling this geometric quantity boils down to understanding the dot product between
a row and the normal vector of the hyperplane spanned by the other rows. Crucially if the
rows are independent, we can treat the normal vector of the hyperplane as fixed so this
question reduces to the well known Erdos-Littlewood-Offord anti-concentration inequality
and its variants which are used in previous works such as [28, 32, 27].

To be more precise, lets consider a high level overview of the proof of Sankar, Spielman,
and Teng’s Theorem 1. Fix a vector x and note that from the identity sn(Mn) = ∥M−1

n ∥, it
suffices to give a tail bound on ∥M−1

n x∥. By applying an orthogonal rotation and using the
rotational invariance of the Gaussian, we can say that

∥M−1
n x∥ = ∥M−1

n e1∥ = ∥c1∥

where e1 is the first basis vector and c1 is the first column of M−1
n . From the equation

Mn · M−1
n = I, it follows that ∥c1∥ = 1/|wT r1| where r1 is the first row of Mn and wT

is the normal vector of the span of the rows r2, · · · , rn. Therefore, the proof reduces to
understanding the dot product between a random vector r1, and another independent vector
w. In the more general case of Tao and Vu [32, 27], more elaborate dot product estimates
using the Erdos-Littlewood-Offord inequality are needed.

In our case, if we add a rank 1 perturbation to a matrix, randomness is shared across all
rows. Therefore, we cannot reduce our problem to understanding the dot product between a
random vector and another independent vector since fixing a normal hyperplane of a span

R. Shah and S. Silwal 40:5

of a subset of rows automatically gives information about the rows not considered in the
span due to the shared randomness. Hence, it is tricky to apply the spectrum of existing
techniques in our case.

To overcome these barriers, we use a completely different method to prove Theorem
13. We first reduce our problem to adding noise to a diagonal matrix by using rotational
invariance. Then we employ linear algebraic tools (rather than probabilistic tools), to get an
“explicit” representation of the inverse of a matrix after adding rank k noise. After arriving
at an explicit representation of the inverse, we are able to compute a probabilistic bound on
the smallest singular value. Our proof crucially uses the fact that our low-rank perturbations
have Gaussian entries whereas the proofs of the dense perturbations carry over in other
distributional settings as well. This is not a flaw of our method since it is simply not possible
to prove an analogue of our theorems even if the entries of the low-rank perturbations come
from sub-Gaussian distributions. We elaborate this point further in Section 3.1.

For Theorem 20 where we add a rank k random noise to a rank n matrix, we carefully
adapt the geometric ideas utilized in previous approaches as explained above. However to get
around the shared randomness between rows, we have to perform some careful conditioning
which allows us better control the behavior of the random normal vector w.

1.4 Why would the perturbed matrix even be full rank?

We briefly address the question of why we even expect low-rank perturbations to improve
the condition number. Consider the case where D is a diagonal matrix of rank n − 1 and
we add a random rank 1 Gaussian perturbation uvT . Recall the matrix determinant lemma
which states that

det(D + uvT) = det(D) + vT adj(D)u

where adj(D) is the adjugate matrix of D. In our case, we can assume that the first n − 1
entries on the diagonal of D are given by s1(D), · · · , sn−1(D) while the last entry is 0. Then,
the adjugate matrix is the all zeros matrix except the bottom rightmost entry which is
s1(D) · · · sn−1(D). Therefore,

det(D) + vT adj(D)u = (unvn)(s1(D) · · · sn−1(D))

which is non-zero with probability 1 since unvn ≠ 0 with probability 1. Thus, adding a
random rank 1 perturbation results in D not being singular which motivates the question of
studying the smallest singular value after a random rank 1 (and more generally low-rank)
perturbation.

1.5 Related works

The smoothed analysis framework has been applied to a variety of problems, most notably
in analyzing optimization problems such as k-means [2, 3], the perceptron algorithm [5], and
the simplex method [25, 9]. In all of these results, the goal is to show that after an input
instance of the problem is suitably perturbed, the algorithm or heuristic runs in polynomial
time (the time may depend on the properties of the noise). For a survey of results, see
[29, 24, 16] and references within. The analysis used tends to be very problem specific and
also heavily dependent on the type of noise added which for a vast majority of cases are
dense Gaussian noise.

APPROX/RANDOM 2021

40:6 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Zero preserving noise

The work that is closest in spirit to our work is the zero preserving noise model studied by
Spielman, and Teng. It was shown in [22] that if M is a symmetric matrix, then adding an
independent Gaussian random variable xij to each entry Mij such that i ̸= j, Mij ̸= 0, and
satisfying xij = xji along with a Gaussian perturbation along the diagonal results in a “well
behaved” condition number. However, the main drawback of this result is that it only holds
for symmetric matrices and even in this case, a dense perturbation is required if M is dense
to begin with.

Other works

There are works that use sparse Gaussian perturbations, i.e, their perturbation model is a
Gaussian times a Bernoulli random variable with a small parameter. If the Bernoulli random
variable has sufficiently small parameter, then with high probability, most of the entries
in the perturbation will be zero. The downsides of these methods are that many random
variables still need to be drawn and it is not clear if they can show the resulting matrix is
well conditioned. For example, Theorem 3.6 in [20] only shows that the singular values of
the resulting matrix are separated from each other, not that the matrix is well conditioned.
In fact, the study of these types of random matrices where entries are sub-Gaussian random
variables multiplied by independent Bernoulli variables is still lacking. For instance, the
smallest singular value of such family of random matrices was only recently resolved in the
highly technical paper of Basak and Rudelson [4].

1.6 Notation
We use capital letters as A, M to denote matrices and lower case letters such as x for vectors.
For a vector x, the norm ∥x∥ is always the Euclidean norm whereas for a matrix A, the
norm ∥A∥ always refers to the operator norm (the largest singular value). For a matrix A,
let AS denote the sub-matrix of A which includes the ith row of A if and only if i ∈ S. The
relation a ≲ b denotes that a is less than or equal to b up to some fixed positive constant and
similarly, a ≃ b denotes that a and b are equal up to some fixed positive constant. Unless
otherwise indicated, variables C, c, C1, C2, · · · denote positive constants.

2 Preliminaries

In this section we enumerate some useful results. First, we recall a classical estimate of the
operator norm of a random matrix of Seginer [23]. The following proposition essentially
shows that the top singular value of a random matrix is well behaved under mild assumptions.
Alternatively, one can also bound the top singular value by the frobenius norm if the random
variables populating the matrix have sufficient tail concentration.

▶ Proposition 6. Let M be a random n × n matrix with entries mij. Then,

E∥M∥ = O

E max
1≤i≤n

√√√√ n∑
j=1

m2
ij + E max

1≤j≤n

√√√√ n∑
i=1

m2
ij

 .

Next we establish tail bounds for the smallest and largest singular values of real and
complex Gaussian matrices.

R. Shah and S. Silwal 40:7

▶ Lemma 7 (Theorem 1 reformulated.). Let G ∈ Rk×k with all entries chosen i.i.d. from
N (0, 1). Then

P
(

sk(G) ≤ t1/
√

k
)

< Ct1.

for some absolute constant C.

▶ Lemma 8 (Theorem 1.1 in [28]). Let G ∈ Ck×k with all entries chosen with i.i.d. real and
imaginary parts from N (0, 1/2). Then

P
(

sk(G) ≤ t1/
√

k
)

< t2
1.

▶ Lemma 9 (Proposition 2.3 in [21]). Let G ∈ R(n−k)×k for k ≤ n/2 with all entries chosen
i.i.d. from N (0, 1). Then

P
(

s1(G) ≥ t2
√

n − k
)

< C1e−C2 t2
2 n.

for t2 larger than some absolute constant, and C1, C2 absolute constants.

▶ Lemma 10. Let G ∈ C(n−k)×k for k ≤ n/2 with all entries chosen with i.i.d. real and
imaginary parts from N (0, 1/2). Then

P
(

s1(G) ≥ t2
√

n − k
)

< 2C1e−C2 t2
2 n.

for t2, C1, C2 as in Lemma 9.

Proof. Decompose G = A + iB and bound s1(G) ≤ s1(A) + s1(B). Then

P
(

s1(G) ≥ t2
√

2(n − k)
)

≤ P
(

s1(A) + s1(B) ≥ t2
√

2(n − k)
)

≤ P

(
s1(A) ≥

t2
√

2(n − k)
2

)
+ P

(
s1(B) ≥

t2
√

2(n − k)
2

)
≤ P

(
s1(

√
2A) ≥ t2

√
n − k

)
+ P

(
s1(

√
2B) ≥ t2

√
n − k

)
≤ 2C1e−C2 t2

2 n

where the last inequality follows by Lemma 9 since
√

2A and
√

2B have real i.i.d. N (0, 1)
entries. ◀

The following lemma bounds the smallest singular value of a block matrix.

▶ Lemma 11. Let

M =
[
A B

C D

]
be an n × n matrix. Then

sn(M)−1 ≤ ∥A−1∥ + ∥(M/A)−1∥
(
1 + ∥A−1B∥

) (
1 + ∥CA−1∥

)
where (M/A) = D − CA−1B is the Schur complement of A.

APPROX/RANDOM 2021

40:8 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Proof. We first use the Schur formula for the inverse of a block matrix:

M−1 =
[
A−1 + A−1B(M/A)−1CA−1 A−1B(M/A)−1

(M/A)−1CA−1 (M/A)−1

]
.

The norm of M−1 is upper bounded by the sum of the norms of each of its blocks.

sn(M)−1 = ∥M−1∥ ≤ ∥A−1∥ + ∥A−1B∥∥(M/A)−1∥∥CA−1∥
+ ∥A−1B∥∥(M/A)−1∥
+ ∥(M/A)−1∥∥CA−1∥
+ ∥(M/A)−1∥
= ∥A−1∥ + ∥(M/A)−1∥

(
1 + ∥A−1B∥

) (
1 + ∥CA−1∥

)
. ◀

Lastly, we recall that Gaussians are sufficiently anti-concentrated.

▶ Proposition 12. Let x ∼ N (0, 1). Then, P(|x| ≤ ε) = Θ(ε) for ε sufficiently small.

3 Proof of main theorems

The goal of this section is to prove the following theorem and its complex and symmetric
analogs.

▶ Theorem 13. Let M be an arbitrary matrix of rank n − k ≥ n/2. Let U, V be n × k

matrices with i.i.d. N (0, 1) entries. Then

P
(

sn(M + UV T) ≤ t2
1
k

min
(

1
2 ,

sn−k(M)
4 t2

2 (n − k)

))
≤ C1 t1 + C2 exp(−C3 t2

2 n) (1)

for t1 ≤ C4 and t2 ≥ C5 for some absolute constants Ci, 1 ≤ i ≤ 5.

Our strategy to prove Theorem 13 will reduce general M to the case of M nonnegative
and diagonal, then express sn(M + UV T) in terms of the singular values of M and certain
sub-matrices of U and V , and finally apply tail bounds to said singular values. We start
by proving a lemma that allows us to reduce to the case of M nonnegative and diagonal.
As stated in Section 1.3, this is a compltely different proof strategy than the one used in
previous works.

▶ Lemma 14. Let D = diag(sn(M), · · · , s1(M)). Let U, V be as in Theorem 13. Then the
distributions of sn(M + UV T) and of sn(D + UV T) are identical.

Proof. Let LDRT = M be the singular value decomposition of M . Then

M + UV T = LDRT + UV T = L(D + LT UV T R)RT .

Left- and right- multiplication by unitary matrices preserves singular values so

sn(M + UV T) = sn(D + LT UV T R).

Finally, U and V are rotationally invariant, so LT U and RT V are distributed just as U and
V are. ◀

Now we proceed to the main proof.

R. Shah and S. Silwal 40:9

Proof of Theorem 13. For any matrix T , recall that TS denotes the sub-matrix of T which
includes the ith row of T if and only if i ∈ S. Lemma 14 shows that we may assume M is
nonnegative and diagonal without loss of generality. We may write M and M + UV T in
block form as

M =
[
0 0
0 M ′

]
and M + UV T =

 U[k]V
T

[k] U[k]V
T

[n]\[k]

U[n]\[k]V
T

[k] M ′ + U[n]\[k]V
T

[n]\[k]

where M ′ has no zeros on the diagonal. We can use Lemma 11 to upper bound sn(M +UV T).
The factor corresponding to the Schur complement is∥∥∥∥(M ′ − U[n]\[k]

(
I − V T

[k](U[k]V
T

[k])−1U[k]

)
V T

[n]\[k]

)−1
∥∥∥∥ = ∥M ′−1∥ = sn−k(M)−1

since I − V T
[k](U[k]V

T
[k])−1U[k] = 0. This is one of the key insights of our proof. Then the

resulting bound is
sn(M + UV T)−1

≤ 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)
(
1 + ∥(U[k]V

T
[k])−1U[k]V

T
[n]\[k]∥

) (
1 + ∥U[n]\[k]V

T
[k](U[k]V

T
[k])−1∥

)
= 1

sk(U[k])sk(V T
[k])

+ 1
sn−k(M)

(
1 + ∥V −1

[k] V T
[n]\[k]∥

) (
1 + ∥U−1

[k] U[n]\[k]∥
)

≤ 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)
(
1 + ∥V −1

[k] ∥∥V T
[n]\[k]∥

) (
1 + ∥U−1

[k] ∥∥U[n]\[k]∥
)

= 1
sk(U[k])sk(V T

[k])
+ 1

sn−k(M)

(
1 +

s1(V[n]\[k])
sk(V[k])

)(
1 +

s1(U[n]\[k])
sk(U[k])

)
.

Denote events

E1 =
(

s1(U[n]\[k]) ≤ t2
√

n − k and s1(V[n]\[k]) ≤ t2
√

n − k
)

,

E2 =
(

sk(Uk) ≥ t1/
√

k and sk(Vk) ≥ t1/
√

k
)

.

Conditioning on E1 and E2, the above bound becomes

sn(M + UV T)−1 ≤ 1
sn−k(M)

(
1 + t2

t1

√
(n − k) k

)2
+ k

t2
1

.

For sufficiently large n (specifically n ≥ 6 t2
1

k t2
2
), this becomes

sn(M + UV T)−1 ≤ k

t2
1

(
2 t2

2 (n − k)
sn−k(M) + 1

)
≤ 2k

t2
1

max
(

2 t2
2 (n − k)

sn−k(M) , 1
)

Taking the reciprocal of both sides yields

sn(M + UV T) ≥ t2
1

2k
min

(
sn−k(M)

2 t2
2 (n − k) , 1

)
The probability that this bound is violated is upper bounded by the probability that at

least one of E1 or E2 fail. We may upper bound this quantity using the union bound:

P(¬E1 ∨ ¬E2) ≤ P(¬E1) + P(¬E2)

≤ P(s1(U[n]\[k]) ≥ t2
√

n − k) + P(s1(V[n]\[k]) ≥ t2
√

n − k)

+ P(sk(U[k]) ≤ t1/
√

k) + P(sk(V[k]) ≤ t1/
√

k)

≤ 2 C1t1 + 2 C2e−C3 t2
2 n.

where the last step follows by applying Lemmas 7 and 9 twice each. The factors of 2 can be
subsumed into the constants C1 and C2 giving the final result. ◀

APPROX/RANDOM 2021

40:10 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

▶ Theorem 15. Let M, t1, t2, C2, C3 be as in theorem 13. Let U, V be n × k complex matrices
with real and imaginary parts drawn independently from N (0, 1/2). Then

P
(

sn(M + UV T) ≤ t2
1
k

min
(

1
2 ,

sn−k(M)
4 t2

2 (n − k)

))
≤ 2 t2

1 + C2 exp(−C3 t2
2 n).

Note that the first term on the righthand side is 2t2
1 rather than C1t1 as it was in Theorem

13.

Proof. The only place the proof differs from the proof of Theorem 13 is in the upper bound
on P(¬E1). Instead of C1t1, it is simply t2

1 by Lemma 8. ◀

▶ Remark 16. Theorems 13 and 15 hold when instead of sampling U and V independently,
simply set U = V .

Proof. The proof follows almost exactly as before with only a single modification: In Lemma
14, the left- and right- singular vectors of symmetric matrices are the same so L = R (so
LT U = RT V). Optionally, one may note that events E1 and E2 are redundant, so one reduces
the bound on P(¬E1 ∨ ¬E2) by a factor of 2. ◀

▶ Remark 17. Let us briefly mention why the term sn−k(M) is unavoidable in the statement
of Theorem 13. For simplicity, consider k = 1 and suppose that M is of rank n − 1 and
suppose its smallest nonzero singular value is equal to δ. After adding a rank 1 term uvT to
M , its rank is n with probability 1. However, if we consider the limit δ → 0, then M + uvT

approaches a rank n − 1 matrix meaning sn(M + uvT) → 0. Hence, any concentration bound
such as (1) must depend on the term sn−1.

▶ Remark 18. The term t1 on the right hand size of (1) is also unavoidable. For simplicity,
consider the case that M ∈ Rn×n is a diagonal matrix and all the entries are non zero except
the last diagonal entry and consider a rank 1 symmetric update. Now after a symmetric
rank 1 update, the perturbed matrix is M + ggT where g ∈ Rn. The smallest singular value
of a symmetric matrix is equivalent to the smallest absolute eigenvalue. From the Raleigh
quotient characterization of eigenvalues, we have that

P(sn(M + ggT) ≤ t2) ≥ P(|eT
n (M + ggT)en| ≤ t2).

Using the fact that Men = 0, we have

P(|eT
n (M + ggT)en| ≤ t2) = P(z2 ≤ t2)

where z ∈ R is a standard normal. Finally, P(z2 ≤ t2) = P(|z| ≤ t) = Θ(t) from Proposition
12 for t sufficiently small.

3.1 Sub-Gaussian perturbations
Just as Tao and Vu generalized Theorem 1 to the case where more general types of random
perturbations beyond Gaussian are used, it is of interest to generalize Theorem 13 to the
case where U, V are from a general family of distributions. A standard choice are mean
zero sub-Gaussian distributions since they encompass well known distributions such as the
standard Gaussian and ±1 (Rademacher) random variables. Surprisingly, we show in this
case that we cannot state a general statement like Theorem 13 unless extra assumptions
about the fixed matrix M is made.

R. Shah and S. Silwal 40:11

▶ Lemma 19. Let u, v ∈ Rn be vectors with i.i.d. entries that are ±1 (Rademacher) with
equal probability. There exists a rank n − 1 matrix M such that with constant probability,
M + uvT is singular.

Proof. As in the proof of Theorem 13, let M = LDR and we can say sn(M + uvT) =
sn(D + (LT u)(vT R)). In the case that u and v are Gaussian, rotational invariance implies
that LT u and vT R are distributed as u, v respectively. However, this is no longer the case
if u, v have entries coming from general sub-Gaussian distributions, such as ±1. Here, the
properties of L, R can have substantial impact on sn(M + uvT).

Suppose that the top left entry of D is 0. Then, if the first row of L is sparse, i.e. has
O(1) non zero entries, then it is possible that the first coordinate of LT u, (LT u)1, is 0 with
constant probability and hence the first row of D + (LT u)(vT R) is all 0 which implies that
M + uvT is still rank n − 1 with constant probability. ◀

Therefore, a general statement such as Theorem 13 in the case of sub-Gaussian distribu-
tions is impossible unless extra assumptions are made about the input matrix M . However,
we note that in the k = 1 case, if we assume every row of L, R are dense (say have at least a
constant fraction of non-zero entries), then the proof of Theorem 13 carries through in the
±1 case since the two estimates we need (corresponding to the events E1 and E2 respectively)
are the concentration of the norms of LT u, vT R and each entry being anti-concentrated from
0 which follows from Erdos-Littlewood-Offord type results. It is not clear when such an
assumption is natural.

3.2 Application to linear systems
We briefly highlight the importance of the condition number in solving systems of linear
equations. If we are interested in solving the system Ax = b where A ∈ Rn×n then the
condition number of A influences both the stability and runtime of linear systems solving.
Much of this material is standard and can be found in [31].
Stability: If x̃ denotes the result computed by numerical algorithms to the equation Ax = b

then it is known that the relative error quantity ∥x − x̃∥/∥x∥ satisfies

∥x − x̃∥
∥x∥

= O

(
εmachine · s1(A)

sn(A)

)
where εmachine is the machine precision.
Runtime: One of the most widely used algorithms for solving systems of linear equations,
especially large sparse ones that arise often in practice, is the conjugate gradient descent
method. If the conjugate gradient descent method is run for k steps, then its convergence
scales roughly as(√

s1(A)/sn(A) − 1√
s1(A)/sn(A) + 1

)k

≈

(
1 − 2√

s1(A)/sn(A)

)k

.

Therefore, a larger the condition number means more steps of the conjugate gradient descent
method are required.

The usefulness of our low-rank error model is further supported by the conjugate gradient
descent method. As mentioned previously, this iterative method is mainly used for large
sparse systems. Thus, a low-rank perturbation that only requires additional linear space
and incurs an additive linear increase in cost per iteration is desirable compared to a dense
perturbation which makes the original problem infeasible for large systems.

APPROX/RANDOM 2021

40:12 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

4 Perturbation beyond rank k

In this section, we deal with the case that we add a rank k′ perturbation to a rank n − k

matrix for k′ > k. In such a case, we simply ignore a rank k portion of the noise and imagine
that we are adding a rank (k′ − k) perturbation to a general full-rank matrix. This is valid
since the original rank k matrix plus the rank k part of the noise will be full rank with
probability 1. Our result then is the following.

▶ Theorem 20. Let M be a n × n real matrix with rank(M) = n > 10 with smallest singular
value sn. Let U, V ∈ Rn×k have independent N (0, 1) coordinates. Then,

P(sn(M+UV T) ≤ 1/t) ≤ C

(√
n

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
(2)

for all t > 0, x1 ≥ 3
√

2 log(2nk), x3 ≥ nk, and x2 ≤ 1.

We obtain the following corollary under some natural parameter settings.

▶ Corollary 21. Let M be a n × n real matrix with rank(M) = n, and U, V ∈ Rn×k have
independent N (0, 1) coordinates. Then for all ε ∈ (0, 1),

P(sn(M +UV T) ≤ ε/
√

n) ≤ C

(
√

ε

(
1 +

3nk
√

log(2nk)
sn(M)

)
+ 1

(2nk)9/4 + exp(−cnk)
)

. (3)

Proof. Set t =
√

n/ε, x1 = 3
√

log(2nk), x2 =
√

ε, x3 = nk. ◀

By setting ε appropriately, we recover the common “theme” of P(sn(M + UV T) ≤ n−A) ≤
n−B as in the case of Theorem 1 and the works of Tao and Vu [32, 27].

We now proceed to prove Theorem 20. Denote A = M +UV T and note that rank(A) = n

with probability 1 so A−1 exists. We observe that (2) reduces to bounding P(∥A−1∥ ≥ t).
Our proof is adapted from the proof of Theorem 1. However, we need to perform a careful
conditioning argument to prove the most important part of the argument which is presented
in Lemma 23.

We begin by handing the case of a single vector.

▶ Lemma 22. For any unit vector y, we have

P(∥A−1y∥2 ≥ t) ≤ C

(
1

x2 · t

(
1 + x1 · x

1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
for all t > 0, x1 ≥ 2

√
log n, x3 ≥ nk, and x2 ≤ 1.

Proof. Let Q be a rotation that takes y to en and denote QA as A′. Then,

∥A−1y∥2 = ∥A−1QT en∥2 = ∥(QA)−1en∥2 = ∥cn∥2.

where cn be the last column of (QA)−1. From the identity A′A′−1 = I, we have that cn is
orthogonal to the first n − 1 rows of A′ and has dot product 1 with the last row of A′. Hence,

∥cn∥2 = 1
|⟨w, rn⟩|

where ri is the ith row of A′ and w is the unique unit vector orthogonal to the span of
{r1, · · · , rn−1} (up to to sign). This means that

P(∥A−1y∥2 ≥ t) = P(∥cn∥2 ≥ t) = P(|⟨w, rn⟩| ≤ 1/t).

R. Shah and S. Silwal 40:13

The last row rn of A′ is the sum of the last rows of QM and QUV T . Note that the inner
product of w with the last row of QM is some fixed parameter; denote it r. Then QU is
distributed as U by the rotational invariance of the normal distribution, so the last row of
QUV T is distributed as V un where un ∈ Rk is a vector of independent Gaussians. Therefore,
⟨w, rn⟩ is distributed as ⟨w, V un⟩ + r, so it suffices to bound the Levy concentration of
⟨w, V un⟩. Specifically, we want to show that

sup
r∈R

P(|⟨w, V u
n⟩ + r| < 1/t) ≤ C

(
1

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
where the probability is over the realization of un and V . This readily follows from Lemma

23. ◀

Proof of Theorem 20. Let s be a unit vector chosen uniformly at random from Sn−1. By
Lemma 22, we have

PA,s

(
∥A

−1
s∥2 ≥ t/

√
n
)

≤ C

(
1

x2 · t/
√

n

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
.

Now with probability 1, there exits a unique y such that ∥A−1y∥2 = ∥A−1∥. From Lemma
24, we see that

∥A−1s∥2 ≥ ∥A−1(yT s)y∥2 = |yT s|∥A−1∥.

Therefore we have

PA,s

(
∥A−1s∥2 ≥ t/

√
n
)

≥ PA,s

(
∥A−1∥ ≥ t and |sT y| ≥ 1/

√
n
)

= P(∥A−1∥ ≥ t) · PA,s

(
|sT y| ≥ 1/

√
n
∣∣ ∥A−1∥ ≥ t

)
.

By the rotational invariance of s, we have that

P(∥A−1∥ ≥ t) · PA,s

(
|sT y| ≥ 1/

√
n
∣∣ ∥A−1∥ ≥ t

)
= P(∥A−1∥ ≥ t) · P

(
|sT e1| ≥ 1/

√
n
)

.

From Lemma 25, we have that

P
(
|sT e1| ≥ 1/

√
n
)

≥ P(|Z| ≥ 1) − 1/n

where Z ∼ N (0, 1). Altogether, it follows that

P(∥A−1∥ ≥ t) ≤
PA,s

(
∥A−1s∥2 ≥ t/

√
n
)

P(|Z| ≥ 1) − 1/n

≤ C

(
1

x2 · t/
√

n

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x2

1/4
)

+ (2/π)k/2xk
2 + exp(−c x3)

)
for n > 10 as desired. ◀

▶ Lemma 23. Let U, V ∈ Rn×k have independent N (0, 1) coordinates. Let M ∈ Rn×n be
a matrix with singular values s1 ≥ · · · ≥ sn and let w be a vector perpendicular to the first
n − 1 rows of M + UV T . Then for x1 ≥ 3

√
log(2nk), x3 ≥ nk, and x2 ≤ 1, and all t > 0,

sup
r∈R

P(|⟨w, V u
n⟩ − r| < 1/t) ≤ C

(
1

x2 · t

(
1 +

x1 · x
1/2
3 ·

√
nk

sn(M)

)
+ exp

(
−x

2
1/4
)

+ (2/π)k/2
x

k
2 + exp(−c x3)

)
for some C, c > 0 where un is the last row of U .

APPROX/RANDOM 2021

40:14 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

Proof. Let m1, · · · , mn be the rows of M and let u1, · · · , un be the rows of U . Then the
rows of A = M + UV T are given by mi + V ui. Let y be the unit vector orthogonal to the
span of {m1, · · · , mn−1}. Consider the following three events:

E1 = event that every entry of U is at most x1 in absolute value,

E2 = event that ∥V T y∥ is at least x2,

E3 = event that ∥V ∥2 is at most x3,

for x1 ≥ 3
√

log(2nk), x3 ≥ nk, and x2 ≤ 1. Denote E = E1 ∪ E2 ∪ E3. We now show each
of these occurs with high probability. By a standard concentration bound, the maximum
of nk i.i.d. standard Gaussians is strongly concentrated around

√
2 log(2nk). In particular,

E1 happens with probability at least 1 − 2 exp(−x2
1/4). Next, each coordinate of V T y is

distributed as N (0, 1), and ∥V T y∥ ≥ ∥V T y∥∞, so we may upper bound P(Ec
2) by P(|g| < x2)k

where g is N (0, 1). This means E2 occurs with probability at least 1 − (2/π)k/2xk
2 . Lastly,

the event E3 happens with probability at least 1 − exp(−Ω(x3)) by Lemma 9.
Now fix some realization of V and U such that E occurs. Suppose for some parameter

z <
√

3
2

sn

x1·
√

nk
that we have ∥V T w∥ < z. We will find a statement which this assumption

implies, then take the contrapositive to obtain a lower bound on ∥V T w∥. From definition of
w, we know

⟨w, mi⟩ + ⟨w, V ui⟩ = 0

for 1 ≤ i ≤ n − 1. We may apply Cauchy-Schwarz to ⟨w, V ui⟩ = ⟨V T w, ui⟩ and use event E1
to bound ∥ui∥ and obtain

|⟨w, mi⟩| ≤ ∥V T w∥ · ∥ui∥ ≤ z · x1 ·
√

k.

Decompose w = w∥ + w⊥ where w∥ is in the span of m1, · · · , mn−1 and w⊥ is in the
orthogonal complement. Write w∥ =

∑n−1
i=1 αim

i for some coefficients αi. Then we have

∥w∥∥2 = |⟨w∥, w⟩| ≤
n−1∑
i=1

|αi| · |⟨mi, w⟩|

≤ ∥α∥1 · z · x1 ·
√

k

≤ ∥α∥ · z · x1 ·
√

nk

≤ ∥w∥∥ z · x1 ·
√

nk

sn

where α is the vector of αi’s, and the last step follows since M is non-singular, making α the
unique solution to MT α = w∥. Now, note that y and w⊥ are parallel, so

∥w⊥∥∥V T y∥ = ∥V T w⊥∥ ≤ ∥V T w∥ + ∥V T w∥∥ ≤ z + ∥V ∥∥w∥∥ ≤ z

(
1 + x1 · x

1/2
3 ·

√
nk

sn

)

where the last step follows from E3. From z <
√

3
2

sn

x1·
√

nk
, we have

∥w⊥∥ =
√

1 − ∥w∥∥2 =

√√√√1 −

(
z · x1 ·

√
nk

sn

)2

>
1
2 .

Moving ∥w⊥∥ to the right hand side and using E2 and the above bound, we arrive at

x2 ≤ ∥V T y∥ < 2z
(

1 + x1 · x
1/2
3 ·

√
nk/sn

)
.

R. Shah and S. Silwal 40:15

We have thus established the syllogism

∥V T w∥ ≤ z ≤
√

3
2

sn

x1 ·
√

nk
=⇒ 1

2
x2sn

sn + x1 · x
1/2
3 ·

√
nk

< z.

By taking the contrapositive and setting z = 1
2

x2sn

sn+x1·x1/2
3 ·

√
nk

, we see that one of the

inequalities on the left must fail. It isn’t the second one since x2 <
√

3, x
1/2
3 > 1, and sn > 0.

We therefore conclude our selection of z lower bounds ∥V T w∥.
This leads to sufficient anti-concentration. For any fixed vector x, the distribution of

⟨x, un⟩ is the same as N (0, ∥x∥2). So, ⟨V T w, un⟩ for random V is a mixture of Gaussians,
each of which have variance at least z2 when we condition on E . The Levy concentration is
thus easily bounded by

sup
r∈R

P
(

|⟨w, V un⟩ + r| ≤ 1
t

| E
)

≤
√

2/π

z · t
.

The desired bound then follows by incorporating a probability bound on the complement
of E . ◀

The following lemmas follow easily from basic properties of the SVD and Gaussian random
variables so we omit their proof.

▶ Lemma 24. Consider a n × n matrix Mand u ∈ Sn−1 such that ∥M∥ = ∥Mu∥2. Then
for every v ∈ Rn, we have

∥Mv∥2 ≥ |uT v|∥M∥.

▶ Lemma 25. Let x be a uniformly random vector in Sn−1 and Z ∼ N (0, 1). Then for
every c > 0,

P
(

|xT e1| ≥
√

c

n

)
≥ P(|Z| ≥

√
c) − 1

n
.

References
1 Thomas J Anastasio, Andrea K Barreiro, and Jared C Bronski. A geometric method for

eigenvalue problems with low-rank perturbations. The Royal Society Publishing., 4, September
2017. doi:10.1098/rsos.170390.

2 D. Arthur and S. Vassilvitskii. Worst-case and smoothed analysis of the icp algorithm, with
an application to the k-means method. In 2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), pages 153–164, 2006.

3 David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.
J. ACM, 58(5), 2011. doi:10.1145/2027216.2027217.

4 Anirban Basak and Mark Rudelson. Invertibility of sparse non-hermitian matrices. Advances
in Mathematics, 310:426–483, 2017. doi:10.1016/j.aim.2017.02.009.

5 Avrim Blum and John Dunagan. Smoothed analysis of the perceptron algorithm for linear
programming. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’02, page 905–914, USA, 2002. Society for Industrial and Applied
Mathematics.

6 E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925–
936, 2010. doi:10.1109/JPROC.2009.2035722.

7 E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489–509, 2006. doi:10.1109/TIT.2005.862083.

APPROX/RANDOM 2021

https://doi.org/10.1098/rsos.170390
https://doi.org/10.1145/2027216.2027217
https://doi.org/10.1016/j.aim.2017.02.009
https://doi.org/10.1109/JPROC.2009.2035722
https://doi.org/10.1109/TIT.2005.862083

40:16 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

8 Zhuo Chen and D. Ellis. Speech enhancement by sparse, low-rank, and dictionary spectrogram
decomposition. 2013 IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics, pages 1–4, 2013.

9 Daniel Dadush and Sophie Huiberts. A friendly smoothed analysis of the simplex method. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, page 390–403, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3188745.3188826.

10 Minh Dao, Yuanming Suo, Sang Chin, and Trac Tran. Structured sparse representation with
low-rank interference. Conference Record - Asilomar Conference on Signals, Systems and
Computers, 2015:106–110, April 2015. doi:10.1109/ACSSC.2014.7094407.

11 Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal on
Matrix Analysis and Applications, 9(4):543–560, 1988. doi:10.1137/0609045.

12 Friedrich Eisenbrand and Santosh S. Vempala. Geometric random edge. Math. Program.,
164(1-2):325–339, 2017. doi:10.1007/s10107-016-1089-0.

13 Noam D. Elkies (https://mathoverflow.net/users/14830/noam-d elkies). Smallest non-zero
eigenvalue of a (0,1) matrix. MathOverflow. URL:https://mathoverflow.net/q/157554 (version:
2017-04-13). arXiv:https://mathoverflow.net/q/157554.

14 V. Klee, G.J. Minty, and WASHINGTON UNIV SEATTLE Dept. of MATHEMATICS. HOW
GOOD IS THE SIMPLEX ALGORITHM. Defense Technical Information Center, 1970. URL:
https://books.google.com/books?id=R843OAAACAAJ.

15 X. Liu, M. Tanaka, and M. Okutomi. Practical signal-dependent noise parameter estimation
from a single noisy image. IEEE Transactions on Image Processing, 23(10):4361–4371, 2014.
doi:10.1109/TIP.2014.2347204.

16 Bodo Manthey and Heiko Raglin. Smoothed analysis: Analysis of algorithms beyond worst
case. it - Information Technology, 53(6):280–286, 2011. doi:10.1524/itit.2011.0654.

17 Bodo Manthey and Rianne Veenstra. Smoothed analysis of the 2-opt heuristic for the tsp:
Polynomial bounds for gaussian noise. In Leizhen Cai, Siu-Wing Cheng, and Tak-Wah Lam,
editors, Algorithms and Computation, pages 579–589, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

18 Morteza Mardani, Gonzalo Mateos, and G.B. Giannakis. Recovery of low-rank plus com-
pressed sparse matrices with application to unveiling traffic anomalies. IEEE Transactions on
Information Theory, 59, April 2012.

19 Sean O’Rourke, Van Vu, and Ke Wang. Random perturbation of low rank matrices: Improving
classical bounds. Linear Algebra and its Applications, 540:26–59, 2018. doi:10.1016/j.laa.
2017.11.014.

20 Richard Peng and Santosh Vempala. Solving sparse linear systems faster than matrix multi-
plication. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’21, page 504–521, USA, 2021. Society for Industrial and Applied Mathem-
atics.

21 Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular
matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009. doi:
10.1002/cpa.20294.

22 Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng. Smoothed analysis of the condition
numbers and growth factors of matrices. SIAM Journal on Matrix Analysis and Applications,
28(2):446–476, 2006. doi:10.1137/S0895479803436202.

23 Yoav Seginer. The expected norm of random matrices. Combinatorics, Probability and
Computing, 9:149–166, March 2000. doi:10.1017/S096354830000420X.

24 Daniel A. Spielman and Shang hua Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. COMMUN. ACM, 2009.

25 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004. doi:10.1145/990308.
990310.

https://doi.org/10.1145/3188745.3188826
https://doi.org/10.1109/ACSSC.2014.7094407
https://doi.org/10.1137/0609045
https://doi.org/10.1007/s10107-016-1089-0
http://arxiv.org/abs/https://mathoverflow.net/q/157554
https://books.google.com/books?id=R843OAAACAAJ
https://doi.org/10.1109/TIP.2014.2347204
https://doi.org/10.1524/itit.2011.0654
https://doi.org/10.1016/j.laa.2017.11.014
https://doi.org/10.1016/j.laa.2017.11.014
https://doi.org/10.1002/cpa.20294
https://doi.org/10.1002/cpa.20294
https://doi.org/10.1137/S0895479803436202
https://doi.org/10.1017/S096354830000420X
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/990308.990310

R. Shah and S. Silwal 40:17

26 Moeller Steen, Sebastian Weingartner, and Mehmet Akcakaya. Multi-scale locally low-rank
noise reduction for high-resolution dynamic quantitative cardiac mri. Annual International
Conference of the IEEE Engineering in Medicine and Biology Society., 2017:1473–1476, July
2017. doi:10.1109/EMBC.2017.8037113.

27 Terence Tao and Van Vu. Smooth analysis of the condition number and the least singular
value. Mathematics of Computation, 79(272):2333–2352, 2010. URL: http://www.jstor.org/
stable/20779147.

28 Vu Tau. Random matrices: the distribution of the smallest singular values. Geometric and
Functional Analysis, 20:260–297, March 2010. doi:10.1007/s00039-010-0057-8.

29 Shang-Hua Teng. Smoothed analysis of algorithms and heuristics. In Lusheng Wang, ed-
itor, Computing and Combinatorics, pages 10–11, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

30 C Tomasi and T. Kanade. Shape and motion from image streams under orthography: a
factorization method. Int Journal of Computer Vision, 9:137–154, 1992. doi:10.1007/
BF00129684.

31 Lloyd N. Trefethen and David Ill. Bau. Numerical linear algebra. SIAM Society for Industrial
and Applied Mathematics, 2000.

32 Van H. Vu and Terence Tao. The condition number of a randomly perturbed matrix. In
Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC
’07, page 248–255, New York, NY, USA, 2007. Association for Computing Machinery. doi:
10.1145/1250790.1250828.

33 Karl Werner and Magnus Jansson. Parameter estimation for reduced-rank multivariate linear
regressions in the presence of correlated noise. In Conference Record of the Asilomar Conference
on Signals, Systems and Computers, volume 2, pages 2101–2105 Vol.2, December 2003.

34 Wikipedia contributors. Product distribution — Wikipedia, the free encyclopedia, 2020.
[Online; accessed 18-August-2020]. URL: https://en.wikipedia.org/w/index.php?title=
Product_distribution&oldid=970273508.

A Numerical experiments

In this section, we numerically demonstrate our theoretical results by giving an example of a
sparse family of n by n matrices that are “poorly” conditioned and whose condition number
improves significantly after adding a random Gaussian rank 1 perturbation. We show that
this perturbation results in an improvement comparable to what is achieved after adding a
dense Gaussian matrix while maintaining a low time complexity for matrix vector product
operations.

Our family of n by n matrices will be constructed as follows: Mn will have ones on the
anti-diagonal and the first and third off-diagonals above the anti-diagonal. For example, M7
is displayed below.

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0

It is shown in [13] that Mn is ill-conditioned by showing that the magnitude of the

smallest eigenvalue of Mn is of the order O(n/Cn) where C ≈ 1.47 which implies that the
smallest singular value of Mn is also at most O(n/Cn). The second smallest eigenvalue on
the other hand is a constant.

APPROX/RANDOM 2021

https://doi.org/10.1109/EMBC.2017.8037113
http://www.jstor.org/stable/20779147
http://www.jstor.org/stable/20779147
https://doi.org/10.1007/s00039-010-0057-8
https://doi.org/10.1007/BF00129684
https://doi.org/10.1007/BF00129684
https://doi.org/10.1145/1250790.1250828
https://doi.org/10.1145/1250790.1250828
https://en.wikipedia.org/w/index.php?title=Product_distribution&oldid=970273508
https://en.wikipedia.org/w/index.php?title=Product_distribution&oldid=970273508

40:18 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

(a) (b)

Figure 1 (a) Smallest singular values of the original matrix compared against dense and rank 1
perturbations. (b) Time taken to perform a matrix vector product after a dense perturbation and a
rank 1 perturbation. The cost for the dense perturbation has a quadratic scaling (slope = 2).

In Figure 1 (a), we show the smallest singular value of Mn for a range of n along with
the smallest singular values after a dense and rank 1 perturbation. As we can see in the
log-log plot, the original values are decaying exponentially while the smallest singular value
after the rank 1 perturbation is within a few orders of magnitude of the corresponding value
after a dense perturbation. In Figure 1 (b), we show the time taken to perform a matrix
vector product after a dense and a rank 1 perturbation. For this task, we used the popular
numerical libraries NumPy and SciPy. Since Mn is sparse, it can be represented in a special
sparse format to speed up computations. In the case of a rank 1 perturbation, we only need
to store two additional vectors and a matrix vector product (M + uvT)x can be performed as

(Mn + uvT)x = Mnx + (vT x) · u.

However, in the case of a dense perturbation, we need to store a dense matrix G and perform
the matrix vector product operation with a vector and a dense matrix resulting in a much
slower operation than in the rank 1 case. Indeed, note that the slope of the “Dense” curve in
Figure 1 (b) is close to 2 signifying a quadratic increase in time. Overall, we see that in this
case, a rank 1 update results in a comparable improvement of the condition number of Mn

while greatly improving the cost to perform a fundamental matrix operation.

B Low-rank noise model for other problems in smoothed analysis

In this section, we outline some of the challenges that arise when applying the rank 1 noise
model in other popular problems studied in smoothed analysis. While not a comprehensive
survey of all problems, we focus on two of the most studied applications of this framework
outside of the condition number. These are the simplex method and k-means. For these
problems, the standard noise model is the dense one where every entry of the input matrix
or input set of points respectively, is independently perturbed by a random Gaussian. We
highlight some of the challenges that arise when trying to carry out existing proof techniques
for these problems using rank 1 noise. This ultimately shows that new ideas are required to
bypass the lack of independence as we did for the condition number.

R. Shah and S. Silwal 40:19

B.1 Simplex method
The simplex method is one of the most famous applications of the smoothed analysis
framework. The goal is to solve a linear program of the form max cT x subject to Ax ≤ b

using the simplex method where the entries of A ∈ Rm×n have been perturbed by random
noise. Recall that the simplex method operates by moving among the vertices of the polytopes
defined by the constrained matrix A. The geometric operation of moving from one vertex to
another is called a pivot operation and the most commonly analyzed pivot operation with
respect to smoothed analysis is the shadow vertex pivot method.

Without getting into technical details that will lead us too far afield, we note that the
shadow vertex pivoting method requires us to calculate the following bound: let ai for
1 ≤ i ≤ m denote the rows of the matrix A and let W be a fixed two dimensional subspace.
We wish to bound

E[|edges(conv(a1, · · · , am) ∩ W)|]

where conv(a1, · · · , am) is the convex hull of the rows (see [9] for more information).
To calculate the above bound, we essentially need to understand the probability that

aT
j θ ≤ t for a range of values of j and some t ∈ R (here θ represents the normal vector of the

line connecting some two points ai, ak. For the pair ai, ak to be on the convex hull, we need
the rest of the points to be on one side of the line). In the case that we add independent noise
across the rows, this bound is possible to compute due to independence across aj . However,
in the case that we add rank 1 noise uT v (here u ∈ Rm, v ∈ Rn) to A, these probabilities
become intractable using existing methods since aj satisfying aT

j θ ≤ t gives us information
about all other a′

j for j′ ̸= j since randomness is shared across the rows.
Nevertheless, it is possible to get a weak result for the smoothed analysis of the simplex

method in our low-rank noise model by using a different pivoting operation. It is shown in
[12] that if the rows satisfy a certain geometric property, then using a random pivoting rule
results in an expected polynomial number of steps for the simplex method to converge.

The geometric property is the following: For any I ⊆ [m], and j ∈ [m], if aj is not in the
span generated by ai, i ∈ I, then the distance from aj to this span is at least δ. We note
that the bound on the expected number of steps depends polynomially on 1/δ and other
parameters. This geometric property reduces to a singular value estimate as follows. For
simplicity, lets focus on j = 1 and I = {2, · · · , n − 1}. As in Section 1.3, it follows that
∥A−1

[n] e1∥ is equal to 1/|wT a1| where w is the normal vector of the span of the rows a2, · · · , an.
Thus, if sn(A[n]) is “not too small” then ∥A−1

[n] e1∥ cannot be “too large” and consequently,
the distance from a1 to the span of a2, · · · , an is “not too small” (we are intentionally leaving
our specific relations for a high level overview). The caveat is that we need the geometric
property to hold between a1 and every set of n − 1 other vectors. However, since the bound
of Theorem 13 only gives us an inverse polynomial probability, we cannot afford the union
bound of

(
m
n

)
unless m = n + C for some constant C, which is not a realistic scenario.

Lastly, empirical evidence shows that rank 1 perturbation may not be a suitable if the
original simplex method (the Dantzig simplex method) is used. In Figure 2, we use the
Klee-Minty lower bound [14] for the Dantzig simplex method and add either a dense Gaussian
or a rank 1 perturbation to the constraint matrix. We then plot the average number of pivot
steps taken over twenty independent trials. It can be seen that a rank 1 perturbation only
slightly improves over the exponential number of pivot steps required by the Dantzig simplex
method whereas dense perturbations help greatly.

We conclude our discussion with a major open problem.

APPROX/RANDOM 2021

40:20 Smoothed Analysis of the Condition Number Under Low-Rank Perturbations

4 6 8 10 12 14
of Variables

101

102

103

104

of

 P
iv

ot
s

KM Cube
Dense
Rank 1

Figure 2 The Dantzig simplex method applied to the Klee-Minty lower bound and its random
perturbations.

▶ Open Problem 26. Is there a pivoting rule for the simplex method that runs in expected
polynomial time if we add random rank 1 noise to the constraint matrix?

B.2 k-means clustering
Recall that in the k-means problem, we are given a set X of n points in Rd and our goal is
to partition the points into k sets Si to minimize the objective

k∑
i=1

∑
x∈Si

∥x − µi∥2

where µi is the mean of the points in Si. A common heuristic for this problem, also confusingly
known as the k-means algorithm, or Lloyd’s method, is to randomly pick an initial set of k

centers, assign each point in X to its closest center, update the means accordingly, and repeat
until convergence. In the smoothed analysis framework, it was shown that if each point in X

is perturbed by an independent Gaussian vector then convergence happens in polynomially
many steps [3]. The existing analysis all crucially rely on the following geometric lemma.

▶ Lemma 27. Let x ∈ Rd be drawn according to a d-dimensional Gaussian distribution of
standard deviation σ, and let B be the d-dimensional ball of radius ε centered at the origin.
Then P(x ∈ B) ≤ (ε/σ)d.

This lemma roughly states that the probability of a random Gaussian being in any ball of
radius ε is at most εd, and is used to union bound over exponentially many events in the
smoothed analysis of k-means.

Surprisingly, this lemma does not hold in our “rank 1” setting. More precisely, we can
prove the following probabilistic bound which is a major impediment to understanding the
smoothed complexity of the k-means problem with rank 1 noise.

▶ Lemma 28. Let x ∈ Rd be drawn according to a standard d-dimensional Gaussian
distribution and let y ∈ R be a scalar standard Gaussian random variable. If B is the
d-dimensional ball of radius ε centered at the origin then P(yx ∈ B) = O(ε/

√
d).

R. Shah and S. Silwal 40:21

Note that yx ∈ Rd. We are considering random variables of this form because if a rank 1
perturbation was added to X, then each row is perturbed by a random vector of the form
yx ∈ Rd. Lemma 28 roughly states that the probability that the random vector yx is in any
ball of radius ε only weakly depends on the dimension d. In particular, we do not get an
exponentially small probability afforded by Lemma 27 that enables us to union bound over
exponentially many events as in the arguments for the smoothed analysis of k-means under
the standard noise model.

The intuition for Lemma 28 is as follows. First, note that from standard Gaussian
concentration, we have ∥x∥ ≈

√
d. Treating this as fixed for now, this means that y∥x∥ is

approximately distributed as a scalar Gaussian distribution with variance d. Therefore, from
Proposition 12, it follows that P(|y|∥x∥ ≤ ε) = Θ(ε/

√
d). We now formalize this argument.

Proof. Note that ∥x∥2
2 is a chi-squared variable with d degrees of freedom. From [34], we

know that the density of the product Z = ∥yx∥2
2 = y2∥x∥2

2 is given by

fZ(z) ≃ 1
2d/2Γ(d/2)

∫ ∞

0

(
xd/2−2e−x/2

)(1√
z/x

e−z/(2x)

)
dx.

Therefore,

P(∥yx∥2
2 ≤ ε2) ≃ 1

2d/2Γ(d/2)

∫ ε2

0

∫ ∞

0

(
xd/2−2e−x/2

)(1√
z/x

e−z/(2x)

)
dx dz.

We now switch the order of summation which is valid since the integrand is positive. From
the definition of the error function, we can check that∫ ε2

0

1√
z/x

e−z/(2x) dz ≃ x · erf(ε/
√

x).

We now use the estimate erf(t) ≤ 2t which holds for all t ≥ 0. This gives us∫ ∞

0
xd/2−1e−x/2erf(ε/

√
x) dx ≲ ε

∫ ∞

0
xd/2−3/2e−x/2 dx = ε2d/2−1/2Γ(d/2 − 1/2).

Finally, noting that Γ(d/2 − 1/2)/Γ(d/2) ≲ 1/
√

d gives us our desired probability bound. ◀

Note that the above bound is the best that we can hope for. Indeed, we can say that
∥x∥2

2 = Ω(d) with probability 1/2 so conditioning on this event, we have that Pr(|y|∥x∥2 ≤
ε) = Ω(ε/

√
d). We note that Lemma 27 is also required for the smoothed analysis of other

Euclidean problems such as a local search heuristic for Euclidean TSP [17].

APPROX/RANDOM 2021

Matroid Intersection: A Pseudo-Deterministic
Parallel Reduction from Search to
Weighted-Decision
Sumanta Ghosh # Ñ

Indian Institute of Technology Bombay, India

Rohit Gurjar # Ñ

Indian Institute of Technology Bombay, India

Abstract
We study the matroid intersection problem from the parallel complexity perspective. Given two
matroids over the same ground set, the problem asks to decide whether they have a common base
and its search version asks to find a common base, if one exists. Another widely studied variant is
the weighted decision version where with the two matroids, we are given small weights on the ground
set elements and a target weight W , and the question is to decide whether there is a common base
of weight at least W . From the perspective of parallel complexity, the relation between the search
and the decision versions is not well understood. We make a significant progress on this question
by giving a pseudo-deterministic parallel (NC) algorithm for the search version that uses an oracle
access to the weighted decision.

The notion of pseudo-deterministic NC was recently introduced by Goldwasser and Grossman [19],
which is a relaxation of NC. A pseudo-deterministic NC algorithm for a search problem is a randomized
NC algorithm that, for a given input, outputs a fixed solution with high probability. In case the given
matroids are linearly representable, our result implies a pseudo-deterministic NC algorithm (without
the weighted decision oracle). This resolves an open question posed by Anari and Vazirani [2].

2012 ACM Subject Classification Mathematics of computing → Matroids and greedoids; Mathem-
atics of computing → Probabilistic algorithms

Keywords and phrases Linear Matroid, Matroid Intersection, Parallel Complexity, Pseudo-determin-
istic NC

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.41

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/121/

Acknowledgements We thank the anonymous reviewers for pointing towards the relevant literature
on lattice families.

1 Introduction

Most often, a search problem can be efficiently solved using an oracle for a closely related
decision problem. For example, if you have access to a decision oracle that tells you whether
a given graph has a perfect matching, you can efficiently construct a perfect matching in a
given graph using the decision oracle. Such search-to-decision reductions usually involve self-
reducibility and make a linear number of oracle calls sequentially. However such reductions
do not fit into the framework of parallel complexity, where one can make multiple oracle
calls in parallel, but wants poly-logarithmic time complexity. For a more detailed discussion
on the difference in parallel complexity of search and decision problems, see [25].

© Sumanta Ghosh and Rohit Gurjar;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:besusumanta@gmail.com
https://sites.google.com/view/sumghosh/home
mailto:rohitgurjar0@gmail.com
https://www.cse.iitb.ac.in/~rgurjar/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41
https://eccc.weizmann.ac.il/report/2021/121/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Graph matching and related problems like linear matroid intersection and linear matroid
matching were one of the first problems to be studied from the parallel complexity per-
spective [26, 5]. The decision versions of these problems ask to decide the existence of the
respective combinatorial substructures:

Matching: Does a given graph contain a perfect matching – a set of disjoint edges that
cover all the vertices in the graph?
Linear Matroid Intersection: Given two sets of m vectors each, is there a set of indices
B ⊆ [m] that corresponds to a basis set in each of the two sets?
Linear Matroid Matching/Parity: Given a set of pairs of vectors, is there a subset of pairs
whose union will give a basis for the union of all pairs?

The search versions of these problems ask for constructing the respective combinatorial
substructures (if one exists). The matching problem in bipartite graphs is a special case of
all the three problems above (see Figure 1). A bipartite graph is a graph whose vertices can
be partitioned into two parts such that every edge connects a vertex from one part to one in
the other part. Even in the special case of bipartite matching, the questions of the exact
parallel complexity of decision and search and whether decision and search are equivalent in
a parallel sense still remain unresolved.

Bipartite Matching

General MatchingLinear Matroid Intersection

Linear Matroid Matching/Parity

Figure 1 Reductions among the four problems. A → B represents that problem A reduces to
problem B.

The first efficient randomized parallel algorithms for the three decision problems above
followed from the results of Lovász [26]. Lovász gave randomized algorithms for these
problems by first reducing these decision questions to testing whether the determinant
of a certain symbolic matrix is nonzero, as a polynomial. Then he used the fact that
the zeroness of a polynomial can be tested efficiently by just evaluating it at a random
point [32, 36, 12, 29]. Hence, the questions were basically reduced to computing determinant
of a randomly generated matrix. Interestingly, there are efficient parallel (NC) algorithms
for computing the determinant of a matrix [3, 7, 4]. An NC algorithm is one which uses
polynomially many parallel processors and takes only polylogarithmic time. Thus, the
algorithms of Lovász [26] can be viewed as randomized parallel (RNC) algorithms for the
three decision problems. However, this did not imply any parallel algorithms for the search
versions.

Randomized parallel (RNC) algorithms for the search versions of these problems were
obtained some years later [24, 27, 28]. However, these results did not go via a parallel
search-to-decision reduction. Instead, they gave randomized parallel (RNC) reductions from
the search version to a variant of the decision problem, namely weighted decision. For
example, the weighted decision version for perfect matchings asks: given a graph with small
weights on edges and a target weight W , is there a perfect matching of weight at most
W (or at least W). Here the weight of a perfect matching is defined to be the sum of the

S. Ghosh and R. Gurjar 41:3

weights of the edges in the perfect matching. It turns out that Lovász’s RNC algorithms can
be appropriately modified to solve the weighted decision versions as well, when the given
weights are small. The search-to-weighted-decision reductions together with the weighted
decision algorithms implied randomized parallel search algorithms for the three problems.
We elaborate a bit on the reductions.

Reductions from search to weighted-decision

Karp, Upfal and Wigderson [24] do not explicitly talk about weights, but their reduction
is from finding a perfect matching to a subroutine that can be viewed as weighted decision
with 0-1 weights on the edges. From the perspective of our current investigation, the result
of Mulmuley, Vazirani, and Vazirani [27] is much more interesting. They showed that using
the weighted decision oracle, one can compute a perfect matching with just two rounds
of parallel calls to the oracle. The crucial ingredient in their algorithm was the powerful
Isolation Lemma which states that if the edges of a graph are assigned random weights from
a polynomially bounded range uniformly and independently then with high probability, there
is a unique minimum weight perfect matching in the graph. Once we have such a weight
assignment, we can first find the minimum weight w∗ of a perfect matching by calling the
weighted decision oracle for each possible target value W in a polynomially bounded range.
Then for each edge e in parallel, delete e and ask the oracle if there is a perfect matching of
weight at most w∗. The answer will be no if and only if e is a part of the unique minimum
weight perfect matching. Thus, in two rounds of polynomially many parallel oracle calls, we
can compute the unique minimum weight perfect matching.

The amazing thing about the Isolation Lemma is that it applies to not just the family of
perfect matchings in a graph, but to arbitrary families of subsets. Thus, the above described
search-to-weighted-decision reduction of [27] can be made to work for any problem that
admits a similar self-reducibility property. Narayan, Saran, and Vazirani [28] used the same
Isolation Lemma based reduction to give RNC algorithms for the search versions of linear
matroid intersection and linear matroid matching.

Derandomization

Since the work of Lovász [26], it has been a big open question to derandomize these results
i.e., to find deterministic parallel (NC) algorithms for these problems. While derandomization
results have been obtained for the matching problem in many special classes of graphs [11,
35, 10, 20, 1], the question remains open even for bipartite graphs. Only recently, there was
a significant progress made when a quasi-NC algorithm was obtained for finding a perfect
matching in a bipartite graph [16, 15]. A quasi-NC algorithm runs in polylogarithmic time
but can use quasipolynomially (2logO(1) n) many parallel processors, so this result brought
the problem quite close to the class NC. Similar quasi-NC algorithms were later obtained for
linear matroid intersection [22] and matching in general graphs [34] as well.

In the quest of understanding the deterministic parallel complexity of these problems, an
interesting question one can ask is whether there is a deterministic parallel (NC) search-to-
decision reduction. An easier question would be to ask for an NC reduction from search to
weighted-decision, i.e., derandomizing the reductions of [27, 24, 28] described above. Soon
after the quasi-NC result for bipartite matching [16], Goldwasser and Grossman [19] started
quite an interesting line of enquiry, where they answered the above question positively for
bipartite matching. They observed that the quasi-NC algorithm can be modified to give
a deterministic parallel (NC) search-to-weighted-decision reduction for bipartite matching.
Their main result was, what they call, a pseudo-deterministic NC algorithm for bipartite
matching, which followed from this reduction.

APPROX/RANDOM 2021

41:4 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Pseudo-determinism

The notion of pseudo-deterministic algorithms was introduced by Gat and Goldwasser [17]
which is applicable only for search problems. For a given instance of a search problem, a
randomized algorithm can possibly give different outputs for different choices of the random
seed. Pseudo-deterministic algorithms are randomized algorithms which give a fixed output
for a given input with high probability. Note that the earlier described RNC algorithm of [27]
for matching is not pseudo-deterministic because for a given graph, it will output different
perfect matchings for different possibilities of the randomly chosen weight assignment.

It is not hard to see that if one gives a deterministic reduction from a search problem to
a decision problem that is known to have a randomized algorithm, then one immediately
gets a pseudo-deterministic algorithm for the search problem (see [18, Theorem 2.2]). That
is why the NC search-to-weighted-reduction for bipartite matching [19] implied a pseudo-
deterministic NC algorithm for bipartite matching, i.e., an RNC algorithm that, for a given
graph, outputs the same perfect matching with high probability. One interesting implication
of this result is that if one finds an NC algorithm for the weighted-decision of bipartite
matching, one will get an NC algorithm for the search version as well.

A natural question arises: can we similarly modify the quasi-NC algorithms for linear
matroid intersection [22] and matching in general graphs [34] into NC search-to-weighted-
decision reductions, and thus, get pseudo-deterministic NC algorithms for the search versions?
It looks quite possible because one can can extract out an abstract framework from [19] for
converting these quasi-NC algorithms into pseudo-deterministic NC algorithms. But as we
discuss below, a straightforward application of this framework does not work out for linear
matroid intersection or matching in general graphs. A key step in [19] is to compute a succinct
description of the set of all (possibly exponentially many) minimum weight perfect matchings
in a weighted bipartite graph in NC, given the weighted-decision oracle. However, it is not
immediately clear how to solve the analogous question in NC for linear matroid intersection
or matching in general graphs. Interestingly, in an earlier work in a different context, Cygan,
Gabow, and Sankowski [9] had already solved this question for matching in general graphs.
They had designed a procedure based on LP duality to compute a succinct description of the
set of all minimum weight perfect matchings, via the weighted-decision oracle. Moreover, as
observed in [30], this procedure can also be parallelized using standard techniques. Armed
with this heavy hammer, Anari and Vazirani [2] give an NC search-to-weighted-decision
reduction, and thus, get a pseudo-deterministic NC algorithm for perfect matching in general
graphs. Anari and Vazirani [2] put it as an open question to obtain similar results for linear
matroid intersection. In this work, we take up this challenge.

Our contributions

In the setting of linear matroid intersection, the analogue of a perfect matching is referred as
a common base – a set of indices that corresponds to a basis in both the sets of vectors. For
the weighted version, it is well understood how to succinctly describe the set of minimum or
maximum weight common bases, i.e., the minimizing/maximizing face of the common base
polytope; see e.g., [31, Chapter 41]. Any face of the common base polytope is characterized
by its tight sets. Suppose that M1 and M2 are two matroids over the same ground set
E. Then, a subset S of E is called a tight set for a maximizing face (of the common base
polytope), if for some matroid Mi the following holds: for every maximum weight common
base B, the set S ∩B spans the set S. Note that the number of tight sets of a maximizing
face can be exponentially large. However, they are known to have succinct representations.
We give a randomized NC algorithm to compute a succinct and unique representation for
the tights sets of a maximizing face.

S. Ghosh and R. Gurjar 41:5

▶ Theorem 1 (Informal version of Theorem 5). There exists a randomized NC algorithm to
compute a succinct and unique description for the tight sets of a maximizing face of the
common base polytope, given the weighted-decision oracle.

For a maximizing face of the common base polytope, all the tight sets for some matroid
Mi forms a lattice family, and our description for tight sets is motivated by the succinct
representation of lattice families based on the partial order of its prime subsets (also known
as irreducible subsets). We construct a digraph in bottom-up fashion, using bases from the
maximizing face of the common base polytope, such that it contains the necessary information
regarding the tight sets of maximizing face. From this digraph we shall be able to compute
the succinct description. See Section 3.1 for more details. Here, we would like to mention
that the succinct representation of lattice families using the partial order of its prime subsets
is well known and has been used in multiple previous algorithms [31, Chapter 49], [23, 14, 6].
However, all these applications do not fall in the category of parallel computation.

Note that the uniqueness of the description is important because then this RNC algorithm
is by default pseudo-deterministic, as there is only one possible output. Once we have designed
this heavy hammer, it is relatively easier to combine the procedure of [22] with the abstract
framework provided by [19] and obtain a pseudo-deterministic NC search-to-weighted-decision
reduction. This leads to our first main result.

▶ Theorem 2. The search version of the linear matroid intersection problem has a pseudo-
deterministic NC algorithm.

General Matroid Intersection

Our main technical contributions are applicable to not just linear matroid intersection but
also to matroid intersection. In the general matroid intersection problem, instead of two sets
of vectors, we are given two matroids on the same ground set and the goal is to find a set of
elements that forms a base in each of the two matroids. In this problem, the matroids are
not given explicitly but only via a independence or rank oracle. Thus, it does not makes
sense to talk about NC or RNC algorithms for this problem. One can however consider a
parallel oracle model where we can make polynomially many queries to the oracle in parallel
(see [25]). To the best of our knowledge, there is no such parallel algorithm known for the
decision or the search version of matroid intersection, even with sub-linear number of rounds
of parallel oracle calls. This makes the question all the more interesting whether decision
and search are equivalent in a parallel sense.

Interestingly, the search-to-weighted-decision reduction of [28] applies to general matroid
intersection as well and can be said to be in RNC. Our results make a significant progress
on this question by giving a pseudo-deterministic NC reduction from search to weighted
decision. Formally, we can show the following.

▶ Theorem 3. There is a pseudo-deterministic NC algorithm for finding a common base
of two matroids M1 and M2 on the same ground set E, provided that the algorithm has an
oracle access to the following decision question: given two matroids with polynomially bound
(in |E|) weights on the ground set elements and a target weight W , is there a common base
of weight at least W? Furthermore, the oracle calls need to be made only for the following
pairs of matroids: ⟨M1, M2⟩, ⟨M1, M1⟩, and ⟨M2, M2⟩.

Note that in the above theorem, as there is no explicit input, the ground set size is taken as
the input size.

APPROX/RANDOM 2021

41:6 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Discussion

There are many natural open questions that are highlighted by our work. The big question
is whether there is an NC algorithm for linear matroid intersection. Going to the more
general setting, is there some kind of parallel algorithm for matroid intersection? Another
question which can generate some new ideas is whether there is an NC reduction from search
to decision for linear matroid intersection. For general matroid intersection, it would be
interesting to find a parallel search to decision reduction even with the use of randomization.

The third question mentioned in the beginning, that is, linear matroid matching is
completely open, in the sense that not even a quasi-NC algorithm is known for it. Given
the wide applicability of the Isolation Lemma, the randomized parallel search-to-weighted-
decision reduction of Mulmuley, Vazirani, and Vazirani [27] would work for any combinatorial
problem with an appropriate self-reducibility property, including NP-hard problems like
maximum independent set. An intriguing meta-question is – what is the most general setting
where we can find deterministic or pseudo-deterministic parallel search-to-weighted-decision
reductions.

2 Previous works

We start by briefly describing the techniques of previous works [28, 22, 19] that will be helpful
in both comprehending as well as describing our work. Wherever these works talk about a
minimization problem, we will describe it in terms of maximization, just for convenience. We
will be using the following notations for the two versions of the matroid intersection problem.

search-MI: Given two matroids on a common ground set, compute a common base.
weighted-decision-MI: Given two matroids on the same ground set, polynomially bounded
weights on the ground set elements, and a target weight W , is there a common base of
weight at least W?

Whenever we are in a setting where the matroids are not given explicitly, we will consider
the ground set size as the input size.

The result of Narayanan, Saran, and Vazirani [28] can be interpreted as an RNC reduction
from search-MI to weighted-decision-MI. The first step of this reduction is to assign weights to
the ground set elements, randomly and independently from a small range. Then from the
Isolation Lemma [27], one can say that there is a unique maximum weight common base of
the two matroids, with high probability. Here, the weight of a common base is defined to be
sum of the weights of the elements in the common base. We can first find the maximum
weight w∗ of a common base by calling the weighted-decision-MI oracle for each possible
target value W in a small range. Then for each ground set element e in parallel, increase its
weight by one and find out the new maximum weight. The maximum weight increases if and
only if e is a part of the unique maximum weight common base. This way we can find the
unique maximum weight common base.

Note that the uniqueness property is crucial for this construction and that is the only
place where randomness is needed. And this construction is not pseudo-deterministic because
for different choices of random weights, we will get a different maximum weight common
base. There has been several efforts to deterministically construct a weight assignment in
NC that isolates a common base, i.e., ensures unique maximum weight common base, but
this goal has not been achieved till now. A recent work [22] came quite close to this goal
and constructed an isolating weight assignment in quasi-NC. This work generalizes the ideas
used to do the same for bipartite matching in [16]. We build on their ideas to construct an
isolating weight assignment in pseudo-deterministic NC. We first give a brief description of
their result.

S. Ghosh and R. Gurjar 41:7

Isolating a common base in quasi-NC

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids over the same ground set E

where B1 and B2 are the family of bases of M1 and M2, respectively. Let m = |E| and r1 and
r2 be the rank functions of the matroids. The main idea of [22] is to isolate a common base
in log m rounds, where in each round they significantly reduce the set of maximum weight
common bases, and finally bring it down to just one maximum weight common base. In each
of these rounds, they deterministically propose a set of poly(m) weight assignments, one of
which will do the desired reduction in the set of maximum weight common bases. In a round,
they have no way of figuring out which one out of these poly(m) weight assignments will
do the job. So, they have to try all poly(m)log m combinations of these weight assignments.
Moreover, for any particular combination, they have to combine the log m weight assignments
on different scales, which means their weights become as large as poly(m)log m. Due to these
two factors, their construction is in quasi-NC and not in NC.

To measure the progress in each round, they need a succinct way to describe the current
set of maximum weight common bases. The most convenient way to understand the set of
maximum weight common bases is through the common base polytope. The common base
polytope P (B1 ∩ B2) is a polytope formed by taking convex hull of the 0-1 indicator vectors
of the sets in B1 ∩ B2. For any weight assignment w ∈ RE , the weight of a common base B

is defined as a linear function, and thus, one can obtain the maximum weight common bases
by maximizing the function

∑
e∈E wexe over P (B1 ∩ B2). In particular, the set of maximum

weight common bases will always be the set of corners of a face of P (B1 ∩ B2).
Edmonds [13] gave a nice description of P (B1 ∩ B2) using the rank functions r1 and r2.

He showed that a point x ∈ RE is in P (B1 ∩ B2) if and only if it satisfies the following
constraints:

xe ≥ 0 ∀e ∈ E, (1)
x(S) =

∑
e∈S

xe ≤ ri(S) ∀S ⊂ E, i = 1, 2, (2)

x(E) =
∑
e∈E

xe = r1(E) = r2(E). (3)

The construction in [22] crucially uses the description of the common base polytope P (B1∩B2).
In terms of the polytope, their construction of the weight assignment is such that in each
round, the maximum weight face of P (B1 ∩ B2) gets significantly smaller and after log m

rounds, the maximum weight face is simply a corner point. The key notions they introduced
to measure the improvement in each iteration are cycles with respect to a face and their
circulations with respect to a weight assignment.

Suppose that F is a face of P (B1 ∩ B2). A subset S of E is called a tight set of Mi

with respect to F if the corresponding inequality in (2) is tight for F i.e, for all x ∈ F ,
x(S) = ri(S). Then [22] showed that for every face F , we have two partitions of E, denoted
by partition1[F] and partition2[F], such that every tight set of Mi with respect to F is a union
of the sets from partitioni[F]. The partitions of E naturally induce a bipartite graph, denoted
by G[F], with the left vertex set partition1[F], the right vertex set partition2[F] and the edge
set E: the edge corresponding to an element e ∈ E is incident on the vertex corresponding
to a set v ∈ partitioni[F] if and only if e ∈ v. A sequence of distinct elements (e1, . . . , ek)
from E is called a cycle with respect to F if it forms a cycle in the graph G[F].

Let CF denotes the set of cycles with respect to a face F of P (B1 ∩B2). Then [22] showed
that for face F , if CF = ∅ then F is a corner point of the polytope P (B1 ∩ B2). Their idea
was to keep eliminating cycles via appropriate modification of the weight assignment and

APPROX/RANDOM 2021

41:8 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

get smaller and smaller maximizing face of P (B1 ∩ B2) to eventually reach a corner point.
For a weight assignment w on E, define the circulation for a (even length) cycle as the
absolute value of the difference of weights in the two sets of alternating edges. Let C be a
cycle, say with respect to F = P (B1 ∩ B2), and let w be a weight assignment such that the
circulation of C is non-zero w.r.t. w. Then they showed that the cycle C does not appear
in the maximizing face with respect to w. Now if the weight assignment w gives non-zero
circulation to all the cycles in P (B1 ∩ B2), then all the cycles in the maximizing face F will
be eliminated, i.e. CF = ∅, and F will be a corner. However, with polynomially bounded
weights, one cannot expect to give nonzero circulation to all the cycles at once, since the
number of cycles can be exponentially large.

One of the key ideas in [22, 16] was to eliminate the cycles in rounds. In each round, they
double the length of the eliminated cycles and reach to face of a smaller dimension. Thus, in
log m rounds, one can eliminate all the cycles and reach a corner point of P (B1 ∩ B2). They
used the fact that if in a graph all the cycles have length greater than 2i, then there are
at most m4 many cycles of length at most 2i+1 [33]. This implies that, at each iteration,
we have to give nonzero circulation to at most m4 many cycles. Using a hashing technique
(for example see [16, Lemma 2.3]), one can give nonzero circulation for each of these m4

many cycles. Formally, Gurjar and Thierauf [21, Lemma 3.11 and 3.12] showed the following
property for faces F (of P (B1 ∩ B2)) having no cycle of length ≤ r.

▶ Lemma 4. Let F be a face of the polytope P (B1 ∩ B2) such that CF has no cycle of length
r. Then one can construct a set of O(m6) many weight assignments with weights bounded by
O(m6) in NC such that one of the weight assignment will give nonzero circulation to all the
cycles in CF of length at most 2r.

Now, as described earlier, we consider all possible combinations of weight assignments from
different rounds to get a family of poly(mlog m) many weight assignments with weights
bounded by poly(mlog m) such that for any two matroids on a ground set of size m, at least
one weight assignment isolates a common base.

In this paper, we give a pseudo-deterministic NC reduction from search-MI to weighted-
decision-MI. This line of work was started by Goldwasser and Grossman [19]. One can extract
an abstract framework from [19] with the following two steps to get a pseudo-deterministic
NC search-to-weighted-decision reduction: 1) Like [16, 22], an iterative approach of designing
an isolating weight assignment family, 2) Succinct representation of the maximum weight
faces of the underlying polytope with an RNC algorithm to compute it, assuming the oracle
access to the weighted decision. For example, a face of the bipartite matching polytope is
completely described by the set edges that participate in some perfect matching in that face,
and [19] gives an NC algorithm to compute it using the respective weighted decision oracle.

The faces of the perfect matching polytope for general graphs are more complicated than
their bipartite counterpart. Here, any face is described by a maximal laminar family of
tight odd cuts. The work of [8, 30] give an NC procedure, with the oracle access to the
weight decision problem, to compute a maximal laminar family of tight odd cuts. This result
supplies the second ingredient of the [19] framework, which helped [2] give an NC reduction
from search to weighted decision for general perfect matching.

Our reduction also follows the abstract framework of [19]. We use the iterative approach
developed by [22]. On top of that, we need an RNC algorithm (using the oracle access to
weighted-decision-MI) to compute a succinct representation for a maximum weight face of the
common base polytope P (B1 ∩ B2). However, none of the previous ideas help to answer this
question, and we need something completely new.

S. Ghosh and R. Gurjar 41:9

3 Proof techniques

In this section, we briefly describe the proof ideas of our results. Our proofs strongly rely on
some structural properties of lattice families over finite sets. Therefore, we briefly discuss the
necessary notations and facts about lattice families. For a finite set E, a family of subsets
L of E is called a lattice family over E if it is closed under set union and intersection and
for every element a ∈ E there exists a set in L containing a. For every element a ∈ E there
exists a unique smallest set in L containing a. Such sets are called as prime sets of L. All
the sets in a lattice family can be written as a union of its prime sets. Every lattice family L
over E induces a unique partition P of E such that every set in L is a disjoint union of sets
in P. Moreover, the sets in P can be written as a sequence (S1, . . . , Sℓ) with the following
property: for all k ∈ [ℓ], ∪k

j=1Sj is in L. A family L′ ⊆ L is called a sublattice of L, if L′

is also a lattice family over E. The partition P is a refinement of the partition P ′ induced
by L′, that is for all S ∈ P ′, the sets in P having a nonempty intersection with S form a
partition of S. For proof of these properties, one can see Section 4.2 of the full version.

3.1 Proof Idea of Theorem 1

We discuss a succinct representation for the maximum weight face of the common base
polytope and an RNC algorithm to compute it. First, we define some notations. Supppose
that M1 = (E, I1) and M2 = (E, I2) are two matroids with B1 and B2 as their family of the
bases and r1 and r2 as the rank functions, respectively. Let m = |E|. Let P (B1 ∩ B2) be the
common base polytope of M1 and M2 defined by the equations (1), (2), (3), and F be a face
of P (B1 ∩ B2). Then a subset S of E is called a tight set for Mi (with respect to F) if for all
x ∈ F , x(S) = ri(S). For all i ∈ [2], let tight-setsi[F] denote the family of all tight sets for
Mi with respect to the face F . Edmonds [13] showed that for all i ∈ [2], tight-setsi[F] forms
a lattice family over E.

Suppose that w is a weight assignment on E. Let Fw be the maximizing face of the
common base polytope P (B1 ∩ B2), with respect to w. The face Fw can be uniquely
represented by tight-sets1[Fw] and tight-sets2[Fw]. However, we can not compute them
explicitly with our limited computational resources since the size of each family can be
exponentially large. On the other hand, since tight-setsi[Fw] is a lattice family over E, each
tight-setsi[Fw] has a succinct representation using partial order defined on its prime sets.
More specifically, one can define a pre-order ⪯i (that is, reflexive and transitive) on E as
follows: for all a, b ∈ E, a ⪯i b if and only if in tight-setsi[Fw], the prime set containing b is
a subset of the prime set containing a. The pre-order ⪯i gives a succinct representation of
tight-setsi[Fw], that is for every S ⊆ E, S is in tight-setsi[Fw] if and only if S is transitively
closed under ⪯i. Such succinct representation for lattice familes is well known (see [31,
Chapter 49] 1). For any a ∈ E, the transitive closure of a in ⪯i is same as the prime set
in tight-setsi[Fw] containing a. Also, the collection of all maximal subsets of E which are
symmetric under ⪯i is same as the partition E induced by tight-setsi[Fw]. If one consider
the digraph representaion of ≺i, (that is (a, b) is an edge if and only if a ⪯i b) then in
tight-setsi[Fw], the prime set containing a is same the set of vertices reachable from a in
the digraph and the partition of E induced by tight-setsi[Fw] is same as the set of strongly
connected components. Thus, the prime sets of tight-setsi[Fw] contain all the information

1 Our definition of ⪯i is exactly opposite to the definition used [31, Chapter 49], that is according to
their definition, a ⪯i b if and only if the prime set containing a is a subset of the prime set containing b.

APPROX/RANDOM 2021

41:10 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

regarding it. In our context, we compute the following succinct objects related to Fw:
prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2], where prime-setsi[F] be the set of all primes
sets of the lattice family tight-setsi[Fw] and partitioni[Fw] denote the partition of E induced
by tight-setsi[F]. Recall from [22, Section 3.3] that the cycles of the bipartite graph induced
by partition1[Fw] and partition2[Fw] define the cycles with respect to the face Fw. And,
the tight constraints coming from sets in prime-setsi[Fw] serve as a basis for all the tight
constraints from tight-setsi[Fw]. Here, we would like to mention that basis forming families of
tight sets are well studied (see [31]). However, to best of our knowledge, no efficient parallel
algorithm is known to compute them. Also, the succinct representation of lattices using
the partial order of its prime sets has been widely used to design algorithms for different
optimization problems. For example, computing optimal stable matching [23], problems
in computational geometry [14, 6], submodular function minimization [31, Chapter 49].
However, the context of these applications are very different from parallel computation.

With the above two objects, we also need the following characterization: for all i ∈ [2],
there exists a function NFw

i from partitioni[Fw] to Z≥0 such that a base B ∈ B1 ∩ B2 is in
the face Fw if and only if for all i ∈ [2] and S ∈ partitioni[Fw], we have |S ∩B| = NFw

i (S).
Here, we would like to mention that both the notions of partition and the function NFw

i

and the criteria we just mentioned were already introduced in [22], but were a bit weaker in
the following ways: Our criteria is an exact characterization, however, they showed it for
one direction. Our partition has an additional “chain property” ensured by the structural
properties of the lattice families. All these additional points will be useful in our proofs. For
details see Section 4.5 of the full version and [22, Section 3.2].

Now we briefly discuss about our RNC algorithm to compute prime-setsi[Fw] and
partitioni[Fw] for all i ∈ [2]. One important point is that our algorithm is equipped with the
oracle access to weighted-decision-MI. Our idea is the following: We first compute a random
vertex, equivalently a random base, B in the face Fw. The base B can be computed in RNC
using the oracle access to weighted-decision-MI. Then iteratively construct a chain of subsets
of bases from Fw

{B} = B0 ⊆ B1 ⊆ · · · ⊆ Bℓ

such that the minimal face containing Bℓ is same as Fw and ℓ = ⌈log m⌉. Next we briefly
discuss how to construct the set Bj from Bj−1 and compute prime-setsi[Fw] and partitioni[Fw]
from the set of common bases Bℓ.

For all j ∈ {0, . . . , ℓ}, let Fj denotes the minimal face containing Bj . For all j ∈ [ℓ],
the set Bj contains the elements in Bj−1 with the following extra elements: For all i ∈ [2],
A ∈ partitioni[Fj−1], we add a common base B

(A)
ij (if it exists) from the face Fw with the

property

|A ∩B
(A)
ij | ̸= N

Fj−1
i (A). (4)

We know that for all i ∈ [2] A ∈ partitioni[Fj−1], every base in Fj−1 contains exactly N
Fj−1
i (A)

many elements from A. However, our property on B
(A)
ij says that we want a base from Fw

which violates that condition, and if exists, we can compute such a base in RNC using the
oracle access to weighted-decision-MI. Next, we discuss how to compute partitioni[Fj] in NC.
Note that, after computing partitioni[Fj], N

Fj

i can be computed in NC by computing |B ∩A|,
for some B ∈ Bj , in parallel for all A ∈ partitioni[Fj].

The set families tight-setsi[Fj] for all i ∈ [2] form lattice families over E, and given
Bj , we are interested to compute prime-setsi[Fj] and partitioni[Fj] in NC. As we mentioned
earlier, every lattice family has a digraph representation based on the partial order on primes

S. Ghosh and R. Gurjar 41:11

sets of lattice family. Given this digraph representation of tight-setsi[Fj], one can compute
prime-setsi[Fj] and partitioni[Fj] in NC. However, given Bj , it is not clear how to construct
the digraph representation of the lattice family tight-setsi[Fj] in NC. We show that, instead
of this digraph, it would sufficient for us if we work with a subgraph Gi[Bj] defined as follows:
the vertex set is same as the ground set E and for all a, b ∈ E, (a, b) is an edge of Gi[Bj] if
and only if

there exists a base B ∈ Bj such that b ∈ B and (B \ {b}) ∪ {a} is also a base of Mi.

More specifically, we prove that for every a ∈ E the prime set in tight-setsi[Fj] containing
a is same as the set of vertices reachable from a in Gi[Fj] and partitioni[Fj] is same as
the set of strongly connected components in Gi[Bj]. Using this characterization, we can
compute prime-setsi[Fj] and partitioni[Fj] in NC, given the graph Gi[Bj]. For more details
see Section 6 of the full version. Also, using the weighted decision oracle we can compute
Gi[Bj] in NC. Thus, given Bj , prime-setsi[Fj] and partitioni[Fj] are computable in NC. Here,
we would like to mention that constructing directed graphs using base exchange property
is a well known technique in matroid literature and has been used in various contexts. For
example, one can see the augmenting path based algorithm for matroid intersection in [31,
Section 41.2], and some other context in [31, Section 40.3]. The definition of Gi[Bj] is very
close to the definition used in the second example.

At very high level, this part of our algorithm is doing exactly the opposite of the idea
used to construct isolating weight assignment family in [16, 22, 34]. They start from a face
of the polytope and iteratively move to the subfaces of smaller dimensions until a corner
point is reached. On the other hand, we are starting from a corner point of the face and
iteratively reaching bigger faces until we cover the whole face.

Now we give a very brief overview of the correctness of our algorithm. For all j ∈
{0, 1, . . . , ℓ}, since Fj is a subface of Fw, tight-setsi[Fw] is a sublattice of tight-setsi[Fj]
for all i ∈ [2]. Therefore partitioni[Fj] is a refinement of partitioni[Fw], that is for all
S ∈ partitioni[Fw], the sets in partitioni[Fj] having nonempty intersection with S create a
partition of S. Let W(S)

ij denote the family of sets in partitioni[Fj] which have nonempty
intersection with S ∈ partitioni[Fw]. As we move from (j − 1)th iteration to jth iteration,
our algorithm satisfies the following property: either the size of the smallest sets in W(S)

ij

satisfying the equation 4 becomes double, or if no such set exists in W(S)
ij , it becomes equal

to {S}. Thus, after ℓth iteration, partitioni[Fℓ] becomes equal to partitioni[Fw] for all i ∈ [2].
This leads us to prove that Fℓ = Fw. Therefore, prime-setsi[Fℓ] is also same as prime-setsi[Fw].
In Algorithm 1, we describe all the steps to compute prime-setsi[Fw] and partitioni[Fw] for
all i ∈ [2]. For the detail analysis of the correctness and time complexity of our algorithm
see Section 7 of the full version. From the above discussion, we can conclude that

▶ Theorem 5. Let M1 = (E, I1) and M2 = (E, I2) be two matroids with B1 and B2 be the
family of bases, respectively. Let w be a weight assignment on E with polynomially bounded
weights, and Fw be the maximizing face of P (B1 ∩ B2) with respect to w. Then, given M1,
M2 and w as inputs, Algorithm 1 computes prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2]
in randomized NC, provided that the algorithm has an oracle access to weighted-decision-MI.
Furthermore, for all positive integer c, the success probability of the algorithm can be made
at least 1− 1

mc , where m = |E|.

APPROX/RANDOM 2021

41:12 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

Algorithm 1 Computing prime sets and partitions corresponding to a max-weight face.
Input: Two matroids M1 = (E, I1), M2(E, I2), and a weight assignment w : E → Z≥0.
Output: prime-setsi[Fw] and partitioni[Fw] for all i ∈ [2], where Fw denotes the max-weight
face.
Assumption: Oracle access to weighted-decision-MI.

1: Compute a base B in Fw.
2: B0 ← {B}.
3: for all i ∈ [2] do in parallel
4: Compute the graph Gi[B0].
5: Let F0 be the minimal face containing B0.
6: Compute prime-setsi[F0], partitioni[F0] and NF0

i .
7: end for
8: for j ← 1 to ⌈log m⌉ do
9: Bj ← Bj−1.

10: for all i ∈ [2] do in parallel
11: for all A ∈ partitioni[Fj−1] do in parallel
12: If exists, compute a base B

(A)
ij in Fw such that

|A ∩B
(A)
ij | ̸= N

Fj−1
i (A).

13: Bj ← Bj

⋃ {
B

(A)
ij

}
.

14: end for
15: end for
16: for all i ∈ [2] do in parallel
17: Let Fj be the minimal face containing Bj .
18: Compute the graph Gi[Bj].
19: Compute prime-setsi[Fj], partitioni[Fj] and N

Fj

i .
20: end for
21: end for
22: return prime-setsi[Fℓ] and partitioni[Fℓ] for i ∈ [2] and ℓ = ⌈log m⌉.

3.2 Proof idea of Theorem 3
In this section, we give a proof overview of Theorem 3, which states that there is a pseudo-
deterministic NC algorithm for the matroid intersection search problem that uses the
weighted-decision oracle. Since the weighted-decision for linear matroid intersection can be
solved in RNC [28], we get a pseudo-deterministic NC algorithm for the search version of
linear matroid intersection, that is, Theorem 2.

Suppose that M1 = (E, I1) and M2 = (E, I2) are two matroids with B1 and B2 as the
family of bases, respectively. Let P (B1 ∩ B2) be the common base polytope of M1 and M2.
Let w0 be a weight assignment defined as w0(a) = 1 for all a ∈ E. Then the maximizing face
of P (B1 ∩ B2) with respect to w0 is the polytope itself. Let m = |E| and ℓ = ⌈log m⌉. Now
our idea is the following: We start from the weight assignment w0 and inductively construct
a sequence of weight assignments

w0, w1, . . . , wℓ

such that for all j ∈ {0, 1, . . . , ℓ}, the weights in wj are bounded by O(m) and the length
of the shortest cycle with respect to the face Fj is greater than 2j where Fj denotes the

S. Ghosh and R. Gurjar 41:13

maximizing face with respect to wj . Therefore, the face Fℓ does not have any cycle, and
from [22], it has a unique base. Now using the oracle access to weighted-decision-MI the base
in Fℓ can be computed in NC. Next we discuss how to construct wj from wj−1.

For all j ∈ {0, 1, . . . , ℓ}, let CFj
denotes the set of all cycles with respect to the face Fj .

From the induction hypothesis, for some j, all the cycles in CFj have length greater than
2j . Then from [22], there are at most m4 many cycles of length at most 2j+1. Let W be a
polynomially large family of weight assignments with polynomially bounded weights such
that one of the weight assignments in W gives nonzero circulation to all the cycles in CFj of
length at most 2j+1. There are well known NC constructions of such a family W (see e.g.,
[16, Lemma 2.3]). For each w ∈ W we do the following in parallel: combine wj and w in
decreasing order of precedence. Let w′ be the combined weight and Fw′ is the maximizing
face with respect to it. Now using our RNC algorithm discussed in the previous section,
compute prime-setsi[Fw′] and partitioni[Fw′] for all i ∈ [2]. Now, construct the bipartite
graph G[Fw′] from partition1[Fw′] and partition2[Fw′] as defined in the description of [22].
The length of the shortest cycles in G[Fw′] can be computed in NC. Thus, in NC, we can
compute the lexicographically smallest weight assignment w ∈ W such that the length of the
shortest cycles in G[Fw′] is greater than 2j+1.

Algorithm 2 Pseudo-deterministic NC algorithm for computing a common base of two matroids.
Input: Two matroids M1 = (E, I1) and M2 = (E, I2).
Output: A common base of M1 and M2, if exists.
Assumption: Oracle access to weighted-decision-MI.

1: w0 ← 1.
2: for j ← 1 to ⌈log m⌉ do
3: Compute a family of weight assignments W as promised by Lemma 4.
4: for all w ∈ W do in parallel
5: Combine wj−1 and w with descending order in precedence.
6: For a w ∈ W , let w′ be the combined weight.
7: Let Fw′ be the maximizing face of P (B1 ∩ B2) with respect to w′.
8: For all i ∈ [2], compute prime-setsi[Fw′] and partitioni[Fw′] using Algorithm 1.
9: Let G[Fw′] be the bipartite graph induced by partition1[Fw′] and partition1[Fw′].

10: Compute the length of shortest cycle of G[Fw′].
11: end for
12: Take some fixed ordering on W, like lexicographic ordering.
13: Take the smallest w such that the length of the shortest cycle in G[Fw′] > 2j .

14: wj ←
∑2

i=1
∑

S∈prime-setsi[Fw′] 1S .
15: end for
16: Compute the unique common base maximizing w⌈log m⌉ and output.

Next we show how to compute wj+1 from w′ such that weights in wj+1 are bounded by
O(m). Define wj+1 as the following:

wj+1 =
2∑

i=1

∑
S∈prime-setsi[Fw′]

1S ,

where 1S ∈ RE denotes the indicator vector for the set S. From the defnition, it is clear
that weights are bounded by 2m, and can be computed in NC from prime-sets1[Fw′] and
prime-sets2[Fw′]. Using the description of P (B1 ∩ B2), we can show that every point x in

APPROX/RANDOM 2021

41:14 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

the maximizing face Fj+1 must satisfy x(S) = ri(S) for all i ∈ [2], S ∈ prime-setsi[Fw′].
This implies that prime-setsi[Fw′] is a subset of tight-setsi[Fj+1]. Thus tight-setsi[Fw′] is a
subset of tight-setsi[Fj+1] since all the sets in a lattice family can be written as a union of
its prime sets. This helps us to show that Fw′ is same as Fj+1. Also, one can verify that
each step of our algorithm as has a unique answer, therefore it is pseudo-deterministic. In
Algorithm 2, we describe the steps of our pseudo-deterministic NC reduction from search-MI
to weighted-decision-MI. For the proof of correctness and time complexity analysis of our
algorithm, see Section 8 of the full version.

References

1 Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially bounded
perfect matching problem is in NC2. In 24th International Symposium on Theoretical Aspects
of Computer Science (STACS), volume 4393 of Lecture Notes in Computer Science, pages
489–499. Springer Berlin Heidelberg, 2007. doi:10.1007/978-3-540-70918-3_42.

2 Nima Anari and Vijay V. Vazirani. Matching is as easy as the decision problem, in the NC model.
In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 54:1–54:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.54.

3 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18(3):147–150, 1984.

4 Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and Control, 58(1-3):113–136,
July 1984.

5 Allan Borodin, Joachim von zur Gathen, and John Hopcroft. Fast parallel matrix and GCD
computations. Information and Control, 52(3):241–256, 1982.

6 Kevin Buchin, David Eppstein, Maarten Löffler, Martin Nöllenburg, and Rodrigo I. Silveira.
Adjacency-preserving spatial treemaps. J. Comput. Geom., 7(1):100–122, 2016. doi:10.20382/
jocg.v7i1a6.

7 Laszlo Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618–623, 1976. doi:10.1137/0205040.

8 Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter and matchings. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 531–540. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.72.

9 Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic applications of baur-
strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM, 62(4), 2015. doi:
10.1145/2736283.

10 Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching in chordal
and strongly chordal graphs. Discrete Applied Mathematics, 84(1–3):79–91, 1998.

11 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory of Computing Systems, 47:737–757, 2010. doi:
10.1007/s00224-009-9204-8.

12 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. Information Processing Letters, 7(4):193–195, 1978.

13 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Structures and Their Applications, Gordon and Breach, New York, pages 69–87, 1970.

14 David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-universal
and constrained rectangular layouts. SIAM J. Comput., 41(3):537–564, 2012. doi:10.1137/
110834032.

https://doi.org/10.1007/978-3-540-70918-3_42
https://doi.org/10.4230/LIPIcs.ITCS.2020.54
https://doi.org/10.20382/jocg.v7i1a6
https://doi.org/10.20382/jocg.v7i1a6
https://doi.org/10.1137/0205040
https://doi.org/10.1109/FOCS.2012.72
https://doi.org/10.1145/2736283
https://doi.org/10.1145/2736283
https://doi.org/10.1007/s00224-009-9204-8
https://doi.org/10.1007/s00224-009-9204-8
https://doi.org/10.1137/110834032
https://doi.org/10.1137/110834032

S. Ghosh and R. Gurjar 41:15

15 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
NC. SIAM Journal on Computing, 0(0):STOC16–218–STOC16–235, 2019. doi:10.1137/
16M1097870.

16 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
nc. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, pages 754–763, 2016.

17 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. Electronic Colloquium on Computational Complexity (ECCC),
18:136, 2011. URL: http://eccc.hpi-web.de/report/2011/136.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Robert D. Kleinberg, editor, Innovations in Theoretical
Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 127–138. ACM,
2013. doi:10.1145/2422436.2422453.

19 Shafi Goldwasser and Ofer Grossman. Bipartite perfect matching in pseudo-deterministic
NC. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 87:1–87:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.87.

20 Dima Grigoriev and Marek Karpinski. The matching problem for bipartite graphs with
polynomially bounded permanents is in NC (extended abstract). In 28th Annual Symposium on
Foundations of Computer Science (FOCS), pages 166–172, 1987. doi:10.1109/SFCS.1987.56.

21 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and any-
order, read-once oblivious arithmetic branching programs. Theory of Computing, 13(2):1–21,
2017.

22 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. In 49th Annual
ACM Symposium on Theory of Computing, pages 821–830, 2017.

23 Robert W. Irving, Paul Leather, and Dan Gusfield. An efficient algorithm for the "optimal"
stable marriage. J. ACM, 34(3):532–543, 1987. doi:10.1145/28869.28871.

24 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6(1):35–48, 1986.

25 Richard M. Karp, Eli Upfal, and Avi Wigderson. The complexity of parallel search. Journal of
Computer and System Sciences, 36(2):225–253, 1988. doi:10.1016/0022-0000(88)90027-X.

26 László Lovász. On determinants, matchings, and random algorithms. In FCT, volume 79,
pages 565–574, 1979.

27 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105–113, 1987. doi:10.1007/BF02579206.

28 H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized parallel algorithms for
matroid union and intersection, with applications to arboresences and edge-disjoint spanning
trees. SIAM J. Comput., 23(2):387–397, 1994. doi:10.1137/S0097539791195245.

29 Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter Ser. I, 7(15):27, 1922.
30 Piotr Sankowski. NC algorithms for weighted planar perfect matching and related problems.

In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 97:1–97:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.97.

31 Alexander Schrijver. Combinatorial optimization : polyhedra and efficiency. Vol. B. , Matroids,
trees, stable sets. chapters 39-69. Algorithms and combinatorics. Springer-Verlag, Berlin,
Heidelberg, New York, N.Y., et al., 2003. URL: http://opac.inria.fr/record=b1124843.

32 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, 1980.

33 Ashok Subramanian. A polynomial bound on the number of light cycles in an undirected graph.
Information Processing Letters, 53(4):173–176, 1995. doi:10.1016/0020-0190(94)00202-A.

APPROX/RANDOM 2021

https://doi.org/10.1137/16M1097870
https://doi.org/10.1137/16M1097870
http://eccc.hpi-web.de/report/2011/136
https://doi.org/10.1145/2422436.2422453
https://doi.org/10.4230/LIPIcs.ICALP.2017.87
https://doi.org/10.1109/SFCS.1987.56
https://doi.org/10.1145/28869.28871
https://doi.org/10.1016/0022-0000(88)90027-X
https://doi.org/10.1007/BF02579206
https://doi.org/10.1137/S0097539791195245
https://doi.org/10.4230/LIPIcs.ICALP.2018.97
http://opac.inria.fr/record=b1124843
https://doi.org/10.1016/0020-0190(94)00202-A

41:16 Pseudo-Deterministic NC Reduction from search-MI to weighted-decision-MI

34 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 696–707, 2017. doi:10.1109/FOCS.2017.70.

35 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar graphs.
Information and Computation, 215:1–7, 2012. doi:10.1016/j.ic.2012.03.002.

36 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, pages
216–226, 1979.

https://doi.org/10.1109/FOCS.2017.70
https://doi.org/10.1016/j.ic.2012.03.002

On the Probabilistic Degree of an n-Variate
Boolean Function
Srikanth Srinivasan1 # Ñ

Department of Computer Science, Aarhus University, Aarhus, Denmark

S. Venkitesh # Ñ

Department of Mathematics, IIT Bombay, Mumbai, India

Abstract
Nisan and Szegedy (CC 1994) showed that any Boolean function f : {0, 1}n → {0, 1} that depends
on all its input variables, when represented as a real-valued multivariate polynomial P (x1, . . . , xn),
has degree at least log n − O(log log n). This was improved to a tight (log n − O(1)) bound by
Chiarelli, Hatami and Saks (Combinatorica 2020). Similar statements are also known for other
Boolean function complexity measures such as Sensitivity (Simon (FCT 1983)), Quantum query
complexity, and Approximate degree (Ambainis and de Wolf (CC 2014)).

In this paper, we address this question for Probabilistic degree. The function f has probabilistic
degree at most d if there is a random real-valued polynomial of degree at most d that agrees with f

at each input with high probability. Our understanding of this complexity measure is significantly
weaker than those above: for instance, we do not even know the probabilistic degree of the OR
function, the best-known bounds put it between (log n)1/2−o(1) and O(log n) (Beigel, Reingold,
Spielman (STOC 1991); Tarui (TCS 1993); Harsha, Srinivasan (RSA 2019)).

Here we can give a near-optimal understanding of the probabilistic degree of n-variate functions f ,
modulo our lack of understanding of the probabilistic degree of OR. We show that if the probabilistic
degree of OR is (log n)c, then the minimum possible probabilistic degree of such an f is at least
(log n)c/(c+1)−o(1), and we show this is tight up to (log n)o(1) factors.

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory
of computation → Circuit complexity; Theory of computation → Complexity classes; Theory of
computation → Pseudorandomness and derandomization

Keywords and phrases truly n-variate, Boolean function, probabilistic polynomial, probabilistic
degree

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.42

Category RANDOM

Funding Srikanth Srinivasan: Supported by a startup grant from Aarhus University.
S. Venkitesh: Supported by the Senior Research Fellowship of the Human Resource Development
Group, Council of Scientific and Industrial Research, Government of India.

1 Introduction

1.1 Background and motivation
Representing Boolean functions f : {0, 1}n → {0, 1} by polynomials is a tried-and-tested
technique that has found uses in many areas of Theoretical Computer Science. In particular,
such representations have led to important results in Complexity theory [8, 9], Learning
theory [19, 11], and Algorithm Design [29].

1 On leave from Department of Mathematics, IIT Bombay.

© Srikanth Srinivasan and S. Venkitesh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 42; pp. 42:1–42:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:srikanth@cs.au.dk
https://cs.au.dk/~srikanth
mailto:venkitesh.mail@gmail.com
https://sites.google.com/view/venkitesh
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Probabilistic Degree of N -Variate Boolean Function

There are many different kinds of polynomial representations that are useful in various
applications. The most straightforward way to represent a Boolean function f : {0, 1}n →
{0, 1} by a polynomial is by finding a P ∈ R[x1, . . . , xn]2 such that P (a) = f(a) for all
a ∈ {0, 1}n. It is a standard fact (say by Möbius Inversion or polynomial interpolation) that
any f has such a representation3 has degree at most n, and the smallest degree of such a P

is called the degree of f (or sometimes the Fourier degree of f because of its close relation to
the Fourier spectrum of f [22]), and denoted deg(f).

The degree of f is an important notion of complexity of the function f and is closely
related to a slew of combinatorial measures of Boolean function complexity such as Sensitivity,
Decision Tree complexity, Quantum Query complexity, etc. (see, e.g., the survey of Buhrman
and de Wolf [10] for a nice introduction). Given a complexity measure µ(·) (such as deg(·))
on Boolean functions, a natural question to ask is the following.

▶ Question 1. How small can µ(f) be for a function f on n variables?

To make this question interesting, one must exclude trivial functions like the constant
functions, and more generally, functions that depend on just a small subset of their input
variables. This brings us to the following definition.

▶ Definition 2 (Truly n-variate Boolean function). We say that a Boolean function f(x1, . . . , xn)
depends on its input variable xi, or equivalently that xi is influential for f , if there is an input
a such that flipping the value of the ith variable at a changes the value of f (in this case, we
also say that xi is influential for f at a). We say that a Boolean function f : {0, 1}n → {0, 1}
is truly n-variate4 if it depends on all its n variables.

A number of results have addressed questions regarding how small complexity measures
can be for truly n-variate Boolean functions.
1. Motivated by problems in Learning theory and PRAM lower bounds, Nisan and

Szegedy [21] showed that any truly n-variate function has degree at least log n −
O(log log n). Recently, this was improved to log n − O(1) by Chiarelli, Hatami and
Saks [13]. There are standard examples of Boolean functions (see, e.g., the Addressing
function defined below) for which this is tight.

2. Ambainis and de Wolf [4] studied the same question for the approximate degree of f , which
is defined to be the minimum degree of a polynomial P such that |P (a) − f(a)| < 1/3
for all a ∈ {0, 1}n. This complexity measure is closely related to the quantum query
complexity of f [10].
Ambainis and de Wolf [4] showed that any truly n-variate function has approximate
degree (and also quantum query complexity) Ω(log n/ log log n). They also constructed
variants of the Addressing function for which this bound is tight up to constant factors.

3. Such results are also known for more combinatorial complexity measures, such as the
sensitivity of a Boolean function f , which is defined as follows. The sensitivity of f at
a point a ∈ {0, 1}n is the number of input variables to f that are influential for f at a.
The sensitivity of f is the maximum sensitivity of f at any input.
Simon [25] showed that any truly n-variate f has sensitivity at least log n − O(log log n).
This is also tight up to the O(log log n) additive term (say, for the Addressing function).

2 We can represent f as a polynomial over any field, but in this paper, we will work over the reals.
3 The representation is in fact unique if we restrict P to be multilinear, i.e. that no variable has degree

more than 1 in f .
4 Such functions are also called non-degenerate Boolean functions in the literature [25].

S. Srinivasan and S. Venkitesh 42:3

We address Question 1 for another well-known polynomial-degree measure called the
Probabilistic degree. We define this notion first.

▶ Definition 3 (Probabilistic polynomial and Probabilistic degree). Given a Boolean function
f : {0, 1}n → {0, 1} and an ε ≥ 0, an ε-error probabilistic polynomial for f is a random
polynomial P (with some distribution having finite support) over R[x1, . . . , xn]5 such that
for each a ∈ {0, 1}n,

Pr
P

[P (a) ̸= f(a)] ≤ ε.

(Note that P (a) need not be Boolean when P (a) ̸= f(a).)
We say that the degree of P , denoted deg(P), is at most d if the probability distribution

defining P is supported on polynomials of degree at most d. Finally, we define the ε-error
probabilistic degree of f , denoted pdegε(f), to be the least d such that f has an ε-error
probabilistic polynomial of degree at most d.

In the special case ε = 1/3, we omit the subscript in the notation and simply use pdeg(f).

The probabilistic degree is a fundamentally important and well-studied complexity
measure of Boolean functions. It was implicitly introduced (in the finite field setting) in
a celebrated result of Razborov [23], who showed how to use it to construct low-degree
polynomial approximations to small-depth circuits, and hence prove strong circuit lower
bounds. The real-valued version was first studied by Beigel, Reingold and Spielman [7] and
Tarui [27] who were motivated by other circuit lower bound questions and oracle separations.
This measure has since found other applications in complexity theory [5, 8], Pseudorandom
generator constructions [9], Learning theory [11], and Algorithm design [29, 1]. Further, in
many of these applications (e.g, [5, 9, 1]) we need real-valued approximations.

Despite this, however, our understanding of probabilistic degree is much less developed
than the other measures above. For instance, near-optimal lower bounds of n1−o(1) on the
probabilistic degree of an explicit Boolean function f : {0, 1}n → {0, 1} were proved only
recently by Viola [28], and are only known for a function in the complexity class ENP; in
comparison, the Parity function has degree and approximate degree n, which is the largest
possible. Another example is the OR function on n variables. It is trivial to estimate the
degree of OR (which is n) and well-known that its approximate degree is Θ(

√
n) [21, 15].

However, its probabilistic degree (over the reals) remains unknown: the best known upper
bound is O(log n) due to independent results of Beigel et al. [7] and Tarui [27], while the
best lower bound is (log n)1/2−o(1) due to Harsha and the first author [16]. This indicates
that we need better tools to understand probabilistic degree in general and over the reals in
particular. This is one of the motivations behind this paper.

Another motivation is to understand the contrast between the setting of real-valued
probabilistic polynomials and polynomials over constant-sized finite fields. At a high level,
this helps us understand the contrast between circuit complexity classes AC0 and AC0[p], as
the former class of circuits has low-degree probabilistic polynomials over the reals [7, 27],
while the latter does not [26]. It is easy to show that there are truly n-variate Boolean
functions of constant degree over finite fields (e.g., the parity function is a linear polynomial
over the field F2). It is interesting to ask to what extent such phenomena fail over the reals.

A final motivating reason is to understand more precisely the relationships between
probabilistic degree and other complexity measures such as approximate degree. A recent
conjecture of Golovnev, Kulikov and Williams [14] shows that porting results for approximate

5 This can also be defined over other fields.

APPROX/RANDOM 2021

42:4 Probabilistic Degree of N -Variate Boolean Function

degree to probabilistic degree would have interesting consequences for De Morgan formula
lower bounds. By proving results such as the one in this paper, we hope to be able to prove
such connections and hopefully uncover others.

With these motivations in mind, we address Question 1 in the setting of Probabilistic
degree. That is, what is the lowest possible probabilistic degree of a truly n-variate Boolean
function? As far as we know, this question has not been addressed before. Putting together
Simon’s bound on the sensitivity of a truly n-variate function with known probabilistic degree
lower bounds [16], one can show a lower bound of (log log n)1/2−o(1). This is quite far from
the best known upper bounds of O(log n), which hold for say the OR function [7, 27] and
the Addressing function defined below in Section 1.3.

1.2 Results
Our aim is to prove a result characterizing the minimum possible probabilistic degree of a
truly n-variate Boolean function. However, the gap even just in our understanding of the
OR function (as mentioned above) tells us that this may not yet be within reach. What we
are able to do is to give a near-complete characterization modulo the gap between known
upper and lower bounds for pdeg(OR). Moreover, the answer is non-trivial: it is not simply
pdeg(OR).

More precisely, our results are the following. Below, ORn denotes the OR function on n

variables. We assume that we have bounds of the form pdeg(ORn) = (log n)c±o(1) for some
c > 0.

▶ Theorem 4. Assume that pdeg(ORn) ≥ (log n)c−o(1) for some c > 0 and all large
enough n ∈ N. Then, any truly n-variate Boolean function f : {0, 1}n → {0, 1} satisfies
pdeg(f) ≥ (log n)(c/(c+1))−o(1).

▶ Theorem 5. Assume that pdeg(ORn) ≤ (log n)c+o(1) for some c > 0 and all large enough
n ∈ N. Then, there exists a truly n-variate Boolean function f : {0, 1}n → {0, 1} such that
pdeg(f) ≤ (log n)(c/(c+1))+o(1).

Thus, we get close-to-matching lower and upper bounds for truly n-variate Boolean
functions assuming close-to-matching lower and upper bounds for the OR function. However,
the above statements also imply unconditional lower and upper bounds on the probabilistic
degrees of truly n-variate Boolean functions. Using known results that yield (log n)(1/2)−o(1) ≤
pdeg(ORn) ≤ O(log n) [7, 27, 16], we get

▶ Corollary 6. Any truly n-variate Boolean function f : {0, 1}n → {0, 1} satisfies pdeg(f) ≥
(log n)(1/3)−o(1).

▶ Corollary 7. There exists a truly n-variate Boolean function f : {0, 1}n → {0, 1} such that
pdeg(f) ≤ (log n)(1/2)+o(1).

▶ Remark 8. The reader may wonder why we assume lower and upper bounds of the form
(log n)c±o(1) for pdeg(ORn). This is because the gaps between the known upper and lower
bounds are (log n)Ω(1), and so it makes sense to use a characterization that shrinks this
gap to something relatively insignificant. Furthermore, the best known lower bound on
pdeg(ORn) is of the form (log n)1/2−o(1) [16] (more precisely, it is Ω((log n)/(log log n)3/2)).

If we instead assume a more precise characterization pdeg(ORn) = Θ((log n)c), then
going through the proofs of the above theorems would yield a sharper lower bound of
Ω((log n)c/(c+1)/(log log n)2) for any truly n-variate Boolean function and a better upper
bound of O((log n)c/(c+1)) for some truly n-variate Boolean function.

S. Srinivasan and S. Venkitesh 42:5

1.3 Proof Outline

Our proof is motivated by two important examples. The first of these is the ORn function
which has probabilistic degree at most O(log n) by results of [7, 27] and at least (log n)(1/2)−o(1)

by [16]. The second is the Addressing function, which we now define.
The Addressing function Addrr has n = r+2r variables. We think of the input variables as

being divided into two parts: there are r “addressing” variables y1, . . . , yr and 2r “addressed”
variables {za | a ∈ {0, 1}r} (the latter part of the input is thus indexed by elements of
{0, 1}r). On an input (a, A) ∈ {0, 1}r × {0, 1}2r

, the output of the function is defined
to be Aa (i.e. the ath co-ordinate of the vector A). The Addressing function satisfies
deg(Addrr) = r + 1 = O(log n). This example is quite relevant to this line of work: in
particular, it implies that the results of Nisan and Szegedy [21] and Chiarelli et al. [13] stated
above are tight, and is also a tight example for Simon’s theorem [25].

We now describe the upper and lower bound proofs, starting with the less technical upper
bound.

The Upper Bound

Given that we have two natural families of truly n-variate functions that have degree O(log n),
one may suspect that this is the best possible. Indeed this was also our initial conjecture.
However, using the ideas of Ambainis and de Wolf [4], we can do better. Ambainis and
de Wolf showed that there are truly n-variate Boolean functions that have approximate
degree O(log n/ log log n). Their construction6 uses a modified Addressing function, where
the addressing variables are present in an “encoded” form. While this blows up the size of
the first part of the input, this does not affect n much as the addressing variables take up
only a small part of the input. On the other hand, the advantage is that the “decoding”
procedure can be performed approximately by a suitable low-degree polynomial: a proof of
this uses two famous Quantum algorithms, the Bernstein-Vazirani algorithm and Grover
search, along with the fact that efficient Quantum algorithms yield approximating low-degree
polynomials [6]. Putting things together yields an improved approximate degree bound for
some n-variate f .

We show how to port their construction to the probabilistic degree setting. The first
observation is that Grover search, which is essentially an algorithm for computing ORn, is
much more “efficient” in the probabilistic degree setting, as pdeg(ORn) = O(log n), while its
approximate degree is Ω(

√
n) [21]. The second observation is that the Bernstein-Vazirani

algorithm, which can be thought of as a decoding algorithm for a suitable error-correcting
code, can be replaced by polynomial interpolation. This gives a good idea of why we should
also be able to use a similar construction in the probabilistic degree setting. In fact, the
better probabilistic degree upper bound for ORn implies that we should be able to get a
better bound than what is possible for approximate degree. Indeed this is true. By a similar
construction, we show that we can construct a truly n-variate f with probabilistic degree
O(

√
log n) unconditionally, which is quite a bit better than previous results for any of the

above degree measures. If we assume, moreover, that pdeg(ORn) ≤ (log n)c+o(1), the same
construction yields a function with probabilistic degree (log n)(c/(c+1))+o(1).

6 They actually give two, slightly different, constructions. We use the second one here.

APPROX/RANDOM 2021

42:6 Probabilistic Degree of N -Variate Boolean Function

y1

y2 y3

y3 y3 y4 y5

z1 0 z2 z3 z4 0 z5 1

0 1 0 1 0 1 0 1 0 1

(a) Before projection

y′
1

y′
2 y′

3

y′
3 y′

3 z4 1

z1 0 z2 z3 0 1

0 1 0 1 0 1

(b) After projection

Figure 1 The function f(y1, . . . , y5, z1, . . . , z5) is defined by the decision tree on the left (we
assume that the left child corresponds to the queried variable taking value 0). When z1, . . . , z5 are set
i.u.a.r. to b1, . . . , b5, we get a random function F (y1, . . . , y5) such that F (00000) = b1, F (01000) =
b2, F (01100) = b3, F (10000) = b4, F (10100) = b5. After a projection that maps y1 7→ y′

1; y2 7→
y′

2; y3, y4, y5 7→ y′
3, we get the function f ′ computed by the tree on the right. This reduces the

number of addressing variables to 3. But also note that the variable z5 is no longer relevant as the
path leading to it is inconsistent with the projection. So the number of addressed variables falls to 4.

The Lower Bound

Given that the upper bound construction uses the Addressing function as well as the OR
function, it is only natural that the lower bound would use the lower bounds for these
two families of functions. Our hypothesis already assumes a lower bound of (log n)c−o(1)

for pdeg(ORn). For the addressing function Addrr described above, one can prove an
Ω(r) = Ω(log n) lower bound in the following way. We observe that by setting the 2r

addressed variables uniformly at random, we obtain a uniformly random function on the r

addressing variables. By a counting argument, one can show that a uniformly random Boolean
function F on r variables has probabilistic degree Ω(r) with high probability. In particular,
as setting some input variables to constants can only reduce probabilistic degree, this implies
that pdeg(Addrr) = Ω(r) = Ω(log n). Note that this is tight, as deg(Addrr) = r + 1.

Our aim is to generalize the above lower bounds enough to prove a lower bound for any
truly n-variate f . The first informal observation is that the ORn function is the “simplest”
function on n variables to have sensitivity n. Therefore, it is intuitive that any Boolean
function with sensitivity n should have probabilistic degree at least that of the ORn function.
We show that this is true, up to (log n)o(1) factors. More generally, we show that any Boolean
function f with sensitivity s has probabilistic degree at least that of the OR function on
s variables (up to (log s)o(1) factors). The proof of this is in the contrapositive: we use
a probabilistic degree upper bound for f to construct a probabilistic polynomial for ORs.
The ideas behind this go back to a sampling argument used in the works of Beigel et al.
and Tarui [7, 27]. Viewing this argument more abstractly, we can use this to construct a
reduction from ORs to f (for any f of sensitivity s) in the probabilistic degree setting.

The above argument implies a strong lower bound for any n-variate f with large sensitivity.
In particular, it implies that if f has sensitivity at least s = nΩ(1), then its probabilistic
degree is almost that of the OR function. We now consider the case of functions with small
sensitivity (specifically when s = no(1)), which is the most technical part of the proof. By a
recent breakthrough result of Huang [18], we also know that f also has a decision tree (we

S. Srinivasan and S. Venkitesh 42:7

refer the reader to [10] for the definition of Decision trees) of depth d = poly(s) = no(1).7

The prototypical example of such an f is the Addressing function which has a decision tree
of depth r + 1 = ⌊log n⌋ + 1, which we argued a lower bound for above. The idea, in general,
is to find a copy of something like an Addressing function “inside” the function f .

We illustrate how this argument works by considering a special case of the problem,
which is only a small variant of the Addressing function. Assume that a truly n-variate
function f is computed by a decision tree T of depth d = poly(log n). Note that as the
function depends on all its variables, each of the underlying n variables appear in the tree T .
To make things even simpler, assume that we have n/2 “addressing” variables y1, . . . , yn/2
and n/2 “addressed” variables z1, . . . , zn/2. The tree reads d − 1 addressing variables among
y1, . . . , yn/2 in some (possibly adaptive) fashion and then possibly queries one addressed
variable, the value of which is output. (See Figure 1 (a).)

How do we argue a lower bound on pdeg(f)? We could try to proceed as above and set
the addressed variables z1, . . . , zn/2 as random to obtain a random function F in y1, . . . , yn/2.

However, this function is not uniformly random, as it is sampled using only n/2 random bits,
while the number of functions in n/2 variables is 22n/2

. Nevertheless, we can observe that
the function F does take independent random values at at least n/2 distinct inputs, those
which are consistent with n/2 distinct paths in T leading to the various addressed variables.
(See Figure 1 (a).) We could try to lower bound pdeg(F) as above.

This leads to the following general question: given a random function F : {0, 1}r → {0, 1}
that takes independent and random values at M distinct inputs in {0, 1}r, what can we say
about the probabilistic degree of F ? By a more general counting argument, we are able to
show that with high probability, the probabilistic degree of F is at least Ω(log M/ log r). This
is easily seen to be tight in the case that X is, say, a Hamming ball of radius R ≤ r1−Ω(1).
(In the case that M = 2r, this leads to a bound of Ω(r/ log r), nearly matching the claim for
random functions that we mentioned above. A tight bound can be obtained in the same way
but is harder to state for general M .)

Given this bound for random functions, we can try to use it in the case of the function
f above. Unfortunately, in this case, both parameters r and M are n/2, and hence we do
not get any non-trivial bound. However, we show that we can still reduce to a case where
a non-trivial bound is possible (this is where the depth of T comes in). More precisely, we
reduce the number of addressing variables by projecting the n/2 addressing variables to a
smaller set of r′ variables Y ′ = {y′

1, . . . , y′
r′}. That is, we randomly set each variable Y to a

uniformly random variable in Y ′ to get a different function in the variables Y ′ ∪ Z. This has
the effect of reducing the number of addressing variables to r′. But there is also a potential
problem: the projection could also render some of the addressed variables irrelevant, as the
paths that lead to them become inconsistent. (See Figure 1 (b).)

Nevertheless, if we choose r′ large enough (something like r′ = 4d2 is enough by the
Birthday paradox), the variables of each path are sent to distinct variables in Y ′ with high
probability, which implies that each addressed variable remains relevant with high probability.
In particular, there is a projection that maps f to an “Addressing function” with only
poly(log n) addressing variables and Ω(n) addressed variables. Now applying the argument
for random functions, we get a probabilistic degree lower bound of Ω(log n/ log log n) for this

7 Strictly speaking, we do not need to use Huang’s result as we could also use the known polynomial
relationship between the decision tree height and the block sensitivity of a function [20]. But it is
notationally easier to work with sensitivity.

APPROX/RANDOM 2021

42:8 Probabilistic Degree of N -Variate Boolean Function

function, nearly matching what we obtained for the Addressing function. As projections do
not increase probabilistic degree, the same bound holds for f , concluding the proof in this
special case.8

A similar argument can be carried out in the general case by first carefully partitioning
the variables into the addressing and addressed variables. We do this by looking at the
structure of the decision tree T . These details are postponed to the formal proof. In general,
this argument yields a lower bound of Ω(log n/ log s) on the probabilistic degree of a truly
n-variate function f with sensitivity at most s.

Using this lower bound along with the previous lower bound for functions of sensitivity
at least s, and optimizing our choice of s, yields a lower bound of (log n)c/(c+1)−o(1) for any
truly n-variate function f .

2 Preliminaries

Functions, Restrictions, Projections

Throughout, we work with real-valued functions f : {0, 1}n → R. Boolean functions (i.e.
functions mapping {0, 1}n to {0, 1}) are also treated as real-valued. We use boldface notation
to denote random variables. A random function F is a probability distribution over functions.

A restriction on n variables is a map ρ : [n] → {0, 1, ∗}. Given a function f : {0, 1}n → R
and a restriction ρ on n variables, we have a natural restricted function fρ defined by setting
the ith input variable to f to 0, 1 or leaving it as is, depending on whether ρ(i) is 0, 1 or ∗
respectively. Note that the function fρ now depends on |ρ−1(∗)| many variables. However,
we sometimes also treat fρ as a function of all the original variables that only depends on (a
subset of) the variables indexed by ρ−1(∗).

A projection from n variables to m variables is a map ν : [n] → [m]. Given a function
f : {0, 1}n → R and a projection ν from n variables to m variables, we get a function
f |ν : {0, 1}m → R by identifying variables of f that map to the same image under ν.

Some Boolean functions

For any positive integer n, we use ORn, ANDn and Majn to denote the OR, AND and
Majority functions on n variables respectively.

▶ Fact 9. We have the following simple facts about probabilistic polynomials.
1. (Interpolation) Any function f : {0, 1}n → {0, 1} has an exact multilinear polynomial

representation of degree at most n, i.e. deg(f) := pdeg0(f) ≤ n.

2. (Shifts and Restrictions) Fix any f : {0, 1}n → {0, 1} and any ε ≥ 0. Then the function
g : {0, 1}n → {0, 1} defined by g(x) = f(x ⊕ y) for a fixed y ∈ {0, 1}n has the same
probabilistic degree as f , i.e., pdegε(g) = pdegε(f).
If g : {0, 1}m → {0, 1} is a restriction or a projection of f , then pdegε(g) ≤ pdegε(f).

3. (Error reduction [16]) For any δ < ε ≤ 1/3 and any Boolean function f , if P is an
ε-error probabilistic polynomial for f , then Q = M(P1, . . . , Pℓ) is a δ-error probabilistic
polynomial for f where ℓ = O(log(1/δ)/ log(1/ε)), M is the exact multilinear polynomial
for Majℓ and P1, . . . , Pℓ are independent copies of P . In particular, we have pdegδ(f) ≤
pdegε(f) · O(log(1/δ)/ log(1/ε)).

8 Random projections of this kind have been used recently to prove important results in circuit complex-
ity [17, 12]. However, as far as we know, they have not been used to prove probabilistic degree lower
bounds.

S. Srinivasan and S. Venkitesh 42:9

4. (Composition) For any Boolean function f on k variables and any Boolean functions
g1, . . . , gk on a common set of m variables, let h denote the natural composed function
f(g1, . . . , gk) on m variables. For ε, δ1, . . . , δk ≥ 0, let P , Q1, . . . , Qk be probabilistic
polynomials for f, g1, . . . , gk respectively with errors ε, δ1, . . . , δk respectively. Then, R =
P (Q1, . . . , Qk) is a probabilistic polynomial for h with error at most ε +

∑
i δi.

In particular, for any ε, δ > 0, we have pdegε+kδ(h) ≤ pdegε(f) · maxi∈[k] pdegδ(gi).

We will need the following known upper and lower bounds on pdeg(ORn).

▶ Theorem 10 ([7, 27]). pdegε(ORn) = O(log n log(1/ε)).

▶ Theorem 11 ([16]). pdeg(ORn) ≥ (log n)1/2−o(1).

▶ Definition 12 (Some Complexity Measures of Boolean functions). Let f : {0, 1}n → {0, 1}
be any Boolean function. We use D(f) to denote the depth of the smallest Decision Tree
computing f .

For a ∈ {0, 1}n, we use s(f, a) to denote the number of b ∈ {0, 1}n that can be obtained
by flipping a single bit of a and satisfying f(a) ̸= f(b). The Sensitivity of f , denoted s(f), is
defined to be the maximum value of s(f, a) as a ranges over {0, 1}n.

Huang [18] proved the following breakthrough result recently.

▶ Theorem 13 (Huang’s Sensitivity theorem [18]). There is an absolute constant c0 > 0 such
that for all large enough n and all functions f : {0, 1}n → {0, 1}, D(f) ≤ s(f)c0 .

Strictly speaking, we do not need to use Huang’s Sensitivity theorem in what follows
as we could also make do with a polynomial relationship between the decision tree height
and the block sensitivity9 of f , which has been known for a long time [20]. However, it is
notationally simpler to work with sensitivity.

3 The Lower Bound: Proof of Theorem 4

The proof is made up of two lower bounds. We first prove a lower bound on pdeg(f) for any
function f that has large sensitivity s(f); this is by a suitable reduction from the case of
the OR function. We then prove a lower bound on pdeg(f) for any function that depends
on all its variables but has small sensitivity; this is by a suitable reduction from a kind of
Addressing function. Optimizing over the parameters of the lower bounds will yield the lower
bound of the theorem statement.

Throughout this section, we assume that pdeg(ORn) ≥ (log n)c−o(1) for large enough n.

3.1 The case of large sensitivity
The main result of this section is the following lower bound on the probabilistic degrees of
Boolean functions with large sensitivity.

▶ Lemma 14. Let f : {0, 1}n → {0, 1} be any Boolean function that has sensitivity s. Then,
pdeg(f) ≥ (log s)c−o(1).

9 The Block sensitivity of a function f : {0, 1}n → {0, 1} is defined as follows. Given a ∈ {0, 1}n, define
bs(f, a) to be the maximum number of pairwise disjoint sets B1, . . . , Bt ⊆ [n] such that flipping all the
bits indexed by any Bi in a results in an input b(i) such that f(a) ̸= f(b(i)). Then, the block sensitivity
of f is defined to be the maximum value of bs(f, a) over all inputs a ∈ {0, 1}n.

APPROX/RANDOM 2021

42:10 Probabilistic Degree of N -Variate Boolean Function

The above lemma is proved via a probabilistic reduction from the OR function on s

variables to the function f . This is captured by the following lemma, which shows how a
function that has large sensitivity can be used to obtain a probabilistic representation of a
large copy of the OR function.

Recall from above that a Boolean function h : {0, 1}s → {0, 1} is a restriction of a Boolean
function g : {0, 1}s → {0, 1} if h can be obtained by setting some inputs of g to constants.
Though h no longer depends on the variables that are set to constants, here we still treat h

as a function on all s variables.

▶ Lemma 15. Let g : {0, 1}s → {0, 1} be any Boolean function such that g(0s) = 0 and
g(x) = 1 for any x of Hamming weight 1. Then, there exist ℓ = O(log s) independent random
restrictions g1, . . . , gℓ of g such that for any a ∈ {0, 1}s,

Pr
g1,...,gℓ

[ORℓ(g1(a), . . . , gℓ(a)) ̸= ORs(a)] ≤ 1
10 .

We interpret the random function ORℓ(g1(a), . . . , gℓ(a)) as a probabilistic representation
of the ORs function. The reader may be confused by the fact that the probabilistic
representation itself uses an OR function; however, note that this OR function is defined on
ℓ ≪ s variables and consequently is a much “simpler” function (in particular, for us, what is
relevant is that pdeg(ORℓ) = O(log ℓ) [7, 27] which is much smaller than log s) .

The proof of Lemma 15 is closely related to the argument for constructing a probabilistic
polynomial for the OR function from [7, 27]. The observation here is that a similar argument
can be used to give a probabilistic reduction from ORs to any function g as above. Due to
space constraints, we push the proof of Lemma 15 to the Appendix (Section A). Let us now
prove Lemma 14.

Proof of Lemma 14. We know that f has some input of sensitivity s. Then we note that
we may assume f(0n) = 0 and f(0j−110n−j) = 1 for j ∈ [s]. For let a ∈ {0, 1}n such that
s(f, a) = s. If f(a) = 1, we may replace f by 1 − f . (Obviously, pdegε(f) = pdegε(1 − f),
for all ε ≥ 0.) So we may assume f(a) = 0. Now by permuting coordinates if required,
we may assume that f(ã(j)) = 1, where ã(j) := (a1, . . . , aj−1, 1 − aj , aj+1, . . . , an) for all
j ∈ [s]. Further, if a ̸= 0n, we may replace f by f ′, defined as f ′(x) = f(x ⊕ a), x ∈ {0, 1}n.
By Fact 9 Item 2, pdegε(f) = pdegε(f ′), for all ε ≥ 0. Clearly, we have f ′(0n) = 0 and
f ′(0j−110n−j) = 1, for all j ∈ [s].

So now, by assumption, we have f(0n) = 0 and f(0j−110n−j) = 1 for j ∈ [s]. Define
g : {0, 1}s → {0, 1} as g(x) = f(x0n−s). Then g satisfies the hypotheses of Lemma 15. Hence,
by Lemma 15, there exist ℓ = O(log s) random restrictions g1, . . . , gℓ of g such that

Pr
g1,...,gℓ

[ORℓ(g1(x), . . . , gℓ(x)) ̸= ORs(x)] ≤ 1
10 , for all x ∈ {0, 1}s. (1)

We use the above representation to devise a probabilistic polynomial for ORs.
Let O be any (1/10)-error probabilistic polynomial for ORℓ and G1, . . . , Gℓ be any

(1/10ℓ)-error probabilistic polynomials for g1, . . . , gℓ respectively. Then, by Fact 9 and (1),
O(G1, . . . , Gℓ) is a (1/3)-error probabilistic polynomial for ORs.

Note that by Theorem 10, we can choose O to have degree at most O(log ℓ). Further, by
Fact 9, we have pdeg(gi) ≤ pdeg(g) ≤ pdeg(f) for each i ∈ [ℓ]. In particular, this implies
that we can choose Gi to have degree O(pdeg(f) · log ℓ) for each i ∈ [ℓ]. This yields

pdeg(ORs) ≤ pdeg(f) · O(log ℓ)2 = pdeg(f) · O((log log s)2) = pdeg(f) · (log s)o(1).

As pdeg(ORs) ≥ (log s)c−o(1) by assumption, we get the desired lower bound on pdeg(f). ◀

S. Srinivasan and S. Venkitesh 42:11

3.2 The case of small sensitivity
We prove the following lemma.

▶ Lemma 16. Let f : {0, 1}n → {0, 1} be a function of sensitivity at most s that depends on
all its n variables. Then, we have pdeg(f) = Ω

(
log(n/sO(1))

log s

)
.

The proof of the lemma is in two steps. In the first step, we use a counting argument to
prove a lower bound on the probabilistic degrees of random functions F : {0, 1}m → {0, 1}
which are chosen from a distribution such that for a large subset X ⊆ {0, 1}m, the random
variables {F (x) | x ∈ X} are independently and uniformly chosen random bits. In the second
step, we show how any f as in the statement of Lemma 16 can be randomly restricted to a
random function F where the lower bound for random functions applies.

We now state the lower bound for random functions and use it to prove Lemma 16. The
lower bound for random functions uses fairly standard ideas and is proved in the appendix
(Section B).

▶ Lemma 17 (Random function lower bound). The following holds for positive integer
parameters m, M and d such that M > m10d. Let F : {0, 1}m → {0, 1} be a random
function such that for some X ⊆ {0, 1}m with |X| = M , the random variables (F (x))x∈X

are independent and uniformly distributed random bits. Then, we have

Pr
F

[pdeg1/10(F) ≤ d] <
1
10 .

Let us see how to use Lemma 17 to prove Lemma 16. This proof again breaks into two
smaller steps.
Step 1. Show that, after a projection, f turns into something similar to an addressing

function, that we will call a Pseudoaddressing function.
Step 2. Show that any pseudoaddressing function has large probabilistic degree.
As any projection g of f satisfies pdeg(g) ≤ pdeg(f) (Fact 9), the above implies a lower
bound on pdeg(f), hence proving Lemma 16.

To make the above precise, we need the following definition. We say that a function
g : {0, 1}r+t → {0, 1} is an (r, t)-Pseudoaddressing function if the input variables to g can be
partitioned into two sets Y = {y1, . . . , yr} and Z = {z1, . . . , zt} and g can be computed by a
decision tree T with the following properties.
P1. For each zj ∈ Z, there are two root-to-leaf paths π0

j and π1
j in T that diverge at a node

labeled zj and lead to outputs 0 and 1 respectively.
P2. All the other nodes on these paths are labeled by variables in Y , and further these

variables take the same values on both paths. In particular, π0
j and π1

j differ only on the
value of zj .

▶ Example 18. Consider the standard Addressing function Addrr on n = r + 2r variables
as defined in Section 1.3. This function is an (r, 2r)-pseudoaddressing function as it can be
computed by a decision tree of depth r + 1, which first queries all the addressing variables to
determine a ∈ {0, 1}r and then queries and outputs the value of za (the two computational
paths querying za give the desired root-to-leaf paths required in the definition above).

In analogy with the Addressing function, given an (r, t)-pseudoaddressing function as
above, we refer to the variables in Y as the addressing variables and the variables in Z as
the addressed variables.

The two steps of the proof as outlined above can now be formalized as follows.

APPROX/RANDOM 2021

42:12 Probabilistic Degree of N -Variate Boolean Function

π8

π1
w π0

w

x1

x2 x2

x5 x3 x6 x7

x3 0 x8

w

x9 x3 0 x4 1

0 1 x4 x4 0 1 0 1 0 x10

0 1 1 0 0 1

(a) The tree Tf

π8

π1
w π0

w

y1

y2 y2

z1 y3 z2 z3

y3 0 z4

w

z5 y4 0 y4 1

0 1 y4 y4 0 1 0 1 0 1

0 1 1 0

(b) The tree T (after projection)

Figure 2 The decision tree on the left computes a truly 10-variate function f(x1, . . . , x10). The
paths obtained by concatenating π8 with π0

w and π1
w are consistent with each other except for the

value of x8, the variable queried at node w. After a projection ν : [10] → [9] defined by ν(i) = i

for i ≤ 9 and ν(10) = 4, we get a tree T , which computes a (4, 5)-pseudoaddressing function
g(y1, . . . , y4, z1, . . . , z5). Note that each path in T corresponds to a path in Tf but not every path in
Tf survives in T (e.g. the path leading to 0 through the node querying x10 is pruned away, as it is
inconsistent with ν).

▷ Claim 19. Let f be as in the statement of Lemma 16. Then, there exist r ≤ sO(1) and
t ≥ n/sO(1) and a projection ν : [n] → [r + t] such that g = f |ν is an (r, t)-pseudoaddressing
function.

▷ Claim 20. Let g be any (r, t)-pseudoaddressing function. Then, pdeg(g) = Ω(log t/ log r).

As noted above, the above claims immediately imply Lemma 16. We now prove these
claims.

Proof of Claim 19. We will first outline how to isolate a set of n/ poly(s) variables that will
(almost) be the set of addressed variables. A projection will then be applied to the remaining
variables to create the pseudoaddressing function. Let us now see the details.

By Theorem 13, we know that f has a decision tree Tf of depth d ≤ poly(s). Fix
such a tree Tf of minimum size, i.e. with the smallest possible number of leaves. Let
V = {x1, . . . , xn} denote the input variables of f .

Any variable xi ∈ V must be queried somewhere in the tree Tf , as f depends on all
its input variables by assumption. Fix any occurrence of this variable in the decision tree
Tf , and let w denote the node of Tf corresponding to this query. (Refer to Figure 2 (a)
for an illustration.) Let πi denote the path from the root of Tf to w and let T0 and T1
be the subtrees rooted at the left and right children of w. The decision trees T0 and T1
both compute functions of the n′ < n Boolean variables not queried in πi. Note that these
decision trees compute distinct functions since otherwise the query made at the vertex w is
unnecessary, and a smaller decision tree than Tf can be obtained by replacing the subtree
rooted at w by T0 or by T1. This contradicts the minimality of the size of Tf .

Thus, T0 and T1 compute distinct functions. In particular, there is an input a ∈ {0, 1}n′

on which T0 and T1 have different outputs; w.l.o.g., assume T0 and T1 output 0 and 1
respectively on a. Let π0

w and π1
w be the root-to-leaf paths followed on the input a in T0 and

S. Srinivasan and S. Venkitesh 42:13

T1 respectively. Note that any variable queried on both π0
w and π1

w takes the same value on
both paths, as both paths are consistent with the input a. (Again, see Figure 2 (a) for an
example.)

Concatenating each of π0
w and π1

w with the path πi gives us two root-to-leaf paths π0
i and

π1
i in T such that

Q1. The paths π0
i and π1

i diverge at the node w (labelled by variable xi) and lead to outputs
0 and 1 respectively.

Q2. The two paths agree on all variables other than xi, i.e., any other variable that is queried
on π0

i and π1
i takes the same value on both.

We have such a pair of paths π0
i and π1

i for each xi ∈ V . Let Pi denote the set of all
j ̸= i such that xj is queried on π0

i or on π1
i . Note that |Pi| ≤ 2d.

We claim that we can choose a large subset Z ′ ⊆ [n] such that for all i ∈ Z ′, the set
Pi does not contain any j where j ∈ Z ′. To see this, define a graph G with vertex [n] and
edges between vertices distinct i, j ∈ [n] if and only if Pi contains j or vice-versa. Since each
|Pi| ≤ 2d, it is clear that this graph has average degree at most 2d. By Turán’s theorem (see
e.g. [3]), this implies that G has an independent set Z ′ of size at least n/4d. This set Z ′ has
the required property.

We are now ready to show that the required projection ν exists. Let r = 10d2 and
let ν ′ : [n] \ Z ′ → [r] be a random map (i.e. the image of each element of the domain is
independently and uniformly chosen from [r]). We say that an i ∈ Z ′ is good if ν ′ is 1-1 on
the set Pi. Let G be the set of all good i, with t := |G|. Assume G = {i1, . . . , it}. We use
this to define a random projection ν : [n] → [r + t] by

ν(i) =

ν ′(i) if i ̸∈ Z ′,
1 if i ∈ Z ′ \ G, (here, any k ∈ [r] will do)
r + j if i ∈ G and i = ij .

The random projection defines a random Boolean function g on r + t variables. We
now show that, with positive probability, g is an (r, n/ poly(s))-pseudoaddressing function,
where the first r variables are the addressing variables. This will finish the proof. Note that
the projection ν applied to the tree Tf also defines a random decision tree T computing
g. We will in fact show that T serves as a witness for the fact that g is an (r, n/ poly(s))-
pseudoaddressing function (with positive probability).

In fact, this happens whenever t = |G| is large enough. More precisely, note that

E
ν′

[|Z ′| − t] =
∑
i∈Z′

Pr
ν′

[ν ′ is not 1-1 on Pi] ≤
∑
i∈Z′

∑
j ̸=k∈Pi

Pr
ν′

[ν ′(j) = ν ′(k)]

≤
∑
i∈Z′

|Pi|2 · 1
r

≤ |Z ′| · (2d)2

r
≤ |Z ′|

2 .

In particular, there is a setting ν′ of ν ′ such that the corresponding set of good variables
|G| has size at least |Z ′|/2. Fix this ν′ and let G, t, ν, g, T be the corresponding fixings of
G, t, ν, g, T respectively.

We have g = g(y1, . . . , yr, z1, . . . , zt). Observe that each root-to-leaf path of T can be
identified with a root-to-leaf path of Tf . Further, a path π of Tf survives in T exactly when
it is consistent w.r.t. ν, i.e., if two variables that are set to opposite values in π are not
mapped to the same variable by ν (see Figure 2 (b) for an example). In particular, if a path
π has the property that the variables queried along π are mapped injectively by ν, then the
path π survives in T .

APPROX/RANDOM 2021

42:14 Probabilistic Degree of N -Variate Boolean Function

This implies that for any good ij ∈ G, the corresponding paths π0
ij

and π1
ij

survive in T .
Moreover, as the projection ν is injective on the entire set Pij

, these paths continue to agree
with each other on all variables except the variable zj queried at the point of their divergence.
This gives both properties Q1 and Q2 stated above. As this holds for each ij ∈ G, we see
that g is indeed an (r, t)-pseudoaddressing function. Note that r = 10d2 ≤ poly(s) and
t ≥ n/4d ≥ n/ poly(s). Hence, we have proved the claim. ◁

Proof of Claim 20. The proof is via a reduction to Lemma 17.
Let g(y1, . . . , yr, z1, . . . , zt) be an (r, t)-pseudoaddressing function. Consider the random

function F on {0, 1}r obtained by setting the addressed variables z1, . . . , zt to b1, . . . , bt ∈
{0, 1} chosen i.u.a.r.. We show that there is an X ⊆ {0, 1}r of size t such that the random
variables (F (a) : a ∈ X) are independent and uniformly distributed bits. Then, Lemma 17
implies the statement of the claim.

Let us see how X is defined. Let T be the decision tree guaranteed for g by virtue of
the fact that it is an (r, t)-pseudoaddressing function. Further, for any zj , let π0

j and π1
j

be the paths satisfying P1 and P2 above. By P2, we can fix a setting a(j) ∈ {0, 1}r to the
y-variables that is consistent with both paths. We set X = {a(j) | j ∈ [t]}.

To analyze F (a(j)), note that setting the variables z1, . . . , zt to b1, . . . , bt in T gives us a
(random) decision tree T ′ that computes F . In particular, the path followed by T ′ on input
a(j) is uniformly chosen among π0

j and π1
j depending on the value of zj , and hence F (a(j)) is

either bj or 1 − bj (exactly which depends on the value of zj that is consistent with π0
j and

π1
j). In either case, however, F (a(j)) is a uniformly chosen random bit depending only on bj .

Hence, the random variables (F (a(j)) : j ∈ [t]) are independent and uniformly distributed.
Thus, Lemma 17 implies that with positive probability, pdeg1/10(F) = Ω(log t/ log r).

However, we know by Fact 9 that, as F is a restriction of g, pdeg1/10(F) ≤ pdeg1/10(g).
Hence, we obtain the same lower bound for pdeg1/10(g). Finally, by error reduction (Fact 9),
the same lower bound (up to constant factors) holds for pdeg1/3(g) = pdeg(g). ◁

3.3 Finishing the proof of Theorem 4
Lemma 16 and Lemma 14 imply that

pdeg(f) = Ω
(

max
{

(log s)c−o(1),
log(n/sO(1))

log s

})
where s denotes the sensitivity of f . The above is minimized for s so that (log s)c+1 = Θ(log n)
(note that this implies that s = no(1)). For this s, we get

pdeg(f) = Ω((log n)c/(c+1)−o(1)) ≥ (log n)c/(c+1)−o(1),

proving the theorem.

4 The Upper Bound: Proof of Theorem 5

The construction is motivated by and closely follows a construction of Ambainis and de
Wolf [2], who used it to prove the existence of a truly n-variate Boolean function f whose
approximate degree is O(log n/ log log n). The construction of [2] uses the fact that the
approximate degree of the ORn function is O(

√
n) [15]. Using our assumption that the

probabilistic degree of the ORn function is (log n)c+o(1) we are able to prove a stronger
degree upper bound for probabilistic degree. In particular, Theorem 10 allows us to prove an
unconditional upper bound of (log n)(1/2)+o(1) on the probabilistic degree of some n-variable
function.

S. Srinivasan and S. Venkitesh 42:15

The construction is a variant of the Addressing function, where the addressing bits are
replaced by elements of a larger alphabet [s], which are themselves presented in an encoded
form that allows them to be easily “decoded” by low-degree polynomials. More precisely, we
construct the function as follows.

Construction

Let s be a power of 2 and let H ⊆ {0, 1}s be the set of codewords of the Hadamard code.
That is, assume s = 2t and identify elements of {0, 1}s with functions h : {0, 1}t → {0, 1}.

Then H consists of precisely those elements h ∈ {0, 1}s such that h is a linear function when
considered as a mapping from Fs

2 to F2 in the natural way. The set H contains precisely s

elements, say {h1, . . . , hs}.

We define a Boolean function f on n = sr + sr + 1 bits as follows. Any input a is parsed
as a = (g1, . . . , gr, T, b), where g1, . . . , gr : {0, 1}t → {0, 1}, T : [s]r → {0, 1} and b is a single
bit. We define f by

f(a) =
{

T (i1, . . . , ir) if g1, . . . , gr ∈ H and g1 = hi1 , . . . , gr = hir
,

b otherwise.

Analysis

We have

f(g1, . . . , gr, T, b)=
∑

i1,...,ir∈[s]

1(g1 = hi1 , . . . , gr = hir)·T (i1, . . . , ir)+(1−1(g1, . . . , gr ∈H))·b.

(2)

Here 1(E) for a Boolean predicate E takes the value 1 when the Boolean predicate is satisfied
and 0 otherwise.

The above implies, in particular, that the function f is truly n-variate. To see this, say
the variables of f are

xj,α (j ∈ [r], α ∈ {0, 1}t) encoding the entries of the truth tables of g1, . . . , gr, More
formally, the variable xj,α is set to gj(α).
yi1,...,ir encoding the entries of T , and
y0 which gives the value of b.

Any variable xj,α is influential at an input (g1, . . . , gr, T, b) where g1, . . . , gr are hi1 , . . . , hir ∈
H respectively, and b ̸= T (i1, . . . , ir), which implies that flipping the value of xj,α at this
point changes the output from T (i1, . . . , ir) to b. The variable yi1,...,ir is also influential at
the same point. The variable y0 is influential at any input where not all the gi are in H.
Thus, we see that f is indeed n-variate.

Now, we will show an upper bound on pdeg(f). This will be done by constructing two
polynomials.

A 1/3-error probabilistic polynomial Q(xj,α : j ∈ [r], α ∈ {0, 1}t) for the Boolean function
1(g1, . . . , gr ∈ H).
For each i1, . . . , ir ∈ [s], a polynomial Ri1,...,ir

(xj,α : j ∈ [r], α ∈ {0, 1}t) such that at
input (g1, . . . , gr) ∈ Hr, Ri1,...,ir

(g1, . . . , gr) = 1 if g1 = hi1 , . . . , gr = hir
, and 0 otherwise.

(In other words, Ri1,...,ir computes a δ-function on inputs from Hr. Note that we do not
claim anything if (g1, . . . , gr) ̸∈ Hr.)

APPROX/RANDOM 2021

42:16 Probabilistic Degree of N -Variate Boolean Function

Given the above constructions, the following yields a probabilistic polynomial P for f .

P = Q ·
(∑

i1,...,ir∈[s]

Ri1,...,ir
· yi1,...,ir

)
+ (1 − Q) · y0 (3)

(The two copies of Q are chosen with the same randomness and are not independent of each
other.) To see that this works, fix any input a = (g1, . . . , gr, T, b). If (g1, . . . , gr) ∈ Hr, the
term in the parenthesis evaluates to T (i1, . . . , ir) with probability 1. Further, Q(g1, . . . , gr)
evaluates to 1 with probability 2/3. Hence, P (a) = T (i1, . . . , ir) = f(a) with probability at
least 2/3. On the other hand, if (g1, . . . , gr) ̸∈ Hr, then Q(g1, . . . , gr) evaluates to 0 with
probability 2/3. When this event occurs, the first summand evaluates to 0 and the second
summand evaluates to b. Hence, P (a) = b = f(a) with probability at least 2/3.

It remains to construct the polynomials Q and Ri1,...,ir
. We start with Q. Recall

that a function g : {0, 1}t → {0, 1} lies in H when it is linear over F2, or equivalently if
g(α ⊕ β) ⊕ g(α) ⊕ g(β) = 0 for every α, β ∈ {0, 1}t. Thus, the condition that g1, . . . , gr ∈ H

can be rewritten as
r∧

j=1

∧
α,β∈{0,1}t

(1 ⊕ gj(α ⊕ β) ⊕ gj(α) ⊕ gj(β)).

Let q(z1, z2, z3) be a constant-degree polynomial of 3 Boolean variables that evaluates to
1⊕z1⊕z2⊕z3. Then, the above can be rewritten as

∧r
j=1

∧
α,β∈{0,1}t q(gj(α), gj(β), gj(α⊕β)).

Thus, we can define the probabilistic polynomial to be

Q(xj,α : j ∈ [r], α ∈ {0, 1}t) = Q1(q(xj,α, xj,β , xj,α⊕β) : j ∈ [r], α, β ∈ {0, 1}t),

where Q1 is any probabilistic polynomial for the ANDr22t = ANDrs2 function. By assumption,
pdeg(ORrs2) and hence, by DeMorgan’s laws, pdeg(ANDrs2) is at most log(rs2)c+o(1) =
(log r + log s)c+o(1).

We now see how to construct Ri1,...,ir
for any fixed i1, . . . , ir ∈ [s]. Recall the standard

fact (see, e.g. [22]) that for hi1 ≠ hi2 ∈ H, the functions ĥi1 , ĥi2 : {0, 1}t → {−1, 1} defined
by ĥib

(α) = 1 − 2hib
(α), for all α ∈ {0, 1}t and b ∈ {1, 2}, are orthogonal to one another,

i.e.,
∑

α ĥi1(α)ĥi2(α) = 0. Based on this observation, we define the polynomial as follows.

Ri1,...,ir
(xj,α : j ∈ [r], α ∈ {0, 1}t) = 1

sr

r∏
j=1

(∑
α∈{0,1}t

ĥij
(α)(1 − 2xj,α)

)
.

Let us see that this polynomial has the desired properties. Consider input (g1, . . . , gr) ∈ Hr.
Assume gj = hi′

j
for each j ∈ [r]. Then, we have

Ri1,...,ir
(g1, . . . , gr) = 1

sr

r∏
j=1

(∑
α∈{0,1}t

ĥij
(α)(1 − 2hi′

j
(α))

)
= 1

sr

r∏
j=1

(∑
α∈{0,1}t

ĥij
(α)ĥi′

j
(α)

)
and the latter quantity can be seen to be 1 if i′

j = ij for all j ∈ [r] and 0 otherwise. Thus,
Ri1,...,ir

behaves as stipulated. Note that deg(Ri1,...,ir
) = r.

This concludes the construction of the probabilistic polynomial for f . The degree of the
polynomial thus constructed is at most deg(Q) + maxi1,...,ir

deg(Ri1,...,ir
), which is equal to

O((log r + log s)c+o(1) + r) = O((log s)c+o(1) + r).

Parameters

We set r = (log s)c = tc. This gives a truly n-variate Boolean function on n = O(sr) =
O(2t1+c) variables with probabilistic degree tc+o(1) = (log n)(c/(c+1))+o(1).

S. Srinivasan and S. Venkitesh 42:17

References
1 Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of

threshold functions and algorithmic applications. In Irit Dinur, editor, IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 467–476. IEEE Computer Society, 2016.
doi:10.1109/FOCS.2016.57.

2 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 136–150,
2015. doi:10.1109/FOCS.2015.18.

3 Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 2008. ISBN: 978-0-470-17020-5.

4 Andris Ambainis and Ronald de Wolf. How low can approximate degree and quantum
query complexity be for total boolean functions? Comput. Complex., 23(2):305–322, 2014.
doi:10.1007/s00037-014-0083-2.

5 James Aspnes, Richard Beigel, Merrick L. Furst, and Steven Rudich. The expressive power of
voting polynomials. Comb., 14(2):135–148, 1994. doi:10.1007/BF01215346.

6 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, 2001. doi:10.1145/502090.502097.

7 R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back. In [1991] Proceedings
of the Sixth Annual Structure in Complexity Theory Conference, pages 286–291, 1991. doi:
10.1109/SCT.1991.160270.

8 Richard Beigel. The polynomial method in circuit complexity. In Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993,
pages 82–95. IEEE Computer Society, 1993. doi:10.1109/SCT.1993.336538.

9 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5):28:1–28:10,
2010. doi:10.1145/1754399.1754401.

10 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)00144-X.

11 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages
10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CCC.2016.10.

12 Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-optimal small-
depth lower bounds for small distance connectivity. In Daniel Wichs and Yishay Mansour,
editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 612–625. ACM, 2016. doi:
10.1145/2897518.2897534.

13 John Chiarelli, Pooya Hatami, and Michael E. Saks. An asymptotically tight bound on the
number of relevant variables in a bounded degree boolean function. Comb., 40(2):237–244,
2020. doi:10.1007/s00493-019-4136-7.

14 Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit depth reductions.
In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS
2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 24:1–24:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.24.

15 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996. Association for Computing Machinery. doi:10.1145/
237814.237866.

16 Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC0. Random
Structures & Algorithms, 54(2):289–303, 2019. doi:10.1002/rsa.20786.

APPROX/RANDOM 2021

https://doi.org/10.1109/FOCS.2016.57
https://doi.org/10.1109/FOCS.2015.18
https://doi.org/10.1007/s00037-014-0083-2
https://doi.org/10.1007/BF01215346
https://doi.org/10.1145/502090.502097
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1109/SCT.1993.336538
https://doi.org/10.1145/1754399.1754401
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1145/2897518.2897534
https://doi.org/10.1145/2897518.2897534
https://doi.org/10.1007/s00493-019-4136-7
https://doi.org/10.4230/LIPIcs.ITCS.2021.24
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1002/rsa.20786

42:18 Probabilistic Degree of N -Variate Boolean Function

17 Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth
hierarchy theorem for boolean circuits. J. ACM, 64(5):35:1–35:27, 2017. doi:10.1145/3095799.

18 Hao Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals
of Mathematics, 190(3):949–955, 2019. doi:10.4007/annals.2019.190.3.6.

19 Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2Õ(n1/3). J. Comput. Syst.
Sci., 68(2):303–318, 2004. doi:10.1016/j.jcss.2003.07.007.

20 N. Nisan. Crew prams and decision trees. In Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, STOC ’89, page 327–335, New York, NY, USA, 1989.
Association for Computing Machinery. doi:10.1145/73007.73038.

21 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Comput. Complex., 4:301–313, 1994. doi:10.1007/BF01263419.

22 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA, 2014.
doi:10.1017/CBO9781139814782.

23 A. A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete
basis containing the logical addition function. Mat. Zametki, 41(4):598–607, 623, 1987.

24 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
ISBN: 978-0-471-98232-6.

25 Hans Ulrich Simon. A Tight Ω(log log n)-Bound on the Time for Parallel RAM’s to Compute
Nondegenerated Boolean Functions. Inf. Control., 55(1-3):102–106, 1982. doi:10.1016/
S0019-9958(82)90477-6.

26 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:
10.1145/28395.28404.

27 Jun Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy.
Theoretical Computer Science, 113(1):167–183, 1993. doi:10.1016/0304-3975(93)90214-E.

28 Emanuele Viola. New lower bounds for probabilistic degree and AC0 with parity gates.
Electron. Colloquium Comput. Complex., 27:15, 2020. URL: https://eccc.weizmann.ac.il/
report/2020/015.

29 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

A Proof of Lemma 15

We will only use restrictions g′ of g obtained by setting some inputs of g to 0. The basic
observation [7, 27] is the following. For any such restriction g′ = gρ, the function g′ always
agrees with ORs at the all-zero input. Moreover, if a is non-zero and has weight t > 0, then
g′(a) = ORs(a) = 1 as long as exactly t − 1 of the variables that are set to 1 in a are fixed
to 0 by ρ (this follows from the fact that g accepts any input of weight exactly 1). While we
cannot always choose a single restriction that does this for all possible a, it is possible to
choose a small number of restrictions randomly such that for each non-zero a, at least one of
them is guaranteed to work with high probability. We now see the details.

For i ∈ [log s], let Di be the distribution over subsets of [s] where we pick each element
independently to be in the set with probability 2−i. For a (constant) parameter p to be chosen
later, let Si

1, . . . , Si
p be independent random subsets picked from distribution Di. Each such

set Si
j is associated with the restriction ρi

j where each variable is set to 0 if it does not belong
to Si

j , and left alive (i.e. set to ∗) otherwise. Note that gi
j := gρi

j
is a random restriction of

g. Also observe that the total number of such restrictions is ℓ := p log s = O(log s). The final
probabilistic representation is the OR of all these gi

js.

https://doi.org/10.1145/3095799
https://doi.org/10.4007/annals.2019.190.3.6
https://doi.org/10.1016/j.jcss.2003.07.007
https://doi.org/10.1145/73007.73038
https://doi.org/10.1007/BF01263419
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1016/0304-3975(93)90214-E
https://eccc.weizmann.ac.il/report/2020/015
https://eccc.weizmann.ac.il/report/2020/015
https://doi.org/10.1137/15M1024524

S. Srinivasan and S. Venkitesh 42:19

We now prove correctness. Consider any a ∈ {0, 1}s. The case when a = 0s is easy, as
each gi

j is obtained by setting some inputs of g to 0 and hence gi
j(a) = 0 with probability 1.

The same is therefore true for the OR of these functions.
Now assume that a ≠ 0. Thus |a| = t ∈ [s]. Fix i ∈ [log s] such that t ∈ (2i−1, 2i]. We will

show that, with probability at least 0.9, some gi
j evaluates to 1. This will finish the proof.

To see this, let S ⊆ [s] be the set of coordinates where a takes value 1. Note that
gi

j(a) = g(bi
j) where bi

j denotes the indicator vector of Si
j ∩ S. As g(b) = 1 for any input b of

weight 1, we see that gi
j(a) = 1 if |Si

j ∩ S| = 1 . Hence, we have

Pr
gi

1,...,gi
p

[gi
1(a) = · · · = gi

p(a) = 0] ≤ Pr
Si

1,...,Si
p

[p∧
j=1

|Si
j ∩ S| ̸= 1

]
=

p∏
j=1

Pr
Si

j

[|Si
j ∩ S| ̸= 1], (4)

where the last equality follows from the independence of the Si
js.

Finally, note that for any j,

Pr
Si

j

[|Si
j ∩ S| = 1] =

∑
k∈S

Pr
Si

j

[
k ∈ Si

j ∧
∧

k′∈S\k

k′ ̸∈ Si
j

]

= t · 1
2i

·
(

1 − 1
2i

)t−1
≥ 1

2 ·
(

1 − 1
2i

)2i−1
≥ 1

2e
,

where the first inequality follows from the fact that t ∈ (2i−1, 2i] and the second from the
standard fact that (1 − 1/n)n−1 ≥ 1/e. Plugging the above into (4), we get

Pr
gi

1,...,gi
p

[gi
1(a) = · · · = gi

p(a) = 0] ≤
(

1 − 1
2e

)p

≤ 1
10 ,

for a large enough constant p. In particular, for this p, the probability that ORℓ(gi
j : i ∈

[ℓ], j ∈ [p]) evaluates to 0 is at most 1/10, completing the proof of the lemma.

B Proof of the Random function lower bound (Lemma 17)

The proof is via a counting argument.
We start with a standard observation, which follows from a simple averaging argument.

If F : {0, 1}m → {0, 1} has (1/10)-error probabilistic degree d, then for any probability
distribution µ over {0, 1}m, there is a polynomial P of degree at most d such that

Pr
a∼µ

[P (a) = F (a)] ≥ 9
10 . (5)

Conversely, if there is a probability distribution µ such that (5) does not hold for any
polynomial of degree at most d, then pdeg(F) > d. We will take the hard distribution to be
the uniform distribution over X.

More precisely, call a function g : X → {0, 1} bad if there is a polynomial P of degree at
most d that agrees with g on at least 9|X|/10 = 9M/10 points of X. Let B be the set of bad
functions. The reasoning above tells us that

Pr
F

[pdeg1/10(F) ≤ d] ≤ Pr
F

[F |X ∈ B] = |B|
2M

. (6)

where for the latter inequality we have used the fact that the random variables (F (x) : x ∈ X)
are independently and uniformly distributed. Hence, it will suffice to bound |B| to prove the
lemma.

APPROX/RANDOM 2021

42:20 Probabilistic Degree of N -Variate Boolean Function

To bound the size of B, it will suffice to give a short encoding of each element of B. Fix
any g ∈ B and a polynomial P that agrees with g on a set X ′ ⊆ X such that |X ′| ≥ 9M/10.
Note that g can be specified by
1. The set X ′.
2. The set of values of g on X \ X ′ (in some pre-determined order).
3. A polynomial Q of degree at most d that agrees with g on X ′ (specified as a list of

coefficients of monomials).

Note that the number of choices for X ′ is at most
(

M
≤M/10

)
, which is bounded by 2H(1/10)M ,

where H(·) denotes the binary entropy function. Further, the number of possibilities for g

on X \ X ′ is at most 2|X\X′| ≤ 2M/10.

It remains to bound the number of possibilities for Q. A priori, it is not completely clear
how to bound the number of Q as the coefficients of Q could be arbitrary real numbers.
However, we note that if there is a polynomial P that agrees with g on X ′, then there is also
a Q that satisfies this property, and furthermore, the coefficients of Q are rational numbers
of small bit complexity.

Formally, we will use the following lemma, which is an easy consequence of [24, Corollary
3.2d].

▶ Lemma 21. Consider a system of linear equations Ax = b over the rational numbers,
where A is an p × q Boolean matrix, and b ∈ {0, 1}p. Then, if the system has a real solution,
it has a rational solution that can be specified (as a list of numerator-denominator pairs in
binary) by at most 10q3 bits.

To use the above lemma, consider the problem of finding a polynomial Q of degree at
most d that agrees with g at all points in X ′. The coefficients of such a polynomial Q solve
a linear system of p := |X ′| many linear equations in q :=

(
m
≤d

)
variables. By the existence of

the polynomial P , this system has a solution. Thus by Lemma 21, we know that there is a
solution of bit-complexity at most 10q3 ≤ m4d < M/10. Therefore, we may always choose Q

from the set Q of polynomials of bit-complexity (as specified above) at most M/10. Note
that |Q| ≤ 2M/10 by definition.

Overall, this gives a complete specification of any given g ∈ B. More precisely, we
have given a 1-1 map τ : B → X × S × Q, where X is the collection of subsets of X of
size at least 9M/10, S is the set of Boolean tuples of length M/10, and Q is the set of
polynomials of degree at most d of bit-complexity at most M/10. Hence, |B| ≤ |X | · |S| · |Q| ≤
2M ·(H(1/10)+1/10+1/10) ≤ 29M/10. Plugging this into (6), we get

Pr
F

[pdeg1/10(F) ≤ d] ≤ 29M/10

2M
<

1
10 .

This finishes the proof of the lemma.

The Swendsen-Wang Dynamics on Trees
Antonio Blanca #

Pennsylvania State University, University Park, PA, USA

Zongchen Chen #

Georgia Institute of Technology, Atlanta, GA, USA

Daniel Štefankovič #

University of Rochester, NY, USA

Eric Vigoda #

Georgia Institute of Technology, Atlanta, GA, USA

Abstract
The Swendsen-Wang algorithm is a sophisticated, widely-used Markov chain for sampling from the
Gibbs distribution for the ferromagnetic Ising and Potts models. This chain has proved difficult
to analyze, due in part to the global nature of its updates. We present optimal bounds on the
convergence rate of the Swendsen-Wang algorithm for the complete d-ary tree. Our bounds extend
to the non-uniqueness region and apply to all boundary conditions. We show that the spatial mixing
conditions known as Variance Mixing and Entropy Mixing, introduced in the study of local Markov
chains by Martinelli et al. (2003), imply Ω(1) spectral gap and O(log n) mixing time, respectively, for
the Swendsen-Wang dynamics on the d-ary tree. We also show that these bounds are asymptotically
optimal. As a consequence, we establish Θ(log n) mixing for the Swendsen-Wang dynamics for all
boundary conditions throughout the tree uniqueness region; in fact, our bounds hold beyond the
uniqueness threshold for the Ising model, and for the q-state Potts model when q is small with
respect to d. Our proofs feature a novel spectral view of the Variance Mixing condition inspired by
several recent rapid mixing results on high-dimensional expanders and utilize recent work on block
factorization of entropy under spatial mixing conditions.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Markov processes; Theory of computation → Design and analysis of
algorithms

Keywords and phrases Markov Chains, mixing times, Ising and Potts models, Swendsen-Wang
dynamics, trees

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.43

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2007.08068

Funding Antonio Blanca: Research supported in part by NSF grant CCF-1850443.
Zongchen Chen: Research supported in part by NSF grant CCF-2007022.
Daniel Štefankovič : Research supported in part by NSF grant CCF-2007287.
Eric Vigoda: Research supported in part by NSF grant CCF-2007022.

1 Introduction

Spin systems are idealized models of a physical system in equilibrium which are utilized
in statistical physics to study phase transitions. A phase transition occurs when there
is a dramatic change in the macroscopic properties of the system resulting from a small
(infinitesimal in the limit) change in one of the parameters defining the spin system. The
macroscopic properties of the system manifest with the persistence (or lack thereof) of long-

© Antonio Blanca, Zongchen Chen, Daniel Štefankovič, and Eric Vigoda;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ablanca@cse.psu.edu
mailto:chenzongchen@gatech.edu
mailto:stefanko@cs.rochester.edu
mailto:vigoda@gatech.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.43
https://arxiv.org/abs/2007.08068
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 The Swendsen-Wang Dynamics on Trees

range influences. There is a well-established mathematical theory connecting the absence
of these influences to the fast convergence of Markov chains. In this paper, we study this
connection on the regular tree, known as the Bethe lattice in statistical physics [7, 27].

The most well-studied example of a spin system is the ferromagnetic q-state Potts model,
which contains the Ising model (q = 2) as a special case. The Potts model is especially
important as fascinating phase transitions (first-order vs. second-order) are now understood
rigorously in various contexts [5, 21, 20, 17, 18].

Given a graph G = (V, E), configurations of the Potts model are assignments of spins [q] =
{1, 2, . . . , q} to the vertices of G. The parameter β > 0 (corresponding to the inverse of the
temperature of the system) controls the strength of nearest-neighbor interactions, and the
probability of a configuration σ ∈ [q]V in the Gibbs distribution is such that

µ(σ) = µG(σ) = e−β|D(σ)|

Z
, (1)

where D(σ) = {{v, w} ∈ E : σ(v) ̸= σ(w)} denotes the set of bi-chromatic edges in σ, and Z

is the normalizing constant known as the partition function.
The Glauber dynamics is the simplest example of a Markov chain for sampling from

the Gibbs distribution; it updates the spin at a randomly chosen vertex in each step. In
many settings, as we detail below, the Glauber dynamics converges exponentially slow at
low temperatures (large β) due to the local nature of its transitions and the long-range
correlations in the Gibbs distribution. Of particular interest are thus “global” Markov
chains such as the Swendsen-Wang (SW) dynamics [49, 23], which update a large fraction
of the configuration in each step, thus potentially overcoming the obstacles that hinder the
performance of the Glauber dynamics, and with steps that can be efficiently parallelized [4].

The SW dynamics utilizes a close connection between the Potts model and an alternative
representation known as the random-cluster model. The random-cluster model is defined
on subsets of edges and is not a spin system as the weight of a configuration depends on
the global connectivity properties of the corresponding subgraph. The transitions of the
SW dynamics take a spin configuration, transform it to a “joint” spin-edge configuration,
perform a step in the joint space, and then map back to a Potts configuration. Formally,
from a Potts configuration σt ∈ [q]V , a transition σt → σt+1 is defined as follows:

1. Let Mt = M(σt) = E \ D(σt) denote the set of monochromatic edges in σt.
2. Independently for each edge e = {v, w} ∈ Mt, keep e with probability p = 1 − exp(−β)

and remove e with probability 1 − p. Let At ⊆ Mt denote the resulting subset.
3. In the subgraph (V, At), independently for each connected component C (including

isolated vertices), choose a spin sC uniformly at random from [q] and assign to each
vertex in C the spin sC . This spin assignment defines σt+1.

There are two standard measures of the convergence rate of a Markov chain. The mixing
time is the number of steps to get within total variation distance ≤ 1/4 of its stationary
distribution from the worst starting state. The relaxation time is the inverse of the spectral
gap of the transition matrix of the chain and measures the speed of convergence from a
“warm start”. For approximate counting algorithms the relaxation time is quite useful as it
corresponds to the “resample” time [30, 37, 35, 34]; see Section 2 for precise definitions and
how these two notions relate to each other.

There has been great progress in formally connecting phase transitions with the conver-
gence rate of the Glauber dynamics. Notably, for the d-dimensional integer lattice Zd, a series
of works established that a spatial mixing property known as strong spatial mixing (SSM)

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:3

implies O(n log n) mixing time of the Glauber dynamics [39, 15, 22]. Roughly speaking, SSM
says that correlations decay exponentially fast with the distance and is also known to imply
optimal mixing and relaxation times of the SW dynamics on Zd [9, 8]. These techniques
utilizing SSM are particular to the lattice and do not extend to non-amenable graphs (i.e.,
those whose boundary and volume are of the same order). The d-ary complete tree, which is
the focus of this paper, is the prime example of a non-amenable graph.

On the regular d-ary tree, there are two fundamental phase transitions: the uniqueness
threshold βu and the reconstruction threshold βr. The smaller of these thresholds βu

corresponds to the uniqueness/non-uniqueness phase transition of the Gibbs measure on the
infinite d-ary tree, and captures whether the worst-case boundary configuration (i.e., a fixed
configuration on the leaves of a finite tree) has an effect or not on the spin at the root (in the
limit as the height of the tree grows). The second threshold βr is the reconstruction/non-
reconstruction phase transition, marking the divide on whether or not a random boundary
condition (in expectation) affects the spin of the root.

There is a large body of work on the interplay between these phase transitions and the
speed of convergence of the Glauber dynamics on the complete d-ary tree [41, 40, 6], and
more generally on bounded degree graphs [44, 28, 13]. Our main contributions in this paper
concern instead the speed of convergence of the SW dynamics on trees, how it is affected by
these phase transitions, and the effects of the boundary condition.

Martinelli, Sinclair, and Weitz [40, 41] introduced a pair of spatial mixing (decay of
correlation) conditions called Variance Mixing (VM) and Entropy Mixing (EM) which capture
the exponential decay of point-to-set correlations. More formally, the VM and EM conditions
hold when there exist constants ℓ > 0 and ε = ε(ℓ) such that, for every vertex v ∈ T , the
influence of the spin at v on the spins of the vertices at distance ≥ ℓ from v in the subtree
Tv rooted at v decays by a factor of at least ε. For the case of VM, this decay of influence is
captured in terms of the variance of any function g that depends only on the spins of the
vertices in Tv at distance ≥ ℓ from v; specifically, when conditioned on the spin at v, the
conditional variance of g is (on average) a factor ε smaller then the unconditional variance;
see Definition 7 in Section 3 for the formal definition. EM is defined analogously, with
variance replaced by entropy; see Definition 15.

It was established in [40, 41] that VM and EM imply optimal bounds on the convergence
rate of the Glauber dynamics on trees. We obtain optimal bounds for the speed of convergence
of the SW dynamics under the same VM and EM spatial mixing conditions.

▶ Theorem 1. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model
on an n-vertex complete d-ary tree, Variance Mixing implies that the relaxation time of the
Swendsen-Wang dynamics is Θ(1).

▶ Theorem 2. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model
on an n-vertex complete d-ary tree, Entropy Mixing implies that the mixing time of the
Swendsen-Wang dynamics is O(log n).

The VM condition is strictly weaker (i.e., easier to satisfy) than the EM condition, but, at
the moment, EM is known to hold in the same parameter regimes as VM. The relaxation
time bound in Theorem 1 is weaker than the mixing time bound in Theorem 2. We also
show that the mixing time in Theorem 2 is asymptotically the best possible.

▶ Theorem 3. For all q ≥ 2, d ≥ 3 and any β > 0, the mixing time of the SW dynamics on
an n-vertex complete d-ary tree is Ω(log n) for any boundary condition.

We remark that the mixing time lower bound in Theorem 3 applies to all inverse
temperatures β and all boundary conditions.

APPROX/RANDOM 2021

43:4 The Swendsen-Wang Dynamics on Trees

The VM and EM conditions are properties of the Gibbs distribution induced by a specific
boundary condition on the leaves of the tree; this contrasts with other standard notions
of decay of correlations such as SSM on Zd. This makes these conditions quite suitable
for understanding the speed of convergence of Markov chains under different boundary
conditions. For instance, [40, 41] established VM and EM for all boundary conditions
provided β < max{βu, 1

2 ln(
√

d+1√
d−1)} and for the monochromatic (e.g., all-red) boundary

condition for all β. Consequently, we obtain the following results.

▶ Theorem 4. For all q ≥ 2 and d ≥ 3, for the q-state ferromagnetic Ising/Potts model on
an n-vertex complete d-ary tree, the relaxation time of the Swendsen-Wang dynamics is Θ(1)
and its mixing time is Θ(log n) in the following cases:
1. the boundary condition is arbitrary and β < max

{
βu, 1

2 ln
(√

d+1√
d−1

)}
;

2. the boundary condition is monochromatic and β is arbitrary.

Part (i) of this theorem provides optimal mixing and relaxation times bounds for the
SW dynamics under arbitrary boundaries throughout the uniqueness region β < βu. In fact,
βu < 1

2 ln(
√

d+1√
d−1) when q ≤ 2(

√
d + 1) and thus our bound extends to the non-uniqueness

region for many combinations of d and q. We note that while the value of the uniqueness
threshold βu is known, it does not have a closed form (see [31, 10]). In contrast, the
reconstruction threshold βr is not known for the Potts model [47, 43], but one would expect
that part (i) holds for all β < βr; analogous results are known for the Glauber dynamics for
other spin systems where more precise bounds on the reconstruction threshold have been
established [6, 45, 48].

Previously, only a poly(n) bound was known for the mixing time of the SW dynamics for
arbitrary boundary conditions [50, 6]. This poly(n) bound holds for every β, but the degree
of the polynomial bounding the mixing time is quite large (grows with β); our bound in part
(i) is thus a substantial improvement.

In regards to part (ii) of the theorem, we note that our bound holds for all β, including
the whole low-temperature region. The only other case where tight bounds for the SW
dynamics are known for the full low-temperature regime is on the geometrically simpler
complete graph [25, 12].

Previous (direct) analysis of the speed of convergence of the SW dynamics on trees
focused exclusively on the special case of the free boundary condition [33, 16], where the
dynamics is much simpler as the corresponding random-cluster model is trivial (reduces to
independent bond percolation); this was used by Huber [33] to establish O(log n) mixing
time of the SW dynamics for all β for the special case of the free boundary condition.

We comment briefly on our proof methods next; a more detailed exposition of our approach
is provided later in this introduction. The results in [40, 41] use the VM and EM condition
to deduce optimal bounds for the relaxation and mixing times of the Glauber dynamics;
specifically, they analyze its spectral gap and log-Sobolev constant. Their methods do not
extend to the SW dynamics. It can be checked, for example, that the log-Sobolev constant
for the SW dynamics is Θ(n−1), and thus the best possible mixing time one could hope to
obtain with such an approach would be O(n log n). For Theorem 2, we utilize instead new
tools introduced by Caputo and Parisi [14] to establish a (block) factorization of entropy.
This factorization allows to get a handle on the modified log-Sobolev constant for the SW
dynamics. For Theorem 1, the main novelty in our approach is a new spectral interpretation
of the VM condition that facilitates a factorization of variance, similar to the factorization
of entropy from [14]. Lastly, the lower bound from Theorem 3 is obtained by adapting the
framework of Hayes and Sinclair [32] to the SW setting using recent ideas from [8].

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:5

Finally, we mention that part (ii) of Theorem 4 has interesting implications related to
the speed of convergence of random-cluster model Markov chains on trees under the wired
boundary condition. That is, all the leaves are connected through external or “artificial”
wirings. The case of the wired boundary condition is the most studied version of the random-
cluster model on trees (see, e.g., [31, 36]) since, as mentioned earlier, the model is trivial
under the free boundary. The random-cluster model, which is parameterized by p ∈ (0, 1)
and q > 0 (see [24, 1] for its definition), is intimately connected to the ferromagnetic q-sate
Potts model when q ≥ 2 is an integer and p = 1 − exp(−β). In particular, there is a variant
of SW dynamics for the random-cluster model (by observing the edge configuration after the
second step of the chain).

Another standard Markov chain for the random-cluster model is the heat-bath (edge)
dynamics, which is the analog of the Glauber dynamics on spins for random-cluster configur-
ations. Our results for the random-cluster dynamics are the following.

▶ Theorem 5. For all integer q ≥ 2, p ∈ (0, 1), and d ≥ 3, for the random-cluster model
on an n-vertex complete d-ary tree with wired boundary condition, the mixing time of the
Swendsen-Wang dynamics is O(log n). In addition, the mixing time of the heat-bath edge
dynamics for the random-cluster model is O(n log n).

To prove these results, we use a factorization of entropy in the joint spin-edge space, as
introduced in [8]; they cannot be deduced from the mixing time bounds for the Glauber
dynamics for the Potts model in [40, 41].

Our final result shows that while random-cluster dynamics mix quickly under the wired
boundary condition, there are random-cluster boundary conditions that cause an exponential
slowdown for both the SW dynamics and the heat-bath edge dynamics for the random-cluster
model.

▶ Theorem 6. For all q ≥ 2, all d ≥ 3, consider the random-cluster model on an n-vertex
complete d-ary tree. Then, there exists p ∈ (0, 1) and a random-cluster boundary condition
such that the mixing times of the Swendsen-Wang dynamics and of the heat-bath edge dynamics
is exp(Ω(

√
n)).

We prove this result extending ideas from [11]. In particular, we prove a general theorem
that allows us to transfer slow mixing results for the edge dynamics on other graphs to the
tree, for a carefully constructed tree boundary condition and a suitable p. To proof this
results we use the random-cluster boundary condition to embed an arbitrary graph G on the
tree; a set with bad conductance for the chain on G is then lifted to the tree. Theorem 6
then follows from any of the known slow mixing results for the edge dynamics [29, 26, 50].

Our techniques. Our first technical contribution is a reinterpretation and generalization of
the VM condition as a bound on the second eigenvalue of a certain stochastic matrix which
we denote by P ↑P ↓. The matrices P ↑ and P ↓ are distributional matrices corresponding to
the distribution at a vertex v given the spin configuration of the set Sv of all its descendants
at distance at least ℓ and vice versa. These matrices are inspired by the recent results in [2, 3]
utilizing high-dimensional expanders; see Section 3 for their precise definitions.

Our new spectral interpretation of the VM condition allows us to factorize it and obtain an
equivalent global variant we call Parallel Variance Mixing (PVM). While the VM condition
signifies the exponential decay with distance of the correlations between a vertex v and
the set Sv (and is well-suited for the analysis of local Markov chains), the PVM condition
captures instead the decay rate of set-to-set correlations between the set of all the vertices

APPROX/RANDOM 2021

43:6 The Swendsen-Wang Dynamics on Trees

at a fixed level of the tree and the set of all their descendants at distance at least ℓ. The
PVM condition facilitates the analysis of a block dynamics with a constant number of blocks
each of linear volume. We call this variant of block dynamics the tiled block dynamics as
each block consists of a maximal number of non-intersecting subtrees of constant size (i.e., a
tiling); see Figure 1. We use the PVM condition to show that the spectral gap of the tiled
block dynamics is Ω(1), and a generic comparison between the block dynamics and the SW
dynamics yields Theorem 1.

Our proof of Theorem 2 follows a similar strategy. We first obtain a global variant of the
EM condition, analogous to the PVM condition but for entropy. For this, we use a recent
result of Caputo and Parisi [14]. From this global variant of the EM condition we deduce a
factorization of entropy into the even and odd subsets of vertices. (The parity of a vertex
is that of its distance to the leaves of the tree.) The even-odd factorization of entropy was
recently shown in [8] to imply O(log n) mixing of the SW on general biparte graphs.

Paper organization. The rest of the paper is organized as follows. Section 2 contains some
standard definitions and facts we use in our proofs. In Sections 3 and 4 we prove Theorems 1
and 2, respectively. Our general comparison result between the SW dynamics and the block
dynamics, our results for the random-cluster model dynamics, and our lower bound for the
SW dynammics (Theorem 3) are proved in the full version of this paper [1].

2 Preliminaries

We introduce some notations and facts that are used in the remainder of the paper.

The Potts model on the d-ary tree. For d ≥ 2, let Td = (V,E) denote the rooted infinite
d-ary tree in which every vertex (including the root) has exactly d children. We consider the
complete finite subtree of Td of height h, which we denote by T = T d

h = (V (T), E(T)). We
use ∂T to denote the external boundary of T ; i.e., the set of vertices in V \ V (T) incident
to the leaves of T . We identify subgraphs of T with their vertex sets. In particular, for
A ⊆ V (T) we use E(A) for the edges with both endpoints in A, ∂A for the external boundary
of A (i.e., the vertices in (T ∪ ∂T) \ A adjacent to A), and, with a slight abuse of notation,
we write A also for the induced subgraph (A, E(A)). When clear from context, we simply
use T for the vertex set V (T).

A configuration of the Potts model is an assignment of spins [q] = {1, . . . , q} to the vertices
of the graph. For a fixed spin configuration τ on the infinite tree Td, we use Ωτ = [q]T ∪∂T to
denote the set of configurations of T that agree with τ on ∂T . Hence, τ specifies a boundary
condition for T . More generally, for any A ⊆ T and any η ∈ Ωτ , let Ωη

A ⊆ Ωτ denote the set
of configurations of T that agree with η on (T ∪ ∂T) \ A. We use µη

A to denote the Gibbs
distribution over Ωη

A, so for σ ∈ Ωη
A we have

µη
A(σ) := 1

Z
exp

(
− β

∑
{u,v}∈E(A∪∂A)

1(σu ̸= σv)
)

,

where Z is a normalizing constant (or partition function). For σ /∈ Ωη
A, we set µη

A(σ) = 0.

The tiled block dynamics. Let U = {U1, ..., Ur} be a collection of subsets (or blocks) such
that T =

⋃
i Ui. The (heat-bath) block dynamics with blocks U is a standard Markov chain

for the Gibbs distribution µτ
T . If the configuration at time t is σt, the next configuration

σt+1 is generated as follows:

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:7

ℓ

v

(a) B(v, ℓ).

ℓ · · ·
i

(b) Bℓ
i .

ℓ

(c) T ℓ
j .

Figure 1 An illustration of the sets B(v, ℓ), Bℓ
i , and T ℓ

j , where ℓ represents the number of levels.

1. Pick an integer j ∈ {1, 2, . . . , r} uniformly at random;
2. Draw a sample σt+1 from the conditional Gibbs distribution µσt

Uj
; that is, update the

configuration in Uj with a new configuration distributed according to the conditional
measure in Uj given the configuration of σt on (T ∪∂T)\Uj and the boundary condition τ .

We consider a special choice of blocks, where each block is a disjoint union of small subtrees
of constant height forming a tiling structure. For 0 ≤ i ≤ h + 1, let Li denote the set of
vertices of T that are of distance exactly i from the boundary ∂T ; in particular, L0 = ∅ and
Lh+1 contains only the root of T . (It will be helpful to define Li = ∅ for i < 0 or i > h + 1.)
Let Fi = ∪j≤iLj be the set of vertices at distance at most i from ∂T ; then F0 = ∅ and
Fh+1 = T . We further define Fi = ∅ for i < 0 and Fi = T for i > h + 1. For each i ∈ N+ let

Bℓ
i = Fi\Fi−ℓ =

⋃
i−ℓ<j≤i

Lj . (2)

In words, Bℓ
i is the collection of all the subtrees of T of height ℓ − 1 with roots at distance

exactly i from ∂T ; see Figure 1(b). Finally, for each 1 ≤ j ≤ ℓ + 1, we define

T ℓ
j =

⋃
0≤k≤ h+ℓ−j

ℓ+1

Bℓ
j+k(ℓ+1). (3)

The set T ℓ
j contains all the subtrees of T whose roots are at distance j + k(ℓ + 1) from ∂T

for some non-negative integer k; the height of each subtree (except the top and bottom ones)
is ℓ − 1. Also notice that all the subtrees in T ℓ

j are at (graph) distance at least 2 from each
other, and thus they create a tiling pattern over T . Therefore, we call the block dynamics
with blocks U = {T ℓ

1 , . . . , T ℓ
ℓ+1} the tiled block dynamics; see Figure 1(c). The transition

matrix of the tiled block dynamics is denoted by Ptb.

Mixing and relaxation times. Let P be the transition matrix of an ergodic Markov chain
over a finite set Φ with stationary distribution ν. We use P t(X0, ·) to denote the distribution
of the chain after t steps starting from X0 ∈ Φ. The mixing time of P is defined as
τmix(P) = max

X0∈Φ
min {t ≥ 0 : ∥P t(X0, ·) − ν∥tv ≤ 1/4} , where ∥ · ∥tv denotes total variation

distance.
When P is reversible, its spectrum is real and we let 1 = λ1 > λ2 ≥ ... ≥ λ|Φ| ≥ −1

denote its eigenvalues (1 > λ2 when P is irreducible). The absolute spectral gap of P is
defined by gap(P) = 1 − λ∗, where λ∗ = max{|λ2|, |λ|Φ||}. If P is ergodic (i.e., irreducible
and aperiodic), then gap(P) > 0, and it is a standard fact that if νmin = minx∈Φ ν(x), then(

gap(P)−1 − 1
)

log 2 ≤ τmix(P) ≤ gap(P)−1 log
(
4ν−1

min
)

; (4)

see [38]. The relaxation time of the chain is defined as gap(P)−1.

APPROX/RANDOM 2021

43:8 The Swendsen-Wang Dynamics on Trees

Analytic tools. We review next some useful tools from functional analysis; we refer the
reader to [42, 46] for more extensive background. We can endow RΦ with the inner product
⟨f, g⟩ν =

∑
x∈Φ f(x)g(x)ν(x) for two functions f, g : Φ → R. The resulting Hilbert space is

denoted by L2(ν) = (RΦ, ⟨·, ·⟩ν) and P defines an operator from L2(ν) to L2(ν).
Let 1 : Φ → R be the constant “all 1” function (i.e., 1(x) = 1 ∀x ∈ Φ) and let I denote

the identity mapping over all functions (i.e., If = f for all f : Φ → R). We then define:

Eν(f) =
∑
x∈Φ

f(x)ν(x) = ⟨f, 1⟩ν , and

Varν(f) = Eν(f2) − Eν(f)2 = ⟨f, (I − 1ν)f⟩ν

as the expectation and variance of the function f with respect to (w.r.t.) the measure
ν. Likewise, for a function f : Ω → R≥0 we define the entropy of f with respect to ν as
Entν(f) = Eν

[
f log

(
f

Eν (f)
)]

.

Often, we will consider ν to be the conditional Gibbs distribution µη
A for some A ⊆ T and

η ∈ Ω. In those cases, to simplify the notation, we shall write Eη
A(f) for Eµη

A
(f), Varη

A(f)
for Varµη

A
(f), and Entη

A(f) for Entµη
A

(f).
The Dirichlet form of a reversible Markov chain with transition matrix P is defined as

EP (f, f) = ⟨f, (I − P)f⟩ν = 1
2

∑
x,y∈Φ

ν(x)P (x, y)(f(x) − f(y))2, (5)

for any f : Φ → R. We say P is positive semidefinite if ⟨f, Pf⟩ν ≥ 0 for all functions
f : Φ → R. In this case P has only nonnegative eigenvalues. If P is positive semidefinite,
then the absolute spectral gap of P satisfies

gap(P) = 1 − λ2 = inf
f :Φ→R

Varν (f)̸=0

EP (f, f)
Varν(f) . (6)

3 Variance Mixing implies fast mixing: Proof of Theorem 1

We start with the formal definition of the Variance Mixing (VM) condition introduced by
Martinelli, Sinclair and Weitz [40]. Throughout this section, we consider the Potts model on
the n-vertex d-ary complete tree T = T d

h with a fixed boundary condition τ ; hence, for ease
of notation we set µ := µτ

T and Ω := Ωτ .
For v ∈ T , let Tv denote the subtree of T rooted at v. For boundary condition η ∈ Ω and

a function g : Ωη
Tv

→ R, we define the function gv : [q] → R as the conditional expectation

gv(a) = Eη
Tv

[g | σv = a] =
∑

σ∈Ωη
Tv

:σv=a

µη
Tv

(σ | σv = a)g(σ). (7)

In words, gv(a) is the conditional expectation of the function g under the distribution µη
Tv

given that the root of Tv (i.e, the vertex v) is set to spin a ∈ [q]. We also consider the
expectation and variance of gv w.r.t. the projection of µη

Tv
on v. In particular,

Eη
Tv

[gv] =
∑

a∈[q]
µη

Tv
(σv = a)gv(a) = Eη

Tv
[g], and

Varη
Tv

[gv] = Eη
Tv

[g2
v] − Eη

Tv
[gv]2.

For an integer ℓ ≥ 1, we define B(v, ℓ) as the set of vertices of Tv that are at distance less
than ℓ from v; see Figure 1(a). We say that the function g : Ωη

Tv
→ R is independent of

the configuration on B(v, ℓ) if for all σ, σ′ ∈ Ωη
Tv

such that σ(B(v, ℓ)) ̸= σ′(B(v, ℓ)) and
σ(Tv \ B(v, ℓ)) = σ′(Tv \ B(v, ℓ)), we have g(σ) = g(σ′). We can now define VM.

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:9

▶ Definition 7 (Variance Mixing (VM)). The Gibbs distribution µ = µτ
T satisfies VM(ℓ, ε)

if for every v ∈ T , every η ∈ Ω, and every function g : Ωη
Tv

→ R that is independent of the
configuration on B(v, ℓ), we have Varη

Tv
(gv) ≤ ε · Varη

Tv
(g). We say that the VM condition

holds if there exist constants ℓ and ε = ε(ℓ) such that VM(ℓ, ε) holds.

The VM condition is a spatial mixing property that captures the rate of decay of
correlations, given by ε = ε(ℓ), with the distance ℓ between v ∈ T and the set Tv \ B(v, ℓ).
To see this, note that, roughly speaking, Varη

Tv
(gv) is small when gv(a) = Eη

Tv
[g | σv = a] is

close to gv(b) = Eη
Tv

[g | σv = b] for every a ̸= b. Since g is independent of the configuration
on B(v, ℓ), this can only happen if the spin at v, which is at distance ℓ from Tv \ B(v, ℓ),
has only a small influence on the projections of the conditional measures µη

Tv
(· | σv = a),

µη
Tv

(· | σv = b) to Tv \ B(v, ℓ).
It was established in [40, 41] that VM implies optimal mixing of the Glauber dynamics;

this was done by analyzing a block dynamics that updates one random block B(v, ℓ) in each
step. This block dynamics behaves similarly to the Glauber dynamics since all blocks are
of constant size, and there are a linear number of them; see [40, 41] for further details.
Our goal here is to establish optimal mixing of global Markov chains, and thus we require
a different spatial mixing condition that captures decay of correlations in a more global
manner. For this, we introduce the notion of Parallel Variance Mixing (PVM). Recall that
for 0 ≤ i ≤ h + 1, Li is the set all vertices at distance exactly i from the boundary ∂T ,
Fi = ∪j≤iLj , and Bℓ

i = Fi\Fi−ℓ; see Figures 1(b) and 1(c).
For 1 ≤ i ≤ h + 1, η ∈ Ω and g : Ωη

Fi
→ R, consider the function gLi : [q]Li → R given by

gLi(ξ) = Eη
Fi

[g | σLi
= ξ] =

∑
σ∈Ωη

Fi
:σLi

=ξ

µη
Fi

(σ | σLi
= ξ)g(σ),

for ξ ∈ [q]Li . That is, gLi
(ξ) is the conditional expectation of function g under the distribution

µη
Tv

conditioned on the configuration of the level Li being ξ. Thus, we may consider the
expectation and variance of gLi

w.r.t. the projection of µη
Tv

to Li; namely, Eη
Fi

[gLi
] = Eη

Fi
[g]

and Varη
Fi

[gLi] = Eη
Fi

[g2
Li

] − Eη
Fi

[gLi]2. The PVM condition is defined as follows.

▶ Definition 8 (Parallel Variance Mixing (PVM)). The Gibbs distribution µ = µτ
T satisfies

PVM(ℓ, ε) if for every 1 ≤ i ≤ h + 1, every η ∈ Ω, and every function g : Ωη
Fi

→ R that
is independent of the configuration on Bℓ

i , we have Varη
Fi

(gLi
) ≤ ε · Varη

Fi
(g). The PVM

condition holds if there exist constants ℓ and ε = ε(ℓ) such that PVM(ℓ, ε) holds.

PVM is a natural global variant of VM since Fi =
⋃

v∈Li
Tv and Bℓ

i =
⋃

v∈Li
B(v, ℓ). We

can show that the two properties are actually equivalent.

▶ Theorem 9. For every ℓ ∈ N+ and ε ∈ (0, 1), the Gibbs distribution µ satisfies VM(ℓ, ε)
if and only if µ satisfies PVM(ℓ, ε).

In order to show the equivalence between VM and PVM, we introduce a more general spatial
mixing condition which we call General Variance Mixing (GVM). We define GVM for general
product distributions (see Definition 12) and reinterpret VM and PVM as special cases of
this condition. This alternative view of VM and PVM in terms of GVM is quite useful since
we can recast the GVM condition as a bound on the spectral gap of a certain Markov chain;
this is one key insight in the proof of Theorem 5 and is discussed in detail in Section 3.1.

Now, while VM implies optimal mixing of the Glauber dynamics, we can show that PVM
implies a constant bound on the spectral gap of the tiled block dynamics. Recall that this is
the heat-bath block dynamics with block collection U = {T ℓ

1 , . . . , T ℓ
ℓ+1} defined in Section 2.

APPROX/RANDOM 2021

43:10 The Swendsen-Wang Dynamics on Trees

▶ Theorem 10. If there exist ℓ ∈ N+ and δ ∈ (0, 1) such that µ = µτ
T satisfies PVM(ℓ, ε)

for ε = 1−δ
2(ℓ+1) , then the relaxation time of the tiled block dynamics is at most 2(ℓ + 1)/δ.

To prove Theorem 10, we adapt the methods from [40, 41] to our global setting. Our result
for the spectral gap of the SW dynamics (Theorem 1) is then obtained through comparison
with the tiled block dynamics. We prove the following comparison result between the SW
dynamics and a large class of block dynamics, which could be of independent interest.

▶ Theorem 11. Let D = {D1, . . . , Dm} be such that Di ⊆ T and ∪m
i=1Di = T . Suppose

that each block Dk is such that Dk = ∪ℓk
j=1Dkj where dist(Dkj , Dkj′) ≥ 2 for every j ̸= j′

and let vol(D) = maxk,j |Dkj |. Let BD be the transition matrix of the (heat-bath) block
dynamics with blocks D and let SW denote the transition matrix for the SW dynamics.
Then, gap(SW) ≥ exp(−O(vol(D))) · gap(BD).

The blocks of the tiled block dynamics satisfy all the conditions in this theorem, and, in
addition, vol(D) = O(1). Hence, combining all the results stated in this section, we see that
Theorem 1 from introduction follows.

Proof of Theorem 1. Follows from Theorems 9–11. ◀

3.1 Equivalence between VM and PVM: Proof of Theorem 9
In this section we establish the equivalence between VM and PVM. We start with the
definition of General Variance Mixing (GVM). Let Φ and Ψ be two finite sets and let ρ(·, ·)
be an arbitrary joint distribution supported on Φ × Ψ. Denote by ν and π the marginal
distributions of ρ over Φ and Ψ, respectively. That is, for x ∈ Φ we have ν(x) =

∑
y∈Ψ ρ(x, y),

and for y ∈ Ψ we have π(y) =
∑

x∈Φ ρ(x, y). We consider two natural matrices associated to
ρ. For x ∈ Φ and y ∈ Ψ, define

P ↑(x, y) = ρ(y | x) = ρ(x, y)
ν(x) , and P ↓(y, x) = ρ(x | y) = ρ(x, y)

π(y) ; (8)

P ↑ is a |Φ| × |Ψ| matrix while P ↓ is a |Ψ| × |Φ| matrix. In addition, observe that P ↑P ↓ and
P ↓P ↑ are transition matrices of Markov chains reversible w.r.t. ν and π, respectively.

▶ Definition 12 (GVM for ρ). We say that the joint distribution ρ satisfies GVM(ε) if for
every function f : Φ → R we have Varπ(P ↓f) ≤ ε · Varν(f).

One key observation in our proof is that the GVM condition can be expressed in term of
the spectral gaps of the matrices P ↑P ↓ and P ↓P ↑.

▶ Lemma 13. The joint distribution ρ satisfies GVM(ε) if and only if gap(P ↑P ↓) =
gap(P ↓P ↑) ≥ 1 − ε.

Before providing the proof of Lemma 13, we recall the definition of the adjoint operator.
Let S1 and S2 be two Hilbert spaces with inner products ⟨·, ·⟩S1 and ⟨·, ·⟩S2 respectively, and
let K : S2 → S1 be a bounded linear operator. The adjoint of K is the unique operator
K∗ : S1 → S2 satisfying ⟨f, Kg⟩S1 = ⟨K∗f, g⟩S2 for all f ∈ S1 and g ∈ S2. When S1 = S2,
K is called self-adjoint if K = K∗. We can now provide the proof of Lemma 13.

Proof of Lemma 13. It is straightforward to check that P ↑1 = 1, P ↓1 = 1, νP ↑ = π,
πP ↓ = ν, and that the operator P ↑ : L2(π) → L2(ν) is the adjoint of the operator P ↓ :
L2(ν) → L2(π). Hence, both P ↑P ↓ and P ↓P ↑ are positive semidefinite and have the same
multiset of non-zero eigenvalues. Now, for f : Φ → R, we have

Varπ(P ↓f) =
〈
P ↓f, (I − 1π)P ↓f

〉
π

=
〈
f, P ↑(I − 1π)P ↓f

〉
ν

=
〈
f, P ↑P ↓f

〉
ν

− ⟨f, 1νf⟩ν .

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:11

Therefore, Varπ(P ↓f) ≤ ε · Varν(f) holds if and only if〈
f, P ↑P ↓f

〉
ν

− ⟨f, 1νf⟩ν ≤ ε · (⟨f, f⟩ν − ⟨f, 1νf⟩ν)
⇔

〈
f, (I − P ↑P ↓)f

〉
ν

≥ (1 − ε) · ⟨f, (I − 1ν)f⟩ν

⇔ EP ↑P ↓(f, f) ≥ (1 − ε) · Varν(f).

The lemma then follows from (6). ◀

We provide next the proof of Theorem 9, which follows from Lemma 13 and interpretations
of VM and PVM by GVM. Given F = A ∪ B ⊆ T and η ∈ Ω, let P ↑ = (P η

F)A↑B denote the
q|A\B| × q|B\A| stochastic matrix indexed by the configurations on the sets A \ B and B \ A,
such that for ξ ∈ [q]A\B and ξ′ ∈ [q]B\A we have P ↑(ξ, ξ′) = µη

F (σB\A = ξ′ | σA\B = ξ).
In words, P ↑ corresponds to the transition matrix that given the configuration ξ in A \ B

updates the configuration in B \ A from the conditional distribution µη
F (· | ξ). We define in

a similar manner the q|B\A| × q|A\B| stochastic matrix P ↓ = (P η
F)B↓A where for ξ′ ∈ [q]B\A

and ξ ∈ [q]A\B we have P ↓(ξ′, ξ) = µη
F (σA\B = ξ | σB\A = ξ′).

If we set ρ to be the marginal of µη
F on (A \ B) ∪ (B \ A), then Φ = [q]A\B , Ψ = [q]B\A,

and ν and π are the marginals of µη
F on A \ B and B \ A, respectively. Therefore, according

to Definition 12, GVM(ε) holds for the marginal of µη
F on (A \ B) ∪ (B \ A) if Varπ(P ↓f) ≤

ε · Varν(f) for every function f : Φ → R.
Now, note that a function g : Ωη

F → R independent of B only depends on the configuration
on A\B. Thus, for fixed η, g induces a function f : Φ → R; in particular, Varη

F (g) = Varν(f).
Moreover, letting gB\A(ξ) := Eη

F [g | σB\A = ξ], we have gB\A(ξ) = P ↓f(ξ) for every
ξ ∈ Ψ = [q]B\A, and so Varη

F (gB\A) = Varπ(P ↓f). Consequently, we arrive at the following
equivalences between VM, PVM and GVM.

▶ Proposition 14.
1. The Gibbs distribution µ satisfies VM(ℓ, ϵ) if and only if for every v ∈ T and η ∈ Ω,

GVM(ε) holds for the marginal of µη
Tv

on (Tv \ B(v, ℓ)) ∪ {v}.
2. The Gibbs distribution µ satisfies PVM(ℓ, ϵ) if and only if for every i such that 1 ≤ i ≤ h+1

and η ∈ Ω, GVM(ε) holds for the marginal of µη
Fi

on (Fi \ ∪v∈Li
B(v, ℓ)) ∪ Li.

To see part 1 simply note that in the notation above, we can set F = Tv, A = Tv \ v and
B = B(v, ℓ). For part 2, we set F = Fi, A = Fi−1 and B = Bℓ

i .

Proof of Theorem 9. From Proposition 14 and Lemma 13, VM(ℓ, ϵ) holds if and only if
gap(Qv) ≥ 1 − ε for every v ∈ T and η ∈ Ω, where Qv = (P η

Tv
)B(v,ℓ)↓(Tv\v)(P η

Tv
)(Tv\v)↑B(v,ℓ).

Similarly, µ satisfies PVM(ℓ, ϵ) if and only if gap(QLi
) ≥ 1−ε for every i such that 1 ≤ i ≤ h+1

and η ∈ Ω, where QLi = (P η
Fi

)Bℓ
i
↓Fi−1(P η

Fi
)Fi−1↑Bℓ

i
.

Since Fi =
⋃

v∈Li
Tv and the Tv’s are at distance at least two from each other, µη

Fi
(σLi = ·)

is a product distribution; in particular µη
Fi

(σLi
= ·) =

∏
v∈Li

µη
Tv

(σv = ·) and the chain with
transition matrix QLi

is a product Markov chain where each component corresponds to Qv

for some v ∈ Li. A standard fact about product Markov chains, see, e.g., [9, Lemma 4.7],
then implies that gap(QLi

) = minv∈Li
gap(Qv) and the result follows. ◀

4 Entropy Mixing: Proof of Theorem 2

Let E ⊆ T denote the set of all even vertices of the tree T , where a vertex is called even if
its distance to the leaves is even; let O = T \ E be the set of all odd vertices. We show that
EM (i.e., entropy mixing) as defined in [40] implies a factorization of entropy into even and

APPROX/RANDOM 2021

43:12 The Swendsen-Wang Dynamics on Trees

odd subsets of vertices. This even-odd factorization was recently shown to imply O(log n)
mixing of the SW dynamics on bipartite graphs [8].

We start with the definition of EM, which is the analog of the VM condition for entropy.
Let τ be a fixed boundary condition and again set µ := µτ

T and Ω := Ωτ for ease of notation.
Recall that for v ∈ T , we use Tv for the subtree of T rooted at v. Recall that for η ∈ Ω and
g : Ωη

Tv
→ R, we defined the function gv(a) = Eη

Tv
[g | σv = a] for a ∈ [q]; see (7).

▶ Definition 15 (Entropy Mixing (EM)). The Gibbs distribution µ = µτ
T satisfies EM(ℓ, ε)

if for every v ∈ T , every η ∈ Ω, and every function g : Ωη
Tv

→ R that is independent of the
configuration on B(v, ℓ), we have Entη

Tv
(gv) ≤ ε · Entη

Tv
(g). The EM condition holds if there

exist constants ℓ and ε = ε(ℓ) such that EM(ℓ, ε) holds.

Extending our notation from the previous section for the variance functional, for A ⊆ T

and a function f : Ω → R≥0, we use EntA(f) for the conditional entropy of f w.r.t. µ given
a spin configuration in T \ A; i.e., for ξ ∈ Ω we have

(EntA(f))(ξ) = Entξ
A(f) = Entµ[f | σT \A = ξT \A].

In particular, we shall write Ent(f) = EntT (f) = Entµ(f). Notice that EntA(f) can be
viewed as a function from [q]T \A to R≥0 and E[EntA(f)] denotes its mean, averaging over
the configuration on T \ A. We state next our even-odd factorization of entropy.

▶ Theorem 16. If there exist ℓ ∈ N+ and ε ∈ (0, 1) such that µ = µτ
T satisfies EM(ℓ, ε),

then there exists a constant Ceo = Ceo(ℓ, ε) independent of n such that for every function
f : Ω → R≥0 we have Ent(f) ≤ Ceo (E[EntE(f)] + E[EntO(f)]) .

Theorem 2 follows immediately.

Proof of Theorem 2. By Theorem 16, EM implies the even-odd factorization of entropy,
and the results in [8] imply that the mixing time of the SW dynamics is O(log n). ◀

Our main technical contribution in the proof Theorem 2 is thus Theorem 16; namely, that
EM implies the even-odd factorization of entropy. To prove Theorem 16, we will first
establish entropy factorization for the tiled blocks defined in (3) and (2); see also Figures 1(b)
and 1(c). From the tiled block factorization of entropy we then deduce the desired even-odd
factorization. This approach is captured by the following two lemmas.

▶ Lemma 17. If there exist ℓ ∈ N+ and ε ∈ (0, 1) such that µ = µτ
T satisfies EM(ℓ, ε),

then there exists a constant Ctb = Ctb(ℓ, ε) independent of n such that, for every function
f : Ω → R≥0, Ent(f) ≤ Ctb ·

∑ℓ+1
j=1 E[EntT ℓ

j
(f)].

▶ Lemma 18. If for every function f : Ω → R≥0 we have Ent(f) ≤ Ctb ·
∑ℓ+1

j=1 E[EntT ℓ
j
(f)],

then there exists Ceo = Ceo(Ctb, ℓ) such that for every function f : Ω → R≥0 we have

Ent(f) ≤ Ceo (E[EntE(f)] + E[EntO(f)]) .

Proof of Theorem 16. Follows directly from Lemmas 17 and 18. ◀

We proved a version of Lemma 17 for the variance functional as part of the proof of Theorem 10,
and the same argument can then be easily adapted to entropy. We provide next the proof of
Lemma 18, which contains the main novelty in our proof of Theorem 16.

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:13

Proof of Lemma 18. First, we claim that there exists a constant C ′ = C ′(ℓ) such that for
every function f : Ωη

B(v,ℓ) → R≥0 one has the following inequality:

Entη
B(v,ℓ)(f) ≤ C ′

(
Eη

B(v,ℓ)[EntB(v,ℓ)∩E(f)] + Eη
B(v,ℓ)[EntB(v,ℓ)∩O(f)]

)
. (9)

To deduce (9), consider the even-odd block dynamics M in B(v, ℓ) with boundary condition
η and blocks U = {E ∩ B(v, ℓ), O ∩ B(v, ℓ)}. A simple coupling argument implies that
the spectral gap of M is Ω(1). Then, Corollary A.4 from [19] implies that the log-Sobolev
constant α(M) of M is Ω(1), which establishes (9) with constant C ′ = O(1/α(M)). We note
that all bounds and comparisons in this argument are fairly crude, and, in fact, the constant
C ′ depends exponentially on |B(v, ℓ)|, but it is still independent of n.

Next, notice that, for any η ∈ Ω, µη

T ℓ
j

is the product of a collection of distributions
on (disjoint) subsets B(v, ℓ). Lemma 3.2 from [14] allows us to lift the “local” even-odd
factorization in each B(v, ℓ) from (9) to a “global” even-odd factorization in T ℓ

j . Specifically,
for every function f : Ωη

T ℓ
j

→ R≥0 we obtain

Entη

T ℓ
j

(f) ≤ C ′
(
Eη

T ℓ
j

[EntT ℓ
j

∩E(f)] + Eη

T ℓ
j

[EntT ℓ
j

∩O(f)]
)

.

Taking expectation over η, we get

E[EntT ℓ
j
(f)] ≤ C ′

(
E[EntT ℓ

j
∩E(f)] + E[EntT ℓ

j
∩O(f)]

)
≤ C ′ (E[EntE(f)] + E[EntO(f)]) ;

the last inequality follows from the fact that Entη
E(f) = Eη

E [EntT ℓ
j

∩E(f)] + Entη
E [ET ℓ

j
∩E(f)].

Summing up over j,
ℓ+1∑
j=1

E[EntT ℓ
j
(f)] ≤ C ′(ℓ + 1) (E[EntE(f)] + E[EntO(f)]) ,

and the result follows by taking Ceo = C ′(ℓ + 1). ◀

References

1 Blanca A., Chen Z., Štefankovič D., and Vigoda E. The Swendsen-Wang dynamics on trees.
arXiv preprint arXiv:2007.08068, 2020.

2 V. L. Alev and L. C. Lau. Improved analysis of higher order random walks and applications.
In Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2020.

3 N. Anari, K. Liu, and S. Oveis Gharan. Spectral independence in high-dimensional expanders
and applications to the hardcore model. In Proceedings of the 52nd Annual ACM Symposium
on Theory of Computing (STOC), 2020.

4 B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for shuffle-exchange
network and PRAM. IEEE Computer Architecture Letters, 36(10):1258–1263, 1987.

5 V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster
model is critical for q ≥ 1. Probability Theory and Related Fields, 153:511–542, 2012.

6 N. Berger, C. Kenyon, E. Mossel, and Y. Peres. Glauber dynamics on trees and hyperbolic
graphs. Probability Theory and Related Fields, 131(3):311–340, 2005.

7 H. A. Bethe. Statistical theory of superlattices. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences, 150(871):552–575, 1935.

8 A. Blanca, P. Caputo, D. Parisi, A. Sinclair, and E. Vigoda. Entropy decay in the Swendsen-
Wang dynamics on Zd. In Proceedings of the 53st Annual ACM Symposium on Theory of
Computing (STOC), page 1551–1564, 2021.

APPROX/RANDOM 2021

43:14 The Swendsen-Wang Dynamics on Trees

9 A. Blanca, P. Caputo, A. Sinclair, and E. Vigoda. Spatial Mixing and Non-local Markov
chains. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1965–1980, 2018.

10 A. Blanca, A. Galanis, L. A. Goldberg, D. Štefankovič, E. Vigoda, and K. Yang. Sampling
in uniqueness from the Potts and random-cluster models on random regular graphs. SIAM
Journal on Discrete Mathematics, 34(1):742–793, 2020.

11 A. Blanca, R. Gheissari, and E. Vigoda. Random-cluster dynamics in Z2: Rapid mixing with
general boundary conditions. Annals of Applied Probability, 30(1):418–459, 2020.

12 A. Blanca and A. Sinclair. Dynamics for the mean-field random-cluster model. Proceedings of
the 19th International Workshop on Randomization and Computation, pages 528–543, 2015.

13 M. Bordewich, C. Greenhill, and V. Patel. Mixing of the Glauber dynamics for the ferromagnetic
Potts model. Random Structures & Algorithms, 48(1):21–52, 2016.

14 P. Caputo and D. Parisi. Block factorization of the relative entropy via spatial mixing, 2020.
URL: https://arxiv.org/abs/2004.10574.

15 F. Cesi. Quasi–factorization of the entropy and logarithmic Sobolev inequalities for gibbs
random fields. Probability Theory and Related Fields, 120(4):569–584, 2001.

16 C. Cooper and A. M. Frieze. Mixing properties of the Swendsen-Wang process on classes of
graphs. Random Structures and Algorithms, 15(3-4):242–261, 1999.

17 M. Costeniuc, R. S. Ellis, and H. Touchette. Complete analysis of phase transitions and
ensemble equivalence for the Curie–Weiss–Potts model. Journal of Mathematical Physics,
46(6):063301, 2005.

18 P. Cuff, J. Ding, O. Louidor, E. Lubetzky, Y. Peres, and A. Sly. Glauber dynamics for the
mean-field Potts model. Journal of Statistical Physics, 149(3):432–477, 2012.

19 P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains.
Annals of Applied Probability, 6(3):695–750, 1996.

20 H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. Discontinuity of
the phase transition for the planar random-cluster and Potts models with q > 4. Annales de
l’ENS, 2016.

21 H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Continuity of the Phase Transition for
Planar Random-Cluster and Potts Models with 1≤q ≤4. Communications in Mathematical
Physics, 349(1):47–107, 2017.

22 M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz. Mixing in time and space for lattice spin
systems: A combinatorial view. Random Structure & Algorithms, 24(4):461–479, 2004.

23 R. G. Edwards and A. D. Sokal. Generalization of the Fortuin-Kasteleyn-Swendsen-Wang
representation and Monte Carlo algorithm. Physical Review D, 38(6):2009–2012, 1988.

24 Grimmett G. The random-cluster model. In Probability on discrete structures, pages 73–123.
Springer, 2004.

25 A. Galanis, D. Štefankovič, and E. Vigoda. Swendsen-Wang algorithm on the mean-field Potts
model. In Proceedings of the 19th International Workshop on Randomization and Computation,
pages 815–828, 2015.

26 A. Galanis, D. Štefankovič, E. Vigoda, and L. Yang. Ferromagnetic Potts model: Refined
#BIS-hardness and related results. SIAM Journal on Computing, 45(6):2004–2065, 2016.

27 H. O. Georgii. Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics.
Walter de Gruyter Inc, 1988.

28 A. Gerschenfeld and A. Montanari. Reconstruction for models on random graphs. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
194–204, 2007.

29 R. Gheissari, E. Lubetzky, and Y. Peres. Exponentially slow mixing in the mean-field
Swendsen-Wang dynamics. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1981–1988, 2018.

30 D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4):1203–1220, 1998.

https://arxiv.org/abs/2004.10574

A. Blanca, Z. Chen, D. Štefankovič, and E. Vigoda 43:15

31 O. Häggström. The random-cluster model on a homogeneous tree. Probability Theory and
Related Fields, 104:231–253, 1996.

32 T. P. Hayes and A. Sinclair. A general lower bound for mixing of single-site dynamics on
graphs. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 511–520, 2005.

33 M. Huber. A bounding chain for Swendsen-Wang. Random Structures & Algorithms, 22(1):43–
59, 2003.

34 M. Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in
Mathematics, Birkhäuser Verlag, 2003.

35 M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with non-negative entries. Journal of the ACM, 51(4):671–697, 2004.

36 J. Jonasson. The random cluster model on a general graph and a phase transition char-
acterization of nonamenability. Stochastic Processes and their Applications, 79(2):335–354,
1999.

37 R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm
for convex bodies. Random structures and algorithms, 11(1):1–50, 1997.

38 D. A. Levin, Y. Peres, and E. L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, 2008.

39 F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase
region. Communications in Mathematical Physics, 161(3):447–486, 1994.

40 F. Martinelli, A. Sinclair, and D. Weitz. The Ising model on trees: Boundary conditions and
mixing time. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 628–639, 2003.

41 F. Martinelli, A. Sinclair, and D. Weitz. Fast mixing for independent sets. In Proceedings
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 449–458.
colorings and other model on trees. In, 2004.

42 F. Martinelli and F. L. Toninelli. On the mixing time of the 2D stochastic Ising model with
“plus” boundary conditions at low temperature. Communications in Mathematical Physics,
296(1):175–213, 2010.

43 E. Mossel and Y. Peres. Information flow on trees. Annals of Applied Probability, 13(3):817–844,
2003.

44 E. Mossel and A. Sly. Exact thresholds for Ising–Gibbs samplers on general graphs. The
Annals of Probability, 41(1):294–328, 2013.

45 R. Restrepo, D. Štefankovič, C. Vera, E. Vigoda, and L. Yang. Phase transition for Glauber
dynamics for independent sets on regular trees. SIAM Journal on Discrete Mathematics,
28(2):835–861, 2014.

46 L. Saloff-Coste. Lectures on finite Markov chains. In Lectures on probability theory and
statistics, pages 301–413. 1997.

47 A. Sly. Reconstruction for the Potts model. The Annals of Probability, 39(4):1365–1406, 2011.
48 A. Sly and Y. Zhang. The Glauber dynamics of colorings on trees is rapidly mixing throughout

the nonreconstruction regime. The Annals of Applied Probability, 27(5):2646–2674, 2017.
49 R. H. Swendsen and J. S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations.

Physical Review Letters, 58:86–88, 1987.
50 M. Ullrich. Rapid mixing of Swendsen-Wang and single-bond dynamics in two dimensions.

Dissertationes Mathematicae, 502:64, 2014.

APPROX/RANDOM 2021

Distance Estimation Between Unknown Matrices
Using Sublinear Projections on Hamming Cube
Arijit Bishnu # Ñ

Indian Statistical Institute, Kolkata, India

Arijit Ghosh # Ñ

Indian Statistical Institute, Kolkata, India

Gopinath Mishra # Ñ

Indian Statistical Institute, Kolkata, India

Abstract
Using geometric techniques like projection and dimensionality reduction, we show that there exists
a randomized sub-linear time algorithm that can estimate the Hamming distance between two
matrices. Consider two matrices A and B of size n×n whose dimensions are known to the algorithm
but the entries are not. The entries of the matrix are real numbers. The access to any matrix is
through an oracle that computes the projection of a row (or a column) of the matrix on a vector
in {0, 1}n. We call this query oracle to be an Inner Product oracle (shortened as IP). We show
that our algorithm returns a (1 ± ϵ) approximation to DM(A, B) with high probability by making
O
(

n√
DM(A,B)

poly
(
log n, 1

ϵ

))
oracle queries, where DM(A, B) denotes the Hamming distance (the

number of corresponding entries in which A and B differ) between two matrices A and B of size
n × n. We also show a matching lower bound on the number of such IP queries needed. Though
our main result is on estimating DM(A, B) using IP, we also compare our results with other query
models.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Distance estimation, Property testing, Dimensionality reduction, Sub-linear
algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.44

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2107.02666

Acknowledgements The authors wish to thank their colleague Ansuman Banerjee for helpful
discussions on GPU architecture and CUDA.

1 Introduction

Measuring similarity between entities using a distance function has been a major area of focus
in computer science in general and computational geometry in particular [9, 8, 20, 19, 7].
Distance computations require access to the entire data and thus can not escape computations
that are linear in time complexity. In this era of big data, seeing the entire data may be
too much of an ask and trading precision for a time efficient algorithm is a vibrant area
of study in property testing [22]. Testing properties of binary images with sub-linear time
algorithms has been a focus of property testing algorithms [27, 26, 11, 24, 10]. Matrices
are ubiquitous in the sense that they represent or abstract a whole gamut of structures like
adjacency matrices of geometric graphs and visibility graphs, images, experimental data
involving 0-1 outcomes, etc. Pairwise distance computations between such matrices is a
much-needed programming primitive in image processing and computer vision applications

© Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 44; pp. 44:1–44:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arijit@isical.ac.in
https://www.isical.ac.in/~arijit/
mailto:arijitiitkgpster@gmail.com
https://sites.google.com/site/homepagearijitghosh/
mailto:gopianjan117@gmail.com
https://sites.google.com/view/gopinathmishra/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.44
https://arxiv.org/abs/2107.02666
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Distance Between Matrices Using Sublinear Projections on Hamming Cube

so much so that the widely used commercial toolbox MATLAB of MathWorks® [1] has
an inbuilt function call named pdist2(·, ·, ·) [2] for it. Other open source based software
packages also have similar primitives [3]. For all these primitives, the matrices need to be
known. But in all situations where access to the matrices are restricted (say, because of
security, privacy or communication issues) except for an oracle access, we want to know
how much the two matrices differ in their entries. Keeping in line with the above, we focus
on distance estimation problem between two matrices whose dimensions are known to the
algorithm but the entries are unknown; the access to the matrices will be through an oracle.
This oracle, though linear algebraic in flavor, has a geometric connotation to it. We hold
back the discussion on the motivation of the oracle till Section 1.1.

Notations

In this paper, we denote the set {1, . . . , t} by [t] and {0, . . . , t} by [[t]]. For a matrix A,
A(i, j) denotes the element in the i-th row and j-th column of A. Unless stated otherwise,
A will be a matrix with real entries. A(i, ∗) and A(∗, j) denote the i-th row vector and j-th
column vector of the matrix A, respectively. Throughout this paper, the number of rows
or columns of a square matrix A will be n. Vectors are matrices of order n × 1 and will
be represented using bold face letters. Without loss of generality, we consider n to be a
power of 2. The i-th coordinate of a vector x will be denoted by xi. We will denote by 1
the vector with all coordinates 1. Let {0, 1}n denote the set of n-dimensional vectors with
entries either 0 or 1. By ⟨x, y⟩, we denote the standard inner product of x and y, that is,
⟨x, y⟩ =

∑n
i=1 xiyi. P is a (1 ± ε)-approximation to Q means |P − Q| ≤ ε · Q. The statement

with high probability means that the probability of success is at least 1 − 1
nc , where c is a

positive constant. Θ̃(·) and Õ(·) hides a poly
(
log n, 1

ε

)
term in the upper bound. || · ||p

denotes the usual ℓp distance.

1.1 Query oracle definition and motivation, problem statements and our
results

▶ Definition 1.1 (Matrix distance). The matrix-distance between two matrices A and B of
size n × n is the number of pairwise mismatches and is denoted and defined as

DM(A, B) = |{(i, j) : i, j ∈ [n], A(i, j) ̸= B(i, j)}| .

As alluded to earlier, the matrices cannot be accessed directly, the sizes of the matrices are
known but the entries are unknown. We will refer to the problem as the matrix distance
problem. We consider the following query models to solve the matrix distance problem in
this paper.

Query oracles for unknown matrix A ∈ Rn×n

The main query oracle access used in this work is based on the inner product of two vectors
and is defined as follows:
Inner Product (IP): Given a row index i ∈ [n] (or, a column index j ∈ [n]) and a vector

v ∈ {0, 1}n, the IP query to A reports the value of ⟨A(i, ∗), v⟩ (⟨A(∗, j), v⟩). If the input
index is for row (column), we refer the corresponding query as row (column) IP query.

This linear algebraic oracle access has a geometric connotation to it in terms of projection
onto Hamming vectors – we exploit this understanding in our work. This oracle access is also
motivated from a practical angle. A dot product operation is a fit case for parallelization

A. Bishnu, A. Ghosh, and G. Mishra 44:3

using a Single Instruction Multiple Data (SIMD) architecture [23]. Modern day GPU
processors provide instruction level parallelism. In effect, NVIDIA GPUs that are built on
CUDA architecture, provide dot product between two vectors as a single API call [28, 4].
Thus, there exists practical implementation of the query oracle access that we use. There
are also examples of programming languages supporting SIMD intrinsics that can compute
dot product [5]. There is a caveat though – in terms of resource, more processors are used.
For us, in this work, the query complexity is the number of calls to the IP. As mentioned,
modern day architectures allow us to convert each IP query to a one cycle computation with
more processors used in parallel.

In the power hierarchy of matrix based query oracles, IP surely wields some power
vis-a-vis solving certain problems [14] 1. An obvious question that confronts an algorithm
designer is whether a weaker oracle can do the same job at hand (here, computing matrix
distance). With that in mind, we define the following two oracles and show that their query
complexity lower bounds on the matrix distance problem match the trivial upper bounds.
That shows the justification for use of IP.
Matrix Element (ME): Given two indices i, j ∈ [n], the ME query to A returns the

value of A(i, j).
Decision Inner Product (Dec-IP): Given a row index i ∈ [n] (or, a column index

j ∈ [n]) and a vector v ∈ {0, 1}n, the Dec-IP query to A reports whether ⟨A(i, ∗), v⟩
(⟨A(∗, j), v⟩) = 0. If the input index is for row (column), we refer the corresponding
query as row (column) Dec-IP query.

The following remark highlights the relative power of the query oracles.

▶ Remark 1. Each ME query can be simulated by using one Dec-IP oracle, and each
Dec-IP oracle can be simulated by using one IP query.

Our results

Our main result is an algorithm for estimating the distances between two unknown matrices
using IP, and the result is formally stated as follows. Unless otherwise mentioned, all our
algorithms are randomized.

▶ Theorem 1.2 (Main result: Estimating the distance between two arbitrary matrices). There
exists an algorithm that has IP query oracle access to unknown matrices A and B, takes an
ε ∈ (0, 1) as an input, and returns a (1±ε) approximation to DM(A, B) with high probability,
and makes O

((
n/
√

DM(A, B)
)

poly
(
log n, 1

ε

))
IP queries.

We also show that our algorithm (corresponding to the above theorem) is optimal, if
we ignore the poly

(
log n, 1

ε

)
term, by showing (in Theorem 4.1) that any algorithm that

estimates DM(A, B) requires Ω
(

n/
√

DM(A, B)
)

IP queries. For the sake of completeness
in understanding the power of IP, we study the matrix distance problem also using two
weaker oracle access – ME and Dec-IP. Our results are summarized in Table 1 and they
involve both upper and almost matching lower bounds in terms of the number of queries
needed. Note that all of our lower bounds hold even if one matrix (say A) is known and
both matrices (A and B) are symmetric binary matrices.

1 But the IP defined in this paper is weaker than that defined in [14] – in their case, one is allowed to
query for inner product of rows/columns of matrices with vectors in Rn.

APPROX/RANDOM 2021

44:4 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Table 1 Our results. In this table, D = DM(A, B).

Query Oracle ME Dec-IP IP

Upper Bound Õ
(

n2

D

)
Õ
(

n2

D

)
Õ
(

n√
D

)
(Trivial) (Trivial) (Theorem 1.2)

Lower Bound Ω
(

n2

D

)
Ω
(

n2

D

)
Ω
(

n√
D

)
(Corollary 4.3) (Theorem 4.1) (Theorem 4.2)

▶ Remark 2. Note that an IP query to a matrix A answers inner product of a specified
row (column) with a given binary vector. However, we will describe subroutines (of the
algorithm for estimating the distance between two matrices) that ask for inner product of a
specified row (column) with a given vector r ∈ {−1, 1}n. This is not a problem as ⟨A(i, ∗), r⟩
(⟨A(∗, j), r⟩) can be computed by using two IP queries (with binary vectors) 2. For simplicity,
we refer ⟨A(i, ∗), r⟩ (⟨A(∗, j), r⟩) also as IP query in our algorithm.

1.2 Related work
There are works in property testing and sub-linear geometric algorithms [15, 18, 17, 16].
In the specific problem that we deal with in this paper, to the best of our knowledge,
Raskhodnikova [26] started the study of property testing of binary images in the dense image
model, where the number of 1-pixels is Ω(n2). The notion of distance between matrices of
the same size is defined as the number of pixels (matrix entries) on which they differ. The
relative distance is the ratio of the distance and the number of pixels in the image. In this
model, Raskhodnikova studies three properties of binary images – connectivity, convexity,
and being a half-plane – in the property testing framework. Ron and Tsur [27] studied
property testing algorithms in the sparse binary image model (the number of 1-pixels is O(n))
for connectivity, convexity, monotonicity, and being a line. The distance measure in this
model is defined by the fraction of differing entries taken with respect to the actual number
of 1’s in the matrix. As opposed to treating binary images as discrete images represented
using pixels as in [27, 26], Berman et al. in [10] and [12] treated them as continuous images
and studied the problem of property testing for convexity of 2-dimensional figures with only
uniform and independent samples from the input. To the best of our knowledge, computing
distances between binary images has not been dealt with in the sub-linear time framework.

Organization of the paper

We prove Theorem 1.2 (in Section 1.1) through a sequence of results. To prove Theorem 1.2
that estimates the distance between two arbitrary matrices, we need a result that estimates
the distance between two symmetric matrices (Lemma 2.1 in Section 2) that in turn needs
a result on the estimation of the distance between two symmetric matrices with respect to
a parameter T (Lemma 2.2 in Section 2). Lemma 2.2 is the main technical lemma that
uses dimensionality reduction via Johnson Lindenstrauss lemma crucially. The technical
overview including the proof idea of Lemma 2.2 is in Section 2.1. The detailed proof idea is in
Section 2.2. Using communication complexity, we prove our lower bound results in Section 4.
The proof of lemma marked with ⋆ can be found in the full version of the paper [13].

2 For r ∈ {−1, 1}n, consider v1, v−1 ∈ {0, 1}n indicator vectors for +1 and −1 coordinates in r ∈ {−1, 1}n,
respectively. Then ⟨A(i, ∗), r⟩ = ⟨A(i, ∗), v1⟩ − ⟨A(i, ∗), v−1⟩. So, ⟨A(i, ∗), r⟩ can be computed with
two IP queries ⟨A(i, ∗), v1⟩ and ⟨A(i, ∗), v−1⟩. Similar argument also holds for ⟨A(∗, j), r⟩.

A. Bishnu, A. Ghosh, and G. Mishra 44:5

2 Matrix-Distance between two symmetric matrices

This section builds up towards a proof of Theorem 1.2 by first giving an algorithm that
estimates the matrix-distance between two unknown symmetric matrices (instead of arbitrary
matrices as in Theorem 1.2) with high probability. The result is formally stated in Lemma 2.1.
In Section 3, we will discuss how this result (stated in Lemma 2.1) can be used to prove
Theorem 1.2.

▶ Lemma 2.1 (Estimating the distance between two symmetric matrices). There exists an
algorithm Dist-Symm-Matrix(A, B, ε), that has IP query access to unknown symmetric
matrices A and B, takes an ε ∈

(
0, 1

2
)

as an input, and returns a (1 ± ε)-approximation to
DM(A, B) with high probability, making Õ

(
n/
√

DM(A, B)
)

IP queries.

First, we prove a parameterized version of the above lemma in Lemma 2.2 where we are
given a parameter T along with an ε ∈

(
0, 1

2
)

and we can obtain an approximation guarantee
on DM (A, B) as a function of both T and ε. One can think of T as a guess for DM(A, B).

▶ Lemma 2.2 ((⋆) Estimating the distance between two symmetric matrices w.r.t. a parameter
T). There exists an algorithm Dist-Symm-Matrix-Guess(A, B, ε, T), that has IP query
access to unknown symmetric matrices A and B, takes parameters T and ε ∈

(
0, 1

2
)

as inputs,
and returns d̂ satisfying

(
1 − ε

10
)

DM (A, B) − ε
1600 T ≤ d̂ ≤

(
1 + ε

10
)

DM (A, B) with high
probability, and makes Õ

(
n/

√
T
)

queries. Note that here T is at least a suitable polynomial
in log n and 1/ε.

In Section 2.1, we discuss some preliminary results to prove Lemma 2.2. The proof of
Lemma 2.2 is given in Section 2.2. If the guess T ≤ DM(A, B), Dist-Symm-Matrix-Guess
(A, B, ε, T) (as stated in Lemma 2.2) returns a (1 ± ε)-approximation to DM(A, B) with
high probability. However, this dependence on T can be overcome to prove Lemma 2.1 by
using a standard technique in property testing.

2.1 Technical preliminaries to prove Lemma 2.2
The matrix distance DM (A, B) can be expressed in terms of the notion of a distance between
a row (column) of matrix A and a row (column) of matrix B as follows:

▶ Definition 2.3 (Distance between two rows (columns)). Let A and B be two matrices of
order n × n. The distance between the i-th row of A and the j-th row of B is denoted and
defined as

dH (A(i, ∗), B(j, ∗)) = |{k ∈ [n] : A(i, k) ̸= B(j, k)}| ,

Similarly, dH (A(∗, i), B(∗, j)) is the distance between the i-th column of A and the j-th
column of B.

▶ Observation 2.4 (Expressing DM (A, B) as the sum of distance between rows (columns)).
Let A and B be two n × n matrices. The matrix distance between A and B is given by

DM(A, B) =
n∑

i=1
dH (A(i, ∗), B(i, ∗)) =

n∑
i=1

dH (A(∗, i), B(∗, i)) .

For a given i ∈ [n], we can approximate dH (A(i, ∗), B(i, ∗)) and dH (A(∗, i), B(∗, i))
using IP queries as stated in Lemma 2.5. This can be shown by an application of the
well-known Johnson-Lindenstrauss Lemma [6].

APPROX/RANDOM 2021

44:6 Distance Between Matrices Using Sublinear Projections on Hamming Cube

▶ Lemma 2.5 (Estimating the distance between rows of A and B). Consider IP access to
two n × n (unknown) matrices A and B. There is an algorithm Dist-Bet-Rows(i, α, δ),
that takes i ∈ [n] and α, δ ∈ (0, 1) as inputs, and reports a (1 ± α)-approximation to
dH (A(i, ∗), B(i, ∗)) with probability at least 1 − δ, and makes O

(
log n
α2 log 1

δ

)
IP queries to

both A and B.

As it is sufficient for our purpose, in the above lemma, we discussed about estimating the
distance between rows of A and B with the same index. However, we note that, a simple
modification to the algorithm corresponding to Lemma 2.5 also works for estimating the
distance between any row and/or column pair.

▶ Proposition 2.6 (Johnson-Lindenstrauss Lemma). Let us consider any pair of points
u, v ∈ RN . For a given ε ∈ (0, 1) and δ ∈ (0, 1), there is a map f : RN → Rd such that
d = Θ

(1
ε2 log 1

δ

)
satisfying the following bound with probability at least 1 − δ.

(1 − ε)||u − v||22 ≤ ||f(u) − f(v)||22 ≤ (1 + ε)||u − v||22. (1)

▶ Remark 3 (An explicit mapping in Johnson-Lindenstrauss Lemma). An explicit mapping
f : Rn → Rd satisfying Equation 1 is as follows. Consider r1, . . . , rd ∈ {−1, 1}n such that
each coordinate of every ri is taken from {−1, 1} uniformly at random. Then for each
u ∈ {0, 1}n,

f(u) = 1√
d

(⟨u, r1⟩, ⟨u, r2⟩, . . . , ⟨u, rd⟩) .

Identity testing between two rows

Now, let us discuss an algorithm where the objective is to decide whether the i-th row vectors
of matrices A and B are identical. Observe that ||A(i, ∗) − B(j, ∗)||2 = 0 if and only if
dH (A(i, ∗), B(j, ∗)) = 0. Also notice that, for a function f : Rn → Rd satisfying Equation 1,
||u − v||2 = 0 if and only if ||f(u) − f(v)||2 = 0. This discussion along with Proposition 2.6
and Remark 3 imply an algorithm (described inside Observation 2.9) that can decide whether
corresponding rows of A and B are identical. Observation 2.9 is stated in a more general
form than discussed here. Note that the general form will be needed to show Lemma 2.5.
For this purpose, we define the notion of projecting a vector in {−1, 1}n onto a set S ⊆ [n]
as defined below and an observation (Observation 2.8) about evaluating the projection using
an IP query.

▶ Definition 2.7 (Vector projected onto a set). Let A be an n × n matrix and i ∈ [n]. For
a subset S ⊆ [n], A(i, ∗) |S ∈ Rn is defined as the vector having ℓ-th coordinate equals to
A(i, ℓ) if ℓ ∈ S, and 0, otherwise. Also consider r ∈ {−1, 1}n and a set S ⊆ [n]. Then the
vector r projected onto S is denoted by r|S ∈ {−1, 0, 1}n and defined as follows: For ℓ ∈ [n],
the ℓ-th coordinate of r|S is same as that of r if ℓ ∈ S, and 0, otherwise.

▶ Observation 2.8. Let A be a n × n matrix, i ∈ [n], r ∈ {−1, 1}n and S ⊆ [n]. Then
⟨A(i, ∗)|S , r⟩ = ⟨A(i, ∗), r|S⟩. That is, ⟨A(i, ∗), r|S⟩ can be evaluated by using a IP query
⟨A(i, ∗), r|S⟩ to matrix A.

▶ Observation 2.9 (Identity testing between rows of A and B). Consider IP access to two
n × n (unknown) matrices A and B. There is an algorithm Identity (S, i, δ) that takes
i ∈ [n], S ⊆ [n] and δ ∈ (0, 1) as inputs, and decides whether dH (A(i, ∗) |S , B(i, ∗) |S) = 0
with probability at least 1 − δ, and makes O

(
log 1

δ

)
IP queries to both A and B.

A. Bishnu, A. Ghosh, and G. Mishra 44:7

Proof. Let the vectors r1, . . . , rd ∈ {−1, 1}n be such that each coordinate of every rj ,
j = 1, . . . , d, is taken from {−1, 1} uniformly at random where d = Θ

(
log 1

δ

)
. Then the

algorithm finds aj = ⟨A(i, ∗)|S , rj⟩ and bj = ⟨B(i, ∗)|S , rj⟩ by making one IP query to each
of A and B. This is possible by Observation 2.8. The algorithm makes d IP queries to each
of the matrices A and B. Take a = 1√

d
(a1, . . . , ad) ∈ Rd and b = 1√

d
(b1, . . . , bd) ∈ Rd. By

Proposition 2.6 and Remark 3, ||a−b||2 = 0 if and only if ||A(i, ∗) |S , B(i, ∗) |S ||2 = 0. By the
definition of distance between a row of one matrix and a row of another matrix (Definition 2.3),
note that, ||A(i, ∗) |S − B(j, ∗) |S ||2 = 0 if and only if dH (A(i, ∗) |S , B(j, ∗) |S) = 0. So, the
algorithm finds ||a−b||2 and, reports ||a−b||2 = 0 if and only if dH (A(i, ∗) |S , B(i, ∗) |S) = 0.
The correctness and query complexity of the algorithm follows from the description itself. ◀

Estimating the distance between rows induced by a set

Now, consider the algorithm corresponding to Lemma 2.5 (Dist-Bet-Rows(·, ·, ·)) that
can estimate the distance between a row of A and a row of B. It makes repeated calls
to Identity(·, ·, ·) in a non-trivial way. Also, algorithm Dist-Bet-Rows(·, ·, ·)) can be
generalized to estimate the distance between a row of A and the corresponding row of B
projected onto the same set S ⊆ [n], as stated in the following Lemma.

▶ Lemma 2.10 ((⋆) Estimating the distance between rows of A and B induced by
a set S ⊆ [n]). Consider IP access to two n × n (unknown) matrices A and B.
Restrict-Dist-Bet-Rows(S, i, α, δ) algorithm, takes S ⊆ [n], i ∈ [n] and α, δ ∈ (0, 1)
as inputs, and reports a (1 ± α)-approximation to dH (A(i, ∗) |S , B(i, ∗) |S) with probability
at least 1 − δ, and makes O

(
log n
α2 log 1

δ

)
IP queries to both A and B.

Observe that Lemma 2.5 is a special case of Lemma 2.10 when S = [n]. Algorithm
Dist-Bet-Rows(i, α, δ) (corresponding to Lemma 2.5) is directly called as a subroutine
from Dist-Symm-Matrix-Guess(A, B, ε, T). Restrict-Dist-Bet-Rows(S, i, α, δ) is in-
directly called from a subroutine to sample mismatched element almost uniformly as explained
below.

Sampling a mismatched element almost uniformly

For a row i ∈ [n], let NEQ(A, B, i) = {j : A(i, j) ̸= B(i, j)} denote the set of mismatches.
Apart from estimating the distance between a row (column) of A and the corresponding row
(column) of B, we can also sample element from NEQ(A, B, i) almost uniformly for any
given i ∈ [n].

▶ Definition 2.11 (Almost uniform sample). Let X be a set and α ∈ (0, 1). A (1 ± α)-
uniform sample from X is defined as the sample obtained from a distribution p satisfying
(1 − α) 1

|X| ≤ p(x) ≤ (1 + α) 1
|X| for each x ∈ X, where p(x) denotes the probability of getting

x as a sample.

▶ Lemma 2.12 ((⋆) Sampling a mismatched element almost uniformly). Consider IP access to
two n×n (unknown) matrices A and B. There exists an algorithm Approx-Sample(i, α, δ),
that takes i ∈ [n] and α, δ ∈ (0, 1) as input, and reports a (1 ± α)-uniform sample from the
set NEQ(A, B, i) with probability at least 1 − δ, and makes O

(
log5 n

α2 log 1
δ

)
IP queries to

both A and B.

Note that algorithm Approx-Sample(·, ·, ·) calls repeatedly Restrict-Dist-Bet-Rows
(·, ·, ·, ·). We now have all the ingredients – Dist-Bet-Rows(i, α, δ), Dist-Symm-Matrix-
Guess(A, B, ε, T), Approx-Sample(i, α, δ) – to design the final algorithm Dist-Symm-
Matrix(A, B, ε).

APPROX/RANDOM 2021

44:8 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Overview of the algorithm

Algorithm Dist-Symm-Matrix(·, ·, ·) calls Dist-Symm-Matrix-Guess(·, ·, ·, ·) with re-
duced value of guesses O(log n) times to bring down the approximation error of matrix
distance within limits. Algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) discussed in
Lemma 2.2 mainly uses subroutines Dist-Bet-Rows(·, ·, ·) and Approx-Sample(·, ·, ·) in
a nontrivial way. Both of these subroutines use Johnson-Lindenstrauss lemma.

Observe that Dist-Symm-Matrix-Guess(A, B, ε, T) estimates DM(A, B) where the
approximation guarantee is parameterized by T . By Observation 2.4, we have DM(A, B) =∑n

i=1 dH(A(i, ∗), B(i, ∗)), the sum of the distances among corresponding rows. To estimate∑n
i=1 dH(A(i, ∗), B(i, ∗)), our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) considers

a partition of the row indices [n] into buckets such that the row indices i’s in the same
bucket have roughly the same dH(A(i, ∗), B(i, ∗)) values. Now the problem boils down to
estimating the sizes of the buckets. To do so, Dist-Symm-Matrix-Guess(A, B, ε, T) finds
a random sample Γ having Õ

(
n/

√
T
)

indices from [n], calls Dist-Bet-Rows(i, ·, ·) for
each of the sample in Γ and partitions Γ into buckets such that i’s in the same bucket have
roughly the same dH(A(i, ∗), B(i, ∗)) values. A large bucket is one that contains more than
a fixed number of row indices. These steps ensure that the sizes of the large buckets are
approximated well. Recall that Approx-Sample(i, α, δ) takes i ∈ [n] and α, δ ∈ (0, 1) as
input, and reports a (1 ± α)-uniform sample from the set NEQ(A, B, i) with probability at
least 1 − δ. To take care of the small buckets, Dist-Symm-Matrix-Guess(A, B, ε, T) calls
Approx-Sample(i, ·, ·) for suitable number of i’s chosen uniformly from each large bucket
and decides whether the output indices of Approx-Sample(i, ·, ·) belong to large or small
buckets. See the the following section for the technical description of our algorithm.

2.2 Proof of Lemma 2.2
Let us consider the following oracle that gives a probabilistic approximate estimate to the
distance between the two corresponding rows of A and B; A and B are two unknown n × n

matrices.

▶ Definition 2.13 (Oracle function on the approximate distance between rows). Let β, η ∈ (0, 1).
Oracle Oβ,η is a function Oβ,η : [n] → N, which when queried with an i ∈ [n], reports Oβ,η(i).
Moreover,

P (for every i ∈ [n], Oβ,η(i) is a (1 ± β)-approximation to dH (A(i, ∗), B(i, ∗))) ≥ 1 − η.

Take β = ε/50 and η = 1/poly (n) and consider an oracle Oβ,η as defined above. Also,
consider a partitioning of the indices in [n] into t = Θ

(
logε/50 n

)
many buckets with

respect to Oβ,η such that the i’s in the same bucket have roughly the same Oβ,η(i) values.
Let Y1, . . . , Yt ⊆ [n] be the resulting buckets with respect to Oβ,η. Formally, for k ∈ [t],
Yk = {i ∈ [n] :

(
1 + ε

50
)k−1 ≤ Oβ,η(i) <

(
1 + ε

50
)k}. From the definition of Oβ,η and the way

we are bucketing the elements of [n], the following observation follows.

▶ Observation 2.14 (Bucketing according to an oracle function). Let β = ε/50 and η ∈ (0, 1).
Consider any oracle Oβ,η : [n] → R as defined in Definition 2.13. Let Y1, . . . , Yt be the
buckets with respect to Oβ,η. Then(

1 − ε

50

)
DM(A, B) ≤

t∑
k=1

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)2
DM(A, B)

holds with probability at least 1 − η.

A. Bishnu, A. Ghosh, and G. Mishra 44:9

Proof. From Observation 2.4, DM(A, B) =
∑n

i=1 dH (A(i, ∗), B(i, ∗)) . So, by the definition
of Oβ,η along with β = ε/50, we have

P

((
1 − ε

50

)
DM(A, B) ≤

n∑
i=1

Oβ,η(i) ≤
(

1 + ε

50

)
DM(A, B)

)
≥ 1 − η. (2)

As Y1, . . . , Yt are the buckets with respect to Oβ,η, for k ∈ [t], Yk = {i ∈ [n] :
(
1 + ε

50
)k−1 ≤

Oβ,η(i) <
(
1 + ε

50
)k}. So,

n∑
i=1

Oβ,η(i) ≤
t∑

k=1
|Yk|

(
1 + ε

50

)k

≤
(

1 + ε

50

) n∑
i=1

Oβ,η(i) (3)

From Equations 2 and 3, the following holds with probability at least 1 − η.(
1 − ε

50

)
DM(A, B) ≤

t∑
k=1

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)2
DM(A, B). ◀

The above observation roughly says that DM(A, B) can be estimated if we can approximate
|Yk|’s.

The existence of the oracle

Before the description of the algorithm, we note that our algorithm does not need to know
the specific oracle Oβ,η : [n] → R. The existence of some oracle function Oβ,η : [n] → R
with respect to which [n] can be partitioned into buckets Y1, . . . , Yt suffices. Our algorithm
calls Dist-Bet-Rows(i, β, η) for some i’s but at most once for each i ∈ [n]. Note that
Dist-Bet-Rows(i, β, η) is the algorithm (as stated in Lemma 2.5) that returns a (1 ± β)-
approximation to dH(A(i, ∗), B(i, ∗)) with probability at least 1−η. So, we can think of Oβ,η :
[n] → R such that Oβ,η(i) = âi, where âi is the value returned by Dist-Bet-Rows(i, β, η),
if the algorithm Dist-Bet-Rows(i, β, η) is called (once). Otherwise, Oβ,η(i) is set to some
(1 ± β)-approximation to dH (A(i, ∗), B(i, ∗)) 3.

Random sample and bucketing

As has been mentioned in the overview of algorithm in Section 2.1, the problem of estimating
matrix distance boils down to estimating the sizes of the buckets Yk, k = 1, . . . , t and our
subsequent action depends on whether the bucket is of large or small size. But as |Yk|’s are
unknown, we define a bucket Yk to be large or small depending on the estimate

∣∣∣Ŷk

∣∣∣ obtained
from a random sample. So, our algorithm starts by taking a random sample Γ ⊆ [n] with
replacement, where |Γ| = Õ

(
n/

√
T
)

, where T is a guess for DM(A, B). Now, Ŷk = Yk ∩ Γ,
the projection of Yk on Γ.

For each i in the random sample Γ, we call Dist-Bet-Rows(i, β, η) (as stated in
Lemma 2.5) and let âi be the output. By Lemma 2.5, for each i ∈ Γ, âi is a

(
1 ± ε

50
)
-

approximation to DM (A(i, ∗), B(i, ∗)) with high probability. Based on the values of âi
′s, we

partition the indices in Γ into t many buckets Ŷ1, . . . , Ŷt such that i ∈ Γ is put into Ŷk if and
only if

(
1 + ε

50
)k−1 ≤ âi <

(
1 + ε

50
)k. We define a bucket Yk to be large or small depending

on
∣∣∣Ŷk

∣∣∣ ≥ τ or not, where τ = |Γ|
n

√
εT

50t .

3 This instantiation, for Oβ,η(i)’s for which Dist-Bet-Rows(i, β, η)’s are never called is to complete the
description of function Oβ,η. This has no bearing on our algorithm as well as its analysis.

APPROX/RANDOM 2021

44:10 Distance Between Matrices Using Sublinear Projections on Hamming Cube

So, if |Yk| is large (roughly say at least
√

εT/t), then it can be well approximated from∣∣∣Ŷk

∣∣∣. However, it will not be possible to estimate |Yk| from
∣∣∣Ŷk

∣∣∣ if |Yk| is small. We explain
how to take care of Yk’s with small |Yk|.

Let L ⊆ [t] and S ⊆ [t] denote the set of indices for large and small buckets, that is,
L = {k : Yk is large} and S = [t] \ L. Also, let IL ⊆ [n] and IS ⊆ [n] denote the set
of indices of rows present in large and small buckets, respectively. From Observation 2.4,
DM(A, B) =

n∑
i=1

dH (A(i, ∗), B(i, ∗)) . Let us divide the sum
n∑

i=1
dH (A(i, ∗), B(i, ∗)) into

two parts, based on IL and IS , dL

dL =
∑
i∈IL

dH (A(i, ∗), B(i, ∗)) =
∑
k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗))

and dS =
∑
i∈IS

dH (A(i, ∗), B(i, ∗)) =
∑
k∈S

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) .

That is, DM(A, B) = dL + dS . In what follows, we describe how our algorithm approximates
dL and dS separately. A pseudocode for algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)
can be found in the full version of this paper [13].

Approximating dL, the contribution from large buckets

We can show in Lemma A.1 (i) and (ii), for each k ∈ L, n
|Γ|

∣∣∣Ŷk

∣∣∣ is a
(
1 ± ε

50
)
-approximation

to |Yk| with high probability. Recall that dL =
∑

k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)), where L de-
notes the set of indices present in large buckets. Our algorithm Dist-Symm-Matrix-Guess
(A, B, ε, T) sets d̂L = n

|Γ|
∑

k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k as an estimate for dL. Putting everything

together, we show in Lemma A.2 that the following holds with high probability.(
1 − ε

50

)
dL ≤ d̂L ≤

(
1 + ε

50

)
dL. (4)

Approximating dS, the contribution from small buckets

dS =
∑

i∈IS
dH (A(i, ∗), B(i, ∗)) can not be approximated directly as in the case of dL.

To get around the problem of estimating the contribution of small buckets, we partition∑
i∈IS

dH (A(i, ∗), B(i, ∗)) into two parts by projecting row vectors A(i, ∗)’s and B(i, ∗)’s
onto IL and IS :

dSL =
∑
i∈IS

dH (A(i, ∗)|IL
, B(i, ∗)|IL

) and dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) .

So, dS = dSL + dSS .

As A and B are symmetric, dSL = dLS =
∑

i∈IL
dH (A(i, ∗)|IS

, B(i, ∗)|IS
) . Hence,

dS = dLS + dSS . We approximate dS by arguing that (i) dSS is small, and (ii) dLS can be
approximated well. Informally speaking, the quantity dSL is all about looking at the large
buckets from the small buckets. But as handling small buckets is problematic as opposed to
large buckets, we look at the small buckets from the large buckets. Now, as the matrix is
symmetric, these two quantities are the same.
(i) dSS is small: Observe that dSS can be upper bounded, in terms of |IS |, as follows:

dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) = |{(i, j) ∈ IS × IS : A(i, j) ̸= B(i, j)}| ≤ |IS |2 .

A. Bishnu, A. Ghosh, and G. Mishra 44:11

By the definition of IS , it is the set of indices present in small buckets (Yk’s with
∣∣∣Ŷk

∣∣∣ ≤ τ).
With high probability, for any small bucket Yk, we can show that |Yk| ≤

√
εT/40t. As

there are t many buckets, with high probability, |IS | =
∑

k∈S |Yk| ≤ n
|Γ| τt ≤

√
εT

40 . So,
with high probability,

dSS ≤ εT

1600 . (5)

The formal proof of the above equation will be given in Claim A.5.
(ii) Approximating dLS: For k ∈ L, the set of indices corresponding to large buckets, let dk

LS

be the contribution of bucket Yk to dLS , that is, dk
LS =

∑
i∈Yk

dH (A(i, ∗)|IS
, B(i, ∗)|IS

).
So, dLS =

∑
k∈L dk

LS , and dLS can be approximated by approximating dk
LS

for each k ∈ L. To approximate dk
LS , for each k ∈ L, we define ζk =

dk
LS/

(∑
i∈Yk

dH (A(i, ∗), B(i, ∗))
)
. We have already argued that dLS =

∑
k∈L dk

LS and
recall that

∑
k∈L

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) = dL. So, intuitively, ζk denotes the ratio
of the contribution of bucket Yk to dLS and the contribution of bucket Yk to dL. By
our bucketing scheme, for each i ∈ Yk,

(
1 − ε

50
)k−1 ≤ dH (A(i, ∗), B(i, ∗)) ≤

(
1 + ε

50
)k,

that is, dH (A(i, ∗), B(i, ∗))’s are roughly the same for each i ∈ Yk. So, any dk
LS can

be approximated by approximating its corresponding ζk. To do so, we express dk
LS

combinatorially as follows:

dk
LS = |{(i, j) : A(i, j) ̸= B(i, j) such that i ∈ Yk and j ∈ IS}| .

For each k ∈ L, our algorithm finds a sample Zk of size
∣∣∣Ŷk

∣∣∣ many indices from Ŷk with
replacement. Then for each i ∈ Zk, our algorithm calls Approx-Sample(i, β, η). Recall
that Approx-Sample(i, β, η) (as stated in Lemma 2.12) takes i ∈ [n] and β, η ∈ (0, 1) as
inputs and returns a (1 ± β)-uniform sample from the set NEQ(A, B, i) with probability
at least 1 − η. Let j ∈ [n] be the output of NEQ(A, B, i). Then we check whether
j ∈ IS

4 . Let Ck be the number of elements i ∈ Zk whose corresponding call to
Approx-Sample(i, β, η) returns a j with j ∈ IS . Our algorithm takes ζ̂k = Ck

|Yk| as an

estimate for ζk. We can show that, (in Lemma A.1 (i) and (ii)), for each k ∈ L, n
|Γ|

∣∣∣Ŷk

∣∣∣ is
a
(
1 ± ε

50
)
-approximation to Yk. Also, when T is at least a suitable polynomial in log n

and 1
ε , we show in Lemma A.1 (iii) and (iv) the followings, respectively:

ζk ≥ ε
50 , then ζ̂k is a

(
1 ± ε

40
)
-approximation to ζk with high probability,

we show that if ζk ≤ ε
50 , then ζ̂k ≤ ε

30 holds with high probability.

Hence, d̂LS = n
|Γ|
∑

k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k satisfies

(
1 − ε

15
)

dLS − ε
25 dL ≤ d̂LS ≤(

1 + ε
15
)

dLS + ε
25 dL with high probability. Note that the additive factor in terms

of dL is due to the way ζk’s are defined.

In fact our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) sets d̂S = d̂LS . The intuition
behind setting d̂S = d̂LS is that dS = dLS + dSS and dSS is small. So, with high probability,(

1 − ε

15

)
dLS − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dLS + ε

25dL. (6)

4 The reason for checking j ∈ IS can be observed from the definition of dk
LS =

|{(i, j) : A(i, j) ̸= B(i, j) such that i ∈ Yk and j ∈ IS}|.

APPROX/RANDOM 2021

44:12 Distance Between Matrices Using Sublinear Projections on Hamming Cube

The above will be formally proved in Claim A.6. By Equations 6 and 5, we get d̂S is an
estimate for dS that satisfies the following with high probability.(

1 − ε

15

)
dS − εT

1600 − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dS + ε

25dL (7)

We will formally show the above equation in Lemma A.3.

Final output returned by our algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)

Finally, our algorithm returns d̂ = d̂L + d̂S as an estimation for DM (A, B). Recall that
DM (A, B) = dS + dL. From Equations 4 and 7, d̂ satisfies, with high probability,(

1 − ε

10

)
DM (A, B) − ε

1600T ≤ d̂ ≤
(

1 + ε

10

)
DM (A, B) .

The query complexity analysis of algorithm Dist-Symm-Matrix-Guess(A, B, ε, T)

Note that the discussed algorithm works when T is at least a suitable polynomial
in log n and 1/ε. Moreover, the algorithm calls each of Dist-Bet-Rows (i, β, η) and
Approx-Sample (i, β, η) for Õ

(
n/

√
T
)

times. Note that β = ε/50 and η = 1/poly (n).
So, the number of IP queries, made by each call to Dist-Bet-Rows (i, β, η) as well as
Approx-Sample (i, β, η), is Õ(1) by Lemma 2.5 and 2.12. Hence, the number of IP
queries made by our algorithm is Õ

(
n/

√
T
)

. The formal proof of the correctness of
Dist-Symm-Matrix-Guess(A, B, ε, T) is in Appendix A.

3 Distance between two arbitrary matrices

In this Section, we prove our main result (stated as Theorem 1.2 in Section 1).

▶ Theorem 3.1 (Theorem 1.2 restated). There exists an algorithm that has IP query access
to unknown matrices A and B, takes an ε ∈ (0, 1) as an input, and returns a (1 ± ε)

approximation to DM(A, B) with high probability, and makes O
(

n√
DM(A,B)

poly
(
log n, 1

ε

))
queries.

To prove the above theorem, we use Lemma 2.1 for estimating DM(A, B) when both A
and B are symmetric. Let ∆A be a matrix defined as ∆A(i, j) = A(i, j) if i ≤ j, and
∆A(i, j) = A(j, i), otherwise. Also, let ∆A be a matrix defined as ∆A(i, j) = A(i, j) if
i ≥ j, and ∆A(i, j) = A(j, i), otherwise. Similarly, we can also define ∆B and ∆B similarly.
Observe that ∆A, ∆A, ∆B and ∆B are symmetric matrices, and

DM(A, B) = 1
2
[
DM (∆A, ∆B) + DM

(
∆A, ∆B)] .

So, we can report a (1±ε)-approximation to DM(A, B) by finding a
(
1 ± ε

2
)
-approximation

to both DM (∆A, ∆B) and DM
(
∆A, ∆B) with high probability. This is possible, by

Lemma 2.1, if we have IP query access to matrices ∆A, ∆B, ∆A and ∆B. But we do not
have IP query access to ∆A, ∆B, ∆A and ∆B explicitly. However, we can simulate IP
query access to matrices ∆A and ∆A (∆B and ∆B) with IP query access to matrix A (B),
respectively as stated and proved in the observation below. Hence, we are done with the
proof of Theorem 3.1

A. Bishnu, A. Ghosh, and G. Mishra 44:13

▶ Observation 3.2. An IP query to matrix ∆A (∆A) can be answered by using two IP
queries to matrix A. Also, an IP query to ∆B (∆B) can be answered by using two IP
queries to matrix B.

Proof. We prove how an IP query to matrix ∆A can be answered by using two IP queries
to matrix A. Other parts of the statement can be proved similarly.

Consider an IP query ⟨∆A(i, ∗), r⟩ to ∆A, where i ∈ [n] and r = (r1, . . . , rn) ∈ Rn. Let
r≤i and r>i in Rn be two vectors defined as follows: r≤i

j = rj if j ≤ i, and r≤i
j = 0, otherwise.

r>i
j = rj if j > i, and r>i

j = 0, otherwise. Now, we can deduce that

⟨∆A(i, ∗), r⟩ =
i∑

j=1
∆A(i, j)rj +

n∑
j=i+1

∆A(i, j)rj

=
i∑

j=1
A(i, j)rj +

n∑
j=i+1

A(j, i)rj

=
n∑

j=1
A(i, j)r≤i

j +
n∑

j=1
A(j, i)r>i

j

= ⟨A(i, ∗), r≤i⟩ + ⟨A(∗, i), r>i⟩

From the above expression, it is clear that an IP query of the form ⟨∆A(i, ∗), r⟩ to matrix
∆A can be answered by making two IP queries of the form ⟨A(i, ∗), r≤i⟩ and ⟨A(∗, i), r>i⟩
to matrix A. ◀

4 Lower bound results

In this Section, if we ignore polylogarithmic term, we show that (in Theorem 4.1) our
algorithm to estimate DM(A, B) using IP query is tight. Apart from Theorem 4.1, we also
prove that (in Theorem 4.2) the query complexity of estimating DM(A, B) using Dec-IP is
quadratically larger than that of using IP. The results are formally stated as follows. The
lower bounds hold even if the matrices A and B are symmetric matrices, and one matrix
(say A) is known and one matrix (say B) is unknown.

▶ Theorem 4.1. Let A and B denote the known and unknown (symmetric) matrices,
respectively. Also let T ∈ N. Any algorithm having IP query access to matrix B, that
distinguishes between DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n√
T

)
queries to B.

▶ Theorem 4.2. Let A and B denote the known and unknown matrices, respectively. Also let
T ∈ N. Any algorithm having Dec-IP query access to matrix B, that distinguishes between
DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n2

T

)
queries to B.

Recall that every ME query to a matrix can be simulated by using a Dec-IP. Hence, the
following corollary follows.

▶ Corollary 4.3. Let A and B denote the known and unknown matrices, respectively. Also
let T ∈ N. Any algorithm having ME query access to matrix B, that distinguishes between
DM(A, B) = 0 or DM(A, B) ≥ T with probability 2/3, makes Ω

(
n2

T

)
queries to B.

We prove Theorems 4.1 and 4.2 by using a reduction from a problem known as
Disjointness in two party communication complexity (See Appendix B).

APPROX/RANDOM 2021

44:14 Distance Between Matrices Using Sublinear Projections on Hamming Cube

4.1 Proof of Theorem 4.1
Without loss of generality, assume that

√
T is an integer that divides N . We prove the

(stated lower bound) by a reduction from DisjointnessN where N = n/
√

T . Let x and y in
{0, 1}N be the inputs of Alice and Bob, respectively. Now consider matrix B, that depends
on both x and y, described as follows.

B11

B22

B33

B12 B13

B21 B23

B31 B32

Figure 1 A pictorial illustration of a block matrix B considered in the proof of Theorem 4.2,
where N = 3.

Description of matrices A and B

(i) matrix A is the null matrix;
(ii) matrix B is a block diagonal matrix where B1, . . . , BN are diagonal blocks of order√

T ×
√

T (See Figure 2 for an illustration);
(iii) Consider k ∈ [N]. If xk = yk = 1, then Bk(i, j) = 1 for each i, j ∈ [

√
T], that is, Bk is

an all-one matrix. Otherwise, Bk is a null matrix.
From the description, matrices A and B are symmetric matrices. Moreover, if x and y are
disjoint, then all of the N block matrices are null matrices, that is, B is also a null matrix.
If x and y are not disjoint, then there is a k ∈ [N] such that Bk is an all-one matrix, that is,
matrix B has at least T many 1s. Recall that here A is a null matrix. Hence, DM(A, B) = 0
if x and y are disjoint, and DM(A, B) ≥ T if x and y are not disjoint.

Observe that we will be done with the proof for the stated lower bound by arguing
that Alice and Bob can generate the answer to any IP query, to matrix B, with 2 bits of
communication. Consider a row IP query ⟨B(i, ∗), r⟩ to B for some i ∈ [n] and r ∈ {0, 1}n 5.
From the construction of the matrix B, there exists a matrix Bj , for some j ∈ [N], that
completely determines B(i, ∗). Also, observe that, Bj depends on xj and yj only. So, Alice
and Bob can determine Bj (hence B(i, ∗)) with 2 bits of communication. As B is a symmetric
matrix, there is no need to consider column IP queries as such queries can be answered by
using row IP queries.

4.2 Proof of Theorem 4.2
Here also, we assume that

√
T is an integer and

√
T divides N , and prove the stated lower

bound by a reduction from DisjointnessN where N = n2/T . Let x and y in {0, 1}N be
the inputs of Alice and Bob, respectively. Now consider matrix B, that depends on both
x and y, described as follows. In the following description, consider a cannonical mapping
ϕ : [N] →

[
n√
T

]
×
[

n√
T

]
. Note that ϕ is known to both Alice and Bob apriori.

5 The proof goes through even if r ∈ Rn.

A. Bishnu, A. Ghosh, and G. Mishra 44:15

B1

B2

B3

0 0

0 0

0 0

Figure 2 A pictorial illustration of a block diagonal matrix B considered in the proof of
Theorem 4.1, where N = 3.

Description of matrices A and B

(i) matrix A is an all 1 matrix;

(ii) matrix B is a block matrix where Bij ’s
(

i, j ∈
[

n√
T

])
are blocks of order

√
T ×

√
T

(See Figure 1 for an illustration);

(iii) Consider k ∈ [N]. If xk = yk = 1, then Bϕ(k) = 0 6 for each i, j ∈ [
√

T], that is, Bϕ(k)
is an all 0 matrix. Otherwise, Bϕ(k) is an all 1 matrix.

From the description, matrices A and B are symmetric matrices. Moreover, if x and y
are disjoint, then all of the N block matrices are all 1 matrices, that is, B is also an all 1
matrix. If x and y are not disjoint, then there is (exactly) one k ∈ [N] such that Bk is a null
matrix, that is, matrix B has exactly T many 0s. Recall that here A is a null matrix. Hence,
DM(A, B) = 0 if x and y are disjoint, and, DM(A, B) = T if x and y are not disjoint.

Observe that we will be done with the proof for the stated lower bound by arguing that
Alice and Bob can generate the answer to any Dec-IP query, to matrix B, with 2 bits
of communication. Consider a row Dec-IP query ⟨B(i, ∗), r⟩ to B for some i ∈ [n] and
r ∈ {0, 1}n. Without loss of generality, assume that r is not a null matrix, as in this case
Alice and Bob can decide ⟨B(i, ∗), r⟩ = 0 trivially without any communication. Consider
a partition of r into N/

√
T subvectors r1, . . . , rn/

√
T ∈ {0, 1}

√
T in the natural way (See

Figure 1 for an illustration). Now we analyze by making two cases. If two of the rjs are
not null vectors, from the construction of the matrix B, then ⟨B(i, ∗), r⟩ > 0. So, in this
case, Alice and Bob report ⟨B(i, ∗), r⟩ ̸= 0 without any communication between them. Now
consider the case when exactly one of the rj is not a null vector. Once again, from the
construction of B, deciding whether ⟨B(i, ∗), r⟩ = 0 is equivalent to deciding whether a
particular block (say Bxy) is a null matrix. It is because r is not a null vector, and each
block in B is either a null matrix or an all 1 matrix. Let k ∈

[
n√
T

]
be such that ϕ(k) = (x, y).

Note that Bxy is a null matrix if and only if xk = yk = 1. So, Alice and Bob can determine
whether ⟨B(i, ∗), r⟩ = 0 with 2 bits of communication. As B is a symmetric matrix, there is
no need to consider column Dec-IP queries as such queries can be answered by using row
IP queries.

6 Here we abuse the notation slightly. If ϕ(k) = (i, j), we denote Bij by Bϕ(k).

APPROX/RANDOM 2021

44:16 Distance Between Matrices Using Sublinear Projections on Hamming Cube

5 Conclusion

Recall that in an IP as well as in Dec-IP queries, a vector v ∈ {0, 1}n is given as input
along with an index for row or column of an unknown matrix. Let IPR and Dec-IPR be the
extension of IP and Dec-IP when v is a vector in Rn. Now let us have a look into Table 1.
The lower bound of Ω(n/

√
D), on the number of IP queries to estimate D = DM(A, B),

also holds even when we have an access to IPR oracle. This also implies a lower bound of
Ω(n/

√
D) on the number of Dec-IP queries to solve the problem at hand. But our lower

bound proof of Ω(n2/D) on the number of Dec-IP queries does not work when we have
access to IPR oracle. So, we leave the following problem as open.

Open problem

What is the query complexity of estimating DM(A, B) when we have Dec-IPR access to
matrices A and B?

References
1 https://www.mathworks.com/products/matlab.html.
2 https://www.mathworks.com/help/stats/pdist.html.
3 https://docs.scipy.org/doc/scipy-0.7.x/scipy-ref.pdf.
4 https://developer.download.nvidia.com/cg/dot.html.
5 https://software.intel.com/content/www/us/en/develop/documentation/cpp-

compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/
intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-
compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html.

6 Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. doi:10.1016/S0022-0000(03)00025-4.

7 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing
the discrete fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

8 Pankaj K. Agarwal, Kyle Fox, Abhinandan Nath, Anastasios Sidiropoulos, and Yusu Wang.
Computing the gromov-hausdorff distance for metric trees. ACM Trans. Algorithms, 14(2),
2018. doi:10.1145/3185466.

9 Pankaj K. Agarwal, Sariel Har-Peled, Micha Sharir, and Yusu Wang. Hausdorff distance under
translation for points and balls. 6(4), 2010. doi:10.1145/1824777.1824791.

10 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. In Sándor P. Fekete and Anna Lubiw, editors, 32nd Inter-
national Symposium on Computational Geometry, SoCG 2016, June 14-18, 2016, Boston,
MA, USA, volume 51 of LIPIcs, pages 17:1–17:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.SoCG.2016.17.

11 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image
properties. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 90:1–90:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.90.

12 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Testing convexity of figures
under the uniform distribution. Random Struct. Algorithms, 54(3):413–443, 2019. doi:
10.1002/rsa.20797.

13 Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Distance estimation between unknown
matrices using sublinear projections on hamming cube. CoRR, abs/2107.02666, 2021. arXiv:
2107.02666.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/help/stats/pdist.html
https://docs.scipy.org/doc/scipy-0.7.x/scipy-ref.pdf
https://developer.download.nvidia.com/cg/dot.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-streaming-simd-extensions-4-intel-sse4/vectorizing-compiler-and-media-accelerators/floating-point-dot-product-intrinsics.html
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1137/130920526
https://doi.org/10.1145/3185466
https://doi.org/10.1145/1824777.1824791
https://doi.org/10.4230/LIPIcs.SoCG.2016.17
https://doi.org/10.4230/LIPIcs.ICALP.2016.90
https://doi.org/10.1002/rsa.20797
https://doi.org/10.1002/rsa.20797
http://arxiv.org/abs/2107.02666
http://arxiv.org/abs/2107.02666

A. Bishnu, A. Ghosh, and G. Mishra 44:17

14 Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Manaswi Paraashar. Inner product oracle
can estimate and sample. CoRR, abs/1906.07398, 2019. arXiv:1906.07398.

15 Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric algorithms. SIAM J.
Comput., 35(3):627–646, 2005. doi:10.1137/S009753970444572X.

16 Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubinfeld,
and Christian Sohler. Sublinear-time approximation of euclidean minimum spanning tree.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 12-14, 2003, Baltimore, Maryland, USA, pages 813–822. ACM/SIAM, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644242.

17 Artur Czumaj and Christian Sohler. Property testing with geometric queries. In Fried-
helm Meyer auf der Heide, editor, Algorithms - ESA 2001, 9th Annual European Symposium,
Aarhus, Denmark, August 28-31, 2001, Proceedings, volume 2161 of Lecture Notes in Computer
Science, pages 266–277. Springer, 2001. doi:10.1007/3-540-44676-1_22.

18 Artur Czumaj, Christian Sohler, and Martin Ziegler. Property testing in computational
geometry. In Mike Paterson, editor, Algorithms - ESA 2000, 8th Annual European Symposium,
Saarbrücken, Germany, September 5-8, 2000, Proceedings, volume 1879 of Lecture Notes in
Computer Science, pages 155–166. Springer, 2000. doi:10.1007/3-540-45253-2_15.

19 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

20 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the fréchet distance
for realistic curves in near linear time. Discret. Comput. Geom., 48(1):94–127, 2012. doi:
10.1007/s00454-012-9402-z.

21 D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 1st edition, 2009.

22 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. doi:
10.1017/9781108135252.

23 John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative Approach
(5. ed.). Morgan Kaufmann, 2012.

24 Igor Kleiner, Daniel Keren, Ilan Newman, and Oren Ben-Zwi. Applying property testing to
an image partitioning problem. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):256–265, 2011.
doi:10.1109/TPAMI.2010.165.

25 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

26 Sofya Raskhodnikova. Approximate testing of visual properties. In Sanjeev Arora, Klaus Jansen,
José D. P. Rolim, and Amit Sahai, editors, Approximation, Randomization, and Combinatorial
Optimization: Algorithms and Techniques, 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM
2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in
Computer Science, pages 370–381. Springer, 2003. doi:10.1007/978-3-540-45198-3_31.

27 Dana Ron and Gilad Tsur. Testing properties of sparse images. ACM Trans. Algorithms,
10(4):17:1–17:52, 2014. doi:10.1145/2635806.

28 Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley, Upper Saddle River, NJ, 2010.

APPROX/RANDOM 2021

http://arxiv.org/abs/1906.07398
https://doi.org/10.1137/S009753970444572X
http://dl.acm.org/citation.cfm?id=644108.644242
https://doi.org/10.1007/3-540-44676-1_22
https://doi.org/10.1007/3-540-45253-2_15
https://doi.org/10.1137/120865112
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1017/9781108135252
https://doi.org/10.1017/9781108135252
https://doi.org/10.1109/TPAMI.2010.165
https://doi.org/10.1007/978-3-540-45198-3_31
https://doi.org/10.1145/2635806

44:18 Distance Between Matrices Using Sublinear Projections on Hamming Cube

A Formal correctness proof of Dist-Symm-Matrix-Guess(A, B, ε, T)

From the above discussion, we need to only prove for the case when T is at least a suitable
polynomial in log n and 1

ε . The proof (of correctness) is based on the following lemma that
can be proved by mainly using Chernoff bound (See Appendix C) and some specific details
of the algorithm.

▶ Lemma A.1 (Intermediate Lemma needed to prove the correcness). Let ε ∈
(
0, 1

2
)
, β = ε

50
and η = 1

poly(n) . Consider an oracle Oβ,η : [n] → R, as defined in Definition 2.13, with
respect to which algorithm Dist-Symm-Matrix-Guess(A, B, ε, T) found Ŷ1, . . . , Ŷt ⊆ Γ.
Let Y1, . . . , Yt be the buckets into which [n] is partitioned w.r.t. Oβ,η. Then, for k ∈ [t],

(i) if |Yk| ≥
√

εT
50t , then P

(∣∣∣ n
|Γ|

∣∣∣Ŷk

∣∣∣− |Yk|
∣∣∣ ≥ ε

50 |Yk|
)

≤ 1
poly(n) ;

(ii) if |Yk| ≤
√

εT
50t , then P

(
n

|Γ|

∣∣∣Ŷk

∣∣∣ ≥
√

εT
40t

)
≤ 1

poly(n) ;

(iii) if ζk ≥ ε
50 , then P

(∣∣∣ζ̂k − ζk

∣∣∣ ≥ ε
40 ζk

)
≤ 1

poly(n) ;

(iv) if ζk ≤ ε
50 , then P

(
ζ̂k ≥ ε

30

)
≤ 1

poly(n) .
The proof of the above lemma is presented in the full version of this paper [13]. Here, we
prove the correctness of algorithm Dist-Symm-Matrix(A, B, ε, T) via two claims stated
below.

▶ Lemma A.2 (Approximating dL).
(
1 − ε

50
)

dL ≤ d̂L ≤
(
1 + ε

50
)

dL with high probability.

▶ Lemma A.3 (Approximating dS).
(
1 − ε

15
)

dS − εT
1600 − ε

25 dL ≤ d̂S ≤
(
1 + ε

15
)

dS + ε
25 dL.

holds with high probability.

Recall that DM (A, B) = dL + dS . Assuming that the above two claims hold, d̂ = d̂L + d̂S

satisfies
(
1 − ε

10
)

DM (A, B) − ε
1600 T ≤ d̂ ≤

(
1 + ε

10
)

DM (A, B) with high probability. Note
that d̂ satisfies the requirement for an estimate of DM(A, B) as stated in Lemma 2.2. Now,
it remains to show Lemma A.2 and A.3. We first prove the following claim that follows from
our bucketing scheme and will be used in the proofs of Lemma A.2 and A.3. The following
claim establishes the connection between the size of a bucket with the sum of the distances
between rows (with indices in the same bucket) of matrices A and B.

▶ Claim A.4. ∀k ∈ [t],∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ,

holds with probability at least 1 − 1
poly(n) .

Proof. Y1, . . . , Yt ⊆ [n] be the buckets into which [n] is partitioned, where

Yk = {i ∈ [n] :
(

1 + ε

50

)k−1
≤ Oβ,η(i) <

(
1 + ε

50

)k

}.

So,

For each k ∈ [t],
∑
i∈Yk

Oβ,η(i) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

Oβ,η(i) (8)

Here β = ε
50 and η = 1

poly(n) .
Oracle Oβ,η : [n] → R is a function, as defined in Definition 2.13, such that

Oβ,η(i) equals to âi, the value returned by Dist-Bet-Rows(i, β, η), if the algorithm

A. Bishnu, A. Ghosh, and G. Mishra 44:19

Dist-Bet-Rows(i, β, η) is called (once). Otherwise, Oβ,η(i) is set to some (1 ± β)-
approximation to dH (A(i, ∗), B(i, ∗)). So, Equation 8 implies that the following holds
with probability at least 1 − 1

poly(n) .

∀k ∈ [t],
∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

) ∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) .◀

Now we will show Lemma A.2.

Proof of Lemma A.2. Note that dL =
∑

i∈IL

dH (A(i, ∗), B(i, ∗)) and d̂L =

n
|Γ|
∑

k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k.

By the definition of dL as well as Claim A.4, we get

P

(
dL ≤

∑
k∈L

|Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)
dL

)
≥ 1 − 1

poly (n) . (9)

Recall that, for k ∈ [t] in the set L of large buckets, Ŷk ≥ τ . Here τ = |Γ|
n

√
εT

40t . By
Lemma A.1 (ii) and (i), for each k ∈ L, n

|Γ|

∣∣∣Ŷk

∣∣∣ is an
(
1 ± ε

50
)
-approximation to |Yk| with

probability at least 1 − 1
poly(n) . So, the following holds with probability at least 1 − 1

poly(n) .(
1 − ε

50

)
dL ≤ n

|Γ|
∑
k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤
(

1 + ε

50

)2
dL (10)

By the definition of d̂L along with taking ε ∈
(
0, 1

2
)
, we conclude that

P
((

1 − ε

20

)
dL ≤ d̂L ≤

(
1 + ε

20

)
dL

)
≥ 1 − 1

poly (n) . ◀

Proof of Lemma A.3. Recall that dS =
∑

i∈IS

dH (A(i, ∗), B(i, ∗)) and d̂S =

n
|Γ|
∑

k∈L

ζ̂k

(
1 + ε

50
)k. Moreover, dS = dSL + dSS , where

dSL =
∑

i∈IS

dH (A(i, ∗)|IL
, B(i, ∗)|IL

) and dSS =
∑

i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) .

Also, as A and B are symmetric matrices, dSL = dLS =
∑

i∈IL

dH (A(i, ∗)|IS
, B(i, ∗)|IS

).

First we show that

▶ Claim A.5. P
(
dSS ≤ εT

1600
)

≥ 1 − 1
poly(n) .

Then we show that

▶ Claim A.6. P
((

1 − ε
15
)

dLS − ε
25 dL ≤ d̂S ≤

(
1 + ε

15
)

dLS + ε
25 dL

)
≥ 1 − 1

poly(n) .

As dS = dSS + dLS , the above two claims imply the Lemma, that is, the following holds with
probability at least 1 − 1

poly(n) .

(
1 − ε

15

)
dS − εT

1600 − ε

25dL ≤ d̂S ≤
(

1 + ε

15

)
dS + ε

25dL.

So, it remains to show Claims A.5 and A.6.

APPROX/RANDOM 2021

44:20 Distance Between Matrices Using Sublinear Projections on Hamming Cube

Proof of Claim A.5. Note that

dSS =
∑
i∈IS

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) = |{(i, j) ∈ IS × IS : A(i, j) ̸= B(i, j)}| ,

where IS denotes the set of indices in the Yk’s with k ∈ S and S is the set of small buckets.
So, |IS | =

∑
k∈S

|Yk|. By the definition of S, for every k ∈ S, Ŷk < τ = |Γ|
n

√
εT

50t . By Lemma A.1

(i), we have |Yk| ≤
(
1 + ε

50
)

n
|Γ|

∣∣∣Ŷk

∣∣∣ ≤
√

εT
40t with probability at least 1 − 1

poly(n) . This implies

that |IS | =
∑

k∈S

|Yk| ≤
√

εT
40 with probability at least 1 − 1

poly(n) . Hence, by the definition of

dSS , we have the following with probability at least 1 − 1
poly(n) .

dSS =
∑
i∈IS

dH (A(i, ∗), B(i, ∗)) ≤ |IS |2 ≤ εT

1600 . ◀

Proof of Claim A.6. Note that dLS =
∑

i∈IL

dH (A(i, ∗)|IS
, B(i, ∗)|IS

). Recall that dLS =∑
k∈L

= dk
LS , where dk

LS =
∑

i∈Yk

dH (A(i, ∗)|IS
, B(i, ∗)|IS

) . Also, recall that ζk =

dk
LS∑

k∈L

dH(A(i,∗),B(i,∗))
. So, dk

SL = ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)). Hence,

dLS =
∑
k∈L

ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) . (11)

By Claim A.4, the following holds with probability at least 1 − 1
poly(n) .

∀k ∈ [t], ζk

∑
i∈Yk

dH (A(i, ∗), B(i, ∗)) ≤ ζk |Yk|
(

1 + ε

50

)k

≤ ζk

(
1 + ε

50

)∑
i∈Yk

dH (A(i, ∗), B(i, ∗))).

Taking sum over all k ∈ L and then applying Equation 11, the following holds with probability
at least 1 − 1

poly(n) .

P

(
dLS ≤

∑
k∈L

ζk |Yk|
(

1 + ε

50

)k

≤
(

1 + ε

50

)
dLS

)
≥ 1 − 1

poly (n) .

Recall that, for k ∈ [t] in the set L of large buckets, Ŷk ≥ τ . Here τ = |Γ|
n

√
εT

40t . By Lemma A.1
(ii) and (i), for each k ∈ L, n

|Γ|

∣∣∣Ŷk

∣∣∣ is a
(
1 ± ε

50
)
-approximation to |Yk| with probability at

least 1 − 1
poly(n) . So,

P

((
1 − ε

50

)
dLS ≤ n

|Γ|
∑
k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤
(

1 + ε

50

)2
dLS

)
≥ 1 − 1

poly (n) . (12)

Having the above equation, consider d̂S = n
|Γ|
∑

k∈L

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k whose upper and lower

bound is to be proved as stated in Claim A.6. Breaking the sum into two parts depending
the values of ζ̂k’s, we have

d̂S = n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

+ n

|Γ|
∑

k∈L:ζk< ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

. (13)

We prove the desired upper and lower bound on d̂S separately by using the following
observation about upper and lower bounds of the two terms in Equation 13.

A. Bishnu, A. Ghosh, and G. Mishra 44:21

▶ Observation A.7.
(i) n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≤

(
1 + ε

15
)

dLS with probability 1 − 1
poly(n) .

(ii) n
|Γ|

∑
k∈L:ζk< ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
25
)k ≤ ε

35 dL with probability at least 1 − 1
poly(n) .

(iii) n
|Γ|

∑
k∈L:ζk≥ ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≥

(
1 − ε

15
)

dLS − ε
25 dL with probability 1 − 1

poly(n) .

Proof.
(i) By Lemma A.1 (iii), for each k ∈ [t] with ζk ≥ ε

50 , ζ̂k is a
(
1 ± ε

40
)
-approximation to ζk

with probability at least 1 − 1
poly(n) . So, with probability at least 1 − 1

poly(n) , we can
derive the following.

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

40

)k

≤
(

1 + ε

40

) n

|Γ|
∑

k∈L:ζk≥ ε
50

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

.

≤
(

1 + ε

40

)(
1 + ε

50

)2
dLS (∵ By Equation 12)

≤
(

1 + ε

15

)
dLS .

(ii) By Lemma A.1 (iv), for each k ∈ [t] with ζk < ε
50 , ζ̂k is at most ε

30 with probability at
least 1 − 1

poly(n) . Hence, the following derivations hold with probability 1 − 1
poly(n) .

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30 · n

|Γ|
∑

k∈L:ζk< ε
50

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30 · n

|Γ|
∑
k∈L

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≤ ε

30

(
1 + ε

50

)2
dL (By Equation 10)

≤ ε

25dL

(iii) Note that
n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≥ n

|Γ|
∑
k∈L

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

− n

|Γ|
∑

k∈L:ζk≤ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

.

By Lemma A.1 (iii), for each k ∈ [t] with ζk ≥ ε
50 , ζ̂k is a

(
1 ± ε

40
)
-approximation

to ζk with probability at least 1 − 1
poly(n) . Also, by Observation A.7 (iii),

n
|Γ|

∑
k∈L:ζk≤ ε

50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε
50
)k ≤ ε

25 dL with probability at least 1 − 1
poly(n) . So, we

can derive the following with probability at least 1 − 1
poly(n) .

n

|Γ|
∑

k∈L:ζk≥ ε
50

ζ̂k

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

≥
(

1 − ε

40

) n

|Γ|
∑
k∈L

ζk

∣∣∣Ŷk

∣∣∣ (1 + ε

50

)k

− ε

25dL

≥
(

1 − ε

40

)2
dLS − ε

25dL (By Equation 12)

≥
(

1 − ε

15

)
dLS − ε

25dL. ◀

Considering the expression for d̂S in Equation 13 along with Observation A.7 (i) and (ii), we
can derive the desired upper bound on d̂S (as follows) that holds with probability at least
1 − 1

poly(n) .

d̂S ≤
(

1 + ε

15

)
dLS + ε

25dL.

APPROX/RANDOM 2021

44:22 Distance Between Matrices Using Sublinear Projections on Hamming Cube

For the lower bound part of d̂S , again consider the expression for d̂S in Equation 13 along
with Observation A.7 (iii). We have the following with probability at least 1 − 1

poly(n) .

d̂S ≥
(

1 − ε

15

)
dLS − ε

25dL. ◁

◀

B Communication complexity

In two-party communication complexity there are two parties, Alice and Bob, that wish
to compute a function Π : {0, 1}N × {0, 1}N → {0, 1}. Alice is given x ∈ {0, 1}N and Bob
is given y ∈ {0, 1}N . Let xi (yi) denote the i-th bit of x (y). While the parties know
the function Π, Alice does not know y, and similarly, Bob does not know x. Thus they
communicate bits following a pre-decided protocol P in order to compute Π(x, y). We
say a randomized protocol P computes Π if for all (x, y) ∈ {0, 1}N × {0, 1}N we have
P[P(x, y) = Π(x, y)] ≥ 2/3. The model provides the parties access to common random string
of arbitrary length. The cost of the protocol P is the maximum number of bits communicated,
where maximum is over all inputs (x, y) ∈ {0, 1}N × {0, 1}N . The communication complexity
of the function is the cost of the most efficient protocol computing Π. For more details on
communication complexity, see [25]. We now define Disjointness function on N bits and
state its two-way randomized communication complexity.

▶ Definition B.1. Let N ∈ N. The DisjointnessN on N bits is a function DisjointnessN :
{0, 1}N × {0, 1}N → {0, 1} such that DisjointnessN (x, y) = 0 if there exists an i ∈ [N]
such that xi = yi = 1, and 1, otherwise.

▶ Proposition B.2. [25] The randomized communication complexity of DisjointnessN is
Ω(N) even if it is promised that there exists at most one i ∈ [n] such that xi = yi = 1.

C Probability Results

▶ Lemma C.1 (See [21]). Let X =
∑

i∈[n] Xi where Xi, i ∈ [n], are independent ran-
dom variables, Xi ∈ [0, 1] and E[X] is the expected value of X. Then for ϵ ∈ (0, 1),
Pr [|X − E[X]| > ϵE [X]] ≤ exp

(
− ϵ2

3 E[X]
)

.

▶ Lemma C.2 (See [21]). Let X =
∑

i∈[n] Xi where Xi, i ∈ [n], are independent random
variables, Xi ∈ [0, 1] and E[X] is the expected value of X. Suppose µL ≤ E[X] ≤ µH , then
for 0 < ϵ < 1,

(i) Pr[X > (1 + ϵ)µH] ≤ exp
(

− ϵ2

3 µH

)
.

(ii) Pr[X < (1 − ϵ)µL] ≤ exp
(

− ϵ2

2 µL

)
.

Decision Tree Heuristics Can Fail, Even in the
Smoothed Setting
Guy Blanc #

Stanford University, CA, USA

Jane Lange #

Massachusetts Institute of Technology, Cambridge, MA, USA

Mingda Qiao #

Stanford University, CA, USA

Li-Yang Tan #

Stanford University, CA, USA

Abstract
Greedy decision tree learning heuristics are mainstays of machine learning practice, but theoretical
justification for their empirical success remains elusive. In fact, it has long been known that there
are simple target functions for which they fail badly (Kearns and Mansour, STOC 1996).

Recent work of Brutzkus, Daniely, and Malach (COLT 2020) considered the smoothed analysis
model as a possible avenue towards resolving this disconnect. Within the smoothed setting and
for targets f that are k-juntas, they showed that these heuristics successfully learn f with depth-k
decision tree hypotheses. They conjectured that the same guarantee holds more generally for targets
that are depth-k decision trees.

We provide a counterexample to this conjecture: we construct targets that are depth-k decision
trees and show that even in the smoothed setting, these heuristics build trees of depth 2Ω(k) before
achieving high accuracy. We also show that the guarantees of Brutzkus et al. cannot extend to the
agnostic setting: there are targets that are very close to k-juntas, for which these heuristics build
trees of depth 2Ω(k) before achieving high accuracy.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases decision trees, learning theory, smoothed analysis

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.45

Category RANDOM

Funding Jane Lange: NSF Award #CCF-2006664

Acknowledgements We thank the anonymous reviewers, whose suggestions have helped improved
this paper.

1 Introduction

Greedy decision tree learning heuristics are among the earliest and most basic algorithms
in machine learning. Well-known examples include ID3 [28], its successor C4.5 [29], and
CART [6], all of which continue to be widely employed in everyday ML applications. These
simple heuristics build a decision tree for labeled dataset S in a greedy, top-down fashion.
They first identify a “good” attribute to query as the root of the tree. This induces a partition
of S into S0 and S1, and the left and right subtrees are built recursively using S0 and S1
respectively.

In more detail, each heuristic is associated with an impurity function G : [0, 1] → [0, 1]
that is concave, symmetric around 1

2 , and satisfies G(0) = G(1) = 0 and G(1
2) = 1. Examples

include the binary entropy function G(p) = H(p) that is used by ID3 and C4.5, and the Gini
© Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guy.blanc@gmail.com
mailto:jlange@mit.edu
mailto:mqiao@stanford.edu
mailto:liyang@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

impurity function G(p) = 4p(1−p) that is used by CART; Kearns and Mansour [21] proposed
and analyzed the function G(p) = 2

√
p(1 − p). For a target function f : Rn → {0, 1} and a

distribution D over Rn, these heuristics build a decision tree hypothesis for f as follows:
1. Split: Query 1[xi ≥ θ] as the root of the tree, where xi and θ are chosen to (approximately)

maximize the purity gain with respect to G:

G-purity-gainD(f, xi) := G(E [f])−
(

Pr [xi ≥ θ] ·G(E [fxi≥θ])+Pr [xi < θ] ·G(E [fxi<θ])
)
,

where the expectations and probabilities above are with respect to randomly drawn
labeled examples (x, f(x)) where x ∼ D, and fxi≥θ denotes the restriction of f to inputs
satisfying xi ≥ θ (and similarly for fxi<θ).

2. Recurse: Build the left and right subtrees by recursing on fxi≥θ and fxi<θ respectively.
3. Terminate: The recursion terminates when the depth of the tree reaches a user-specified

depth parameter. Each leaf ℓ of the tree is labeled by round(E [fℓ]), where we associate ℓ

with the restriction corresponding to the root-to-ℓ path within the tree and round(p) :=
1[p ≥ 1

2].

Given the popularity and empirical success of these heuristics1, it is natural to seek
theoretical guarantees on their performance:

Let f : Rn → {0, 1} be a target function and D be a distribution over Rn. Can
we obtain a high-accuracy hypothesis for f by growing a depth-k′ tree using these
heuristics, where k′ is not too much larger than k, the optimal decision tree depth
for f? (♢)

1.1 Background and prior work
A simple and well-known impossibility result

Unfortunately, it has long been known [21, 20] that no such guarantee is possible even under
favorable feature and distributional assumptions. Consider the setting of binary features
(i.e. f : {0, 1}n → {0, 1}) and the uniform distribution U over {0, 1}n, and suppose f is the
parity of two unknown features xi ⊕ xj for i, j ∈ [n]. It can be easily verified that for all
impurity functions G, all features have the same purity gain: G-purity-gainU (f, xℓ) = 0 for
all ℓ ∈ [n], regardless of whether ℓ ∈ {i, j}. Therefore, these heuristics may build a tree of
depth Ω(n), querying irrelevant variables xℓ where ℓ /∈ {i, j}, before achieving any nontrivial
accuracy. This is therefore an example where the target f is computable by a decision tree of
depth k = 2, and yet these heuristics may build a tree of depth k′ = Ω(n) before achieving
any nontrivial accuracy.

Smoothed analysis

In light of such impossibility results, a line of work has focused on establishing provable
guarantees for restricted classes of target functions [13, 25, 7, 3, 2]; we give an overview of
these results in Section 1.3.

1 CART and C4.5 were named as two of the “Top 10 algorithms in data mining” by the International
Conference on Data Mining (ICDM) community [33]; other algorithms on this list include k-means,
k-nearest neighbors, Adaboost, and PageRank, all of whose theoretical properties are the subjects of
intensive study. C4.5 has also been described as “probably the machine learning workhorse most widely
used in practice to date” [32].

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:3

The focus of our work is instead on smoothed analysis as an alternative route towards
evading these impossibility results, an approach that was recently considered by Brutzkus,
Daniely, and Malach [8]. Smoothed analysis is by now a standard paradigm for going
beyond worst-case analysis. Roughly speaking, positive results in this model show that “hard
instances are pathological.” Smoothed analysis has been especially influential in accounting
for the empirical effectiveness of algorithms widely used in practice, a notable example being
the simplex algorithm for linear programming [31]. The idea of analyzing greedy decision
tree learning heuristics through the lens of smoothed analysis is therefore very natural.

A smoothed product distribution over {0, 1}n, a notion introduced by Kalai, Samrodnitsky,
and Teng [19], is obtained by randomly and independently perturbing the bias of each marginal
of a product distribution. For smoothed product distributions, Brutzkus et al. proved strong
guarantees on the performance of greedy decision tree heuristics when run on targets that are
juntas, functions that depend only on a small number of its features. For a given impurity
function G, let us write AG to denote the corresponding decision tree learning heuristic.

▶ Theorem 1 (Performance guarantee for targets that are k-juntas [8]). For all impurity
functions G and for all target functions f : {0, 1}n → {0, 1} that are k-juntas, if AG is trained
on examples drawn from a smoothed product distribution, it learns a decision tree hypothesis
of depth k that achieves perfect accuracy.

(Therefore Theorem 1 shows that the smoothed setting enables one to circumvent the
impossibility result discussed above, which was based on targets that are 2-juntas.)

Every k-junta is computable by a depth-k decision tree, but a depth-k decision tree can
depend on as many as 2k variables. Brutzkus et al. left as an open problem of their paper a
conjecture that the guarantees of Theorem 1 hold more generally for targets that are depth-k
decision trees:

▶ Conjecture 2 (Performance guarantee for targets that are depth-k decision trees). For all
impurity functions G and for all target functions f : {0, 1}n → {0, 1} that are depth-k decision
trees, if AG is trained on examples drawn from a smoothed product distribution, it learns a
decision tree hypothesis of depth O(k) that achieves high accuracy.

In other words, Conjecture 2 states that for all targets f : {0, 1}n → {0, 1}, the sought-for
guarantee (♢) holds if the heuristics are trained on examples drawn from a smoothed product
distribution.

1.2 This work: Lower bounds in the smoothed setting
Our main result is a counterexample to Conjecture 2. We construct targets that are depth-k
decision trees for which all greedy impurity-based heuristics, even in the smoothed setting,
may grow a tree of depth 2Ω(k) before achieving high accuracy. This lower bound is close
to being maximally large since Theorem 1 implies an upper bound of O(2k). Our result is
actually stronger than just a lower bound in the smoothed setting: our lower bound holds
with respect to any product distribution that is balanced in the sense that its marginals are
not too skewed.

▶ Theorem 3 (Our main result: a counterexample to Conjecture 2; informal). Conjecture 2
is false: For all k = k(n), there are target functions f : {0, 1}n → {0, 1} that are depth-k
decision trees such that for all impurity functions G, if AG is trained on examples drawn from
any balanced product distribution, its decision tree hypothesis does not achieve high accuracy
unless it has depth 2Ω(k).

APPROX/RANDOM 2021

45:4 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

By building on our proof of Theorem 3, we also show that the guarantees of Brutzkus et
al. for k-juntas cannot extend to the agnostic setting:

▶ Theorem 4 (Theorem 1 does not extend to the agnostic setting; informal). For all ε and
k = k(n), there are target functions f : {0, 1}n → {0, 1} that are ε-close to a k-junta such
that for all impurity functions G, if AG is trained on examples drawn from any balanced
product distribution, its decision tree hypothesis does not achieve high accuracy unless it has
depth ε · 2Ω(k).

In particular, there are targets that are 2−Ω(k)-close to k-juntas, for which these heuristics
have to construct a decision tree hypothesis of depth 2Ω(k) before achieving high accuracy.
Taken together with the positive result of Brutzkus et al., Theorems 3 and 4 add to our
understanding of the strength and limitations of greedy decision tree learning heuristics.

Our lower bounds are based on new generalizations of the addressing function. Since
the addressing function is often a useful extremal example in a variety of settings, we are
hopeful that these generalizations and our analysis of them will see further utility beyond
the applications of this paper.

1.3 Related Work
As mentioned above, there has been a substantial line of work on establishing provable
guarantees for greedy decision tree heuristics when run in restricted classes of target functions.
Fiat and Pechyony [13] considered the class of read-once DNF formulas and halfspaces; the
Ph.D. thesis of Lee [25] considered the class of monotone functions; Brutzkus, Daniely, and
Malach [7] considered conjunctions and read-once DNF formulas; recent works of [3, 2] build
on the work of Lee and further studied monotone target functions. (All these works focus on
the case of binary features and product distributions over examples.)

Kearns and Mansour [21], in one of the first papers to study these heuristics from a
theoretical perspective, showed that they can be viewed as boosting algorithms, with internal
nodes of the decision tree hypothesis playing the role of weak learners. Their subsequent work
with Dietterich [11] provide experimental results that complement the theoretical results
of [21]; see also the survey of Kearns [20].

Finally, we mention that decision trees are one of the most intensively studied concept
classes in learning theory. The literature on this problem is rich and vast (see e.g. [12, 30,
5, 15, 9, 24, 4, 16, 22, 26, 18, 27, 14, 23, 19, 19, 17, 10, 1]), studying it from a variety of
perspectives and providing both positive and negative results. However, the algorithms
developed in these works do not resemble the greedy heuristics used in practice, and indeed,
most of them are not proper (in the sense of returning a hypothesis that is itself a decision
tree).2

2 Preliminaries

Recall that an impurity function G : [0, 1] → [0, 1] is concave, symmetric with respect to
1
2 , and satisfies G(0) = G(1) = 0 and G(1

2) = 1. We further quantify the concavity and
smoothness of G as follows:

2 Quoting [21], “it seems fair to say that despite their other successes, the models of computational
learning theory have not yet provided significant insight into the apparent empirical success of programs
like C4.5 and CART.”

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:5

▶ Definition 5 (Impurity functions). G is an (α, L)-impurity function if G is α-strongly concave
and L-smooth, i.e., G is twice-differentiable and G′′(x) ∈ [−L, −α] for every x ∈ [0, 1].

For a boolean function f : {0, 1}n → {0, 1} and index i ∈ [n], we write fxi=0 and fxi=1
to denote the restricted functions obtained by fixing the i-th input bit of f to either 0 or 1.
Formally, each fxi=b is a function over {0, 1}n defined as fxi=b(x) = f(xi→b), where xi→b

denotes the string obtained by setting the i-th bit of x to b. More generally, a restriction
π is a list of constraints of form “xi = b” in which every index i appears at most once.
For restriction π = (xi1 = b1, xi2 = b2, . . .), the restricted function fπ : {0, 1}n → {0, 1} is
similarly defined as fπ(x) = f(xi1→b1,i2→b2,...).

▶ Definition 6 (Purity gain). Let D be a distribution over {0, 1}n and pi = Prx∼D [xi = 1].
The G-purity gain of querying variable xi on boolean function f is defined as

G-purity-gainD(f, xi) := G
(

E
x∼D

[f(x)]
)

−piG
(

E
x∼D

[fxi=1(x)]
)

−(1−pi)G
(

E
x∼D

[fxi=0(x)]
)

.

In a decision tree, each node v naturally corresponds to a restriction πv formed by the
variables queried by the ancestors of v (excluding v itself). We use fv as a shorthand for fπv

.
We say that a decision tree learning algorithm is impurity-based if, in the tree returned by
the algorithm, every internal node v queries a variable that maximizes the purity gain with
respect to fv.

▶ Definition 7 (Impurity-based algorithms). A decision tree learning algorithm is G-impurity-
based if the following holds for every f : {0, 1}n → {0, 1} and distribution D over {0, 1}n:
When learning f on D, the algorithm outputs a decision tree such that for every internal node
v, the variable xi that is queried at v satisfies G-purity-gainD(fv, xi) ≥ G-purity-gainD(fv, xj)
for every j ∈ [n].

The above definition assumes that the algorithm exactly maximizes the G-purity gain at
every split, while in reality, the purity gains can only be estimated from a finite dataset. We
therefore consider an idealized setting that grants the learning algorithm with infinitely many
training examples, which, intuitively, strengthens our lower bounds. (Our lower bounds show
that in order for an algorithm to recover a good tree – a high-accuracy hypothesis whose
depth is close to that of the target – it would need to query a variable that has exponentially
smaller purity gain than that of the variable with the largest purity gain. Hence, if purity
gains are estimated using finitely many random samples as is done in reality, the strength of
our lower bounds imply that with extremely high probability, impurity-based heuristics will
fail to build a good tree; see Remark 15 for a detailed discussion.)

When a decision tree queries variable xi on function f , it naturally induces two restricted
functions fxi=0 and fxi=1. The following lemma states that the purity gain of querying xi is
roughly the squared difference between the averages of the two functions, up to a factor that
depends on the impurity function G and the data distribution D. We say that a product
distribution over {0, 1}n is δ-balanced if the expectation of each of the n coordinates is in
[δ, 1 − δ].

▶ Lemma 8. For any f : {0, 1}n → {0, 1}, δ-balanced product distribution D over {0, 1}n

and (α, L)-impurity function G, it holds for κ = max
(

2
αδ(1−δ) , L

8

)
and every i ∈ [n] that

1
κ

≤ G-purity-gainD(f, xi)
[Ex∼D [fxi=0(x)] − Ex∼D [fxi=1(x)]]2

≤ κ.

APPROX/RANDOM 2021

45:6 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

Proof of Lemma 8. Let pi = Prx∼D [xi = 1] and µb = Ex∼D [fxi=b(x)] respectively. Then,
we have Ex∼D [f(x)] = piµ1 + (1 − pi)µ0, and the purity gain can be written as

G-purity-gainD(f, xi) = G(piµ1 + (1 − pi)µ0) − piG(µ1) − (1 − pi)G(µ0).

Since G is α-strongly concave and L-smooth, the above is bounded between α
2 ·pi(1−pi) ·(µ0 −

µ1)2 and L
2 · pi(1 − pi) · (µ0 − µ1)2. Since D is δ-balanced, we have δ(1 − δ) ≤ pi(1 − pi) ≤ 1

4 .
It follows that

α

2 · δ(1 − δ) ≤ α

2 · pi(1 − pi) ≤ G-purity-gainD(f, xi)
(µ0 − µ1)2 ≤ L

2 · pi(1 − pi) ≤ L

8 .

Thus, the ratio is bounded between 1/κ and κ. ◀

Our lower bounds hold with respect to all δ-balanced product distributions. We compare
this to the definition of a c-smoothened δ-balanced product distribution from [8].

▶ Definition 9 (Smooth distributions). A c-smoothened δ-balanced product distribution is a
random product distribution over {0, 1}n where the marginal for the ith bit is 1 with probability
p̂i + ∆i for fixed p̂i ∈ (δ + c, 1 − δ − c) and ∆i drawn i.i.d. from Uniform([−c, c]).

Since our lower bounds hold against all δ-balanced product distributions, it also holds
against all c-smoothened δ-balanced product distributions.

3 Proof overview and formal statements of our results

Our goal is to construct a target function that can be computed by a depth-k decision tree,
but on which impurity-based algorithms must build to depth 2Ω(k) or have large error. To
do so, we construct a decision tree target T where the variables with largest purity gain are
at the bottom layer of T (adjacent to its leaves). Intuitively, impurity-based algorithms will
build their decision tree hypothesis for T by querying all the variables in the bottom layer of
T before querying any of the variables higher up in T . Our construction will be such that
until the higher up variables are queried, it is impossible to approximate the target with any
nontrivial error. Summarizing informally, we show that impurity-based algorithms build its
decision tree hypothesis for our target by querying variables in exactly the “wrong order”.

The starting point of our construction is the well known addressing function. For k ∈ N,
the addressing function f : {0, 1}k+2k → {0, 1} is defined as follows: Given “addressing bits”
z ∈ {0, 1}k and “memory bits” y ∈ {0, 1}2k , the output f(y, z) is the zth bit of y, where “zth

bit” is computed by interpreting z as a base-2 integer. Note that the addressing function is
computable by a decision tree of depth k + 1 that first queries the k addressing bits, followed
by the appropriate memory bit.

For our lower bound, we would like the variables with the highest purity gain to be the
memory bits. However, for smoothed product distributions, the addressing bits might have
higher purity gain than the memory bits, and impurity-based algorithms might succeed in
learning the addressing function. We therefore modify the addressing function by making
each addressing bit the parity of multiple new bits. We show that by making each addressing
bit the parity of sufficiently many new bits, we can drive the purity gain of these new bits
down to the point where the memory bits have the highest purity gain as desired – in fact,
larger than the addressing bits by a multiplicative factor of eΩ(k). (Making each addressing
bit the parity of multiple new bits increases the depth of the target, so this introduces
technical challenges we have to overcome in order to achieve the strongest parameters.)

Our main theorem is formally restated as follows.

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:7

▶ Theorem 10 (Formal version of Theorem 3). Fix L ≥ α > 0 and δ ∈ (0, 1
2]. There

are boolean functions f1, f2, . . . such that: (1) fk is computable by a decision tree of depth
O(k/δ); (2) For every δ-balanced product distribution D over the domain of fk and every
(α, L)-impurity function G, any G-impurity based decision tree heuristic, when learning fk on
D, returns a tree that has either depth ≥ 2k or an Ω(δ) error.

An extension of our construction and its analysis shows that the guarantees of Brutzkus
et al. for targets that are k-juntas cannot extend to the agnostic setting. Roughly speaking,
while our variant of the addressing function from Theorem 10 is far from all k-juntas, it can
be made close to one by fixing most of the memory bits. We obtain our result by showing
that our analysis continues to hold under such a restriction.

▶ Theorem 11 (Formal version of Theorem 4). Fix L ≥ α > 0, δ ∈ (0, 1
2] and ε ∈ (0, 1].

There are boolean functions f1, f2, . . . such that for every δ-balanced product distribution D
over the domain of fk: (1) fk is ε-close to an O(k/δ)-junta with respect to D; (2) For every
(α, L)-impurity function G, any G-impurity based decision tree heuristic, when learning fk on
D, returns a tree that has either a depth of Ω(ε · 2k) or an Ω(1) error.

4 Warm-Up: A Weaker Lower Bound

We start by giving a simplified construction that proves a weaker version of Theorem 10,
in which the O(k/δ) depth in condition (1) is relaxed to O(k2/δ). For integers c, k ≥ 1,
we define a boolean function fc,k : {0, 1}ck2+2k → {0, 1} as follows. The input of fc,k is
viewed as two parts: ck2 addressing bits xi,j indexed by i ∈ [k] and j ∈ [ck], and 2k memory
bits ya indexed by a ∈ {0, 1}k. The function value fc,k(x, y) is defined by first computing
zi(x) =

⊕ck
j=1 xi,j for every i ∈ [k], and then assigning fc,k(x, y) = yz(x).

In other words, fc,k is a disjoint composition of the k-bit addressing function and the
parity function over ck bits. Given addressing bits x and memory bits y, the function first
computes a k-bit address by taking the XOR of the addressing bits in each group of size
ck, and then retrieves the memory bit with the corresponding address. Clearly, fc,k can be
computed by a decision tree of depth ck2 + 1 that first queries all the ck2 addressing bits
and then queries the relevant memory bit in the last layer.

4.1 Address is Almost Uniform
Drawing input (x, y) from a distribution D naturally defines a distribution over {0, 1}k of the
k-bit address z(x) = (z1(x), z2(x), . . . , zk(x)). The following lemma states that when D is a
δ-balanced product distribution, the distribution of z(x) is almost uniform in the ℓ∞ sense.
Furthermore, this almost uniformity holds even if one of the addressing bits xi,j is fixed.

▶ Lemma 12. Suppose that c ≥ ln 5
δ and D is a δ-balanced product distribution over the

domain of fc,k. Then,∣∣∣∣ Pr
(x,y)∼D

[z(x) = a] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

Furthermore, for every i ∈ [k], j ∈ [ck] and b ∈ {0, 1},∣∣∣∣ Pr
(x,y)∼D

[z(x) = a|xi,j = b] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

The proof of Lemma 12 uses the following simple fact, which states that the XOR of
independent biased random bits is exponentially close to an unbiased coin flip.

APPROX/RANDOM 2021

45:8 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

▶ Lemma 13. Suppose that x1, x2, . . . , xn are independent Bernoulli random variables,
each with an expectation between δ and 1 − δ. Then,

∣∣Pr [x1 ⊕ x2 ⊕ · · · ⊕ xn = 1] − 1
2
∣∣ ≤

1
2 (1 − 2δ)n ≤ 1

2 exp(−2δn).

Proof of Lemma 12. Since zi(x) =
⊕ck

j=1 xi,j and D is δ-balanced, Lemma 13 gives∣∣∣∣ Pr
(x,y)∼D

[zi(x) = 1] − 1
2

∣∣∣∣ ≤ 1
2 exp(−2δck) ≤ 1

2 · 5−k.

Note that the bits of z(x) are independent, so Pr(x,y)∼D [z(x) = a] is given by
k∏

i=1
Pr

(x,y)∼D
[zi(x) = ai] ≤

(
1
2 + 1

2 · 5−k

)k

= 2−k ·(1+5−k)k ≤ 2−k ·(1+(2/5)k) = 2−k +5−k,

where the third step applies (1 + x)k ≤ 1 + 2kx for x ∈ [0, 1] and integers k ≥ 1. Similarly,

Pr
(x,y)∼D

[z(x) = a] ≥
(

1
2 − 1

2 · 5−k

)k

≥ 2−k · (1 − k · 5−k) ≥ 2−k − 5−k,

where the last two steps apply (1 − x)k ≥ 1 − kx and k · 2−k ≤ 1. This proves the first part.
The proof of the “furthermore” part is essentially the same, except that conditioning on

xi,j = b, zi(x) becomes the XOR of ck − 1 independent bits and b. By Lemma 13, we have∣∣∣∣ Pr
(x,y)∼D

[zi(x) = 1|xi,j = b] − 1
2

∣∣∣∣ ≤ 1
2 exp(−2δ(ck − 1)) ≤ 1

2 exp(−δck) ≤ 1
2 · 5−k,

and the rest of the proof is the same. ◀

4.2 Memory Bits are Queried First
The following technical lemma states that the purity gain of fc,k is maximized by a memory
bit, regardless of the impurity function and the data distribution. Therefore, when an
impurity-based algorithm (in the sense of Definition 7) learns fc,k, the root of the decision
tree will always query a memory bit. Furthermore, this property also holds for restrictions of
fc,k as long as the restriction only involves the memory bits.

▶ Lemma 14. Fix L ≥ α > 0 and δ ∈ (0, 1
2]. Let c0 = ln 5

δ and k0 = ln(2κ)
ln(5/4) + 1, where κ is

chosen as in Lemma 8. The following holds for every function fc,k with c ≥ c0 and k ≥ k0:
For any (α, L)-impurity function G, δ-balanced product distribution D and restriction π of
size < 2k that only contains the memory bits of fc,k, the purity gain G-purity-gainD((fc,k)π, ·)
is maximized by a memory bit.

Proof of Lemma 14. Fix c ≥ c0 and k ≥ k0 and shorthand f for fc,k. We will prove a
stronger claim: with respect to fπ, every memory bit (that is not in π) gives a much higher
purity gain than every addressing bit does.

Purity gain of the memory bits

Fix a memory bit ya (a ∈ {0, 1}k) that does not appear in restriction π. Let µb =
E(x,y)∼D [fπ,ya=b(x, y)] for b ∈ {0, 1}. By the law of total expectation,

µb = Pr
(x,y)∼D

[z(x) = a] · E
(x,y)∼D

[fπ,ya=b(x, y)|z(x) = a]

+ Pr
(x,y)∼D

[z(x) ̸= a] · E
(x,y)∼D

[fπ,ya=b(x, y)|z(x) ̸= a]

= Pr
(x,y)∼D

[z(x) = a] · b + Pr
(x,y)∼D

[z(x) ̸= a] · E
(x,y)∼D

[fπ(x, y)|z(x) ̸= a] .

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:9

Here the second step holds since fπ,ya=b(x, y) evaluates to b when the address z(x) equals a,
and fπ,ya=b agrees with fπ when z(x) ̸= a. Since only the first term above depends on b, we
have

|µ0 − µ1| = Pr
(x,y)∼D

[z(x) = a] ≥ 2−k − 5−k ≥ 1
2 · 2−k,

where the second step follows from c ≥ c0 and Lemma 12. Finally, by Lemma 8,
G-purity-gainD(fπ, ya) ≥ 1

κ (µ0 − µ1)2 ≥ 1
4κ · 2−2k.

Purity gain of the addressing bits

Similarly, we fix an addressing bit xi,j and define the average µb = E(x,y)∼D
[
fπ,xi,j=b(x, y)

]
.

Since D is a product distribution, µb is equal to the conditional expectation
E(x,y)∼D [fπ(x, y)|xi,j = b]. Then, by the law of total expectation, we can write µb as

µb =
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a|xi,j = b] · E
(x,y)∼D

[fπ(x, y)|z(x) = a, xi,j = b]

=
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a|xi,j = b] · E
(x,y)∼D

[fπ(x, y)|z(x) = a] .

Here the second step holds since fπ(x, y) and xi,j are independent conditioning on the address
z(x); in other words, once we know the value of z(x), it doesn’t matter how x is set in
determining the output of f .

Let ca denote E(x,y)∼D [fπ(x, y)|z(x) = a], and let Pb be the distribution of z(x) condi-
tioning on xi,j = b. Then, µb is exactly given by Ea∼Pb

[ca]. Since each ca is in [0, 1], |µ0 −µ1|
is upper bounded by the total variation distance between P0 and P1:

|µ0 − µ1| ≤ 1
2

∑
a∈{0,1}k

|P0(a) − P1(a)|

≤ 1
2

∑
a∈{0,1}k

(
|P0(a) − 2−k| + |P1(a) − 2−k|

)
≤ 1

2 · 2k · 2 · 5−k = (2/5)k. (Lemma 12)

Finally, applying Lemma 8 shows that G-purity-gainD(fπ, xi,j) ≤ κ(µ0 − µ1)2 ≤ κ · (2/5)2k.
Recall that k ≥ k0 > ln(2κ)

ln(5/4) , so we have κ · (2/5)2k < 1
4κ · 2−2k. Therefore, the purity

gain of every memory bit outside the restriction is strictly larger than that of any addressing
bit, and the lemma follows immediately. ◀

▶ Remark 15. The proof above bounds the purity gain of each memory bit and each addressing
bit by Ω((1/2)2k) and O((2/5)2k) respectively. For Lemma 14 to hold when the purity gains
are estimated from a finite dataset, it suffices to argue that each estimate is accurate up to
an O((2/5)2k) additive error. By a standard concentration argument, to estimate the purity
gains for all restriction π of size ≤ h, 2O(h+k) training examples are sufficient. When applied
later in the proof of Theorem 10, this finite-sample version of Lemma 14 would imply that
impurity-based algorithms need to build a tree of depth h as soon as the sample size reaches
2Ω(h+k).

APPROX/RANDOM 2021

45:10 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

4.3 Proof of the Weaker Version
Now we are ready to prove the weaker version of Theorem 10. We will apply Lemma 14 to
argue that the tree returned by an impurity-based algorithm never queries an addressing bit
(unless all the 2k memory bits have been queried), and then show that every such decision
tree must have an error of Ω(δ).

Proof of Theorem 10 (weaker version). Fix integer c ≥ ln 5
δ and consider the functions

fc,1, fc,2, Since each fc,k is represented by a decision tree of depth ck2 + 1 = O(k2/δ), it
remains to show that impurity-based algorithms fail to learn fc,k. Fix integer k ≥ k0 (where
k0 is chosen as in Lemma 14) and δ-balanced product distribution D over the domain of fc,k.
In the following, we use shorthand f for fc,k.

Small trees never query addressing bits

Let T be the decision tree returned by a G-impurity-based algorithm when learning f on
D. If T has depth > 2k, we are done, so we assume that T has depth at most 2k. We claim
that T never queries the addressing bits of f . Suppose otherwise, that an addressing bit
is queried at node v in T , and no addressing bits are queried by the ancestors of v. Then,
the restriction πv associated with node v only contains the memory bits of f . Since T has
depth ≤ 2k, the size of πv is strictly less than 2k. Then, by Lemma 14, the G-purity gain
with respect to fv is maximized by a memory bit. This contradicts the assumption that the
algorithm is G-impurity-based.

Trivial accuracy if no addressing bits are queried

We have shown that T only queries the memory bits of f . We may further assume that T

queries all the 2k memory bits before reaching any of its leaves, i.e., T is a full binary tree of
depth 2k. This assumption is without loss of generality because we can add dummy queries
on the memory bits to the leaves of depth < 2k, and label all the resulting leaves with the
same bit. This change does not modify the function represented by T .

Assuming that T is full, every leaf ℓ of T is labeled by 2k bits (ca)a∈{0,1}k , meaning that
each memory bit ya is fixed to ca on the root-to-ℓ path. The expectation of the restricted
function fℓ is then given by µℓ := E(x,y)∼D

[
cz(x)

]
. Clearly, the error of T is minimized

when each leaf ℓ is labeled with 1
[
µℓ ≥ 1

2
]
, and the conditional error when reaching leaf ℓ is

min(µℓ, 1 − µℓ).
It remains to show that for a large fraction of leaves ℓ, µℓ is bounded away from 0 and 1,

so that min(µℓ, 1 − µℓ) is large. When leaf ℓ is randomly chosen according to distribution D,
the corresponding µℓ is given by

µℓ =
∑

a∈{0,1}k

Pr
(x,y)∼D

[z(x) = a] · ca, (1)

where (ca)a∈{0,1}k are 2k independent Bernoulli random variables with means in [δ, 1 − δ].
By Lemma 12 and our choice of c ≥ c0, Pr(x,y)∼D [z(x) = a] ≤ 2 · 2−k holds for every

a ∈ {0, 1}k. Thus, each term in (1) is bounded between 0 and 2 · 2−k. Furthermore, since
each ca has expectation at least δ, E [µℓ] ≥ δ. Then, Hoeffding’s inequality guarantees
that over the random choice of (ca)a∈{0,1}k , µℓ ≥ δ/2 holds with probability at least
1 − exp

(
− 2·(δ/2)2

2k·(2·2−k)2

)
= 1 − exp(−2kδ2/8), which is lower bounded by 2/3 for all sufficiently

large k. By a symmetric argument, µℓ ≤ 1−δ/2 also holds with probability ≥ 2/3. Therefore,

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:11

with probability ≥ 1/3 over the choice of leaf ℓ, µℓ ∈ [δ/2, 1 − δ/2] holds and thus the
conditional error on leaf ℓ is at least δ/2. This shows that the error of T over distribution D
is lower bounded by δ/6, which completes the proof. ◀

5 Proof of Theorem 10

When proving the weaker version of Theorem 10, each hard instance fc,k has Θ(k2) addressing
bits grouped into k disjoint subsets, and the k-bit address is defined by the XOR of bits in
each subset. We will prove Theorem 10 using a slightly different construction that computes
address from k overlapping subsets of only O(k) addressing bits.

For integers c, k ≥ 1 and a list of k sets S = (S1, S2, . . . , Sk) where each Si ⊆ [ck], we
define a boolean function fc,k,S : {0, 1}ck+2k → {0, 1} as follows. The input of fc,k,S is again
divided into two parts: ck addressing bits x1, x2, . . . , xck and 2k memory bits ya indexed by
a k-bit address a. The function value f(x, y) is computed by taking zi(x) =

⊕
j∈Si

xj and
then f(x, y) = yz(x). Clearly, fc,k,S can be computed by a decision tree of depth ck + 1 that
first queries all the ck addressing bits x1, x2, . . . , xck, and then queries the relevant memory
bit yz(x).

Let △k
i=1 Si denote the k-ary symmetric difference of sets S1 through Sk, i.e., the set of

elements that appear in an odd number of sets. We say that a list of sets S = (S1, S2, . . . , Sk)
has distance d, if any non-empty collection of sets has a symmetric difference of size at least
d, i.e., |△i∈I Si| ≥ d for every non-empty I ⊆ [k]. In the following, we prove analogs of
Lemmas 12 and 14 for function fc,k,S assuming that S has a large distance; Theorem 10
would then follow immediately.

▶ Lemma 16. Suppose that D is a δ-balanced product distribution over the domain of fc,k,S

and S has distance d ≥ ln 5
δ · k. Then,∣∣∣∣ Pr

(x,y)∼D
[z(x) = a] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

Furthermore, for every i ∈ [ck] and b ∈ {0, 1},∣∣∣∣ Pr
(x,y)∼D

[z(x) = a|xi = b] − 2−k

∣∣∣∣ ≤ 5−k, ∀a ∈ {0, 1}k.

We prove Lemma 16 by noting that the distribution of z(x) has exponentially small
Fourier coefficients (except the degree-0 one) under the assumptions, and is thus close to the
uniform distribution over {0, 1}k. More concretely, our goal is to show that, for every I ⊆ [k]
the quantity

⊕
i∈I zi(x) is 1 with probability nearly exactly 1

2 . Afterwards, we will show this
is sufficient to guarantee that the distribution of z(x) is close to the uniform distribution.

Proof of Lemma 16. Since zi(x) =
⊕

j∈Si
xj , we have

⊕
i∈I zi(x) =

⊕
j∈SI

xj for every
I ⊆ [k], where SI = △i∈I Si is the symmetric difference of the corresponding sets. Since S

has distance d, |SI | ≥ d for every non-empty I ⊆ [k] and thus
⊕

i∈I zi(x) is the XOR of at
least d independent bits. Note that 1 − 2

⊕
i∈I zi(x) =

∏
i∈I(1 − 2zi(x)). By Lemma 13 and

d ≥ ln 5
δ · k,∣∣∣∣∣ E

(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣ = 2 ·

∣∣∣∣∣ Pr
(x,y)∼D

[⊕
i∈I

zi(x) = 1
]

− 1
2

∣∣∣∣∣ ≤ exp(−2δd) ≤ 5−k. (2)

APPROX/RANDOM 2021

45:12 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

Note that for b1, b2 ∈ {0, 1}, we have 1 [b1 = b2] = (1−2b1)(1−2b2)+1
2 . Therefore, for every

a ∈ {0, 1}k,∣∣∣∣ Pr
(x,y)∼D

[z(x) = a] − 2−k

∣∣∣∣ =

∣∣∣∣∣ E
(x,y)∼D

[
k∏

i=1

(1 − 2ai)(1 − 2zi(x)) + 1
2

]
− 2−k

∣∣∣∣∣
= 2−k

∣∣∣∣∣∣
∑

I⊆[k]

E
(x,y)∼D

[∏
i∈I

(1 − 2ai)(1 − 2zi(x))
]

− 1

∣∣∣∣∣∣
(expansion of product and linearity)

= 2−k

∣∣∣∣∣∣
∑

I⊆[k]:I ̸=∅

E
(x,y)∼D

[∏
i∈I

(1 − 2ai)(1 − 2zi(x))
]∣∣∣∣∣∣

(empty product equals 1)

≤ 2−k
∑

I⊆[k]:I ̸=∅

∣∣∣∣∣∏
i∈I

(1 − 2ai)

∣∣∣∣∣ ·

∣∣∣∣∣ E
(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣

(triangle inequality and linearity)

= 2−k
∑

I⊆[k]:I ̸=∅

∣∣∣∣∣ E
(x,y)∼D

[∏
i∈I

(1 − 2zi(x))
]∣∣∣∣∣ (|1 − 2ai| = 1)

≤ 2−k · (2k − 1) · 5−k < 5−k. (Inequality (2))

The proof of the “furthermore” part is the same, except that after conditioning on xi = b,
each

⊕
j∈I zj(x) is now the XOR of at least d − 1 independent bits, and the remaining proof

goes through. ◀

We note that the proof of Lemma 14 depends on the definition of z(x) only through
the application of Lemma 12. Thus, Lemma 16 directly implies the following analog of
Lemma 14:

▶ Lemma 17. Fix L ≥ α > 0 and δ ∈ (0, 1
2]. Let c0 = ln 5

δ and k0 = ln(2κ)
ln(5/4) + 1, where κ is

chosen as in Lemma 8. The following holds for every function fc,k,S such that k ≥ k0 and
S has distance c0k: For any (α, L)-impurity function G, δ-balanced product distribution D
and restriction π of size < 2k that only contains the memory bits of fc,k,S, the purity gain
G-purity-gainD((fc,k,S)π, ·) is maximized by a memory bit.

Finally, we prove Theorem 10 by showing the existence of a set family S with a good
distance.

Proof of Theorem 10. Fix δ ∈ (0, 1
2]. The Gilbert–Varshamov bound for binary linear

codes implies that for some c = Θ(1/δ), there exists a binary linear code with rate 1
c

and relative distance ln 5
δc . It follows that for every sufficiently large k, there exists S(k) =

(S(k)
1 , S

(k)
2 , . . . , S

(k)
k) such that each S

(k)
i ⊆ [ck] and S(k) has distance ln 5

δ · k. This can be
done by using the i-th basis of the linear code as the indicator vector of subset S

(k)
i for each

i ∈ [k].
We prove Theorem 10 using functions fc,1,S(1) , fc,2,S(2) , Since each fc,k,S(k) can be

represented by a decision tree of depth ck + 1 = O(k/δ), it remains to prove that impurity-
based algorithms fail to learn fc,k,S(k) . Lemma 17 guarantees that the tree returned by such
algorithms either has depth > 2k, or never queries any addressing bits. In the latter case, by
the same calculation as in the proof of the weaker version, the decision tree must have an
Ω(δ) error on distribution D. ◀

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:13

6 Proof of Theorem 11

We prove Theorem 11 using the construction of fc,k,S in Section 5, where S = (S1, S2, . . . , Sk)
is a list of k subsets of [ck] and each Si specifies how the i-th bit of the address, zi(x),
is computed from the addressing bits x1 through xck. Note that fc,k,S itself depends on
Ω(2k) input bits and is thus not an O(k)-junta. Nevertheless, we will show that, after we fix
most of the memory bits of fc,k,S , the function is indeed close to a (ck)-junta with relevant
inputs being the ck addressing bits. Then, as in the proof of Theorem 10, we will argue that
impurity-based heuristics still query the (unfixed) memory bits before querying any of the
addressing bits, resulting in a tree that is either exponentially deep or far from the target
function.

Proof of Theorem 11. As in the proof of Theorem 10, we can find functions
fc,1,S(1) , fc,2,S(2) , . . . for some c = Θ(1/δ) such that each S(k) has distance ≥ ln 5

δ · k. We fix
a sufficiently large integer k and shorthand f for fc,k,S(k) in the following.

Partition {0, 1}k into three sets A0, A1 and Afree such that |A0| = |A1| and ε · 2k−2 ≤
|Afree| ≤ ε · 2k−1. Consider the restriction π of function f such that the memory bit ya is
fixed to be 0 for every a ∈ A0 and fixed to be 1 for every a ∈ A1; the memory bits with
addresses in Afree are left as “free” variables. We will prove the theorem using fπ as the k-th
function in the family.

fπ is close to a junta

Consider the function g : {0, 1}ck+2k → {0, 1} defined as g(x, y) = 1
[
z(x) ∈ A1]

, where z(x)
denotes (z1(x), z2(x), . . . , zk(x)) and each zi(x) =

⊕
j∈S

(k)
i

xj . Clearly, g(x, y) only depends
on x ∈ {0, 1}ck and is thus a (ck)-junta. Furthermore, for every input (x, y) such that
z(x) ∈ A0 (resp. z(x) ∈ A1), both fπ and g evaluate to 0 (resp. 1). Thus, fπ and g may
disagree only if z(x) ∈ Afree. It follows that for every δ-balanced product distribution D,

Pr
(x,y)∼D

[fπ(x, y) ̸= g(x, y)] ≤ Pr
(x,y)∼D

[
z(x) ∈ Afree]

≤ |Afree| · (2−k + 5−k) (Lemma 16)
≤ ε · 2k−1 · (2−k + 5−k) < ε. (|Afree| ≤ ε · 2k−1)

Therefore, fπ is ε-close to an O(k/δ)-junta (namely, g) with respect to distribution D.

Impurity-based algorithms fail to learn fπ

Let T be the decision tree returned by an G-impurity based algorithm when learning fπ on
distribution D. By Lemma 17, T must query all the free memory bits with addresses in Afree

before querying any of the addressing bits. Thus, either T has depth > |Afree| = Ω(ε · 2k), or
T only queries the free memory bits of fπ.

In the latter case, we may again assume without loss of generality that T queries all the
free memory bits (ya)a∈Afree before reaching any of its leaves, i.e., T is a full binary tree of
depth |Afree|. Then, every leaf ℓ naturally specifies 2k bits (ca)a∈{0,1}k defined as

ca =

0, a ∈ A0,

1, a ∈ A1,

b, a ∈ Afree, ya is fixed to b on the root-to-ℓ path.

APPROX/RANDOM 2021

45:14 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

Let µℓ := E(x,y)∼D
[
cz(x)

]
. Again, the minimum possible error conditioning on reaching leaf

ℓ is min(µℓ, 1 − µℓ), achieved by labeling ℓ with 1
[
µℓ ≥ 1

2
]
. On the other hand, we have

µℓ ≥ Pr
(x,y)∼D

[
z(x) ∈ A1]

≥ |A1| · (2−k − 5−k) (Lemma 16)

≥ 2k − |Afree|
2 · 2−(k+1) (2|A1| + |Afree| = 2k)

≥ 2k − 2k−1

2 · 2−(k+1) = 1
8 , (|Afree| ≤ ε · 2k−1 ≤ 2k−1)

and a similar calculation shows µℓ ≤ 7
8 . We conclude that the error of the decision tree T

over distribution D is at least 1
8 = Ω(1). ◀

7 Conclusion

We have constructed target functions for which greedy decision tree learning heuristics
fail badly, even in the smoothed setting. Our lower bounds complement and strengthen
the parity-of-two-features example discussed in the introduction, which showed that these
heuristics fail badly in the non-smoothed setting.

It can be reasonably argued that real-world data sets do not resemble the target functions
considered in this paper or the parity-of-two-features example. Perhaps the sought-for
guarantee (♢), while false for certain target functions even in the smoothed setting, is
nonetheless true for broad and natural classes of targets? It would be interesting to reexamine,
through the lens of smoothed analysis, provable guarantees for restricted classes of functions
that have been established. For example, can the guarantees of [3, 2] for monotone target
functions and product distributions be further strengthened in the smoothed setting? The
target functions considered in this paper, as well as the parity-of-two-features example, are
non-monotone.

References
1 Guy Blanc, Neha Gupta, Jane Lange, and Li-Yang Tan. Universal guarantees for decision

tree induction via a higher-order splitting criterion. In Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS), 2020.

2 Guy Blanc, Jane Lange, and Li-Yang Tan. Provable guarantees for decision tree induction:
the agnostic setting. In Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020. Available at https://arxiv.org/abs/2006.00743.

3 Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees: rigorous
guarantees and inherent limitations. In Proceedings of the 11th Innovations in Theoretical
Computer Science Conference (ITCS), volume 151, pages 1–44, 2020.

4 Avirm Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven
Rudich. Weakly learning DNF and characterizing statistical query learning using Fourier
analysis. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC),
pages 253–262, 1994.

5 Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Inform. Process. Lett.,
42(4):183–185, 1992. doi:10.1016/0020-0190(92)90237-P.

6 Leo Breiman, Jerome Friedman, Charles Stone, and Richard Olshen. Classification and
regression trees. Wadsworth International Group, 1984.

7 Alon Brutzkus, Amit Daniely, and Eran Malach. On the Optimality of Trees Generated by
ID3. ArXiv, abs/1907.05444, 2019.

https://arxiv.org/abs/2006.00743
https://doi.org/10.1016/0020-0190(92)90237-P

G. Blanc, J. Lange, M. Qiao, and L.-Y. Tan 45:15

8 Alon Brutzkus, Amit Daniely, and Eran Malach. ID3 learns juntas for smoothed product
distributions. In Proceedings of the 33rd Annual Conference on Learning Theory (COLT),
pages 902–915, 2020.

9 Nader Bshouty. Exact learning via the monotone theory. In Proceedings of 34th Annual
Symposium on Foundations of Computer Science (FOCS), pages 302–311, 1993.

10 Sitan Chen and Ankur Moitra. Beyond the low-degree algorithm: mixtures of subcubes and
their applications. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing
(STOC), pages 869–880, 2019.

11 Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak learning framework
to understand and improve C4.5. In Proceedings of the 13th International Conference on
Machine Learning (ICML), pages 96–104, 1996.

12 Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231–246, 1989.

13 Amos Fiat and Dmitry Pechyony. Decision trees: More theoretical justification for practical
algorithms. In Proceedings of the 15th International Conference on Algorithmic Learning
Theory (ALT), pages 156–170, 2004.

14 Parikshit Gopalan, Adam Kalai, and Adam Klivans. Agnostically learning decision trees. In
Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), pages 527–536,
2008.

15 Thomas Hancock. Learning kµ decision trees on the uniform distribution. In Proceedings of
the 6th Annual Conference on Computational Learning Theory (COT), pages 352–360, 1993.

16 Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning decision
lists and trees. Information and Computation, 126(2):114–122, 1996.

17 Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter optimization: A spectral
approach. Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018.

18 Jeffrey C. Jackson and Rocco A. Servedio. On learning random dnf formulas under the uniform
distribution. Theory of Computing, 2(8):147–172, 2006. doi:10.4086/toc.2006.v002a008.

19 Adam Kalai, Alex Samorodnitsky, and Shang-Hua Teng. Learning and smoothed analysis.
In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 395–404, 2009.

20 Michael Kearns. Boosting theory towards practice: recent developments in decision tree
induction and the weak learning framework (invited talk). In Proceedings of the 13th National
Conference on Artificial intelligence (AAAI), pages 1337–1339, 1996.

21 Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree learning
algorithms. In Proceedings of the 28th Annual Symposium on the Theory of Computing (STOC),
pages 459–468, 1996.

22 Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1):109–128, 1999.

23 Adam Klivans and Rocco Servedio. Toward attribute efficient learning of decision lists and
parities. Journal of Machine Learning Research, 7(Apr):587–602, 2006.

24 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

25 Homin Lee. On the learnability of monotone functions. PhD thesis, Columbia University, 2009.
26 Dinesh Mehta and Vijay Raghavan. Decision tree approximations of boolean functions.

Theoretical Computer Science, 270(1-2):609–623, 2002.
27 Ryan O’Donnell and Rocco Servedio. Learning monotone decision trees in polynomial time.

SIAM Journal on Computing, 37(3):827–844, 2007.
28 Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
29 Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1993.
30 Ronald Rivest. Learning decision lists. Machine learning, 2(3):229–246, 1987.

APPROX/RANDOM 2021

https://doi.org/10.4086/toc.2006.v002a008

45:16 Decision Tree Heuristics Can Fail, Even in the Smoothed Setting

31 Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

32 Ian Witten, Eibe Frank, Mark Hall, and Christopher Pal. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, 2016.

33 Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data
mining. Knowledge and information systems, 14(1):1–37, 2008.

On the Structure of Learnability Beyond P/Poly
Ninad Rajgopal #

University of Warwick, Coventry, UK

Rahul Santhanam #

University of Oxford, UK

Abstract
Motivated by the goal of showing stronger structural results about the complexity of learning, we
study the learnability of strong concept classes beyond P/poly, such as PSPACE/poly and EXP/poly.
We show the following:
1. (Unconditional Lower Bounds for Learning) Building on [31], we prove unconditionally that

BPE/poly cannot be weakly learned in polynomial time over the uniform distribution, even with
membership and equivalence queries.

2. (Robustness of Learning) For the concept classes EXP/poly and PSPACE/poly, we show uncon-
ditionally that worst-case and average-case learning are equivalent, that PAC-learnability and
learnability over the uniform distribution are equivalent, and that membership queries do not
help in either case.

3. (Reducing Succinct Search to Decision for Learning) For the decision problems RKt and RKS

capturing the complexity of learning EXP/poly and PSPACE/poly respectively, we show a succinct
search to decision reduction: for each of these problems, the problem is in BPP iff there is a
probabilistic polynomial-time algorithm computing circuits encoding proofs for positive instances
of the problem. This is shown via a more general result giving succinct search to decision results
for PSPACE, EXP and NEXP, which might be of independent interest.

4. (Implausibility of Oblivious Strongly Black-Box Reductions showing NP-hardness of learning
NP/poly) We define a natural notion of hardness of learning with respect to oblivious strongly
black-box reductions. We show that learning PSPACE/poly is PSPACE-hard with respect to
oblivious strongly black-box reductions. On the other hand, if learning NP/poly is NP-hard with
respect to oblivious strongly black-box reductions, the Polynomial Hierarchy collapses.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Hardness of Learning, Oracle Circuit Classes, Succinct Search, Black-Box
Reductions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.46

Category RANDOM

Funding This work was supported in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2014)/ERC Grant Agreement no. 615075.
Ninad Rajgopal: Supported in part by Tom Gur’s UKRI Future Leaders Fellowship MR/S031545/1.1

Acknowledgements Ninad is grateful to Igor Carboni Oliveira for many inspiring discussions, one of
which led to the results in Section 2.

1 Introduction

What is the complexity of learning polynomial-size circuits? Despite extensive research
on this question, our knowledge is still fairly sparse. For weak concept classes such as
decision trees [34, 32], DNFs [34, 27] or even constant-depth circuits with parity gates [12],

1 Most of this work was done when Ninad Rajgopal was affiliated with the University of Oxford.

© Ninad Rajgopal and Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 46; pp. 46:1–46:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ninad.rajgopal@warwick.ac.uk
https://orcid.org/0000-0001-6945-2345
mailto:rahul.santhanam@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.46
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 On the Structure of Learnability Beyond P/Poly

reasonably efficient learning algorithms under the uniform distribution are known for various
models of learning. For stronger concept classes, learning is believed to be hard, but the
evidence for this is not as strong as one might hope. Cryptographic assumptions such as the
existence of one-way functions are known to imply that learning polynomial-size circuits is
hard [29, 18]. However, we still seem far from showing that PAC-learning polynomial-size
circuits is NP-hard - indeed [5] give negative results for certain kinds of black-box reductions
to learning.

In this paper, we adopt a fresh perspective of approaching the learnability question from
above, i.e. via circuit classes which are more powerful than P/poly. We consider commonly
held beliefs about the complexity of learning, and establish these beliefs unconditionally for
strong concept classes such as PSPACE/poly and EXP/poly. Of course the very learnability of
these concept classes has some unlikely implications, eg., that these classes are approximable
by efficient Boolean circuits. The point is that this is still consistent with our complexity-
theoretic understanding, and we would like to know what current techniques are capable
of proving unconditionally about learning. Partly this is to understand the limitations of
current techniques, and partly this is to understand what structural properties of the stronger
concept classes enable us to show unconditional results about them.

We begin by outlining our main results and comparing them with previous work.

1.1 Unconditional Results for Hardness of Learning
Our first set of results deals with unconditional hardness of learning circuit classes. Most
complexity theorists believe that learning polynomial-size circuits is unconditionally hard,
but of course proving this is at least as hard as the P vs NP problem. We ask: what is the
smallest concept class C/poly2 for which we can prove learning to be hard? Clearly, if we
can prove that C/poly cannot be approximated by efficient circuits, i.e., there does not even
exist a good hypothesis for all concepts in the class, then hardness of learning follows. This
observation implies for example that learning MAEXP is hard, by using known circuit lower
bounds for this class [11].

But can we show hardness of learning unconditionally for some concept class where it is
consistent with our current understanding of complexity theory that a good hypothesis exists
for every concept in the class? We give an affirmative answer by ruling out PAC-learning
with membership and equivalence queries unconditionally for the class BPE/poly.

The notion of PAC-learning C/poly, for a uniform class C above P such as EXP or BPE,
can have different interpretations. Standard definitions for PAC-learning (cf. [30]) consider
the task of learning to be efficient if it is polynomial in the size of the target concept over n

inputs (assume that the accuracy ε and confidence δ are both 1/poly(n)) and the hypothesis
class is P/poly.3 The standard definition of PAC-learning in poly(n) time using P/poly as its
hypothesis class naturally extends to the concept class C/poly as the size of the target concept
is still polynomial in the input size n. For the classes C we consider, PAC-learnability of
C/poly in poly(n) time using polynomial-sized hypothesis circuits is still consistent with our
current understanding of complexity theory (as we do not have any unconditional average-case
lower bounds for C against P/poly), and therefore worth studying.

2 For any uniform complexity class C, define the class C/poly as the set of languages L for which there
is a language C-machine M and a family of strings {an}, where an ∈ {0, 1}poly(n), such that for every
x ∈ {0, 1}n, x ∈ L ⇐⇒ M accepts (x, an)

3 In general, the definition requires the hypothesis class H to be polynomially evaluatable, which means
that there exists an algorithm that on input any instance x ∈ {0, 1}n and an encoding of the hypothesis
h ∈ Hn, outputs the value h(x) in time polynomial in n and the size of the hypothesis encoding. It is
well known that P/poly is polynomially evaluatable.

N. Rajgopal and R. Santhanam 46:3

We say that a class C is (ε, δ)-learnable using membership queries over distribution D in
polynomial time, if there exists a probabilistic polynomial time learning algorithm which
given oracle access to any f ∈ C, with probability at least 1 − δ, outputs a polynomial-sized
hypothesis circuit that approximates f up to an error ε over the target distribution D. This
definition also extends to the case of (ε, δ)-learning using random examples.

BPE/poly can equivalently be defined as the class of languages computable by polynomial-
sized circuit families with oracle gates to some function in BPE, with the oracle query size
restricted to O(n). We prove the unconditional hardness of learning BPE/poly in polynomial
time using membership queries even over the uniform distribution using P/poly as the
hypothesis class. Hardness of exactly learning BPE/poly with membership and equivalence
queries, even using randomized algorithms follows directly from this via [4].

▶ Theorem 1.1. For every constant k ∈ N, BPE/poly cannot be (1/2 − 1/nk, 1/n)-learnt
over the uniform distribution using membership queries by randomized learning algorithms
running in polynomial time.

To prove this, we adapt techniques used by [31, 36] to show that randomized PAC-learning
algorithms imply circuit lower bounds. [38] show the existence of a PSPACE-Complete function
f∗ which is in DSPACE[n], such that f∗ is downward self-reducible and self-correctible (see
Appendix A for definitions). Using the techniques of [31], along with the fact that f∗ belongs
to BPE, we see that PSPACE collapses to BPP. Using a padding argument and diagonalizing
DSPACE[2O(n)] against functions which can be approximated by polynomial-sized circuits,
we obtain a contradiction to the fact that for every function in BPE/poly, the learner gives a
hypothesis circuit which approximates it well.

1.2 Robustness for Hardness of Learning
We believe that polynomial-size circuits are hard to learn in a robust sense, i.e., that the
precise details of the learning model do not matter. Hardness should hold irrespective of
whether we consider PAC-learning or learning over the uniform distribution, worst-case
learning or average-case learning over some samplable distribution on concepts, and whether
or not the learning model is allowed to use membership queries. We do not know how to
show that this robustness holds for P/poly, but we are able to show it unconditionally for
EXP/poly and PSPACE/poly.

We now consider the class EXP/poly, which can be equivalently defined as the circuit
class PEXP/poly i.e. the class of languages that can be computed by a polynomial sized circuit
family with EXP oracle gates.

Showing non-trivial derandomization of BPP, i.e. EXP ̸= BPP, is one of the most
fundamental questions in complexity theory.4 We prove that the problem of non-trivial
derandomization of BPP is equivalent to the hardness of learning EXP/poly efficiently in most
standard models of PAC-learning. In addition, these results extend to not just showing that
EXP/poly is hard to learn in the worst-case, but also on average with respect to polynomially
samplable distributions over EXP/poly.5 This also gives us an intriguing situation, where
hardness of learning EXP/poly using random examples also implies the hardness of learning
EXP/poly using membership queries.

4 It is worth mentioning that [26] show that EXP ̸= BPP is equivalent to the fact that BPP can be
derandomized on average in deterministic sub-exponential time (over infinitely many input lengths).

5 In particular, the results hold for polynomially samplable distribution families over EXP/poly, where for
each n, there exists a distribution in the family over circuit encodings of n-variate functions in EXP/poly,
implicitly defining a distribution on n-variate functions in EXP/poly (see Remark A.3 for more details.)

APPROX/RANDOM 2021

46:4 On the Structure of Learnability Beyond P/Poly

The following results are stated for hardness of strong learning. However, they also hold
for the setting of weak learnability, by standard equivalences between weak learning and
strong learning for PAC-learners [17].

▶ Theorem 1.2 (Equivalences for hardness of learning EXP/poly). The following statements
are equivalent.
1. Non-trivial derandomization of BPP: EXP ̸= BPP.
2. Hardness of PAC-learning EXP/poly in the worst-case using random examples:

There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial
time using random examples.

3. Hardness of PAC-learning EXP/poly in the worst-case using membership
queries: There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in
polynomial time using membership queries.

4. Hardness of PAC-learning EXP/poly on average using random examples: There
exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polynomial time
on average using random examples, with respect to polynomially samplable distributions
over EXP/poly.

5. Hardness of PAC-learning EXP/poly on average using membership queries:
There exists c ≥ 0, such that EXP/poly is not (1/nc, 1/20n)-PAC-learnable in polyno-
mial time on average using membership queries, with respect to polynomially samplable
distributions over EXP/poly.

A contrasting result to this is the equivalence between the existence of one-way functions
(OWFs) and the hardness of learning P/poly in polynomial time on average with respect to
polynomially samplable distributions over P/poly using random examples [25, 8]. Theorem 1.2
not only lends an analogous equivalence between a complexity theoretic assumption that BPP
has a non-trivial derandomization and the hardness of learning EXP/poly in polynomial time
on average using random examples, but also extends this equivalence to hardness of learning
EXP/poly efficiently in the worst-case. Note that showing such an equivalence between the
existence of OWFs and hardness of learning P/poly efficiently in the worst-case has been
open for decades.6

Furthermore, our proof techniques also let us extend all these equivalences to the case
where C = PSPACE.

▶ Corollary 1.3. The following statements are equivalent.
1. PSPACE ̸= BPP.
2. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in polyno-

mial time using random examples (also using membership queries).
3. There exists c ≥ 0, such that PSPACE/poly is not (1/nc, 1/20n)-PAC-learnable in poly-

nomial time on average using random examples (also using membership queries) with
respect to polynomially samplable distributions over PSPACE/poly.

Essentially, the proof of showing conditional hardness of PAC-learning EXP/poly uses the
fact that strongly learning EXP/poly using random examples over the uniform distribution
implies that EXP = BPP. This also means that the hardest distribution to learn EXP/poly
is over the uniform distribution. The same ideas hold for PAC-learning EXP/poly using
membership queries too.

6 In particular, we do not know if hardness of learning P/poly efficiently using random examples in the
worst-case implies OWFs.

N. Rajgopal and R. Santhanam 46:5

Our techniques used to show these equivalences are inspired from results on uniform
derandomization by [26, 38], which were further used by [15, 31] to show circuit lower bounds
based on the existence of learning algorithms. We use special properties of functions in
EXP and PSPACE like downward self-reducibility and self-correctibility to show that learning
these functions would imply a collapse for EXP and PSPACE to BPP.

1.3 Reducing Succinct Search to Decision for Learning
Recently, [12] established an important connection between natural proofs and learning. They
showed that natural proofs of strong lower bounds against a circuit class C/poly imply efficient
learning algorithms for C/poly over the uniform distribution with membership queries, as
long as the class C/poly satisfies some mild closure properties. One way to interpret their
result is as an approximate search to decision reduction for learning. The decision version of
learning polynomial-size circuits is the language MCSP consisting of truth tables of functions
that have small circuits, i.e., for which a good hypothesis exists. The search version is to find
a small circuit for a positive instance of MCSP. [12] show that if MCSP is polynomial-time
decidable (which is implied by the existence of natural proofs against P/poly), then the
search version of MCSP can be solved approximately, in the sense that we can efficiently
compute a polynomially larger sized circuit that approximates the truth table well.

The language RKt (resp. RKS) of strings with high Kt complexity (resp. high KS complexity)
plays an analogous role to MCSP in the theory of learning EXP/poly (resp. PSPACE/poly).
We ask if search to decision reductions can be established for these languages as well. However,
it is unclear a priori what it would mean to solve search efficiently for a problem that does
not have polynomial-size proofs or witnesses. We introduce the notion of succinct search. To
efficiently solve a search problem succinctly is to efficiently compute for any YES instance of
the problem a circuit that encodes a possibly exponential-size proof for the instance. We
use the PCP theorem for NEXP [6] and the Easy Witness Lemma [24] to show that for the
classes PSPACE, EXP and NEXP, efficient decidability of the class is equivalent to efficiently
solving succinct search for every language in the class. We then use results from [3] to argue
that for RKt and RKS, efficient solvability is equivalent to solving succinct search efficiently.
Note that this connection is for succinctly solving the search problem exactly rather than
just for approximate search as in [12].

▶ Theorem 1.4 (Equivalence of Succinct Search and Decision for Learning EXP/poly and
PSPACE/poly). Let L be RKt or RKS. L ∈ BPP iff for each polynomial-time verifier V for L,
succinct search is efficiently solvable for L with respect to V .

1.4 Barriers for Establishing NP-Hardness of Learning
We next look at questions pertaining to hardness of learning classes of the form C/poly, where
C ⊆ PH. We only focus on the hardness of PAC-learning C/poly with random examples. In
this section, we consider the limitations of proving the NP-hardness of PAC-learning NP/poly,
i.e. the class of polynomial size non-deterministic circuits, using random examples, via a
black-box reduction from deciding SAT.

Informally, a black-box reduction from problem A to B, solves A given access to any oracle
solving B. Black-box reductions have been ubiquitously used in complexity theory to prove
conditional lower bounds. However, for many fundamental questions in complexity theory,
there have been results showing why such reductions are limited in power. Various results
have conditionally ruled out special-cases of black-box reductions for showing average-case
hardness of NP [14, 10], existence of one-way functions [1, 5, 9] and the existence of hitting
set generators [22], from hardness of SAT.

APPROX/RANDOM 2021

46:6 On the Structure of Learnability Beyond P/Poly

For the case of showing hardness of learnability, a B-adaptive black-box reduction R from
some language L to PAC-learning a class C using random examples is defined by two phases

The first phase consists of B adaptive rounds of probabilistic polynomial time algorithms,
each of which generates queries to the learner oracle. In more detail, each round uses the
input z to the reduction, fresh randomness and the hypotheses returned by the C-learner
oracle in the previous rounds, and constructs joint distributions (that serve as example
oracles for the learner). It then samples a set of independent labeled examples from each
of these distributions as queries to the learner oracle.
In the second phase, a probabilistic polynomial time algorithm takes all the hypotheses
from the first phase and decides whether z ∈ L, with high probability.

[5] study the question of the existence of black-box Turing reductions from any language
in NP to PAC-learning P/poly using random examples. They consider a strongly black-box
reduction, where a reduction is strongly black-box if it runs correctly given any oracle for the
learner, as well as the hypotheses output by the learner. For a special case of such a reduction,
where the access to the learner and the hypothesis oracles is additionally non-adaptive, they
show that such a reduction from SAT to PAC-learning P/poly using random examples
collapses NP to CoAM (which implies a collapse of PH to the second level). Additionally,
they show that if any language L reduces to PAC-learning P/poly using random examples
via an O(1)-adaptive black-box reduction, then the hardness of L implies the existence of an
auxiliary-input one-way function (which is a major breakthrough in cryptography).7

We define a natural special-case of such a reduction, called an oblivious strongly black-box
reduction, where the obliviousness of a reduction implies that the queries made to the
learner do not depend on the input z to the reduction, and try to understand its limitations
for showing NP-hardness of PAC-learning NP/poly. At a first glance, ruling out oblivious
reductions may seem very restrictive, since ideally, one would like to allow reductions whose
queries to the learner can depend on the input to the reduction. However, we observe
the proof of Corollary 1.3 which shows hardness of PAC-learning PSPACE/poly assuming
PSPACE ≠ BPP and reformulate it as an oblivious black-box reduction of the form defined
above. In particular, for f∗ being the PSPACE-Complete function given by [38] which is
downward self-reducible and self-correctible, we observe that

▶ Lemma 1.5. There exists an oblivious, n-adaptive, strongly black-box reduction from decid-
ing f∗ to PAC-learning PSPACE/poly using random examples over the uniform distribution.

On the other hand, for the case of learning NP/poly using random examples, we show
that oblivious strongly black-box reductions from SAT imply a collapse of the polynomial
hierarchy. Our main result for the section is

▶ Theorem 1.6 (Informal). If there exists an oblivious, poly(n)-adaptive, strongly black-box
reduction from deciding SAT to learning NP/poly using random examples over polynomially
samplable distributions, then PH collapses to the third level.8

7 They also show the impossibility of Karp reductions from SAT to PAC-learning P/poly using random
examples, unless NP collapses to SZKA.

8 We actually show a stronger result that the existence of such a reduction implies that NP ⊆ CoAMpoly,
where CoAMpoly is the class of languages recognized by constant-round CoAM protocols with advice,
where we require proper acceptance/rejection probabilities only when the advice is correct.

N. Rajgopal and R. Santhanam 46:7

Theorem 1.6 implies that standard techniques used for worst-case to average-case reductions,
pseudo-random generator constructions from uniform hardness assumptions and in particular,
hardness of efficiently PAC-learning classes like PSPACE/poly, cannot be used to show the
NP-hardness of PAC-learning NP/poly using random examples.

Theorem 1.6 compares to some previous results in the following way:
It shows a conditional impossibility result by ruling out a restricted version of adaptive,
strongly black-box reductions to learning P/poly using random examples, in contrast to
[5], who only rule out fully non-adaptive, strongly black-box reductions, from a slightly
weaker assumption (NP ̸⊆ CoAM).
Furthermore, the result by [22] which conditionally rules out a non-adaptive black box
reduction from deciding SAT to breaking a Hitting Set Generator (HSG), in turn rules
out fully non-adaptive, strongly black-box reductions from SAT to learning NP/poly using
membership queries over the uniform distribution (by suitably changing the definition of
the reduction to the learner).
Indeed, the ideas of [26] can be used to show that hardness of learning NP/poly using
membership queries over the uniform distribution, implies the existence of a hitting set
generator which hits sufficiently dense circuits. We strengthen this observation by not
only extending the reduction to a restricted version of the adaptive case, but also by
ruling out a weaker reduction to learning NP/poly with random examples.
In a similar way, [20] conditionally rule out the existence of mildly adaptive (each query
length up to n, where n is the length of the input instance, appears in very few levels of
adaptivity), strongly black-box reductions from an EXP-Complete problem to learning
NP/poly using membership queries (and in fact, learning EXP/poly).
Our result rules out the restricted cases of mildly adaptive, strongly black-box reductions
which show the NP-hardness of learning NP/poly using random examples and hence,
is a conceptual strengthening of [20], as we rule out a hardness result from a stronger
assumption.
On the other hand, Schapire [37] shows that a non-uniform hardness assumption like
NP/poly ̸= P/poly actually implies the hardness of PAC-learning NP/poly in polynomial
time using random examples. They show that if NP/poly is learnable in polynomial
time, then there exists an algorithm which takes any m labeled samples of a target
fn ∈ NP/poly, runs in time poly(m, n), and with high probability, outputs a hypothesis
of size poly(n) (independent of m) that is consistent with all the labeled samples.
In particular, if m = 2n, then for every fn ∈ NP/poly, the algorithm outputs a polynomial-
sized hypothesis circuit which computes it correctly on all inputs, thus contradicting
the assumption NP/poly ̸= P/poly. Note that the result uses that for any fn, we
get a polynomial-sized circuit that computes it, and in fact, the algorithm runs in
poly(m, n) = 2O(n) time and is not useful in terms of contradicting a uniform assumption.

It is worth noting that our result has no implications for showing the impossibility of adaptive,
black-box NP-hardness reductions which imply the average-case hardness for NP [14, 10],
existence of one-way functions [1, 5] or the existence of HSGs [20, 22].

Overview of the techniques. The proof of Theorem 1.6 builds on the Feigenbaum-Fortnow
[14] protocol, which simulates a type of non-adaptive randomized reduction A from SAT
to an NP problem Q, by an AM protocol with polynomial-sized advice, and shows that
coNP ⊆ NP/poly.9

9 Their motivation (and [10]) was to rule out certain kinds of non-adaptive, worst-case to average-case
black-box reductions for NP.

APPROX/RANDOM 2021

46:8 On the Structure of Learnability Beyond P/Poly

Suppose that on input x, A makes q non-adaptive queries to Q, sampled independently
from certain distribution X. Very briefly, their AM protocol does the following. For K

large enough, the verifier first generates K tuples of q non-adaptive queries by running A(x)
independently K times. The verifier asks the prover to send a witness to each query which
is a YES instance (which it can verify easily). This ensures that the prover cannot cheat
if the query is a NO instance and the only way it can cheat is by claiming a YES instance
to be a NO instance. Now, if the verifier has the proportion p of YES instances of Q over
the distribution X, then with high probability it knows that the number of YES instances
among the Kq queries is concentrated around q · (pK ± O(

√
K)). The verifier answers with

a reject if the number of YES instances is much lesser than pqK.
The honest prover answers each query correctly (with correct witnesses if necessary) and

with high probability, the number of YES instances are close to the expectation. Hence,
the verifier can pick any of K runs of A(x) using the prover’s answers to its queries and
the output will be correct with high probability. On the other hand, the cheating prover
cannot cheat on more than O(q

√
K) YES instances, with high probability. If we choose

K ≫ O(q
√

K), then on most of the K independent runs of A, all its queries are answered
correctly and the reduction gives the correct answer. Thus, if we pick one of the runs at
random and get A(x) by using the prover’s answers to its queries, the verifier answers wrongly
with low probability.

Consider an oblivious, B-adaptive, strongly black-box reduction R from L to an oracle
which learns NP/poly. Suppose we are able to fix S1, . . . , St, which are sets of labeled
examples drawn independently from the joint distributions (X1, f1(X1)), . . . , (Xt, ft(Xt))
where f1, . . . , ft ∈ NP/poly, as the queries made to the learner. Furthermore, let h1, . . . , ht

be a set of fixed hypotheses circuits, some of which are used to generate S1, . . . , St, such that
each hi (1 − ε0)-approximates fi over Xi, for some ε0 > 0. Because R is strongly black-box,
each hypothesis is also accessed as an oracle and we see that L is decided by the algorithm M

in the second phase, which has access to h1, . . . , ht. Now, the t oracles to M can be replaced
by a single oracle O which takes as input i ∈ [t] and y ∈ {0, 1}n, and outputs hi(y) (O can
be thought of as a table with t rows and 2n columns). We then adapt the techniques of [14]
to design an AM protocol for L with polynomial sized advice, where the verifier expects that
the prover answers according to O.

The obliviousness of the reduction helps us in fixing the queries made by R, and implicitly,
the corresponding hypotheses output by the oracle. In other words, this helps us fix the
proportions of YES instances for each fi non-uniformly, as the queries generated to the
learner do not depend on the input to the reduction. We do this by inductively fixing the
queries made by the reduction starting from the first round of adaptivity. Fixing a “good”
polynomial-sized random string r∗ used by the first phase non-uniformly (using Adleman’s
trick), we first get the queries to the learner made in the first round.

For any other round b ≥ 2, assume that the queries to the learner up to round (b − 1) and
the functionality of the hypothesis oracles used to generate them up to round (b−2) are fixed.
Using the fact that r∗ is also fixed, we consider the set of all tuples of joint distributions
that can be generated in the bth round depending on the answers to the oracle queries of
the hypotheses seen so far, and arbitrarily choose one of them. Note that, this implicitly
fixes the functionality of the hypothesis oracles for the queries generated in round b − 1. We
continue this process and fix all the queries made to the learner by all the rounds from the
first phase.

The details of the results from this section have been delegated to Appendix B because
of space constraints.

N. Rajgopal and R. Santhanam 46:9

1.5 Further Discussion
Connections to Karp-Lipton Style Theorems. There is an analogy between our results on
implications of learnability and Karp-Lipton style theorems. A Karp-Lipton style theorem
for a uniform class C gives an unlikely uniform implication of the assumption that C has
polynomial-size circuits. The original theorem of Karp and Lipton [28] shows such an
implication for C = NP: if NP ⊆ P/poly, then Σ2 = Π2. Karp-Lipton style theorems are now
known for many other classes, including C = P#P [35], C = PSPACE [6] and C = EXP [6].
In each of these cases, C ⊆ P/poly implies C = MA, applying techniques from the theory of
interactive proofs [35, 6].

Similarly, in some of our results (i.e., Theorem 1.1, Theorem 1.2 and Corollary 1.3), we
study implications of learnability for classes C/poly, where C = BPE, EXP or PSPACE. Since
the learner is required to output a polynomial-size Boolean circuit, the learnability assumption
already implies that C is approximated by polynomial-size circuits, where the approximation
is over the distribution on the examples. We are interested in establishing strong uniform
implications of these assumptions, showing that the assumption is actually false in the case
C = BPE, and that the assumption implies a simulation of C in BPP in the other cases. What
enables us to show stronger implications than in corresponding Karp-Lipton style theorems
is that the learner uniformly produces a good hypothesis by our assumption. However, the
learner is assumed to have access to random examples or membership queries which cannot
be efficiently simulated - this makes our simulation task more challenging, and we therefore
exploit various structural properties of complete languages. We also need to deal with the
issue of approximation, while standard Karp-Lipton style theorems have as their antecedent
an exact simulation by efficient circuits.

Open Questions. One question which stems from our work is to explore the possibility of
showing the hardness of PAC-learning NP/poly efficiently using random examples assuming
that NP ̸= BPP. A potential direction is to consider non black-box reductions for the
NP-hardness of PAC-learning NP/poly. This viewpoint has lent itself some success in the case
of worst-case to average-case reductions [19, 21, 22] and in our case, hardness of efficiently
PAC-learning EXP/poly. Indeed, the reduction for EXP/poly only works if the learning
algorithm runs in polynomial time, although the reduction still uses the learning algorithm
as an oracle.10 Moreover, [13] show a non black-box reduction from an approximate version
of MCSP to learning P/poly by sub-exponential-sized circuits (and thus, learning NP/poly).
Note that, it is unclear if approximate MCSP is NP-hard and this reduction does not imply
the NP-hardness of PAC-learning NP/poly efficiently.

Another important question is to explore an analogue of the PH collapse for learnability. In
other words, does polynomial time learnability of NP/poly imply polynomial time learnability
of PH/poly? Note that, under a strong assumption of the existence of a (possibly adaptive
and non-relativizable) worst-case to average-case reduction for NP, we can use the techniques
in Lemma 3.2 along with the downward-self-reducibility of SAT to show such a collapse.
On the other hand, [23] also shows that there exists an oracle O with respect to which
DistNPO ⊆ AvgPO and ΣO

2 ̸⊆ HeurSIZEO[2nα]. Essentially, this result negates the existence
of any relativizable reductions which show a statement analogous to the PH collapse for
average-case algorithms i.e. if NP is easy on average, then Σ2 is easy on average too. In
a similar spirit, can we prove that no relativizable technique can show that if NP/poly is
learnable in polynomial time, then Σ2/poly is learnable in polynomial time as well?

10 For EXP to collapse to PSPACE, we need the EXP/poly learner to be efficient so that it outputs
polynomial-sized hypothesis circuits for any language in EXP, and this further implies EXP ⊆ P/poly.

APPROX/RANDOM 2021

46:10 On the Structure of Learnability Beyond P/Poly

2 Unconditional Results for Hardness of Learning

Firstly, we show the hardness of learning BPE/poly over the uniform distribution using
membership queries by randomized polynomial time algorithms. The proof of this result uses
the following lemma from [31]. Preliminaries and definitions can be found in Appendix A.

▶ Lemma 2.1. Let C be any circuit class, s : N → N be a size function and f∗ be the
PSPACE-Complete problem from Theorem A.8. There exists constant c ∈ N such that if
C[s(n)] is learnable up to error n−c in time T (n), then at least one of the following holds :

f∗ /∈ C[s(n)].
f∗ ∈ BPTIME[poly(T (n))].

We also need Lemma A.11 (Appendix A) which proves the existence of functions which
cannot be approximated by nlog n-sized circuits.

Proof of Theorem 1.1. Towards a contradiction, assume that there exists constants k, d ≥ 1
and a randomized learning algorithm A which learns BPE/poly in O(nd) time over the
uniform distribution using membership queries, up to error 1/2 − 1/nk and confidence 1/n,
for every large enough input length n. By non-uniformly fixing a good random string, we
ensure that for every function g ∈ BPE/poly, there exists c such that A always outputs a
hypothesis circuit of size O(nc) which computes g on at least (1/2 + 1/nk)-fraction of n-
length inputs. Thus, for every function in BPE/poly, there exists a family of polynomial-sized
circuits {hn}n∈N which (1/2 + 1/nk)-approximates it, where hi is the hypothesis output by
the learner on input length i.

We next show that the existence of such a learner implies the existence of a function in
BPE which cannot be (1/2 + 1/nk)-approximated by polynomial sized circuits. Consider the
PSPACE-Complete function f∗ from Theorem A.8 which is computable in time DSPACE[n].
f∗ is in BPE/poly (since f∗ can be computed in E) and we use the learning algorithm
for BPE/poly in Lemma 2.1 to see that PSPACE ⊆ BPP. Using a padding argument we
observe that DSPACE[2O(n)] ⊆ BPE. From Lemma A.11, we see that there exists a function
which cannot be (1/2 + 1/nk)-computed by circuits of size nlog n. We can easily construct
a Turing Machine which lexicographically searches for the truth table of a function on n

inputs which cannot be (1/2 + 1/nk)-approximated by nlog n sized circuits in 2O(n) space
and answers according to the first one it finds. From this we have that DSPACE[2O(n)], and
thus BPE/poly cannot be (1/2 + 1/nk)-approximated by nlog n sized circuits, which leads to
a contradiction. ◀

▶ Remark 2.2. [36] show that if for each c, a circuit class C[nc] is (1/2 − 1/nc, 1/n)-learnable
using membership queries over the uniform distribution in 2n/nω(1) time, then for each c,
there exists Lc ∈ BPE such that Lc /∈ C[nk] (Theorem 12). For any c, the idea of picking
C[nc] = SIZEBPE[nc], with linear-sized queries to BPE oracles and using the learning algorithm
A which learns BPE/poly in their result to achieve a contradiction (as any function in BPE
can be computed by constant sized SIZEBPE-circuits with linear-sized oracle queries) does
not work, as [36] crucially uses that C[nc] has to be a subset of SIZE[nc′] for some c′ = O(c).

On the other hand, Theorem 4 in [15] shows that if C is learnable using membership
queries over the uniform distribution in polynomial time then BPE ̸⊆ C[poly(n)]. Proving
Theorem 1.1 by setting C as BPE/poly again does not really work, as [15]’s result only holds
true when C = P/poly, as it depends on the collapse of EXP to P/poly.

We next consider hardness of learning E/poly deterministically over the uniform distribu-
tion using membership queries. E/poly can equivalently be defined as the class of languages
which can be computed by polynomial-sized circuit families with oracle access to some
function in E, with the constraint that the oracle queries are of size O(n).

N. Rajgopal and R. Santhanam 46:11

We first rule out deterministic exact learners for E/poly running in time O(2n/n) in
Angluin’s model of learning [4], i.e. the learners have access to a membership oracle, as well
as an equivalence oracle, where the learner presents a hypothesis circuit to the equivalence
oracle, receives yes if the hypothesis exactly computes the target concept and receives a
counter-example for the hypothesis, otherwise.

We also extend this result to rule out any deterministic learners for E/poly using member-
ship queries, i.e. even learners which can output an approximate hypothesis. In particular,
we can show that, for every constant δ ∈ [0, 1/2 − 1/n), E/poly is hard to learn up to error
δ over the uniform distribution using membership queries, even by deterministic learning
algorithms which run in time 2n/n. These ideas can also be extended to show similar
results for unconditional hardness of learning PSPACE/poly by deterministic polynomial time
learners. The proofs follow from simple diagonalization-like arguments such as that used by
[31] and can be found in the full version.

3 Robustness of Hardness of Learning

In this section, we establish the equivalences in Theorem 1.2 for hardness of learning EXP/poly.
We first state the following results necessary for its proof.

▶ Lemma 3.1. Let EXP = BPP. Then, for every c > 0, EXP/poly can be (1/nc, 1/20n)-
PAC-learnt using random examples in time polynomial in n.

Proof Sketch. The proof uses the collapse of EXP into BPP, firstly to observe that EXP/poly
is in P/poly. Next, we construct an exponential time procedure which takes as inputs a size
parameter s(n), a set of examples of length n and their labels, and outputs a hypothesis
circuit of size at most s(n) which is consistent with the examples, if there exists one, via an
exhaustive search. From our assumption, this runs in probabilistic polynomial time. Using an
argument based on Occam’s razor [30], we obtain a polynomial time learner for P/poly. ◀

▶ Lemma 3.2. Let EXP ̸= BPP. Then, there exists c ≥ 0 such that EXP/poly is not
(1/nc, 1/20n)-learnable in the worst-case using random examples over the uniform distribution
in time polynomial in n.

Proof. Towards a contradiction assume that there exists a constant a > 0 and an O(na)-time
learner A that (1/nc, 1/20n)-learns EXP/poly using random examples over Un, for every c ≥ 0.
We first show that the existence of the learner A for EXP/poly implies that EXP ⊆ P/poly.
Let g∗ be an EXP-Complete problem which is self-correctible, whose existence is given by
Theorem A.7, with c1 ≥ 0 being the corresponding constant. Use A to (1/nc1 , 1/20n)-learn
g∗ using random examples over the uniform distribution. Let A′ be the algorithm which
takes as input y ∈ {0, 1}n in addition to the inputs of A and runs the learner A, following
which it returns the evaluation of the hypothesis circuit output by A on the input y. In
other words, for every n ∈ N, we have

Pr
w∈{0,1}r(n)

x1,...,xm∼Un

{
Pr

y∼Un

{A′(1n, w, (x1, g∗(x1)), . . . , (xm, g∗(xm), y) = g∗(y)} ≥ 1 − 1/nc1

}
≥ 1 − 1/20n

where both r(n) and m = m(n) = poly(n).

APPROX/RANDOM 2021

46:12 On the Structure of Learnability Beyond P/Poly

By amplifying the correctness of A′ using standard techniques, we can then non-uniformly
fix the random strings w, x1, . . . , xm and the values of g∗ on each xi to get a polynomial
sized circuit C, which takes input y ∈ {0, 1}n and outputs the answer of A′ on the advice
string and y. Thus Cn agrees with g∗ on at least (1 − 1/nc1)-fraction of the inputs. Using
Cn with the self-correctibility of g∗ (and fixing another “good” random string non-uniformly
in the resulting algorithm), we get a polynomial-sized circuit which computes g∗ on every
input and by the EXP-Completeness of g∗, we see that EXP ⊆ P/poly.

Since EXP ⊆ P/poly, we use Lemma A.9 to observe that f∗ given by Theorem A.8 is now
an EXP-Complete problem that is both downward self-reducible and self-correctible. Let c2
be the constant associated with the self-corrector for f∗. For any integer k, given a procedure
Bk which computes f∗ on every instance of size k with high probability, we use A together
with the downward self-reduction for f∗, followed by the self-corrector for f∗ to obtain a
procedure Bk+1 that computes f∗ on any input of size k + 1. We use this inductively, to
compute f∗ on n inputs in probabilistic polynomial time.

More precisely, consider the following algorithm Bn which computes f∗ on a given input
x and does the following. First, it starts with a procedure Bk0 , for a constant k0, which can
be computed easily using a look-up table. Assuming that we have the procedure Bk for some
input length k ≤ n, we show how to construct the procedure Bk+1 inductively. We use the
learner A to learn the function f∗

k+1 up to error 1/(k + 1)c2 . For every input f∗(y) passed
to A, where y is a string randomly picked from {0, 1}k+1, we use Bk with the downward
self-reduction of f∗ to compute f∗(y). A outputs a hypothesis hk+1 which computes f∗

k+1
on at least a (1 − 1/(k + 1)c)-fraction of the inputs with high probability. We now use the
self-corrector for f∗ to obtain from hk+1 a procedure Bk+1 which is correct on every input
of size k + 1 with probability 1 − γ (by using standard error reduction arguments), for some
γ > 0 which we pick later. Repeating this process at most n times, we obtain Bn and output
Bn(x).

First, we show that Bn outputs f∗(x) with probability at least 2/3. Let d(n) be the number
of queries made by the DSR to the oracle f∗

n−1 in computing f∗(x) on any input x of length
n. The idea is that at each stage k, the procedure Bk fails only if at least one of m(n) · d(n)
queries answered by Bk−1 is incorrect, with probability at most m(n)d(n)γ ≤ 1/20n for
γ = 1/20nm(n)d(n), or if A fails to output the right hypothesis, with probability at most
1/20n. Thus, the total failure probability at each stage is at most 1/10n and over the n

stages, using the union bound, the total failure probability is at most 1/10 + γ ≤ 1/3.
We inductively observe that every stage Bk runs in time poly(k). It is easily seen that Bk0

runs in constant time. Assume that Bk−1 runs in poly(k −1) time. At stage k, the time taken
to compute f∗ on m(k) many inputs of length k is O(m(k) ·d(k) ·poly(k−1)) ≤ poly(k). After
this, A takes O(kd) time to output hk of size at most kd, which is used by the poly(k)-time
self-corrector to compute f∗ on all inputs of size k with high probability. Thus, Bk runs in
time poly(k) = poly(n). Since there at most n stages, the total running time of Bn is poly(n).
This shows that f∗ ∈ BPP and contradicts the original assumption. ◀

Using a very similar proof idea, we obtain an analogous statement to Lemma 3.2, but
now for worst-case learning EXP/poly using membership queries.

▶ Lemma 3.3. Suppose that EXP/poly is (1/nc, 1/20n)-learnable in the worst case for every
c ≥ 0 over the uniform distribution Un using membership queries in time poly(n). Then,
EXP = BPP.

Informally (see Appendix A for a formal definition), the task of an (ε, δ)-average-case
learner for a class C over the uniform distribution using random examples, is to (ε, δ)-learn
an unknown target function which is be generated according to a fixed distribution over

N. Rajgopal and R. Santhanam 46:13

C (defined as an ensemble of distributions over appropriate representations for C). The
ideas from Lemma 3.2 can also be extended to show similar implications for the setting of
average-case learning EXP/poly using random examples (and membership queries too).

▶ Lemma 3.4. Suppose that EXP/poly is (1/nc, 1/20n)-learnable on average for every
c ≥ 0 with respect to polynomially samplable distributions over EXP/poly and the uniform
distribution Un using random examples in time poly(n). Then, EXP = BPP.

▶ Remark 3.5. In Lemma 3.4, the samplable distributions we consider are over SIZEEXP[nk]-
circuit encodings in Rn ⊆ {0, 1}r(n), where r(n) = O(n2k+1) (see Remark A.3 for more
details). In particular, for the distribution P over SIZEEXP[nk] supported only on the function
g∗ (or f∗) used in the proof of Lemma 3.2, the sampler S′

P takes 1nk as input and outputs a
SIZEEXP[nk]-circuit encoding of g∗ (or f∗) which is just an EXP-oracle gate on n inputs and
this encoding is of size O(n2). The running time of this sampling algorithm is polynomial in
the input size.

We use the same ideas as that of Lemma 3.2 to prove that even learning EXP/poly in
polynomial time using random examples from the uniform distribution with respect to just
these two distributions over EXP/poly, is enough to collapse EXP to BPP.

The formal details of the intermediate results can be found in the full version. We now
prove the equivalences for efficiently learning EXP/poly.

Proof of Theorem 1.2. The following implications establish the desired equivalences.
(b) =⇒ (a), (c) =⇒ (a): The contrapositives of each of these implications follow from Lemma
3.1. In particular, PAC-learning EXP/poly with error at most 1/nc for any c > 0 using
random examples, implies PAC-learnability of EXP/poly using membership queries, where
the queries are just made on the random examples given to the learner.
(d) =⇒ (b), (e) =⇒ (c): Follows from the definitions, since PAC-learning EXP/poly in the
worst case in poly(n) time using random examples implies PAC-learnability for EXP/poly
on average in poly(n) time using random examples, for any distribution over EXP/poly. A
similar implication holds for learning with membership queries too.
(a) =⇒ (b): For any c > 0, suppose EXP/poly is (1/nc, 1/20n) PAC-learnable in polynomial
time using random examples over every arbitrary distribution. In particular, this means that
EXP/poly can be (1/nc, 1/20n)-learnt in polynomial time using random examples over the
uniform distribution. The implication follows from the contrapositive of Lemma 3.2.
(a) =⇒ (c): Similar to the previous implication, we see that EXP/poly is (1/nc, 1/20n)-
learnable in polynomial time using membership queries over the uniform distribution. The
implication holds from the contrapositive of Lemma 3.3.
(a) =⇒ (d), (a) =⇒ (e): The implications follow from Lemma 3.4 and its corresponding
extension to learning on average with membership queries. ◀

The proof of Corollary 1.3 (equivalences for learning PSPACE/poly) follows from the
same ideas as Theorem 1.2. In more detail, Lemma 3.1 extends easily as the procedure
which searches for a polynomial-sized consistent hypothesis also runs in polynomial space.
Lemmas 3.2, 3.3 and 3.4 can also be extended, by learning the downward-self-reducible and
self-correctible PSPACE-Complete function f∗ (from Theorem A.8) directly, and using it to
compute f∗ on every input.

APPROX/RANDOM 2021

46:14 On the Structure of Learnability Beyond P/Poly

4 Reducing Succinct Search to Decision

The key concepts in this section are verifiability and succinct search. We define verifiers first.

▶ Definition 4.1. Given language L ⊆ {0, 1}∗ and polynomial-time computable relation
V (·, ·), we say that V is a verifier for L if for each x ∈ {0, 1}∗, x ∈ L iff ∃yV (x, y).

Given language L, a verifier V for L, and function f : N → N, we say that L has f(n)-size
proofs with respect to V , such that for each x ∈ {0, 1}∗, x ∈ L implies ∃y, |y| ≤ f(|x|) : V (x, y).
We say that L has f(n)-size proofs if there is a verifier V for L such that L has f(n)-size
proofs with respect to V .

Given language L, a verifier V for L and a machine class D, we say that L has D-
computable proofs with respect to V if there is a machine M ∈ D such that for each
x ∈ {0, 1}∗, x ∈ L implies V (x, M(x)). We say that L has D-computable proofs if there is a
verifier V for L such that L has D-computable proofs with respect to V .

Note that NP is the class of languages with polynomial-sized proofs, NEXP is the class
of languages with exponential-sized proofs, and for D ∈ {EXP, PSPACE}, D is the class of
languages with D-computable proofs (where we abuse notation and use D to refer both to a
machine class and to the class of languages computable by such machines).

Next we define succinct search. We will assume w.l.o.g. that the proof size for any verifier
is a power of 2 - this can be ensured by padding the proof if necessary.

▶ Definition 4.2. Given language L and verifier V for L, we say that succinct search is
easy for L with respect to V if there is a probabilistic polynomial-time machine N such that
for each x ∈ L, there is a V -proof y such that with probability 1 − o(1), tt(N(x)) = y, where
for Boolean circuit C, tt(C) denotes the truth table of the function computed by C.

Thus succinct search is easy for L with respect to a verifier V if there is a probabil-
istic polynomial-time machine outputting compressed descriptions of V -proofs with high
probability for any positive instance of L.

Using the downward self-reducibility of SAT, it is straightforward to see that NP ⊆ BPP
iff for each L ∈ NP and for every verifier V such that L has poly-size proofs with respect
to V , succinct search is easy for L with respect to V . We now show analogous results for
PSPACE, EXP and NEXP. First we show for each of these classes that easiness of the class
implies easiness of succinct search.
We need the Easy Witness Lemma of Impagliazzo, Kabanets and Wigderson [24].

▶ Lemma 4.3 ([24]). If NEXP ⊆ P/poly, then for each L ∈ NEXP and for each verifier V

for L such that L has exponential-size proofs with respect to V , for each x ∈ L, there is a
polynomial-size circuit Cx such that V (x, tt(Cx)) holds.

▶ Lemma 4.4. The following implications hold:
1. Let D ∈ {PSPACE, EXP}. If D = BPP, then for each L ∈ D and for each verifier V

such that L has D-computable proofs with respect to V , succinct search is easy for L with
respect to V .

2. If NEXP = BPP, then for each L ∈ NEXP and for each verifier V such that L has
exponential-size proofs with respect to V , succinct search is easy for L with respect to V .

Proof. We establish the first item. Let D ∈ {PSPACE, EXP}, and assume D = BPP. Let
L ∈ D and V be a verifier for L such that L has D-computable proofs with respect to V .
We construct a probabilistic poly-time machine N such that for each input x ∈ L, there is a
V -proof y such that with high probability tt(N(x)) = y. Let M be a D-machine outputting
V -proofs for positive instances of L.

N. Rajgopal and R. Santhanam 46:15

Consider the language L′ = {⟨x, i⟩|ith bit of M(x) is 1}. Since M is a D machine, we
have that L′ ∈ D. By assumption, D = BPP, therefore there is a probabilistic poly-time
machine N ′ deciding L′. Assume w.l.o.g. that N ′ has error at most 2−|y|2 on any input y.
Given input x, N operates as follows. It first computes a probabilistic poly-size circuit C ′

simulating N ′. This can be done using the standard efficient conversion of efficient algorithms
into small circuits. It then hardwires x into the first part of the input for C ′, obtaining a
circuit C ′

x. It then fixes the random input of the circuit C ′
x to a uniformly generated random

string r to obtain a circuit D′
x,r, which it outputs.

Since the error of N ′ is smaller than 2−|y|2 on any input y, by a simple union bound,
with probability 1 − o(1) over the choice of the random string r, D′

x,r correctly computes the
i’th bit of M(x) for each i ∈ [m]. For x ∈ L, V (x, M(x)) holds, and therefore N efficiently
solves succinct search for L with respect to V .

We establish the second item. Assume NEXP = BPP and let L ∈ NEXP and V be a
verifier for L such that L has exponential-size proofs with respect to V . Since NEXP = BPP,
we have that NEXP ⊆ P/poly. By Lemma 4.3, there is a polynomial p such that for each
x ∈ L, there is a circuit Cx of size at most p(|x|) such that V (x, tt(Cx)) holds.

Consider the language L′ = {⟨x, i⟩| There is a circuit C of size p(|x|) such that V (x, tt(C))
is 1, and the ith bit of the lexicographically first such circuit is 1}. Clearly L′ ∈ EXP, just by
enumerating circuits of size p(|x|) in lexicographic order and finding the first one encoding a
V -proof for x, if one exists. Since EXP = BPP, there is a probabilistic poly-time machine N ′

deciding L′ with error exponentially small. We construct a probabilistic poly-time machine
N as follows: on input x, N runs N ′ on {⟨x, i⟩} for each i at most the description length of a
circuit of size p(|x|). It outputs the circuit C whose description has bit i set to 1 iff N ′ accepts
on {⟨x, i⟩}. Since N ′ has error exponentially small, we have that with error exponentially
small, N outputs a circuit C encoding a V -proof of x, and therefore N efficiently solves
succinct search for L with respect to V . ◀

For the reverse directions, we use the PCP characterization of NEXP [6, 16], where we
only require polynomial upper bound on query complexity of the verifier.

▶ Theorem 4.5 ([6, 16]). Let L ∈ NEXP. There is a probabilistic poly-time oracle machine
V ′ such that:
1. For each x ∈ L, there is y of length exponential in |x| such that V ′(x) accepts with

probability at least 2/3 when given oracle access to y.
2. For each x ̸∈ L and for all y, V ′(x) accepts with probability at most 1/3 when given oracle

access to y.
We now show that easiness of succinct search implies easiness of decision for any L ∈ NEXP.

▶ Lemma 4.6. Let L ∈ NEXP and V be a verifier such that L has exponential-size proofs
with respect to V . If succinct search is easy for L with respect to V , then L ∈ BPP.

Proof. Let L ∈ NEXP. We show that L ∈ BPP. By Theorem 4.5, there is a probabilistic
poly-time oracle machine V ′ such that if x ∈ L, there is y of length exponential in |x| for
which V ′ accepts with high probability on x when given oracle access to y, and if x ̸∈ L

rejects with high probability irrespective of the oracle.
Now consider a verifier V for L which given input x and proof y, accepts iff V ′(x) accepts

with oracle y on a majority of its computation paths. Since succinct search is easy for L with
respect to V , there is a probabilistic poly-time machine N such that for input x ∈ L, there
is a V -proof y for x such that with high probability tt(N(x)) = y. We define a probabilistic
poly-time machine W that on input x simulates V ′(x) as follows. It first runs N(x) to find
a circuit C. It then runs V (x), answering all oracle calls to y by simulating C on input
corresponding to the bit of y that is queried. It accepts iff V (x) accepts.

APPROX/RANDOM 2021

46:16 On the Structure of Learnability Beyond P/Poly

If x ∈ L, by using the assumption that N solves succinct search, W (x) accepts with
probability close to 2/3. If x ̸∈ L, W (x) rejects with probability close to 2/3 since the circuit
C output by N(x) corresponds to some purported V ′-proof, and every such V ′-proof is
rejected with high probability by V when given oracle access to the proof. ◀

▶ Theorem 4.7. Let D ∈ {PSPACE, EXP}. D = BPP iff for each L ∈ D and for each verifier
V for L such that L has D-computable proofs with respect to V , succinct search is easy for L

with respect to V .
NEXP = BPP iff for each L ∈ NEXP and for each verifier V such that L has exponential-

size proofs with respect to V , succinct search is easy for L with respect to V .

Proof. The forward directions of both items follow from Lemma 4.4. The backward direction
of the second item follows Lemma 4.6. The backward direction of the first item follows
from Lemma 4.6 and the fact that for D ∈ {PSPACE, EXP}, if L ∈ D and V is a verifer
for L such that L has D-computable proofs with respect to V , then L ∈ NEXP and L has
exponential-size proofs with respect to V . ◀

We now prove Theorem 1.4. Define RKt as the language consisting of strings x such that
Kt(x) ≥ |x|/2. Similarly, RKS is the language consisting of strings x such that KS(x) ≥ |x|/2
[3] (see Appendix A.3 for formal definitions of Kt and KS complexity).

▶ Theorem 4.8 (Theorem 1.4 stated formally). RKt ∈ BPP iff for each verifier V for RKt such
that RKt has EXP-computable proofs with respect to V , succinct search is easy for RKt with
respect to V .

RKS ∈ BPP iff for each verifier V for RKS such that RKS has PSPACE-computable proofs
with respect to V , succinct search is easy for RKS with respect to V .

Proof. The backward directions of both items follow from Lemma 4.6 and the facts that
RKt and RKS are in NEXP.

For the forward direction of the first item, we use the result shown in [3] that RKt ∈ BPP
implies EXP = BPP. Combining this with the first item of Lemma 4.4 completes the proof.

For the forward direction of the second item, we use the theorem shown in [3] that
RKS ∈ BPP implies PSPACE = BPP. Combining this with the first item of Lemma 4.4
completes the proof. ◀

References
1 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way

functions on np-hardness. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 701–710.
ACM, 2006. doi:10.1145/1132516.1132614.

2 Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov com-
plexity. In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 1–15. Springer, 2001.

3 Eric Allender, Harry Buhrman, Michal Kouckỳ, Dieter Van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.

4 Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.
5 Benny Applebaum, Boaz Barak, and David Xiao. On basing lower-bounds for learning on

worst-case assumptions. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 211–220. IEEE
Computer Society, 2008. doi:10.1109/FOCS.2008.35.

https://doi.org/10.1145/1132516.1132614
https://doi.org/10.1109/FOCS.2008.35

N. Rajgopal and R. Santhanam 46:17

6 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational complexity, 1(1):3–40, 1991.

7 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993. doi:10.1007/BF01275486.

8 Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Cryptographic primitives
based on hard learning problems. In Annual International Cryptology Conference, pages
278–291. Springer, 1993.

9 Andrej Bogdanov and Christina Brzuska. On basing size-verifiable one-way functions on
np-hardness. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages 1–6. Springer,
2015. doi:10.1007/978-3-662-46494-6_1.

10 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for np problems.
SIAM Journal on Computing, 36(4):1119–1159, 2006.

11 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly:
Structure in Complexity Theory Conference)(Cat. No. 98CB36247), pages 8–12. IEEE, 1998.

12 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages
10:1–10:24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
CCC.2016.10.

13 Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In Thomas Vidick,
editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 70:1–70:48. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.70.

14 Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM
Journal on Computing, 22(5):994–1005, 1993.

15 Lance Fortnow and Adam R Klivans. Efficient learning algorithms yield circuit lower bounds.
Journal of Computer and System Sciences, 75(1):27–36, 2009.

16 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover interactive
protocols. Theoretical Computer Science, 134(2):545–557, 1994.

17 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

18 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct randolli functions. In
25th Annual Symposium on Foundations of Computer Science, 1984., pages 464–479. IEEE,
1984.

19 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on the
worst-case, then it is easy to find their hard instances. Comput. Complex., 16(4):412–441,
2007. doi:10.1007/s00037-007-0235-8.

20 Dan Gutfreund and Salil P. Vadhan. Limitations of hardness vs. randomness under uniform
reductions. In Ashish Goel, Klaus Jansen, José D. P. Rolim, and Ronitt Rubinfeld, editors,
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques,
11th International Workshop, APPROX 2008, and 12th International Workshop, RANDOM
2008, Boston, MA, USA, August 25-27, 2008. Proceedings, volume 5171 of Lecture Notes in
Computer Science, pages 469–482. Springer, 2008. doi:10.1007/978-3-540-85363-3_37.

21 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 247–258. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00032.

APPROX/RANDOM 2021

https://doi.org/10.1007/BF01275486
https://doi.org/10.1007/978-3-662-46494-6_1
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1007/s00037-007-0235-8
https://doi.org/10.1007/978-3-540-85363-3_37
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032

46:18 On the Structure of Learnability Beyond P/Poly

22 Shuichi Hirahara and Osamu Watanabe. On nonadaptive reductions to the set of random
strings and its dense subsets. Electronic Colloquium on Computational Complexity (ECCC),
26:25, 2019. URL: https://eccc.weizmann.ac.il/report/2019/025.

23 Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
NP. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC
2011, San Jose, California, USA, June 8-10, 2011, pages 104–114. IEEE Computer Society,
2011. doi:10.1109/CCC.2011.34.

24 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

25 Russell Impagliazzo and Levin LA. No better ways to generate hard np instances than picking
uniformly at random. In Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science, pages 812–821. IEEE, 1990.

26 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. doi:10.1006/jcss.2001.
1780.

27 Jeffrey C Jackson. An efficient membership-query algorithm for learning dnf with respect to
the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.

28 Richard M Karp and Richard J Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the twelfth annual ACM symposium on Theory of
computing, pages 302–309. ACM, 1980.

29 Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM), 41(1):67–95, 1994.

30 Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction to
computational learning theory. MIT press, 1994.

31 Adam R. Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard functions
using learning algorithms. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 86–97. IEEE Computer Society,
2013. doi:10.1109/CCC.2013.18.

32 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

33 Leonid A Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61(1):15–37, 1984.

34 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. Journal of the ACM (JACM), 40(3):607–620, 1993.

35 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. In Proceedings [1990] 31st Annual Symposium on Foundations of
Computer Science, pages 2–10. IEEE, 1990.

36 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms,
circuit lower bounds, and pseudorandomness. In Ryan O’Donnell, editor, 32nd Computational
Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages
18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
CCC.2017.18.

37 Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.
38 Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity via uniform

reductions. Computational Complexity, 16(4):331–364, 2007.
39 Chee K Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical

computer science, 26(3):287–300, 1983.

https://eccc.weizmann.ac.il/report/2019/025
https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1109/CCC.2013.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18

N. Rajgopal and R. Santhanam 46:19

A Preliminaries

Let F = {Fn}, where Fn is set of all Boolean functions over {0, 1}n, where each fn ∈ Fn is
a function fn : {0, 1}n → {0, 1}. Define tt(f) as the truth table of a function fn of length
2n. On the other hand, given a string x ∈ {0, 1}2n , define fn(x) as the function on n inputs
whose truth table is x. For every n ∈ N, define Un as the uniform distribution over {0, 1}n.

A.1 Samplability and Learnability
Let C = {Cn}, where Cn ⊆ Fn be a class of functions over {0, 1}n and D = {Dn} be a
distribution family over {0, 1}∗, where Dn is a distribution over {0, 1}n.

▶ Definition A.1 (Worst-case PAC-learning using random examples). For any 0 ≤ ϵ, δ < 1/2,
a class C is (ϵ, δ)-PAC-learnable in the worst-case using random examples in time T (n), if
there exists a randomized algorithm A such that

For every n ∈ N , for every f ∈ Cn, for every Dn over {0, 1}n, A takes inputs 1n, ϵ, δ, a
set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm)) where each xi ∼ Dn, and
w ∈ {0, 1}r(n) as internal randomness. A then outputs the description of a circuit h such
that

Pr
w∈{0,1}r(n),x1,...,xm∼Dn

{
Pr

y∈Dn

{h(y) = f(y)} ≥ 1 − ε

}
≥ 1 − δ

A runs in time at most T (n).11

We can also restrict the learnability to a fixed distribution like the uniform distribution Un,
where the learner takes random examples chosen over the uniform distribution and hypothesis
error is also measured over the uniform distribution. Unless specified otherwise, we use the
class of polynomial-sized Boolean circuits P/poly, as the hypothesis class for our learning
algorithms.

Furthermore, we can extend this definition to PAC-learning over membership queries
by giving the learner A oracle access to the function f ∈ Cn, in addition to the random
examples drawn from some fixed distribution Dn over {0, 1}n.

To define learnability on average, let P = {Pn} be a distribution ensemble over C, where
Pn is a fixed distribution over Cn.

▶ Definition A.2 (Samplable distributions). Let P be a distribution ensemble over C, where
for every n ∈ N, Pn is a distribution over the truth tables of Cn. Let N = 2n. For any
non-decreasing function S(N) ≥ N , we say that P is samplable in time S(N), if there exists
a randomized algorithm A such that for every N = 2n, using m(N) bits of randomness (where
m(N) ≤ S(N)), A(1N , y) is distributed identically to Pn, where the distribution is over the
string y picked uniformly at random from {0, 1}m(N) and A runs in time S(N).

In other words, if y is picked uniformly at random from {0, 1}m(N) then A(1N , y) outputs
a truth table from Cn which is distributed according to Pn. Furthermore, we say that P is
polynomially samplable if S(N) = poly(N).

▶ Remark A.3. For the special case where C is a class of fixed polynomial sized circuits like
SIZE[nk] (or SIZEEXP[nk]) for any arbitrary fixed k, we define a circuit representation scheme
for Cn given by the set Rn ⊂ {0, 1}r(n), where r(n) = O(nk log n), such that every σ ∈ Rn is

11 Note that this immediately implies that m(n) ≤ T (n)

APPROX/RANDOM 2021

46:20 On the Structure of Learnability Beyond P/Poly

a C-circuit encoding of a function in Cn. Note that this mapping is onto and each function
in Cn has many representations in Rn. We also assume that there exists a uniform circuit
sequence in C, which interprets this encoding as a C-circuit and evaluates computations given
this encoding.

Now, we can define a distribution ensemble P over C, where each Pn is a distribution
over the C-circuit encodings, which implicitly defines a distribution over Cn. We also define
S(r(n))-samplability of P , if there exists a randomized algorithm A running in time S(r(n))
such that for every n ∈ N, A(1r(n), y) is distributed identically to Pn, where the distribution
is over the random strings y ∈ {0, 1}m(n).

▶ Definition A.4 (Average-case learnability [8]). Let C be a class of Boolean functions and
P = {Pn} be a distribution ensemble over C. For any 0 < ϵ, δ < 1/2, we say that C is
(ϵ, δ)-PAC-learnable on average using random examples with respect to P in time T (n), if
there exists a randomized algorithm A running in time at most T (n) such that

For every large enough n, for any fixed f drawn according to Pn, for every Dn over {0, 1}n,
A takes inputs 1n, ε, δ, a set of m = m(n) labeled samples (x1, f(x1)), . . . , (xm, f(xm))
where each xi ∼ Dn and w ∈ {0, 1}∗ (the internal randomness of A) and outputs the
description of a circuit h such that

Pr
f∼Pn

w∈{0,1}∗

x1,...,xm,y∼Dn

{
Pr

y∈Dn

{h(y) = f(y)} ≥ 1 − ε

}
≥ 1 − δ

A runs in time at most T (n).

Furthermore, for any 0 < ϵ, δ < 1/2, we say that C is (ϵ, δ)-PAC-learnable on average
with respect to polynomially samplable distributions over C using random examples in time
T (n) if there exists a learning algorithm A that runs in time T (n) such that for every
polynomially samplable distribution ensemble P over C, we have that for every large enough
n, A (ϵ, δ)-PAC-learns Cn on average using random examples with respect to Pn.

We can naturally extend this definition to average-case learning C with respect to P and a
fixed distribution over the examples like Un, as well as average-case PAC-learning C with
membership queries with respect to P.

A.2 Self-Reducibility
In our reductions, we use the following special properties of a function.

▶ Definition A.5 (Downward self-reducibility). A function fn : {0, 1}n → {0, 1} is downward-
self-reducible if there is a deterministic polynomial time algorithm A such that for all
x ∈ {0, 1}n, Afn−1(x) = fn(x).

▶ Definition A.6 (Self-Correctibility). A function f : {0, 1}n → {0, 1} is said to be self-
correctible if there exists a constant c ≥ 0 and a probabilistic polynomial-time algorithm A

such that, for every large enough n, for any function O : {0, 1}n → {0, 1} that agrees with fn

with probability (1 − 1/nc) over the uniform distribution on inputs of length n, we have that
Pr{AO(x) = fn(x)} ≥ 2/3 for any x ∈ {0, 1}n.

[7] show that any function f on n Boolean inputs can be transformed into a function f∗

on n inputs from a large enough finite field, such that f∗ coincides with f on the subset
{0, 1}n.

N. Rajgopal and R. Santhanam 46:21

▶ Theorem A.7 ([7]). There exists an EXP-Complete problem g∗ which is self-correctible.

Furthermore, Trevisan and Vadhan [38] construct a PSPACE-Complete problem which is
based on a careful arithmetization and padding of TQBF (using the interactive proof system
for PSPACE), which has both these properties.

▶ Theorem A.8 ([38]). There exists a PSPACE-Complete language f∗ ∈ DSPACE[n] that is
both self-correctible and downward self-reducible (DSR).

We also use the following results.

▶ Lemma A.9. If EXP ⊆ P/poly, then EXP = PSPACE. In particular, the function f∗ (from
Theorem A.8) is complete for EXP.

▶ Lemma A.10 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables
such that 0 ≤ Xi ≤ 1 for every i ∈ [n]. Let X =

∑n
i=1 Xi. Then, for any t > 0, we have

Pr{|X − E[X]| ≥ t} ≤ 2 exp(−2t2/n)

The following Lemma proves that a random function cannot even be approximated
bysmall-sized circuits and follows from an application of Lemma A.10.

▶ Lemma A.11 (Lemma 4 [36]). For any s(n) ≥ n and δ ∈ [0, 1/2], we have

Pr
f∼Fn

{∃ circuit of size ≤ s(n) computing f on ≥ (1/2 + δ)-fraction of the inputs}

≤ exp(−δ22n + 10s log s)

A.3 Kolmogorov Complexity
Fix a universal machine U . Levin [33] defined the following notion of time-bounded
Kolmogorov complexity: The Kt complexity of a string x is the minimum Kt(x) over
|p| + log(t) such that U(p) = x in at most t steps. it is known [2] that Kt(x) is polynomially
related to the size of the smallest EXP-oracle circuit computing the function with truth table
x (truncating x to its longest initial segment with length a power of two).

Similarly, KS(x) is the minimum over |p| + s such that U(p) = x in at most space s. It
is known [2] that KS(x) is polynomially related to the size of the smallest PSPACE-oracle
circuit computing the function with truth table x (truncating x to its longest initial segment
with length a power of two).

Let RKt be the language consisting of strings x such that Kt(x) ≥ |x|/2 [3]. Similarly, let
RKS be the language consisting of strings x such that KS(x) ≥ |x|/2 [3].

B Barriers for Conditional Hardness of Learning

Firstly, we formally define what it means to have a Black-Box Turing reduction from a
language L to a PAC-learning algorithm for a class C. Fix the error of the learner to be
ε = 1/poly(n) (we ignore the confidence parameter, but this only makes our hardness results
stronger).

▶ Definition B.1 (Turing Reduction to Learning C.). A B-adaptive black-box reduction from
deciding L to PAC-learning C using random examples up to error ε, is a tuple of probabilistic
polynomial time algorithms R = (T1, . . . , TB , M) where R is given an input z ∈ {0, 1}n

and randomness w ∈ {0, 1}∗. For each query, R constructs a joint distribution (X, f(X))

APPROX/RANDOM 2021

46:22 On the Structure of Learnability Beyond P/Poly

over {0, 1}r × {0, 1} for some r ≤ n and f ∈ C, samples a set S = {(xi, yi)}i≤poly(n) of
independent labeled examples according to (X, Y) and passes it to the learner. Let t(n) be the
query complexity of each round of adaptivity. R decides z by doing the following -

For each 1 ≤ j ≤ B, Tj gets input z, fresh random bits from w and all the (j − 1) ·
t(n) hypothesis circuits answered for the queries from the previous rounds (T1 only
has z and randomness w as input), and outputs t(n) new queries Sj1, . . . , Sjt for the
learner, each of which are sets of labeled examples sampled from joint distributions
(Xj1, Yj1), . . . , (Xjt, Yjt).
R only has oracle access to the learner.
M takes as input z, fresh random bits from w and the B · t(n) hypothesis circuits which
are the answers made by the learner for all the queries asked by T1, . . . , TB, and outputs
the answer.
The reduction guarantees that if for every oracle A that is a C-circuit learner, if every
hypothesis circuit returned by the learner is (1 − ε)-close with respect to its corresponding
query given to the learner by T1, . . . , TB, then M(z) = L(z) with high probability over the
internal randomness of the reduction R.

▶ Definition B.2. For any B-adaptive black-box reduction R = (T1, . . . , TB) from deciding L

to PAC-learning C using random examples up to error ε, we have
R is called strongly black-box, if T1, . . . , TB , M only have oracle access to the hypothesis
circuits and M decides L given access to any (1 − ε)-close hypothesis circuit answered to
each query made by T1, . . . , TB.
If B = 1, we call the reduction as non-adaptive, and if R is strongly black-box and M

also makes only non-adaptive queries to the hypotheses circuits, we call the reduction as
fully non-adaptive.
R is oblivious, if T1, . . . , TB output new queries using only fresh randomness from w as
input and access to the hypotheses generated during the previous rounds. Furthermore,
M accesses each hypothesis using non-adaptively generated, identically distributed queries
made from the corresponding distribution over which each hypothesis is guaranteed to be
a good approximation. In particular, the obliviousness of the reduction implies the fact
that the queries to the learner do not depend on the input z.

Unless mentioned we think of the query complexity t(n) = poly(n). It is worth to note
that since the algorithms T1, . . . , TB are polynomial time algorithms, each joint distribution
(X, Y) must be efficiently samplable.

We first prove Lemma 1.5. This is a reformulation of the proof of Lemma 3.2 used to show
hardness of learning PSPACE/poly from a PSPACE-Complete language, into the framework
of a black-box reduction.

Proof of Lemma 1.5. This a readaptation of the proof of Corollary 1.3 (via Lemma 3.2).
Consider R = (T1, . . . , Tn, M) as an n-adaptive reduction from deciding f∗ to learning
PSPACE/poly using random examples over the uniform distribution, where T1, . . . , Tn, M are
probabilistic polynomial time algorithms which are defined as follows.

For every k ≤ n, Tk makes exactly one query to the learner which is the set of examples
Sk = {(xi, yi)}i≤poly(n) drawn from the joint distribution (Uk, f∗(Uk)), where Uk is the
uniform distribution over {0, 1}k. In the kth round of adaptivity, Tk only makes oracle
queries to the hypothesis hk−1 output in the last round. Indeed, let h′

k−1 be the oracle circuit
which uses hk−1 as an oracle in the self-corrector algorithm for f∗, and computes f∗ on all
k − 1 length inputs with high probability. It then outputs a set Sk of independent labeled
samples (xi, yi), where each xi is sampled uniformly at random from Uk and yi = f∗(xi)

N. Rajgopal and R. Santhanam 46:23

computed by using the downward self-reducibility of f∗ with h′
k−1. M takes the final

hypothesis hn output by the learner over n inputs and outputs the value of the self-corrector
of f∗ with the oracle hn. The correctness of R and the run-time analyses of T1, . . . , Tn, M

follow from the proof techniques of Lemma 3.2.
We next show that R has the required properties. As the self-corrector and the downward

self-reduction for f∗ work for any oracle which satisfy the appropriate constraints, R is
correct for any oracle which outputs any correct hypothesis for f∗ with respect to the
uniform distribution (over different input lengths). Further, it makes only oracle queries to
the learner, as well as to all the hypothesis circuits h1, . . . , hn. This makes the reduction
strongly black-box. By the property of the self-corrector, M only makes queries sampled
from Un to hn, which is the same as the query made to the learner. The obliviousness now
follows, since only f∗ is learnt in each query, irrespective of the choice of z. ◀

The main result of the section is the following.

▶ Theorem B.3. There exists a universal constant c > 0 such that the following holds. For
any language L, ε0 = 1/nc and any B = poly(n), if there exists an oblivious, B-adaptive,
strongly black-box reduction from L to PAC-learning NP/poly using random examples over
polynomially samplable distributions up to error ε0, then L ∈ AMpoly.

Recall that the class AMpoly refers to the class of languages recognized by constant-round
interactive protocols with advice, where we require proper acceptance/rejection probabilities
only when the advice is correct. [14] show that AMpoly = NP/poly. Using Theorem B.3 with
L = SAT, we get

▶ Corollary B.4. There exists a universal constant c > 0 such that the following holds. For
ε0 = 1/nc and any B = poly(n), if there exists an oblivious, B-adaptive, strongly black-box
reduction from deciding SAT to learning NP/poly using random examples from polynomially
samplable distributions up to error ε0, then coNP ⊆ NP/poly.

Corollary B.4 easily implies Theorem 1.6, since coNP ⊆ NP/poly implies that ΣP
3 = ΠP

3 [39].
▶ Remark B.5. In addition, we can also extend the proof to the case where M still makes
non-adaptive queries but is not constrained distributionally in its access to all the hypotheses,
by directly applying the techniques of [10] for the simulation of R in AMpoly.

The details of the proof of Theorem B.3 can be found in the full version (see Section 1.4
for a sketch).

APPROX/RANDOM 2021

The Critical Mean-Field Chayes-Machta Dynamics
Antonio Blanca #

Pennsylvania State University, University Park, PA, USA

Alistair Sinclair #

University of California at Berkeley, CA, USA

Xusheng Zhang #

Pennsylvania State University, University Park, PA, USA

Abstract
The random-cluster model is a unifying framework for studying random graphs, spin systems and
electrical networks that plays a fundamental role in designing efficient Markov Chain Monte Carlo
(MCMC) sampling algorithms for the classical ferromagnetic Ising and Potts models. In this paper,
we study a natural non-local Markov chain known as the Chayes-Machta dynamics for the mean-field
case of the random-cluster model, where the underlying graph is the complete graph on n vertices.
The random-cluster model is parametrized by an edge probability p and a cluster weight q. Our focus
is on the critical regime: p = pc(q) and q ∈ (1, 2), where pc(q) is the threshold corresponding to the
order-disorder phase transition of the model. We show that the mixing time of the Chayes-Machta
dynamics is O(log n · log log n) in this parameter regime, which reveals that the dynamics does not
undergo an exponential slowdown at criticality, a surprising fact that had been predicted (but not
proved) by statistical physicists. This also provides a nearly optimal bound (up to the log log n factor)
for the mixing time of the mean-field Chayes-Machta dynamics in the only regime of parameters
where no non-trivial bound was previously known. Our proof consists of a multi-phased coupling
argument that combines several key ingredients, including a new local limit theorem, a precise
bound on the maximum of symmetric random walks with varying step sizes, and tailored estimates
for critical random graphs. In addition, we derive an improved comparison inequality between the
mixing time of the Chayes-Machta dynamics and that of the local Glauber dynamics on general
graphs; this results in better mixing time bounds for the local dynamics in the mean-field setting.

2012 ACM Subject Classification Mathematics of computing → Markov processes; Theory of
computation → Design and analysis of algorithms; Theory of computation → Random walks and
Markov chains; Theory of computation → Random network models; Mathematics of computing →
Random graphs

Keywords and phrases Markov Chains, Mixing Times, Random-cluster Model, Ising and Potts
Models, Mean-field, Chayes-Machta Dynamics, Random Graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.47

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2102.03004v2

Funding Antonio Blanca: Research supported in part by NSF grant CCF-1850443.
Alistair Sinclair : Research supported in part by NSF grant CCF-1815328.
Xusheng Zhang: Research supported in part by NSF grant CCF-1850443.

1 Introduction

The random-cluster model generalizes classical random graph and spin system models,
providing a unifying framework for their study [12]. It plays an indispensable role in
the design of efficient Markov Chain Monte Carlo (MCMC) sampling algorithms for the
ferromagnetic Ising/Potts model [23, 6, 17] and has become a fundamental tool in the study
of phase transitions [1, 11, 10].

© Antonio Blanca, Alistair Sinclair, and Xusheng Zhang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ablanca@cse.psu.edu
mailto:sinclair@cs.berkeley.edu
mailto:xzz5349@cse.psu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.47
https://arxiv.org/abs/2102.03004v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 The Critical Mean-Field Chayes-Machta Dynamics

The random-cluster model is defined on a finite graph G = (V, E) with an edge probability
parameter p ∈ (0, 1) and a cluster weight q > 0. The set of configurations of the model is the
set of all subsets of edges A ⊆ E. The probability of each configuration A is given by the
Gibbs distribution:

µG,p,q(A) = 1
Z

· p|A|(1 − p)|E|−|A|qc(A); (1)

where c(A) is the number of connected components in (V, A) and Z := Z(G, p, q) is the
normalizing factor called the partition function.

The special case when q = 1 corresponds to the independent bond percolation model,
where each edge of the graph G appears independently with probability p. Independent bond
percolation is also known as the Erdős-Rényi random graph model when G is the complete
graph.

For integer q ≥ 2, the random-cluster model is closely related to the ferromagnetic
q-state Potts model. Configurations in the q-state Potts model are the assignments of spin
values {1, . . . , q} to the vertices of G; the q = 2 case corresponds to the Ising model. A
sample A ⊆ E from the random-cluster distribution can be easily transformed into one for
the Ising/Potts model by independently assigning a random spin from {1, . . . , q} to each
connected component of (V, A). Random-cluster based sampling algorithms, which include
the widely-studied Swendsen-Wang dynamics [22], are an attractive alternative to Ising/Potts
Markov chains since they are often efficient at “low-temperatures” (large p). In this parameter
regime, several standard Ising/Potts Markov chains are known to converge slowly.

In this paper we investigate the Chayes-Machta (CM) dynamics [9], a natural Markov
chain on random-cluster configurations that converges to the random-cluster measure. The
CM dynamics is a generalization to non-integer values of q of the widely studied Swendsen-
Wang dynamics [22]. As with all applications of the MCMC method, the primary object of
study is the mixing time, i.e., the number of steps until the dynamics is close to its stationary
distribution, starting from the worst possible initial configuration. We are interested in
understanding how the mixing time of the CM dynamics grows as the size of the graph G

increases, and in particular how it relates to the phase transition of the model.
Given a random-cluster configuration (V, A), one step of the CM dynamics is defined as

follows:
(i) activate each connected component of (V, A) independently with probability 1/q;
(ii) remove all edges connecting active vertices;
(iii) add each edge between active vertices independently with probability p, leaving the

rest of the configuration unchanged.
We call (i) the activation sub-step, and (ii) and (iii) combined the percolation sub-step. It is
easy to check that this dynamics is reversible with respect to the Gibbs distribution (1) and
thus converges to it [9]. For integer q, the CM dynamics may be viewed as a variant of the
Swendsen-Wang dynamics. In the Swendsen-Wang dynamics, each connected component of
(V, A) receives a random color from {1, . . . , q}, and the edges are updated within each color
class as in (ii) and (iii) above; in contrast, the CM dynamics updates the edges of exactly
one color class. However, note that the Swendsen-Wang dynamics is only well-defined for
integer q, while the CM dynamics is feasible for any real q > 1. Indeed, the CM dynamics
was introduced precisely to allow this generalization.

The study of the interplay between phase transitions and the mixing time of Markov chains
goes back to pioneering work in mathematical physics in the late 1980s. This connection for
the specific case of the CM dynamics on the complete n-vertex graph, known as the mean-field
model, has received some attention in recent years (see [5, 13, 16]) and is the focus of this

A. Blanca, A. Sinclair, and X. Zhang 47:3

paper. As we shall see, the mean-field case is already quite non-trivial, and has historically
proven to be a useful starting point in understanding various types of dynamics on more
general graphs. We note that, so far, the mean-field is the only setting in which there are tight
mixing time bounds for the CM dynamics; all other known bounds are deduced indirectly via
comparison with other Markov chains, thus incurring significant overhead [6, 4, 15, 3, 23, 5].

The phase transition for the mean-field random-cluster model is fairly well-understood [8,
20]. In this setting, it is natural to re-parameterize by setting p = ζ/n; the phase transition
then occurs at the critical value ζ = ζcr(q), where ζcr(q) = q when q ∈ (0, 2] and ζcr(q) =
2(q−1

q−2) log(q − 1) for q > 2. For ζ < ζcr(q) all components are of size O(log n) with high
probability (w.h.p.); that is, with probability tending to 1 as n → ∞. On the other hand,
for ζ > ζcr(q) there is a unique giant component of size ≈ θn, where θ = θ(ζ, q). The phase
transition is thus analogous to that in G(n, p) corresponding to the emergence of a giant
component.

The phase structure of the mean-field random-cluster model, however, is more subtle and
depends crucially on the second parameter q. In particular, when q > 2 the model exhibits
phase coexistence at the critical threshold ζ = ζcr(q). Roughly speaking, this means that
when ζ = ζcr(q), the set of configurations with all connected components of size O(log n),
and set of configurations with a unique giant component, contribute each a constant fraction
of the probability mass. For q ≤ 2, on the other hand, there is no phase coexistence.

Phase coexistence at ζ = ζcr(q) when q > 2 has significant implications for the speed of
convergence of Markov chains, including the CM dynamics. The following detailed connection
between the phase structure of the model and the mixing time τCM

mix of the CM dynamics was
recently established in [5, 2, 16]. When q > 2, we have:

τCM
mix =

Θ(log n) if ζ ̸∈ [ζl, ζr);
Θ(n1/3) if ζ = ζl;
eΩ(n) if ζ ∈ (ζl, ζr),

(2)

where (ζl, ζr) is the so-called metastability window. It is known that ζr = q, but ζl does not
have a closed form; see [5, 20]; we note that ζcr(q) ∈ (ζl, ζr) for q > 2.

When q ∈ (1, 2], there is no metastability window, and the mixing time of the mean-field
CM dynamics is Θ(log n) for all ζ ̸= ζcr(q). In view of these results, the only case remaining
open is when q ∈ (1, 2] and ζ = ζcr(q). Our main result shown below concerns precisely
this regime, which is particularly delicate and had resisted analysis until now for reasons we
explain in our proof overview.

▶ Theorem 1. The mixing time of the CM dynamics on the complete n-vertex graph when
ζ = ζcr(q) = q and q ∈ (1, 2) is O(log n · log log n).

A Ω(log n) lower bound is known for the mixing time of the mean-field CM dynamics
that holds for all p ∈ (0, 1) and q > 1 [5]. Therefore, our result is tight up to the lower order
O(log log n) factor, and in fact even better as we explain in Remark 16. The conjectured tight
bound when ζ = ζcr(q) and q ∈ (1, 2) is Θ(log n). We mention that the ζ = ζcr(q) and q = 2
case, which is quite different and not covered by Theorem 1, was considered earlier in [19]
for the closely related Swendsen-Wang dynamics, and a tight Θ(n1/4) bound was established
for its mixing time. The same mixing time bound is expected for the CM dynamics in this
regime; see Remark 7 for further comments about the ζ = ζcr(q), q = 2 case.

Our result establishes a striking behavior for random-cluster dynamics when q ∈ (1, 2).
Namely, there is no slowdown (exponential or power law) in this regime at the critical
threshold ζ = ζcr(q). Note that for q > 2, as described in (2) above, the mixing time of the

APPROX/RANDOM 2021

47:4 The Critical Mean-Field Chayes-Machta Dynamics

dynamics undergoes an exponential slowdown, transitioning from Θ(log n) when ζ < ζl, to a
power law at ζ = ζl, and to exponential in n when ζ ∈ (ζl, ζr). The absence of a critical
slowdown for q ∈ (1, 2) was in fact predicted by the statistical physics community [14], and
our result provides the first rigorous proof of this phenomenon.

Our second result concerns the local Glauber dynamics for the random-cluster model. In
each step, the Glauber dynamics updates a single edge of the current configuration chosen
uniformly at random; a precise definition of this Markov chain is given in the full version of
the present paper [7]. In [5], it was established that any upper bound on the mixing time
τCM

mix of the CM dynamics can be translated to one for the mixing time τGD
mix of the Glauber

dynamics, at the expense of a Õ(n4) factor; the Õ notation hides polylogarithmic factors. In
particular, it was proved in [5] that τGD

mix ≤ τCM
mix · Õ(n4). We provide here an improvement of

this comparison inequality.

▶ Theorem 2. For all q > 1 and all ζ = O(1), τGD
mix ≤ τCM

mix · O(n3(log n)2).

To prove this theorem, we establish a general comparison inequality that holds for any graph,
any q ≥ 1 and any p ∈ (0, 1); see the full version of this paper [7] for a precise statement.
When combined with the known mixing time bounds for the CM dynamics on the complete
graph, Theorem 2 yields that the random-cluster Glauber dynamics mixes in Õ(n3) steps
when q > 2 and ζ ̸∈ (ζl, ζr), or when q ∈ (1, 2) and ζ = O(1). In these regimes, the mixing
time of the Glauber dynamics was previously known to be Õ(n4) and is conjectured to be
Õ(n2); the improved comparison inequality in Theorem 2 gets us closer to this conjectured
tight bound. We note, however, that even if one showed the conjectured optimal bound for
the mixing time of the Glauber dynamics, the CM is faster, even if we take into account the
computational cost associated to implementing its steps.

We conclude this introduction with some brief remarks about our analysis techniques,
which combine several key ingredients in a non-trivial way. Our bound on the mixing
time uses the well-known technique of coupling: in order to show that the mixing time is
O(log n · log log n), it suffices to couple the evolutions of two copies of the dynamics, starting
from two arbitrary configurations, in such a way that they arrive at the same configuration
after O(log n) steps with probability Ω(1/ log log n). (The moves of the two copies can
be correlated any way we choose, provided that each copy, viewed in isolation, is a valid
realization of the dynamics.) Because of the delicate nature of the phase transition in the
random-cluster model, combined with the fact that the percolation sub-step of the CM
dynamics is critical when ζ = q, our coupling is somewhat elaborate and proceeds in multiple
phases. The first phase consists of a burn-in period, where the two copies of the chain are
run independently and the evolution of their largest components is observed until they have
shrunk to their “typical” sizes. This part of the analysis is inspired by similar arguments in
earlier work [5, 19, 13].

In the second phase, we design a coupling of the activation of the connected components
of the two copies which uses: (i) a local limit theorem, which can be thought of as a
stronger version of a central limit theorem; (ii) a precise understanding of the distribution
of the maximum of symmetric random walks on Z with varying step sizes; and (iii) precise
estimates for the component structure of random graphs. We develop tailored versions of
these probabilistic tools for our setting and combine them to guarantee that the same number
of vertices from each copy are activated in each step w.h.p. for sufficiently many steps. This
phase of the coupling is the main novelty in our analysis, and allows us to quickly converge
to the same configuration.

The rest of the paper is organized as follows. In Section 2, we give a detailed overview of
our proof. The proof of the key step in our coupling construction is provided in Section 3;
all others proofs are deferred to the full version of this paper [7].

A. Blanca, A. Sinclair, and X. Zhang 47:5

2 Proof sketch and techniques

We now give a detailed sketch of the multi-phased coupling argument for proving Theorem
1. We start by formally defining the notions of mixing and coupling times. Let ΩRC be
the set of random-cluster configurations of a graph G; let M be the transition matrix of a
random-cluster Markov chain with stationary distribution µ = µG,p,q, and let Mt(X0, ·) be
the distribution of the chain after t steps starting from X0 ∈ ΩRC. The ε-mixing time of M
is given by

τM
mix(ε) := max

X0∈ΩRC
min
t≥0

{
||Mt(X0, ·) − µ(·)||TV ≤ ε

}
,

where || · ||TV denotes total variation distance. In particular, the mixing time of M is
τM

mix := τM
mix(1/4).

A (one step) coupling of the Markov chain M specifies, for every pair of states (Xt, Yt) ∈
ΩRC × ΩRC, a probability distribution over (Xt+1, Yt+1) such that the processes {Xt} and
{Yt} are valid realizations of M, and if Xt = Yt then Xt+1 = Yt+1. The coupling time,
denoted Tcoup, is the minimum T such that Pr[XT ̸= YT] ≤ 1/4, starting from the worst
possible pair of configurations in ΩRC. It is a standard fact that τM

mix ≤ Tcoup; moreover,
when Pr[XT = YT] ≥ δ for some coupling, then τM

mix = O(Tδ−1) (see, e.g., [18]).
We provide first a high level description of our coupling for the CM dynamics. For this,

we require the following notation. For a random cluster configuration X, let Li(X) denote
the size of the i-th largest connected component in (V, X), and let Ri(X) :=

∑
j≥i Lj(X)2;

in particular, R1(X) is the sum of the squares of the sizes of all the components of (V, X).
Our coupling has three main phases:
1. Burn-in period: run two copies {Xt}, {Yt} independently, starting from a pair of arbitrary

initial configurations, until R1(XT) = O(n4/3) and R1(YT) = O(n4/3).
2. Coupling to the same component structure: starting from XT and YT such that R1(XT) =

O(n4/3) and R1(YT) = O(n4/3), we design a two-phased coupling that reaches two
configurations with the same component structure as follows:

2a. A two-step coupling after which the two configurations agree on all “large components”;
2b. A coupling that after O(log n) additional steps reaches two configurations that will

also have the same “small component” structure.
3. Coupling to the same configuration: starting from two configurations with the same com-

ponent structure, there is a straightforward coupling that couples the two configurations
in O(log n) steps w.h.p.

We proceed to describe each of these phases in detail.

2.1 The burn-in period
During the initial phase, two copies of the dynamics evolve independently. This is called a
burn-in period and in our case consists of three sub-phases.

In the first sub-phase of the burn-in period the goal is to reach a configuration X such that
R2(X) = O(n4/3). For this, we use a lemma from [2], which shows that after T = O(log n)
steps of the CM dynamics R2(XT) = O(n4/3) with at least constant probability; this holds
when ζ = q for any initial configuration X0 and any q > 1.

▶ Lemma 3 ([2], Lemma 3.42). Let q > 1 and ζ = q, and let X0 be an arbitrary random-cluster
configuration. Then, for any constant C ≥ 0, after T = O(log n) steps R2(XT) = O(n4/3)
and L1(XT) > Cn2/3 with probability Ω(1).

APPROX/RANDOM 2021

47:6 The Critical Mean-Field Chayes-Machta Dynamics

In the second and third sub-phases of the burn-in period, we use the fact that when
R2(Xt) = O(n4/3), the number of activated vertices is well concentrated around n/q (its
expectation). This is used to show that the size of the largest component contracts at
a constant rate for T = O(log n) steps until a configuration XT is reached such that
R1(XT) = O(n4/3). This part of the analysis is split into two sub-phases because the
contraction for L1(Xt) requires a more delicate analysis when L1(Xt) = o(n); this is captured
in the following two lemmas.

▶ Lemma 4. Let ζ = q and q ∈ (1, 2). Suppose R2(X0) = O(n4/3). Then, for any constant
δ > 0, there exists T = T (δ) = O(1) such that R2(XT) = O(n4/3) and L1(XT) ≤ δn with
probability Ω(1).

▶ Lemma 5. Let ζ = q and q ∈ (1, 2). Suppose R2(X0) = O(n4/3) and that L1(X0) ≤ δn

for a sufficiently small constant δ. Then, with probability Ω(1), after T = O(log n) steps
R1(XT) = O(n4/3).

Lemmas 4 and 5 are proved in the full paper [7]. Combining them with Lemma 3
immediately yields the following theorem.

▶ Theorem 6. Let ζ = q, q ∈ (1, 2) and let X0 be an arbitrary random-cluster configuration
of the complete n-vertex graph. Then, with probability Ω(1), after T = O(log n) steps
R1(XT) = O(n4/3).

▶ Remark 7. The contraction of L1(Xt) established by Lemmas 4 and 5 only occurs when
q ∈ (1, 2); when q > 2 the quantity L1(Xt) may increase in expectation, whereas for q = 2
we have E[L1(Xt+1) | Xt] ≈ L1(Xt), and the contraction of the size of the largest component
is due instead to fluctuations caused by a large second moment. (This is what causes the
power law slowdown when ζ = q = 2.)
▶ Remark 8. Sub-steps (ii) and (iii) of the CM dynamics are equivalent to replacing the
active portion of the configuration by a G(m, q/n) random graph, where m is the number
of active vertices. Since E[m] = n/q, one key challenge in the proofs of Lemmas 4 and 5,
and in fact in the entirety of our analysis, is that the random graph G(m, q/n) is critical or
almost critical w.h.p. since m · q/n ≈ 1; consequently its structural properties are not well
concentrated and cannot be maintained for the required O(log n) steps of the coupling. This
is one of the key reasons why the ζ = ζcr(q) = q regime is quite delicate.

2.2 Coupling to the same component structure
For the second phase of the coupling, we assume that we start from a pair of configurations
X0, Y0 such that R1(X0) = O(n4/3), R1(Y0) = O(n4/3). The goal is to show that after
T = O(log n) steps, with probability Ω(1/ log log n), we reach two configurations XT and YT

with the same component structure; i.e., Lj(XT) = Lj(YT) for all j ≥ 1. In particular, we
prove the following.

▶ Theorem 9. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations
such that R1(X0) = O(n4/3) and R1(Y0) = O(n4/3). Then, there exists a coupling of the
CM steps such that after T = O(log n) steps XT and YT have the same component structure
with probability Ω

(
(log log n)−1)

.

Our coupling construction for proving Theorem 9 has two main sub-phases. The first is
a two-step coupling after which the two configurations agree on all the components of size
above a certain threshold Bω = n2/3/ω(n), where ω(n) is a slowly increasing function. For
convenience and definiteness we set ω(n) = log log log log n. In the second sub-phase we take
care of matching the small component structures.

A. Blanca, A. Sinclair, and X. Zhang 47:7

We note that when the same number of vertices are activated from each copy of the
chain, we can easily couple the percolation sub-step (with an arbitrary bijection between
the activated vertices) and replace the configuration on the active vertices in both chains
with the same random sub-graph; consequently, the component structure in the updated
sub-graph would be identical. Our goal is thus to design a coupling of the activation of the
components that activates the same number of vertices in both copies in every step.

In order for the initial two-step coupling to succeed, certain (additional) properties of the
configurations are required. These properties are achieved with a continuation of the initial
burn-in phase for a small number of O(log ω(n)) steps. For a random-cluster configuration
X, let R̃ω(X) =

∑
j:Lj(X)≤Bω

Lj(X)2 and let I(X) denote the number of isolated vertices
of X. Our extension of the burn-in period is captured by the following lemma.

▶ Lemma 10. Let ζ = q, q ∈ (1, 2) and suppose X0 is such that R1(X0) = O(n4/3). Then,
there exists T = O(log ω(n)) and a constant β > 0 such that R̃ω(XT) = O(n4/3ω(n)−1/2),
R1(XT) = O(n4/3) and I(XT) = Ω(n) with probability Ω(ω(n)−β).

With these bounds on R̃ω(XT), R̃ω(YT), I(XT) and I(YT), we construct the two-step
coupling for matching the large component structure. The construction crucially relies on
a new local limit theorem (Theorem 17). In particular, under our assumptions, when ω(n)
is small enough, there are few components with sizes above Bω. Hence, we can condition
on the event that all of them are activated simultaneously. The difference in the number of
active vertices generated by the activation of these large components can then be “corrected”
by a coupling of the activation of the smaller components; for this we use our new local limit
theorem.

Specifically, our local limit theorem applies to the random variables corresponding to the
number of activated vertices from the small components of each copy. We prove it using a
result of Mukhin [21] and the fact that, among the small components, there are (roughly
speaking) many components of many different sizes. To establish the latter we require a
refinement of known random graph estimates (see Lemma 23).

To formally state our result we introduce some additional notation. Let Sω(X) be the
set of connected components of X with sizes greater than Bω. At step t, the activation of
the components of two random-cluster configurations Xt and Yt is done using a maximal
matching Wt between the components of Xt and Yt, with the restriction that only components
of equal size are matched to each other. For an increasing positive function g and each
integer k ≥ 0, define N̂k(t, g) := N̂k(Xt, Yt, g) as the number of matched pairs in Wt whose
component sizes are in the interval

Ik(g) =
[ϑn2/3

2g(n)2k ,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant (independent of n).

▶ Lemma 11. Let ζ = q, q ∈ (1, 2) and suppose X0, Y0 are random-cluster configurations
such that R1(X0) = O(n4/3), R̃ω(X0) = O(n4/3ω(n)−1/2), I(X0) = Ω(n) and similarly for
Y0. Then, there exists a two-step coupling of the CM dynamics such that Sω(X2) = Sω(Y2)
with probability exp

(
−O(ω(n)9)

)
.

Moreover, L1(X2) = O(n2/3ω(n)), R2(X2) = O(n4/3), R̃ω(X2) = O(n4/3ω(n)−1/2),
I(X2) = Ω(n), N̂k(2, ω(n)) = Ω(ω(n)3·2k−1

) for all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞,
and similarly for Y2.

APPROX/RANDOM 2021

47:8 The Critical Mean-Field Chayes-Machta Dynamics

From the first part of the lemma we obtain two configurations that agree on all of
their large components, as desired, while the second part guarantees additional structural
properties for the resulting configurations so that the next sub-phase of the coupling can
also succeed with the required probability.

In the second sub-phase, after the large component are matched, we can design a coupling
that activates exactly the same number of vertices from each copy of the chain. To analyze
this coupling we use a precise estimate on the distribution of the maximum of symmetric
random walks over integers (with steps of different sizes). We are first required to run the
chains coupled for T = O(log ω(n)) steps, so that certain additional structural properties
appear. Let M(Xt) and M(Yt) be the components in the matching Wt that belong to Xt

and Yt, respectively, and let D(Xt) and D(Yt) be the complements of M(Xt) and M(Yt).
Let Zt =

∑
C∈D(Xt)∪D(Yt) |C|2.

▶ Lemma 12. Let ζ = q, q ∈ (1, 2). Suppose X0 and Y0 are random-cluster configura-
tions such that Sω(X0) = Sω(Y0), and N̂k(0, ω(n)) = Ω(ω(n)3·2k−1

) for all k ≥ 1 such
that n2/3ω(n)−2k−1 → ∞. Suppose also that L1(X0) = O(n2/3ω(n)), R2(X0) = O(n4/3),
R̃ω(X0) = O(n4/3ω(n)−1/2), I(X0) = Ω(n), and similarly for Y0.

Then, there exists a coupling of the CM steps such that with probability e−O((log ω(n))2)

after T = O(log ω(n)) steps: Sω(XT) = Sω(YT), ZT = O(n4/3ω(n)−1/2), N̂k(T, ω(n)1/2) =
Ω(ω(n)3·2k−2

) for all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞, R1(XT) = O(n4/3), I(XT) =
Ω(n), and similarly for YT .

The proof of Lemma 12 also uses our local limit theorem (Theorem 17).
The final step of our construction is a coupling of the activation of the components of

size less than Bω, so that exactly the same number of vertices are activated from each copy
in each step w.h.p.

▶ Lemma 13. Let ζ = q, q ∈ (1, 2) and suppose X0 and Y0 are random-cluster configurations
such that Sω(X0) = Sω(Y0), Z0 = O(n4/3ω(n)−1/2), and N̂k

(
0, ω(n)1/2)

= Ω(ω(n)3·2k−2
) for

all k ≥ 1 such that n2/3ω(n)−2k−1 → ∞. Suppose also that R1(X0) = O(n4/3), I(X0) = Ω(n)
and similarly for Y0. Then, there exist a coupling of the CM steps and a constant β > 0 such
that after T = O(log n) steps, XT and YT have the same component structure with probability
Ω

(
(log log log n)−β

)
.

We comment briefly on how we prove this lemma. Our starting point is two configurations
with the same “large” component structure; i.e., Sω(X0) = Sω(Y0). We use the maximal
matching W0 to couple the activation of the large components in X0 and Y0. The small
components not matched by W0, i.e., those counted in Z0, are then activated independently.
This creates a discrepancy D0 between the number of active vertices from each copy. Since
E[D0] = 0 and Var(D0) = Θ(Z0) = Θ(n4/3ω(n)−1/2), it follows from Hoeffding’s inequality
that D0 ≤ n2/3ω(n)−1/4 w.h.p. To fix this discrepancy, we use the small components matched
by W0. Specifically, under the assumptions in Lemma 13, we can construct a coupling of the
activation of the small components so that the difference in the number of activated vertices
from the small components from each copy is exactly D0 with probability Ω(1). This part of
the construction utilizes random walks over the integers; in particular, we use a lower bound
for the maximum of such a random walk.

We need to repeat this process until Zt = 0; this takes O(log n) steps since Zt ≈
(1 − 1/q)tZ0. However, there are a few complications. First, the initial assumptions on the
component structure of the configurations are not preserved for this many steps w.h.p., so
we need to relax the requirements as the process evolves. This is in turn possible because
the discrepancy Dt decreases with each step, which implies that the probability of success of
the coupling increases at each step.

A. Blanca, A. Sinclair, and X. Zhang 47:9

Proof of Lemma 10, 12 and 13 is provided in the full version of the present paper [7]. We
now indicate how these lemmas lead to a proof of Theorem 9 stated earlier.

Proof of Theorem 9. Suppose R1(X0) = O(n4/3) and R1(Y0) = O(n4/3). It follows from
Lemma 10, 11, 12 and 13 that there exists a coupling of the CM steps such that after
T = O(log n) steps, XT and YT could have the same component structure. This coupling
succeeds with probability at least

ρ = Ω(ω(n)−β1) · exp
(

− O(ω(n)9)
)

· exp
(

− O
(
(log ω(n))2))

· Ω
(
(log log log n)−β2

)
,

where β1, β2 > 0 are constants. Thus, ρ = Ω
(
(log log n)−1)

, since ω(n) = log log log log n. ◀

▶ Remark 14. We pause to mention that this delicate coupling for the activation of the
components is not required when ζ = q and q > 2. In that regime, the random-cluster model
is super-critical, so after the first O(log n) steps, the component structure is much simpler,
with exactly one large component. On the other hand, when ζ = q and q ∈ (1, 2] the model
is critical, which, combined with the fact mentioned earlier that the percolation sub-step
of the dynamics is also critical when ζ = q, makes the analysis of the CM dynamics in this
regime quite subtle.

2.3 Coupling to the same configuration
In the last phase of the coupling, suppose we start with two configurations X0, Y0 with the
same component structure. We are still required to bound the number of steps until the
same configuration is reached. The following lemma from [5] supplies the desired bound.

▶ Lemma 15 ([5], Lemma 24). Let q > 1, ζ > 0 and let X0, Y0 be two random-cluster
configurations with the same component structure. Then, there exists a coupling of the CM
steps such that after T = O(log n) steps, XT = YT w.h.p.

Combining the results for each of the phases of the coupling, we now prove Theorem 1.

Proof of Theorem 1. By Theorem 6, after t0 = O(log n) steps, with probability Ω(1), we
have R1(Xt0) = O(n4/3) and R1(Yt0) = O(n4/3). If this is the case, Theorem 9 and
Lemma 15 imply that there exists a coupling of the CM steps such that with probability
Ω

(
(log log n)−1)

after an additional t1 = O(log n) steps, Xt0+t1 = Yt0+t1 . Consequently, we
obtain that τCM

mix = O(log n · log log n) as claimed. ◀

▶ Remark 16. The probability of success in Theorem 9, which governs the lower order term
O(log log n) in our mixing time bound, is controlled by our choice of the function ω(n) for
the definition of “large components”. By choosing ω(n) that goes to ∞ more slowly, we could
improve our mixing time bound to O(log n · g(n)) where g(n) is any function that tends to
infinity arbitrarily slowly. However, it seems that new ideas are required to obtain a bound
of O(log n) (matching the known lower bound). In particular, the fact that ω(n) → ∞ is
crucially used in some of our proofs. Our specific choice of ω(n) yields the O(log n · log log n)
bound and makes our analysis cleaner.

3 Coupling to the same component structure: proof of Lemma 11

To prove Lemma 11, we use a local limit theorem to construct a two-step coupling of the CM
dynamics that reaches two configurations with the same large component structure. The
construction of Markov chain couplings using local limit theorems is not common (see [19] for
another example), but it appears to be a powerful technique that may have other interesting
applications. We provide next a brief introduction to local limit theorems.

APPROX/RANDOM 2021

47:10 The Critical Mean-Field Chayes-Machta Dynamics

3.1 Local limit theorem
Let c1 ≤ · · · ≤ cm be integers and for i = 1, . . . , m let Xi be the random variable that is equal
to ci with probability r ∈ (0, 1), and it is zero otherwise. Let us assume that X1, . . . , Xm are
independent random variables. Let Sm =

∑m
i=1 Xi, µm = E[Sm] and σ2

m = Var(Sm). We
say that a local limit theorem holds for Sm if for every integer a ∈ Z:

Pr[Sm = a] = 1√
2πσm

exp
(

− (a − µm)2

2σ2
m

)
+ o(σ−1

m). (3)

We prove, under some conditions, a local limit theorem that applies to the random
variables corresponding to the number of active vertices from small components. Recall that
for an increasing positive function g and each integer k ≥ 0, we defined the intervals

Ik(g) =
[

ϑn2/3

2g(n)2k ,
ϑn2/3

g(n)2k

]
,

where ϑ > 0 is a fixed large constant.

▶ Theorem 17. Let c1 ≤ · · · ≤ cm be integers, and suppose X1, ..., Xm are independent
random variables such that Xi is equal to ci with probability r ∈ (0, 1), and Xi is zero
otherwise. Let g : N → R be an increasing positive function such that g(m) → ∞ and
g(m) = o(log m). Suppose cm = O

(
m2/3g(m)−1)

,
∑m

i=1 c2
i = O

(
m4/3g(m)−1/2)

and ci = 1
for all i ≤ ρm, where ρ ∈ (0, 1) is independent of m. Let ℓ > 0 be the smallest integer such
that m2/3g(m)−2ℓ = o(m1/4). If for all 1 ≤ k ≤ ℓ, we have |{i : ci ∈ Ik(g)}| = Ω(g(m)3·2k−1),
then a local limit theorem holds for Sm =

∑m
i=1 Xi.

Theorem 17 follows from a general local limit theorem proved in [21]; a proof is given in
the full paper [7]. We next compile a number of (mostly standard) facts about the G(n, p)
random graph model which will be used in our proof of Lemma 11.

3.2 Random graphs estimates
We use G ∼ G(n, p) to denote a random graph G sampled from the standard G(n, p) model,
in which every edge appears independently with probability p. For a graph G, with a slight
abuse of notation, let Li(G) denote the size of the i-th largest connected component in G,
and let Ri(G) :=

∑
j≥i Lj(G)2; note that the same notation is used for the components of a

random-cluster configuration, but it will always be clear from context which case is meant.

▶ Lemma 18 ([19], Lemma 5.7). Let I(G) denote the number of isolated vertices in G. If
np = O(1), then there exists a constant C > 0 such that Pr[I(G) > Cn] = 1 − O(n−1).

▶ Lemma 19 ([2], Lemma 2.16). If np > 0, we have E [R2(G)] = O
(
n4/3)

.

▶ Lemma 20. Let G ∼ G
(
n, 1+ε

n

)
with ε = o(1). For any positive constant ρ ≤ 1/10, there

exist constants C ≥ 1 and c > 0 such that if ε3n ≥ C, then

Pr [|L1(G) − 2εn| > ρεn] = O(exp(−cε3n)).

For the next results, suppose that G ∼ G(n, 1+λn−1/3

n), where λ = λ(n) may depend on n.

▶ Lemma 21. If |λ| = O(1), then E [R1(G)] = O
(
n4/3)

.

All the random graph facts stated so far can be either found in the literature, or follow
directly from well-known results. The following lemmas are slightly more refined versions of
similar results in the literature.

A. Blanca, A. Sinclair, and X. Zhang 47:11

▶ Lemma 22. Suppose |λ| = O(h(n)) and let Bh = n2/3h(n)−1, where h : N → R is a
positive increasing function such that h(n) = o(log n). Then, for any α ∈ (0, 1) there exists a
constant C = C(α) > 0 such that, with probability at least α,∑

j:Lj(G)≤Bh

Lj(G)2 ≤ Cn4/3h(n)−1/2.

▶ Lemma 23. Let SB = {j : B ≤ Lj(G) ≤ 2B} and suppose there exists a positive increasing
function g such that g(n) → ∞, g(n) = o(n1/3), |λ| ≤ g(n) and B ≤ n2/3g(n)−2. If B → ∞,
then there exists constants δ1, δ2 > 0 independent of n such that

Pr
[
|SB | ≤ δ1n

B3/2

]
≤ δ2B3/2

n
.

Finally, the following corollary of Lemma 23 will also be useful. For a graph H, let
Nk(H, g) be the number of components of H whose sizes are in the interval Ik(g). We
note that with a slight abuse of notation, for a random-cluster configuration X, we also use
Nk(X, g) for the number of connected components of X in Ik(g).

▶ Lemma 24. Let m ∈ (n/2q, n] and let g be an increasing positive function that such that
g(n) = o(m1/3), g(n) → ∞ and |λ| ≤ g(m). If H ∼ G

(
m, 1+λm−1/3

m

)
, there exists a constant

b > 0 such that, with probability at least 1 − O
(
g(n)−3)

, Nk(H, g) ≥ bg(n)3·2k−1 for all k ≥ 1
such that n2/3g(n)−2k → ∞.

The proofs of Lemmas 20-24 are given in the full version of the paper [7].

3.3 Proof of Lemma 11
For a random-cluster configuration X, let A(X) denote the random variable corresponding
to the number of vertices activated by step (i) of the CM dynamics from X. We provide
next the proof of Lemma 11.

Proof of Lemma 11. First, both {Xt}, {Yt} perform one independent CM step from the
initial configurations X0, Y0. We start by establishing that X1 and Y1 preserve the structural
properties assumed for X0 and Y0.

By assumption R1(X0) = O(n4/3), so Hoeffding’s inequality implies that the number of
activated vertices from X0 is such that

A(X0) ∈ I :=
[
n/q − O(n2/3), n/q + O(n2/3)

]
with probability Ω(1). Then, the percolation step is distributed as a

G

(
A(X0), 1 + λA(X0)−1/3

A(X0)

)
random graph, with |λ| = O(1) with probability Ω(1). Conditioning on this event, from
Lemma 18 we obtain that I(X1) = Ω(n) w.h.p. Moreover, from Lemma 21 and Markov’s
inequality we obtain that R1(X1) = O(n4/3) with probability at least 99/100 and from
Lemma 22 that R̃ω(X1) = O(n4/3ω(n)−1/2) also with probability at least 99/100.

We show next that X1 and Y1, in addition to preserving the structural properties of
X0 and Y0, also have many connected components with sizes in certain carefully chosen
intervals. This fact will be crucial in the design of our coupling. When A(X0) ∈ I, by
Lemmas 23 and 24 and a union bound, for all integer k ≥ 0 such that n2/3ω(n)−2k → ∞,

APPROX/RANDOM 2021

47:12 The Critical Mean-Field Chayes-Machta Dynamics

Nk(X1, ω) = Ω(ω(n)3·2k−1) w.h.p. (Recall, that Nk(X1, ω) denotes the number of connected
components of X1 with sizes in the interval Ik(ω).) We will also require a bound for the
number of components with sizes in the interval

J =
[

cn2/3

ω(n)6 ,
2cn2/3

ω(n)6

]
,

where c > 0 is a constant such that J does not intersect any of the Ik(ω)’s intervals. Let WX

(resp., WY) be the set of components of X1 (resp., Y1) with sizes in the interval J . Lemma
23 then implies that for some positive constants δ1, δ2 independent of n,

Pr
[
|WX | ≥ δ1n

(ω(n)6

cn2/3

)3/2
]

≥ 1 − δ2

n

(cn2/3

ω(n)6

)3/2
= 1 − O(ω(n)−9).

All the bounds above apply also to the analogous quantities for Y1 with the same respective
probabilities. Therefore, by a union bound, all these properties hold simultaneously for
both X1 and Y1 with probability Ω(1). We assume that this is indeed the case and proceed
to describe the second step of the coupling, in which we shall use each of the established
properties for X1 and Y1.

Let CX and CY be the set of components in X1 and Y1, respectively, with sizes larger
than Bω. (Recall that Bω = n2/3ω(n)−1, where ω(n) = log log log log n.) Since R1(X1) =
O(n4/3), the total number of components in CX is O(ω(n)2); moreover, it follows from the
Cauchy–Schwarz inequality that the total number of vertices in the components in CX ,
denoted ∥CX∥, is O(n2/3ω(n)); the same holds for CY .

Without loss of generality, let us assume that ∥CX∥ ≥ ∥CY ∥. Let

Γ = {C ⊂ WY : ∥CY ∪ C∥ ≥ ∥CX∥},

and let Cmin = arg minC∈Γ ∥CY ∪C∥. In words, Cmin is the smallest subset C of components
of WY so that ∥CY ∪C∥ ≥ ∥CX∥. Since every component in WY has size at least cn2/3ω(n)−6

and |WY | = Ω(ω(n)9), the number of vertices in WY is Ω(n2/3ω(n)3) and so Γ ̸= ∅. In
addition, the number components in Cmin is O(ω(n)9). Let C ′

Y = CY ∪ Cmin and observe
that the number of components in C ′

Y is also O(ω(n)9) and that

0 ≤ ∥C ′
Y ∥ − ∥CX∥ ≤ 2cn2/3ω(n)−6.

Note that ∥CX∥ − ∥CY ∥ may be Ω(n2/3ω(n)) (i.e., much larger than ∥C ′
Y ∥ − ∥CX∥). Hence,

if all the components from CY and CX were activated, the difference in the number of active
vertices could be Ω(n2/3ω(n)). This difference cannot be corrected by our coupling for the
activation of the small components. We shall require instead that all the components from
C ′

Y and CX are activated so that the difference is O(n2/3ω(n)−6) instead.
We now describe a coupling of the activation sub-step for the second step of the CM

dynamics. As mentioned, our goal is to design a coupling in which the same number of
vertices are activated from each copy. If indeed A(X1) = A(Y1), then we can choose an
arbitrary bijective map φ between the activated vertices of X1 and the activated vertices of
Y1 and use φ to couple the percolation sub-step. Specifically, if u and v were activated in X1,
the state of the edges {u, v} in X2 and {φ(u), φ(v)} in Y2 would be the same. This yields a
coupling of the percolation sub-step such that X2 and Y2 agree on the subgraph update at
time 1.

Suppose then that in the second CM step all the components in CX and C ′
Y are activated

simultaneously. If this is the case, then the difference in the number of activated vertices
is d ≤ 2cn2/3ω(n)−6. We will use a local limit theorem (i.e., Theorem 17) to argue that

A. Blanca, A. Sinclair, and X. Zhang 47:13

there is a coupling of the activation of the remaining components in X1 and Y1 such that the
total number of active vertices in both copies is the same with probability Ω(1). Since all
the components in CX and C ′

Y are activated with probability exp(−O(ω(n)9)), the overall
success probability of the coupling will be exp(−O(ω(n)9)).

Now, let x1, x2, . . . , xm be the sizes of the components of X1 that are not in CX (in
increasing order). Let Â(X1) be the random variable corresponding to the number of active
vertices from these components. Observe that Â(X1) is the sum of m independent random
variables, where the j-th variable in the sum is equal to xj with probability 1/q, and it is 0
otherwise. We claim that sequence x1, x2, . . . , xm satisfies all the conditions in Theorem 17.

First, note that since the number of isolated vertices in X1 is Ω(n), m = Θ(n) and so
xm = O(m2/3ω(m)−1),

∑m
i=1 x2

i = R̃ω(X1) = O(m4/3ω(m)−1/2) and xi = 1 for all i ≤ ρm,
where ρ ∈ (0, 1) is independent of m. Moreover, since Nk(X1, ω) ≥ Ω(ω(n)3·2k−1) for all
k ≥ 1 such that n2/3ω(n)−2k → ∞,

|{i : xi ∈ Ik(ω)}| = Ω(ω(m)3·2k−1
).

Since N0(X1, ω) = Ω(ω(n)3/2), we also have∑m

i=1
x2

i ≥ N0(X1, ω) · ϑ2n4/3

4ω(n)2 = Ω(m4/3ω(m)−1/2).

Let µX = E[Â(X1)] = q−1 ∑m
i=1 xi and let

σ2
X = Var(Â(X1)) = q−1(1 − q−1)

m∑
i=1

x2
i = Θ(m4/3ω(m)−1/2).

Hence, Theorem 17 implies that Pr[Â(X1) = a] = Ω
(
σ−1

X

)
for any a ∈ [µX − σX , µX + σX].

Similarly, we get Pr[Â(Y1) = a] = Ω(σ−1
Y) for any a ∈ [µY − σY , µY + σY], with Â(Y1),

µY and σY defined analogously for Y1 \ C ′
Y . Note that µX − µY = O(n2/3ω(n)−6) and

σX , σY = Θ(n2/3ω(n)−1/4). Without loss of generality, suppose σX < σY . Then for any
a ∈ [µX − σX/2, µY + σX/2] and d = O(n2/3ω(n)−6), we have

min
{

Pr[Â(X1) = a], Pr[Â(Y1) = a − d]
}

= min
{

Ω(σ−1
X), Ω(σ−1

Y)
}

= Ω(σ−1
Y).

Hence, there exists a coupling P of Â(X1) and Â(Y1) so that P[Â(X1) = a, Â(Y1) = a − d] =
Ω(σ−1

Y) for all a ∈ [µX − σX/2, µY + σX/2]. Therefore, there is a coupling of Â(X1) and
Â(Y1) such that

Pr[Â(X1) − Â(Y1) = d] = Ω (σX/σY) = Ω(1).

Putting all these together, we deduce that A(X1) = A(Y1) with probability e−O(ω(n)9).
If this is the case, the edge re-sampling step is coupled bijectively (as described above) so
that Sω(X2) = Sω(Y2).

It remains for us to guarantee the additional desired structural properties of X2 and Y2,
which follow straightforwardly from the random graph estimates we stated at the beginning
of the section. First note that by Hoeffding’s inequality, with probability Ω(1),∣∣∣A(X1) − n

q
− (q − 1)|CX |

q

∣∣∣ = O(n2/3).

Hence, in the percolation sub-step the active subgraph is replaced by

F ∼ G

(
A(X1), 1 + λA(X1)−1/3

A(X1)

)
,

APPROX/RANDOM 2021

47:14 The Critical Mean-Field Chayes-Machta Dynamics

where |λ| = O(ω(n)) with probability Ω(1) since |CX | = O(n2/3ω(n)). Conditioning on this
event, since the components of F contribute to both X2 and Y2, Lemma 24 implies that w.h.p.
N̂k(2, ω(n)) = Ω(ω(n)3·2k−1) for all k ≥ 1 such that n2/3ω(n)−2k → ∞. Moreover, from
Lemma 18 we obtain that I(X2) = Ω(n) w.h.p. From Lemma 19 and Markov’s inequality,
we obtain that R2(X2) = O(n4/3) with probability at least 99/100 and from Lemma 22 that
R̃ω(X2) = O(n4/3ω(n)−1/2) also with probability at least 99/100. All these bounds apply
also to the analogous quantities for Y2 with the same respective probabilities.

Finally, we derive the bound for L1(X2) and L1(Y2). First, notice L1(F) is stochastically
dominated by L1(F ′), where

F ′ ∼ G
(

A(X1), 1 + |λ|A(X1)−1/3

A(X1)

)
.

Under the assumption that |λ| = O(ω(n)), if |λ| → ∞, then Lemma 20 implies that L1(F ′) =
O(|λ|A(X1)2/3) = O(n2/3ω(n)) w.h.p.; otherwise, |λ| = O(1) and by Lemma 21 and Markov’s
inequality, L1(F ′) = O(n2/3) with probability at least 99/100. Thus, L1(F) = O(n2/3ω(n))
with probability at least 99/100. We also know that the largest inactivated component in X1
has size less than n2/3ω(n)−1, so L1(X2) = O(n2/3ω(n)) with probability at least 99/100.
The same holds for Y2. Therefore, by a union bound, all these properties hold simultaneously
for both X2 and Y2 with probability Ω(1), as claimed. ◀

References
1 V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster

model is critical for q ≥ 1. Probability Theory and Related Fields, 153:511–542, 2012.
2 A. Blanca. Random-cluster dynamics. PhD thesis, UC Berkeley, 2016.
3 A. Blanca and R. Gheissari. Random-cluster dynamics on random regular graphs in tree

uniqueness. Communications in Mathematical Physics, 2021.
4 A. Blanca, R. Gheissari, and E. Vigoda. Random-cluster dynamics in Z2: rapid mixing with

general boundary conditions. Annals of Applied Probability, 30(1):418–459, 2020.
5 A. Blanca and A. Sinclair. Dynamics for the mean-field random-cluster model. Proceedings

of the 19th International Workshop on Randomization and Computation (RANDOM), pages
528–543, 2015.

6 A. Blanca and A. Sinclair. Random-Cluster Dynamics in Z2. Probability Theory and Related
Fields, 168:821–847, 2017.

7 Antonio Blanca, Alistair Sinclair, and Xusheng Zhang. The critical mean-field chayes-machta
dynamics, 2021. arXiv:2102.03004.

8 B. Bollobás, G.R. Grimmett, and S. Janson. The random-cluster model on the complete graph.
Probability Theory and Related Fields, 104(3):283–317, 1996.

9 L. Chayes and J. Machta. Graphical representations and cluster algorithms II. Physica A,
254:477–516, 1998.

10 H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. Discontinuity of
the phase transition for the planar random-cluster and Potts models with q > 4. Annales de
l’ENS, 2016. To Appear.

11 H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Continuity of the Phase Transition for
Planar Random-Cluster and Potts Models with 1≤q ≤4. Communications in Mathematical
Physics, 349(1):47–107, 2017.

12 C.M. Fortuin and P.W. Kasteleyn. On the random-cluster model I. Introduction and relation
to other models. Physica, 57(4):536–564, 1972.

13 A. Galanis, D. Štefankovič, and E. Vigoda. Swendsen-Wang algorithm on the mean-field Potts
model. Proceedings of the 19th International Workshop on Randomization and Computation
(RANDOM), pages 815–828, 2015.

http://arxiv.org/abs/2102.03004

A. Blanca, A. Sinclair, and X. Zhang 47:15

14 T. Garoni. Personal communication, 2015.
15 R. Gheissari and E. Lubetzky. Quasi-polynomial mixing of critical two-dimensional random

cluster models. Random Structures & Algorithms, 56(2):517–556, 2020.
16 R. Gheissari, E. Lubetzky, and Y. Peres. Exponentially slow mixing in the mean-field

Swendsen-Wang dynamics. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1981–1988. SIAM, 2018.

17 H. Guo and M. Jerrum. Random cluster dynamics for the Ising model is rapidly mixing.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1818–1827. SIAM, 2017.

18 D.A. Levin and Y. Peres. Markov Chains and Mixing Times. MBK. American Mathematical
Society, 2017. URL: https://books.google.com/books?id=f208DwAAQBAJ.

19 Y. Long, A. Nachmias, W. Ning, and Y. Peres. A power law of order 1/4 for critical mean-field
Swendsen-Wang dynamics. Memoirs of the American Mathematical Society, 232(1092), 2011.

20 Malwina Luczak and Tomasz Luczak. The phase transition in the cluster-scaled model of a
random graph. Random Structures & Algorithms, 28(2):215–246, 2006.

21 A.B. Mukhin. Local limit theorems for lattice random variables. Theory of Probability & Its
Applications, 36(4):698–713, 1992.

22 R.H. Swendsen and J.S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations.
Physical Review Letters, 58:86–88, 1987.

23 M. Ullrich. Swendsen-Wang is faster than single-bond dynamics. SIAM Journal on Discrete
Mathematics, 28(1):37–48, 2014.

APPROX/RANDOM 2021

https://books.google.com/books?id=f208DwAAQBAJ

On the Robust Communication Complexity of
Bipartite Matching
Sepehr Assadi # Ñ

Rutgers University, Piscataway, NJ, USA

Soheil Behnezhad # Ñ

University of Maryland, College Park, MD, USA

Abstract
We study the robust – à la Chakrabarti, Cormode, and McGregor [STOC’08] – communication
complexity of the maximum bipartite matching problem. The edges of an adversarially chosen
n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a
single message to Bob, using which Bob has to output an approximate maximum matching of G.
We are particularly interested in understanding the best approximation ratio possible by protocols
that use a near-optimal message size of n · polylog (n).

The communication complexity of bipartite matching in this setting under an adversarial
partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA’12]
gave a 2/3-approximate protocol with O(n) communication and showed that this approximation
is tight unless we allow more than a near-linear communication. The complexity of the robust
version, i.e., with a random partitioning of the edges, however remains wide open. The best known
protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP’21],
uses O(n log n) communication to obtain a (2/3 + ε0)-approximation for a constant ε0 ∼ 10−14. The
best known lower bound, on the other hand, leaves open the possibility of all the way up to even a
(1 − ε)-approximation using near-linear communication for constant ε > 0.

In this work, we give a new protocol with a significantly better approximation. Particularly,
our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is
based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying
graphs sampled from a known distribution. We then show how to lift the assumption on knowing
the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of
designing communication protocols and might find further applications.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Maximum Matching, Communication Complexity, Random-Order Streaming

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.48

Category RANDOM

Funding Sepehr Assadi: Research supported in part by the NSF CAREER award CCF-2047061 and
a gift from Google Research.
Soheil Behnezhad: Research supported by Google PhD Fellowship.

1 Introduction

Consider the following communication game. We have an n-vertex bipartite graph G =
(L, R, E) whose edges are partitioned into EA and EB given to Alice and Bob, respectively
(both players know L and R). The goal is to compute an approximate maximum matching
of G by Alice sending a single message to Bob and Bob outputting the solution. What is
the tradeoff between the size of Alice’s message and the approximation ratio of the output
matching, or in other words, the one-way communication complexity of bipartite matching?

© Sepehr Assadi and Soheil Behnezhad;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 48; pp. 48:1–48:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
https://www.cs.rutgers.edu/~sa1497/
mailto:soheil.behnezhad@gmail.com
http://behnezhad.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 On the Robust Communication Complexity of Bipartite Matching

It is known that Ω(n2) communication is necessary for finding a maximum matching [23]
and this is clearly sufficient by Alice sending her entire input. But the situation is more
interesting for approximate protocols. A 1/2-approximation with O(n) communication
can be obtained by Alice sending a maximum matching of her input to Bob and Ω(n)
communication is clearly needed for any constant factor approximation. More interestingly,
Goel, Kapralov, and Khanna [25] showed that O(n) communication even suffices to obtain a
2/3-approximation and that this is the “right” answer: any better approximation requires
n1+Ω(1/log log n) ≫ n · polylog(n) communication.

In this paper, we study a robust variant of this problem – à la Chakrabarti, Cormode,
and McGregor [18] – wherein the graph G is still chosen adversarially, but now its edges are
instead randomly partitioned between the two players, i.e., each edge is independently given
to one of the players chosen uniformly at random. This model of random partitioning was
introduced in [18] to go beyond the “doubly worst case” analysis of communication games,
namely, adversarial inputs and adversarial partitions, and sheds more light into the source
of hardness: whether it is due to a pathological partitioning of inputs or rather it holds for
most input partitions.

Our main result is a substantial improvement over the 2/3-approximations for adversarial
partitions [25] under this random partition model.

▶ Result 1 (Formalized in Theorem 17). There is a randomized one-way protocol with
O(n) communication that achieves an expected 0.716-approximation for the bipartite
matching problem under a random partitioning of the input edges between Alice and Bob.

Prior to our work, the best known approximation ratio achievable for this problem was
(2/3+ε0) for some ε0 ∼ 10−14, obtained via the very recent random-order streaming algorithm
of the same authors of this paper in [2].

We note that our protocol in this result can be considered non-explicit: we show the
existence of the protocol rather than explicitly designing the protocol itself (see Section 1.1
for details). Alternatively, the protocol can be found also via a brute-force search in doubly
exponential time.

1.1 Our Techniques
The 2/3-approximation protocol of [25] (and follow-ups in [3] that simplified it or [37] that
extended it to the online batch-arrival model) are all based on finding a suitable subgraph of
Alice’s input that preserves large matchings approximately, namely, a matching sparsifier
(similar-in-spirit to cut sparsifiers [13,14]). These subgraphs are defined through a series of
graph-theoretic constraints: a novel decomposition into expanding sets (matching skeleton)
in [25,37] (see also [33]), and edge-degree bounded subgraphs in [3] (defined first in [16,17]
for dynamic graph algorithms). We take an entirely different approach in this paper.

The first step of our approach is a way of introducing distributional assumptions about
the input, while still solving the problem in its full generality. In particular, in this step, we
reduce the general problem to the case that the input graph G is sampled from some arbitrary
but known distribution G of graphs. We achieve this via combining several relatively standard
ideas specific to the matching problem with an application of Yao’s minimax principle [41]
(the so-called “hard direction” of this principle; see Section 5). This is the main conceptual
step of our approach.

The second step is to design a protocol for the problem assuming that it is additionally
given an input distribution G of the input graph. We achieve this through a new notion of
“distribution-dependent sparsifiers” described below. This is our main technical step.

S. Assadi and S. Behnezhad 48:3

Distribution-dependent sparsifiers. Distribution-dependent sparsifiers can be used whenever
we know a distribution G for inputs of Alice and Bob. In particular, the knowledge of G allows
us to determine the “importance” of each edge in Alice’s input EA: this is the probability that
this particular edge belongs to a fixed maximum matching (say, the lexicographically-first
maximum matching) of a graph sampled from G | EA, i.e., input graphs after conditioning
on Alice’s input. The main part of our argument is to show that these importances can be
used to sparsify the Alice’s graph to O(n) edges, while allowing Bob to find a large matching
of the entire graph in expectation.

For our analysis of these sparsifiers, we need to show that the edges T communicated
by Alice and the edges EB given to Bob combined, include a large matching. We do so by
constructing a large fractional matching x on the edges in T ∪ EB . Our construction of x is
online, in the sense that we decide on the value of x induced on T before sampling Bob’s
subgraph EB from G | EA. Thanks to the fact that Alice picks the edges of T according to
their importance, we can construct x on T such that the fractional value around each vertex
v is equal to the probability that v is matched in the optimum solution via an edge given to
Alice. This is particularly useful because it implies that (i) the size of x induced on T equals
the expected number of edges of Alice in an optimum matching, and that (ii) if a vertex
is unlikely to be matched via an edge of Alice in the optimum solution, then the fractional
matching x induced on T does not occupy this vertex by much, leaving room for the rest of
the edges in EB to use it.

As a warm-up in Section 3, we show how the ideas above lead to a very simple 0.656-
approximate protocol under an adversarial partitioning of the input. This is only slightly
worse than the optimal 2/3-approximation for this problem, but more importantly, this
warm-up conveys the key intuitions behind distribution-dependent sparsifiers and how they
are extremely useful for matching in the communication setting. The protocol for our
0.716-approximation in Section 4 for the robust communication model is very similar, but
its analysis is more involved and in particular is based on a careful examination of edge
importance distributions under a random partitioning.

1.2 Further Aspects of Our Results
Random-order streams. The one-way communication model in general is strongly motivated
by applications to graph streaming algorithms [23]. The robust communication model, in the
same vain, is closely related to random-order streaming algorithms wherein the edges of the
graph arrive in a random order. In particular, lower bounds in the (robust) communication
model directly imply space lower bounds in the (random-order) streaming model [18] and
upper bounds are sources of inspiration and stepping stones for designing streaming algorithms
(see, e.g., [1,25,31] for instances of communication protocols that were turned into streaming
algorithms in the context of the matching problem).

Maximum matchings have been studied extensively in random-order streams [1, 2, 15, 22,
24, 34, 35], leading to a 2/3-approximation algorithm of [15] that hit a natural barrier for this
problem, and the recent algorithm of [2] that improved this approximation to strictly more
than 2/3 (for a tiny constant improvement). We hope our ideas in this paper can lead to a
significantly-better-than-2/3 approximation in random-order streams.

We remark that [2] proves the following robust communication lower bound (and thus a
random-order streaming lower bound also): any (1 − Θ(1/log n))-approximation to maximum
matching in the robust communication model requires n1+Ω(1/log log n) ≫ n · polylog(n) com-
munication. Closing the gap between our upper bound and the lower bound of [2] remains a
fascinating open question. Finally, we note that our improved protocol also has the following

APPROX/RANDOM 2021

48:4 On the Robust Communication Complexity of Bipartite Matching

message: either one should be able to achieve a significantly-better-than-2/3 approximation
(say, a 0.716-approximation) in random-order streams, or any lower bound technique for prov-
ing impossibility of such a result should deviate from the standard two-party communication
complexity lower bound approach.

Non-explicit protocols. As remarked earlier, the protocol in our main result can be con-
sidered non-explicit. Alternatively, the players may need to first spend a doubly-exponential
time to find the protocol, and only then they can use it to solve the problem (this is due
to the arguments in the first step of our approach and in particular using Yao’s minimax
principle). From an algorithmic perspective, this is a weakness of our particular method of
protocol design. On the other hand, we find our method particularly strong and insightful
from a communication complexity point of view as we shall elaborate below.

Firstly, communication complexity is a non-uniform model of computation with players
of unbounded computational power, and the only resource of interest is the communication
cost of protocols. In this regard, our protocol uses the “full power” of this model to achieve
its approximation ratio using the optimal O(n) communication.

Secondly, and more importantly, there is a general gap in the study of communication
complexity of graph problems: almost all protocols designed in the literature are based on
algorithmic tools that are tailored to time-efficient protocols, while all known lower bounds are
information-theoretic and hold even for protocols with computationally unbounded players.
Can this inconsistent treatment be a contributing factor to the substantial gaps between known
upper and lower bounds for various problems, including the robust communication complexity
of bipartite matching? If so, then our approach in this paper allows us to explore a wider set
of natural protocols for the problems at hand and move toward achieving tight(er) bounds
on communication complexity. This will in turn suggest that purely information-theoretic
complexity lower bounds cannot prove “strong enough” lower bounds for computationally-
efficient algorithms as well. We leave the question of proving communication lower bounds
for computationally-efficient protocols, which is the dual approach to our work in this paper,
as a very interesting research direction for future work.

1.3 Further Related Work
The communication complexity of bipartite matching has been extensively studied from
various angles including exact protocols [21,27,30], non-deterministic protocols [40], protocols
with limited rounds of communication [3,5,23,25,26], or multi-party protocols [6,26,29,32,33]
to name a few (this is by no means a comprehensive summary of previous results).

The one-way communication complexity of matching, in particular, is directly related
to streaming algorithms. In fact, a key motivation in the work of Goel, Kapralov, and
Khanna [25] was to determine whether there is a better-than-1/2-approximation algorithm
for the matching problem in the streaming model that uses Õ(n) space, a longstanding open
problem in this area. The lower bound in [25] implies that there is no semi-streaming algorithm
with approximation ratio better than 2/3; this lower bound was later improved by Kapralov
to a 1 − 1/e ≈ 0.63 in [31] and to 1

1+ln 2 ≈ 0.59 in [32]. Additionally, the communication
protocols in [25] were also generalized in the same paper to achieve a (1 − 1/e)-approximation
in vertex-arrival streams.

Finally, we should point out that the work of [25] on the one-way communication
complexity of bipartite matching has been quite instrumental and paved the path for various
follow-ups including optimal algorithms for vertex-arrival streaming model [25, 31], state-
of-the-art lower bounds for streaming matching in both insertion-only streams [31,32] and

S. Assadi and S. Behnezhad 48:5

dynamic streams [6, 20], online batch-arrival algorithms [37] and fault-tolerant algorithms [3]
for maximum matching, stochastic matching problem [3, 4, 10, 11], and using RS graphs
for proving communication lower bounds for other problems such as matrix rank [5, 9],
independent sets [7, 19], and reachability [8].

2 Preliminaries

Notation. For any graph G, we use n to denote the number of vertices and µ(G) to denote
the maximum matching size. A fractional matching x on a graph G is an assignment
of values xe to the edges e of G such that xe ≥ 0 for all edges e and for each vertex v,
xv :=

∑
e∋v xe ≤ 1. We use |x| as a shorthand for

∑
e xe which is the size of fractional

matching x.
The following standard fact implies that to show a bipartite graph has an integral matching

of size µ, it suffices to construct a fractional matching of size µ on it.

▶ Fact 1. Let x be a fractional matching of a bipartite graph G. Then G has an integral
matching of size at least |x|.

Communication model. We study the standard two-party communication model of Yao [42]
and in particular in the one-way model (see the excellent textbook by Kushilevitz and
Nisan [36]). The only slight derivation is that we focus on randomly partitioned inputs,
wherein the input graph is still chosen adversarially, but every edge in the graph is sent to
one of the players chosen independently and uniformly at random. To our knowledge, this
model was first introduced by Chakrabarti, Cormode, and McGregor in [18].

Unless specified otherwise, we assume that protocols are randomized and both players
have access to the same shared source of randomness, referred to as public coins; however,
one can always use Newman’s theorem [39] to turn public coins into private coins with a
negligible overhead. The communication cost of any protocol in this model is the worst-case
length of the communicated messages; to be consistent with prior work on this problem
in [3, 25,31, 33], we measure the length of messages in Θ(log n)-bit words as opposed to the
more standard convention of bits. Finally, we note that the main resource of interest in this
model is the communication and the players are assumed to be computationally unbounded.

3 Warm-up: A 0.656-Approximation Under Adversarial Partitions

In this section, we describe a one-way protocol for the bipartite matching problem and prove
that it achieves an approximation factor of (4

√
2−5) ≈ 0.656 under an adversarial partitioning

of the edges. While this protocol is slightly worse than the optimal 2/3-approximate protocols
in [3, 25] and its analysis shares some similarity with [12], we believe it is still instructive as
it acts as a gentle introduction to the ideas used in our main protocol of Section 4.

A key technique introduced in this work is the notion of distribution-dependent
sparsifiers. For now, let us assume that there is a known distribution G from which the
inputs EA and EB of Alice and Bob are sampled. Now, suppose Alice has received EA as
input and plans to send a message to Bob. In order to do this, Alice considers the distribution
of inputs conditioned on her input, i.e., G | EA. The message sent by Alice is then a subgraph
of her input (the sparsifier), wherein each edge is included depending on the probability that
this edge belongs to a fixed maximum matching of a graph sampled from G | EA.

Finally, we can lift the assumption on the knowledge of G using minimax theorems:
distribution-dependent sparsifiers give us a deterministic protocol for each distribution of

APPROX/RANDOM 2021

48:6 On the Robust Communication Complexity of Bipartite Matching

inputs with approximation ratio at least α for every distribution; thus, there should also
exist a single randomized protocol that achieves the same α-approximation for all inputs.
See Section 5 for this argument1.

3.1 The Protocol
We now describe our new distribution-dependent protocol. For the rest of this proof, we
assume that Alice and Bob are given the distribution of inputs G. For each edge e ∈ EA, we
define:

ae := Pr
G∼G

[e ∈ MM(G) | EA], (1)

where function MM(·) deterministically returns a fixed maximum matching of its input
(for instance, the lexicographically-first one, or the one returned by the Hopcroft-Karp
algorithm [28]). In words, ae is the probability that e belongs to a fixed maximum matching
of a graph G sampled from G conditioned on the input EA given to Alice. We are going to
treat ae as the “importance” of edge e in EA. Observe that since Alice is aware of G, she
can compute ae for each edge e ∈ EA.

Fractional matching interpretation. Consider the vector a := {ae}e∈EA . We claim that a
is a feasible fractional matching of EA: (i) for every edge e ∈ EA, we have ae ≥ 0 as ae is a
probability, and (ii) for all vertices v, av :=

∑
e∋v ae ≤ 1 as it can be confirmed that:

av = Pr
G∼G

[v matched in MM(G) by edges of EA | EA]. (2)

This view of a presents a natural way of sparsifying Alice’s input. Basically, we can sparsify
the support of a via the standard cycle-canceling method (see Lemma 2 below) so that
instead of (possibly up to) Ω(n2) edges, it will only have O(n) edges while still preserving
the fractional matching of each vertex (but not necessarily the edges). This allows us to
obtain another fractional matching a′ that preserves key properties of a but is much sparser
and thus Alice can simply send this fractional matching directly to Bob.

▶ Lemma 2 (Cycle-Canceling Lemma – Folklore). Let f be any fractional matching of EA.
There is another fractional matching f ′ on EA such that:

Sparsification property: There are at most n − 1 edges e in EA with f ′
e > 0.

Preserving marginals and size: For every vertex v, f ′
v = fv, also implying |f ′| = |f |.

Proof. Iteratively take a cycle in the support of f , then alternately decrease and increase
the value of edges in a way that the minimum value edge gets value zero. Since all cycles are
even-length, the fractional matching around each vertices remains unchanged throughout the
process. Once there are no more cycles, the remaining fractional matching is a forest with at
most n − 1 edges. ◀

We can now formalize the protocol as follows.
By Lemma 2 this protocol requires O(n) communication (in fact, only n − 1 edges). Thus,

it only remains to analyze the approximation ratio of Algorithm 1 in the following.

1 There is an important subtlety here: distribution-dependent sparsifiers approximate the matching in
expectation over the choice of graphs in the distribution; in other words, the output matching is close
to the optimal matching in expectation. To apply Yao’s minimax principle however, one needs an
instance-wise approximation for the input graph. Thus, the argument in this part is not a black-box
application of minimax theorems.

S. Assadi and S. Behnezhad 48:7

Algorithm 1 A simple distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA using
Eq (1); as discussed above, a is a valid fractional matching of EA.

(ii) Alice obtains fractional matching a′ by running cycle canceling on a (Lemma 2)
and then sends the edges T in the support of a′ to Bob.

(iii) Bob, given message T from Alice and input EB , returns a maximum matching of
EB ∪ T .

▶ Proposition 3. For any input distribution G on adversarial partitions, Algorithm 1 achieves
a 4

√
2 − 5 ≈ 0.6568 approximation in expectation and uses O(n) communication.

We prove this proposition in the next section.

3.2 The Analysis: Proof of Proposition 3
Recall that T is the support of the fractional matching a′ that Alice sends to Bob. For the
analysis, we only need to show that T ∪ EB includes a large fractional matching (by Fact 1).
To do so, we construct a fractional matching x supported on T ∪ EB in the following way:

xe =
{

a′
e if e ∈ T ,

1 − max{a′
u, a′

v} if e = (u, v) ∈ MM(G) ∩ EB
. (3)

Intuitively, once the subgraph EA is given to Alice, we immediately commit her fractional
matching a′ to the final fractional matching x. Then, after the subgraph EB of Bob is
revealed, on any edge e = (u, v) ∈ MM(G) ∩ EB, we set xe = 1 − max{a′

u, a′
v} which is

the largest possible fractional value that does not violate its endpoints’ fractional matching
constraints due to a′.

In what follows, for any choice of EA, we lower-bound the ratio E[|x| | EA] to E[µ(G) |
EA] which implies the approximation ratio of our protocol. We emphasize that x is only
constructed for the analysis and in the protocol, Bob simply returns a maximum matching
of T ∪ EB .

Consider a maximum matching edge uv which belongs to the input of Bob, i.e. uv ∈
MM(G) ∩ EB and suppose that a′

v > a′
u. Observe that in x, we set xuv = 1 − max{a′

u, a′
v} =

1 − a′
v. In this case, we say that vertex v is responsible for edge uv. Based on this, we define2:

bv := Pr[∃uv ∈ MM(G) ∩ EB such that a′
v > a′

u | EA], (4)

i.e., bv is the probability that v is responsible for some edge. We first bound the size of
MM(G) based on the values av and bv.

▷ Claim 4. E[µ(G) | EA] =
∑

v
1
2 av + bv.

Proof. We claim that,
(i) E[|MM(G) ∩ EA| | EA] = 1

2
∑

v av: by the definition of av in Eq (2) and the fact that
the number of vertices matched in any matching is twice the size of the matching;

(ii) E[|MM(G) ∩ EB | | EA] =
∑

v bv: since each responsible vertex has an edge in MM(G) ∩
EB and for each such edge, exactly one of its neighbors is responsible.

The claim now follows by adding up the two equations above. ◁

2 In case of ties, we break ties arbitrarily so that only one vertex is responsible for an edge.

APPROX/RANDOM 2021

48:8 On the Robust Communication Complexity of Bipartite Matching

We now also bound the size of x based on av and bv values.

▷ Claim 5. For any vertex v, define gv := 1
2 av + (1 − av)bv. Then, E[|x| | EA] =

∑
v gv.

Proof. By definition,∑
v

gv =
∑

v

(1
2 av + (1 − av)bv) = |a| +

∑
v

(1 − av)bv.

The first term |a| in the sum corresponds to the part of fractional matching x constructed
on the edges T sent by Alice, using the fractional matching a′, where we have |a′| = |a|
by Lemma 2.

It thus remains to prove that contribution of x on the remaining edges (i.e. those given
to Bob in MM(G) ∩ EB), has expected size

∑
v(1 − av)bv. This follows from the fact that

each vertex v is responsible for some edge uv ∈ MM(G) ∩ EB with probability bv by Eq (4),
and that when this happens, we set xuv = 1 − a′

v = 1 − av (as a′
v = av for all v by Lemma 2).

Noting that exactly one of the endpoints of each edge e ∈ MM(G) ∩ EB is responsible for
it, we get that x on the set of edges given to Bob has expected size exactly

∑
v(1 − av)bv,

completing the proof. ◁

Claims 4 and 5 imply that the approximation factor of Algorithm 1 is

E[|x| | EA]
E[µ(G) | EA] =

∑
v gv∑

v
1
2 av + bv

. (5)

To lower bound this ratio, we use Fact 6 below.3

▶ Fact 6. For all a, b ≥ 0 satisfying a + b ≤ 1, it holds that 0.5a+(1−a)b
0.5a+b ≥ 4

√
2 − 5.

Now to use Fact 6 to lower bound the approximation factor, first recall that for each
vertex v, by the definition of av and bv in Eq (2) and (4), we have,

av + bv ≤ Pr[v is matched in MM(G) ∩ EA | EA] + Pr[v is matched in MM(G) ∩ EB | EA]

= Pr[v is matched in MM(G) | EA] ≤ 1.

Thus, we can apply Fact 6 and get that for each vertex v, gv

0.5av+bv
= 0.5av+(1−av)bv

0.5av+bv
≥ 4

√
2−5.

This implies that

E[|x| | EA]
E[µ(G) | EA]

(5)=
∑

v gv∑
v

1
2 av + bv

≥
∑

v(4
√

2 − 5)(1
2 av + bv)∑

v
1
2 av + bv

= 4
√

2 − 5,

which proves Proposition 3 that Algorithm 1 achieves a (4
√

2 − 5)-approximation.

▶ Remark 7. There are distributions for which the inequality above is actually equality.
That is, we have E[|x| | EA] = (4

√
2 − 5)E[µ(G) | EA]. Therefore, this analysis based on

the construction of fractional matching x cannot show an approximation factor better than
(4

√
2 − 5) for this protocol.
That being said, by “scaling” the fractional matching a of Alice before sparsifying it, one

can in fact achieve a (2/3)-approximation which is optimal for adversarial partitions with
O(n) communication [25]. We use this scaling idea in our protocol in Section 4.

3 Mathematica can verify Fact 6; see e.g., this page on WolframAlpha.

https://www.wolframalpha.com/input/?i=Minimize%5B%7B%280.5a+%2B+%281-a%29*b%29%2F%280.5a+%2B+b%29%2C+0+%3C%3D+a%2C+0+%3C%3D+b%2C++a%2Bb+%3C%3D+1%7D%2C+%7Ba%2C+b%7D%5D

S. Assadi and S. Behnezhad 48:9

4 A 0.7167-Approximation Under Random Partitions

In this section, we show that a properly “scaled” variant of our distribution-dependent sparsi-
fier of Section 3 – formalized as Algorithm 2 – achieves a significantly better approximation
factor of 0.7167 in expectation, under a random partitioning of the edges between the players.

▶ Theorem 8. There is a deterministic one-way protocol that given any arbitrary but known
distribution G of input graphs, and a graph G sampled from G partitioned randomly between
Alice and Bob, outputs a matching M(G) in G such that E |M(G)| ≥ 0.7167 · E[µ(G)]. The
protocol requires communicating at most n − 1 edges from Alice to Bob.

4.1 The Protocol
Recall from our Algorithm 1 in Section 3 that Alice, given her subgraph EA, first defines a
fractional matching a on EA where for each edge e ∈ EA, ae = PrG∼G [e ∈ MM(G) | EA],
and then applies cycle canceling on a and sends the support of the resulting fractional
matching a′ to Bob. Our protocol in this section is very similar, except that instead of
applying cycle-canceling on a, we first “scale” a to obtain another fractional matching z and
then send the support of cycle-canceled version z′ of z to Bob. To be more precise about
what we mean by scaling a, let us define:

h(x, y) := min
{

3
2 ,

1
x

,
1
y

}
. (6)

Now for each edge e = (u, v) ∈ EA we define

ze := h(av, au) · ae. (7)

Noting that a is a fractional matching, we get that av ≤ 1, au ≤ 1, which implies h(au, av) ≥ 1
and thus ze ≥ ae. This means that indeed z = {ze}e∈EA is entry-wise larger than a. But
can this scaling violate fractional matching constraints, i.e., for some v, zv :=

∑
e∋v ze > 1?

As a simple consequence of our definition of function h, it turns out that indeed z is still a
fractional matching.

▶ Observation 9. Let z be obtained as above, then z is a fractional matching of EA.

Proof. It is clear that z ≥ 0 since ze ≥ ae ≥ 0 for each edge e. To see why zv ≤ 1 for all
v, observe that for each edge e = (u, v), ze = h(au, av)ae ≤ 1

av
ae; hence zv ≤ 1

av

∑
e∋v ae =

av/av = 1. ◀

Note that the proof of Observation 9 only uses h(x, y) ≤ min{ 1
x , 1

y }. The reason that we
defined h to be min{ 3

2 , 1
x , 1

y } will be apparent later when analyzing the approximation.
Our scaled protocol can thus be formalized as follows.
Since the support of z′ has n − 1 edges, Algorithm 2 only requires communicating n − 1

edges. It thus only remains to analyze its approximation ratio.

4.2 The Analysis of Algorithm 2
As in Section 3, to analyze the size of matching MM(T ∪ EB) reported by Bob, we construct
a large fractional matching x on T ∪ EB and then use the fact that the maximum matching
of this graph is at least as large as any fractional matching on it. Our construction of this
fractional matching x is also in fact the same as our construction in Section 3 with the

APPROX/RANDOM 2021

48:10 On the Robust Communication Complexity of Bipartite Matching

Algorithm 2 A scaled distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA

using Eq (1).
(ii) Alice then constructs z = {ze}e∈EA using Eq (7); by Observation 9 z is a valid

fractional matching of EA.
(iii) Alice obtains a fractional matching z′ by running cycle canceling on z (Lemma 2)

and then sends the edges T in the support of z′ to Bob.
(iv) Bob, given message T from Alice and input EB , returns a maximum matching of

T ∪ EB .

difference that we first commit the sparsified version z′ of the scaled fractional matching z to
x. More formally, we have:

xe :=
{

z′
e if e ∈ T ,

1 − max{z′
u, z′

v} if e = (u, v) ∈ MM(G) ∩ EB
.

To analyze the size of x, we need a few definitions. Definition 11 below for bv is equivalent
to the definition of bv in Section 3, but instead of vector a, for each edge e ∈ MM(G) ∩ EB

the vertex with higher z is made responsible. To be more formal and to avoid ties (for pairs
of vertices with zu = zv) we first define an ordering over the vertices in Definition 10 below
and then define bv.

▶ Definition 10. Based on fractional matching z, we define a total ordering over the vertex
set V as follows. For any pair of vertices u and v with zu ≠ zv, we say v ≻ u if zv > zu. For
pairs u, v with zv = zu we break the tie arbitrarily; say v ≻ u if the ID of v is larger than u.

▶ Definition 11. For each vertex v, define bv := Pr[∃u : uv ∈ MM(G)∩EB and v ≻ u | EA].

Based on this definition of bv and similar to Claim 4 of Section 3, we get that:

▷ Claim 12. E[µ(G) | EA] =
∑

v
1
2 av + bv.

Proof. Follows from the same argument in the proof of Claim 4. ◁

The next step is where we start to substantially deviate from the analysis of Section 3.
We first give an informal explanation of why a different approach might be needed to analyze
Algorithm 2 (the reader may choose to skip this informal explanation and jump to the new
analysis after). After that, we formally describe our actual analysis which is based on a
notion of “contribution sharing”.

Informal explanation: why a different analysis is needed. In Claim 5 of Section 3 we
showed E[|x| | EA] =

∑
v

1
2 av +(1−av)bv, implying intuitively that each vertex v contributes

an expected size of gv = 1
2 av + (1 − av)bv to x. We then proved the claimed approximation

ratio by comparing this contribution gv of each vertex v with 1
2 av + bv, which can be thought

of as the portion of the benchmark E[µ(G) | EA] =
∑

v
1
2 av + bv charged to vertex v.

A straightforward generalization of this framework for analyzing Algorithm 2 would
be as follows: It is not hard to see that E[|x| | EA] =

∑
v

1
2 zv + (1 − zv)bv (the proof

follows from a similar argument to Claim 5); thus it suffices to show that the contribution
gv = 1

2 zv +(1−zv)bv of each vertex is large compared to the portion 1
2 av + bv of the optimum

charged to this vertex. The problem with this type of argument, however, is that it is hard

S. Assadi and S. Behnezhad 48:11

to measure exactly how the scaling part of Algorithm 2 is useful. In particular, take a vertex
v and suppose that for every neighbor u of v in EA, it holds that au = 1. This way, for each
edge e = (v, u) ∈ EA we would have h(av, au) = 1 and thus ze = h(av, au)ae = ae. That is,
the edges of vertex v are in fact not scaled at all. This would mean that zv = av and thus
gv = 1

2 zv + (1 − zv)bv = 1
2 av + (1 − av)bv, which is not any different from the guarantee we

would get for vertex v without any scaling.
The issue discussed above intuitively implies that in defining the contribution gv of each

vertex, not only we should take into account the values of zv and bv, but that in fact the
values of au for neighbors u of v are also important. Motivated by this, we define gv such
that intuitively we share the contribution of each vertex with its neighbors. That is, each
vertex passes a portion of its contribution to its neighbors, and as a result also receives
a portion of the contribution of them. This dynamic allows us to argue that scaling does
indeed help our protocol.

The formal analysis via “contribution sharing”. Consider function ℓ(x) defined as

ℓ(x) := max
{

x − 2/3

6 , 0
}

. (8)

This function ℓ is the sharing function and the reason that is defined this way will be apparent
later in the analysis. For each vertex v, define

gv := 1
2zv + (1 − zv)bv − ℓ(av)av +

∑
u

ℓ(au)auv. (9)

The following lemma whose proof is deferred to the full version, states that the expected
size of fractional matching x conditioned on EA, is equal to

∑
gv. Therefore, intuitively, we

can think of gv as the amount that vertex v contributes to the size of x in expectation.4

▶ Lemma 13. E
[
|x| | EA

]
=

∑
v gv.

To show that x tends to be large, Lemma 13 above implies that it suffices to show gv is
large. The next definition and the lemma that follows it are used for this purpose.

▶ Definition 14. Let a, b ∈ [0, 1]. We define:

f(a, b, x) := b +
((1

2 − b
)
h(a, x) + ℓ(x) − ℓ(a)

)
· a and f(a, b) := min

x∈[0,1]
f(a, b, x),

▶ Lemma 15. For any vertex v, it holds that gv ≥ f(av, bv).

The proof of Lemma 15 is also deferred to the full version due to space constraints. This
lower bound is particularly useful since f(av, bv) only depends on the values of av and bv,
whereas gv also depends on au of neighbors u of v. Having this, if we in fact prove that
f(av, bv) ≥ α(1

2 av + bv) for all v, then we get that Algorithm 2 achieves an approximation
ratio of at least α since

E[|x| | EA]
E[µ(G) | EA]

Claim 12, Lemma 13=
∑

v
gv∑

v
1
2 av + bv

Lemma 15
≥

∑
v

f(av, bv)∑
v

1
2 av + bv

≥
∑

v
α(1

2 av + bv)∑
v

1
2 av + bv

≥ α.

4 We note that in fact Lemma 13 holds for any possible definition of function ℓ. That is, in the proof of
Lemma 13, we do not use the value of ℓ(x) defined in Eq (8).

APPROX/RANDOM 2021

48:12 On the Robust Communication Complexity of Bipartite Matching

Note that up to this point of the analysis, we have not used the fact that the edges
are partitioned randomly between Alice and Bob. Therefore, in light of the lower bound
of [25] which proves achieving a better-than-(2/3)-approximation for requires n1+Ω(1/log log n)

communication, we get that Algorithm 2 cannot achieve a better-than-(2/3)-approximation
under an adversarial partitioning of the input graph. As a result, there should be a choice of
av, bv such that f(av, bv) ≤ 2

3 (1
2 av + bv). Indeed one can confirm that for av = 1

2 and bv = 1
2 ,

f(1
2 , 1

2) = f(1
2 , 1

2 , 0) = 0.5 = 2
3 (1

2 av + bv).

How random partitioning helps. Our main insight in bypassing the 2/3-barrier highlighted
above is that for an average vertex v, it cannot always occur that av = bv = 1

2 under a
random partitioning. Formally, for a vertex u chosen uniformly at random from V ,

Eu∼V [au] = 1
n

∑
v

E[av] = 2
n

E|a| = 2
n

E|MM(G) ∩ EA| (⋆)= 2
n

· E[µ(G)]
2 = 1

n
E[µ(G)],

Eu∼V [bu] = 1
n

∑
v

E[bv] Definition 11= 1
n

E|MM(G) ∩ EB | (⋆)= 1
n

· E[µ(G)]
2 = 1

2n
E[µ(G)],

where the equalities marked with (⋆) use the fact that each edge is given to Alice/Bob with
probability 1/2. This implies that E[au] = 2E[bu] which formalizes our earlier claim that
au = bu = 1

2 cannot always happen for an average vertex u.
To turn the intuition above into an actual analysis of the approximation factor for

Algorithm 2 under a random partitioning, we write a factor revealing program formalized
as Program 1. We prove that the solution to Program 1 is indeed a lower bound for the
approximation ratio of Algorithm 2. The proof can be found in the full version of the paper
and is based on our intuition above regarding the relation between E[au] and E[bu] for a
vertex u chosen at random.

We note that for generality Program 1 is written with a parameter p which is 1/2 (more
generally p can be thought of as the probability that each edge is given to Alice).

▶ Lemma 16. Let r be the solution of Program 1 below for p = 1
2 ; then E|x| ≥ r · E[µ(G)].

▶ Program 1. A factor revealing (non-linear) program for the performance of Algorithm 2.

find a distribution S for (a, b) over [0, 1] × [0, 1]
minimizing ES [f(a, b)]/ES [1

2 a + b]
subject to ES [a] = 2p

1−p ES [b]
PrS [a + b ≤ 1] = 1
PrS [a, b ≥ 0] = 1

In order to find the solution of Program 1, we simplify it and then write a factor revealing
LP, showing that r ≥ 0.7167 which implies the same bound on the approximation ratio of
Algorithm 2. Due to space limits, we omit the details of this step, referring interested readers
to the full version of the paper.

5 Lifting Knowledge of Distribution via Minimax Theorems

As discussed before, our protocol of Section 4 achieves its claimed approximation guarantee
assuming that the input graph G is drawn from some distribution G that is known to the
algorithm a priori. In the standard communication complexity model, however, we do not have

S. Assadi and S. Behnezhad 48:13

access to distribution G and the algorithm should work against every possible input graph. In
this section, we show how one can use minimax theorems to lift the assumption on knowledge
of the distribution G in our protocols, without incurring any loss to the approximation
guarantee. The following theorem formalizes our main result in the Introduction.

▶ Theorem 17. There is a randomized one-way protocol that given any arbitrary input graph
G partitioned randomly between Alice and Bob, outputs a matching M(G) in G such that
E |M(G)| ≥ 0.716 · µ(G). The protocol requires O(n) communication from Alice to Bob.

Consider a deterministic protocol A and let us use A(GA, GB) to denote the size of the
matching returned by the protocol A when Alice receives subgraph GA and Bob receives
subgraph GB. Recall that in our discussion of Section 4, we say protocol A obtains an
α-approximation if

E
G∼G,(GA,GB)

[A(GA, GB)] ≥ α · E
G∼G

[µ(G)], (10)

where here and throughout this section, by subscript (GA, GB) we mean the random process
of partitioning the edges of G into GA and GB independently and uniformly at random.
This guarantee is inherently different from that of Theorem 17. In the following, we first
show how one can remedy this part and then give the argument for lifting the assumption
on the knowledge of G.

Step 1: Getting an Instance-Wise Approximation Guarantee. In order to remove the
assumption on the knowledge of the distribution G we first show that we can slightly modify
our protocols to get an instance-wise expected approximation guarantee.

▶ Lemma 18. Suppose that given any input distribution G on n-vertex graphs, there is an α-
approximate maximum matching protocol A (i.e., A satisfies Eq (10)) with communication cost
O(n). For any input distribution G and any parameter ε > 0, there is another deterministic
protocol A′ with communication cost O(n

ε) such that

E
G∼G,(GA,GB)

[
A′(GA, GB)/µ(G)

]
≥ (1 − ε − o(1)) · α.

Due to space constraints, we omit the proof of Lemma 18. However, we note that it is
easy to prove if one allows O(n log n/ε) communication instead of O(n/ε). To see this, note
that if distribution G was such that µ(G) was the same in all outcomes of G, then Lemma 18
would be trivial. Therefore, one can make O(log n/ε) geometrically increasing guesses for the
value of µ(G), condition on each separately, and run protocol A on them in parallel. In the
full version of the paper, we show how one can avoid the extra O(log n) factor and achieve
this with just O(n/ε) communication.

Step 2: Using Yao’s Minimax. Now that we have an instance-wise approximation guarantee
using Lemma 18, we show how one can use Yao’s minimax principle [41] to give a single
randomized protocol that works against all possible input graphs without knowledge of the
distribution G from which the graph is drawn. The discussion of this section is essentially a
straightforward extension of Yao’s minimax principle [41] (see, e.g., [38, Section 2.2] or [36])
for the random partition model. The proof of this proposition is almost identical to that of
the original Yao’s minimax principle and we claim no novelty for this proof.

▶ Proposition 19. Let C and α be two parameters. Suppose for every distribution G on
n-vertex graphs, there exists a deterministic protocol AG with communication cost C with an
instance-wise approximation guarantee EG∼G,(GA,GB)∼G

[
AG(GA, GB)/µ(G)

]
≥ α where here

APPROX/RANDOM 2021

48:14 On the Robust Communication Complexity of Bipartite Matching

(GA, GB) is a random partitioning of G. Then, there exists a randomized protocol A⋆ with
communication cost C such that for every graph G, EA⋆,(GA,GB)∼G[A⋆(GA, GB)] ≥ αµ(G),
where the expectation here is taken over both the randomness of the protocol and the random
partitioning of the edge-set of G between the players.

Proof. Consider a game between two players called the Input player and the Algorithm
player. The set of strategies of the Input player are all bipartite graphs on n vertices, denoted
by G(n), and the set of strategies of the Algorithm player are all deterministic one-way
protocols with communication cost C, denoted by P(C); for fixed n and C, both sets are
finite.

For any graph G ∈ G(n) as a strategy of the Input player and deterministic protocol
A ∈ P(C) as the strategy of the Algorithm player, we define:

val(G, A) := E
(GA,GB)∼G

[
A(GA, GB)/µ(G)

]
.

On a choice of (pure) strategies G and A by the players, we define the payoff of the Algorithm
player as val(G, A) and for the Input player as −val(G, A). Alternatively, the Algorithm
player would like to maximize val(G, A) (by choosing A), while the Input player tries to
minimize it (by choosing G). Thus, this is a zero-sum game.

Let ∆G denote the set of all distributions on strategies (graphs) of the Input player and
∆P denote the set of all distributions on strategies (deterministic protocols) of the Algorithm
player. This way, ∆G and ∆P denote the set of all mixed strategies for the Input player
and Algorithm player, respectively. Considering this is a zero-sum game, Von Neumann’s
Minimax Theorem asserts that,

min
G∈∆(G)

max
A∈P(C)

E
G∼G

[val(G, A)] = max
AR∈∆P

min
G∈G(n)

E
A∼AR

[val(G, A)].

Replacing the value of val(G, A) with its definition on both sides, we have

min
G∈∆(G)

max
A∈P(C)

E
G,(GA,GB)

[
A(GA, GB)

µ(G)

]
= max

AR∈∆P

min
G∈G(n)

E
A∼AR,(GA,GB)

[
A(GA, GB)

µ(G)

]
.

(11)

The LHS in Eq (11) corresponds to picking any possible distribution on inputs and then
running the “best” deterministic protocol on this distribution and measuring the instance-wise
expected approximation ratio of the protocol. Thus, by the statement of the proposition, the
LHS is ≥ α.

The RHS in Eq (11) corresponds to picking any distribution over deterministic protocols,
i.e., a (public-coin) randomized protocol, and then running this protocol on the “worst” input
graph and measure the expected ratio of the protocol. By the lower bound on LHS and
Eq (11), this is at least α, which means that there exists a randomized protocol A⋆ with
communication cost C (the arg max of RHS in Eq (11)) that achieves an α-approximation
in expectation for every input graph partitioned randomly between Alice and Bob. This
concludes the proof. ◀

Theorem 17 now follows immediately from Theorem 8, Lemma 18 and Proposition 19.

References
1 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff

Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In

S. Assadi and S. Behnezhad 48:15

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1616–1635, 2019.

2 Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming matching.
CoRR, abs/2102.07011. To appear in ICALP 2021, 2021.

3 Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching
problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9,
2019 - San Diego, CA, USA, pages 11:1–11:20, 2019.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with (very)
few queries. In Proceedings of the 2016 ACM Conference on Economics and Computation, EC
’16, Maastricht, The Netherlands, July 24-28, 2016, pages 43–60, 2016.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–1742,
2017.

6 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1345–1364, 2016.

7 Sepehr Assadi, Gillat Kol, and Rotem Oshman. Lower bounds for distributed sketching of
maximal matchings and maximal independent sets. In Yuval Emek and Christian Cachin,
editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event,
Italy, August 3-7, 2020, pages 79–88. ACM, 2020.

8 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, Durham, NC, USA, November 16-19, 2020, pages 342–353. IEEE, 2020.

9 Maria-Florina Balcan, Yi Li, David P. Woodruff, and Hongyang Zhang. Testing matrix
rank, optimally. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 727–746,
2019.

10 Soheil Behnezhad and Mahsa Derakhshan. Stochastic weighted matching: (1-ε) approximation.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 1392–1403, 2020.

11 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic matching
with few queries: (1-ε) approximation. In Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
1111–1124, 2020.

12 Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.
Stochastic matching with few queries: New algorithms and tools. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 2855–2874, 2019.

13 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55, 1996.

14 András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and
flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015.

15 Aaron Bernstein. Improved bounds for matching in random-order streams. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), pages 12:1–12:13, 2020.

16 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, July 6-10, 2015,
Proceedings, Part I, pages 167–179, 2015.

APPROX/RANDOM 2021

48:16 On the Robust Communication Complexity of Bipartite Matching

17 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, January 10-12, 2016, pages 692–711, 2016.

18 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, May 17-20, 2008, pages 641–650, 2008.

19 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. In 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, pages 45:1–45:14, 2019.

20 Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex cover in
dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

21 Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interaction. In
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03,
2014, pages 233–242, 2014.

22 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1773–1785, 2020.

23 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

24 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages
491–500, 2019.

25 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–485. SIAM, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095157.

26 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013.

27 András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity of
graph properties. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988.

28 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

29 Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate matching in distributed graphs. In 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, pages 460–473, 2015.

30 Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New bounds
on the classical and quantum communication complexity of some graph properties. In IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2012, December 15-17, 2012, Hyderabad, India, pages 148–159, 2012.

31 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/1.
9781611973105.121.

32 Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on

http://dl.acm.org/citation.cfm?id=2095116.2095157
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121

S. Assadi and S. Behnezhad 48:17

Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1874–1893.
SIAM, 2021.

33 Michael Kapralov, Gilbert Maystre, and Jakab Tardos. Communication efficient coresets for
maximum matching. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity
in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 156–164. SIAM,
2021.

34 Christian Konrad. A simple augmentation method for matchings with applications to streaming
algorithms. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 74:1–74:16, 2018.

35 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
pages 231–242, 2012.

36 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

37 Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival model. In
Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO
2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages 355–367, 2017.

38 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

39 Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67–71, 1991.

40 Ran Raz and Boris Spieker. On the "log rank"-conjecture in communication complexity. In
34th Annual Symposium on Foundations of Computer Science, Palo Alto, California, USA,
3-5 November 1993, pages 168–176, 1993.

41 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complex-
ity (extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227, 1977.

42 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (prelim-
inary report). In Proceedings of the 11h Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

APPROX/RANDOM 2021

L1 Regression with Lewis Weights Subsampling
Aditya Parulekar #

Department of Computer Science, University of Texas at Austin, TX, USA

Advait Parulekar #

Department of Electrical and Computer Engineering, University of Texas at Austin, TX, USA

Eric Price #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
We consider the problem of finding an approximate solution to ℓ1 regression while only observing a
small number of labels. Given an n × d unlabeled data matrix X, we must choose a small set of
m ≪ n rows to observe the labels of, then output an estimate β̂ whose error on the original problem
is within a 1 + ε factor of optimal. We show that sampling from X according to its Lewis weights
and outputting the empirical minimizer succeeds with probability 1 − δ for m > O(1

ε2 d log d
εδ

).
This is analogous to the performance of sampling according to leverage scores for ℓ2 regression,
but with exponentially better dependence on δ. We also give a corresponding lower bound of
Ω(d

ε2 + (d + 1
ε2) log 1

δ
).

2012 ACM Subject Classification Computing methodologies → Active learning settings

Keywords and phrases Active regression, Lewis weights

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.49

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2105.09433

Funding Advait Parulekar : This author was supported by NSF Grant 2019844.
Eric Price: This author was supported in part by NSF Award CCF-1751040 (CAREER).

Acknowledgements The authors wish to thank the anonymous reviewers for several comments that
improved the paper.

1 Introduction

The standard linear regression problem is, given a data matrix X ∈ Rn×d and corresponding
values y ∈ Rn, to find a vector β ∈ Rd minimizing ∥Xβ − y∥p. Least squares regression
(p = 2) is the most common, but least absolute deviation regression (p = 1) is sometimes
preferred for its robustness to outliers and heavy-tailed noise. In this paper we focus on ℓ1
regression:

β∗ = arg min
β∈Rd

∥Xβ − y∥1 (1)

But what happens if the unlabeled data X is cheap but the labels y are expensive? Can we
choose a small subset of indices, only observe the corresponding labels, and still recover a
good estimate β̂ of the true solution? We would like an algorithm that works with probability
1 − δ for any input (X, y); this necessitates that our choice of indices be randomized, so the
adversary cannot concentrate the noise on them. Formally we define the problem as follows:

© Aditya Parulekar, Advait Parulekar, and Eric Price;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 49; pp. 49:1–49:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adityaup@cs.utexas.edu
mailto:advaitp@utexas.edu
mailto:ecprice@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.49
https://arxiv.org/abs/2105.09433
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 L1 Regression with Lewis Weights Subsampling

▶ Problem 1 (Active L1 regression). There is a known matrix X ∈ Rn×d and a fixed unknown
vector y. A learner interacts with the instance by querying rows indexed {ik}k∈[m] adaptively,
and is shown labels {yik

}k∈[m] corresponding to the rows queried. The learner must return β̂

such that with probability 1 − δ over the learner’s randomness,

∥Xβ̂ − y∥1 ≤ (1 + ε) min
β

∥Xβ − y∥1. (2)

Some rows of X may be more important than others. For example, if one row is orthogonal
to all the others, we need to query it to have any knowledge of the corresponding y; but if
many rows are in the same direction it should suffice to label a few of them to predict the
rest.

A natural approach to this problem is to attach some notion of “importance” p1, . . . , pn

to each row of X, then sample rows proportional to pi. We can represent this as a “sampling-
and-reweighting” sketch S ∈ Rm×n, where each row is 1

pi
ei with probability proportional to

pi. This reweighting is such that ES [∥Sv∥1] ∝ ∥v∥1 for any vector v. By querying m rows
we can observe Sy, and so can output the empirical risk minimizer (ERM)

β̂ := arg min ∥SXβ − Sy∥1. (3)

For fixed β, ES ∥SXβ − Sy∥1 ∝ ∥Xβ − y∥1. The hope is that, if the pi are chosen carefully,
the ERM β̂ will satisfy (2) with relatively few samples. Our main result is that this is true if
the pi are drawn according to the ℓ1 Lewis weights:

▶ Theorem 1 (Informal). Problem 1 can be solved with m = O(1
ε2 d log d

εδ) queries. For
constant δ = Θ(1), m = O

(1
ε2 d log d

)
suffices.

Note that, while the model allows for adaptive queries, this algorithm is nonadaptive.
We next show that our sample complexity is near-optimal by demonstrating the following

lower bound on the number of queries needed by any algorithm to obtain an accurate estimate.
Whether the multiplicative factor of log d is necessary is an open question.

▶ Theorem 2 (Informal). Any algorithm satisfying Problem 1 must query Ω(d log 1
δ + d

ε2 +
1
ε2 log 1

δ) rows on some instances (X, y).

For small δ, the upper bound is the product of d, 1
ε2 , and log(1/δ) while the lower bound

is the product of each pair.

1.1 Related Work
If all the labels are known

LAD regression cannot be solved in closed form. It can be written as a linear program, but
this is relatively slow to solve. One approach to speeding up LAD regression is “sketch-
and-solve,” which replaces (1) with (3), which has fewer constraints and so can be solved
faster. The key idea here is to acquire regression guarantees by ensuring that S is a subspace
embedding for the column space of [X y].

For a survey on techniques to do this, we direct the reader to [17],[13], [3]. In [17], the
emphasis is on oblivious sketches – distributions which do not require knowledge of [X y].
On the other hand, [13], [3] discuss sketches that depend on [X y]. Most relevant to us [9],
which shows that sampling-and-reweighting matrices S using Lewis weights of [X y] suffice;
we give a simple proof of this in Remark 4. The problem is that figuring out which labels are
important involves looking at all the labels.

A. Parulekar, A. Parulekar, and E. Price 49:3

Active ℓ2 regression

Here we return to our setting, where only a subset of the labels is available to us. A number
of works have studied this problem, including [6, 7, 8]. The ℓ2 version of the problem was
solved optimally in [2], where an algorithm was given using O(d

ε) queries to find β̂ satisfying
E
[
∥Xβ̂ − y∥2

2

]
≤ (1 + ε)∥Xβ∗ − y∥2

2. Independent, identical sampling using leverage scores
achieves the same guarantee using O(d log d + d

ε) queries. Note that these results for ℓ2 ERM
only work in expectation, while our results hold with high probability.

Subspace embedding for ℓ1 norms

Subspace embeddings for the ℓ1 norm have been studied in a long line of work including
[15], [16], [12], [5], and [4], the most recent of which describes an iterative algorithm to
approximate Lewis weights, which are the analogue of leverage scores for importance sampling
preserving ℓ1 norms. The [4] result shows that, for the same m = O(1

ε2 d log d
εδ) sample

complexity as given in Theorem 11, a sampler sketch S based on the Lewis weights of X will
have ∥SXβ∥1 ≈ε ∥Xβ∥1 for all β ∈ Rd.

Our approach

At a very high level the goal of this paper is to replace the ℓ2 leverage score analysis of [2]
(which looks at the sample complexity of ℓ2 regression in setting of this paper) with the ℓ1
Lewis weight analysis in [4] (which, among other results, demonstrates that i.i.d. importance
sampling with Lewis weights results in a subspace embedding). However, the differences
between ℓ1 and ℓ2 are significant enough that very little of the [2] proof approach remains.

Per [4], the Lewis weight sampling-and-embedding matrix S preserves ∥Xβ∥1 for all β.
The problem is that it doesn’t preserve ∥Xβ−y∥1: if y has outliers, we have no idea where they
are to sample them. In the ℓ2 setting, this difficulty is addressed using the closed-form solution
β∗ = X†y, and the fact that the residual vector Xβ∗ − y is orthogonal to the column space
of X. If S is a subspace embedding it will preserve ∥Xβ − Xβ∗∥ ≈ ∥S(Xβ − Xβ∗)∥, while
orthogonality of Xβ∗ −y and Xβ∗ ensures that ∥S(Xβ̃ −Xβ∗)∥ ≪ ∥S(Xβ̃ −y)∥ ≈ ∥Xβ̃ −y∥
(here the last approximation is not because of embeddings but rather Markov’s inequality).
In the ℓ1 setting, not only is β∗ not expressible in closed form, but there can be many
equally valid minimizers β∗ that are far from each other. In Appendix A we show how
this approach extends to the ℓ1 setting to give a simple proof of Theorem 1 for a constant
factor approximation (i.e., ε = O(1)); but the existence of multiple β∗ makes ε < 1 seem
unobtainable by this approach.

Instead, we massage the [2] subspace embedding proof into the appropriate form, as we
discuss in Section 3. While S doesn’t preserve the total error ∥Xβ − y∥1, it does preserve
relative error ∥Xβ − y∥1 − ∥Xβ∗ − y∥1; the effect of outliers is canceled out, so that this
concentrates similarly well to ∥Xβ − Xβ∗∥1.

Concurrent work

A very similar set of results appears concurrently and independently in [1]. Their main result
is identical to ours, with a similar proof. They also extend the result to 1 < p < 2, but with
a significantly weaker m = Õ(d2/ε2) bound. They do not have the Ω(d log 1

δ) lower bound.

APPROX/RANDOM 2021

49:4 L1 Regression with Lewis Weights Subsampling

2 Preliminaries: Subspace Embeddings and Importance Sampling

A key idea used in our analysis is that of a ℓ1 subspace embedding, which is a linear sketch
of a matrix that preserves ℓ1 norms within the column space of a matrix:

▶ Definition 3 (Subspace Embeddings). A subspace embedding for the column space of the
matrix X ∈ Rn×d is a matrix S such that for all β ∈ Rd,

∥SXβ∥ = (1 ± ε)∥Xβ∥

▶ Remark 4. Consider the simpler setting in which we had access to all of y, but we still
want to subsample rows to improve computational complexity. We can view the regression

loss ∥Xβ − y∥1 as the ℓ1 norm of the point [X y]
[

β

−1

]
in the column space of [X y]. Indeed,

suppose β∗ = arg min ∥Xβ − y∥1 as before and let β̂ = arg min ∥SXβ − Sy∥1. Then, β̂ solves
problem 1 because, for ε < 1

3 ,

∥Xβ̂ −y∥1 ≤ 1
1 − ε

∥SXβ̂ −Sy∥1 ≤ 1
1 − ε

∥SXβ∗ −Sy∥1 ≤ 1 + ε

1 − ε
∥Xβ∗ −y∥1 ≤ (1+4ε)∥Xβ∗ −y∥1.

One way to construct a subspace embedding is by sampling rows and rescaling them
appropriately:

▶ Definition 5 (Sampling and Reweighting with {pi}n
i=1). For any sequence {pi}n

i=1, let
N =

∑
i pi. Then, the sampling-and-reweighting distribution S ({pi}n

i=1) over the set of
matrices S ∈ RN×n is such that each row of S is independently the ith standard basis
vector with probability pi

N , scaled by 1
pi

. For any k ∈ [N], let ik denote the index such that
Sk,ik

= 1
pik

.

When working in ℓ2, there is a natural choice for re-weighting: the leverage scores of the
rows [17].

▶ Definition 6 (Leverage Scores). The leverage score of the ith row of a matrix X, li(X) is
defined as x⊤

i (X⊤X)−1xi.

For ℓ1 subspace embeddings, the analogous weights are the ℓ1 Lewis weights, defined implicitly
as the unique weights {wi(X)}n

i=1 that satisfy wi(X) = li(WX) where W is a diagonal matrix
with ith diagonal entry 1√

wi(X)
. We will drop the explicit dependence on X whenever it is

clear from context.

▶ Definition 7 (Lewis Weights). The ℓ1 Lewis weights of a matrix X are the unique weights
{wi}n

i=1 that satisfy w2
i = x⊤

i (
∑n

j=1
1

wj
xjx⊤

j)−1xi for all i.

Lewis weights are defined in general for general ℓp norms, but we will only need the ℓ1 Lewis
weights. For basic properties of Lewis weights, we direct the reader to [4]. Using these
definitions, we now state the main consequence of using Lewis weights. This result comes
from a line of work on embeddings from subspaces of L1[0, 1] to ℓm

1 such as [15], but is
reproduced here similar to how it is presented in [4].

▶ Theorem 8 ([4] Theorem 2.3). Sampling at least O(d log d
ε2) rows according to the ℓ1 Lewis

weights {wi}n
i=1 of a matrix X ∈ Rn×d results in a subspace embedding for X with at least

some constant probability. If at least O(d log d
εδ

ε2) rows are sampled, then we have a subspace
embedding with probability at least 1 − δ.

A. Parulekar, A. Parulekar, and E. Price 49:5

2.1 Properties of Lewis Weights
We will need some properties of Lewis weights, particularly of how they change when the
matrix X is modified.

▶ Lemma 9 ([4] Lemma 5.5). The ℓ1 Lewis weights of a matrix do not increase when rows
are added.

▶ Lemma 10. Let X ∈ Rn×d, and let X ′ ∈ Rkn×d be X stacked on itself k times, with each
row scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

3 Proof Overview

▶ Theorem 11. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n], and let 0 < ε, δ < 1.
Then, for any N that is at least O

(
d
ε2 log d

εδ

)
, there is a sampling-and-reweighting dis-

tribution S({pi}n
i=1) satisfying

∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and
β̂ = arg min ∥SXβ − Sy∥1, we have

∥Xβ̂ − y∥1 ≤ (1 + ε) min
β

∥Xβ − y∥1

with probability 1 − δ. If δ = O(1) is some constant, then N at least O
(1

ε2 d log d
)

rows
suffice.

Regression guarantees from column-space embeddings

As noted in Remark 4, it would suffice to show that ∥SXβ − Sy∥1 ≈ ∥Xβ − y∥1 for all β.
The problem is that this is impossible without knowing y: if one random entry of y is very
large, we would need to sample it to estimate ∥Xβ − y∥1 accurately. However, we don’t
actually need to estimate ∥Xβ − y∥1; we just need to be able to distinguish values of β for
which ∥Xβ − y∥1 is far from ∥Xβ∗ − y∥1 from values for which it is close. That is, it would
suffice to accurately

estimate ∥Xβ̂ − y∥1 − ∥Xβ∗ − y∥1 with ∥SXβ̂ − Sy∥1 − ∥SXβ∗ − Sy∥1 (4)

for every possible β. In the above example where y has a single large outlier coordinate,
sampling this coordinate or not will dramatically affect both terms, but will not affect the
difference very much. As such, our key lemma, Lemma 28, states that ℓ1 Lewis weight
sampling achieves (4) with high probability. In particular, using at least m ≥ O(d

ε2 log d
εδ)

rows we have

(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) < ε∥X(β∗ − β)∥1 (5)

for all β with probability at least 1 − δ. We do this by adapting the argument of [4] which
shows that S is a column-space embedding with high probability. We have summarized this
argument below.

Column-space embedding using Lewis weights ([4])

An important result in [4], which directly implies the high probability subspace embedding,
and which will be useful to us later is the following moment bound on deviations of ∥SXβ∥1.

APPROX/RANDOM 2021

49:6 L1 Regression with Lewis Weights Subsampling

▶ Lemma 12 ([4] Lemma 7.4). If N is at least O
(

d
ε2 log d

εδ

)
, and S ∈ RN×n is drawn from the

sampling-and-reweighting distribution S({pi}N
i=1) with

∑
i pi = N and {pi}n

i=1 proportional
to Lewis weights {wi}n

i=1, then

E
S

[(
max

∥Xβ∥1=1
|∥SXβ∥1 − ∥Xβ∥1|

)l
]

≤ εlδ

The proof follows from this chain of inequalities:

E
S

[(
max

∥Xβ∥1=1
∥SXβ∥1 − ∥Xβ∥1

)l
]

(A)
≤ 2l E

σ,S

(max
∥Xβ∥1=1

∣∣∣∣∣∑
k

σk

|xT
ik

β|
pik

∣∣∣∣∣
)l

(B)
≤ 2l E

σ,S

(max
∥Xβ∥1=1

∑
k

σk

xT
ik

β

pik

)l

(C)
≤ εlδ

where the σk are independent Rademacher variables, which are ±1 with probability 1/2 each,
and pik

is proportional to the ℓ1 Lewis weight of row ik. (A) follows by symmetrizing the
objective F := max∥Xβ∥1=1 ∥SXβ∥1 − ∥Xβ∥1. (B) follows from a contraction lemma. (C) is
shown by constructing a related matrix with bounded Lewis weights and applying Lemma
32 from [15] reproduced below.

▶ Lemma 13. There exists constant C such that for any X ∈ Rn×d with all ℓ1 Lewis weights
less than C ε2

log(n
δ) and l = log(2n/δ), we have

Eσ

(max
∥Xβ∥1=1

∣∣∣∣∣
n∑

i=1
σix

⊤
i β

∣∣∣∣∣
)l
 ≤ εlδ

2 (6)

Regression guarantees using Lewis weight sampling

In this work, we show the following chain of inequalities.

E
S

[(
max

∥Xβ∗−Xβ∥=1
|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)|

)l
]

(A)
≤ 2l E

S,σ

(max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l

(B)
≤ 22l+1 E

S,σ

(max
∥X(β∗−β)∥1=1

∣∣∣∣∣∑
k

σik

x⊤
ik

pik

(β∗ − β)

∣∣∣∣∣
)l
 (7)

(C)
≤ εlδ

Here, for (A), we symmetrize the left hand side of (5) in Lemma 29. For (B), we apply a
different contraction lemma, Lemma 30, that allows us to remove y from our expression, and
then end up with the same moment bound for (C). Step (C) is essentially an application of
Lemma 32 to SX, however, because we cannot immediately bound the Lewis weights of SX

to confirm the constraints of the Lemma, we instead construct another matrix X ′′ which
does not significantly alter the right hand side of inequality (7) while having bounded Lewis
weights. This is done in Lemmas 33 and 34.

A. Parulekar, A. Parulekar, and E. Price 49:7

3.1 Lower Bounds
We will show that any algorithm must see Ω(d log 1

δ + 1
ε2 log 1

δ + d
ε2) labels to return β̂

satisfying ∥Xβ̂ − y∥1 ≤ (1 + ε)∥Xβ∗ − y∥1 with probability greater than 1 − δ.
For the lower bound proof it is convenient to consider a distributional version of the

problem:

▶ Problem 2 (Distributional active L1 regression). There is an unknown joint distribution P

over a finite set X × Y ⊂ Rd × R, with |Y| = 2. The learner is allowed to adaptively observe
N i.i.d. samples from P (·|X = x) for the learner’s choice of N values x ∈ X . The learner
must return β̂ satisfying

E(X,Y)∼P

[
|X⊤β̂ − Y |

]
≤ (1 + ε) inf

β
E(X,Y)∼P

[
|X⊤β − Y |

]
. (8)

with probability at least 1 − δ.

We begin with a lemma that shows that solving the original, Problem 1, for some n polynomial
in the parameters d, ε, δ is harder than solving the distributional version, Problem 2.

▶ Lemma 14. A randomized algorithm that solves Problem 1 for n = 2
ε2

(
log 2

δ + d log 3d
ε

)
with accuracy ε and failure probability δ can be used to solve any instance of Problem 2,
where X , Y, in the unit ℓ∞ ball, with accuracy 6ε and failure probability 2δ, for small ε.

Proof. Let n = 8
ε2

(
log 2

δ + d log 4d
ε

)
. Construct an instance of Problem 1 in which the rows

of feature matrix X and the corresponding label vector y are drawn i.i.d. from P . Let H be
the unit ℓ∞ ball. We have the following:

▷ Claim 15. For all β ∈ H, with probability at least 1 − δ,

(1 − ε)E(X,Y)∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y)∼P

[
|X⊤β − Y |

]
Let β◦ denote the minimizer infβ E(X,Y)∼P

[
|X⊤β − Y |

]
. Let β∗ denote the minimizer

of the matrix instance infβ ∥Xβ − y∥1, and let β̂ denote the output of the algorithm on the
instance generated. Then we have

(1 − ε)E(X,Y)∼P

[
|X⊤β̂ − Y |

]
≤ 1

n
∥Xβ̂ − y∥1

≤ (1 + ε) 1
n

∥Xβ∗ − y∥1 with probability 1 − δ

≤ (1 + ε) 1
n

∥Xβ◦ − y∥1

≤ (1 + ε)2 E(X,Y)∼P

[
|X⊤β◦ − Y |

]
So with probability 1 − 2δ,

E(X,Y)∼P

[
|X⊤β̂ − Y |

]
≤ (1 + 6ε)E(X,Y)∼P

[
|X⊤β◦ − Y |

]
. ◀

We then prove lower bounds on the accuracy for any algorithm on Problem 2. We prove
three theorems that allow us to show Theorem 26: Theorems 16, 20, and 23. To do this, we
make several Claims, which are proved in section 7.1.

In all our lower bounds, x is a uniform ei, and y ∈ {0, 1} while y is a Bernoulli random
variable. For Ω(d

ε2), we set P (y = 1 | x = ei) to 1
2 + ε uniformly at random independently

for each i; getting an ε-approximate solution requires getting most of the biases correct,

APPROX/RANDOM 2021

49:8 L1 Regression with Lewis Weights Subsampling

which requires 1
ε2 samples from most of the coordinates ei. The Ω(1

ε2 log 1
δ) instance sets

P (y = 1 | x = ei) to 1
2 +ε with the same bias for each i; solving this is essentially distinguishing

a ε biased coin from a −ε-biased coin. Finally, for Ω(d log 1
δ) we set P (y = 1 | x = ei) = 0

except for a random hidden i∗ with P (y = 1 | x = ei∗) = 3
4 . Solving this instance requires

finding i∗, but there’s a δ chance the first d log 1
δ queries are all zero.

▶ Theorem 16. For any d ≥ 2 and ε < 1
10 , there exist families X ∈ Rd, Y ∈ R of inputs and

labels respectively such that any algorithm which solves Problem 2 with δ < 1
4 requires at least

m = 3d
2000ε2 samples.

We take X to be the set of standard basis vectors, and the distribution over X to be
uniform. We will define a set B as being a subset of the unit hypercube {−1, 1}d such that
every element is sufficiently far from every other.

▷ Claim 17. There is a set B ⊂ H with |B| ≥ 20.2d such that for any two β1, β2 ∈ B, we
have |β1 − β2| > 0.2d

Proof. Here we just need an error correcting code with constant rate and constant relative
(Hamming) distance. The existence of such a code follows from the Gilbert-Varshamov bound
[10]. ◁

Fix some unknown β∗. We will have Y = ZX⊤β∗ where Z is an independent random variable
with probability 1

2 + ε of being 1, and 1
2 − ε of being −1. This completes our description of P .

We define l(β) to be the ℓ1 norm of the residuals for β, that is, l(β) = E(X,Y)∼P [
∣∣X⊤β − Y

∣∣].
We have the following properties of l(β).

▷ Claim 18. For D, B as chosen above, l(β∗) = 1 − 2ε.

▷ Claim 19. For D, B as chosen above, we have for all β ∈ B, l(β) − l(β∗) = 2ε
d ||β − β∗||1.

Proof of Theorem 16. Suppose some algorithm returns β̂ with l(β̂) < (1 + ε
5)l(β∗) =⇒

||β∗ − β̂||1 < 0.1d with probability 3
4 . By Fano’s inequality,

H(β∗|β̂) < H

(
1
4

)
+ log |B| − 1

4 < 0.05d,

and we have a lower bound on the mutual information between the output of our algorithm
and the true parameter: I(β̂; β∗) = H(β∗) − H(β∗|β̂) ≥ 0.15d. For an upper bound on the
mutual information after seeing m samples, we use the data processing inequality.

I(β∗; β̂) ≤ I(β∗; (Yi)i∈[m]) ≤
m∑

i=1
I(β∗; Yi|(Yj)j∈[i−1])

=
m∑

i=1
H(Yi|(Yj)j∈[i−1]) − H(Yi|β∗, (Yj)j∈[i−1])

≤
m∑

i=1
1 − H(Yi|β∗, Ii)

≤ 4ε2m

Here we have used that

H(Yi|β∗, (Yj)j∈[i−1]) ≥ H(Yi|β∗, Ii, (Yj)j∈[i−1])
= H(Yi|β∗, Ii)

A. Parulekar, A. Parulekar, and E. Price 49:9

and that the distribution of Yi conditioned on β∗, Ii is just an independent Bernoulli with
parameter 1

2 + ε and so
m∑

i=1
1 − H(Yi|β∗, Ii) ≤

m∑
i=1

[
1 +

(
1
2 + ε

)
log
(

1
2 + ε

)
+
(

1
2 − ε

)
log
(

1
2 − ε

)]
≤ 4ε2m

So 0.15d ≤ I(β∗; β̂) ≤ 4ε2m, and so we need m ≥ 3d
80ε2 . The result follows by replacing ε

with 5ε. ◀

We can use the same instance to give a high probability lower bound of Ω(log 1
δ /ε2).

▶ Theorem 20. For any d and ε < 1
10 , there exist sets X ∈ R, Y ∈ R of inputs and labels

respectively, and a distribution P on X × Y such that any algorithm which solves problem 2
requires at least m = 1

4ε2 log 1
δ samples.

Proof. Consider two instances, denoted by subscripts (1) and (2) with β∗
(1) = −1d and

β∗
(2) = 1d, where 1d ∈ Rd is the all-ones vector. Denote by P(i) the distribution over X , Y

for instance (i), and let lβ∗
(i)

(β) = E(X,Y)∼P(i) [
∣∣X⊤β − Y

∣∣] for i ∈ {1, 2}.

▷ Claim 21. For any β, max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε

From this claim together with Claim 18, we have for some i ∈ {1, 2}, lβ∗
(i)

(β) ≥ (1 +
2ε)lβ∗

(i)
(β∗

(i)), for all β.
Denote by β̂ the output of the algorithm. Denote by P(1) the distribution over outputs

by a algorithm interacting instance (1), and by P(2) the distribution over outputs by a
algorithm interacting instance (2). Denote by A the event that ℓβ∗

(1)
(β̂) − ℓβ∗

(1)
(β∗

(1)) ≥ 2ε.
Note that under Ac, we have ℓβ∗

(2)
(β̂) − ℓβ∗

(2)
(β∗

(2)) ≥ 2ε. Because the algorithm fails with
probability at most δ on any instance, we have 2δ ≥ P(1)(A) + P(2)(Ac). On the other hand,
P(1)(A)+P(2)(Ac) ≥ e−D(P(1)||P(2)). We can bound the KL-divergence of the two distributions
as an aggregate KL-divergence over the course of acquiring the samples.

▶ Theorem 22 (Lemma 15.1, [11]). If a learner interacts with two environments (1) and
(2) through a policy π(·|I1, Y1, I2, Y2, · · · , Yi−1) which dictates a distribution over actions Ii

conditioned on the past (I1, Y1, · · · , Yi−1), and sees label Yi distributed according to some
label distribution P(1),Ii

and P(2),Ii
, then the KL-divergence between the output of the learner

on instance (1) and (2), P(1) and P(2) is given by

D(P(1)||P(2)) =
d∑

k=1
E(1)

[
N∑

i=1
1{Ii = k} · D(P(1),Ii

||P(2),Ii
)
]

Now, P(1),k is a Bernoulli with parameter 1
2 + ε, and P(1),k is a Bernoulli with parameter

1
2 − ε, so D(P(1),k∥P(1),k) ≤ 16ε2, and so we have

d∑
k=1

E(1)

[
N∑

i=1
1{Ii = k} · D(P(1),Ii

||P(2),Ii
)
]

≤
d∑

k=1
E(1)

[
N∑

i=1
1{Ii = k} · 16ε2

]

= 16ε2 · E(1)

[
d∑

k=1

N∑
i=1

1{Ii = k}

]
= 16ε2m

Putting this together, we have δ ≥ e−16ε2m =⇒ m ≥ 1
16ε2 log 1

δ , and the result follows by
replacing ε with 1

2 ε. ◀

APPROX/RANDOM 2021

49:10 L1 Regression with Lewis Weights Subsampling

▶ Theorem 23. For any d ≥ 2, there exist sets X ∈ Rd, Y ∈ R of inputs and labels, and a
distribution P on X × Y such that any algorithm which solves Problem 2, with ε = 1, requires
at least m = d

3 log 1
8δ samples.

Proof. All logarithms are base 4. Consider instances in which X = {e1, e2, · · · , ed} where
ei denotes the ith standard basis vector and the distribution over X is uniform. We take
Y = ZX⊤β∗ for some β∗, where Z is an independent Bernoulli random variable which
is 1 with probability 3

4 , and 0 otherwise. Consider d instances labelled with subscripts
(1), (2), · · · , (d), one in which each of the d standard basis is β∗, that is, β∗

(i) = ei. Denote by
βj the jth coordinate of β. For each instance, we have

▷ Claim 24. For all i ∈ [d], β ∈ Rd, we have ℓβ∗
(i)

(β) ≥ 1
4d with equality when β = β∗

(i)

We would like our algorithm to return an estimate β̂ which satisfies ℓβ∗(β̂) < 1
2d . We first

note that any choice of β only succeeds to be this close to the optimal on a single instance.

▷ Claim 25. Any β ∈ Rd can only satisfy ℓβ∗
(i)

(β̂) < 1
2d for one i ∈ [d].

So, we may as well enforce that the algorithm return one of e1, e2, · · · , ed, since any other
output can be mapped to one of these to improve the performance of the algorithm.

We will allow our algorithm to sample N = d
3 log 1

δ rows total. Let E be the event that
Y1, Y2, . . . YN are all zero. Given any algorithm A, let FA denote the set of rows it samples
fewer than log 1

δ times with probability at least 1
2 , in event E . Because the total number of

rows sampled is d
3 log 1

δ , there must be at least 2d
3 rows which are sampled fewer than 1

2 log 1
δ

times in expectation.
By Markov’s inequality, these rows are sampled fewer than log 1

δ times with probability
at least 1

2 , and are thus all in FA. Let BA denote the distribution over outputs β̂ of A in
event E . Let iA = arg minj∈FA

BA(j). Denote by GA the event that row iA is sampled fewer
than log 1

δ times; by construction we have P(GA) > 1
2 .

The subscripts are explicit because FA, BA, iA,P[GA] are properties of the algorithm and
are independent of the instance with which it interacts. Consider the performance of this
algorithm against the instance β∗

(iA).
Let Y(iA),j,k denote the label returned to the algorithm when it queries ej for the kth time.

Let T(iA) = min{t|Y(iA),iA,t = 1}. Denote by E(iA) the event that T(iA) > log 1
δ . Because

T(iA) is a geometric random variable, we have P[E(iA)] > δ.
Now condition on the event GA ∩ EiA , which is an event with probability 1

2 δ. Here our
algorithm samples iA fewer than TiA times, so it never sees a 1 and its output distribution
is BA. It returns i ∈ FA \ {iA} with probability at least 1 − BA(iA) ≥ 1 − 1

|FA| ≥
1 − 3

2d ≥ 1
4 . In summary, even after d

3 log 1
δ queries, no algorithm can return β̂ with

∥Xβ̂ − y∥ < (1 + ε)∥Xβ∗ − y∥ with probability greater than 1
8 δ. The result follows by

replacing δ by 8δ. ◀

Putting these together we have:

▶ Theorem 26. For any d ≥ 2, ϵ < 1
10 , δ < 1

4 , there exist sets X ∈ Rd, Y ∈ R of inputs and
labels, and a distribution P on X × Y such that any algorithm which solves Problem 2, with
ε = 1, requires at least m = Ω(d

ϵ2 + 1
ϵ2 log 1

δ + d log 1
δ) samples.

▶ Corollary 27. Any algorithm that solves Problem 1 takes at least Ω(d log 1
δ + d

ε2 + 1
ε2 log 1

δ)
samples for some n = O(d log d

δ

ε).

Proof. Each of the instances that demonstrate the lower bounds above, in Lemmas 16, 20,
and 23, take |X | = d, the results follows from Lemma 14. ◀

A. Parulekar, A. Parulekar, and E. Price 49:11

4 Proof of Theorem 11

▶ Lemma 28. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n]. Then, for any N that is
at least O

(
d
ε2 log d

εδ

)
, there is a sampling-and-reweighting distribution S({pi}n

i=1) satisfying∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and β∗ = arg min ∥Xβ − y∥1, we have for
all β

(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) ≤ ε · ∥Xβ∗ − Xβ∥1 (9)

with probability at least 1 − δ. Further, for constant δ, m = O(d log d/ε2) rows suffice.

This lemma is proved for high probability in Section 4.1, and for constant probability in
the full version of this paper, [14]. Given this, we can prove the main theorem.

Proof of Theorem 11. Applying Lemma 28 to β̂ := arg min ∥SXβ − Sy∥1, we get(
∥SXβ∗ − Sy∥1 − ∥SXβ̂ − Sy∥1

)
≤
(

∥Xβ∗ − y∥1 − ∥Xβ̂ − y∥1

)
+ ε · ∥Xβ∗ − Xβ̂∥1

Since β̂ is the minimizer of ∥SXβ − Sy∥1, the left side is non-negative. So,

∥Xβ̂ − y∥1 ≤ ∥Xβ∗ − y∥1 + ε · ∥Xβ∗ − Xβ̂∥1

≤ ∥Xβ∗ − y∥1 + ε · (∥Xβ∗ − y∥1 + ∥Xβ̂ − y∥1)

Rearranging, and assuming ε < 1/2,

∥Xβ̂ − y∥1 ≤ 1 + ε

1 − ε
∥Xβ∗ − y∥1

≤ (1 + 4ε)∥Xβ∗ − y∥1

Using ε′ = ε/4 proves the theorem. ◀

4.1 Proof of Lemma 28
This argument is similar to that in Appendix B of [4]. In order to prove Lemma 28, by
Markov’s inequality, it is sufficient to show that for some l,

M := E
S

[(
max

∥Xβ∗−Xβ∥=1
|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)|

)l
]

≤ εlδ

To show this, we will symmetrize, then use a contraction lemma to cancel the y terms. Then,
with all the terms being within the column space of SX, we use the fact that S is a subspace
embedding with high probability. We present two different bounds, one used for the constant
probability and one for the high probability cases, but the following intermediate bound is
the same for the two:

▶ Lemma 29. Given a matrix X ∈ Rn×d, let S({pi}i∈[n]) be any sampling-and-reweighting
disribution, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik

= 1
pik

.
Let σk be independent Rademacher variables that are ±1 each with probability 0.5. Then,

M ≤ 2l E
S,σ

(max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (10)

APPROX/RANDOM 2021

49:12 L1 Regression with Lewis Weights Subsampling

This is essentially standard symmetrization; the proof is in Appendix B. To simplify the
expression and eliminate the terms involving the labels, we then use a theorem from [12]:

▶ Lemma 30 ([12] Theorem 5). Let Φ : R+ → R+ be convex and increasing, and let
ϕk : R → R be contractions such that ϕk(0) = 0 for all k. Let F be a class of functions on
{1, 2, 3 . . . , n}, and ∥g(f)∥F = supf∈F |g(f)|. Then,

Eσ

[
Φ
(

1
2

∥∥∥∥∥∑
k

σkϕk(f(k))

∥∥∥∥∥
F

)]
≤ 3

2Eσ

[
Φ
(∥∥∥∥∥∑

k

σkf(k)

∥∥∥∥∥
F

)]

▶ Lemma 31. For any y ∈ Rn, we have

E
S,σ

(max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l

≤ 2l+1 E
S,σ

(max
∥Xβ∗−Xβ∥1=1

∣∣∣∣∣∑
k

σk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)∣∣∣∣∣
)l
 (11)

Proof. We take Φ(x) = xl, which is convex and increasing for l > 1, let F be the set of
functions fβ where fβ(k) = x⊤

ik
β∗−x⊤

ik
β

pik
and β satisfies ∥Xβ∗ − Xβ∥1 = 1, and let ϕk be

defined as

ϕk(z) =
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β∗ − zpik

− yik
|

pik

.

This satisfies

ϕk(fβ(k)) = ϕk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)
=

|x⊤
ik

β∗ − yik
|

pik

−
|x⊤

ik
β − yik

|
pik

.

This is a contraction, since

|ϕk(z1) − ϕk(z2)| =

∣∣∣∣∣ |x⊤
ik

β∗ − z2pik
− yik

|
pik

−
|x⊤

ik
β∗ − z1pik

− yik
|

pik

∣∣∣∣∣
≤ |z1pik

− z2pik
|

pik

≤ |z1 − z2|

Applying Lemma 30 with these parameters, we have

E
σ

(1
2 max

∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − trueyik

|
pik

)∣∣∣∣∣
)l

≤ 3
2 E

σ

(max
∥Xβ∗−Xβ∥1=1

∣∣∣∣∣∑
k

σk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)∣∣∣∣∣
)l

After taking the expectation with respect to S and multiplying both sides by 2l, this gives
the statement of the lemma. ◀

From here, we use two separate results to show the appropriate row counts for the constant
and high probability cases. The constant probability case is left for the full version of this
paper, [14].

For high probability row-counts, we use a lemma from [4]:

A. Parulekar, A. Parulekar, and E. Price 49:13

▶ Lemma 32 (8.2, 8.3, 8.4 in [4]). There exists constant C such that for any X ∈ Rn×d with
all ℓ1 Lewis weights less than C ε2

log(n
δ) and l = log(2n/δ), then

Eσ

(max
∥Xβ∥1=1

∣∣∣∣∣
n∑

i=1
σix

⊤
i β

∣∣∣∣∣
)l
 ≤ εlδ

2 (12)

We want a similar statement, but for arbitrary matrices, with no bounds placed on the Lewis
weights. To do this, we construct a new, related matrix using the following lemma, which is
proved in Appendix B:

▶ Lemma 33 (Similar to [4] Lemma B.1). Let X be any matrix, and let W be the matrix that
has the Lewis weights of X in the diagonal entries. Let N ≥ d

ε2 log d
εδ . There exist constants

C1, C2, C3 such that we can construct a matrix X ′ such that
X ′ has C1dN rows,
X ′⊤W ′−1X ′ ⪰ X⊤W −1X, (where W ′ is the matrix that has the Lewis weights of X ′ in
the diagonal entries),
∥X ′β∥1 ≤ C2∥Xβ∥1 for all β,
the Lewis weights of X ′ are bounded by C3

N .

▶ Lemma 34. Consider X ∈ Rn×d with ℓ1 Lewis weights wi. Let pi be some set of sampling
values such that N =

∑
i pi and, for some constants C, C1, C4,

pi ≥
log
(

N+C1Nd
δ

)
Cε2 wi

Then, if N ≥ C4
d
ε2 log d

εδ and if S ∼ S({pi}i∈[n]), then

E
S,σ

(max
∥Xβ∥1=1

∣∣∣∣∣
N∑

k=1
σk

x⊤
ik

β

pik

∣∣∣∣∣
)l
 ≤ εlδ

2 (13)

Proof of Lemma 34. Ideally the Lewis weights of SX would be bounded by C ε2

log N
δ

and we
could directly apply Lemma 32 to SX to obtain a bound on the moment. However, we do
not know this. Instead, we first construct X ′ using X as described in Lemma 33. We then
construct a new matrix X ′′ by stacking X ′ on top of SX. Define W ′′ to be the diagonal
matrix consisting of the ℓ1 Lewis weights of X ′′. Define, for convenience, R = N + C1Nd,
which is the number of rows X ′′ has.

We can bound the term on the left side of (13) by the same term, summing over the rows
of X ′′ instead. That is,

E
S,σ

(max
∥Xβ∥=1

∣∣∣∣∣
N∑

k=1
σk

x⊤
ik

β

pik

∣∣∣∣∣
)l
 ≤ E

S,σ

(max
∥Xβ∥=1

∣∣∣∣∣
R∑

i=1
σix

′′⊤
i β

∣∣∣∣∣
)l

Our goal is to apply Lemma 32 to the right side. To do this, we need to show the correct
bound on its Lewis weights, and then have the term be a maximum over ∥X ′′β∥1 = 1, rather
than ∥Xβ∥1 = 1.

APPROX/RANDOM 2021

49:14 L1 Regression with Lewis Weights Subsampling

Bounding the Lewis weights of X′′. By Lemma 9, the ℓ1 Lewis weights of a matrix do
not increase when more rows are added. So, the rows in X ′′ that are from X ′ have Lewis
weights that are bounded above by C3

ε2

log(d
εδ) . Further,

X ′′⊤W ′′−1X ′′ =
R∑

i=1

1
w′′

i

x′′
i (x′′

i)⊤

⪰
R−N∑
i=1

1
w′′

k

x′′
k(x′′

k)⊤ since
N∑

i=kC1d2+1

1
w′′

i

x′′
i (x′′

i)⊤ ⪰ 0

= X ′⊤W ′−1X ′ ⪰ X⊤W −1X.

So, any row yi = xi/pi in X ′′ that is from SX satisfies

w′′2
i = y⊤

i (X ′′⊤W ′′−1X ′′)−1yi ≤ y⊤
i (X⊤W −1X)−1yi = 1

p2
i

x⊤
i (X⊤W −1X)−1xi

≤

(
Cε2

log
(

R
δ

) 1
wi

)2

· w2
i =

(
Cε2

log
(

R
δ

))2

which means that all of the Lewis weights of X ′′ are less than the larger of C ε2

log(R
δ) and

C3
ε2

log(d
εδ) . Now, for small enough ε, δ, log R

δ ≤ C
C3

log d
εδ , we have the Lewis weight upper

bound for all rows of X ′′ is C ε2

log(R
δ)

Renormalizing to maximize over ∥X′′β∥1 = 1. If we define the following

F := max
∥Xβ∥1=1

|∥SXβ∥1 − ∥Xβ∥1|

then,

∥X ′′β∥1 = ∥SXβ∥1 + ∥X ′β∥1 ≤ (1 + C2 + F)∥Xβ∥1

So, we get(
max

∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

≤ (1 + C2 + F)l

(
max

∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

≤ 2l−1((1 + C2)l + F l)
(

max
∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

Taking expectations of either side over just the Rademacher variables,

E
σ

(max
∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l
 ≤ 2l−1((1 + C2)l + F l)E

σ

(max
∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

Applying Lemma 32 to X′′. Since X ′′ has R rows, and the correct Lewis weight bound,
we can simply apply Lemma 32 to the right side above

E
σ

(max
∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l
 ≤ 2l−1((1 + C2)l + F l))εlδ

2

A. Parulekar, A. Parulekar, and E. Price 49:15

Now, by Lemma 12, we know that ES [F l] ≤ εlδ. So, taking the expectation with respect to
the sampling matrices of either side of the above, we get, for small enough ε, δ,

E
S,σ

 max

∥Xβ∥=1

∣∣∣∣∣∣
kC1d2+N∑

k=1
σkx′′⊤

k β

∣∣∣∣∣∣
l
 ≤ 2l−1((1 + C2)l + εlδ)εlδ

2 ≤ 2l(1 + C2)l εlδ

2

So, solving the problem for ε′ = ε
2+2C2

gives the correct bound. ◀

Finally, we can show Lemma 28

Proof of Lemma 28. Take l = log(2n/δ), N = 5 (1+C1)C3
C

d
ε2 log d

εδ . Then, we apply Lemma
29, Lemma 31, and Lemma 34 to get

M ≤ 22lεlδ

which, solving the problem for ε/4, gives the correct bound. Then, applying Markov’s
inequality, we get that with probability δ,

max
∥Xβ∗−Xβ∥=1

|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)| ≤ ε

Finally, scaling up appropriately gives, in generality,

|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)| ≤ ε∥Xβ∗ − Xβ∥1 ◀

References
1 Xue Chen and Michał Dereziński. Query complexity of least absolute deviation regression via

robust uniform convergence. arXiv preprint arXiv:2102.02322, 2021.
2 Xue Chen and Eric Price. Active regression via linear-sample sparsification. In Alina

Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning Research, pages 663–695, Phoenix,
USA, June 25–28 2019. PMLR. URL: http://proceedings.mlr.press/v99/chen19a.html.

3 Kenneth L. Clarkson. Subgradient and sampling algorithms for l1 regression. In Proceedings
of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, page
257–266, USA, 2005. Society for Industrial and Applied Mathematics.

4 Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, page 183–192, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746567.

5 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney.
Sampling algorithms and coresets for \ell_p regression. SIAM Journal on Computing,
38(5):2060–2078, 2009.

6 Michał Derezinski and Michael W Mahoney. Determinantal point processes in randomized
numerical linear algebra. Notices of the American Mathematical Society, 68(1), 2021.

7 Michał Dereziński and Manfred K Warmuth. Unbiased estimates for linear regression via
volume sampling. arXiv preprint arXiv:1705.06908, 2017.

8 Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms for l 2
regression and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 1127–1136, 2006.

9 David Durfee, Kevin A. Lai, and Saurabh Sawlani. ℓ1 regression using lewis weights pre-
conditioning and stochastic gradient descent. In Sébastien Bubeck, Vianney Perchet, and
Philippe Rigollet, editors, Proceedings of the 31st Conference On Learning Theory, volume 75
of Proceedings of Machine Learning Research, pages 1626–1656. PMLR, July 06–09 2018. URL:
http://proceedings.mlr.press/v75/durfee18a.html.

APPROX/RANDOM 2021

http://proceedings.mlr.press/v99/chen19a.html
https://doi.org/10.1145/2746539.2746567
http://proceedings.mlr.press/v75/durfee18a.html

49:16 L1 Regression with Lewis Weights Subsampling

10 E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952. doi:10.1002/j.1538-7305.1952.tb01393.x.

11 T. Lattimore and C. Szepesvari. Bandit Algorithms. Cambridge University Press, 2020.
12 M. Ledoux and M. Talagrand. Comparison theorems, random geometry and some limit

theorems for empirical processes. Ann. Probab., 17(2):596–631, April 1989. doi:10.1214/aop/
1176991418.

13 Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends Mach.
Learn., 3(2):123–224, 2011. doi:10.1561/2200000035.

14 Aditya Parulekar, Advait Parulekar, and Eric Price. L1 regression with lewis weights sub-
sampling. CoRR, abs/2105.09433, 2021. arXiv:2105.09433.

15 Michel Talagrand. Embedding subspaces of l1 into ln 1. Proceedings of the American
Mathematical Society, 108(2):363–369, 1990. URL: http://www.jstor.org/stable/2048283.

16 Michel Talagrand. Embedding subspaces of lp in lpn. In J. Lindenstrauss and V. Milman,
editors, Geometric Aspects of Functional Analysis, pages 311–326, Basel, 1995. Birkhäuser
Basel.

17 David P. Woodruff. Sketching as a tool for numerical linear algebra. Found. Trends Theor.
Comput. Sci., 10(1–2):1–157, 2014. doi:10.1561/0400000060.

A Constant-factor approximation

▶ Theorem 35. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n]. Then, for any N that is
at least O (d log d), there is a sampling-and-reweighting distribution S({pi}n

i=1) satisfying∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and β̂ = arg min ∥SXβ − Sy∥1, we have

∥Xβ̂ − y∥1 ≤ 41 min
β

∥Xβ − y∥1

with probability 0.9.

Proof. Since we just want a constant factor approximation, we can take S to be the
distribution over constant probability Lewis weight ℓ1-subspace embeddings, so that ∥Xβ∥1 ≤
2∥SXβ∥1 with probability at least 0.9. We have

∥Xβ̂ − y∥1 ≤ ∥Xβ̂ − Xβ∗∥1 + ∥Xβ∗ − y∥1

≤ 2∥SXβ̂ − SXβ∗∥1 + ∥Xβ∗ − y∥1

≤ 2(∥SXβ̂ − Sy∥1 + ∥SXβ∗ − Sy∥1) + ∥Xβ∗ − y∥1

≤ 4(∥SXβ∗ − Sy∥1) + ∥Xβ∗ − y∥1

where in the last inequality, we have used the fact that β̂ is the minimizer of ∥SXβ − Sy∥1.
Now, by Markov’s inequality, with probability 0.9, ∥SXβ∗ − Sy∥1 ≤ 10∥Xβ∗ − y∥1. So, we
have with probability 0.81,

∥Xβ̂ − y∥1 ≤ 41∥Xβ∗ − y∥1

Since we only used a constant-factor subspace embedding, the row count would be O(d log d).
◀

B Proofs of Lemmas

▶ Lemma 10. Let X ∈ Rn×d, and let X ′ ∈ Rkn×d be X stacked on itself k times, with each
row scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
https://doi.org/10.1214/aop/1176991418
https://doi.org/10.1214/aop/1176991418
https://doi.org/10.1561/2200000035
http://arxiv.org/abs/2105.09433
http://www.jstor.org/stable/2048283
https://doi.org/10.1561/0400000060

A. Parulekar, A. Parulekar, and E. Price 49:17

Proof. Let {wi}n
i=1 be the Lewis weights of X, and let {w′

i}kn
i=1 be the Lewis weights of X ′.

Let xi be the ith row of X, and similarly let x′
i be the ith row of X ′. Let the ordering of the

rows be such that x′
jn+i = 1

k xi for 0 ≤ j < k. Let W be the diagonal matrix where Wii = wi.
Since Lewis weights are defined circularly, we just need to check that the suggested weights
work, and by uniqueness, they will be correct.

We know that w2
i = x⊤

i (X⊤W −1X)−1xi. Therefore, if we take W ′ to be the diagonal
matrix of size kn × kn, and set the diagonal entries to be the Lewis weights of X divided by
k, repeated k times, then we have

X ′⊤W ′−1X ′ =
kn∑
i=1

1
w′

i

x′
ix

′⊤
i =

kn∑
i=1

k

wi
x′

ix
′⊤
i = k

n∑
i=1

k

wi
· 1

k2 xix
⊤
i

In the last expression above, we are only summing over the first set of rows in X ′, which are
the scaled rows of X, and then multiplying by k since they are repeated k times. Now,

k
n∑

i=1

k

wi
· 1

k2 xix
⊤
i =

n∑
i=1

1
wi

xix
⊤
i = X⊤W −1X

So, finally, for an arbitrary row x′
jn+i, which corresponds to row xi in the original matrix,

we get its Lewis weight:

w′2
jn+i = x′⊤

jn+i(X ′⊤W ′−1X ′)−1x′
jn+i = 1

k2 x⊤
i (X⊤W −1X)−1xi = w2

i

k2

which proves that our suggested Lewis weights are consistent. ◀

▶ Lemma 29. Given a matrix X ∈ Rn×d, let S({pi}i∈[n]) be any sampling-and-reweighting
disribution, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik

= 1
pik

.
Let σk be independent Rademacher variables that are ±1 each with probability 0.5. Then,

M ≤ 2l E
S,σ

(max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (10)

Proof. We proceed by symmetrization. Since the matrix S scales the rows by the probability
they are picked with, the expectation of ∥SMβ∥1 is just ∥Mβ∥1, for any matrix M and
vector β. So, adding or subtracting the same term with a different sampling matrix S′,
(∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1)−(∥Xβ∗ − y∥1 − ∥Xβ − y∥1), is just adding a mean zero
term, and since taking the lth power of a maximum is convex, this can only increase the
expectation. That is,

E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| (∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) |

)l
]

≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| ((∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1))

−
((

∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1
)

− (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)
)

|
)l
]

So, we can bound M as

M ≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| (∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) −

(∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1) |
)l
]

APPROX/RANDOM 2021

49:18 L1 Regression with Lewis Weights Subsampling

Let ik be the indices chosen by S, and i′
k the indices chosen by S′. Rewriting this as a sum,

M ≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)
−

∑
k

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

Now, since ik and i′
k are independent and identically distributed, randomly swapping

elements from either sum does not change the distribution. This amounts to adding a random
sign σk to the terms, where σk = ±1 independently with probability 1/2. So,

M ≤ E
S,S′,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)
−

∑
k

σk

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

≤ E
S,S′,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣+
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

≤ 2l E
S,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣)l
]

Where the final inequality follows from (a + b)l ≤ 2l−1(al + bl). Putting these together,

M ≤ 2l E
S,σ

(max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (14)

◀

▶ Lemma 33 (Similar to [4] Lemma B.1). Let X be any matrix, and let W be the matrix that
has the Lewis weights of X in the diagonal entries. Let N ≥ d

ε2 log d
εδ . There exist constants

C1, C2, C3 such that we can construct a matrix X ′ such that
X ′ has C1dN rows,
X ′⊤W ′−1X ′ ⪰ X⊤W −1X, (where W ′ is the matrix that has the Lewis weights of X ′ in
the diagonal entries),
∥X ′β∥1 ≤ C2∥Xβ∥1 for all β,
the Lewis weights of X ′ are bounded by C3

N .

Proof. Given matrix X, we can use Lemma B.1 from [4] to construct a new matrix X1 that
satisfies

X1 has C1d2 rows,
X⊤

1 W −1
1 X1 ⪰ X⊤W −1X, (where W1 is the matrix that has the Lewis weights of X1 in

the diagonal entries),
∥X1β∥1 ≤ C2∥X1β∥1 for all β,
the Lewis weights of X1 are bounded by C3

d .

A. Parulekar, A. Parulekar, and E. Price 49:19

So, we can take this matrix and stack it on itself k = N
d times, while scaling each row down

by the same k. This will be our matrix X ′. X ′ will then have k = C1Nd rows, which satisfies
the first bullet. Also, by Lemma 10, this shrinks the Lewis weights by a factor of k, which
changes the Lewis weight upper bound to C3

kd = C3
N which is what we need. Now, since we

are repeating rows k times, but each row is scaled down by k, we have ∥X1β∥1 = ∥X ′β∥1
for all β. Therefore, ∥X ′β∥1 ≤ C2∥Xβ∥1 for all β. Finally, as in the proof of Lemma 10,
we know that since we have duplicated the rows of X1 k times but scaled them down by k,
X⊤

1 W −1
1 X1 = X ′⊤W ′−1X ′, and so we are done. ◀

B.1 Proof of Claims 15, 18, 19, 24, and 25

▷ Claim 15. For all β ∈ H, with probability at least 1 − δ,

(1 − ε)E(X,Y)∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y)∼P

[
|X⊤β − Y |

]
Proof of Claim 15. By assumption, we know that X⊤β, Y ∈ [−1, 1], so, |X⊤β − Y | ∈ [0, 2].
So, for fixed β, by Hoeffding’s on the rows of Xβ − y, we have that if n ≥ 8

ε2 log 2
δ′ , then

with probability at least 1 − δ′,(
1 − ε

2

)
E(X,Y)∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤

(
1 + ε

2

)
E(X,Y)∼P

[
|X⊤β − Y |

]
(15)

Now, we construct a ε
2d -covering S of the unit ℓ∞ ball H, with fewer than

(4d
ε

)d elements,
so that for any β, there is some βc ∈ S such that ∥β − βc∥∞ ≤ ε

2d . To do this, simply take
S = {β : βi = k ε

2d , k ∈ Z ∩ [−2d/ε, 2d/ε]}.
Note that X has rows on the hypercube. So, if we denote xi,j to be the entry of X in the

ith row and jth column, then xi,j ∈ {−1, 1}. Therefore, for any β,

∥Xβ∥1 =
n∑

i=1
|x⊤

i β| ≤
n∑

i=1

d∑
j=1

|xi,jβj | ≤
n∑

i=1

d∑
j=1

|βj | ≤ nd∥β∥∞

Therefore, we can apply Hoeffding’s, as in (15), with δ′ = δ
(

ε
4d

)d, and union bound over the
set S, to get that for any β ∈ S, with probability at least 1 − δ, (15) holds.

Then, for any β ∈ H, by the covering property, we can find some βc ∈ S such that

∥β − βc∥∞ ≤ ε

d
=⇒ ∥Xβ − Xβc∥1 ≤ nε. (16)

We have

∥Xβc − y∥1 − ∥Xβc − Xβ∥1 ≤ ∥Xβ − y∥1 ≤ ∥Xβ − Xβc∥1 + ∥Xβc − y∥1

So, combining (15) and (16), and dividing by n, we finally have that if n ≥
8
ε2

(
log 2

δ + d log 4d
ε

)
, then for all β ∈ H,

(1 − ε)E(X,Y)∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y)∼P

[
|X⊤β − Y |

]
◁

▷ Claim 18. For D, B as chosen above, l(β∗) = 1 − 2ε.

APPROX/RANDOM 2021

49:20 L1 Regression with Lewis Weights Subsampling

Proof of Claim 18. The ℓ1 error for the correct β is given by

E(X,Y)∼P

∣∣X⊤β∗ − Y
∣∣

= EX [EY ∼P (·|X)
∣∣|X⊤β∗ − Y |] by independence

= EX [(1
2 + ε)

∣∣X⊤β∗ − X⊤β∗| + (1
2 − ε)

∣∣X⊤β∗ + X⊤β∗∣∣]
= EX [(1 − 2ε)

∣∣X⊤β∗|] β∗ ∈ H
= 1 − 2ε ◁

▷ Claim 19. For D, B as chosen above, we have for all β ∈ B, l(β) − l(β∗) = 2ε
d ||β − β∗||1.

Proof of Claim 19.

E(X,Y)∼P

∣∣X⊤β − Y |
∣∣

= EX

[
EY ∼P (·|X)

∣∣X⊤β − Y |
∣∣]

= EX

[(
1
2 + ε

) ∣∣X⊤β − X⊤β∗∣∣+
(

1
2 − ε

)
|X⊤β + X⊤β∗∣∣]

= (1 − 2ε) + 2εEX [X⊤β − X⊤β∗]

= (1 − 2ε) + 2ε
1
d

||β − β∗||1

◁

▷ Claim 21. For any β, max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε

Proof of Claim 21.

l(β) + l(β) = 2 − 4ε + 2ε

d
∥β∗

(1) − β∥1 + 2ε

d
∥β∗

(2) − β∥1

≥ 2 − 4ε + 2ε

d
∥β∗

(2) − β∗
(1)∥1

= 2

=⇒ max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε, ∀β ∈ Rd

◁

▷ Claim 24. For all i ∈ [d], β ∈ Rd, we have ℓβ∗
(i)

(β) ≥ 1
4d with equality when β = β∗

(i)

Proof of Claim 24.

ℓβ∗
(i)

(β) = 1
d

∑
j ̸=i

|βj | +
1
2 + ε

d
|1 − βi| +

1
2 − ε

d
|βi|

≥
1
2 − ε

d
(|βi| + |1 − βi|) + 2ε

d
|1 − βi| ≥

1
2 − ε

d
◁

▷ Claim 25. Any β ∈ Rd can only satisfy ℓβ∗
(i)

(β̂) < 1
2d for one i ∈ [d].

A. Parulekar, A. Parulekar, and E. Price 49:21

Proof of Claim 25. Indeed, suppose β was such that ℓβ∗
(I)

(β), ℓβ∗
(J)

(β) < 1
2d . Then we must

have

1
2d

≥ ℓβ∗
(I)

(β)

= 1
d

∑
j ̸=I

|βj | +
1
2 − ε

d
(|βI | + |1 − βi|) + 2ε

d
|1 − βI |

≥ 1
d

∑
j ̸=I

|βj | +
1
2 − ε

d
+ 2ε

d
|1 − βI |

⇐⇒ ε ≥
∑
j ̸=I

|βj | + 2ε|1 − βI |

≥
∑
j ̸=I

|βj | + 2ε − 2ε|βI |

⇐⇒ 2|βI | ≥ ∥β∥1 + 2ε

Similarly for J , so we would have ∥β∥ ≥ |βI | + |βJ | ≥ ∥β∥1 + 2ε. ◁

APPROX/RANDOM 2021

Hitting Sets for Orbits of Circuit Classes and
Polynomial Families
Chandan Saha #

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Bhargav Thankey #

Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India

Abstract
The orbit of an n-variate polynomial f(x) over a field F is the set {f(Ax+b) : A ∈ GL(n,F) and b ∈
Fn}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials
computable by several natural and well-studied circuit classes and polynomial families. In particular,
we give quasi-polynomial time hitting sets for the orbits of:
1. Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-

polynomial time hitting sets for the orbits of the elementary symmetric polynomials.
2. Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial

time hitting set for the orbits of the family {IMM3,d}d∈N, which is complete for arithmetic
formulas.

3. Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-
polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top
fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the
sum-product polynomials.

4. Polynomials computable by occur-once formulas.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Hitting Sets, Orbits, ROABPs, Rank Concentration

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.50

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/015/

Acknowledgements We thank Rohit Gurjar, Ankit Garg, Neeraj Kayal, and Vishwas Bhargava for
several stimulating discussions at the onset of this work.

1 Introduction

Polynomial identity testing (PIT) is a fundamental problem in arithmetic circuit complexity.
PIT is the problem of deciding if a given arithmetic circuit computes an identically zero
polynomial. It is one of the few natural problems in BPP (in fact, in co-RP) for which we
do not know of deterministic polynomial-time algorithms. A probabilistic polynomial-time
algorithm for PIT follows from the DeMillo-Lipton-Schwartz–Zippel lemma [15,71,78]. PIT
has connections to other interesting problems like perfect matching [19, 41, 49, 53, 75], the
linear matroid intersection [33,55], and the maximum rank matrix completion [33,54]. The
deterministic primality testing algorithm in [4] derandomizes a particular instance of PIT over
a ring [2]. Also, multivariate polynomial factorization for general circuits can be efficiently
reduced to PIT and factoring univariate polynomials [37,38,48]. Moreover, derandomizing
PIT or the black-box version of PIT1 is essentially equivalent to proving arithmetic circuit
lower bounds.

1 An algorithm for the black-box PIT problem takes as input black-box access to a circuit. The algorithm
cannot “see” the circuit but can query it at any point [1, 34,36,57]. The black-box PIT problem for a
circuit class C is also known as the problem of constructing hitting sets for C

© Chandan Saha and Bhargav Thankey;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 50; pp. 50:1–50:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chandan@iisc.ac.in
mailto:thankeyd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.50
https://eccc.weizmann.ac.il/report/2021/015/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

In the past two decades, PIT algorithms and hitting set constructions have been studied
for various restricted classes/models of circuits. Bounding the read of every variable is a
natural restriction that has received a lot of attention. Two constant-read models, viz. read-
once oblivious algebraic branching programs (ROABPs) and constant-read (more generally,
constant-occur) formulas. These models are quiet powerful and capture many interesting
circuit classes. A polynomial-time PIT algorithm and a quasi-polynomial time hitting
set construction for ROABPs are known [3, 23, 61]. A quasi-polynomial time hitting set
construction for multilinear constant-read formulas was given by [10]. [5] obtained polynomial-
time constructible hitting sets for constant-depth, constant-occur formulas.

Hitting sets for orbits. In this paper, we study hitting set constructions for the orbits of
ROABPs and constant-occur formulas. The orbit of a polynomial f is the set of polynomials
obtained by applying invertible affine transformations on the variables of f , i.e., by replacing
the variables of f with linearly independent affine forms. The orbit of a circuit class is the
union of the orbits of the polynomials computable by the circuits in the class. Our reasons
for studying hitting sets for the orbits of ROABPs and constant-occur formulas are threefold:

1. The power of orbit closures: The set of affine projections of an n-variate polynomial
f(x) over a field F is aproj(f) := {f(Ax + b) : A ∈ Fn×n and b ∈ Fn}; the orbit of
f is the set orb(f) = {f(Ax + b) : A ∈ GL(n,F) and b ∈ Fn} ⊆ aproj(f). Affine
projections of polynomials computable by polynomial-size ROABPs or constant-occur
formulas have great expressive power. All polynomials computed by algebraic branching
programs and arithmetic formuals are affine projections of polynomial width ROABPs
and constant ROABPs, respectively. Similarly, all polynomials computed by depth-3
arithmetic circuits (which are quiet powerful [7,30,46,76,77]) and arithmetic formulas are
affine projections of read once formulas. The orbit of f being a mathematically interesting
subset of aproj(f), it is natural to ask if we can construct efficient hitting sets for the
orbits of the above-mentioned circuit classes. Moreover, orb(f) is not “much smaller”
than aproj(f), as the latter is contained in the orbit closure of f if char(F) = 0 (see the
full version [64] for more details).

2. Geometry of the circuit classes: Consider an n-variate polynomial f ∈ R[x] and let V(f)
be the variety (i.e., the zero locus) of f . The geometry of V(f) is preserved by any
rigid transformation on Rn. Computation of a set H ⊆ Rn that is not contained in
T (V(f)), for every rigid transformation T , would have to be “mindful” of the geometry
of V(f) and oblivious to the choice of the coordinate system. Computing such an H is
exactly the problem of constructing a hitting set for the polynomials {f(Rx + b) : R ∈
O(n,R) and b ∈ Rn}. We can generalize the problem slightly by replacing R ∈ O(n,R)
with A ∈ GL(n,R). A hitting set for ROABPs or constant-occur formulas does not
immediately give a hitting set for {f(Ax + b) : A ∈ GL(n,R) and b ∈ Rn}, as the
definitions of an ROABP and a constant-occur formula are tied to the choice of the
coordinate system. It is thus natural to ask if there is anything special about the geometry
of V(f) which can facilitate efficient constructions of hitting sets for orb(f).

3. Strengthening existing techniques: Finally, it is worth investigating whether the techniques
used to design hitting sets for ROABPs and constant-occur formulas can be applied or
strengthened or combined to give hitting sets for the orbits of these circuit classes.

C. Saha and B. Thankey 50:3

1.1 The models
Unless otherwise stated, we will assume that polynomials are over a field F. Read Once
Algebraic Branching Programs (ROABPs) are the read once versions of Algebraic Branching
Programs defined by Nisan [56]. While Nisan defined ABPs using directed graphs, we use
the following equivalent and conventional definition of an ROABP.

▶ Definition 1 (ROABP [23]). An n-variate, width-w read-once oblivious algebraic branching
program (ROABP) is a product of the form 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1, where 1 is
the w × 1 vector of all ones, and for every i ∈ [n], Mi(xi) is a w × w matrix whose entries
are in F[xi].

▶ Definition 2 (Commutative ROABP). An n-variate, width-w commutative ROABP is an
n-variate, width-w ROABP 1T ·M1(x1)M2(x2) · · ·Mn(xn) ·1, where for all i, j ∈ [n], Mi(xi)
and Mj(xj) commute with each other.

A polynomial f is s-sparse if it has at most s monomials with non-zero coefficients; these
monomials will be referred to as the monomials of f . A degree-d s-sparse polynomial can be
computed by a depth-2 circuit of size sd as well as by a width-s commutative ROABP.

▶ Definition 3 (Occur-k formula [5]). An occur-k formula is a rooted tree whose leaves are
labelled by s-sparse polynomials and whose internal nodes are sum (+) gates or product-power
(×⋏) gates. Each variable appears in at most k of the sparse polynomials that label the
leaves. The edges feeding into a + gate are labelled by field elements and have 1 as edge
weights, whereas the edges feeding into a ×⋏ gate have natural numbers as edge weights. A
leaf node computes the s-sparse polynomial that labels it. A + gate with inputs from nodes
that compute f1, ..., fm and with the corresponding input edge labels α1, ..., αm, computes
α1f1 + · · ·+ αmfm. A ×⋏ gate with inputs from nodes that compute f1, ..., fm and with the
corresponding input edge weights e1, ..., em, computes fe1

1 · · · fem
m . The formula computes the

polynomial that is computed by the root node.
The size of an occur-k formula is the weighted sum of all the edges in it (i.e., an edge is

counted as many times as its edge weight) plus the sizes of the depth-2 circuits computing the
s-sparse polynomials at the leaves. The depth of an occur-k formula is equal to the depth
of the underlying tree plus 2, to account for the depth of the circuits computing the sparse
polynomials at the leaves.

Read-k formulas have been studied intensely in the literature (see Section 1.4). Occur-k
formulas generalize read-k formulas in two ways – the leaves are labelled by arbitrary sparse
polynomials instead of just variables, and powering gates are included along with the usual
sum and product gates. These generalizations help make the occur-k model complete 2, and
capture other interesting circuit classes (such as multilinear depth-4 circuits with constant top
fan-in [39, 65]) and polynomial families (such as the power symmetric polynomials). Besides,
unlike some prior work [10, 39, 65], there is no restriction of multilinearity on the model. We
will identify the variable set x = {x1, . . . , xn} with the column vector (x1 x2 · · · xn)T .

▶ Definition 4 (Orbits of polynomials). Let f(x) be an n-variate polynomial over a field F.
The orbit of f , denoted by orb(f), is the set {f(Ax) : A ∈ GL(n,F)}. The orbit of a set of
polynomials C, denoted by orb(C), is the union of the orbits of the polynomials in C.

2 For example, the power symmetric polynomial xn
1 + . . . + xn

n cannot be computed by a read-k formula
for any k < n, but it can be computed by an occur-once formula.

APPROX/RANDOM 2021

50:4 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

The results we present in this paper hold even if we define the orbit of an n-variate polynomial
f as orb(f) = {f(Ay + b) : |y| = m ≥ n, A ∈ Fn×m has rank n, and b ∈ Fn}. However,
we work with this slightly conventional definition of orb(f) for simplicity of exposition, and
because the proofs in the general setting are nearly the same as the proofs we present here.
By the “orbit of a circuit class C”, we mean the union of the orbits of the polynomials
computable by the circuits in the class C. Our main results are efficient constructions of
hitting sets for the orbits of commutative ROABPs and constant-width ROABPs (under low
individual degree restriction), and the orbits of constant-depth constant-occur formulas and
occur-once formulas.

1.2 Our results
▶ Definition 5 (Hitting set). Let C be a set of n-variate polynomials. A set of points H ⊆ Fn

is a hitting set for C if for every non-zero f ∈ C, there is a point a ∈ H such that f(a) ̸= 0.

By a “T-time hitting set”, we mean that the hitting set can be computed in T time. The
individual degree of a monomial is the largest of the exponents of the variables that appear
in it. The individual degree of a polynomial is the largest of the individual degrees of its
monomials. We are now ready to state our results.

▶ Theorem 6 (Hitting sets for the orbits of commutative ROABPs with low individual degree).
Let C be the set of n-variate polynomials with individual degree at most d that are computable
by width-w commutative ROABPs. If |F| > n2d, then a hitting set for orb(C) can be computed
in (nd)O(d log w) time.

We say an n-variate polynomial f(x1, x2, . . . , xn) can be expressed as a sum of s products
of univariates if f =

∑
i∈[s]

∏
j∈[n] fi,j(xj), where each fi,j(xj) is a univariate polynomial in

xj . This model is subsumed by commutative ROABPs and has found important applications
in several other works [30,63,66]. The above theorem implies a ndO(d log s) time hitting set
for this model. As the elementary symmetric polynomials and low individual degree sparse
polynomials are special cases of low individual degree sum of products of univariates, we
also get quasi-polynomial hitting sets for these models. It turns out though that for the
particular case of sparse polynomials it is possible to remove the individual degree restriction
from the above theorem. This is due to an independent and simultaneous work by [51]. We
state their result next.

▶ Theorem 7 (Hitting sets for the orbits of sparse polynomials [51]). Let C be the set of
n-variate, s-sparse polynomials of degree at most d. If |F| > nd and char(F) = 0 or > d,
then a hitting set for orb(C) can be computed in (nd)O(log s) time.

The above theorem plays a basic role in the proofs of Theorem 9 and Theorem 10. There,
we apply the algebraic independence based analysis from [5,11] and the Shpilka-Volkovich
(SV) generator based argument from [73], respectively, to reduce to the case of constructing
hitting sets for the orbits of sparse polynomials. While in the original version of our work [64]
we applied Theorem 6 in the base case of the proofs of Theorem 9 and 10, here we plug-in
Theorem 7 in the base case. This helps us forgo the low individual degree restriction that
was present in these theorems in the original version.

▶ Theorem 8 (Hitting sets for the orbits of multilinear constant-width ROABPs). Let C be
the set of n-variate multilinear polynomials that are computable by width-w ROABPs. If
|F| > nO(w4), then a hitting set for orb(C) can be computed in nO(w6·log n) time.

C. Saha and B. Thankey 50:5

The theorem gives a quasi-polynomial time hitting set for orb(IMM3,d), which is complete
for the class of arithmetic formulas under affine projections (in fact, under p-projections)
[12]. The set of affine projections of IMM2,d is also quite rich, despite the fact that there
are simple quadratic polynomials that are not in aproj(IMM2,d) for any d [8, 62]. This is
because hitting sets for aproj(IMM2,d) give hitting sets for depth-3 circuits [62]. Moreover,
orb(IMM2,d) captures the orbit closures of arithmetic formulas [13]. The above theorem
implies a quasi-polynomial time hitting set for orb(IMM2,d).

▶ Theorem 9 (Hitting sets for the orbits of constant-depth, constant-occur formulas). Let
C be the set of n-variate, degree-D polynomials that are computable by depth-∆, occur-k
formulas of size s. Let R := (2k)2∆·2∆ . If char(F) = 0 or > (2ks)∆3R, then a hitting set for
orb(C) can be computed in (nRD)O(R(log R+∆ log k+∆ log s)+∆R) time. If the leaves are labelled
by b-variate polynomials, then a hitting set for orb(C) can be computed in (nRD)O(Rb+∆R)

time. In particular, if ∆ and k are constants, then the hitting sets can be constructed in time
(nD)O(log s) and (nD)O(b), respectively.

The above theorem gives quasi-polynomial hitting sets for the orbits of two other in-
teresting models viz. multilinear depth-4 circuits with constant top fan-in and the class of
polynomials C(f1, . . . , fm), where C is a low-degree circuit and f1, . . . , fm are sparse poly-
nomials with bounded transcendence degree [11]. The theorem also yields polynomial-time
hitting sets for the orbits of the power symmetric polynomial and the sum-product polynomial
SPn,D =

∑
i∈[n]

∏
j∈[D] xi,j . Prior to our work, [47] gave a polynomial-time hitting set for

the orbit of power symmetric polynomials using a different argument.

▶ Theorem 10 (Hitting sets for the orbits of occur-once formulas). Let C be the set of n-variate,
degree-D polynomials that are computable by occur-once formulas whose leaves are labelled
by s-sparse polynomials. If |F| > nD and char(F) = 0 or > D, then a hitting set for orb(C)
can be computed in (nD)O(log n+log s) time. If the leaves are labelled by b-variate polynomials,
then a hitting set for orb(C) can be computed in (nD)O(log n+b) time.

The independent and concurrent work [51] gave (among other results) a quasi-polynomial
time hitting set for the orbits of read-once formulas. We note that this result also follows
from the second part of the above theorem which is already present in the original version of
this work [64]. The proofs of Theorems 9 and 10 can be found in the full version [64].

1.3 Proof techniques
Let us briefly discuss the techniques that go into proving the above results.

Commutative ROABPs with low individual degree. Theorem 6 is proved by adapting the
rank concentration by translation technique of [6] to work for the orbits of commutative
ROABPs. Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a commutative ROABP and
F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n,F), let g = f(Ax) and G = F (Ax).
Suppose that A maps xi to a linear form ℓi(x) for every i ∈ [n], and let yi = ℓi(x). Then,
g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn). We show that
if g ̸= 0, then there exist explicit “low” degree polynomials t1(z), . . . , tn(z), where z is
a “small” set of variables, such that g(x1 + t1(z), . . . , xn + tn(z)) has a “low” support
monomial. This is done by proving that G(x1 + t1(z), . . . , xn + tn(z)) has low support rank
concentration over F(z) in the “y-variables” (see Section 2.2 for the meaning of low support
rank concentration.). That done, we use the assumption that f has low individual degree to
argue that g(x1 + t1(z), . . . , xn + tn(z)) also has a low support x-monomial. This and the
fact that |z| is small imply that g(x1 + t1(z), . . . , xn + tn(z)), when viewed as a polynomial
in F[x, z], has a low support monomial. Finally, we use the SV generator to hit g.

APPROX/RANDOM 2021

50:6 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

Our analysis differs from that in [6] at a crucial point: In [6], it was shown that
F (x + t) = M1(x1 + t1)M2(x2 + t2) · · ·Mn(xn + tn) has low support rank concentration
over F(t) if the nonzeroness of every polynomial in a certain collection of polynomials –
each in a “small” set of t-variables – is preserved. As each polynomial in the collection
has “few” t-variables, a substitution ti ← ti(z) that preserves its nonzeroness is relatively
easy to construct. But the collection of polynomials that we need to preserve to show low
support rank concentration for G(x + t) is such that every polynomial in the collection has
potentially all the t-variables. However, we are able to argue that each of these polynomials
still has a low support t-monomial. This then helps us construct a substitution ti 7→ ti(z)
that preserves the nonzeroness of these polynomials.

Multilinear constant-width ROABPs. Theorem 8 is proved by combining the rank con-
centration by translation technique of [6] with the merge-and-reduce idea from [23] and
[21]. Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear, width-w ROABP; here
Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any
A ∈ GL(n,F), let g = f(Ax) and G = F (Ax). For i ∈ [n], suppose that A maps
xi 7→ ℓi(x), where ℓi is a linear form, and let yi = ℓi(x) and y = {y1, . . . , yn}. Then,
g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn). Much like
in the case of commutative ROABPs, we show that if g ̸= 0, then there exist explicit
“low” degree polynomials t1(z), . . . , tn(z), where z is a “small” set of variables such that
G(x1 + t1(z), . . . , xn + tn(z)) has “low” support rank concentration in the “y-variables”.
While in the rank concentration argument for commutative ROABPs the x-variables were
translated only once, here the translations can be thought of as happening sequentially and
in stages. There will be ⌈log n⌉ stages with each stage also consisting of multiple translations.
After the p-th stage, the product of any 2p consecutive matrices in G will have low support
rank concentration in the y-variables. Thus, after ⌈log n⌉ stages, we will have low support
rank concentration in the y-variables for G(x1 + t1(z), . . . , xn + tn(z)).

As in the case of commutative ROABPs, we show that G(x + t) has low support
rank concentration if each polynomial in a certain collection of non-zero polynomials in the
t-variables is kept non-zero by the substitution ti 7→ ti(z). However, in this case, it is trickier
to show that these polynomials have low support t-monomials. We do this by arguing that
each such polynomial can be expressed as a ratio of a polynomial that contains a low support
t-monomial and a product of linear forms in the t-variables.

Constant-depth, constant-occur formulas. We prove Theorem 9 by combining the algebraic
independence based technique in [5] with Theorem 7. Let f be a constant-depth, constant-
occur formula. We first show that it can be assumed without loss of generality that the
top-most gate of f is a + gate whose fan-in is upper bounded by the occur of f , say k. In
[5], they were able to upper bound the top fan-in by simply translating a variable by 1 and
subtracting the original formula. However, the same idea does not quite work here, because
we have only access to a polynomial in the orbit of f . To upper bound the top fan-in, we
show that there exists a variable xi such that ∂f

∂xi
is a constant-depth, constant-occur formula

with top fan-in bounded by k. Then, using the chain rule of differentiation, we show that one
can construct a hitting set generator for orb(f) from a generator for orb

(
∂f
∂xi

)
; this means

that we can shift our attention to f ′ = ∂f
∂xi

, which we shall henceforth refer to as f .
Let f = f1 + · · · + fk, A ∈ GL(n,F), g = f(Ax), g = g1 + . . . + gk where for all

i ∈ [k], gi = fi(Ax). It was shown in [5] that a homomorphism, which is faithful (see
Definition 17) to f1, . . . , fk, is a hitting set generator for f . In our case, this translates to ‘a

C. Saha and B. Thankey 50:7

homomorphism that is faithful to g1, . . . , gk is a hitting set generator for g ’. [5] also showed
that the problem of constructing a homomorphism ϕ that is faithful to f1, . . . , fk reduces to
constructing a homomorphism ψ that preserves the determinant of a certain matrix. This
matrix is an appropriate sub-matrix of the Jacobian of f1, . . . , fk. Also, it was argued that
its determinant is a product of sparse polynomials and so ψ was obtained from [45]. We use
a similar argument, along with the chain rule, to show that the problem of constructing a
homomorphism ϕ that is faithful to g1, . . . , gk reduces to constructing a homomorphism ψ

that preserves the determinant of a sub-matrix of the same Jacobian evaluated at Ax. As
this determinant is a product of polynomials in the orbit of sparse polynomials, we can use
Theorem 7 to construct such a ψ.

Occur-once formulas. We prove Theorem 10 by building upon the arguments in [73] and
linking it with Theorem 7. At first, we show two structural results for occur-once formulas.
These lemmas are generalizations of similar structural results for read-once formulas shown
in [73]. Much like in [73], the structural results help us show that for a “typical” occur-once
formula f with a + gate as the root node, there exists a variable xi such that ∂f

∂xi
is a product

of occur-once formulas, each of which has at most half as many non-constant leaves as f .
We then use this fact to show that a hitting-set generator for orb(f) can be constructed
from a generator for orb

(
∂f
∂xi

)
. [73] uses the derivatives of f in a similar way to show that a

generator for f can be constructed from that for ∂f
∂xi

using the SV generator (see Definition
12). However, in our case, we want a generator for orb(f) and not just for f . For this reason,
we first use the chain rule for derivatives to relate the gradient of a g ∈ orb(f) with that of f ,
and then argue that there exists a xj such that a generator for orb

(
∂f
∂xi

)
is also a generator

for ∂g
∂xj

. Finally, we use this generator for ∂g
∂xj

to construct a generator for g. The argument
then proceeds by induction on the number of non-constant leaves. In the base case, we need
a hitting set generator for orbits of sparse polynomials which we get from Theorem 7.

1.4 Related work
We give a brief account of known results on PIT and hitting sets for arithmetic circuits.
The results on hitting sets for the constant-read models are most relevant to our work here.
However, for the sake of completeness, we mention a few other prominent results.

Constant-read models. [73] gave a polynomial-time PIT algorithm and a quasi-polynomial
time hitting set construction for sums of constantly many preprocessed read-once formulas
(PROFs). [52] later gave a polynomial time hitting set for the same model. [10] gave
a quasi-polynomial time hitting set construction for multilinear sparse-substituted read-k
formulas, wherein the leaves are replaced by sparse polynomials and every variable appears
in at most k of the sparse polynomials. Observe that the models studied in all three works
are special cases of constant occur formulas.

A polynomial-time PIT for ROABPs follows from the PIT algorithm for non-
commutative formulas [61]. [23] gave quasi-polynomial time hitting sets for ROABPs,
when the order of the variables is known. Building on the rank concentration by translation
technique from [6] and the merge-and-reduce idea from [23], [21] gave a quasi-polynomial
time hitting set construction for low individual degree ROABPs. Finally, [3] obtained a
quasi-polynomial time constructible hitting set for ROABPs using a different and simpler
method, namely basis isolation, which can be thought of as a generalization of the monomial
isolation method in [45]. [32] designed hitting sets for sums of constantly many ROABPs

APPROX/RANDOM 2021

50:8 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

in quasi-polynomial time; they also gave a polynomial-time PIT algorithm for the same
model. Recently, more efficient constructions of hitting sets for ROABPs have been ob-
tained [27], sometimes under additional restrictions on the model such as commutativity
and constant-width [31]. For read-k oblivious ABPs, [9] obtained a subexponential-time PIT
algorithm.

Orbits and orbit closures. A polynomial-time hitting set for the orbit of the power symmetric
polynomial PSymn,d = xd

1 + . . .+ xd
n was given by [47]. As that PSym is computable by a

depth-2 occur-once formula, Theorem 9 subsumes this result. Our hitting-set construction is
different from the one in [47] which involves the Hessian matrix, whereas the proofs here work
with just the first order derivatives. Very recently and independent of our work, [51] gave
quasi-polynomial time hitting sets for the orbits of sparse polynomials and read-once formulas.
For the orbit closures of polynomials that are computable by low-degree, polynomial-size
circuits (i.e., VP circuits), [24, 28] gave PSPACE constructions of hitting sets.

Constant-depth models. The polynomial-time hitting set construction for depth-2 circuits
(i.e., sparse polynomials) in [45] is one of the widely used results in black-box PIT. [16]
gave a quasi-polynomial time PIT algorithm for depth-3 circuits with constant top fan-in.
Later [44] improved the complexity to polynomial-time. Using ideas developed in [16], and
[25], [40, 43, 70] gave polynomial-time constructible hitting sets for depth-3 circuits with
constant top fan-in over Q. Ultimately, a combination of ideas from the [44] and [25] led to a
polynomial-time hitting set construction for the same model over any field [69,70]. Meanwhile,
[42,66] gave polynomial-time PIT for depth-3 powering circuits. Using ideas from [44] and
[66], [63] gave polynomial-time PIT for the sum of a depth-3 circuit with constant top fan-in
and a semi-diagonal circuit (which is a special kind of a depth-4 circuit). [62] showed that
polynomial-time PIT (resp. hitting sets) for aproj(IMM2,d) implies polynomial-time PIT
(resp. hitting sets) for depth-3 circuits.

A quasi-polynomial time hitting set for set-multilinear depth-3 circuits with known
variable-partition was given by [22]. Independently and simultaneously, [6] gave a quasi-
polynomial time hitting set for set-multilinear depth-3 circuits with unknown variable-
partition (and more generally, for constant-depth pure formulas [58]) using a different
technique, namely rank concentration by translation. Set-multilinear depth-3 circuits (in fact,
pure formulas) form a subclass of ROABPs. [14] gave subexponential-time hitting sets for
multilinear depth-3 and depth-4 formulas (and more generally, for constant-depth multilinear
regular formulas) by reducing the problem to constructing hitting sets for ROABPs. For
multilinear depth-4 circuits with constant top fan-in, [39] gave a quasi-polynomial time
hitting set. This was improved to a polynomial-time hitting set in [65]. Multilinear depth-4
circuits with constant top fan-in form a subclass of depth-4 constant-occur formulas. [5]
gave a unifying method based on algebraic independence to design polynomial-time hitting
sets for both depth-3 circuits with constant top fan-in and constant-depth, constant-occur
formulas. A generalization of depth-3 powering circuits to depth-4 is sums of powers of
constant degree polynomials; [20] gave a quasi-polynomial time hitting set for this model.
Recently, a sequence of work [59, 60, 72] led to a polynomial-time hitting set for depth-4
circuits with top fan-in at most 3 and bottom fan-in at most 2 via a resolution of a conjecture
of [11,29] on the algebraic rank of the factors appearing in such circuits.

Edmonds’ model. An important special case of PIT is the following problem: given
f = det(A0 +

∑
i∈[n] xiAi), where Ai ∈ Fn×n is a rank-1 matrix for every i ∈ [n] and

A0 ∈ Fn×n is an arbitrary matrix, check if f = 0 [17]. This case of PIT, played an instrumental

C. Saha and B. Thankey 50:9

role in devising fast parallel algorithms for several problems such as perfect matching, linear
matroid intersection and maximum rank matrix completion [19, 33, 41, 49, 53–55, 75]. A
polynomial-time PIT for this model is known [18, 26, 35, 50, 54]. [33] gave a quasi-polynomial
time hitting set via a certain derandomization of the Isolation Lemma [53].

We refer the reader to the surveys [67,68,74] for more details on some of the results
and the models mentioned above.

2 Preliminaries

▶ Definition 11 (Hitting set generator). Let C be a set of n-variate polynomials and t ∈ N.
A polynomial map G : Ft → Fn is a hitting set generator for C if ∀f ∈ C \ {0}, we have
f ◦ G ̸= 0.

We say the number of variables of G is t, and the degree of G – denoted by deg(G) – is the
maximum of the degrees of the n polynomials that define G. We will denote the t-variate
polynomial f ◦G by f(G). By treating a matrix A ∈ Fn×n as a linear transformation from Fn

to Fn, we will denote the polynomial map A ◦ G by AG and the t-variate polynomial f ◦AG
by f(AG). If the defining polynomials of G have degree d0 and the degree of the polynomials
in C is at most D, then the degree of f(G) is at most d0D. Thus, if we are given the defining
polynomials of G, then we can construct a hitting set for C in time poly(n, (d0D)t) using the
Schwartz-Zippel lemma, provided also that |F| > d0D.

2.1 The Shpilka-Volkovich generator
▶ Definition 12 (The Shpilka-Volkovich hitting set generator [73]). Assume that |F| ≥ n and
let α1, ..., αn be distinct elements of F. For i ∈ [n], let Li(y) :=

∏
j∈[n],j ̸=i

y−αj

αi−αj
be the i-th

Lagrange interpolation polynomial. Then, for t ∈ N, the Shpilka-Volkovich (SV) generator
GSV

t : F2t → Fn is defined as GSV
t :=

(
G(1)

t , ...,G(n)
t

)
where, G(i)

t (y1, ..., yt, z1, ..., zt) =∑t
k=1 Li(yk) · zk.

Notice that deg
(
G(i)

t

)
= n, and GSV

t+1|(yt+1=αi) = GSV
t + ei · zt+1, where ei is the i-th

standard basis vector of Fn. Thus, Img
(
GSV

t

)
⊆ Img

(
GSV

t+1
)

and, continuing in this manner,
Img

(
GSV

t

)
⊆ Img

(
GSV

t′

)
for any t′ ≥ t.

▶ Observation 13. Let f ∈ F[x] be a non-zero polynomial that depends on only b of the x
variables, and g ∈ orb(f). Then, g has a monomial of support at most b and g(GSV

b) ̸= 0.

The above observation is proved in the full version [64]. The following observation,
which allows us to construct a hitting set generator for f from a hitting set generator for ∂f

∂xi

is used crucially in the proofs of Theorems 9 and 10 and is proved in the full version [64].

▶ Observation 14. Let f ∈ F[x] be an n-variate, degree d polynomial, and for some m ∈ N,
let G : Fm → Fn be a polynomial map of degree at most d′. If |F| > dd′ and there is an i ∈ [n]
such that ∂f

∂xi
(G) ̸= 0, then f(G + GSV

1) is not a constant.

2.2 Low support rank concentration
Let F be a polynomial in x-variables with coefficients from Kw×w, where K is a field and
w ∈ N. For an m ∈ N, we say that F has support-m rank concentration over K if the
coefficient of every monomial in F is in the K-span of the coefficients of the monomials of
support at most m in F . Support of a monomial xα will be denoted as Supp (xα). We prove
the below observation in the full version [64].

APPROX/RANDOM 2021

50:10 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

▶ Observation 15. Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 ∈ F[x] be computable
by an ROABP of width w, and F = M1(x1)M2(x2) · · ·Mn(xn). For an m ∈ N and
t1(z), . . . , tn(z) ∈ F[z], where z is a set of variables different from x, suppose that
F (x + t(z)) := M1(x1 + t1(z))M2(x2 + t2(z)) · · ·Mn(xn + tn(z)) ∈ F(z)w×w[x] has support-m
rank concentration over F(z). Then, f(x1 + t1(z), . . . , xn + tn(z)), when viewed as a poly-
nomial in x-variables with coefficients from F[z], has an x-monomial of support at most m,
provided f ̸= 0.

2.3 Algebraic rank and faithful homomorphisms
We say that polynomials f1, . . . , fm ∈ F[x] are algebraically independent over F, if they
do not satisfy any non-trivial polynomial equation over F, i.e., for any p ∈ F[y1, . . . , ym],
p(f1, . . . , fm) = 0 only if p = 0. For f = (f1, . . . , fm), the transcendence degree (i.e., the
algebraic rank) of f over F is the cardinality of any maximal algebraically independent subset
of {f1, . . . , fm} over F. The notion of algebraic rank is well defined as algebraic independence
satisfies the matroid properties.

For f = (f1, . . . , fm) ∈ F[x]m, let Jx(f) denote the Jacobian matrix of f . The following
well-known lemma relates the transcendence degree of f over F – denoted by tr-degF(f) – to
the rank of the Jacobian.

▶ Lemma 16 (The Jacobian criterion). Let f = (f1, . . . , fm) ∈ F[x]m be a tuple of polynomials
of degree at most D and tr-degF(f) = r. If char(F) = 0 or char(F) > Dr, then tr-degF(f) =
rankF(x) Jx(f).

▶ Definition 17 (Faithful homomorphisms). A homomorphism ϕ : F[x]→ F[z] is said to be
faithful to f = (f1, . . . , fm) ∈ F[x]m if tr-degF (f) = tr-degF (ϕ(f)).

▶ Lemma 18 (Theorem 2.4 in [5]). If a homomorphism ϕ : F[x] → F[z] is faithful to
f = (f1, . . . , fm) ∈ F[x]m , then for any p ∈ F[y1, . . . , ym], p(f) = 0 if and only if p(ϕ(f)) = 0.

The following lemma was proved in [5, 11].

▶ Lemma 19 (Lemma 2.7 of [5]). Let f = (f1, ..., fm) be a tuple of polynomials of degree at
most D, tr-degF(f) ≤ r, and char(F) = 0 or > Dr. Let ψ : F[x]→ F[z] be a homomorphism
such that rankF(x)Jx(f) = rankF(z)ψ(Jx(f)). Then, the map ϕ : F[x]→ F[z, t, y1, ..., yr] that,
for all i ∈ [n], maps xi →

(∑r
j=1 yjt

ij
)

+ ψ(xi) is faithful to f .

We will need the following observation in our proofs. It is proved in the full version [64].

▶ Observation 20. Let f = (f1, . . . , fm) ∈ F[x]m be a tuple of polynomials with tr-degF(f) = r.
For any A ∈ GL(n,F), let gi = fi(Ax) ∀i ∈ [m] and g = (g1, . . . , gm). Then, tr-degF(g) = r.

3 Hitting sets for the orbits of commutative ROABPs

The strategy. (Recap) Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn)·1 be a width-w commutative
ROABP; here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn).
For any A ∈ GL(n,F), let g = f(Ax) and G = F (Ax). For i ∈ [n], suppose that A maps
xi 7→ ℓi(x), where ℓi is a linear form, and let yi = ℓi(x) and y = {y1, . . . , yn}. Then,
g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn). We will show that
if g ̸= 0, then there exist explicit “low” degree polynomials t1(z), . . . , tn(z), where z is a “small”
set of variables such that g(x1 + t1(z), . . . , xn + tn(z)) has a “low” support monomial. This

C. Saha and B. Thankey 50:11

will be done by proving that G(x1 + t1(z), . . . , xn + tn(z)) has low support rank concentration
in the “y-variables”. Applying Observation 15, we will get that g(x1 + t1(z), . . . , xn + tn(z))
has a low support y-monomial. This will then imply that g(x1 + t1(z), . . . , xn + tn(z)) has a
low support x-monomial, provided f has low individual degree. Finally, we will plug in the
SV generator to preserve the non-zeroness of g. More precisely, we will prove the following
theorem at the end of Section 3.2.

▶ Theorem 21. Let f be an n-variate polynomial with individual degree at most d that is
computable by a width-w commutative ROABP. If |F| ≥ n, then GSV

(2⌈log w2⌉(d+1)+1) is a hitting
set generator for orb(f).

Notations and conventions. In the analysis, we will treat t1(z), . . . , tn(z) as formal variables
t = (t1, . . . , tn) while always keeping in mind the substitution map ti 7→ ti(z). For i ∈ [n],
let ri = ℓi(t). For S ⊆ [n], define rS = {ri : i ∈ S}. The F-linear independence of ℓ1, . . . , ℓn

allows us to treat y and r as sets of formal variables. Notice that in this notation, G(x + t) =
M1(y1 + r1)M2(y2 + r2) · · ·Mn(yn + rn). Let A denote the matrix algebra Fw×w. For
i ∈ [n], let Mi(yi) =

∑d
ei=0 ui,ei

yei
i , where ui,ei

∈ A and Mi(yi + ri) =
∑d

bi=0 vi,bi
ybi

i , where
vi,bi ∈ A[ri] ⊂ A[t]. As f is a commutative ROABP, M1(y1), . . . ,Mn(yn) commute with each
other and hence ui,ei

and uj,ej
also commute for i ̸= j. The following observation, which we

prove in the full version [64], implies that vi,ei and vj,ej also commute for i ̸= j.

▶ Observation 22. For every i ∈ [n] and bi, ei ∈ {0, . . . , d}, vi,bi =
∑d

ei=0
(

ei

bi

)
· rei−bi

i · ui,ei

and ui,ei
=

∑d
bi=0

(
bi

ei

)
· (−ri)bi−ei · vi,bi

, where
(

a
b

)
= 0 if a < b.

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector (bi1 , bi2 , . . . , bi|S|)
will be denoted by (bi : i ∈ S). Let Supp (b) denote the support of the vector b which is
defined as the number of non-zero elements in it.Define the parameter m := 2

⌈
logw2⌉

+ 1.

3.1 The goal: low support rank concentration
We set ourselves the goal of proving that there exist explicit degree-n polynomials t1(z),
. . . , tn(z), where |z| = 2m, such that G(x1 + t1(z), . . . , xn + tn(z)) = M1(y1 + r1)M2(y2 +
r2) · · ·Mn(yn + rn) ∈ A[r1, . . . , rn][y] has support-(m− 1) rank concentration over F(z) in
the y-variables. We will show in this and the next section that this happens if all polynomials
in a certain collection of non-zero polynomials

{
hS(rS) : S ⊆

([n]
m

)}
⊆ F[r1, . . . , rn], remain

non-zero under the substitution ti 7→ ti(z). The following lemma, proved in the full version
[64], will help us achieve this goal.

▶ Lemma 23. Let G, t, z,y and rS be as defined above. Suppose that the following two
conditions are satisfied:
1. For every S ⊆

([n]
m

)
and (bi : i ∈ S) ∈ {0, . . . , d}m, there is a non-zero polynomial hS(rS)

such that hS(rS) ·
∏

i∈S vi,bi ∈ F[t]-span
{∏

i∈S vi,b′
i

: Supp (b′
i : i ∈ S) < m

}
.

2. There exists a substitution ti 7→ ti(z) that keeps hS(rS) non-zero for all S ⊆
([n]

m

)
.

Then, for every b = (bi : i ∈ [n]) ∈ {0, . . . , d}n,

∏
i∈[n]

vi,bi
∈ F(z)-span

 ∏
i∈[n]

vi,b′
i

: Supp (b′
i : i ∈ [n]) < m

 ,

and G(x1 + t1(z), . . . , xn + tn(z)) has support-(m − 1) rank concentration over F(z) in
y-variables.

APPROX/RANDOM 2021

50:12 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

3.2 Achieving rank concentration

We will now see how to satisfy conditions 1 and 2 of Lemma 23 such that degrS
(hS(rS))

≤ mdm+1, ti(z) is an explicit degree-n polynomial, and |z| = 2m. Assume wlog that
S = [m]. For b = (b1, . . . , bm) and e = (e1, . . . , em) in {0, . . . , d}m, define

(b
e
)

:=
∏

i∈[m]
(

bi

ei

)
,

where,
(

bi

ei

)
= 0 if bi < ei. Also, let vb :=

∏
i∈[m] vi,bi and ue :=

∏
i∈[m] ui,ei . Define

r := (−r1, . . . ,−rm), rb :=
∏

i∈[m](−ri)bi and r−e :=
∏

i∈[m](−ri)−ei . We now define some
vectors and matrices by fixing an arbitrary order on the elements of {0, . . . , d}m.

Let V := (vb : b ∈ {0, . . . , d}m) and U := (ue : e ∈ {0, . . . , d}m); V is a row vector
in A[r](d+1)m whereas U is a row vector in A(d+1)m . Let C := diag(rb : b ∈ {0, . . . , d}m)
and D := diag(r−e : e ∈ {0, . . . , d}m); both C and D are (d + 1)m × (d + 1)m diagonal
matrices. Let M be a (d+ 1)m × (d+ 1)m matrix whose rows and columns are indexed by
b ∈ {0, . . . , d}m and e ∈ {0, . . . , d}m respectively. The entry of M indexed by (b, e) contains(b

e
)
. We now make the following claim which is proved in the full version [64].

▷ Claim 24. Let U, V, C, M and D be as defined above. Then, U = V CMD.

In [6], a very similar equation was called the transfer equation and we will refer
to U = V CMD by the same name. Let F := {b ∈ {0, . . . , d}m : Supp(b) = m}; clearly,
|F | = dm. Also, let us call the set of all vectors (ne : e ∈ {0, . . . , d}m) ∈ F(d+1)m for which∑

e∈{0,...,d}m neue = 0 the null space of U . Then, we have the following lemma.

▶ Lemma 25. There are vectors {nb : b ∈ F} in the null space of U such that the following
holds: Let N be the (d+ 1)m × dm matrix whose rows are indexed by e ∈ {0, . . . , d}m and
whose columns are indexed by b ∈ F and whose column indexed by b is nb. Then, the square
matrix [CMDN]F is invertible, where [CMDN]F is the sub-matrix of CMDN consisting
of only those rows of CMDN that are indexed by b ∈ F .

We need the value of m in the proof of the lemma which is given in Appendix A. For now,
observe that det([CMDN]F) ∈ F[r]: Every entry of [CMDN]F is a F-linear combination
of some entries of the matrix CMD. The entry of CMD indexed by (b, e) is

(b
e
)
· rb · r−e,

which is non-zero only if bi ≥ ei for all i ∈ [m]. In this case, rb · r−e is a monomial in the
r-variables. Thus, det([CMDN]F) – which is a polynomial in the entries of [CMDN]F –
is a polynomial in the r-variables. This observation leads to the following corollary of the
above lemma, which immediately gives a way to satisfy condition 1 of Lemma 23.

▶ Corollary 26. Let h(r) := det([CMDN]F). Then, for every b ∈ F ,

h(r) · vb ∈ F[t]-span {vb′ : b′ ∈ {0, . . . , d}m and Supp (b′) < m} .

The above corollary is proved in the full version [64]. The following claim about h(r)
gives us a way to satisfy condition 2 of Lemma 23. It’s proof can be found in the full version
[64].

▷ Claim 27. The polynomial h(r), when viewed as a polynomial in the t-variables after
setting ri = ℓi(t), has a t-monomial of support at most m.

By substituting GSV
m for t, the polynomial h(r) remains non-zero, satisfying condition 2.

The number of variables in GSV
m , i.e., |z| = 2m and its degree is n. The proofs of Theorems

21 and 6 using Lemma 23 can be found in Appendix A.

C. Saha and B. Thankey 50:13

4 Hitting sets for the orbits of multilinear constant-width ROABPs

The strategy. (Recap) Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) ·1 be a multilinear, width-w
ROABP; here Mi(xi) ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn).
For any A ∈ GL(n,F), let g = f(Ax) and G = F (Ax). For i ∈ [n], suppose that A
maps xi 7→ ℓi(x), where ℓi is a linear form, and let yi = ℓi(x) and y = {y1, . . . , yn}.
Then, g = 1T · M1(y1)M2(y2) · · ·Mn(yn) · 1 and G = M1(y1)M2(y2) · · ·Mn(yn). Just
like in the previous section, we will show that if g ≠ 0, then there exist explicit “low”
degree polynomials t1(z), . . . , tn(z), where z is a “small” set of variables such that G(x1 +
t1(z), . . . , xn + tn(z)) has “low” support rank concentration in the “y-variables”. While in
the rank concentration argument in the previous section the x-variables were translated
only once, here the translations can be thought of as happening sequentially and in stages.
There will be ⌈log n⌉ stages with each stage also consisting of multiple translations. After
the p-th stage, the product of any 2p consecutive matrices in G will have low support rank
concentration in the y-variables. Thus, after ⌈log n⌉ stages, we will have low support rank
concentration in the y-variables for G(x1 + t1(z), . . . , xn + tn(z)).

Notations and conventions. Much like in the previous section, we will first translate the
x-variables by the t-variables and then substitute the t-variables by low degree polynomials
in a small set of variables. We will translate the x-variables by ⌈log n⌉ groups of t-variables,
t1, . . . , t⌈log n⌉. For all p ∈ ⌈log n⌉, the group tp will have µ := w2 +

⌈
logw2⌉

sub-groups
of t-variables, tp,1, . . . , tp,µ. For all p ∈ ⌈log n⌉ and q ∈ [µ], tp,q := {tp,q,1, . . . , tp,q,n}.
Thus, finally the translation will look like xi → xi +

∑
p∈⌈log n⌉,q∈[µ] tp,q,i for all i ∈ [n].

Finally, we will substitute the t-variables as tp,q,i 7→ sp,q · z
βp,q(i)
p,q , where βp,q(i) will be fixed

later in the analysis. Let rp,q,i := ℓi (tp,q); notice that for all i ∈ [n], yi is translated as
yi → yi +

∑
p∈⌈log n⌉,q∈[µ] ℓi (tp,q) = yi +

∑
p∈⌈log n⌉,q∈[µ] rp,q,i.

For the purpose of analysis, we will think of the translation as happening sequentially in
the order t1,1, . . . , t1,µ, t2,1, . . . , t2,µ, . . . , tn,1, . . . tn,µ, i.e., we will first translate by t1,1, then
by t1,2, and so on. We denote the order thus imposed on the set {(p, q) : p ∈ [⌈log n⌉] , q ∈ [µ]}
by ≺.

For a set S = {i1, i2, . . . , i|S|} ⊆ [n], where i1 < i2 < . . . < i|S|, the vector
(bi1 , bi2 , . . . , bi|S|) will be denoted by (bi : i ∈ S). Let Supp (b) denote the support of
the vector b which is defined as the number of non-zero elements in it. The inductive
argument given on the next two subsections is inspired by the “merge-and-reduce” idea from
[21,23].

4.1 Low support rank concentration: an inductive argument
In this and the next sections, we will prove the following lemma. Let A := Fw×w.

▶ Lemma 28. There exist {βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]} ⊂ Z≥0, such that when
we treat G

(
x1 +

∑
p∈⌈log n⌉,q∈[µ] sp,q · z

βp,q(1)
p,q , . . . , xn +

∑
p∈⌈log n⌉,q∈[µ] sp,q · z

βp,q(n)
p,q

)
, as a

polynomial in the y-variables over A[rp,q,i : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]], has support-µ
rank concentration in y-variables over F (sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]). The βp,q(i)s can
be found in time nO(w4) and each βp,q(i) ≤ nO(w4).

We will prove this lemma by induction on (p, q). Let us call βp,q(i)s efficiently computable
and good if they can be found in time nO(w4) and each βp,q(i) ≤ nO(w4). Precisely, the
induction hypothesis is as follows.

APPROX/RANDOM 2021

50:14 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

Induction hypothesis. Just before translating by tp∗,q∗-variables, assume that there exist
efficiently computable and good {βp,q(i) : (p, q) ≺ (p∗, q∗)} such that the product of any 2p∗

consecutive matrices in

G

x1 +
∑

(p,q)≺(p∗,q∗)

sp,q · zβp,q(1)
p,q , . . . , xn +

∑
(p,q)≺(p∗,q∗)

sp,q · zβp,q(n)
p,q

has support-(2µ− (q∗ − 1)) rank concentration over F (sp,q, zp,q : (p, q) ≺ (p∗, q∗)) in y-
variables.

Base case. In the base case, (p∗, q∗) = (1, 1). Observe that we can assume that w ≥ 2; if
w = 1, then g is a product of univariates and the existence of a polynomial time hitting set
follows from Observation 13. For any w ≥ 2, 2 ≤ 2µ. As a product of any two consecutive
matrices in G has support 2 ≤ 2µ rank concentration in the y-variables over F, the base case
is satisfied.

Induction step. We need to show that there exist {βp∗,q∗(i) : i ∈ [n]} which are efficiently
computable and good, such that after translating by tp∗,q∗ and substituting tp∗,q∗,i →
sp∗,q∗ · zβp∗,q∗ (i)

p∗,q∗ , the product of any 2p∗ consecutive matrices in

G

x1 +
∑

(p,q)≼(p∗,q∗)

sp,q · zβp,q(1)
p,q , . . . , xn +

∑
(p,q)≼(p∗,q∗)

sp,q · zβp,q(n)
p,q

has support-(2µ−q∗) rank concentration in the y-variables over F (sp,q, zp,q : (p, q) ≼ (p∗, q∗)).
If q∗ < µ, then this would mean that the induction hypothesis holds immediately before
translation by tp∗,q∗+1. Otherwise, if q∗ = µ, then the following easy-to-verify observation
implies that the induction hypothesis holds immediately before translation by tp∗+1,1.

▶ Observation 29. Suppose that {βp,q(i) : (p, q) ≼ (p∗, µ)} are such that the product of any
2p∗ consecutive matrices in

G

x1 +
∑

(p,q)≼(p∗,µ)

sp,q · zβp,q(1)
p,q , . . . , xn +

∑
(p,q)≼(p∗,µ)

sp,q · zβp,q(n)
p,q

has support-µ rank concentration in y-variables over F (sp,q, zp,q : (p, q) ≼ (p∗, µ)). Then the
product of any 2p∗+1 consecutive matrices in

G

x1 +
∑

(p,q)≼(p∗,µ)

sp,q · zβp,q(1)
p,q , . . . , xn +

∑
(p,q)≼(p∗,µ)

sp,q · zβp,q(n)
p,q

has support-2µ rank concentration in the y-variables over F (sp,q, zp,q : (p, q) ≼ (p∗, µ)).

Simplifying notations for the ease of exposition. By focusing on the induction step, we
will henceforth denote F (sp,q, zp,q : (p, q) ≺ (p∗, q∗)) by F, and for all i ∈ [n],

Mi

yj +
∑

(p,q)≺(p∗,q∗)

ℓi

(
sp,q · zβp,q(1)

p,q , . . . , sp,q · zβp,q(n)
p,q

)
by Mi(yi), tp∗,q∗,i by ti, rp∗,q∗,i by ri, sp∗,q∗ by s, zp∗,q∗ by z and βp∗,q∗(i) by β(i).

C. Saha and B. Thankey 50:15

Without loss of generality, we shall consider the product M1(y1 + r1) · · ·Mm(yn + rm)
of the first m = 2p∗ matrices. Our goal is to show that there exist efficiently computable and
good {β(i) : i ∈ [m]} such that after substituting ti → s ·zβ(i), the above product has support-
(2µ− q∗) rank concentration in the y-variables over F(s, z) assuming that M1(y1) · · ·Mm(ym)
has support-(2µ− (q∗ − 1)) rank concentration in the y-variables over F.

4.2 Details of the induction step
Recalling some notations. Before we show how to achieve rank concentration, let us
recall some notations defined in Section 3. While in Section 3, the individual degree is d,
here the individual degree is 1 and so, we modify the definitions accordingly. A is used
to denote the matrix algebra Fw×w. For i ∈ [m], Mi(yi) =

∑1
ei=0 ui,eiy

ei
i , where ui,ei ∈ A

and Mi(yi + ri) =
∑1

bi=0 vi,bi
ybi

i , where vi,bi
∈ A[ri] ⊂ A[t]. For b = (b1, . . . , bm) and e =

(e1, . . . , em) in {0, 1}m,
(b

e
)

:=
∏

i∈[m]
(

bi

ei

)
. Also, vb :=

∏
i∈[m] vi,bi

and ue :=
∏

i∈[m] ui,ei
.

Moreover, r := (−r1, . . . ,−rm), rb :=
∏

i∈[m](−ri)bi and r−e :=
∏

i∈[m](−ri)−ei . Let
t := (t1, . . . , tn).

The following vectors and matrices are defined by fixing an arbitrary order on the
elements of {0, 1}m. V := (vb : b ∈ {0, 1}m) and U := (ue : e ∈ {0, 1}m); V is a row vector
in A[r]2m whereas U is a row vector in A2m . Both C := diag(rb : b ∈ {0, 1}m) and
D := diag(r−e : e ∈ {0, 1}m) are 2m × 2m diagonal matrices. Finally, M is a 2m × 2m

numeric matrix whose rows and columns were indexed by b ∈ {0, 1}m and e ∈ {0, 1}m,
respectively. The entry of M indexed by (b, e) contains

(b
e
)
. The proof of the following

transfer equation is same as the proof of Claim 24.

▷ Claim 30. Let U, V, C, M and D be as defined above. Then, U = V CMD.

Let F := {b ∈ {0, 1}m : Supp(b) > 2µ− q∗}. Also, recall that the the null space of U
is the set of all vectors (ne : e ∈ {0, 1}m) ∈ F2m for which

∑
e∈{0,1}m neue = 0. We have the

following lemma.

▶ Lemma 31. There are vectors {nb : b ∈ F} in the null space of U such that the following
holds: Let N be the 2m × |F | matrix whose rows are indexed by e ∈ {0, 1}m and whose
columns are indexed by b ∈ F and whose b-th column is nb. Then, the square matrix
[CMDN]F is invertible, where [CMDN]F is the sub-matrix of CMDN consisting of only
those rows of CMDN that are indexed by F . Also, det ([CMDN]F) ∈ F[r] ⊂ F[t] can be
expressed as the ratio of a polynomial in F[t] that contains a monomial of degree at most
2w2µ in the t-variables and a product of linear forms in F[t].

The proof of this lemma, which uses the value of µ, is given in the full version [64]. We
now complete the induction step using this lemma. As det([CMDN]F) is a polynomial in
F[r] we get the following corollaries.

▶ Corollary 32. Let h(r) := det([CMDN]F). Then, for every b ∈ F ,

h(r) · vb ∈ F[t]-span {vb′ : b′ ∈ {0, 1}m and Supp (b′) ≤ 2µ− q∗} . (1)

Proof. Same as the proof of Corollary 26. ◀

▶ Corollary 33. Suppose {β(i) : i ∈ [n]} are such that the substitution ti 7→ s · zβ(i) keeps
all non-zero polynomials in F[t] containing a monomial of degree at most 2w2µ in the t-
variables non-zero. Then, the product M1(y1 + r1) · · ·Mm(ym + rm) has support-(2µ− q∗)
rank concentration in the y-variables over F(s, z) after substituting ti → s · zβ(i).

APPROX/RANDOM 2021

50:16 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

Proof. Multiply both sides of (1) by (h(r))−1 after substituting ti 7→ s · zβ(i). ◀

The following claim, proved in the full version [64], allows us to compute {β(i) : i ∈ [n]}
efficiently.

▷ Claim 34. There exist {β(i) : i ∈ [n]} such that the substitution ti 7→ s · zβ(i) keeps all
non-zero polynomials in F[t] containing a monomial of degree at most 2w2µ in the t-variables
non-zero. Moreover, we can find all the β(i) in time nO(w4) and each β(i) ≤ nO(w4).

This completes the induction step. Lemma 28 and Theorem 8 are proved in Appendix B.

5 Conclusion

In this paper, we have given efficient hitting sets for orbits of several well-studied circuit
classes such as commutative ROABPs and constant-width ROABPs (under the low individual
degree restriction), and constant-depth constant-occur formulas and occur-once formulas.
In the process, we have obtained efficiently constructible hitting sets for the orbits of
the elementary symmetric and power symmetric and sum-product polynomials as well as
the iterated matrix multiplication polynomials of width-3, which is a complete family of
polynomials for arithmetic formulas under p-projections. The hitting set problem for the
orbits of these circuit classes and polynomial families is interesting as their affine projections
capture much larger circuit classes and orbits are a natural and dense subset of the set of
affine projections. However, the following questions still remain open:

Removing the low individual degree restriction. The low individual degree
restriction is natural as it subsumes the multilinear case. However, it would be ideal if
we get rid of this limitation of our results. In particular, can we give an efficient hitting-
set construction for the orbits of general commutative ROABPs and constant-width
ROABPs?
Lower bound and hitting set for the orbits of ROABPs. We would also like to
remove the requirements of commutativity and constant-width from our results on hitting
sets for the orbits of ROABPs. It is worth noting that an explicit hitting set for the
orbits of ROABPs implies a lower bound for the same model computing some explicit
polynomial [1]. To our knowledge, no explicit lower bound is known for the orbits of
ROABPs. Can we prove such a lower bound first?
Hitting sets for the orbits of Det and IMM. The determinant (Det) and the iterated
matrix multiplication (IMM) polynomial families are complete for the class of algebraic
branching programs under p-projections. Can we design efficiently constructible hitting
sets for the orbits of Det and IMM?

References
1 Manindra Agrawal. Proving lower bounds via pseudo-random generators. In Ramaswamy

Ramanujam and Sandeep Sen, editors, FSTTCS 2005: Foundations of Software Technology
and Theoretical Computer Science, 25th International Conference, Hyderabad, India, December
15-18, 2005, Proceedings, volume 3821 of Lecture Notes in Computer Science, pages 92–105.
Springer, 2005.

2 Manindra Agrawal and Somenath Biswas. Primality and identity testing via Chinese remain-
dering. J. ACM, 50(4):429–443, 2003. Conference version appeared in the proceedings of
FOCS 1999.

3 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP
and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015.

C. Saha and B. Thankey 50:17

4 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781–793, 2004.

5 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian
Hits Circuits: Hitting Sets, Lower Bounds for Depth-D Occur-k Formulas and Depth-3
Transcendence Degree-k Circuits. SIAM J. Comput., 45(4):1533–1562, 2016. Conference
version appeared in the proceedings of STOC 2012.

6 Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-
depth-∆ formulas. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 321–330. ACM, 2013.

7 Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008.

8 Eric Allender and Fengming Wang. On the power of algebraic branching programs of width
two. Comput. Complex., 25(1):217–253, 2016. Conference version appeared in the proceedings
of ICALP 2011.

9 Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs.
ACM Trans. Comput. Theory, 10(1):3:1–3:30, 2018. Conference version appeared in the
proceedings of CCC 2016.

10 Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic polynomial
identity tests for multilinear bounded-read formulae. Comput. Complex., 24(4):695–776, 2015.
Conference version appeared in the proceedings of CCC 2011.

11 Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox
identity testing. Inf. Comput., 222:2–19, 2013. Conference version appeared in the proceedings
of ICALP 2011.

12 Michael Ben-Or and Richard Cleve. Computing Algebraic Formulas Using a Constant Number
of Registers. SIAM J. Comput., 21(1):54–58, 1992. Conference version appeared in the
proceedings of STOC 1988.

13 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs
of small width. J. ACM, 65(5):32:1–32:29, 2018. Conference version appeared in the proceedings
of CCC 2017.

14 Rafael Mendes de Oliveira, Amir Shpilka, and Ben lee Volk. Subexponential Size Hitting Sets
for Bounded Depth Multilinear Formulas. Comput. Complex., 25(2):455–505, 2016. Conference
version appeared in the proceedings of CCC 2015.

15 Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Program
Testing. Inf. Process. Lett., 7(4):193–195, 1978.

16 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. SIAM J. Comput., 36(5):1404–1434, 2007. Conference version
appeared in the proceedings of STOC 2005.

17 Jack Edmonds. Systems of distinct representatives and linear algebra. Journal of research of
the National Bureau of Standards, 71:241–245, 1967.

18 Jack Edmonds. Matroid intersection. In P.L. Hammer, E.L. Johnson, and B.H. Korte, editors,
Discrete Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39–49. Elsevier,
1979.

19 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in
quasi-nc. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 754–763. ACM, 2016.

20 Michael A. Forbes. Deterministic divisibility testing via shifted partial derivatives. In
Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 451–465. IEEE Computer
Society, 2015.

APPROX/RANDOM 2021

50:18 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

21 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
867–875. ACM, 2014.

22 Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and
compressed sensing. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 163–172. ACM, 2012.

23 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252. IEEE Computer Society, 2013.

24 Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for the closure
of small algebraic circuits. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1180–1192. ACM, 2018.

25 Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields. Comb.,
28(4):415–440, 2008. Conference version appeared in the proceedings of FOCS 2005.

26 James F. Geelen. Maximum rank matrix completion. Linear Algebra and its Applications,
288:211 – 217, 1999.

27 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Jaroslaw Byrka
and Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Confer-
ence, volume 176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

28 Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and PSPACE algorithms
in approximative complexity. In Rocco A. Servedio, editor, 33rd Computational Complexity
Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages
10:1–10:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

29 Ankit Gupta. Algebraic geometric techniques for depth-4 PIT & sylvester-gallai conjectures for
varieties. Electron. Colloquium Comput. Complex., 21:130, 2014. URL: http://eccc.hpi-web.
de/report/2014/130.

30 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic Circuits:
A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference version appeared
in the proceedings of FOCS 2013.

31 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and
any-order, read-once oblivious arithmetic branching programs. Theory Comput., 13(1):1–21,
2017. Conference version appeared in the proceedings of CCC 2016.

32 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic Identity
Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs. Comput. Complex.,
26(4):835–880, 2017. Conference version appeared in the proceedings of CCC 2015.

33 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. Comput.
Complex., 29(2):9, 2020. Conference version appeared in the proceedings of STOC 2017.

34 Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Raymond E. Miller, Seymour Ginsburg, Walter A. Burkhard, and Richard J.
Lipton, editors, Proceedings of the 12th Annual ACM Symposium on Theory of Computing,
April 28-30, 1980, Los Angeles, California, USA, pages 262–272. ACM, 1980.

35 Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time algorithms
for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010.

36 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex., 13(1-2):1–46, 2004. Conference version
appeared in the proceedings of STOC 2003.

http://eccc.hpi-web.de/report/2014/130
http://eccc.hpi-web.de/report/2014/130

C. Saha and B. Thankey 50:19

37 Erich Kaltofen. Factorization of polynomials given by straight-line programs. Adv. Comput.
Res., 5:375–412, 1989.

38 Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black Boxes for
Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and
Denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference version appeared in the
proceedings of FOCS 1988.

39 Zohar Shay Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya Volkovich. Deterministic
Identity Testing of Depth-4 Multilinear Circuits with Bounded Top Fan-in. SIAM J. Comput.,
42(6):2114–2131, 2013. Conference version appeared in the proceedings of STOC 2010.

40 Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Comb., 31(3):333–364, 2011. Conference
version appeared in the proceedings of CCC 2008.

41 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. Comb., 6(1):35–48, 1986. Conference version appeared in the proceedings of STOC 1985.

42 Neeraj Kayal. Algorithms for arithmetic circuits. Electron. Colloquium Comput. Complex.,
17:73, 2010. URL: http://eccc.hpi-web.de/report/2010/073.

43 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA, pages 198–207. IEEE Computer Society, 2009.

44 Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Comput.
Complex., 16(2):115–138, 2007. Conference version appeared in the proceedings of CCC 2006.

45 Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July
6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001.

46 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012.

47 Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction for sums
of powers of linear forms. CoRR, abs/1912.02021, 2019. URL: http://arxiv.org/abs/1912.
02021.

48 Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity
testing and polynomial factorization. Comput. Complex., 24(2):295–331, 2015. Conference
version appeared in the proceedings of CCC 2014.

49 László Lovász. On determinants, matchings, and random algorithms. In Lothar Budach,
editor, Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference on
Algebraic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz,
Germany, September 17-21, 1979, pages 565–574. Akademie-Verlag, Berlin, 1979.

50 László Lovász. Singular spaces of matrices and their application in combinatorics. Boletim da
Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 20(1):87–99,
1989.

51 Dori Medini and Amir Shpilka. Hitting Sets and Reconstruction for Dense Orbits in VPe and
ΣΠΣ Circuits. CoRR, abs/2102.05632, 2021. URL: https://arxiv.org/abs/2102.05632.

52 Daniel Minahan and Ilya Volkovich. Complete derandomization of identity testing and
reconstruction of read-once formulas. ACM Trans. Comput. Theory, 10(3):10:1–10:11, 2018.
Conference version appeared in the proceedings of CCC 2017.

53 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Comb., 7(1):105–113, 1987. Conference version appeared in the proceedings of
STOC 1987.

54 K. Murota. Mixed matrices: Irreducibility and decomposition. In R. A. Brualdi, S. Friedland,
and V. Klee, editors, Combinatorial and Graph-Theoretical Problems in Linear Algebra. The
IMA Volumes in Mathematics and its Applications, vol 50., pages 39–71. Springer, New York,
NY, 1993.

APPROX/RANDOM 2021

http://eccc.hpi-web.de/report/2010/073
http://arxiv.org/abs/1912.02021
http://arxiv.org/abs/1912.02021
https://arxiv.org/abs/2102.05632

50:20 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

55 H. Narayanan, Huzur Saran, and Vijay V. Vazirani. Randomized Parallel Algorithms for
Matroid Union and Intersection, With Applications to Arboresences and Edge-Disjoint Span-
ning Trees. SIAM J. Comput., 23(2):387–397, 1994. Conference version appeared in the
proceedings of SODA 1992.

56 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991.

57 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. Conference version appeared in the proceedings of FOCS 1988.

58 Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives.
Computational Complexity, 6(3):217–234, 1997. Conference version appeared in the proceedings
of FOCS 1995.

59 Shir Peleg and Amir Shpilka. A generalized sylvester-gallai type theorem for quadratic
polynomials. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC
2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs,
pages 8:1–8:33. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

60 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm for
Σ[3]ΠΣΠ[2] circuits via Edelstein-Kelly type theorem for quadratic polynomials. CoRR,
abs/2006.08263, 2020.

61 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Comput. Complex., 14(1):1–19, 2005. Conference version appeared in the proceedings
of CCC 2004.

62 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth 2 circuits
over algebras. In Ravi Kannan and K. Narayan Kumar, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009,
December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages 371–382. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2009.

63 Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3 identity testing,
sparse factorization and duality. Comput. Complex., 22(1):39–69, 2013.

64 Chandan Saha and Bhargav Thankey. Hitting Sets for Orbits of Circuit Classes and Polynomial
Families. Electron. Colloquium Comput. Complex., 28:15, 2021. URL: https://eccc.weizmann.
ac.il/report/2021/015.

65 Shubhangi Saraf and Ilya Volkovich. Black-Box Identity Testing of Depth-4 Multilinear
Circuits. Comb., 38(5):1205–1238, 2018. Conference version appeared in the proceedings of
STOC 2011.

66 Nitin Saxena. Diagonal circuit identity testing and lower bounds. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata,
Complexity, and Games, volume 5125 of Lecture Notes in Computer Science, pages 60–71.
Springer, 2008.

67 Nitin Saxena. Progress on polynomial identity testing. Bull. EATCS, 99:49–79, 2009.
68 Nitin Saxena. Progress on polynomial identity testing-ii. In M. Agrawal and V. Arvind, editors,

Perspectives in Computational Complexity, volume 26 of Progress in Computer Science and
Applied Logic, pages 131–146. Birkhäuser, Cham, 2014.

69 Nitin Saxena and C. Seshadhri. Blackbox Identity Testing for Bounded Top-Fanin Depth-3
Circuits: The Field Doesn’t Matter. SIAM J. Comput., 41(5):1285–1298, 2012. Conference
version appeared in the proceedings of STOC 2011.

70 Nitin Saxena and C. Seshadhri. From sylvester-gallai configurations to rank bounds: Improved
blackbox identity test for depth-3 circuits. J. ACM, 60(5):33:1–33:33, 2013. Conference version
appeared in the proceedings of FOCS 2010.

https://eccc.weizmann.ac.il/report/2021/015
https://eccc.weizmann.ac.il/report/2021/015

C. Saha and B. Thankey 50:21

71 Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, 1980.

72 Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1203–1214.
ACM, 2019.

73 Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Comput. Complex.,
24(3):477–532, 2015. Conference versions appeared in the proceedings of STOC 2008 and
APPROX-RANDOM 2009.

74 Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

75 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc.
In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE Computer Society,
2017.

76 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.

77 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation
of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983.

78 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Algeb-
raic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.

A Missing proofs from Section 3

A.1 Proof of Lemma 25
The entries of U , the columns of M , the rows and columns of D, and the rows of N are
indexed by e ∈ {0, . . . , d}m. Impose an order ≺, say the lexicographical order, on the
indices e ∈ {0, . . . , d}m of U and the other three matrices. Pick the minimal basis of
the space spanned by the entries of U according to this order, i.e., consider the entries
of U in the order dictated by ≺ while forming the basis. Let B := {e ∈ {0, . . . , d}m :
ue is in the minimal basis of U w.r.t. ≺}.

Construction of the matrix N . The columns of N are indexed by b ∈ F . We will now
specify a set of column vectors {nb : b ∈ F} in the null space of U such that the column of
N indexed by b ∈ F is nb. There are two cases for b ∈ F :
Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺ b}. Pick this

dependence vector as nb.
Case 2: b ∈ F ∩ B. Let there be p such b, where p ≤ |B| ≤ w2. For a set E ⊆ [m] and

b ∈ {0, . . . , d}m, let (b)E denote the vector obtained by projecting b to the coordinates
in E. Roughly speaking, the following claim which is proved in the full version [64] says
that each of these p vectors has a “small signature” that differentiates it from the other
p− 1 vectors.

▷ Claim 35. There exists a way of numbering all b ∈ F ∩ B as b1, . . . ,bp and there
exist non-empty sets E1, . . . , Ep ⊆ [m], each of size at most log p ≤ logw2 such that for all
k ∈ [p− 1],

(bk)Ek
̸= (bℓ)Ek

∀ℓ ∈ {k + 1, . . . , p} (2)

APPROX/RANDOM 2021

50:22 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

We will call Ek the signature of bk for k ∈ [p]. The following claim tells us that for
each vector bk, there is a vector that is not in B and has support at most m− 1, but agrees
with bk on its signature and so in some sense can be used as a proxy for bk.

▷ Claim 36. For every k ∈ [p], there exists a vector b′
k ∈ {0, . . . , d}

m \ (F ∪ B) such that
(b′

k)Ek
= (bk)Ek

and also b′
k and bk agree on all locations where b′

k is non-zero.

A proof of the above claim is provided in the full version [64]. We will now use the
above two claims to construct nbk

for all k ∈ [p]. We will use b′
k from Claim 36 as a proxy for

bk. Notice that ub′
k

is dependent on {ue : e ∈ B and e ≺ b′
k}. Let this dependence vector

be nbk
. This completes the construction of N . We will now show that [CMDN]F is an

invertible matrix.

[CMDN]F is invertible. As C is a diagonal matrix with non-zero entries, it is sufficient
to show that [MDN]F = [M]FDN is an invertible matrix, where [M]F is the sub-matrix of
M consisting of only those rows of M that are indexed by b ∈ F . The following claim lets us
simplify the structure of [M]F so that it becomes easier to argue that [M]FDN is invertible.

▷ Claim 37. There is a row operation matrix R ∈ GL(dm,F) with det(R) = 1 such that
R[M]F has the following structure: The rows of R[M]F are indexed by b = (b1, . . . , bm) ∈ F
and its columns by e = (e1, . . . , em) ∈ {0, . . . , d}m. Its entry indexed by (b, e) is non-zero if
and only if for all i ∈ [m], bi = ei if ei ̸= 0. All the non-zero entries of R[M]F are ±1.

The above claim is proved in the full version [64]. Because of this claim, showing that
R[M]FDN is invertible would suffice. Just like we did with M , we also impose the order
≺ on the columns of R[M]F that are indexed by e ∈ {0, . . . , d}m. Recall that the rows of
R[M]F and the columns of N are indexed by b ∈ F . We order these indices as follows:
we keep the indices b ∈ F \ B before b1, . . . ,bp. We will treat r−e as a monomial in
(−r1)−1, . . . , (−rm)−1 “variables” and impose the order ≺ on the monomials in these variables.
Let A := {b : b ∈ F \ B} ∪

{
b′

1, . . . ,b′
p

}
; notice that |A| = |F |. Also, the elements of A

are ordered as the elements of F but with b′
k replacing bk for k ∈ [p]. Then, from the

Cauchy-Binet formula and the construction of the matrix N , det(R[M]FDN) equals

det ([R[M]F]•,A) [N]A ·
∏
e∈A

r−e + lower order monomials in the (−r1)−1, . . . , (−rm)−1.

Here [R[M]F]•,A denotes the restriction of R[M]F to the columns indexed by e ∈ A, and [N]A
denotes the restriction of N to the rows indexed by e ∈ A. Thus to show that R[M]FDN
(and therefore [CMDN]F) is invertible, the following two claims, both of which are proved
in the full version [64], suffice.

▷ Claim 38. [N]A is an identity matrix.

▷ Claim 39. The matrix [R[M]F]•,A is an upper triangular matrix with 1 or −1 entries on
the diagonal.

A.2 Proof of Theorem 21
Let f = 1T · M1(x1)M2(x2) · · ·Mn(xn) · 1 be a width-w commutative ROABP having
individual degree at most d; here Mi ∈ Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2)
· · ·Mn(xn). For any A ∈ GL(n,F), let g = f(Ax) and G = F (Ax). Suppose that A maps
xi 7→ ℓi(x) and let yi = ℓi(x) for all i ∈ [n]. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1 and

C. Saha and B. Thankey 50:23

G = M1(y1)M2(y2) · · ·Mn(yn). In Sections 3.1 and 3.2, we have shown that G
(
x + GSV

m

)
has support-(m− 1) rank concentration (for m = 2

⌈
logw2⌉

+ 1) over F(z) in the y-variables;
the z-variables are the variables introduced by the GSV

m generator. From Observation 15,
if g(x) ̸= 0, then g

(
x + GSV

m

)
, when viewed as a polynomial over F[z] in the y-variables

(this we can do as g
(
x + GSV

m

)
= 1T ·G

(
x + GSV

m

)
· 1, and G

(
x + GSV

m

)
can be viewed as a

polynomial over A[z] in the y-variables), has a y-monomial of support at most m− 1. Let
the y-degree of this monomial be D′. As the individual degree of every x-variable in f is at
most d, the individual degree of every y-variable in g is also at most d. Thus, D′ ≤ (m− 1)d.
As the homogeneous component of g

(
x + GSV

m

)
of y-degree D′ is non-zero, the homogeneous

component of g
(
x + GSV

m

)
(now viewed as polynomial over F[z] in the x-variables) of x-

degree D′ must also be non-zero, since ℓ1, . . . , ℓn are linearly independent. This means that
g(x + GSV

m), when viewed as a polynomial over F[z] in the x-variables, has an x-monomial
of support (in fact, degree) at most D′ ≤ (m− 1)d. Thus, g

(
GSV

(m−1)d + GSV
m

)
̸= 0. Now, it

follows directly from the definition of the SV generator that GSV
(m−1)d + GSV

m = GSV
m+(m−1)d

and so g
(
GSV

m+(m−1)d

)
≠ 0. Replacing m by its value 2

⌈
logw2⌉

+ 1 proves the theorem.
Note that the SV generator needs |F| ≥ n.

A.3 Proof of Theorem 6
Let f be an n-variate polynomial computed by a width-w commutative ROABP of individual
degree at most d, and g ∈ orb (f). Then, from Theorem 21, g

(
GSV

(2⌈log w2⌉(d+1)+1)

)
≠ 0

whenever g ̸= 0. Now, GSV
(2⌈log w2⌉(d+1)+1) has 2

(
2

⌈
logw2⌉

(d+ 1) + 1
)

variables, and is

of degree n. So g
(
GSV

(2⌈log w2⌉(d+1)+1)

)
also has 2

(
2

⌈
logw2⌉

(d+ 1) + 1
)

variables. Since
the individual degree of f is at most d, the deg(f) = deg(g) ≤ nd. So the degree of
g

(
GSV

(2⌈log w2⌉(d+1)+1)

)
is at most n2d. Thus, as |F| > n2d, a hitting set for g can be

computed in time
(
n2d+ 1

)(2⌈log w2⌉(d+1)+1) = (nd)O(d log w).

B Missing proofs from Section 4

B.1 Proof of Lemma 31
The entries of U , the columns of M , the rows and columns of D, and the rows of N are
indexed by e ∈ {0, 1}m. Impose the degree lexicographic order, denoted by ≺dlex, on the
indices e ∈ {0, 1}m of U and the other three matrices (by identifying e with an m-variate
monomial) . Pick the minimal basis of the space spanned by the entries of U according to
this order, i.e., consider the entries of U in the order dictated by ≺dlex while forming the
basis. Let B := {e ∈ {0, 1}m : ue is in the minimal basis of U w.r.t. ≺dlex}.

▶ Observation 40. By the induction hypothesis, for every e ∈ F∩B, Supp(e) = 2µ−(q∗ − 1).

Construction of the matrix N . The columns of N are indexed by b ∈ F . We will now
specify a set of column vectors {nb : b ∈ F} in the null space of U such that the column of
N indexed by b ∈ F is nb. There are two cases for b ∈ F :
Case 1: b ∈ F \ B. In this case, ub is dependent on {ue : e ∈ B and e ≺dlex b}. Pick this

dependence vector as nb.
Case 2: b ∈ F ∩B. Let there be p such b, b1, . . . ,bp, where p ≤ |B| ≤ w2. For a set E ⊆ [m]

and b ∈ {0, 1}m, let (b)E denote the vector obtained by projecting b to the coordinates

APPROX/RANDOM 2021

50:24 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

in E. Roughly speaking, the following claim, which is proved in the full version [64], says
that each of these p vectors has a “small signature” that differentiates it from the other
p− 1 vectors.

▷ Claim 41. There exist sets E1, . . . , Ep ⊆ [m], each of size w2 − 1 such that for all k ∈ [p],
1. Supp ((bk)Ek

) = w2 − 1,
2. (bk)Ek

̸= (bℓ)Ek
∀ℓ ̸= k.

As before, we will call Ek the signature of bk. The following claim tells us that for
each vector bk, there is a vector that is not in B and has support less than 2µ− (q∗ − 1),
but agrees with bk on its signature and so in some sense can be used as a proxy for bk.

▷ Claim 42. For every k ∈ [p], there exists a vector b′
k ∈ {0, 1}

m \ (F ∪ B) such that
(b′

k)Ek
= (bk)Ek

and also b′
k and bk agree on all locations where b′

k is non-zero.

Proof. Similar to the proof of Claim 36. ◁

We will now use the above two claims to construct nbk
for all k ∈ [p]. We will use b′

k from
Claim 42 as a proxy for bk. Notice that ub′

k
is dependent on {ue : e ∈ B and e ≺dlex b′

k}.
Let this dependence vector be nbk

. This completes the construction of N . We will now show
that [CMDN]F is invertible. In fact, we will show that det ([CMDN]F) is the ratio of a
polynomial in F[t] which contains a monomial of degree at most 2w2µ and a product of a
bunch of non-zero linear forms in F[t].

[CMDN]F is invertible. Let [M]F be the restriction of M to the rows indexed by F , and
[C]F the restriction of C to the rows and columns indexed by F .

▶ Observation 43. The matrix [M]F has the following structure: The rows of [M]F are
indexed by b = (b1, . . . , bm) ∈ F and its columns by e = (e1, . . . , em) ∈ {0, 1}m. Its entry
indexed by (b, e) is non-zero if and only if for all i ∈ [m], bi = ei if ei ̸= 0. All non-zero
entries are 1.

We order the indices b ∈ F as follows: Let F0 := {b ∈ F : Supp(b) > 2µ− (q∗ − 1)}
and F1 := {b ∈ F : Supp(b) = 2µ− (q∗ − 1)}. We first keep the b ∈ F0 in (descending)
degree lexicographic order3, followed by b ∈ F1 \ B in (reverse) lexicographic order4, and
then b1, . . . ,bp. Also, let A := (F \ B) ⊎

{
b′

1, . . . ,b′
p

}
. Notice that |A| = |F |. Also, the

elements of A are ordered as the elements of F but with b′
k replacing bk for k ∈ [p]. For

any S ⊆ {0, 1}m of size |S| = |F |, let [M]F,S denote the restriction of [M]F to the columns
indexed by e ∈ S, and [N]S denote the restriction of N to the rows indexed by e ∈ S. Now,

det([CMDN]F) = det([C]F) det([M]F DN)

=
∏
b∈F

rb ·

 ∑
S⊆A⊎B
|S|=|F |

det ([M]F,S) · det([N]S) ·
∏
e∈S

r−e

=
∏
b∈F

rb ·

 ∑
S⊆A⊎B
|S|=|F |

det ([M]F,S) · det([N]S) ·
∏

e∈S∩A

r−e ·
∏

e∈S∩B

r−e

3 i.e., b comes before b̂ if Supp(b) > Supp(b̂), or if Supp(b) = Supp(b̂) and b̂ ≺lex b.
4 i.e., b comes before b̂ if b̂ ≺lex b.

C. Saha and B. Thankey 50:25

=
∏
b∈F

rb ·
∏

e∈A⊎B

r−e ·

 ∑
S⊆A⊎B
|S|=|F |

det ([M]F,S) · det([N]S) ·
∏

e∈A\S

re ·
∏

e∈B\S

re

 ,

where the second equality follows from the Cauchy-Binet formula and the third equality
from the fact that for any S ̸⊆ A⊎B, det([N]S) = 0. Now, notice that

∏
b∈F rb ·

∏
e∈A⊎B r−e

is the reciprocal of a product of non-zero linear forms in t-variables, as F ⊆ A ⊎ B. We shall
now prove that∑

S⊆A⊎B
|S|=|F |

det ([M]F,S) · det([N]S) ·
∏

e∈A\S

re ·
∏

e∈B\S

re (3)

has a t-monomial of degree at most w2(2µ− (q∗ − 1)).

▷ Claim 44. [N]A is an identity matrix.

Proof. Same as that of Claim 38. ◁

▷ Claim 45. The matrix [M]F,A is an upper triangular matrix with ones on the diagonal.

The proof of the above claim is provided in the full version [64].

▷ Claim 46. det ([M]F,A) · det([N]A) ·
∏

e∈B\A re =
∏

e∈B re ̸= 0 and has t-degree at most
2w2µ.

Proof. det ([M]F,A) · det([N]A) ·
∏

e∈B\A re =
∏

e∈B re ̸= 0 follows from Claims 44 and
45 and the fact that A ∩ B is empty. For every e ∈ B, degt(re) ≤ 2µ − (q∗ − 1). So,
degt

(∏
e∈B re)

≤ w2 · (2µ− (q∗ − 1)) ≤ 2w2µ, as |B| ≤ w2. ◁

▷ Claim 47. For any S ⊆ A ⊎ B such that |S| = |F | and det([N]S) is non-zero, there is a
one-to-one correspondence between A \ S and S ∩ B such that if e ∈ A \ S corresponds to
e′ ∈ S ∩ B, then e′ ≺dlex e.

The above claim, which is proved in the full version [64], implies that for every S ∈ A⊎B
of size |F |, either det ([M]F,S) · det([N]S) ·

∏
e∈A\S re ·

∏
e∈B\S re is 0, or

∏
e∈B re ≺dlex∏

e∈A\S re ·
∏

e∈B\S re. Hence,
∏

e∈B re is the smallest r-monomial in the polynomial given
in (3) w.r.t. ≺dlex order, and so, the homogeneous component of this polynomial that has the
same r-degree as that of

∏
e∈B re survives. Now, from Claim 46 and the fact that ℓ1, . . . , ℓn

are linearly independent, the polynomial in (3) has a t-monomial of degree ≤ 2w2µ.

B.2 Proof of Lemma 28

So far we have proved that there exist {βp,q(i) : p ∈ [⌈log n⌉] , q ∈ [µ], i ∈ [n]]}, such that
G

(
x1 +

∑
p∈⌈log n⌉,q∈[µ] sp,q · z

βp,q(1)
p,q , . . . , xn +

∑
p∈⌈log n⌉,q∈[µ] sp,q · z

βp,q(n)
p,q

)
has support-µ

rank concentration in the y-variables over F (sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]). Moreover, for
each (p, q), we can find all βp,q(i) in time nO(w4) and each βp,q(i) ≤ nO(w4). However, since
the algorithm that follows from [45] is oblivious, the βp,q(i) found for some fixed (p, q) can
be used for all values of (p, q). This proves the lemma.

APPROX/RANDOM 2021

50:26 Hitting Sets for Orbits of Circuit Classes and Polynomial Families

B.3 Proof of Theorem 8
Let f = 1T ·M1(x1)M2(x2) · · ·Mn(xn) · 1 be a multilinear width-w ROABP; here Mi(xi) ∈
Fw×w[xi] for all i ∈ [n]. Also, let F = M1(x1)M2(x2) · · ·Mn(xn). For any A ∈ GL(n,F), let
g = f(Ax) and G = F (Ax). For i ∈ [n], suppose that A maps xi 7→ ℓi(x), where ℓi is a linear
form, and let yi = ℓi(x) and y = {y1, . . . , yn}. Then, g = 1T ·M1(y1)M2(y2) · · ·Mn(yn) · 1
and G = M1(y1)M2(y2) · · ·Mn(yn). Let µ = w2 +

⌈
logw2⌉

. From Lemma 28, there exist
polynomials, say t1, . . . , tn, in F [sp,q, zp,q : p ∈ [⌈log n⌉] , q ∈ [µ]] of degree at most nO(w4)

such that G(x1 + t1, . . . , xn + tn) has support-µ rank concentration in the y-variables over
F

(
{sp,q, zp,q}p,q

)
. Moreover, these polynomials can be computed in time nO(w4). Suppose

that g ̸= 0. Then, from Observation 15, g(x1 + t1, . . . , xn + tn) has a support-µ, y-monomial
when viewed as a polynomial over F

[
{sp,q, zp,q}p,q

]
in the y-variables. Since f is multilinear,

as seen in the proof of Theorem 21, g(x1+t1, . . . , xn+tn) has a support-µ, x-monomial. Thus,
g

(
GSV

µ + (t1, . . . , tn)
)

≠ 0. Now, g
(
GSV

µ + (t1, . . . , tn)
)

is a polynomial in 2µ + µ · ⌈log n⌉
variables over F. Also, its degree is at most nO(w4). So, if |F| > nO(w4), a hitting set for g
can be computed in time nO(w4·µ·log n) = nO(w6·log n). This, along with the time required to
compute t1, . . . , tn, still gives a nO(w6·log n)-time hitting set for g.

Sampling Multiple Edges Efficiently
Talya Eden # Ñ

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Saleet Mossel #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Ronitt Rubinfeld # Ñ

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We present a sublinear time algorithm that allows one to sample multiple edges from a distribution
that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider
the adjacency list query model, where access to a graph G is given via degree and neighbor queries.

The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum
(SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and
Rosenbaum provided upper and lower bounds of Θ∗(n/

√
m) for sampling a single edge in general

graphs (where O∗(·) suppresses poly(1/ϵ) and poly(log n) dependencies). We ask whether the query
complexity lower bound for sampling a single edge can be circumvented when multiple samples are
required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing
phase? We answer in the affirmative.

We present an algorithm that, if one knows the number of required samples q in advance, has
an overall cost that is sublinear in q, namely, O∗(√q · (n/

√
m)), which is strictly preferable to

O∗(q · (n/
√

m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum.
Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved

that this bound is essentially optimal.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Sampling edges, graph algorithm, sublinear algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.51

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2008.08032

Funding Talya Eden: This work was supported by the NSF Grant CCF-1740751, the Eric and
Wendy Schmidt Fund, and Ben-Gurion University.
Ronitt Rubinfeld: This work was supported the NSF TRIPODS program (awards CCF-1740751 and
DMS 2022448), NSF award CCF-2006664 and by the Fintech@CSAIL Initiative.

1 Introduction

The ability to select edges uniformly at random in a large graph or network, namely edge
sampling, is an important primitive, interesting both from a theoretical perspective in various
models of computation (e.g., [19, 2, 3, 1, 13, 12, 7, 4, 15]), and from a practical perspective in
the study of real-world networks (e.g., [20, 22, 31, 6, 27]). We consider the task of outputting
edges from a distribution that is close to uniform; more precisely, the output distribution on
edges will be pointwise ϵ-close to the uniform distribution, so that each edge will be returned
with probability in [1−ϵ

m , 1+ϵ
m]. Note that this is a stronger notion than the more standard

© Talya Eden, Saleet Mossel, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 51; pp. 51:1–51:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:talyaa01@gmail.com
https://sites.google.com/view/edentalya/home
https://orcid.org/0000-0001-8470-9508
mailto:saleet@mit.edu
mailto:ronitt@csail.mit.edu
https://people.csail.mit.edu/ronitt/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.51
https://arxiv.org/abs/2008.08032
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Sampling Multiple Edges Efficiently

notion of ϵ-close to uniform in total variation distance (TVD).1 We consider this task in the
sublinear setting, specifically, in the adjacency list query model, where the algorithm can
perform uniform vertex queries, as well as degree and neighbor queries.

Three recent algorithms have been presented for this problem in the adjacency list model.
The first, by Eden and Rosenbaum [13], is an O∗(n/

√
m) query complexity2 algorithm that

works in general graphs.3 This was later refined by Eden, Ron, and Rosenbaum [7] to an
O∗(mα/n) algorithm for graphs that have arboricity4 at most α (where it is assumed that α

is given as input to the algorithm). Finally, in [26], Tětek and Thorup combined techniques
from the previous two works and presented the state of the art algorithm for sampling a
single edge. This algorithm exponentially improves on the dependency in 1/ϵ compared to
the algorithm by [13]. All of these algorithms were also shown to be essentially optimal if
one is interested in outputting a single edge sample. Naively, to sample q edges in general
graphs, one can invoke the [26] algorithm q times, with expected complexity O∗(q · (n/

√
m)).

In this paper, we prove that this query complexity can be improved to O∗(√q · (n/
√

m)).
That is, we prove that there exists an algorithm with a better amortized query complexity.

1.1 Results
We present an algorithm that returns an edge from a distribution that is pointwise ϵ-close
to uniform, and efficiently supports many edge sample invocations. Assuming one knows
in advance the number of required edge samples q, the overall cost of q edge samples is
O∗(q · (n/

√
m) + q) = O∗(q · (n/

√
m)), where the equality is since we can assume that

q = O(n2/m).5 Subsequent to a preliminary version of this work, Tětek and Thorup [26,
Theorem 15] proved that the above result is essentially optimal.

Our algorithm is based on two procedures: a preprocessing procedure that is invoked
once, and a sampling procedure which is invoked whenever an edge sample is requested.
There is a trade-off between the preprocessing cost and per-sample cost of the sampling
procedure. Namely, for a trade-off parameter x ≥ 1, which can be given as input to the
algorithm, the preprocessing query complexity is O∗(n2/(m · x)) and the per-sample cost of
the sampling procedure is O(x/ϵ).

▶ Theorem 1.1 (Informal.). Let G be a graph over n vertices and m edges. Assume access
to G is given via the adjacency list query model. There exists an algorithm that, given an
approximation parameter ϵ and a trade-off parameter x, has two procedures: a preprocessing
procedure, and a sampling procedure. The sampling procedure outputs an edge from a
distribution that is pointwise ϵ-close to uniform. The preprocessing procedure has O∗(n2/(m ·
x)) expected query complexity, and the expected per-sample query complexity of the sampling
procedure is O(x/ϵ).

As mentioned previously, this result is essentially optimal, due to a lower bound by Tětek
and Thorup [26].

1 See Section 1.1 for a detailed discussion comparing TVD-closeness to pointwise closeness.
2 We note that in all the mentioned algorithms the running time is asymptotically equal to the query

complexity, and therefore we limit the discussion to query complexity.
3 Throughout the paper O∗(·) is used to suppresses poly(log n/ϵ) dependencies.
4 The arboricity of a graph is the minimal number of forests required to cover its edge set.
5 Observe that if the number of required samples q exceeds n2/m, then one an simply perform

O(n2 log n/m) uniform pair queries and with high probability recover all edges in the graph. Hence, we
can assume that q ≤ n2/m, and so the term q does not asymptotically affect the complexity.

T. Eden, S. Mossel, and R. Rubinfeld 51:3

▶ Theorem 1.2 (Theorem 15 in [26], restated). Let ϵ be some small constant 0 < ϵ < 1. Any
algorithm that samples q edges from a distribution that is pointwise ϵ-close to uniform in the
adjacency list query model must perform Ω(√q · (n/

√
m)) queries.

To better understand how the complexity of our upper bound compares to what was
previously known, we give some possible instantiations. First, setting x = n/

√
m implies

a preprocessing phase with O∗(n/
√

m) queries and a cost of O(n/
√

m) per sample, thus
recovering the bounds of [13]. Second, setting x = 1 implies a preprocessing phase with
O(n2/m) queries and a cost of O(1/ϵ) per sample. This can be compared to the naive
approach of querying the degrees of all the vertices in the graph, and then sampling each
vertex with probability proportional to its degree and returning an edge incident to the
sampled vertex.6 Hence, the naive approach yields an O(n) preprocessing cost and O(1) per-
sample cost while our algorithm with x = 1 yields an O∗(n2/m) = O∗(n/davg) preprocessing
and O(1/ϵ) per-sample cost, where davg denotes the average degree of the graph.

For a concrete example, consider the case where m = Θ(n) and q = O(
√

n) edge samples
are required. Setting x = n1/4 gives an overall cost of n3/4 for sampling q edges, where
previously this would have required O(n) queries (by either the naive approach, or performing
O(
√

n) invocations of the O∗(n/
√

m) = O∗(
√

n) algorithm of [26]). In general, if the number
of queries q is known in advance, then setting x = n/

√
m√

q , yields that sampling q edges has an
overall cost of O∗(√q · (n/

√
m)), where previously this would have required O∗(q · (n/

√
m))

queries resulting from q invocations of the algorithm by [26]. We discuss some more concrete
applications in the following section.

From the augmented model to the general query model

Recently, it has been suggested by Aliakbarpour et al. [3] to consider query models that also
provide queries for uniform edge samples, and multiple algorithms have since been developed
for this model, e.g., [4, 15, 5, 28].

Currently, for “transferring” results in models that allow uniform edge samples back to
models that do not allow such queries in a black-box manner,7 one must either (1) pay a
multiplicative cost of O∗(n/

√
m) per query (replacing each edge sample query in an invocation

of the [13] algorithm for sampling edges), (2) pay an additive cost of O(n) (using the naive
approach described above), or (3) pay an additive cost of O∗(n2/m) if pair queries8 are
allowed.9

For example, the works by Assadi, Kapralov and Khanna [4], Fichtenberger, Gao and
Peng [15], and Biswas, Eden and Rubinfeld [5] give algorithms that rely on edge samples for
the tasks of approximately counting and uniformly sampling arbitrary subgraphs in sublinear
time. Specifically, these works assume the augmented query model which allows for vertex,
degree, neighbor, pair as well as uniform edge samples queries. When only vertex, degree,
neighbor and pair queries (without uniform edge samples) are provided, this is referred to as
the general query model [21]. Currently, there are no dedicated algorithms for these tasks
in the general model, that does not allow edge samples. For approximating the number
of 4-cycles, denoted #C4, the algorithms of [4, 15] have query complexity of O∗(m2/#C4).

6 Indeed, the naive approach returns an edge from a distribution that is exactly uniform.
7 This is true for results for which pointwise-close to uniform edge samples are sufficient, as in the case in

all the current sublinear results that rely on edge samples (that we know of).
8 Pair queries return whether there is an edge between two vertices in the graph.
9 As one can sample all edges in the graph with high probability using O∗(n2/m) uniform pair queries

(by the coupon collector’s argument), and then return from the set of sampled edges.

APPROX/RANDOM 2021

51:4 Sampling Multiple Edges Efficiently

For a graph with m = O(n) edges and #C4 = Θ(n3/2) 4-cycles, this results in an O∗(
√

n)
query complexity in the augmented model. Using our algorithm, we can set q = O(

√
n),

and approximately count the number of #C4’s in O∗(n3/4) queries in the general query
model, where previously to our results this would have cost O(n) queries. We note that this
“black-box” transformation from the augmented model to the general query model is not
guaranteed to be optimal in terms of the resulting complexity in the general model. Indeed,
dedicated algorithms for counting and sampling stars and cliques in the general model, prove
that this is not the case [18, 9, 11, 10, 8, 28]. Nonetheless, to the best of our knowledge,
no other results are currently known for subgraphs apart from stars or cliques, and so this
approach provides the only known algorithms for arbitrary subgraph counting and sampling
in the general model.

Pointwise vs. TVD

A more standard measure of distance between two distributions P and Q is the total
variation distance (TVD), dT V (P, Q) = 1

2
∑

x∈Ω |P (x)−Q(x)|. Observe that this is a strictly
weaker measure. That is, pointwise-closeness implies closeness in TVD. Thus our algorithm
immediately produce a distribution that is TVD close to uniform. However, being close
to a distribution in TVD, does not imply pointwise-closeness.10 Furthermore, in various
settings, this weaker definition is not sufficient, as is the case in some of the applications we
mentioned previously. For instance, the uniform edge samples in the algorithms of [4, 15]
cannot be replaced in a black-box manner by edge samples that are only guaranteed to
be close to uniform in TVD. For a concrete example, consider the task of approximately
counting the number of triangles. Let G = A∪B be a graph, where A is a bipartite subgraph
over (1− ϵ)m edges, and B is a clique over ϵm edges. An algorithm that returns a uniformly
distributed edge in A is close in TVD to uniform over the entire edge set of G. However, it
does not allow one to correctly approximate the number of triangles in G, as the algorithm
will never return an edge from the clique, which is where all the triangles reside.

1.2 Technical Overview

Sampling (almost) uniformly distributed edges is equivalent to sampling vertices with
probability (almost) proportional to their degree d(v)

2m .11 Hence, from now on we focus on
the latter task.

Consider first the following naive procedure for sampling vertices with probability pro-
portional to their degree. Assume that dmax, the maximum degree in the graph is known.
Query a vertex uniformly at random and return it with probability d(v)

dmax
; otherwise, return

fail. Then each vertex is sampled with probability d(v)
n·dmax

. Therefore, if we repeatedly invoke
the above until a vertex is returned, then each vertex is returned with probability d(v)

2m , as
desired. However, the expected number of attempts until a vertex is returned is O(n·dmax

m)
(since the overall success probability of a single attempt is

∑
v∈V

d(v)
n·dmax

= 2m
n·dmax

), which
could be as high as O(n2

m) when dmax = Θ(n).

10 E.g., a distribution that ignores ϵ/2-fraction of the edges and is uniform on the rest is close in TVD to
uniform, but clearly it is not pointwise close.

11 Since if every v is sampled with probability in (1 ± ϵ) d(v)
2m , performing one more uniform neighbor query

from v implies that each specific edge (v, w) in the graph is sampled with probability in (1 ± ϵ) · 1
2m .

T. Eden, S. Mossel, and R. Rubinfeld 51:5

Our idea is to partition the graph vertices into light and heavy, according to some degree
threshold τ , that will play a similar role to that of dmax in the naive procedure above. Our
algorithm has two procedures, a preprocessing procedure and a sampling procedure. The
preprocessing procedure is invoked once in the beginning of the algorithm, and the sampling
procedure is invoked every time an edge sample is requested. In the preprocessing procedure
we construct a data structure that will later be used to sample heavy vertices. In the sampling
procedure, we repeatedly try to sample a vertex, each time either a light or a heavy with
equal probability, until a vertex is returned. To sample light vertices, we invoke the above
simple procedure with τ instead of dmax. Namely, sample a uniform random vertex v, if
d(v) ≤ τ , return it with probability d(v)

τ . To sample heavy vertices, we use the data structure
constructed by the preprocessing procedure as will be detailed shortly.

In the preprocessing procedure, we sample a set S of O
(

n
τ ·

log n
ϵ2

)
vertices uniformly

at random. We then construct a data structure that allows to sample edges incident12 to
S uniformly at random. It holds that with high probability for every heavy vertex v, its
number of neighbors in S, denoted dS(v), is close to its expected value, d(v) · |S|

n . Also, it
holds that with high probability the sum of degrees of the vertices in S, denoted d(S), is
close to its expected value, 2m · |S|

n . Hence, to sample heavy vertices, we first sample an
edge (u, v) incident to S uniformly at random (without loss of generality u ∈ S) and then we
check if the second endpoint v is heavy. If so, we return v, and otherwise we fail. By the
previous discussion on the properties of S, it holds that every heavy vertex is sampled with
probability approximately dS(v)

d(S) ≈
d(v)
2m .

1.3 Comparison to Previous Work
For the sake of this discussion assume that ϵ is some small constant. Most closely related to
our work, is the algorithm of [13]. Their algorithm also works by partitioning the graph’s
vertices to light and heavy vertices according to their some degree threshold θ. Their method
of sampling light edges is identical to ours: one simply samples a vertex uniformly at random,
and keeps it with probability d(v)/θ. In our algorithm, τ is the degree threshold for light and
heavy vertices, so that τ and θ plays the same role. The difference between our works is in
the sampling of heavy vertices. To sample heavy vertices, the algorithm of [13] tries to reach
heavy vertices by sampling light vertices, and then querying one of their neighbors uniformly
at random. For this approach to output heavy vertices with almost equal probability to light
vertices, θ must be set to Ω(

√
m). Our approach for sampling heavy vertices is different, and

relies on the preprocessing phase, which later allows us to reach heavy vertices with O(1)
queries. This allows us, in a sense, to decouple the dependence of the threshold τ and the
success probability of sampling light vertices. Hence, we can allow to set the degree threshold
τ to smaller values, which results in a more efficient per-sample complexity (at a cost of a
preprocessing step).

The algorithm of [7] also outputs a uniformly distributed single edge, however in graphs
with bounded arboricity α. Here too the algorithm first defines light vertices, setting the
threshold to Θ(α). Sampling heavy edge is then performed by starting at light vertices
as before, but taking longer random walks of length ℓ, for ℓ chosen uniformly in [log n].
This method was later used by Tětek [26] to exponentially improve the dependence in ϵ of
sampling a single edge in the general setting. It is an interesting open question whether
there exists an algorithm for sampling multiple edges in bounded arboricity graphs which
has better complexity than the algorithm of this work.

12 We say that an edge (u, v) is incident to S if either u or v are in S.

APPROX/RANDOM 2021

51:6 Sampling Multiple Edges Efficiently

1.4 Further Related Work
We note that some of the related works were already mentioned, but we list them again for
the sake of completeness.

Sampling edges in the adjacency list model

As discussed previously, the most related work to ours is that of [13] for sampling a single
edge from an almost uniform distribution in general graphs in O∗(n/

√
m) expected time.

This was later refined by Eden, Rosenbaum and Ron [7] to an O∗(nα/m) expected time
algorithm in bounded arboricity graphs, where a bound α on the arboricity of the graph at
question is also given as input to the algorithm.13 Recently, Tětek and Thorup [26] proved
that the dependency in ϵ in the algorithm of [13] could be improved from 1/

√
ϵ to log(1/ϵ).

They further proved (subsequent to our work) that given additional access to what they refer
to as hash-based neighbor queries, there exists an algorithm for sampling multiple edges
(with and without replacement) from the exactly uniform distribution in O∗(√q · (n/

√
m))

time.

The augmented edge samples model

In [3], Aliakbarpour et al. suggested a query model which allows access to uniform edge
samples and degree queries. In this model they presented an algorithm for approximately
counting the number of s-stars in expected time O∗(m/#H1/s), where #H denotes the
number of s-stars in the graph. In [4], Assadi, Kaparalov and Khanna considered the
combined power of neighbor, degree, pair and uniform vertex and edge samples. In this
model, they presented an algorithm that approximates the number of occurrences of any
arbitrary subgraph H in a graph G in expected time O∗(mρ(H)/#H), where ρ(H) is the
fractional edge cover14 of H, and #H is the number of occurrences of H in G. In the same
model, Fichtenberger, Gao, and Peng [15] simplified the above algorithm and proved the same
complexity for the additional task of sampling a uniformly distributed copy of H. Recently,
Biswas, Eden and Rubinfeld [5], paramerterized the complexity of counting and sampling
arbitrary subgraph by what they refer to as the decomposition cost of H, improving the
above results for a large family of subgraphs H. In [28], Tětek considers this model in the
context of approximately counting triangles in the super-linear regime.

Sampling from networks

Sampling from networks is a very basic primitive that is used in a host of works for studying
networks’ parameters (e.g., [20, 22, 31, 6, 27]). Most approaches for efficiently sampling
edges from networks are random walk based approaches, whose complexity is proportional
to the mixing time of the network, e.g., [22, 16, 25, 24]. We note that our approach cannot
be directly compared with that of the random walk based ones, as the query models are
different: The adjacency list query model assumes access to uniform vertex queries and one
can only query one neighbor at a time, while random walk based approaches usually only
assume access to arbitrary seed vertices and querying a node reveals its set of neighbors.
Furthermore, while in theory the mixing time of a graph can be of order O(n), in practice,

13 Note that since for all graphs α ≤
√

m, this results is always at least as good as the previous one.
14 The fractional edge cover of a graph is minimum weight assignment of weights to the graph’s edges, so

that the sum of weights over the edges incident to each vertex is at least 1.

T. Eden, S. Mossel, and R. Rubinfeld 51:7

social networks tend to have smaller mixing times [24], making random walk based approaches
very efficient. Still, denoting the mixing time of the network by tmix, such approaches require
one to perform Ω(tmix) queries in order to obtain each new sample, thus leaving the question
of a more efficient amortized sampling procedure open.

2 Preliminaries

Let G = (V, E) be an undirected simple graph over n vertices. We consider the adjacency
list query model, which assumes the following set of queries:

Uniform vertex queries: which return a uniformly distributed vertex in V .
Degree queries: deg(v), which return the degree of the queried vertex.
Neighbor queries nbr(v, i) which return the ith neighbor of v, if one exists and ⊥
otherwise.

We sometimes say that we perform a “uniform neighbor query” from some vertex v. This can
be simply implemented by choosing an index i ∈ [d(v)] uniformly at random, and querying
nbr(v, i).

Throughout the paper we consider each edge from both endpoints. That is, each edge
{u, v} is considered as two oriented edges (u, v) and (v, u). Abusing notation, let E denote
the set of all oriented edges, so that m = |E| =

∑
v∈V d(v) and davg = m/n. Unless stated

explicitly otherwise, when we say an “edge”, we refer to oriented edges.
For a vertex v ∈ V we denote by Γ(v) the set of v’s neighbors. For a set S ⊆ V we denote

by E(S) the subset of edges (u, v) such that u ∈ S, and by m(S) the sum of degrees of all
vertices in S, i.e. m(S) = |E(S)| =

∑
v∈S d(v). For every vertex v ∈ V and set S ⊆ V , we

denote by dS(v) the degree of v in S, dS(v) = |Γ(v) ∩ S|.
We consider the following definition of ϵ-pointwise close distributions:

▶ Definition 1 (Definition 1.1 in [13]). Let Q be a fixed probability distribution on a finite
set Ω. We say that a probability distribution P is pointwise ϵ-close to Q if for all x ∈ Ω,

|P (x)−Q(x)| ≤ ϵQ(x) , or equivalently P (X) ∈ (1± ϵ)Q(X) .

If Q = U , the uniform distribution on Ω, then we say that P is pointwise ϵ-close to uniform.

3 Multiple Edge Sampling

As discussed in the introduction, our algorithm consists of a preprocessing procedure that
creates a data structure that enables one to sample heavy vertices, and a sampling procedure
that samples an almost uniformly distributed edge. Also recall that our procedures are
parameterized by a value x which allows for a trade-off between the preprocessing complexity
and the per-sample complexity. Namely, allowing per-sample complexity of O(x/ϵ), our
preprocessing procedure will run in time O∗(n/(davg ·x)). If one knows the number of queries,
q, then setting x = n/

√
m√

q yields the optimal trade-off between the preprocessing and the
sampling.

3.1 Preprocessing
In this section we present our preprocessing procedure that will later allow us to sample heavy
vertices. The procedure and its analysis are similar to the procedure Sample-degrees-typical
of Eden, Ron, and Seshadhri [11].

APPROX/RANDOM 2021

51:8 Sampling Multiple Edges Efficiently

The input parameters to the procedure are n, the number of vertices in the graph, x, the
trade-off parameter, δ, a failure probability parameter, and ϵ, the approximation parameter.
The output is a data structure that, with probability at least 1− δ, allows one to sample
heavy vertices with probability (roughly) proportional to their degree.

We note that we set x = min{x,
√

n/davg} since for values x = Ω(
√

n/davg) it is better to
simply use the O∗(

√
n/davg) per-sample algorithm of [13]. We shall make use of the following

theorems.

▶ Theorem 3.1 (Theorem 1.1 of [17], restated.). There exists an algorithm that, given query
access to a graph G over n vertices and m edges, an approximation parameter ϵ ∈ (0, 1

2), and
a failure parameter δ ∈ (0, 1), returns a value m such that with probability at least 1 − δ,
m ∈ [(1 − ϵ)m, m]. The expected query complexity and running time of the algorithm are
O(n√

m
· log2 n

ϵ2.5).

▶ Theorem 3.2 (Section 4.2 and Lemma 17 in [14], restated.). For a set S of size at least
n√
m
· 34

ϵ , it holds that with probability at least 5/6, m(S)/s > 1
2 · (1− ϵ) · davg.

▶ Theorem 3.3 (A data structure for a discrete distribution (e.g., [29, 30, 23]).). There exists
an algorithm that receives as input a discrete probability distribution P over ℓ elements, and
constructs a data structure that allows one to sample from P in linear time O(ℓ).

Preprocessing (n, ϵ, δ, x)
1. Invoke the algorithm of [17]a to get an estimate davg of the average degree davg.

2. Let x = min
{

x,
√

n/davg

}
3. Let t = ⌈log3(3

δ)⌉, and let τ = x·davg
ϵ .

4. For i = 1 to t do:
a. Let Si be a multiset of s = n

τ ·
35 log(6nt/δ)

ϵ2 vertices chosen uniformly at
random.

b. Query the degrees of all the vertices in Si and compute m(Si) =
∑

v∈Si
d(v).

5. Let S be the first set Si such that m(Si)
s ∈

[1
4 · davg, 12 · davg

]
.

a. If no such set exists, then return fail.
b. Else, set up a data structureb D(S) that supports sampling each vertex v ∈ S

with probability d(v)
m(S) .

6. Let γ = m(S)
davg·|S|

.
7. Return (γ, τ, x, D(S)).

a See Theorem 3.1
b See Theorem 3.3

The following definitions will be useful in order to prove the lemma regarding the
performance of the Preprocessing procedure.

▶ Definition 2. We say that a sampled set S ⊆ V is ϵ-good if the following two conditions
hold:

For every heavy vertex v ∈ V>τ , dS(v) ∈ (1± ϵ)|S| · d(v)
n .

m(S)
s ∈

[1
4 · davg, 12 · davg

]
.

▶ Definition 3. We say that davg is an ϵ-good estimate of davg if davg ∈ [(1− ϵ)davg, davg].

T. Eden, S. Mossel, and R. Rubinfeld 51:9

▶ Lemma 4. Assume query access to a graph G over n vertices, ϵ ∈ (0, 1
2), δ ∈ (0, 1), and

x ≥ 1. The procedure Preprocessing(n, ϵ, δ, x), with probability at least 1 − δ, returns a
tuple (γ, τ, x, D(S)) such that the following holds.

D(S) is a data structure that supports sampling a uniform edge in E(S), for an ϵ-good
set S, as defined in Definition 2.
x ∈ [1,

√
n/davg], τ = x·davg

ϵ , and γ = m(S)
davg·|S|

, where davg is an ϵ-good estimate of davg, as
defined in Definition 3.

The expected query complexity and running time of the procedure are

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
.

Proof. We start with proving that with probability at least 1− δ the set S chosen in Step 5
is a good set. Namely, that (1) m(S)

|S| ∈
[1

4 · davg, 12 · davg
]
, and that (2) for all heavy vertices

v ∈ V>τ , dS(v) ∈ (1± ϵ)s · d(v)
n .

By Theorem 1.1 of [17] (see Theorem 3.1), with probability at least 1 − δ
3 , davg is an

ϵ-good estimate of davg, that is

(1− ϵ)davg ≤ davg ≤ davg. (1)

We henceforth condition on this event, and continue to prove the latter property. Fix an
iteration i ∈ [t]. Observe that E

[
m(Si)

s

]
= davg. By Markov’s inequality,15 equation (1), and

the assumption that ϵ ∈ (0, 1
2),

Pr
[

m(Si)
s

> 12 · davg

]
≤ davg

12 · davg
≤ 1

12(1− ϵ) ≤
1
6 .

Recall that s = n
τ ·

35 log(6nt/δ)
ϵ2 , τ = x·davg

ϵ , and x ≤
√

n/davg and that we condition on
davg ≥ (1 − ϵ)davg. Thus, τ ≤

√
m
ϵ , and s ≥ 34

ϵ
n√
m

. Therefore, by Lemma 17 in [14] (see
Theorem 3.2), for every i, it holds that

Pr
[

m(Si)
s
≤ 1

2 · (1− ϵ) davg

]
≤ 1

6 . (2)

By equations (1), (2), and the assumption that ϵ ∈ (0, 1
2),

Pr
[

m(Si)
s

<
1
4 · davg

]
≤ Pr

[
m(Si)

s
≤ 1

2 · (1− ϵ) davg

]
≤ 1

6

By the union bound, for every specific i,

Pr
[

m(Si)
s

<
1
4 · davg or m(Si)

s
> 12 · davg

]
≤ 1

3 .

Hence, the probability that for all the selected multisets {Si}i∈[t], either m(Si)
s < 1

4 · davg or
m(Si)

s > 12 · davg is bounded by 1
3t = δ

3 (recall t = ⌈log3(3
δ)⌉). Therefore, with probability at

least 1− 2δ
3 , it holds that m(S)

s ∈
[1

4 · davg, 12 · davg
]
, and the procedure does not return fail

in Step 5a.

15 Markov’s inequality: if X is a non-negative random variable and a > 0, P (X ≥ a) ≤ E(X)
a .

APPROX/RANDOM 2021

51:10 Sampling Multiple Edges Efficiently

Next, we prove that there exists a high-degree vertex v ∈ V>τ such that dS(v) /∈
(1± ϵ)s · d(v)

n with probability at most δ
3 . Fix an iteration i ∈ [t], and let Si = {u1, . . . , us}

be the sampled set. For any fixed high-degree vertex v ∈ V>τ and for some vertex u ∈ V, let

χv(u) =
{

1 u is a neighbor of v

0 otherwise
.

Observe that Eu∈V [χv(u)] = d(v)
n , and that dSi(v) =

∑
j∈[s] χv(uj). Thus, E [dSi(v)] =

s· d(v)
n . Since the χv(u) variables are independent {0, 1} random variables, by the multiplicative

Chernoff bound,16

Pr
[∣∣∣∣dSi(v)− s · d(v)

n

∣∣∣∣ ≥ ϵ · s · d(v)
n

]
≤ 2 exp

(
−ϵ2 · s · d(v)

3n

)
≤ δ

3nt
, (3)

where the last inequality is by the assumption that ϵ ∈ (0, 1
2), the setting of s = n

τ ·
35 log(6nt/δ)

ϵ2 ,
and since we fixed a heavy vertex v so that d(v) ≥ τ . By taking a union bound over all
high-degree vertices, it holds that there exists v ∈ V>τ such that dSi(v) /∈ (1± ϵ) s·d(v)

n with
probability at most δ

3t .
Hence, with probability at least 1− δ, D(S) is a data structure of a good set S. Moreover,

by steps 2, 6, and 3 in the procedure Preprocessing(n, ϵ, δ, x) it holds that x ∈
[
1,

√
n/davg

]
,

γ = m(S)
davg·|S|

, and τ = x·davg
ϵ respectively. By equation (1), davg is an ϵ-good estimate for davg.

We now turn to analyze the complexity. By [17] (see Theorem 3.1), the query complexity
and running time of step 1 is O

(
n√
m
· log2(n)

ϵ2.5

)
. The expected query complexity and running

time of the for loop are O(t · s) = O(n
davg·x ·

log2(n log(1/δ)/δ)
ϵ), where the equality holds by

the setting of s, t and since the expected value of davg is davg. Step 5 takes O(t) time.
By [29, 30, 23] (see Theorem 3.3), the running time of step 5b is O(s). All other steps takes
O(1) time. Hence, the expected query complexity and running time are dominated by the for
loop. By the setting of x = min{x,

√
n/davg} we have O(s ·t) = O

(
n

davg·x
· log2(n log(1/δ)/δ)

ϵ

)
=

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
which proves the claim. ◀

3.2 Sampling an edge
In this section we present our sampling procedures. The following definition and claim will
be useful in our analysis.

▶ Definition 5. Let τ be a degree threshold. Let V≤τ = {v ∈ V | d(v) ≤ τ}, and let
V>τ = V \ V≤τ . We refer to V≤τ and V>τ as the sets of light vertices and heavy vertices,
respectively. Let E≤τ = {(u, v) | u ∈ V≤τ} and E>τ = {(u, v) | u ∈ V>τ}.

▶ Definition 6. If the procedure Preprocessing(n, ϵ, δ, x) returns a tuple (γ, τ, x, D(S))
such that the following items of Lemma 4 hold, then we say that this invocation is successful.

D(S) is a data structure that supports sampling a uniform edge in E(S), for an ϵ-good
set S, as defined in Definition 2.
x ∈ [1,

√
n/davg], τ = x·davg

ϵ , and γ = m(S)
davg·|S|

, where davg is an ϵ-good estimate of davg, as
defined in Definition 3.

16 Multiplicative Chernoff bound: if X1, . . . , Xn are independent random variables taking values in {0, 1},
then for any 0 ≤ δ ≤ 1, Pr

[∣∣∣∑i∈[n] Xi − µ

∣∣∣ ≥ δµ

]
≤ 2e− δ2µ

3 where µ = E
[∑

i∈[n] Xi

]
.

T. Eden, S. Mossel, and R. Rubinfeld 51:11

▷ Claim 7. Let γ = m(S)
davg·|S| and γ = m(S)

davg·|S|
. If S is an ϵ-good set, as in Definition 2, and

davg is an ϵ-good estimate of davg, as in Definition 3, then it holds that γ ∈ [1/4, 12] and that
γ ∈ [(1− ϵ)γ, γ].

Proof. By the assumption that S is an ϵ-good set, it holds that m(S)
|S| ∈ [1

4 · davg, 12 · davg].
Therefore, γ ∈ [1

4 , 12]. By the assumption that davg is an ϵ-good estimate of davg, namely
davg ∈ [(1− ϵ)davg, davg], it holds that γ ∈ [(1− ϵ)γ, γ]. ◁

3.2.1 The sampling procedures
We now present the two procedures for sampling light edges and heavy edges.

Sample-Uniform-Edge (γ, τ, x, D(S), ϵ)
1. While True do:

a. Sample uniformly at random a bit b← {0, 1}.
b. If b = 0 invoke Sample-Light(γ, τ).
c. Otherwise, invoke Sample-Heavy(τ, D(S), x, ϵ).
d. If an edge (v, u) was returned, then return (v, u).

Sample-Light (γ, τ)
1. Sample a vertex v ∈ V uniformly at random and query for its degree.
2. If d(v) > τ return fail.
3. Query a uniform neighbor of v. Let u be the returned vertex.
4. Return (v, u) with probability d(v)

τ · 1
4γ , otherwise return fail.

Sample-Heavy (τ, D(S), x, ϵ)
1. Sample from the data structure D(S) a vertex v ∈ S with probability d(v)

m(S) .
2. Sample uniform neighbor of v. Let u be the returned vertex.
3. If d(u) ≤ τ return fail.
4. Sample uniform neighbor of u. Let w be the returned vertex.
5. Return (u, w) with probability ϵ/4x, otherwise return fail.

Our procedure for sampling an edge Sample-Uniform-Edge gets as input a tuple
(γ, τ, x, D(S)) which is the output of the procedure Preprocessing. Our guarantees on
the resulting distribution of edge samples rely on the preprocessing being successful (see
Definition 6), which happens with probability at least 1− δ.

▶ Lemma 8. Assume that Preprocessing has been invoked successfully, as defined in
Definition 6. The procedure Sample-Light(γ, τ) returns an edge in E≤τ such that each
edge is returned with probability ϵ|S|

4n·x·m(S) . The query complexity and running time of the
procedure are O(1).

Proof. Let (v, u) be a fixed edge in E≤τ .

Pr[(v, u) returned] = Pr[(v is sampled in Step 1) and (u sampled in Step 3)
and ((v, u) returned in Step 4)]

= 1
n
· 1

d(v) ·
d(v)
τ · 4γ

.

APPROX/RANDOM 2021

51:12 Sampling Multiple Edges Efficiently

Note that by Claim 7, 1/4γ ≤ 1 and therefore, Step 4 is valid and the above holds. Hence,
by the setting of τ = x·davg

ϵ and γ = m(S)
davg·|S|

,

Pr[(v, u) is returned] = 1
n · τ · 4γ

= ϵ · |S|
4n · x ·m(S) .

The procedure performs at most one degree query and one uniform neighbor query. All
other operations take constant time. Therefore, the query complexity and running time of
the procedure are constant. ◀

▶ Lemma 9. Assume that Preprocessing has been invoked successfully, as defined in
Definition 6. The procedure Sample-Heavy(τ, D(S), x, ϵ) returns an edge in E>τ such that
each edge is returned with probability (1±ϵ)ϵ|S|

4n·x·m(S) . The query complexity and running time of
the procedure are O(1).

Proof. Let (u, w) be an edge in E>τ . We first compute the probability that u is sampled in
Step 2. Recall, the data structure D(S) supports sampling a vertex v in S with probability
d(v)

m(S) . The probability that u is sampled in Step 2 is equal to the probability that a vertex
v ∈ S which is a neighbor of u is sampled in step 1, and u is the selected neighbor of v in
Step 2. Namely,

Pr[u is sampled in Step 2] =
∑

v∈S∩Γ(u)

d(v)
m(S) ·

1
d(v) =

∑
v∈S∩Γ(u)

1
m(S) = dS(u)

m(S) .

By the assumption that Preprocessing has been invoked successfully, so that S is ϵ-good,
and because u ∈ V>τ ,

dS(u) ∈ (1± ϵ) · |S| · d(u)
n

.

Hence, the probability that (u, w) is returned by the procedure is

Pr[(u, w) is returned] = Pr[(u sampled in Step 2) and (w sampled in Step 5)
and ((u, w) returned in Step 5)]

= dS(u)
m(S) ·

1
d(u) ·

ϵ

4x
∈

(1± ϵ)|S| · d(u)
n · ϵ

m(S) · d(u) · 4x
= (1± ϵ)ϵ|S|

4n · x ·m(S) .

The procedure performs one degree query and two neighbor queries, and the rest of
the operations take constant time. Hence the query complexity and running time are
constant. ◀

We are now ready to prove the formal version of Theorem 1.1.

▶ Theorem 3.4. There exists an algorithm that gets as input query access to a graph G,
n, the number of vertices in the graph, ϵ ∈ (0, 1

2), an approximation parameter, δ ∈ (0, 1),
a failure parameter, and x > 1, a trade-off parameter. The algorithm has a preprocessing
procedure and a sampling procedure.

The preprocessing procedure has expected query complexity

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
, and it succeeds with probability at least

1 − δ. If the preprocessing procedure succeeds, then each time the sampling procedure is
invoked it returns an edge such that the distribution on returned edges is 2ϵ-point-wise
close to uniform, as defined in Definition 1. Each invocation of the sampling procedure has
expected O(x/ϵ) query and time complexity.

T. Eden, S. Mossel, and R. Rubinfeld 51:13

Proof. By 9, the procedure Preprocessing procedure succeeds with probability at least
1− δ. Furthermore, it has expected running time and query complexity as stated.

Condition on the event that the invocation of Preprocessing was successful. Let P

denote the distribution over the returned edges by the procedure Sample-Uniform-Edge.
By Lemma 2.3 in [13], in order to prove that P is pointwise 2ϵ-close to uniform, it suffices to
prove that for every two edges e, e′ in the graph, P (e)

P (e′) ∈ (1± 2ϵ). By Lemma 8, every light
edge e is returned with probability ϵ·|S|

4n·x·m(S) . By Lemma 9, every heavy edge e′ is returned
with probability (1±ϵ)ϵ|S|

4n·x·m(S) . Therefore, for every two edges e, e′ in the graph, P (e)
P (e′) ∈ (1± 2ϵ).

Next, we prove a lower bound on the success probability of a single invocation of the
while loop in Step 1 in Sample-Uniform-Edge.

Pr[an edge is returned] = 1
2 Pr[Sample-Light returns an edge]

+ 1
2 Pr[Sample-Heavy returns an edge]

≥ 1
2 |E≤τ | ·

ϵ · |S|
4n · x ·m(S) + 1

2 · |E>τ | ·
(1− ϵ)ϵ · |S|
4n · x ·m(S)

≥ 1
2 ·

(1− ϵ) · ϵ|S| ·m
4n · x ·m(S) = (1− ϵ)ϵ

8γx
≥ ϵ

192x
,

where the second inequality is due to Claim 7, i.e. γ ≤ 12. Hence, the expected number of
invocations until an edge is returned is O(x/ϵ). ◀

References
1 Nesreen K Ahmed, Nick Duffield, Theodore L Willke, and Ryan A Rossi. On sampling from

massive graph streams. Proceedings of the VLDB Endowment, 10(11), 2017.
2 Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. Network sampling: From static to

streaming graphs. ACM Transactions on Knowledge Discovery from Data (TKDD), 8(2):1–56,
2013.

3 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt
Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via
edge sampling. Algorithmica, 80(2):668–697, 2018.

4 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm
for counting arbitrary subgraphs via edge sampling. In Innovations in Theoretical Computer
Science Conference ITCS, volume 124 of LIPIcs, pages 6:1–6:20. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2019.

5 Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. Towards a decomposition-optimal
algorithm for counting and sampling arbitrary motifs in sublinear time. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2021, to appear, 2021.

6 Colin Cooper, Tomasz Radzik, and Yiannis Siantos. Estimating network parameters using
random walks. Social Network Analysis and Mining, 4(1):168, 2014.

7 Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of
sampling edges. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece., pages 52:1–52:14, 2019. doi:10.4230/LIPIcs.
ICALP.2019.52.

8 Talya Eden, Dana Ron, and Will Rosenbaum. Almost optimal bounds for sublinear-time
sampling of k-cliques: Sampling cliques is harder than counting, 2020. arXiv:2012.04090.

9 Talya Eden, Dana Ron, and C Seshadhri. Sublinear time estimation of degree distribution
moments: The arboricity connection. SIAM Journal on Discrete Mathematics, 33(4):2267–2285,
2019.

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
http://arxiv.org/abs/2012.04090

51:14 Sampling Multiple Edges Efficiently

10 Talya Eden, Dana Ron, and C Seshadhri. Faster sublinear approximation of the number
of k-cliques in low-arboricity graphs. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1467–1478. SIAM, 2020.

11 Talya Eden, Dana Ron, and C Seshadhri. On approximating the number of k-cliques in
sublinear time. SIAM Journal on Computing, 49(4):747–771, 2020.

12 Talya Eden and Will Rosenbaum. Lower bounds for approximating graph parameters via
communication complexity. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume
116 of LIPIcs, pages 11:1–11:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.11.

13 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In Raimund Seidel,
editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New
Orleans, LA, USA, volume 61 of OASICS, pages 7:1–7:9. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/OASIcs.SOSA.2018.7.

14 Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

15 Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly
uniformly in sublinear time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
45:1–45:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.45.

16 Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou. Walking in facebook:
A case study of unbiased sampling of osns. In INFOCOM 2010. 29th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, 15-19 March 2010, San Diego, CA, USA, pages 2498–2506. IEEE,
2010. doi:10.1109/INFCOM.2010.5462078.

17 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473–493, 2008. doi:10.1002/rsa.20203.

18 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.

19 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 49–58, 2011.

20 Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–
1758, 2004.

21 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004. doi:10.1137/
S0097539703436424.

22 Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06,
pages 631–636, New York, NY, USA, 2006. ACM. doi:10.1145/1150402.1150479.

23 George Marsaglia, Wai Wan Tsang, Jingbo Wang, et al. Fast generation of discrete random
variables. Journal of Statistical Software, 11(3):1–11, 2004.

24 Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. Measuring the mixing time of social
graphs. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,
pages 383–389, 2010.

25 Bruno Ribeiro and Don Towsley. Estimating and sampling graphs with multidimensional
random walks. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement,
pages 390–403, 2010.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/OASIcs.SOSA.2018.7
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.1109/INFCOM.2010.5462078
https://doi.org/10.1002/rsa.20203
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1145/1150402.1150479

T. Eden, S. Mossel, and R. Rubinfeld 51:15

26 Jakub Tětek and Mikkel Thorup. Sampling and counting edges via vertex accesses. arXiv
preprint arXiv:2107.03821, 2021.

27 Duru Türkoglu and Ata Turk. Edge-based wedge sampling to estimate triangle counts in very
large graphs. In 2017 IEEE International Conference on Data Mining (ICDM), pages 455–464.
IEEE, 2017.

28 Jakub Tětek. Approximate triangle counting via sampling and fast matrix multiplication.
CoRR, abs/2104.08501, 2021. arXiv:2104.08501.

29 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10(8):127–128, 1974.

30 Alastair J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Transactions on Mathematical Software, 3(3):253–256, 1977.

31 Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing Deng, and
Xing Li. Understanding graph sampling algorithms for social network analysis. In 2011 31st
international conference on distributed computing systems workshops, pages 123–128. IEEE,
2011.

APPROX/RANDOM 2021

http://arxiv.org/abs/2104.08501

Lower Bounds for XOR of Forrelations
Uma Girish # Ñ

Department of Computer Science, Princeton University, NJ, USA

Ran Raz # Ñ

Department of Computer Science, Princeton University, NJ, USA

Wei Zhan # Ñ

Department of Computer Science, Princeton University, NJ, USA

Abstract
The Forrelation problem, first introduced by Aaronson [1] and Aaronson and Ambainis [2], is a well
studied computational problem in the context of separating quantum and classical computational
models. Variants of this problem were used to give tight separations between quantum and classical
query complexity [2]; the first separation between poly-logarithmic quantum query complexity and
bounded-depth circuits of super-polynomial size, a result that also implied an oracle separation of the
classes BQP and PH [15]; and improved separations between quantum and classical communication
complexity [12]. In all these separations, the lower bound for the classical model only holds when
the advantage of the protocol (over a random guess) is more than ≈ 1/

√
N , that is, the success

probability is larger than ≈ 1/2 + 1/
√

N . This is unavoidable as ≈ 1/
√

N is the correlation between
two coordinates of an input that is sampled from the Forrelation distribution, and hence there are
simple classical protocols that achieve advantage ≈ 1/

√
N , in all these models.

To achieve separations when the classical protocol has smaller advantage, we study in this work
the xor of k independent copies of (a variant of) the Forrelation function (where k ≪ N). We
prove a very general result that shows that any family of Boolean functions that is closed under
restrictions, whose Fourier mass at level 2k is bounded by αk (that is, the sum of the absolute values
of all Fourier coefficients at level 2k is bounded by αk), cannot compute the xor of k independent
copies of the Forrelation function with advantage better than O

(
αk

Nk/2

)
. This is a strengthening of

a result of [8], that gave a similar statement for k = 1, using the technique of [15]. We give several
applications of our result. In particular, we obtain the following separations:

Quantum versus Classical Communication Complexity. We give the first example of a
partial Boolean function that can be computed by a simultaneous-message quantum protocol with
communication complexity polylog(N) (where Alice and Bob also share polylog(N) EPR pairs), and
such that, any classical randomized protocol of communication complexity at most õ(N1/4), with
any number of rounds, has quasipolynomially small advantage over a random guess. Previously,
only separations where the classical protocol has polynomially small advantage were known between
these models [10, 12].

Quantum Query Complexity versus Bounded Depth Circuits. We give the first example of a
partial Boolean function that has a quantum query algorithm with query complexity polylog(N), and
such that, any constant-depth circuit of quasipolynomial size has quasipolynomially small advantage
over a random guess. Previously, only separations where the constant-depth circuit has polynomially
small advantage were known [15].

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Pseudorandomness and derandomization; Theory of computation → Oracles and
decision trees

Keywords and phrases Forrelation, Quasipolynomial, Separation, Quantum versus Classical, Xor

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.52

Category RANDOM

© Uma Girish, Ran Raz, and Wei Zhan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ugirish@cs.princeton.edu
http://cs.princeton.edu/~ugirish
mailto:ranr@cs.princeton.edu
http://www.wisdom.weizmann.ac.il/~/ranraz/
mailto:weizhan@cs.princeton.edu
https://www.cs.princeton.edu/~weizhan/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.52
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Lower Bounds for XOR of Forrelations

Related Version Full Version: https://arxiv.org/abs/2007.03631
Full Version: https://eccc.weizmann.ac.il/report/2020/101/

Funding Uma Girish: Simons Collaboration on Algorithms and Geometry, by a Simons Investigator
Award and by the National Science Foundation grants No. CCF-1714779, CCF-2007462.
Ran Raz : Simons Collaboration on Algorithms and Geometry, by a Simons Investigator Award and
by the National Science Foundation grants No. CCF-1714779, CCF-2007462.
Wei Zhan: Simons Collaboration on Algorithms and Geometry, by a Simons Investigator Award and
by the National Science Foundation grants No. CCF-1714779, CCF-2007462.

Acknowledgements We would like to thank Avishay Tal for very helpful conversations. We would
also like to thank Chin Ho Lee for pointing out a simpler proof of Lemma 28.

1 Introduction

Several recent works used Fourier analysis to prove lower bounds for computing (variants of)
the Forrelation (partial) function of [1, 2], in various models of computation and communic-
ation [15, 8, 12]. These works show that for many computational models, when analyzing
the success probability of computing the Forrelation function, it’s sufficient to bound the
contribution of Fourier coefficients at level 2, ignoring all other Fourier coefficients [15, 8].
This holds for any computational model that is closed under restrictions and is proved by
analyzing the Forrelation distribution as a distribution resulting from a certain random walk,
rather than analyzing it directly.

While this is a powerful technique, it could only be used to bound computations of the
Forrelation function with advantage (over a random guess) larger than ≈ 1/

√
N , that is,

computations with success probability larger than ≈ 1/2 + 1/
√

N . Roughly speaking, this
is because the bound on the Fourier coefficients at level 2 of the Forrelation function is
≈ O

(
1/

√
N

)
. We note that while ruling out protocols with advantage larger than 1/

√
N is

satisfactory in many cases, an advantage of 1/
√

N is often viewed as non-negligible and it is
often desirable to rule out protocols with negligible (sub-polynomially small) advantage as
well.

In this work, we study the xor of k independent copies of the Forrelation function of [15]
(where k < o(N1/50)). We show that for many computational models, when analyzing the
success probability of computing the xor of k independent copies of the Forrelation function,
it’s sufficient to bound the contribution of Fourier coefficients at level 2k, ignoring all other
Fourier coefficients. Our proof builds on the techniques of [15], and followup works [8, 12],
by analyzing a “product” of k random walks, one for each of the independent copies of
the Forrelation function. This can be viewed as a random walk with a k-dimensional time
variable.

Consequently, we obtain a very general lower bound that shows that any family of Boolean
functions that is closed under restrictions, whose Fourier mass at level 2k is bounded by
αk (that is, for every function in the family, the sum of the absolute values of all Fourier
coefficients at level 2k is bounded by αk), cannot compute the xor of k independent copies
of the Forrelation function with advantage better than O

(
αk

Nk/2

)
, that is, with success

probability larger than 1
2 + O

(
αk

Nk/2

)
. This is a strengthening of a result of [8], that gave a

similar statement for k = 1, using the technique of [15]. While bounding the advantage of
protocols for the xor of k independent copies of a problem is often non-trivial, our result
gives a very general way to do that for the special case of Forrelation.

https://arxiv.org/abs/2007.03631
https://eccc.weizmann.ac.il/report/2020/101/

U. Girish, R. Raz, and W. Zhan 52:3

We note that the requirement that the family of Boolean functions is closed under
restrictions is satisfied by essentially all non-uniform computational models. The requirement
of having a good bound on the Fourier mass at level 2k is satisfied by several central and
well-studied computational models (see for example [7] for a recent discussion). In particular,
we focus in this work on three such models: communication complexity, query complexity
(decision trees) and bounded-depth circuits. We note that our result is valid for any k < N c,
for some constant c > 0, and hence it can be used to prove lower bounds for circuits/protocols
with exponentially small advantage, in all these models. However, for the applications of
separating quantum and classical computational models, we take k to be poly-logarithmic in
N , so that we have quantum protocols of poly-logarithmic cost. We use our main theorem
to give several separations between quantum and classical computational models.

1.1 Communication Complexity
Quantum versus classical separations in communication complexity have been studied for
more than two decades in numerous works. We briefly summarize the history of quantum
advantage in communication complexity of partial functions, that is most relevant for us:
First, Buhrman, Cleve and Wigderson proved an exponential separation between zero-error
simultaneous-message quantum communication complexity (without entanglement) and
classical deterministic communication complexity [4]. For the bounded-error model, Raz
showed an exponential separation between two-way quantum communication complexity
and two-way randomized communication complexity [14]. Gavinsky et al (building on Bar-
Yossef et al [3]) gave an exponential separation between one-way quantum communication
complexity and one-way randomized communication complexity [11]. Klartag and Regev gave
an exponential separation between one-way quantum communication complexity and two-way
randomized communication complexity [16]. The state of the art separation, by Gavinsky,
gave an exponential separation between simultaneous-message quantum communication
complexity (with entanglement) and two-way randomized communication complexity [10].
An alternative proof for Gavinsky’s result was recently given by [12], as a followup to [15, 8],
and had the additional desired property that in the quantum protocol, the time complexity
of all the players is poly-logarithmic.

Our Result
In all these works, the lower bounds for classical communication complexity only hold when
the advantage of the protocol (over a random guess) is more than ≈ 1/

√
N , that is, the

success probability is larger than ≈ 1/2 + 1/
√

N .
In this work, we give a partial Boolean function that can be computed by a simultaneous-

message quantum protocol with communication complexity polylog(N) (where Alice and
Bob also share polylog(N) EPR pairs), and such that, any classical randomized protocol of
communication complexity at most õ(N1/4), with any number of rounds, has quasipolynomi-
ally small advantage over a random guess. This qualitatively matches the results of [10, 12]
and has the additional desired property that the lower bound for the classical communication
protocol holds for quasipolynomially small advantage, rather than polynomially small ad-
vantage. Moreover, as in [12], the quantum protocol in our upper bound has the additional
property of being efficiently implementable, in the sense that it can be described by quantum
circuits of size polylog(N), with oracle access to the inputs.

To prove this result we use the xor of k independent copies of the Forrelation function,
lifted to communication complexity using xor as the gadget [13], as in [12]. The quantum
upper bound is simple. For the classical lower bound, we use ideas from [12] to bound the

APPROX/RANDOM 2021

52:4 Lower Bounds for XOR of Forrelations

level-2k Fourier mass. This, along with our main theorem implies the desired separation.
Our bounds for the level-2k Fourier mass may be interesting in their own right and are
proved in Section 7.

Related Work
We note that an exponential separation between two-way quantum communication com-
plexity and two-way randomized communication complexity, with quasipolynomially small
advantage, can be proved by a combination of several previous results, as follows:

Start with an existing separation between quantum and classical query complexity, such
as the one of [2]. Use Drucker’s xor lemma for randomized decision tree [9] to get a
separation between quantum and classical query complexity, where the classical protocol has
quasipolynomially small advantage. Finally, use the recent lifting theorem of [5] to lift the
result to communication complexity. To the best of our knowledge, this separation was not
previously observed.

It follows from these works that there exists a function computable in the quantum
two-way model in communication complexity polylog(N), for which randomized protocols
of cost õ(

√
N) have at most quasipolynomially small advantage. While the lower bound is

for cost õ(
√

N) protocols, which is quantitatively stronger than our lower bound for cost
õ(N1/4) protocols, the quantum upper bound in this result seems to require two rounds of
communication, while our function is computable in the simultaneous model when Alice and
Bob share entanglement.

1.2 Bounded Depth Circuits
Separations of quantum query complexity and bounded-depth classical circuit complexity
have been studied in the context of oracle separations of the classes BQP and PH. An
example of a partial Boolean function (Forrelation) that has a quantum query algorithm with
query complexity polylog(N), and such that, any constant-depth circuit of quasipolynomial
size has polynomially small advantage over a random guess, was given in [15]. This result
implied an oracle separation of the classes BQP and PH.

Here, we give the first example of a partial Boolean function (xor of k copies of Forrelation)
that has a quantum query algorithm with query complexity polylog(N), and such that, any
constant-depth circuit of quasipolynomial size has quasipolynomially small advantage
over a random guess.

For the proof, we use our main theorem, together with Tal’s bounds on the level-2k

Fourier mass of bounded-depth circuits [17].

1.3 Decision Trees
The query complexity model (also known as black box model or decision-tree complexity)
has played a central role in the study of quantum computational complexity. Quantum
advantages in query complexity (decision trees) have been demonstrated for partial functions
in various settings and numerous works. For example, Aaronson and Ambainis [2] showed
that the Forrelation problem can be solved by one quantum query, while its randomized
query complexity is Ω(

√
N/ log N).

For classical randomized query complexity, there is a known xor lemma, proved by
Drucker [9]. In particular, Theorem 1.3 of [9], along with the result of [2] gives a partial
function (xor of polylog(N) copies of Forrelation) that can be computed by a quantum
query algorithm with polylog(N) queries, while every classical randomized algorithm that
makes õ(N1/2) queries, has quasipolynomially small advantage.

U. Girish, R. Raz, and W. Zhan 52:5

Our main theorem implies a different proof for this result, using Tal’s recent bounds on
the level-2k Fourier mass of decision trees [18].

1.4 The Main Theorem
Our functions are obtained by taking an xor of several copies of a variant of the Forrelation
problem, as defined in [15].

Let N = 2n for sufficiently large n ∈ N. Let k ∈ N be a parameter. We assume that
k = o(N1/50). Let ϵ = 1

60k2 ln N be a parameter.
Let HN denote the N × N normalized Hadamard matrix whose entries are either − 1√

N

or 1√
N

. Let

forr(z) := 1
N

⟨z2, HN z1⟩

denote the Forrelation of a vector z = (z1, z2), where z1, z2 ∈ RN . The Forrelation
Decision Problem is the partial Boolean function F : {−1, 1}2N → {−1, 1} defined at
z ∈ {−1, 1}2N by

F (z) :=

−1 if forr(z) ≥ ϵ/2
1 if forr(z) ≤ ϵ/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the
xor of k independent copies of F . More precisely, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=
k∏

j=1
F (zj).

For our separation results, we take the function F (k), where k = ⌈log2 N⌉. For our
communication complexity separation we take the lift of F (k) with xor as the gadget. The
quantum upper bounds in all these separation results are quite simple. Moreover, all the
quantum algorithms in our upper bounds have the additional advantage of being efficiently
implementable, in the sense that they can be described by quantum circuits of size polylog(N),
with oracle access to the inputs.

Our main contribution is the classical lower bound. Towards this, our main theorem
provides an upper bound on the maximum correlation of F (k) with any family of Boolean
functions, in terms of the maximum level-2k Fourier mass of a function in the family.

▶ Main Theorem (Informal). There exist two distributions, σ
(k)
0 and σ

(k)
1 , on the no

and yes instances of F (k), respectively, with the following property. Let H be a family of
Boolean functions, each of which maps {−1, 1}2kN into [−1, 1]. Assume that H is closed
under restrictions. For H ∈ H, let L2k(H) :=

∑
|S|=2k |Ĥ(S)|. Let α ∈ R be such that

αk := sup
H∈H

(L2k(H), 1). Then, for every H ∈ H,∣∣∣∣∣ E
z∼σ

(k)
0

[H(z)] − E
z∼σ

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
αk

Nk/2

)
Our main theorem implies that functions in H cannot correlate with F (k) by more than

1
2 + O

(
αk

Nk/2

)
. For the applications, we instantiate H with the class of functions computed

by classical protocols of small cost.

APPROX/RANDOM 2021

52:6 Lower Bounds for XOR of Forrelations

1.5 Overview of Proof of the Main Theorem for k = 2

Our proof builds on the techniques of [15], and followup works [8, 12], which, in turn, used a
key idea from [7]. We will now give an overview of the proof of the Main Theorem for the
special case k = 2, where one can already see most of the key ideas.

We start by recalling the hard distributions for k = 1, as in [15]. The distribution U
on no instances of F is the uniform distribution U2N on {−1, 1}2N . It can be shown that a
bit string drawn uniformly at random almost always has low Forrelation. The distribution
G on yes instances of F is the Gaussian distribution with mean 0 and covariance matrix

ϵ

[
IN HN

HN IN

]
. It can be shown that a vector drawn from this distribution almost always

has high Forrelation (at least ϵ/2). Although G is not a distribution over {−1, 1}2N , this
can be fixed (by probabilistically rounding the values) and we ignore this issue in the proof
overview.

Our hard distributions for k ≥ 2 are obtained by naturally lifting these distributions.
The distribution µ0 on no instances of F (2) is 1

2 (U × U + G × G). The distribution
µ1 on yes instances is 1

2 (U × G + G × U). It can be shown that these distributions indeed
have almost all their mass on the yes and no instances of F (2), respectively.

Throughout this proof, we identify functions in H with their unique multilinear extensions.
Using this identification, it follows that for all H ∈ H and z0 ∈ R4N , we have Ez∼U [H(z0 +
(z, 0))] = Ez∼U [H(z0 + (0, z))] = Ez∼U2 [H(z0 + z)] = H(z0).

Bounding the Advantage of H in Distinguishing p · µ0 and p · µ1, for
Small p

As in [15, 8], in order to show that functions in H can’t distinguish between µ0 and µ1, we
first show that they can’t distinguish between p · µ0 and p · µ1, for small p. We show that for
every H ∈ H, and p ≤ 1

2N ,

∣∣∣∣ E
z∼p·µ0

[H(z)] − E
z∼p·µ1

[H(z)]
∣∣∣∣ ≜ 1

2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z1, z2) − H(z1, 0) − H(0, z2) + H(0, 0)]

∣∣∣∣∣∣
≤ p4 · O

(
L4(H)

N

)
+ O(p6N1.5)

This claim is analogous to Claim 20 from [8]. For sufficiently small p, the second term in the
R.H.S. of the inequality is negligible, compared to the first term. To prove this inequality, we
use the Fourier expansion of H in the L.H.S. and bound the difference between the moments
of p · µ0 and p · µ1. We show that p · µ0 and p · µ1 agree on moments of degree less than 4, so
these moments don’t contribute to the difference. We then show that the contribution of the
moments of degree 4 is L4(H) · O

(
p4

N

)
and the contribution of moments of higher degrees is

O(p6N1.5).

U. Girish, R. Raz, and W. Zhan 52:7

Bounding the Advantage of H(z0 + z) in Distinguishing p · µ0 and p · µ1,
for Small p

Next, as in [15, 8], we show a similar statement for the function H(z0 + z) of z, where z0 is
not too large. We show that for every H ∈ H, and every z0 ∈ [−1/2, 1/2]2kN and p ≤ 1

2N ,

1
2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z0 + (z1, z2)) − H(z0 + (z1, 0)) − H(z0 + (0, z2)) + H(z0)]

∣∣∣∣∣∣
≤ p4 · O

(
L4(H)

N

)
+ O(p6N1.5) (1)

The proof of this inequality is similar to the proof of Claim 19 of [8], using key ideas from [7],
and relies on the multilinearity of functions in H and the closure of H under restrictions.

A Random Walk with Two-Dimensional Time Variable
This is the main place where our proof differs from the one of [15] and followup works [8, 12].
In all these works the Forrelation distribution was ultimately analyzed as the distribution
obtained by a certain random walk. Here, we consider a product of two random walks, which
can also be viewed as a random walk with two-dimensional time variable.

Let T = 16N4 and p = 1√
T

. Let z
(1)
1 , z

(1)
2 , . . . , z

(T)
1 , z

(T)
2 ∼ p · G be independent samples.

Let t = (t1, t2) for t1, t2 ∈ {0, . . . , T }. Let z≤(t) :=
(∑t1

i=1 z
(i)
1 ,

∑t2
i=1 z

(i)
2

)
. Note that z≤(t) is

distributed according to (p
√

t1 ·G)× (p
√

t2 ·G). In particular, z≤(T,T) is distributed according
to G × G. This implies that

(∗) := E
z∼µ0

[H(z)] − E
z∼µ1

[H(z)] ≜ 1
2E

[
H(z≤(T,T)) − H(z≤(T,0)) − H(z≤(0,T)) + H(0, 0)

]
We now rewrite (∗) as follows.

(∗) = 1
2

∑
t1∈[T]
t2∈[T]

E
[
H(z≤(t1,t2)) − H(z≤(t1−1,t2)) − H(z≤(t1,t2−1)) + H(z≤(t1−1,t2−1))

]
(2)

The last equation follows by a two-dimensional telescopic cancellation, as depicted in Figure 1.
This turns out to be a powerful observation. Note that for every fixed t = (t1, t2), the random
variable z≤(t)−z≤(t−(1,1)) ≜ (z(t1)

1 , z
(t2)
2) is distributed according to p·G2, by construction. We

can thus apply Inequality(1), setting z0 = z≤(t−(1,1)). This, along with the Triangle-Inequality
implies that

|(∗)| ≤ 1
2

∑
t1∈[T]
t2∈[T]

∣∣∣E [
H(z≤(t1,t2)) − H(z≤(t1−1,t2)) − H(z≤(t1,t2−1)) + H(z≤(t1−1,t2−1))

]∣∣∣
≤ 1

2
∑

t1∈[T]
t2∈[T]

(
p4 · O

(
L4(H)

N

)
+ O

(
p6N1.5))

by Inequality (1)

= O

(
L4(H)

N

)
+ o

(
1
N

)
since T = 16N4 = 1

p2

This completes the proof overview for k = 2, albeit with many details left out.

APPROX/RANDOM 2021

52:8 Lower Bounds for XOR of Forrelations

−−−

−−− +++

+++

(i, j) is labelled

by H(z≤(i,j))

+++

+++

−−−

−−−

+

+

−

−
+

+

−

−
+

+

−

−

+

+

−

−
+

+

−

−
+

+

−

−

+

+

−

−
+

+

−

−
+

+

−

−

Figure 1 Consider the (T + 1) × (T + 1) grid whose vertices are indexed by v ∈ ({0} ∪ [T])2.
Each vertex v is labelled by H(z≤(v)). Each rectangle has a sign on its vertices as defined in Figure
1 and the label of a rectangle is the sum of signed labels of its vertices. The sum of labels of all 1 × 1
rectangles equals the label of the larger T × T rectangle. This is exactly the content of Equation (2).

1.6 Organization of the Paper
In the appendix, we present a formal description of our main results. The proofs can be
found in the full version of the paper.

1.7 Related Work
Independently of our result, [6] demonstrated PRGs with polylogarithmic dependence on
seed length, for a large class of boolean functions. Their result builds on the framework
of [7, 8, 15] and constructs improved PRGs by leveraging level-k Fourier bounds.

References
1 Scott Aaronson. BQP and the Polynomial Hierarchy. In STOC 2010, 2010.
2 Scott Aaronson and Andris Ambainis. Forrelation: A Problem That Optimally Separates

Quantum from Classical Computing. In STOC 2015, 2015.
3 Ziv Bar-Yossef, T. S. Jayram, and Iordanis Kerenidis. Exponential Separation of Quantum

and Classical One-Way Communication Complexity. In STOC 2004, 2004.
4 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. Classical Communication

and Computation. In STOC 1998, 1998.
5 Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-

To-Communication Lifting for BPP Using Inner Product. In ICALP 2019, 2019.
6 Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Abhishek Shetty.

Fractional Pseudorandom Generators from Any Fourier Level. CoRR, abs/2008.01316, 2020.
7 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom

Generators from Polarizing Random Walks. In CCC 2018, 2018.
8 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom

Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In
ITCS 2019, 2019.

9 Andrew Drucker. Improved Direct Product Theorems for Randomized Query Complexity. In
CCC 2011, 2011.

10 Dmitry Gavinsky. Entangled Simultaneity versus Classical Interactivity in Communication
Complexity. In STOC 2016, 2016.

U. Girish, R. Raz, and W. Zhan 52:9

11 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Expo-
nential Separation for One-Way Quantum Communication Complexity, with Applications to
Cryptography. In STOC 2007, 2007.

12 Uma Girish, Ran Raz, and Avishay Tal. Quantum versus Randomized Communication
Complexity, with Efficient Players. In ITCS 2021, 2021.

13 Ran Raz. Fourier Analysis for Probabilistic Communication Complexity. In Computational
Complexity Journal 1995, 1995.

14 Ran Raz. Exponential Separation of Quantum and Classical Communication Complexity. In
STOC 1999, 1999.

15 Ran Raz and Avishay Tal. Oracle separation of BQP and PH . In STOC 2019, 2019.
16 Oded Regev and Boàz Klartag:. Quantum One-Way Communication can be Exponentially

Stronger than Classical Communication. In STOC 2011, 2011.
17 Avishay Tal. Tight Bounds on the Fourier Spectrum of AC0. In CCC 2017, 2017.
18 Avishay Tal. Towards Optimal Separations between Quantum and Randomized Query Com-

plexities. In FOCS 2020, 2020.

A Formal Description of the Main Results

Notation

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We typically use N to refer to 2n. For
a set S ⊆ [n], let S̄ := [n] \ S denote the complement of S. For sets S ⊆ [n], T ⊆ [m], we
typically use S × T := {(s, t) : s ∈ S, t ∈ T} denote the set product of S and T . Sometimes,
we use the notation (S, T). Note that the map (i, j) → m(i − 1) + j is a bijection between
[n] × [m] and [nm]. Using this identification, S × T is a subset of [nm]. We identify subsets
S ⊆ [n] with their {0, 1} indicator vector, that is, the vector S ∈ {0, 1}n such that for each
j ∈ [n], Sj = 1 if and only if j ∈ S.

Let v ∈ Rn. For i ∈ [n], we refer to the i-th coordinate of v by vi or v(i). For x, y ∈ Rn,
let x · y ∈ Rn be the pointwise product between x and y. This is the vector whose i-th
coordinate is xiyi, for every i ∈ [n]. Let ⟨x, y⟩ denote the real inner product between x and y.
For x, y ∈ {0, 1}n, let ⟨x, y⟩2 :=

∑n
i=1 xiyi mod 2 denote the mod 2 inner product between

x and y. We use In to denote the n × n identity matrix. We use 0 to denote the zero vector
in arbitrary dimensions.

Distributions

For a probability distribution D, let x ∼ D denote a random variable x sampled according to
D. For distributions D1 and D2, we use D1 × D2 to denote the product distribution defined
by sampling (x, y) where x ∼ D1 and y ∼ D2 are sampled independently. For n ∈ N and a
distribution D, let Dn denote the product of n distributions, each of which is D. Let µ ∈ Rn

be a vector and Σ ∈ Rn×n be a positive semi-definite matrix. We use N (µ, Σ) to refer to the
n-dimensional Gaussian distribution with mean µ and covariance matrix Σ. Let Un denote
the uniform distribution on {−1, 1}n. For a distribution D over Rn and a ∈ Rn, let a + D

refer to the distribution obtained by sampling z ∼ D and returning z + a. For P ∈ Rn and a
distribution D over Rn, let P · D denote the distribution obtained by sampling x ∼ D and
returning P · x. For p ∈ R, we use p · D to denote the distribution obtained by sampling
x ∼ D and returning px. For I ⊆ [n], let D̂(I) := E

z∼D

[∏
i∈I zi

]
refer to the I-th moment

of D.

APPROX/RANDOM 2021

52:10 Lower Bounds for XOR of Forrelations

Fourier Analysis

We refer to {−1, 1}n as the Boolean hypercube in n dimensions. Let F := {f : {−1, 1}n → R}
denote the real vector space of all Boolean functions on n variables. There is an inner product
on this space as follows. For f, g ∈ F , let ⟨f, g⟩ := Ex∼Un

[f(x)g(x)]. For every S ⊆ [n], there
is a character function χS : {−1, 1}n → {−1, 1} defined at x ∈ {−1, 1}n by χS(x) :=

∏
i∈S xi.

The set of character functions {χS}S⊆[n] forms an orthonormal basis for F . For f ∈ F
and S ⊆ [n], let f̂(S) := ⟨f, χS⟩ denote the S-th Fourier coefficient of f . Note that for all
f ∈ F , we have f =

∑
S⊆[n] f̂(S)χS . For f ∈ F , the multilinear extension of f is the unique

multilinear polynomial f̃ : Rn → R which agrees with f on {−1, 1}n. For every S ⊆ [n],
the multilinear extension of χS is the monomial

∏
i∈S xi. This implies that the multilinear

extension of f ∈ F is
∑

S⊆[n] f̂(S)
∏

i∈S xi. Henceforth, we identify Boolean functions with
their multilinear extensions. With this identification, it can be shown that functions in F
which map {−1, 1}n into [−1, 1] also map [−1, 1]n into [−1, 1]. For f, g ∈ F , let f ∗ g ∈ F
be defined at z ∈ {−1, 1}n by (f ∗ g)(z) := Ex∼Un [f(x)g(x · z)]. It can be shown that for all
S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S).

Level-k Fourier Mass

For f ∈ F and k ∈ {0, . . . , n}, let Lk(f) :=
∑

|S|=k |f̂(S)| denote the level-k Fourier mass of
f . For a family H ⊆ F of Boolean functions, let Lk(H) := supH∈H Lk(H).

A.1 The Forrelation Problem

Let k, N ∈ N be parameters, where N = 2n for some n ∈ N. We assume that k = o(N1/50).
Fix a parameter ϵ = 1

60k2 ln N . Let U refer to U2N .

Hadamard Matrix

The Hadamard matrix HN of size N is an N × N matrix. The rows and columns are indexed
by strings a and b respectively where a, b ∈ {0, 1}n and the (a, b)-th entry of HN is defined
to be 1√

N
(−1)⟨a,b⟩2 . Equivalently,

HN (a, b) :=
{

−1√
N

if
∑n

i=1 aibi ≡ 1 mod 2
+1√

N
if

∑n
i=1 aibi ≡ 0 mod 2

The Forrelation Function

The Forrelation Function forr : R2N → R is defined as follows. Let z ∈ R2N and x, y ∈ RN

be such that z = (x, y). Then,

forr(z) := 1
N

⟨x, HN y⟩

The ⊕k Forrelation Decision Problem

▶ Definition 1 (The ⊕k Forrelation Decision Problem). The Forrelation Decision Problem is
the partial Boolean function F : {−1, 1}2N → {−1, 1} defined as follows. For z ∈ {−1, 1}2N ,

U. Girish, R. Raz, and W. Zhan 52:11

let

F (z) :=

−1 if forr(z) ≥ ϵ/2
1 if forr(z) ≤ ϵ/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the xor of
k independent copies of F . To be precise, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=
k∏

j=1
F (zj)

The Gaussian Forrelation Distribution G

▶ Definition 2. Let G denote the Gaussian distribution over R2N defined by the following
process.
1. Sample x1, . . . , xN ∼ N (0, ϵ) independently.
2. Let x = (x1, . . . , xN) and y = HN x.
3. Output (x, y).

The distribution G can be equivalently expressed as N
(

0, ϵ

[
IN HN

HN IN

])
.

A.2 Hard Distributions over R2kN

Let P, Q be two probability distributions on the domain D := R2N . Let S ⊆ [k]. We
define PSQS̄ to be the distribution on Dk defined by sampling x = (x1, . . . , xk) where
x1, . . . , xk ∈ D are sampled as follows.

For each j ∈ [k], independently sample
{

xj ∼ P if j ∈ S

xj ∼ Q if j ∈ S̄

▶ Definition 3. Let G be the distribution in Definition 2 and U = U2N . Define a pair of
distributions µ

(k)
0 , µ

(k)
1 on R2kN as follows.

µ
(k)
0 := 1

2k−1

∑
S⊆[k]

|S| is even

GSU S̄ and µ
(k)
1 := 1

2k−1

∑
S⊆[k]

|S| is odd

GSU S̄

A.3 Rounding Distributions to the Boolean Hypercube
Let trnc : R → [−1, 1] denote the truncation function, whose action on a ∈ R is given by

trnc(a) =
{

sign(a) if a /∈ [−1, 1]
a otherwise

For l ∈ R, we also use trnc : Rl → [−1, 1]l to refer to the function that applies the above
truncation function coordinate-wise.

▶ Definition 4. Let µ be any distribution on RM . We define the rounded distribution µ̃ on
{−1, 1}M as follows.
1. Sample z ∼ µ.

APPROX/RANDOM 2021

52:12 Lower Bounds for XOR of Forrelations

2. For each coordinate i ∈ [M], independently, let z′
i = 1 with probability 1+trnc(zi)

2 and
z′

i = −1 with probability 1−trnc(zi)
2 .

3. Output z′ = (z′
1, . . . , z′

M).
Let z0 ∈ RM and µ be the distribution whose support is {z0}. We use z̃0 to refer to µ̃.

A.4 The Forrelation Distribution
Let k ∈ N. Let µ̃

(k)
0 and µ̃

(k)
1 (respectively G̃) be distributions over {−1, 1}2kN (respectively

{−1, 1}2N) generated from rounding µ
(k)
1 and µ

(k)
0 (respectively G) according to Definition 4.

Observe that we may alternatively define µ̃
(k)
0 and µ̃

(k)
1 as follows.

▶ Definition 5. Let G be as in Definition 2 and U = U2N . Let

µ̃
(k)
0 := 1

2k−1

∑
S⊆[k]

|S| is even

G̃SU S̄ and µ̃
(k)
1 := 1

2k−1

∑
S⊆[k]

|S| is odd

G̃SU S̄

We refer to µ̃
(1)
1 ≜ G̃ as the Forrelation Distribution.

We show that the distributions µ̃
(k)
1 and µ̃

(k)
0 put considerable mass on the yes and no

instances of F (k), respectively, where F (k) is the ⊕k Forrelation Decision Problem as in
Definition 1.

▶ Lemma 6. Let µ̃
(k)
0 and µ̃

(k)
1 be distributions as in Definition 5 and F (k) be the ⊕k

Forrelation Decision Problem as in Definition 1. Then,

P
z∼µ̃

(k)
0

[F (k)(z) = 1] ≥ 1 − O

(
k

N6k2

)
and P

z∼µ̃
(k)
1

[F (k)(z) = −1] ≥ 1 − O

(
k

N6k2

)

A.5 Closure under Restrictions
▶ Definition 7. Let a ∈ {−1, 1, 0}M . Let ρa : RM → RM be a restriction defined as follows.
For v ∈ RM , let ρa(v) ∈ RM be such that for all j ∈ [M],

(ρa(v))(j) :=
{

v(j) if a(j) = 0
a(j) otherwise

For a function F : {−1, 1}M → R, the restricted function F ◦ ρv : {−1, 1}M → R is defined
at z ∈ {−1, 1}M by (F ◦ ρv)(z) := F (ρv(z)).

We say that a family H of Boolean functions in M variables is closed under restrictions
if for all restrictions v ∈ {−1, 1, 0}M and H ∈ H, the restricted function H ◦ ρv is in H.

B The Main Result

Let N ∈ N be a parameter describing the input size. We will assume that N is a sufficiently
large power of 2. Let k ∈ N. We assume that k = o(N1/50). Let ϵ = 1

60k2 ln N be the
parameter defining G as before.

▶ Theorem 8. Let H be a family of Boolean functions on 2kN variables, each of which maps
{−1, 1}2kN into [−1, 1]. Assume that H is closed under restrictions. Let µ̃

(k)
0 , µ̃

(k)
1 be the

distributions over {−1, 1}2kN as in Definition 5. Then, for every H ∈ H,∣∣∣∣∣ E
z∼µ̃

(k)
0

[H(z)] − E
z∼µ̃

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
L2k(H)
Nk/2

)
+ o

(
1

Nk/2

)

U. Girish, R. Raz, and W. Zhan 52:13

▶ Definition 9. Let µ̃
(k)
0 , µ̃

(k)
1 be as in Definition 5. Let σ

(k)
0 (respectively σ

(k)
1) be obtained

by conditioning µ̃
(k)
0 on being a no (respectively yes) instance of F (k).

▶ Corollary 10. Under the same hypothesis as Theorem 8, for every H ∈ H∣∣∣∣∣ E
z∼σ

(k)
0

[H(z)] − E
z∼σ

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
L2k(H)
Nk/2

)
+ o

(
1

Nk/2

)

B.1 Applications to Quantum versus Classical Separations

Query Complexity Separations

▶ Lemma 11. Let D : {−1, 1}2kN → {−1, 1} be a deterministic decision tree of depth d ≥ 1.
Then,∣∣∣∣∣ E

z∼σ
(k)
0

[D(z)] − E
z∼σ

(k)
1

[D(z)]

∣∣∣∣∣ ≤
(

O (d log(kN))
N1/2

)k

▶ Theorem 12. F (k) can be computed in the bounded-error quantum query model with
O(k5 log2 N log k) queries. However, every randomized decision tree of depth õ(

√
N) has a

worst-case success probability of at most 1
2 + exp(−Ω(k)).

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 12 gives us an explicit family of partial
functions that are computable by quantum query algorithms of cost Õ(log5c+2 N), however
every randomized query algorithm of cost õ(N 1

2) has at most 1
2Ω(logc N) advantage over random

guessing.

Communication Complexity Separations

▶ Definition 13 (The ⊕k Forrelation Communication Problem F (k) ◦ xor). Alice is given x

and Bob is given y where x, y ∈ {−1, 1}2kN . Let F (k) be as in Definition 1. Their goal is to
compute the partial function F (k)(x · y).

▶ Lemma 14. Let C : {−1, 1}2kN × {−1, 1}2kN → {−1, 1} be any deterministic protocol of
communication complexity c. Then,∣∣∣∣∣∣∣ E

x∼U2kN

z∼σ
(k)
0

[C(x, x · z)] − E
x∼U2kN

z∼σ
(k)
1

[C(x, x · z)]

∣∣∣∣∣∣∣ ≤ O

(
(c + 8k)2k

Nk/2

)

▶ Theorem 15. F (k)◦xor can be solved in the quantum simultaneous with entanglement model
with O(k5 log3 N log k) bits of communication, when Alice and Bob share O(k5 log3 N log k)
EPR pairs. However, any randomized protocol of cost õ(N1/4) has a worst-case success
probability of at most 1

2 + exp(−Ω(k)).

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 15 gives us an explicit family of partial
functions that are computable by quantum simultaneous protocols of cost Õ(log5c+3 N) when
Alice and Bob share Õ(log5c+3 N) EPR pairs, however every interactive randomized protocol
of cost õ(N 1

4) has at most 1
2Ω(logc N) advantage over random guessing.

APPROX/RANDOM 2021

52:14 Lower Bounds for XOR of Forrelations

Circuit Complexity Separations

▶ Lemma 16. Let C : {−1, 1}2kN → {−1, 1} be an AC0 circuit of depth d ≥ 1 and size s.
Then,

∣∣∣∣∣ E
z∼σ

(k)
0

[C(z)] − E
z∼σ

(k)
1

[C(z)]

∣∣∣∣∣ ≤

O
(

log2d−2(s)
)

N1/2

k

▶ Theorem 17. The distributions σ
(k)
1 and σ

(k)
0 can be distinguished by a bounded-error

quantum query protocol with O(k5 log2 N log k) queries with 2/3 advantage. However, every
constant depth circuit of size o

(
exp

(
N

1
4(d−1)

))
can distinguish these distributions with at

most exp(−Ω(k)) advantage.

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 17 gives us an explicit family of distributions
that are distinguishable by cost Õ(log5c+2 N) quantum query algorithms, however every
constant depth circuit of quasipolynomial size can distinguish them with at most 1

2Ω(logc N)

advantage.

Fourier Growth of Structured F2-Polynomials
and Applications
Jarosław Błasiok #

Columbia University, New York, NY, USA

Peter Ivanov #

Northeastern University, Boston, MA, USA

Yaonan Jin #

Columbia University, New York, NY, USA

Chin Ho Lee #

Columbia University, New York, NY, USA

Rocco A. Servedio #

Columbia University, New York, NY, USA

Emanuele Viola #

Northeastern University, Boston, MA, USA

Abstract
We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted L1,k), of various
well-studied classes of “structured” F2-polynomials. This study is motivated by applications in
pseudorandomness, in particular recent results and conjectures due to [9, 10, 8] which show that
upper bounds on Fourier growth (even at level k = 2) give unconditional pseudorandom generators.

Our main structural results on Fourier growth are as follows:
We show that any symmetric degree-d F2-polynomial p has L1,k(p) ≤ Pr[p = 1] · O(d)k. This
quadratically strengthens an earlier bound that was implicit in [33].
We show that any read-∆ degree-d F2-polynomial p has L1,k(p) ≤ Pr[p = 1] · (k∆d)O(k).
We establish a composition theorem which gives L1,k bounds on disjoint compositions of functions
that are closed under restrictions and admit L1,k bounds.

Finally, we apply the above structural results to obtain new unconditional pseudorandom
generators and new correlation bounds for various classes of F2-polynomials.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Circuit complexity

Keywords and phrases Fourier analysis, Pseudorandomness, Fourier growth

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.53

Category RANDOM

Related Version Full Version: http://arxiv.org/abs/2107.10797

Funding Jarosław Błasiok: Junior Fellowship from the Simons Society of Fellows.
Peter Ivanov: NSF awards CCF-1813930 and CCF-2114116.
Yaonan Jin: NSF IIS-1838154, NSF CCF-1703925, NSF CCF-1814873 and NSF CCF-1563155.
Chin Ho Lee: Croucher Foundation and Simons Collaboration on Algorithms and Geometry.
Rocco A. Servedio: NSF grants CCF-1814873, IIS-1838154, CCF-1563155, and Simons Collaboration
on Algorithms and Geometry.
Emanuele Viola: NSF awards CCF-1813930 and CCF-2114116.

Acknowledgements We thank Shivam Nadimpalli for stimulating discussions at the early stage of
the project.

© Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele Viola;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 53; pp. 53:1–53:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jb4451@columbia.edu
mailto:ivanov.p@northeastern.edu
mailto:yj2552@columbia.edu
mailto:c.h.lee@columbia.edu
mailto:rocco@cs.columbia.edu
mailto:viola@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.53
http://arxiv.org/abs/2107.10797
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Fourier Growth of Structured F2-Polynomials and Applications

1 Introduction

1.1 Background: L1 Fourier norms and Fourier growth
Over the past several decades, Fourier analysis of Boolean functions has emerged as a
fundamental tool of great utility across many different areas within theoretical computer
science and mathematics. Areas of application include (but are not limited to) combinatorics,
the theory of random graphs and statistical physics, social choice theory, Gaussian geometry
and the study of metric spaces, cryptography, learning theory, property testing, and many
branches of computational complexity such as hardness of approximation, circuit complexity,
and pseudorandomness. The excellent book of O’Donnell [29] provides a broad introduction.
In this paper we follow the notation of [29], and for a Boolean-valued function f on n Boolean
variables and S ⊆ [n], we write f̂(S) to denote the Fourier coefficient of f on S.

Given the wide range of different contexts within which the Fourier analysis of Boolean
functions has been pursued, it is not surprising that many different quantitative parameters of
Boolean functions have been analyzed in the literature. In this work we are chiefly interested
in the L1 Fourier norm at level k:

▶ Definition 1 (L1 Fourier norm at level k). The L1 Fourier norm of a function f : {−1, 1}n →
{0, 1} at level k is the quantity

L1,k(f) :=
∑

S⊆[n]:|S|=k

|f̂(S)|.

For a function class F , we write L1,k(F) to denote maxf∈F L1,k(f).

As we explain below, strong motivation for studying the L1 Fourier norm at level k (even
for specific small values of k such as k = 2) is given by exciting recent results in unconditional
pseudorandomness. More generally, the notion of Fourier growth is a convenient way of
capturing the L1 Fourier norm at level k for every k:

▶ Definition 2 (Fourier growth). A function class F ⊆ {f : {−1, 1}n → {0, 1}} has Fourier
growth L1(a, b) if there exist constants a and b such that L1,k(F) ≤ a · bk for every k.

The notion of Fourier growth was explicitly introduced by Reingold, Steinke, and Vadhan
in [33] for the purpose of constructing pseudorandom generators for space-bounded com-
putation (though we note that the Fourier growth of DNF formulas was already analyzed
in [26], motivated by applications in learning theory). In recent years there has been a
surge of research interest in understanding the Fourier growth of different types of functions
[38, 19, 11, 22, 17, 39, 36, 16]. One strand of motivation for this study has come from the
study of quantum computing; in particular, bounds on the Fourier growth of AC0 [38] were
used in the breakthrough result of Raz and Tal [31] which gave an oracle separation between
the classes BQP and PH. More recently, in order to achieve an optimal separation between
quantum and randomized query complexity, several researchers [39, 1, 36] have studied the
Fourier growth of decision trees, with the recent work of [36] obtaining optimal bounds.
Analyzing the Fourier growth of other classes of functions has also led to separations between
quantum and classical computation in other settings [16, 17, 18].

Our chief interest in the current paper arises from a different line of work which has
established powerful applications of Fourier growth bounds in pseudorandomness. We
describe the relevant background, which motivates a new conjecture that we propose on
Fourier growth, in the next subsection.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:3

1.2 Motivation for this work: Fourier growth, pseudorandomness,
F2-polynomials, and the CHLT conjecture

1.2.1 Pseudorandom generators from Fourier growth bounds
Constructing explicit, unconditional pseudorandom generators (PRGs) for various classes
of Boolean functions is an important goal in complexity theory. In the recent work [9],
Chattopadhyay, Hatami, Hosseini, and Lovett introduced a novel framework for the design
of such PRGs. Their approach provides an explicit pseudorandom generator for any class of
functions that is closed under restrictions and has bounded Fourier growth:

▶ Theorem 3 (PRGs from Fourier growth: Theorem 23 of [9]). Let F be a family of n-variable
Boolean functions that is closed under restrictions and has Fourier growth L1(a, b). Then there
is an explicit pseudorandom generator that ϵ-fools F with seed length O(b2 log(n/ϵ)(log log n+
log(a/ϵ))).

Building on Theorem 3, in [10] Chattopadhyay, Hatami, Lovett, and Tal showed that in
fact it suffices to have a bound just on L1,2(F) in order to obtain an efficient PRG for F :

▶ Theorem 4 (PRGs from L1 Fourier norm bounds at level k = 2: Theorem 2.1 of [10]).
Let F be a family of n-variable Boolean functions that is closed under restrictions and has
L1,2(F) ≤ t. Then there is an explicit pseudorandom generator that ϵ-fools F with seed
length O((t/ϵ)2+o(1) · polylog(n)).

Observe that while Theorem 4 requires a weaker structural result than Theorem 3 (a
bound only on L1,2(F) as opposed to L1,k(F) for all k ≥ 1), the resulting pseudorandom
generator is quantitatively weaker since it has seed length polynomial rather than logarithmic
in the error parameter 1/ϵ. Even more recently, in [8] Chattopadhyay, Gaitonde, Lee,
Lovett, and Shetty further developed this framework by interpolating between the two results
described above. They showed that a bound on L1,k

1 for any k ≥ 3 suffices to give a PRG,
with a seed length whose ϵ-dependence scales with k:

▶ Theorem 5 (PRGs from L1 Fourier norm bounds up to level k for any k: Theorem 4.3 of [8]).
Let F be a family of n-variable Boolean functions that is closed under restrictions and has
L1,k(F) ≤ bk for some k ≥ 3. Then there exists a pseudorandom generator that ϵ-fools F

with seed length O

(
b

2+ 4
k−2 ·k·polylog(n

ϵ)

ϵ
2

k−2

)
.

1.2.2 F2-polynomials and the CHLT conjecture
The works [9] and [10] highlighted the challenge of proving L1,k bounds for the class of
bounded-degree F2-polynomials as being of special interest. Let

Polyn,d := the class of all n-variate F2-polynomials of degree d.

It follows from Theorem 4 that even proving

L1,2(Polyn,polylog(n)) ≤ n0.49 (1)

1 In fact, they showed that a bound on the weaker quantity M1,k(f) := maxx∈{−1,1}n |
∑

|S|=k
f̂(S)xS |

suffices.

APPROX/RANDOM 2021

53:4 Fourier Growth of Structured F2-Polynomials and Applications

would give nontrivial PRGs for F2-polynomials of polylog(n) degree, improving on [5, 24, 41].
By the classic connection (due to Razborov [32]) between such polynomials and the class
AC0[⊕] of constant-depth circuits with parity gates, this would also give nontrivial PRGs,
of seed length n1−c, for AC0[⊕]. This would be a breakthrough improvement on existing
results, which are poor either in terms of seed length [15] or in terms of explicitness [12].

The authors of [10] in fact conjectured the following bound, which is much stronger than
Equation (1):

▶ Conjecture 6 ([10]). For all d ≥ 1, it holds that L1,2(Polyn,d) = O(d2).

1.2.3 Extending the CHLT conjecture

Given Conjecture 6, and in light of Theorem 5, it is natural to speculate that an even stronger
result than Conjecture 6 might hold. We consider the following natural generalization of the
[10] conjecture, extending it from L1,2(Polyn,d) to L1,k(Polyn,d):

▶ Conjecture 7. For all d, k ≥ 1, it holds that L1,k(Polyn,d) = O(d)k.

The work [10] proved that L1,1(Polyn,d) ≤ 4d, and already in [9] it was shown that
L1,k(Polyn,d) ≤ (23d · k)k, but to the best of our knowledge no other results towards Conjec-
ture 6 or Conjecture 7 are known.

Given the apparent difficulty of resolving Conjecture 6 and Conjecture 7 in the general
forms stated above, it is natural to study L1,2 and L1,k bounds for specific subclasses of
degree-d F2-polynomials. This study is the subject of our main structural results, which we
describe in the next subsection.

1.3 Our results: Fourier bounds for structured F2-polynomials

Our main results show that L1,2 and L1,k bounds of the flavor of Conjecture 6 and Conjecture 7
indeed hold for several well-studied classes of F2-polynomials, specifically symmetric F2-
polynomials and read-∆ F2-polynomials. We additionally prove a composition theorem that
allows us to combine such polynomials (or, more generally, any polynomials that satisfy
certain L1,k bounds) in a natural way and obtain L1,k bounds on the resulting combined
polynomials.

Before describing our results in detail, we pause to briefly explain why (beyond the
fact that they are natural mathematical objects) such “highly structured” polynomials are
attractive targets of study given known results. It has been known for more than ten years [2,
Lemma 2] that for any degree d < (1 − ϵ)n, a random F2-polynomial of degree d (constructed
by independently including each monomial of degree at most d with probability 1/2) is
extremely unlikely to have bias larger than exp(−n/d). It follows that as long as d is not
too large, a random degree-d polynomial p is overwhelmingly likely to have L1,k(p) = on(1),
which is much smaller than dk. (To verify this, consider the polynomials pS obtained by
XORing p with the parity function

∑
i∈S xi. Note that the bias of pS is the Fourier coefficient

of (−1)p on S. Now apply [2, Lemma 2] to each polynomial pS , and sum the terms.)
Since the conjectures hold true for random polynomials, it is natural to investigate highly

structured polynomials.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:5

1.3.1 Symmetric F2-polynomials
A symmetric F2-polynomial over x1, . . . , xn is one whose output depends only on the
Hamming weight of its input x. Such a polynomial of degree d can be written in the form

p(x) :=
d∑

k=0
ck

∑
|S|=k,S⊆[n]

∏
i∈S

xi,

where c0, . . . , cd ∈ {0, 1}. While symmetric polynomials may seem like simple objects, their
study can sometimes lead to unexpected discoveries; for example, a symmetric, low-degree
F2-polynomial provided a counterexample to the “Inverse conjecture for the Gowers norm”
[25, 20].

We prove the following upper bound on the L1 Fourier norm at level k for any symmetric
polynomial:

▶ Theorem 8. Let p(x1, . . . , xn) be a symmetric F2-polynomial of degree d. Then L1,k(p) ≤
Pr[p = 1] · O(d)k for every k.

We note that if d = n and p is the AND function, then an easy computation shows that
L1,k(p) = Pr[p = 1] ·

(
d
k

)
. Moreover, in Appendix A we show that this implies that the upper

bounds conjectured in Conjecture 7 are best possible for any constant k. Theorem 8 verifies
the [10] conjecture (Conjecture 6), and even the generalized version Conjecture 7, for the
class of symmetric polynomials.

Theorem 8 provides a quadratic sharpening of an earlier bound that was implicit in [33]
(as well as providing the “correct” dependence on Pr[p = 1]). In [33] Reingold, Steinke and
Vadhan showed that any function f computed by an oblivious, read-once, regular branching
program of width w has L1,k(f) ≤ (2w2)k. It follows directly from a result of [3] (Lemma 15
below) that any symmetric F2-polynomial p of degree d can be computed by an oblivious,
read-once, regular branching program of width at most 2d, and hence the [33] result implies
that L1,k(p) ≤ 8kd2k.

1.3.2 Read-∆ F2-polynomials
For ∆ ≥ 1, a read-∆ F2-polynomial is one in which each input variable appears in at most
∆ monomials. The case ∆ = 1 corresponds to the class of read-once polynomials, which
are simply sums of monomials over disjoint sets of variables; for example, the polynomial
x1x2 +x3x4 is read-once whereas x1x2 +x1x4 is read-twice. Read-once polynomials have been
studied from the perspective of pseudorandomness [23, 27, 22, 14] as they capture several
difficulties in improving Nisan’s generators [28] for width-4 read-once branching programs.

We show that the L1,k Fourier norm of read-∆ polynomials is polynomial in d and ∆:

▶ Theorem 9. Let p(x1, . . . , xn) be a read-∆ polynomial of degree d. Then L1,k(p) ≤ Pr[p =
1] · O(k)k · (d∆)8k.

[22] showed that read-once polynomials satisfy an L1,k bound of O(d)k for every k, but
we are not aware of previous bounds on even the L1 Fourier norm at level k = 2 for read-∆
polynomials, even for ∆ = 2.

As any monomial with degree Ω(log n) vanishes under a random restriction with high
probability, we have the following corollary which applies to polynomials of any degree.

▶ Corollary 10. Let p(x1, . . . , xn) be a read-∆ polynomial. Then L1,k(p) ≤ O(k)9k ·
(∆ log n)8k.

APPROX/RANDOM 2021

53:6 Fourier Growth of Structured F2-Polynomials and Applications

1.3.3 A composition theorem
The upper bounds of Theorem 8 and Theorem 9 both include a factor of Pr[p = 1]. (We
observe that negating p, i.e. adding 1 to it, does not change its L1,2 or L1,k and keeps p

symmetric (respectively, read-∆) if it was originally symmetric (respectively, read-∆), and
hence in the context of those theorems we can assume that this Pr[p = 1] factor is at most
1/2.) Level-k bounds that include this factor have appeared in earlier works for other classes
of functions [30, 4, 11, 39, 18], and have been used to obtain high-level bounds for other
classes of functions [11, 39, 18] and to extend level-k bounds to more general classes of
functions [22]. Having these Pr[p = 1] factors in Theorem 8 and Theorem 9 is important for
us in the context of our composition theorem, which we now describe. We begin by defining
the notion of a disjoint composition of functions:

▶ Definition 11. Let F be a class of functions from {−1, 1}m to {−1, 1} and let G be a class
of functions from {−1, 1}ℓ to {−1, 1}. Define the class H = F ◦ G of disjoint compositions
of F and G to be the class of all functions from {−1, 1}mℓ to {−1, 1} of the form

h(x1, . . . , xm) = f(g1(x1), . . . , gm(xm)),

where g1, . . . , gm ∈ G are defined on m disjoint sets of variables and f ∈ F .

As an example of this definition, the class of block-symmetric polynomials (i.e. polynomials
whose variables are divided into blocks and are symmetric within each block but not overall)
are a special case of disjoint compositions where G is taken to be the class of symmetric
polynomials. We remark that block-symmetric polynomials are known to correlate better
with parities than symmetric polynomials in certain settings [21].

We prove a composition theorem for upper-bounding the L1 Fourier norm at level k of
the disjoint composition of any classes of functions that are closed under restriction and
admit a L1,k bound of the form Pr[f = 1] · a · bk:

▶ Theorem 12. Let g1, . . . , gm ∈ G and let f ∈ F , where F is closed under restrictions.
Suppose that for every 1 ≤ k ≤ K, we have
1. L1,k(f) ≤ Pr[f = 1] · aout · bk

out for every f ∈ F , and
2. L1,k(g) ≤ Pr[g = 1] · ain · bk

in for every g ∈ G.
Then for every ±1-valued function h ∈ H = F ◦ G, we have that

L1,K(h) ≤ Pr[h = 1] · aout · (ainbinbout)K .

See the full version of this paper for a slightly sharper bound. We remark that Theorem 12
does not assume any F2-polynomial structure for the functions in F or G and thus may be
of broader utility.

1.4 Applications of our results
Our structural results imply new pseudorandom generators and correlation bounds.

1.4.1 Pseudorandom generators
Combining our Fourier bounds with the polarizing framework, we obtain new PRGs for
read-few polynomials. The following theorem follows from applying Theorem 5 with some
k = Θ(log n) and the L1,k bound in Corollary 10.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:7

▶ Theorem 13. There is an explicit pseudorandom generator that ϵ-fools read-∆ F2-
polynomials with seed length poly(∆, log n, log(1/ϵ)).

For constant ϵ, this improves on a PRG by Servedio and Tan [34], which has a seed length of
2O(

√
log(∆n)). (Note that read-∆ polynomials are also (∆n)-sparse.) We are not aware of

any previous PRG for read-2 polynomials with polylog(n) seed length.
Note that the OR function has L1 Fourier norm O(1). By expressing a DNF in the Fourier

expansion of OR in its terms, it is not hard to see that the same PRG also fools the class of
read-∆ DNFs (and read-∆ CNFs similarly) [35].

1.4.2 Correlation bounds
Exhibiting explicit Boolean functions that do not correlate with low-degree polynomials is a
fundamental challenge in complexity. Perhaps surprisingly, this challenge stands in the way
of progress on a striking variety of frontiers in complexity, including circuits, rigidity, and
multiparty communication complexity. For a survey of correlation bounds and discussions of
these connections we refer the reader to [40, 42, 44].

For polynomials of degree larger than log2 n, the state-of-the-art remains the lower bound
proved by Razborov and Smolensky in the 1980s’ [32, 37], showing that for any degree-d
polynomial p and an explicit function h (in fact, majority) we have:

Pr[p(x) = h(x)] ≤ 1/2 + O(d/
√

n).

Viola [43] recently showed that upper bounds on L1,k(F) imply correlation bounds
between F and an explicit function hk that is related to majority and is defined as

hk(x) := sgn
(∑

|S|=k

xS

)
.

In particular, proving Conjecture 6 or related conjectures implies new correlation bounds
beating Razborov–Smolensky. The formal statement of the connection is given by the
following theorem.

▶ Theorem 14 (Theorem 1 in [43]). For every k ∈ [n] and F ⊆ {f : {0, 1}n → {−1, 1}},
there is a distribution Dk on {0, 1}n such that for any f ∈ F ,

Pr
x∼Dk

[f(x) = hk(x)] ≤ 1
2 + ek

2
√(

n
k

)L1,k(F).

For example, if k = 2 and we assume that the answer to Conjecture 6 is positive, then
the right-hand side above becomes 1/2 + O(d2/n), which is a quadratic improvement over
the bound by Razborov and Smolensky.

Therefore, Theorems 8 and 9 imply correlation bounds between these polynomials and
an explicit function that are better than O(d/

√
n) given in [32, 37]. We note that via a

connection in [41], existing PRGs for these polynomials already imply strong correlation
bounds between these polynomials and the class of NP. Our results apply to more general
classes via the composition theorem, where it is not clear if previous techniques applied.
For a concrete example, consider the composition of a degree-(nα) symmetric polynomial
with degree-(nα) read-(nα) polynomials. Theorem 12 shows that such polynomial has
L1,2 ≤ nO(α). For a sufficiently small α = Ω(1), we again obtain correlation bounds
improving on Razborov–Smolensky.

APPROX/RANDOM 2021

53:8 Fourier Growth of Structured F2-Polynomials and Applications

1.5 Related work
We close this introduction by discussing a recent work of Girish, Tal and Wu [18] on parity
decision trees that is related to our results.

Parity decision trees are a generalization of decision trees in which each node queries a
parity of some input bits rather than a single input bit. The class of depth-d parity decision
trees is a subclass of F2 degree-d polynomials, as such a parity decision tree can be expressed
as a sum of products of sums over F2, where each product corresponds to a path in the tree
(and hence gives rise to F2-monomials of degree at most d). The Fourier spectrum of parity
decision trees was first studied in [4], which obtained a level-1 bound of O(

√
d). This bound

was recently extended to higher levels in [18], showing that any depth-d parity decision tree
T over n variables has L1,k(T) ≤ dk/2 · O(k log n)k.

2 Our techniques

We now briefly explain the approaches used to prove our results. We note that each of
these results is obtained using very different ingredients, and hence the results can be read
independently of each other.

2.1 Symmetric polynomials (Theorem 8, Section 4)
The starting point of our proof is a result from [3], which says that degree-d symmetric
F2-polynomials only depend on the Hamming weight of their input modulo m for some m

(a power of two) which is Θ(d). Given this, since p(x) takes the same value for all strings
x with the same weights ℓ mod m, to analyze L1,k(p) it suffices to analyze E[(−1)x1+···+xk]
conditioned on x having Hamming weight exactly ℓ mod m.

We bound this conditional expectation by considering separately two cases depending on
whether or not k ≤ n/m2. For the case that k ≤ n/m2, we use a (slight sharpening of a)
result from [6], which gives a bound of m−ke−Ω(n/m2). In the other case, that k ≥ n/m2,
in Lemma 17 we prove a bound of O(km/n)k. This is established via a careful argument
that gives a new bound on the Kravchuk polynomial in certain ranges (see the full version
of the paper for more details), extending and sharpening similar bounds that were recently
established in [13] (the bounds of [13] would not suffice for our purposes).

In each of the above two cases, summing over all the
(

n
k

)
coefficients gives the desired

bound of O(m)k = O(d)k.

2.2 Read-∆ polynomials (Theorem 9, Section 5)
Writing f := (−1)p for an F2-polynomial p, we observe that the coefficient f̂(S) is simply
the bias of pS(x) := p(x) +

∑
i∈S xi. Our high-level approach is to decompose the read-few

polynomial pS into many disjoint components, then show that each component has small
bias. Since the components are disjoint, the product of these biases gives an upper bound on
the bias of pS .

In more detail, we first partition the variables according to the minimum degree ti of the
monomials containing each variable xi. Then we start decomposing pS by collecting all the
monomials in p containing xi to form the polynomial pi. We observe that the larger ti is,
the more likely pi is to vanish on a random input, and therefore the closer pi + xi is to being
unbiased. For most S, we can pick many such pi’s (i ∈ S) from p so that they are disjoint.
For the remaining polynomial r, because ∆ and d are small, we can further decompose r into

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:9

many disjoint polynomials ri. Finally, our upper bound on |f̂(S)| will be the magnitude of
the product of the biases of the pi’s and ri’s. We note that our decomposition of p uses the
structure of S; and so the upper bound on f̂(S) depends on S (see Lemma 18). Summing
over each |f̂(S)| gives our upper bound.

2.3 Composition theorem (Theorem 12, Section 6)

As a warmup, let us first consider directly computing a degree-1 Fourier coefficient ĥ({(i, j)})
of the composition. Since the inner functions gi depend on disjoint variables, by writing the
outer function f in its Fourier expansion, it is not hard to see that

ĥ({(i, j)}) =
∑
S∋i

f̂(S)
∏

ℓ∈S\{i}

E[gℓ] · ĝi({j}).

When the gi’s are balanced, i.e. E[gi] = 0, we have f̂({(i, j)}) = f̂({i})ĝi({j}), and it follows
that L1,1(h) ≤ L1,1(F)L1,1(G). To handle the unbalanced case, we apply an idea from [9]
that lets us relate

∑
S∋i f̂(S)

∏
ℓ∈S\{i} E[gℓ] to the average of f̂R({i}), for some suitably

chosen random restriction R on f (see Claim 20). As F is closed under restrictions, we can
apply the L1,1(F) bound on fR, which in turns gives a bound on

∑
S∋i f̂(S)

∏
ℓ∈S\{i} E[gℓ]

in terms of L1,1(F) and E[gi].
Bounding L1,k(h) for k ≥ 2 is more complicated, as each ĥ(S) involves f̂(J) and ĝi(T)’s,

where the sets J and T have different sizes. We provide more details in Section 6.

3 Preliminaries

Notation. For a string x ∈ {0, 1}n we write |x| to denote its Hamming weight
∑n

i=1 xi.
We use Xw to denote {x : |x| = w}, the set of n-bit strings with Hamming weight w, and
Xℓ mod m =

⋃
w:w≡ℓ mod m Xw = {x : |x| ≡ ℓ mod m}.

We recall that for an n-variable Boolean function f , the level-k Fourier L1 norm of f is

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

We note that a function f and its negation have the same L1,k for k ≥ 1. Hence we can
often assume that Pr[f = 1] ≤ 1/2, or replace the occurrence of Pr[f = 1] in a bound by
min{Pr[f = 1], Pr[f = 0]} for a {0, 1}-valued function f (or by min{Pr[f = 1], Pr[f = −1]}
for a {−1, 1}-valued function). If f is a {−1, 1}-valued function then 1−|E[f]|

2 is equal to
min{Pr[f = 1], Pr[f = −1]}, and we will often write 1−|E[f]|

2 for convenience.
Unless otherwise indicated, we will use the letters p, q, r, etc. to denote F2-polynomials

(with inputs in {0, 1}n and outputs in {0, 1}) and the letters f, g, h, etc. to denote general
Boolean functions (where the inputs may be {0, 1}n or {−1, 1}n and the outputs may be
{0, 1} or {−1, 1} depending on convenience). We note that changing from {0, 1} outputs to
{−1, 1} outputs only changes L1,k by a factor of 2.

We use standard multilinear monomial notation as follows: given a vector β = (β1, . . . , βn)
and a subset T ⊆ [n], we write βT to denote

∏
j∈T βj .

APPROX/RANDOM 2021

53:10 Fourier Growth of Structured F2-Polynomials and Applications

4 L1,k bounds for symmetric polynomials

In this section we prove Theorem 8, which gives an upper bound on L1,k(p) for any symmetric
F2-polynomial p of degree d, covering the entire range of parameters 1 ≤ k, d ≤ n.

4.1 Proof idea
As the polynomial p is symmetric, its Fourier coefficient p̂(S) only depends on |S|, the
size of S. Hence to bound L1,k it suffices to analyze the coefficient p̂({1, . . . , k}) =
Ex∼{0,1}n [p(x)(−1)x1+···+xk].

Our proof uses a result from [3] (Lemma 15 below), which says that degree-d symmetric
F2-polynomials only depend on the Hamming weight of their input modulo m for some
m = O(d). Given this, since p(x) takes the same value for strings x with the same weights
ℓ mod m, we can in turn bound each E[(−1)x1+···+xk] conditioned on x having Hamming
weight exactly ℓ mod m, i.e. x ∈ Xℓ mod m. We consider two cases depending on whether or
not k ≤ n/m2. If k ≤ n/m2, we can apply a (slight sharpening of a) result from [6], which
gives a bound of m−ke−Ω(n/m2). If k ≥ n/m2, in Lemma 17 we prove a bound of O(km/n)k.
In each case, summing over all the

(
n
k

)
coefficients gives the desired bound of O(m)k = O(d)k.

We now give some intuition for Lemma 17, which upper bounds the magnitude of the
ratio

E
x∼Xℓ mod m

[(−1)x1+···+xk] =
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|
(2)

by O(km/n)k. Let us first consider k = 1 and m = Θ(
√

n). As most strings x have Hamming
weight within [n/2 − Θ(

√
n), n/2 + Θ(

√
n)], it is natural to think about the weight |x| in the

form of n/2 + mZ+ ℓ′. It is easy to see that the denominator is at least Ω(2n/
√

n), so we
focus on bounding the numerator. Consider the quantity

∑
x∈Xn/2+s

E[(−1)x1] for some s.
As we are summing over all strings of the same Hamming weight, we can instead consider∑

x∈Xn/2+s
Ei∼[n][(−1)xi]. For any string of weight n/2 + s, it is easy to see that

E
i∼[n]

[(−1)xi] = (1/2 − s/n) − (1/2 + s/n) = −2s/n. (3)

Therefore, in the k = 1 case we get that∣∣∣∣ E
x∼Xℓ mod m

[(−1)x1+···+xk]
∣∣∣∣ ≤ 2

∑
c

(
n

n/2 + cm + ℓ′

)
|cm + ℓ′|

n
.

Using the fact that
(

n
n/2+cm+ℓ′

)
is exponentially decreasing in |c|, in the full version of the

paper we show that this is at most O(2n/n). So the ratio in (2) is at most O(1/
√

n), as
desired, when k = 1.

However, already for k = 2, a direct (but tedious) calculation shows that

E
i<j

[(−1)xi+xj] = 4s2 − 2ns + n

n(n − 1) , (4)

which no longer decreases in s like in (3). Nevertheless, we observe that this is bounded by
O(1/n + (|s|/n)2), which is sufficient for bounding the ratio by O(1/n). Building on this,
for any k we obtain a bound of 2O(k)((k/n)k/2 + (|s|/n))k in the full version of the paper,
and by a more careful calculation we are able to obtain the desired bound of O(km/n)k on
Equation (2).

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:11

4.2 Proof of Theorem 8
We now prove the theorem. We will use the following result from [3], which says that degree-d
symmetric F2-polynomials only depend on their input’s Hamming weight modulo O(d).

▶ Lemma 15 (Theorem 2.4 in [3], p = 2). Let p : {0, 1}n → {0, 1} be a symmetric F2-
polynomial of degree d, where m/2 ≤ d < m and m is a power of two. Then p(x) only
depends on |x| mod m.

We will also use two bounds on the biases of parities under the uniform distribution over
Xℓ mod m, one holds for k ≤ n/(2d)2 ≤ n/m2 (Claim 16) and the other for k ≥ n/(2d)2 ≥
n/(4m2) (Lemma 17). Claim 16 is essentially taken from [6]. However, the statement in [6]
has a slightly worse bound; so in the full version of the paper we explain the changes required
to give the bound of Claim 16. The proof of Lemma 17 involves bounding the magnitude of
Kravchuk polynomials. As it is somewhat technical we defer its proof to the full version of
the paper.

▷ Claim 16 (Lemma 10 in [6]). For every 1 ≤ k ≤ n/m2 and every integer ℓ,

2−n
∣∣∣ ∑
x∈Xℓ mod m

(−1)x1+···+xk

∣∣∣ ≤ m−(k+1)e−Ω(n/m2),

while for k = 0,∣∣∣2−n|Xℓ mod m| − 1/m
∣∣∣ ≤ m−1e−Ω(n/m2).

▶ Lemma 17. For k ≥ n/(4m2), we have(
n

k

)
· max

ℓ

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ O(m)k.

We now use Claim 16 and Lemma 17 to prove Theorem 8.

Proof of Theorem 8. As p is symmetric, all the level-k coefficients are the same, so it suffices
to give a bound on p̂({1, 2, . . . , k}). Let p̃ : {0, . . . , n} → {0, 1} be the function defined by
p̃(|x|) := p(x1, . . . , xn). By Lemma 15, we have p̃(ℓ) = p̃(ℓ mod m) for some d < m ≤ 2d

where m is a power of 2. Using the definition of p̂({1, . . . , k}), we have

|p̂({1, . . . , k})| =
∣∣∣∣ E
x∼{0,1}n

[
p(x)(−1)x1+···+xk

]∣∣∣∣
=

∣∣∣∣∣
m−1∑
ℓ=0

p̃(ℓ) |Xℓ mod m|
2n

·
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣
≤ E[p] · max

0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣,
where we use the shorthand E[p] = Ex∼{0,1}n [p(x)] in the last step.

When k ≤ n/(2d)2 ≤ n/m2, by Claim 16 (using the first bound for the numerator and
the second k = 0 bound for the denominator) we have

max
0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ m−(k+1)e−Ω(n/m2)

m−1(1 − e−Ω(n/m2))
≤ O(1) · m−ke−Ω(n/m2),

APPROX/RANDOM 2021

53:12 Fourier Growth of Structured F2-Polynomials and Applications

where the last inequality holds because 1 ≤ k ≤ n/m2 and hence the (1 − e−Ω(n/m2)) factor
in the denominator of the left-hand side is Ω(1). Hence, summing over all the

(
n
k

)
level-k

coefficients, we get that

L1,k(p) ≤ E[p]·
(

n

k

)
·O(1)·m−ke−Ω(n/m2) ≤ E[p]·O(1)·mk

(ne

km2

)k

e−Ω(n/m2) ≤ E[p]·O(m)k,

where the last inequality is because for constant c, the function (x/k)ke−cx is maximized
when x = k/c, and is O(1)k.

When k ≥ n/(2d)2 ≥ n/(4m2), by Lemma 17 we have

L1,k(p) ≤ E[p] ·
(

n

k

)
max

0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ E[p] · O(m)k. ◀

5 L1,k bounds for read-∆ polynomials

In this section we prove our L1,k bounds for read-few polynomials, proving Theorem 9.

5.1 Proof idea
We first observe that for f = (−1)p, the Fourier coefficient f̂(S) is simply the bias of the
F2-polynomial pS(x) := p(x) +

∑
i∈S xi. Assuming that pS depends on all n variables, by a

simple greedy argument we can collect n/poly(∆, d) polynomials in pS so that each of them
depends on disjoint variables, and it is not hard to show that the product of the biases of
these polynomials upper bounds the bias of pS . From this is easy to see that any read-∆
degree-d polynomial has bias exp(2−dn/poly(∆, d)). However, this quantity is too large to
sum over

(
n
k

)
coefficients.

Our next idea (Lemma 18) is to give a more refined decomposition of the polynomial p

by inspecting the variables xi : i ∈ S more closely. Suppose the variables xi : i ∈ S are far
apart in their dependency graph (see the definition of Gp below), as must indeed be the case
for most of the

(
n
k

)
size-k sets S. Then we can collect all the monomials containing each xi

to form a polynomial pi, and these pi’s will depend on disjoint variables. Moreover, if every
monomial in pi has high degree (see the definition of Vt(p) below), then pi = 0 with high
probability and therefore pi + xi is almost unbiased. Therefore, we can first collect these pi

and xi from pS ; then, for the remaining m ≥ |S| · poly(∆, d) monomials in pS , as before we
collect m/poly(∆, d) polynomials ri so that they depend on disjoint variables, but this time
we collect these monomials using the variables in Vt(p), and give an upper bound in terms of
the size |Vt(p)|. Multiplying the biases of the pi + xi’s and the bias of r gives our refined
upper bound on f̂(S) in Lemma 18.

5.2 Proof of Theorem 9
We now proceed to the actual proof. We first define some notions that will be used throughout
our arguments. For a read-∆ degree-d polynomial p, we define Vt(p) : t ∈ [d] and Gp as
follows.

For every t ∈ [d], define

Vt(p) := {i ∈ [n] : the minimum degree of the monomials in p containing xi is t}.

Note that the sets V1(p), . . . , Vd(p) form a partition of the input variables p depends on.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:13

Define the undirected graph Gp on [n], where i, j ∈ [n] are adjacent if xi and xj both
appear in the same monomial in q. Note that Gp has degree at most ∆d. For S ⊆ [n], we
use N=d(S) to denote the indices that are at distance exactly i to S in Gp, and use N≤d(S)
to denote

⋃d
j=0 N=j(S).

We first state our key lemma, which gives a refined bound on each f̂(S) stronger than
the naive bound sketched in the first paragraph of the “Proof Idea” above, and use it to
prove Theorem 9. Due to lack of space, we defer its proof to the full version of the paper.

▶ Lemma 18 (Main lemma for read-∆ polynomials). Let p(x1, . . . , xn) be a read-∆ degree-d
polynomial. Let S ⊆ [n], |S| ≥ ℓ be a subset containing some ℓ indices i1, . . . , iℓ ∈ S whose
pairwise distances in Gp are at least 4, and let t1, . . . , tℓ ∈ [d] be such that each ij ∈ Vtj

(p).
Let f = (−1)p. Then

|f̂(S)| ≤ O(1)|S| · ∆ℓ
∏

j∈[ℓ]

(
2−tj exp

(
−

2−tj |Vtj
(p)|

ℓ · (∆d)4

))
.

Proof of Theorem 9. Using a reduction given in the proof of [7, Lemma 2.2], it suffices to
prove the same bound without the acceptance probability factor, i.e. to prove that for every
1 ≤ k ≤ n,

L1,k(p) ≤ O(k)k · (∆d)8k.

As [7] did not provide an explicit statement of the reduction, for completeness we provide a
self-contained statement and proof in Lemma 22 in Appendix A.

For every subset S ⊆ [n] of size k, there exists an ℓ ≤ k and i1, . . . , iℓ ∈ S such that their
pairwise distances in Gp are at least 4, each ij ∈ Vtj (p) for some tj ∈ [d], and each of the
remaining k − ℓ indices in S is within distance at most 3 to some ij .

Fix any i1, . . . , iℓ, and let us bound the number of subsets S ⊆ [n] of size k that can
contain i1, . . . , iℓ. Because |N≤3(j)| ≤ (∆d)3 + (∆d)2 + ∆d + 1 ≤ 4(∆d)3 for every j ∈ [n],
the remaining k − ℓ indices of S can appear in at most∑

j1+···+jℓ=k−ℓ

∏
b∈[ℓ]

(
4(∆d)3

jb

)
=
(

4ℓ(∆d)3

k − ℓ

)

≤ (4(∆d)3)k · ek−ℓ

(
ℓ

k − ℓ

)k−ℓ

≤ (e∆d)3k

different ways, where the equality uses the Vandermonde identity, the first inequality uses(
n
k

)
≤ (en/k)k, and the last one uses (ℓ

k−ℓ)k−ℓ ≤ (1 + ℓ
k−ℓ)k−ℓ ≤ eℓ and 4e < e3. Therefore,

by Lemma 18,∑
S:|S|=k

|f̂(S)| ≤
k∑

ℓ=1

∑
t⊆[d]ℓ

[(∏
j∈[ℓ]

|Vtj
(p)|

)
· (e∆d)3k · O(1)k∆ℓ

∏
j′∈[ℓ]

(
2−t

j′ exp

(
−

2−t
j′ |Vt

j′ (p)|

ℓ(∆d)4

))]

≤ O(1)k · (∆d)3k

k∑
ℓ=1

∆ℓ
∑

t⊆[d]ℓ

∏
j∈[ℓ]

(
2−tj |Vtj

(p)| exp

(
−

2−tj |Vtj
(p)|

ℓ(∆d)4

))

≤ O(1)k · (∆d)3k

k∑
ℓ=1

∆ℓ · d
ℓ · (ℓ(∆d)4)ℓ

≤ O(k)k · (∆d)3k · (∆d)5k

= O(k)k · (∆d)8k
,

where the third inequality is because the function x 7→ xe−x/c is maximized when x = c.
This completes the proof. ◀

APPROX/RANDOM 2021

53:14 Fourier Growth of Structured F2-Polynomials and Applications

6 L1,k bounds for disjoint compositions

In this section we give L1,k bounds on disjoint compositions of functions, proving Theorem 12.

6.1 Proof idea

Before proving Theorem 12, we briefly describe the main ideas of the proof. For a subset
J ⊆ [m], let ∂Jf denote the J-th derivative of f , which can be expressed as

∂Jf(x1, . . . , xm) :=
∑
T ⊇J

f̂(T)xT \J .

Note that f̂(J) = ∂Jf (⃗0).
Let us begin by considering the task of bounding L1,1(h) =

∑
(i,j)∈[m]×[ℓ]|ĥ{(i, j)}|. Let

β = (β1, . . . , βm), where βi := E[gi]. Using the Fourier expansion of f , we have

ĥ{(i, j)} =
∑

S⊆[m]

f̂(S) E
[∏

k∈S

gk(xk) · xi,j

]
.

If S ̸∋ i, then the expectation is zero, because
∏

k∈S gk(xk) and xi,j are independent and
E[xi,j] = 0. So, we have

ĥ{(i, j)} =
∑
S∋i

f̂(S)βS\{i} · ĝi({j}) = ∂if(β) · ĝi({j}).

If the functions gi are balanced, i.e. E[gi] = 0 for all i, then we would have β = 0⃗, and

ĥ{(i, j)} = ∂if (⃗0) · ĝi({j}) = f̂({i})ĝi({j}).

So in this case we have

L1,1(h) =
∑

i∈[m],j∈[ℓ]

∣∣ĥ({(i, j)})
∣∣ =

∑
i∈[m]

∑
j∈[ℓ]

|f̂({i})ĝi({j})| =
∑

i∈[m]

|f̂({i})|
∑
j∈[ℓ]

|ĝi({j})|

and we can apply our bounds on L1,1(F) and L1,1(G) to
∑

i∈[m] f̂{i} and
∑

j∈[ℓ] ĝi{j}
respectively. Specializing to the case g1 = · · · = gm, we have

▷ Claim 19. Suppose g1 = g2 = · · · = gm =: g and E[g] = 0. Then L1,1(h) = L1,1(f)L1,1(g).

In general the gi’s may not all be the same and may not be balanced, and so it seems
unclear how we can apply our L1,1(F) bound on

∑
i∈[m] ∂if(β1, . . . , βm) when β ̸= 0⃗. To

deal with this, in Claim 20 below we apply a clever idea introduced in [9] that lets us
relate f(β) at a nonzero point β to the average of fRβ

(⃗0), where fRβ
is f with some of its

inputs fixed by a random restriction Rβ . As F is closed under restrictions, we have that
fRβ

∈ F and we can apply the L1,1(F) bound on
∑

i ∂ifRβ
(⃗0), which in turn gives a bound

on
∑

i∈[m] ∂if(β1, . . . , βm).
Bounding L1,K(h) for K ≥ 2 is more complicated, as now each ĥ(S) involves many f̂(J)

and ĝi(T)’s, where the sets J and T have different sizes. So one has to group the coefficients
carefully.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:15

6.2 Useful notation
For a set S ⊆ [m] × [ℓ], let S|f := {i ∈ [m] : (i, j) ∈ S for some j ∈ [ℓ]} be the “set of first
coordinates” that occur in S, and let S|i := {j ∈ [ℓ] : (i, j) ∈ S}. Note that if (i, j) ∈ S, then
i ∈ S|f and j ∈ S|i. Let β denote the vector (β1, . . . , βm), where βi := E[gi] for each i ∈ [m].
For a set J = {i1, . . . , i|J|} ⊆ [m] and f = f(y1, . . . , ym), we write ∂Jf to denote ∂|J|f

∂yi1 ···∂yi|J|
.

Since ∂JyT = 1(T ⊇ J)yT \J , by the multilinearity of f we have that

∂Jf(β) =
∑
T ⊇J

f̂(T)β T \J . (5)

6.3 The random restriction Rβ

Given β ∈ [−1, 1]m, let Rβ be the random restriction which is the randomized function from
{−1, 1}m to {−1, 1}m whose i-th coordinate is (independently) defined by

Rβ(y)i :=
{

sgn(βi) with probability |βi|
yi with probability 1 − |βi|.

Note that we have

E
Rβ ,y

[Rβ(y)i] = E
Rβ

[Rβ (⃗0)i] = βi.

Define fRβ
(y) to be the (randomized) function f(Rβ(y)). By the multilinearity of f and

independence of the Rβ(y)i we have

E
Rβ ,y

[fRβ
(y)] = E

Rβ

[fRβ
(⃗0)] = f(β).

The following claim relates the two derivatives ∂Sf(β) and ∂SfRβ
(⃗0) = f̂Rβ

(S).

▷ Claim 20.

∂Sf(β) =
∏
i∈S

1
1 − |βi|

· E
Rβ

[∂SfRβ
(⃗0)] =

∏
i∈S

1
1 − |βi|

· E
Rβ

[f̂Rβ
(S)].

Proof. Due to lack of space, we defer the proof to the full version of the paper. ◁

We can use Claim 20 to express each coefficient of h in terms of the coefficients of f and gi.

▶ Lemma 21. For S ⊆ [m]×[ℓ], we have ĥ(S) =
∏

i∈S|f
ĝi(S|i)·

∏
i∈S|f

1
1−|βi| ·ERβ

[f̂Rβ
(S|f)].

Proof. Due to lack of space, we defer the proof to the full version of the paper. ◀

6.4 Proof of Theorem 12
By Lemma 21, L1,K(h) is equal to

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| =
∑

S⊆[m]×[ℓ]:|S|=K

∣∣∣∣ ∏
i∈S|f

ĝi(S|i) ·
∏

i∈S|f

1
1 − |βi|

· E
Rβ

[f̂Rβ
(S|f)]

∣∣∣∣.
We enumerate all the subsets S ⊆ [m] × [ℓ] of size K in the following order: For every
|J | = k ∈ [K] out of the m blocks of ℓ coordinates, we enumerate all possible combinations

APPROX/RANDOM 2021

53:16 Fourier Growth of Structured F2-Polynomials and Applications

of the (disjoint) nonempty subsets {Si : i ∈ J} in those k blocks whose sizes sum to K.
Rewriting the summation above in this order, we obtain

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| =
K∑

k=1

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∣∣∣∣∣∏
i∈J

ĝi(Si)
∏
i∈J

1
1 − |βi|

E
Rβ

[
f̂Rβ (J)

]∣∣∣∣∣
≤

K∑
k=1

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∏
i∈J

∣∣ĝi(Si)
∣∣∏

i∈J

1
1 − |βi|

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣.
(6)

Since L1,wi
(gi) ≤ 1−|βi|

2 · ain · bwi
in , for every {wi}i∈J such that

∑
i∈J wi = K, we have

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∏
i∈J

|ĝi(Si)| =
∏
i∈J

L1,wi
(gi) ≤

∏
i∈J

(1 − |βi|
2 ainbwi

in

)
= bK

in a
|J|
in

∏
i∈J

1 − |βi|
2 .

Plugging the above into (6), we get that

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| ≤ bK
in

K∑
k=1

ak
in

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∏
i∈J

(
1 − |βi|

2 · 1
1 − |βi|

·
∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣)

= bK
in

K∑
k=1

(
ain

2

)k ∑
J⊆[m]
|J|=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣ ∑
w⊆[ℓ]J∑
i∈J

wi=K

1

≤ bK
in

K∑
k=1

(
ain

2

)k
(

K − 1
k − 1

) ∑
J⊆[m]
|J|=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣, (7)

where the last inequality is because for every subset J ⊆ [m], the set {w ⊆ [ℓ]J :
∑

i∈J wi =
K} has size at most

(
K−1
|J|−1

)
. We now bound |ERβ

[f̂Rβ
(J)]|. Since for every restriction Rβ ,

we have fRβ
∈ F (by the assumption that F is closed under restrictions), it follows that

L1,k(fRβ
) ≤

1 − |Ey[fRβ
(y)]|

2 aoutb
k
out ≤

1 − Ey[fRβ
(y)]

2 aoutb
k
out.

So ∑
J⊆[m],|J|=k

∣∣∣E
Rβ

[
f̂Rβ

(J)
]∣∣∣ ≤ E

Rβ

[L1,k(fRβ
)]

≤
1 − ERβ ,y[fRβ

(y)]
2 aoutb

k
out

= 1 − E[h]
2 aoutb

k
out.

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:17

Continuing from (7), we get

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| ≤ 1 − E[h]
2 · bK

in ·
K∑

k=1

(ain
2

)k

·
(

K − 1
k − 1

)
· aoutb

k
out

= 1 − E[h]
2 · aout · bK

in · ainbout
2

(
1 + ainbout

2

)K−1

≤ 1 − E[h]
2 · aout · (ainbinbout)K .

where the last equality used the binomial theorem. Applying the same argument to −h lets
us replace 1−E[h]

2 with 1−|E[h]|
2 , concluding the proof of Theorem 12. ◀

References
1 Nikhil Bansal and Makrand Sinha. K-forrelation optimally separates quantum and classical

query complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, New York, NY, USA, 2021. doi:10.1145/3406325.3451040.

2 Ido Ben-Eliezer, Rani Hod, and Shachar Lovett. Random low-degree polynomials are hard to
approximate. Comput. Complexity, 21(1):63–81, 2012. doi:10.1007/s00037-011-0020-6.

3 Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric polynomials
over Zm and simultaneous communication protocols. J. Comput. System Sci., 72(2):252–285,
2006. doi:10.1016/j.jcss.2005.06.007.

4 Eric Blais, Li-Yang Tan, and Andrew Wan. An inequality for the fourier spectrum of parity
decision trees, 2015. arXiv:1506.01055.

5 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. Comput.,
39(6):2464–2486, 2010. doi:10.1137/070712109.

6 Ravi Boppana, Johan Håstad, Chin Ho Lee, and Emanuele Viola. Bounded independence versus
symmetric tests. ACM Trans. Comput. Theory, 11(4):Art. 21, 27, 2019. doi:10.1145/3337783.

7 Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar,
and Swagato Sanyal. Tight chang’s-lemma-type bounds for boolean functions. CoRR,
abs/2012.02335, 2020. arXiv:2012.02335.

8 Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Abhishek Shetty.
Fractional Pseudorandom Generators from Any Fourier Level, 2020. arXiv:2008.01316.

9 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory Comput., 15:Paper No. 10, 26, 2019.
doi:10.4086/toc.2019.v015a010.

10 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
generators from the second Fourier level and applications to AC0 with parity gates. In 10th
Innovations in Theoretical Computer Science, volume 124 of LIPIcs, 2019. doi:10.4230/
LIPIcs.ITCS.2019.22.

11 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudo-
randomness for unordered branching programs through local monotonicity. In STOC’18—
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
363–375. ACM, New York, 2018. doi:10.1145/3188745.3188800.

12 Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from non-
trivial derandomization. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1–12, 2020. doi:10.1109/FOCS46700.2020.00009.

13 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic
approach. Electron. Colloquium Comput. Complex., 27:163, 2020. URL: https://eccc.
weizmann.ac.il/report/2020/163.

APPROX/RANDOM 2021

https://doi.org/10.1145/3406325.3451040
https://doi.org/10.1007/s00037-011-0020-6
https://doi.org/10.1016/j.jcss.2005.06.007
http://arxiv.org/abs/1506.01055
https://doi.org/10.1137/070712109
https://doi.org/10.1145/3337783
http://arxiv.org/abs/2012.02335
http://arxiv.org/abs/2008.01316
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.1109/FOCS46700.2020.00009
https://eccc.weizmann.ac.il/report/2020/163
https://eccc.weizmann.ac.il/report/2020/163

53:18 Fourier Growth of Structured F2-Polynomials and Applications

14 Dean Doron, Pooya Hatami, and William M. Hoza. Log-seed pseudorandom generators via
iterated restrictions. In 35th Computational Complexity Conference, volume 169 of LIPIcs,
2020. doi:10.4230/LIPIcs.CCC.2020.6.

15 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. Theory Comput., 9:809–843, 2013. doi:10.4086/toc.2013.v009a026.

16 Uma Girish, Ran Raz, and Avishay Tal. Quantum Versus Randomized Communication
Complexity, with Efficient Players. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021), volume 185 of LIPIcs, 2021. doi:10.4230/LIPIcs.
ITCS.2021.54.

17 Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations, 2020. arXiv:
2007.03631.

18 Uma Girish, Avishay Tal, and Kewen Wu. Fourier Growth of Parity Decision Trees. In
Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume
200 of LIPIcs, 2021. doi:10.4230/LIPIcs.CCC.2021.39.

19 Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigderson. Degree and sensitivity:
tails of two distributions. Electron. Colloquium Comput. Complex., 23:69, 2016. URL:
http://eccc.hpi-web.de/report/2016/069.

20 Ben Green and Terence Tao. The distribution of polynomials over finite fields, with applications
to the Gowers norms. Contrib. Discrete Math., 4(2):1–36, 2009.

21 Frederic Green, Daniel Kreymer, and Emanuele Viola. Block-symmetric polynomials correlate
with parity better than symmetric. Comput. Complexity, 26(2):323–364, 2017. doi:10.1007/
s00037-017-0153-3.

22 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In 34th
Computational Complexity Conference, volume 137 of LIPIcs, 2019. doi:10.4230/LIPIcs.
CCC.2019.7.

23 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: pseudorandom
generators for read-once polynomials. Theory Comput., 16:Paper No. 7, 50, 2020. doi:
10.4086/toc.2020.v016a007.

24 Shachar Lovett. Unconditional pseudorandom generators for low-degree polynomials. Theory
Comput., 5:69–82, 2009. doi:10.4086/toc.2009.v005a003.

25 Shachar Lovett, Roy Meshulam, and Alex Samorodnitsky. Inverse conjecture for the Gowers
norm is false. Theory Comput., 7:131–145, 2011. doi:10.4086/toc.2011.v007a009.

26 Yishay Mansour. An O(nlog log n) learning algorithm for DNF under the uniform distribution. J.
Comput. System Sci., 50(3, part 3):543–550, 1995. Fifth Annual Workshop on Computational
Learning Theory (COLT) (Pittsburgh, PA, 1992). doi:10.1006/jcss.1995.1043.

27 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 626–637. ACM, New York, 2019. doi:10.1145/3313276.3316319.

28 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

29 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. doi:
10.1017/CBO9781139814782.

30 Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in polynomial time.
SIAM J. Comput., 37(3):827–844, 2007. doi:10.1137/060669309.

31 Ran Raz and Avishay Tal. Oracle separation of BQP and PH. In STOC’19—Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 13–23. ACM, New
York, 2019. doi:10.1145/3313276.3316315.

32 Alexander A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a
complete basis containing the logical addition function. Mat. Zametki, 41(4):598–607, 623,
1987.

https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.4086/toc.2013.v009a026
https://doi.org/10.4230/LIPIcs.ITCS.2021.54
https://doi.org/10.4230/LIPIcs.ITCS.2021.54
http://arxiv.org/abs/2007.03631
http://arxiv.org/abs/2007.03631
https://doi.org/10.4230/LIPIcs.CCC.2021.39
http://eccc.hpi-web.de/report/2016/069
https://doi.org/10.1007/s00037-017-0153-3
https://doi.org/10.1007/s00037-017-0153-3
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.4230/LIPIcs.CCC.2019.7
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.4086/toc.2020.v016a007
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.4086/toc.2011.v007a009
https://doi.org/10.1006/jcss.1995.1043
https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/BF01305237
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1137/060669309
https://doi.org/10.1145/3313276.3316315

J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:19

33 Omer Reingold, Thomas Steinke, and Salil P. Vadhan. Pseudorandomness for regular branching
programs via fourier analysis. In RANDOM 2013, volume 8096 of Lecture Notes in Computer
Science, pages 655–670, 2013.

34 Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from pseudorandom
multi-switching lemmas. In Approximation, randomization, and combinatorial optimization.
Algorithms and techniques, volume 145 of LIPIcs, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.
2019.45.

35 Rocco A. Servedio and Li-Yang Tan. Pseudorandomness for read-k DNF formulas. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
621–638. SIAM, Philadelphia, PA, 2019. doi:10.1137/1.9781611975482.39.

36 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An Optimal Separation of
Randomized and Quantum Query Complexity, 2020. arXiv:2008.10223.

37 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, page 77–82, New York, NY, USA, 1987. Association for Computing Machinery.
doi:10.1145/28395.28404.

38 Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In 32nd Computational Complexity
Conference, volume 79 of LIPIcs, 2017. doi:10.4230/LIPIcs.CCC.2017.15.

39 Avishay Tal. Towards optimal separations between quantum and randomized query complexities.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
228–239, 2020. doi:10.1109/FOCS46700.2020.00030.

40 Emanuele Viola. On the power of small-depth computation. Foundations and Trends in
Theoretical Computer Science, 5(1):1–72, 2009.

41 Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Comput.
Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.

42 Emanuele Viola. Challenges in computational lower bounds. SIGACT News, Open Problems
Column, 48(1), 2017.

43 Emanuele Viola. Fourier conjectures, correlation bounds, and majority. Electron. Colloquium
Comput. Complex., 27:175, 2020. URL: https://eccc.weizmann.ac.il/report/2020/175.

44 Emanuele Viola. New lower bounds for probabilistic degree and AC0 with parity gates. Theory
of Computing, 2021. Available at http://www.ccs.neu.edu/home/viola/.

A Reduction to bound without acceptance probability

In this section, we show that given any L1,k Fourier norm bound on a class of functions that
is closed under XOR on disjoint variables, such a bound can be automatically “upgraded” to
a refined bound that depends on the acceptance probability:

▶ Lemma 22. Let F be a class of {−1, 1}-valued functions such that for every f ∈ F , the
XOR of disjoint copies of f (over disjoint sets of variables) also belongs to F . If L1,k(F) ≤ bk,
then for every f ∈ F it holds that L1,k(f) ≤ 2e · 1−|E[f]|

2 · bk.

Proof. Suppose not, and let f ∈ F be such that L1,k(f) > 2e · 1−|E[f]|
2 · bk. We first observe

that since L1,k(F) ≤ bk, it must be the case that 1 − |E[f]| ≤ 1/e. Let α := 1−|E[f]|
2 ∈ [0, 1

2e]
so that |E[f]| = 1−2α ≥ 1−1/e. Let f⊕t be the XOR of t disjoint copies of f on tn variables,
where the integer t is to be determined below. By our assumption, we have f⊕t ∈ F and
thus

L1,k(f⊕t) ≥
(

t

1

)
· L1,0(f)t−1 · L1,k(f) (by disjointness)

= t · (1 − 2α)t−1 · L1,k(f) (L1,0(f) = E[f])
> t · (1 − 2α)t−1 · 2e · α · bk =: Λ(t).

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://doi.org/10.1137/1.9781611975482.39
http://arxiv.org/abs/2008.10223
https://doi.org/10.1145/28395.28404
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1109/FOCS46700.2020.00030
https://doi.org/10.1007/s00037-009-0273-5
https://eccc.weizmann.ac.il/report/2020/175

53:20 Fourier Growth of Structured F2-Polynomials and Applications

We note that if α = 0 then |E[f]| = 1, so all the Fourier weight of f is on the constant
coefficient, and hence the claimed inequality holds trivially. So we subsequently assume that
0 < α ≤ 1

2e . Let t∗ := 1
− ln(1−2α) > 0. It is easy to verify that Λ(t) is increasing when t ≤ t∗,

and is decreasing when t ≥ t∗.
We choose t = ⌈t∗⌉. Since α ≤ 1

2e < e−1
2e ≈ 0.3161, we have t∗ > 1 and thus

L1,k(f⊕t) > Λ(⌈t∗⌉) ≥ Λ(t∗ + 1) =
(

1
− ln(1 − 2α) + 1

)
· (1 − 2α)

1
− ln(1−2α) · 2e · α · bk

=
(

2α

− ln(1 − 2α) + 2α

)
· bk ≥ bk,

where the last inequality holds for every α ∈ (0, e−1
2e] and can be checked via elementary

calculations. This contradicts L1,k(F) ≤ bk, and the lemma is proved. ◀

Candidate Tree Codes via Pascal Determinant
Cubes
Inbar Ben Yaacov #

The Blavatnik School of Computer Science, Tel-Aviv University, Israel

Gil Cohen # Ñ

The Blavatnik School of Computer Science, Tel-Aviv University, Israel

Anand Kumar Narayanan #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
Tree codes are combinatorial structures introduced by Schulman [23] as key ingredients in inter-
active coding schemes. Asymptotically-good tree codes are long known to exist, yet their explicit
construction remains a notoriously hard open problem. Even proposing a plausible construction,
without the burden of proof, is difficult and the defining tree code property requires structure that
remains elusive. To the best of our knowledge, only one candidate appears in the literature, due to
Moore and Schulman [19].

We put forth a new candidate for an explicit asymptotically-good tree code. Our construction is
an extension of the vanishing rate tree code by Cohen-Haeupler-Schulman [7], and its correctness
relies on a conjecture that we introduce on certain Pascal determinants indexed by the points of
the Boolean hypercube. Furthermore, using the vanishing distance tree code by Gelles et al. [12]
enables us to present a construction that relies on an even weaker assumption. We furnish evidence
supporting our conjecture through numerical computation, combinatorial arguments from planar
path graphs and based on well-studied heuristics from arithmetic geometry.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Tree codes, Sparse polynomials, Explicit constructions

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.54

Category RANDOM

Related Version Extended Version: https://eccc.weizmann.ac.il/report/2020/141/

Funding Inbar Ben Yaacov: Funded by the Israel Science Foundation (grant number 1569/18).
Gil Cohen: Funded by the Israel Science Foundation (grant number 1569/18) and by the Azrieli
Faculty Fellowship.
Anand Kumar Narayanan: Supported by the European Union’s H2020 Programme (grant agreement
#ERC-669891).

Acknowledgements The second author wishes to thank Roni Con, Shir Peleg-Schatzman, Noam
Peri, Tal Roth, and Shahar Samocha for interesting discussions on tree codes.

1 Introduction

Coding theory addresses the problem of communication over an imperfect channel. In the
classic setting studied in the seminal work of Shannon [26], Alice wishes to communicate a
message to Bob over a channel that may induce errors. The question then is: how should
Alice encode her message so that if the amount of errors is not excessive, Bob can recover her
message? Around the same time, Hamming [14] introduced the notion of an error-correcting
code. A function C : Σk → Σn is an error-correcting code with distance δ if for every distinct
x, y ∈ Σk, the respective images C(x), C(y) have relative Hamming distance at least δ. The

© Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 54; pp. 54:1–54:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:inbarb1@mail.tau.ac.il
mailto:gil@tauex.tau.ac.il
http://www.gilcohen.org
mailto:anand.narayanan@cispa.de
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.54
https://eccc.weizmann.ac.il/report/2020/141/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Candidate Tree Codes via Pascal Determinant Cubes

rate of information transmission ρ = k
n and the fraction of errors corrected (roughly δ/2)

are competing quantities with a tradeoff between them. Among the most basic questions
in coding theory is to obtain explicit asymptotically good codes, that is, codes over fixed Σ
with constant distance δ > 0 and constant rate ρ > 0. By “explicit” we mean that C can be
evaluated in time poly(n). Justensen [15] was the first to devise such an explicit construction.
Since then, several explicit constructions have appeared, including using algebraic geometry
codes [28] and expander graphs [27].

While error-correcting codes can be used to solve the problem of sending a single message
from Alice to Bob over an imperfect channel, in some settings, the two parties interact with
each other, sending multiple messages where a message depends on previous messages that
were exchanged. Interactive coding addresses the subtler problem of enabling such dynamic
interaction over an imperfect channel. In this far more challenging setting, standard codes
do not offer a satisfactory solution.

Tree codes are powerful combinatorial structures, defined by Schulman [23, 25] as key
ingredients for achieving interactive coding schemes. They play a role analogous to that
error-correcting codes take in the single message setting. Tree codes, as their name suggests,
are trees with certain distance properties. To give the formal definition, we set some notation.
Let T be a rooted binary tree that is endowed with an edge coloring from some ambient color
set (or alphabet) Σ. For vertices u, v of equal depth let w be their least common ancestor
and denote the distance, in edges, from u to w by ℓ. Let pu, pv ∈ Σℓ be the sequences of
colors on the path from w to u and to v, respectively. We define h(u, v) to be the relative
Hamming distance between pu and pv. Informally, h(u, v) measures the distance between
the two color sequences obtained by following the paths from the root to each of u and v,
excluding the “non-interesting” common prefix. A tree code is any coloring that has a lower
bound on this quantity. Formally,

▶ Definition 1 (Tree codes [23]). Let T be the complete rooted binary tree of depth n. The
tree T , together with an edge-coloring of T by a color set Σ is called a tree code with distance
δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ.

It is not clear at all that there exists a universal constant δ > 0 such that for every n

there exists a depth-n tree code with distance δ. Namely, it is not clear that there is a family
of tree codes (Tn)n∈N, where Tn has depth n, such that the color set Σ is common to all
trees in the family, and every Tn has distance δ. We refer to such a family as a tree code
with distance δ over the color set Σ.

Three different proofs were provided by Schulman, showing that for any constant δ < 1
there exists a tree code with alphabet size |Σ| = Oδ(1) achieving distance δ. More recently,
based on Schulman’s ideas, it was shown that there is a tree code with only 4 colors, having
positive distance (in particular, distance δ = 0.136) [8] and, moreover, 3 colors do not suffice
to guarantee any constant distance δ > 0. All of these proofs rely on the probabilistic method
and thus are not explicit. The problem of constructing asymptotically-good tree codes has
drawn substantial attention [24, 6, 19, 21, 12, 7, 20], but has endured as a difficult challenge.

Given this difficulty, it is natural to construct, for a given distance parameter δ > 0, a
family of tree codes (Tn)n∈N for which Tn is allowed to use some c(n) number of colors. The
goal is to obtain an asymptotically slowly-growing function c. Note that constructing a tree
code family with c(n) = 2n colors is trivial. Indeed, having so many colors at hand, one can
encode the entire path leading to a vertex on the edge preceding it, yielding distance δ = 1.
In an unpublished manuscript, Evans, Klugerman and Schulman [24] constructed a tree code
with c(n) = nOδ(1) colors. The state-of-the-art construction [7] achieves c(n) = (log n)Oδ(1).
See [20] for alternative constructions achieving the same parameters as well as decoding
algorithms, and [4] for an account relating [7] and [21].

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:3

Despite this progress, constructing asymptotically-good tree codes is wide open. Curi-
ously, even candidate constructions are rare. This is mostly because a tree code is not a
pseudorandom object. Its defining property requires structure that remains elusive. For this
reason, even proposing a plausible construction, without the burden of proof, requires further
insight and is not an easy task. To the best of our knowledge, there is a single candidate in
the literature, due to Moore and Schulman [19]. The construction’s distance property relies
on an intriguing open conjecture about certain exponential sums that the authors introduce.
The Moore-Schulman conjecture was verified computationally for small instances, and the
hope is that these represent the general case.

1.1 Our Contribution
In this work we put forth a candidate construction of asymptotically-good tree codes. Namely,
for some universal constant c ≥ 1 and for every integer n ≥ 1 we give an explicit construction
of a depth-n binary tree code with c colors. The distance of the tree code is bounded below
by some constant δ > 0, independent of n, provided a conjecture that we introduce on certain
Pascal determinants associated with the points of the Boolean hypercube holds. We give
independent supporting evidence for our conjecture: first through the combinatorics of planar
path graphs underlying our construction and then based on well-studied heuristics from
arithmetic geometry. Furthermore, we verify the conjecture computationally on small values.

Our candidate tree code is an extension of the [7] construction. We set the stage
in Section 2 with a discussion of [7] followed by a description of our contributions in Section 3.
Underlying the [7] construction is a key online uncertainty principle for the Newton basis:
a consequence of non-vanishing of Pascal (binomial) sub-matrix determinants, proved by
invoking the combinatorial Lindström-Gessel-Viennot lemma. These determinants are in fact
positive numbers growing exponentially with the depth of the tree, forcing the [7] construction
to require poly-logarithmic number of colors. With the intent of reducing the number of
colors, one may try to work modulo a prime in hopes the non-vanishing is still preserved.
In Section 3.1 we reason the contrary is true: it is unlikely to work for primes small enough
to guarantee a constant number of colors. There are exponentially many Pascal sub-matrix
determinants, at least one of which is likely to vanish “accidentally” modulo the chosen
prime.

Our main technical contribution is an extension of the [7] construction, which we present
as a candidate asymptotically-good tree code. The construction extends ideas of [7] and
further makes use of the vanishing-distance tree code by Gelles et al. [12], which allows us
to relax our assumption. An informal description of the main ideas is in Section 3.3 with a
formal treatment of the more intricate aspects deferred to Section 5. In our construction,
the role of each Pascal sub-matrix determinant is recast as a bundle of Pascal sub-matrix
determinants, parametrized by points on the Boolean hypercube of high enough dimension
(hence the term “Pascal determinant cube” in the title). We then work modulo a prime p

of appropriate size. Instead of worrying about a determinant vanishing modulo p, we only
have to worry about the whole associated cube of Pascal determinants vanishing modulo
p. Informed by computation, combinatorics and arithmetic, we formulate the Conjecture 4
in Section 3.2 that the cube of determinants never vanishes modulo our chosen prime. We
prove that if the conjecture (or even an asymptotic version of it, Conjecture 5) holds then
our construction is indeed asymptotically good.

In Appendix A, we investigate our conjecture through a combinatorial lens. Each
determinant bundle in the conjecture can be encoded as an integer polynomial whose
evaluation at the points of the Boolean hypercube gives the bundle. Through the Lindström-

APPROX/RANDOM 2021

54:4 Candidate Tree Codes via Pascal Determinant Cubes

Gessel-Viennot lemma, in Appendix A.1 we prove that the polynomial never vanishes on
any point of the Boolean hypercube. For the conjecture to fail, all these exponentially
many evaluations must be divisible by our chosen prime number, which we reason is likely
impossible for our chosen parameters. This very scenario is reformulated in terms of Boolean
functions in Appendix A.2, by multi-linearizing the aforementioned polynomial. Conjecture 4
is then rephrased as the non vanishing of an Fp-valued Boolean function, furthering our
belief in the conjecture.

In Appendix B, we look to deep results from arithmetic geometry to claim the plausibility
of our conjecture. If the hypersurface of zeroes of the aforementioned polynomial encoding
the bundle of determinants intersects with the Boolean hypercube generically, our conjecture
holds true. Following Fouvry [10], we investigate this intersection deploying Katz-Laumon
exponential sums. The bounds on Katz-Laumon sums and Fouvry’s point counting technique
fall short of quantitatively proving our conjecture. Yet, we show they suffice to prove a
nontrivial relaxation of our conjecture: with the Boolean hypercube extended to hypercubes
of side length ≈ p3/4. Despite falling short of proving our conjecture, the methods are
illuminating and suggest there are no arithmetic obstructions to our conjecture.

1.2 Recent Developments
Since posting our report online, there have been several exciting developments. Brakerski,
Kalai and Saxena [5] published a major advancement on the use of tree codes in interactive
coding. They demonstrate how a tree code with an efficient encoding algorithm suffices in
obtaining efficient and deterministic interactive coding schemes against adversarial errors. In
particular, they completely eliminate the necessity of the tree code possessing an efficient
decoding algorithm. Our candidate tree code clearly has an efficient encoding algorithm and
seamlessly fits their needs. Therefore, proving our tree codes are indeed asymptotically good
would immediately imply efficient and deterministic interactive coding schemes.

Pudlák gleaned an abstraction of our construction and reduced the problem of constructing
asymptotically good tree codes to constructing block matrices of the following form [22].
Consider an n by n block matrix whose entries are 2 by 1 column vector blocks. Say it is
triangular, meaning all blocks above the diagonal are

(0
0
)

vectors. For every k by k block
sub matrix (where the sorted column indices are never ahead of the row indices), Pudlák
demands that the 2k by k matrix induced by forgetting the block structure is full rank. This
rank criterion is a relaxation of our determinant bundle non vanishing. Pudlák further proves
that random triangular block matrices with entries from a finite field of size quadratic in n

satisfy the rank criterion with high probability. Explicit deterministic construction of such
block matrices beckons, with our construction being the only currently proposed candidate.

2 Cohen-Haeupler-Schulman Tree Codes

For the sequel, it is convenient to think of a tree code as an online version of a regular error
correcting code. Recall that a tree code consists of a complete rooted, depth-n binary tree
in which each edge is labeled by a symbol from an alphabet Σ. This naturally induces a
one-to-one mapping assigning each binary string s to a path starting at the root, where
s indicates which child is taken in each of the steps. Such a path maps to a string over
Σ, namely, the concatenation of symbols along the path. This way, a tree code T encodes
any binary string s into an equally long string T (s) over Σ. This encoding has the online
property because the encoding of any prefix does not depend on later symbols. Thus, one

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:5

can view a binary tree code as an online function T : {0, 1}n → Σn. It is useful to consider
input alphabets other than binary (which corresponds to a larger arity of the tree). In [7],
the input symbols are elements of Z rather than {0, 1}.

The distance property of a tree code can be phrased as follows when viewed as a function
T : Σn

in → Σn
out. For every pair of distinct strings m = (m0, . . . , mn−1), m′ = (m′

0, . . . , m′
n−1),

c being the least integer such that mc ≠ m′
c, the following holds. For every ℓ ∈ [0, n − c)

(for integers a < b we write [a, b) for {a, a + 1, . . . , b − 1}) the strings (T (m)c, . . . , T (m)c+ℓ),
(T (m′)c, . . . , T (m′)c+ℓ) are at Hamming distance at least δ(ℓ + 1).

The Newton basis. [7] makes use of the Newton basis for real polynomials. This basis
consists of polynomials of the form

(
x
k

)
∈ R[x] for k ∈ N, where

(
x
k

)
= x(x−1)···(x−(k−1))

k! .

It is easy to verify that for every d ∈ N, the set {
(

x
k

)
| k = 0, 1, . . . , d} forms a basis for

the space of univariate real polynomials of degree at most d. The feature which makes
the Newton basis suitable for constructing tree codes unlike, say the standard basis, is its
online nature with respect to N. Let m0, . . . , mt ∈ R. Let f(x) =

∑t
i=0 aix

i be the least
degree polynomial that interpolates on the points (0, m0), . . . , (t, mt). Then, generally, given
a new point (t + 1, mt+1), the least degree polynomial, g(x) =

∑t+1
i=0 bix

i, that interpolates
on (0, m0), . . . , (t + 1, mt+1) will have a completely different sequence of coefficients (i.e.,
ai ̸= bi). By contrast, using the Newton basis, the coefficients that were already “recorded”
stay intact given the new point (t + 1, mt+1). More precisely, if f(x) =

∑t
i=0 γi

(
x
i

)
then

g(x) = f(x) + γt+1
(

x
t+1

)
for some γt+1 ∈ R. Thus, for every t, the coefficient γt is determined

by m0, m1, . . . , mt. Another convenient property of the Newton basis, not shared by the
standard basis, is that if m0, . . . , mt are all integers, so are the coefficients γ0, . . . , γt.

The [7] tree code over the integers. In [7], for every integer n ≥ 1 a function TCZ : Zn →
(Z × Z)n is constructed as follows. Given m = (m0, . . . , mn−1) ∈ Zn, let f ∈ R[T] be
the least degree real polynomial that interpolates on (0, m0), . . . , (n − 1, mn−1). Expand f

in the Newton basis f(T) =
∑n−1

t=0 γt

(
T
t

)
. With this notation, for every t ∈ [0, n), define

TCZ(m)t = (mt, γt). In words, at time t, both the tth input symbol is outputted as well as
the “new” coefficient γt.

Analysis. To argue about the distance of TCZ, using the fact that it is R-linear, one has
to prove that if c ∈ [0, n) is the least integer for which mc ̸= 0 then for every ℓ ∈ [0, n − c),
at least δ-fraction of the indices in [c, c + ℓ] satisfies that TCZ(m)t is nonzero (as a pair). If
we write, for d ∈ [0, n), fd(T) =

∑d
t=0 γt

(
T
t

)
then the number of non-zeros in the sequence

γc, γc+1, . . . , γc+ℓ is precisely the sparsity of fc+ℓ in the Newton basis. This, together with
the fact that for every i ≤ t, mi = ft(i), implies that to “break” the construction TCZ,
one must come up with a sparse polynomial fc+ℓ, with respect to the Newton basis, that
has many roots in I = {c, c + 1, . . . , c + ℓ}. Indeed, if fc+ℓ is not sparse, then many of the
γ-entries of (TCZ(m)t)t∈I will be nonzero. On the other hand, if fc+ℓ has only few roots in
I then many of the m-entries are nonzero. To this end, the main lemma proved in [7] is a
bound on the numbers of distinct integral roots a real polynomial can have as a function of
its sparsity in the Newton basis.

▶ Lemma 2 ([7]). Let f ∈ R[T] be a nonzero polynomial of sparsity s ≥ 1 in the Newton
basis. Let c ≥ 0 be the least integer such that f(c) ̸= 0. Then, f has at most s − 1 distinct
roots in [c, ∞) ∩ N.

Lemma 2 implies that if the sparsity of fc+ℓ is s then there can be at most s − 1 zeros
among the m-entries of {TCZ(m)t}t∈I , establishing TCZ has distance at least 1

2 .

APPROX/RANDOM 2021

54:6 Candidate Tree Codes via Pascal Determinant Cubes

The Lindström-Gessel-Viennot Lemma. Lemma 2 is proved using a corollary of the
Lindström-Gessel-Viennot Lemma. Let t = (t1, . . . , ts), c = (c1, . . . , cs) be strictly increasing
sequences of non-negative integers. Let Mt,c be the s × s matrix whose (i, j)th entry is given
by

(
ti

cj

)
. We write c ≤ t if ci ≤ ti for every i ∈ [s].

▶ Lemma 3 ([13], Corollary 2). c ≤ t ⇐⇒ det Mt,c ̸= 0.

For more recent treatments of the LGV Lemma see [1], Chapter 5.4 or [2], Chapter 25.
This lemma is in fact much older, and we invite the reader to look at the appendix of [7] for
more information regarding the history of this lemma.

The binary tree code. To reduce the alphabet to binary, [7] proves that if for every t,
|mt| ≤ 2k for some k then |γt| ≤ 2t+k. Given a binary string m = (m0, . . . , mn−1), partition
m to

√
n consecutive blocks of length

√
n, and interpret each block as a non-negative integer

Mi of size at most 2
√

n. At this point, the tree code over the integers TCZ : N
√

n → (Z×Z)
√

n

can be applied to M0, . . . , M√
n−1. By the above bound, |γt| ≤ 2t+

√
n ≤ 22

√
n. Hence, an

output symbol (mt, γt) can be encoded using 3
√

n bits. Of course, these bits cannot be
output on the fly as one must write a symbol only after all of the

√
n bits of the corresponding

input symbol have been read. This creates a “lag” of length
√

n that can be resolved by using
a depth-

√
n tree code which is obtained recursively. As the recursive depth is O(log log n)

and since for every bit read one writes O(1) bits per recursive call, the number of bits written
per input bit is O(log log n). Hence, the poly(log n) alphabet size.

3 Our Contribution

3.1 The Unlikeliness of an LGV-Like Lemma Over Small Fields
The reason that the [7] construction is not asymptotically-good is that their tree code is
constructed over the integers, and the alphabet reduction that is invoked has a cost that is
exponential in the depth of the recursion. The recursion’s depth is directly affected by the
magnitude of the γt symbols which, unfortunately, are exponential in t. Taking

√
n-length

blocks yields the best trade-off, resulting in depth O(log log n).
One can show that resorting to such recursion could have been avoided if the construction

was carried over a prime field Fp with p = poly(n). That is, instead of outputting γt, output
its reduction modulo p. To be precise, for the construction to work, one must take p ≥ n due
to other considerations. However, as long as p < ne for some constant e, standard techniques
can be used to obtain an asymptotically-good binary tree code, where the constant e will
affect the rate of the resulted tree.

A very similar approach to this was raised by Pudlák [21]. On this, we quote a sentence
from the conclusion part of [21]: “This seems to be a very difficult problem and we do not
dare to conjecture that p may be of polynomial size”. At this point, Pudlák suggests studying
restricted cases for which small fields suffice and try to base tree code constructions on such
results, but we digress.

In consensus with Pudlák, we too believe that the approach of working over Fp as
suggested above is not likely to work. That is, it seems very plausible to us that the LGV
Lemma does not have an analog over a field of size poly(n). More precisely, we suspect that
for every constant e ≥ 1, there exists n0 = n0(e) such that for every n ≥ n0 and p ≤ ne,
there exists a pair t, c ∈ [0, n)s, for some s ∈ [n], satisfying c ≤ t, such that det Mt,c ≡p 0.

To get some intuition as to why we believe this is the case, fix some prime p and s ∈ [n].
There are between

(
n
s

)
and

(
n
s

)2 pairs of sequences t, c to consider. Unless some structure
is present, one would expect that roughly 1

p -fraction of pairs t, c would satisfy p | det Mt,c.

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:7

By that heuristic, we do not expect that p can be taken much smaller than
(

n
s

)
. As we are

interested in s that can be as large as Ω(n), this heuristic points against the existence of a
“good” prime p = 2o(n), let alone p = poly(n).

This heuristic is supported by a computational search that we carried. Let P1 : N → N
be the function that maps n ∈ N to the least prime p that satisfies the following property.
For every s ∈ [n] and strictly increasing sequences c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s

with c ≤ t it holds that det Mt,c ̸≡p 0. Informally, P1 maps n to the smallest prime p that is
“good” for n. An exhaustive search we have conducted for hundreds of computer hours seems
to suggest that P1(n) grows exponentially with n.

Table 1 Values of P1(n) obtained using a computer search.

n 6 7 8 9 10 11 12 13 14 15 16

P1(n) 13 17 47 89 241 641 2,687 6,521 15,401 74,257 > 250, 000

Since posting our preprint online, Karingula and Lovett [16] consider the non singularity
of submatrices of triangular matrices modulo p in a different context. They too arrive at our
conclusion, in fact, conjecturing a stronger claim ([16], Conjecture 1.5): for every triangular
integer matrix, a fraction of the determinants (corresponding to index sequences t, c, as
above) are likely to vanish modulo p unless the field size p grows exponentially.

3.2 A Conjecture
The informal heuristic presented above makes the point that no poly(n)-size prime is likely
to work against all exp(n) many pairs of sequences as we have no evidence for a structural
phenomenon to support the seemingly unlikely alternative. The main contribution of this
work is a tree code construction–a variant of [7]–whose distance analysis relies on what we
believe is a plausible statement which we put forth as a conjecture. To formally state our
conjecture some preparation is required.

As before, let c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s be a pair of strictly increasing
sequences with c ≤ t. For symbolic variables X1, . . . , Xs, define the s × s (symbolic)
matrix Mt,c(X1, . . . , Xs) whose (i, j)th entry is given by

(
Xi+ti

cj

)
. Define Φt,c(X1, . . . , Xs) ≜

det Mt,c(X1, . . . , Xs) ∈ Z[X1, . . . , Xs]. For a prime p, let Φp
t,c(X1, . . . , Xs) ∈ Fp[X1, . . . , Xs]

denote the reduction of Φt,c at p. That is, every coefficient of Φt,c is taken modulo p to form
Φp

t,c. With this notation, to ensure that the [7] tree code works over Fp, one must establish
that Φp

t,c(0, . . . , 0) ̸= 0 for all t, c in question. Put differently, the [7] construction fails if for
some pair t, c as above, Φp

t,c evaluates to 0 at the origin. Our main contribution is an explicit
construction which fails only if Φp

t,c evaluates to 0 on the entire Boolean hypercube {0, 1}s.
Equivalently, our construction is asymptotically-good if

∃(x1, . . . , xs) ∈ {0, 1}s Φt,c(x1, . . . , xs) ̸≡p 0. (3.1)

3.2.1 Preliminary Informal Discussion on the Plausibility
of Equation (3.1)

To start with, consider a very informal point of view on the plausibility of Equation (3.1),
a discussion similar in spirit to the one conducted for arguing against the plausibility of
taking the [7] construction over Fp. Heuristically, and very informally, one may think
of the 2s conditions in Equation (3.1) as 2s trials that are “generated by s independent

APPROX/RANDOM 2021

54:8 Candidate Tree Codes via Pascal Determinant Cubes

random variables” X1, . . . , Xs. Unless some structural obstruction is in place, the “event”
in Equation (3.1) is expected to have probability of about p−s. Continuing this informal
line of reasoning, by a union bound, one would expect that for a choice of p satisfying
p−s

(
n
s

)2 ≪ 1
n , Equation (3.1) holds for every pair t, c ∈ [0, n)s, for every s ∈ [n]. The latter

holds by taking p ≫ n3.
Another informal argument supporting the validity of Equation (3.1) is as follows. Note

that Φt,c has total degree d ≤ sn ≤ n2. In fact, as we only care about Φt,c restricted to
{0, 1}s, we may assume that Φt,c is multi-linear and so d ≤ s ≤ n. One can show that
for p > n, Φp

t,c is a nonzero polynomial; thus, by Schwartz-Zippel, Φp
t,c has at most d

p ≤ n
p

fraction of roots in Fs
p. By taking, say, p ≥ n2, the roots of Φt,c occupy at most 1√

p -fraction
of Fs

p. Now, for the heuristic part, one may conjecture that {0, 1}s “looks random” to the
zero set Vt,c of Φt,c. As a weak consequence, {0, 1}s is not contained in Vt,c, which is the
content of Equation (3.1).

3.2.2 The Conjecture
There is one small technical issue we need to address before presenting our formal conjecture.
Note that if ti+1 = ti + 1 for some i then Φt,c(x1, . . . , xs) = 0 whenever xi = 1 and xi+1 = 0
for the simple reason that two of the rows of Mt,c(x1, . . . , xs) are identical. Informally, from
the heuristic point of view discussed above, when ti+1 = ti + 1, the events associated with
the variables Xi, Xi+1 are dependent. To exclude these trivial roots of Φt,c(x1, . . . , xs) we
assume in the conjecture (and guarantee in the construction) that t, c only have even entries.
In Appendix A.1 we prove that, having done so, Φt,c has no root in {0, 1}s. That is, when
considering t, c with even entries, Φt,c(x1, . . . , xs) ̸= 0 for every (x1, . . . , xs) ∈ {0, 1}s, and so
it is only the reduction modulo p that may yield roots. With this, we are finally ready to
state our conjecture.

▶ Conjecture 4 (The Pascal determinant cubes (PDC) conjecture). There exists a universal
constant ep ≥ 1 such that for every integer n ≥ 1 and prime p ≥ nep the following holds. For
every s ∈ [n] and a pair of strictly increasing sequences t = (t1, . . . , ts), c = (c1, . . . , cs) ∈
([0, n) ∩ 2Z)s satisfying c ≤ t, ∃(x1, . . . , xs) ∈ {0, 1}s Φp

t,c(x1, . . . , xs) ̸= 0.

3.2.3 Experiments Supporting Conjecture 4
To support Conjecture 4 and, more fundamentally, to verify that there is no “structure”
obstructing our heuristic arguments, we ran a computer search. Let P2 : N → N be the
function that maps n ∈ N to the least prime p that satisfies the following property. For every
s ∈ [n], and every pair of strictly increasing sequences t = (t1, . . . , ts), c = (c1, . . . , cs) ∈
([0, n)∩2Z)s satisfying c ≤ t, it holds that Φp

t,c(x1, . . . , xs) ̸= 0 for some (x1, . . . , xs) ∈ {0, 1}s.
Informally, P2 maps n to the least prime that is “good” for n in our conjecture. In comparison
with P1, for every t, c in question, P1 provides Φp

t,c a single trial by evaluating it over the
origin, while P2 evaluates it over the entire Boolean hypercube of dimension s, and accepts
the smallest prime that for every such t, c, Φp

t,c doesn’t vanish on at least one of its points.
An exhaustive search we have conducted, spanned over hundreds of computer hours,

verifies at least for small numbers, that unlike P1(n), the function P2(n) grows very slowly
with n. In fact, the data collected in Table 2 shows that for 7 ≤ n ≤ 30, P2(n) equals the
least prime number p ≥ n − 1. 1

1 This is tight, namely, for every n ≥ 7, P2(n) ≥ n − 1. Indeed, take p < n − 1 a prime. If p ≥ 5, consider

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:9

Table 2 Values of P2(n) obtained using a computer search. Note that for an even n, P2(n) =
P2(n − 1) as t, c have even entries. Thus, only the data of odd n’s is collected.

n 5 7 9 11 13 15 17 19 21 23 25 27 29

P2(n) 3 7 11 11 13 17 17 19 23 23 29 29 29

We do not expect P2(n) to grow so slowly and we certainly do not expect it to have such
a simple formula. While we could not compute P2(n) for n > 29, we were able to show that
P2(127) > 131 by eliminating the first two “potential” primes 127, 131. To see that, say,
P2(127) ̸= 131 we invite the diligent reader to verify that c = (0, 4, 10), t = (64, 68, 74) yields
a counterexample. That is,∣∣∣∣∣∣∣∣∣

(
64 + x1

0

) (
64 + x1

4

) (
64 + x1

10

)
(

68 + x2

0

) (
68 + x2

4

) (
68 + x2

10

)
(

74 + x3

0

) (
74 + x3

4

) (
74 + x3

10

)
∣∣∣∣∣∣∣∣∣ ≡131 0

for every (x1, x2, x3) ∈ {0, 1}3.

3.2.4 Asymptotic Version of Conjecture 4
For the informal heuristic argument used in Section 3.2.1 the point made is that while
the number of “tests” (t, c) grows exponentially with s, so does the number of “trials”
(x1, . . . , xs). Thus, when considering such a heuristic, s is thought of as an asymptotic
parameter. However, Conjecture 4 is stated for every s ≥ 1. While it may very well be the
case that our conjecture holds as is, we prefer to base our construction on a more robust
conjecture that avoids the possible “irregularities” that may be present for small values of s.

A natural relaxation is to bound s from below by some parameter s0 that is may even be
allowed to grow with n. However, note that this should be done with some care. Indeed,
if Conjecture 4 can be falsified for some value s, it is immediately false for larger values
of s. To see this, take the counterexample c = (c1, . . . , cs), t = (t1, . . . , ts) ∈ [0, n)s and
consider c′ = (c1, . . . , cs, cs+1), t′ = (t1, . . . , ts, ts+1) ∈ [0, n)s where cs+1, ts+1 are chosen so
that ts < cs+1 ≤ ts+1. Observe that this has the effect of “embedding” Mt,c(X1, . . . , Xs) as
the top-left sub matrix of Mt′,c′(X1, . . . , Xs+1). Furthermore, all but the lowest entry of the
rightmost column are 0. In particular,

Φt′,c′(X1, . . . , Xs+1) =
(

ts+1 + Xs+1

cs+1

)
· Φt,c(X1, . . . , Xs).

Thus, if Φt,c vanishes on {0, 1}s then Φt′,c′ vanishes on {0, 1}s+1.
The “correct” way of formalizing a relaxation of Conjecture 4 in which only sufficiently

large s are of interest is to restrict to pairs t, c for which not only s ≥ s0 but also t1 ≥
cs0 . Observe that under this condition, counterexamples of size less than s0 cannot be
embedded as in the above discussion. We state below a variant of Conjecture 4 on which our
candidate constructions rely. However, when discussing our conjecture we do not distinguish
between Conjecture 4 and Conjecture 5 unless such a distinction is essential.

the sequences t = (0, p + 1) and c = (0, 4). Note that Φp
t,c(x1, x2) =

(
p+1+x2

4

)
, and that p divides both(

p+1
4

)
and

(
p+2

4

)
. For p = 2, 3 one can use t = (0, 2p), c = (0, 2). By Table 2, the assertion is false for

n < 7.

APPROX/RANDOM 2021

54:10 Candidate Tree Codes via Pascal Determinant Cubes

▶ Conjecture 5 (Asymptotic PDC conjecture). There exist universal constants ep, es ≥ 1
such that for every integer n ≥ 1 and prime p ≥ nep the following holds. For every
s ≥ s0 ≜ (log n)es and every pair of strictly increasing sequences t = (t1, . . . , ts), c =
(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying t ≥ c and t1 ≥ cs0 , it holds that ∃(x1, . . . , xs) ∈
{0, 1}s Φp

t,c(x1, . . . , xs) ̸= 0.

We will overcome this relaxation with the aid of the explicit tree code by Gelles et al.
[12], which will provide some structure to the polynomials we need to analyze to prove the
correctness of our construction.

3.2.5 Structural Factors of Φt,c and Its Linearization

Conjecture 4 only concerns with the evaluation of Φt,c at the Boolean hypercube which,
recall, we prove never vanishes in Appendix A.1. But, as defined, Φt,c does not encode this
in any way. In this section, we identify and remove certain factors of Φt,c that are, in a sense,
“outside” the Boolean hypercube, and so are of no interest to us.

For sequences t, c as in Conjecture 4, consider the matrix Mt,c(X1, . . . , Xs). Take distinct
i, j ∈ [s] with i > j. The substitution Xi = Xj + tj − ti turns the ith and jth rows identical,
resulting in an identically zero determinant. By Hilbert’s Nullstellensatz, Xi − Xj + ti − tj

divides Φt,c(X1, . . . , Xs) in Q[X1, . . . , Xs]. Therefore the determinant polynomial is of the
form

Φt,c(X1, . . . , Xs) = Ξt,c(X1, . . . , Xs) ·
∏
i>j

(Xi − Xj + ti − tj)

for some polynomial Ξt,c[X1, . . . , Xs] ∈ Q[X1, . . . , Xs]. In fact, by Gauss’s lemma for GCD
domains, Ξt,c[X1, . . . , Xs] is in Z[X1, . . . , Xs] since Φt,c and the structural factor are both
primitive. Thus, we can consider reduction modulo a prime p. Since ti, tj are distinct even
numbers in [0, n), the structural factors do not vanish at any point of the Boolean hypercube,
even when reduced modulo a prime p > n. Therefore, studying the zeros of Φp

t,c in the
Boolean hypercube is equivalent to studying those of Ξt,c, even modulo a prime p > n.

Observe that the linearization of the univariate polynomial
(

X+t
c

)
, for c ≥ 1 takes the

nice form
(

X+t
c

)
=

(
t

c−1
)
X +

(
t
c

)
as can be seen using Pascal’s identity. In Appendix A.2 we

take these ideas a step further and obtain a reformulation of Conjecture 4 which, informally,
states that a certain polynomial Ψp

t,c is nonzero (as an element of the ring Fp[X1, . . . , Xs]).
That is to say, while the [7] tree code fails over Fp if a certain polynomial has a root at the
origin, via its reformulation, Conjecture 4 is false only if a certain polynomial is the zero
polynomial. An asymptotic version, equivalent to Conjecture 5 is immediate.

In Appendix B we suggest a stronger variant of Conjecture 4 and further study the
plausibility of Conjecture 4 and its stronger variant based on deep results in arithmetic
geometry. In particular, we reason about the distribution of values attain by Φt,c on the
Boolean hypercube by considering the exponential sum

∑
(x1,...,xs)∈{0,1}s ζ

Φt,c(x1,...,xs)
p , where

ζp is a pth root of unity in C, and collect computational data that appear in a longer version
of the paper [3]. However, we wrap up this preliminary discussion on our conjecture and
its variants. In the next section we go back to the problem of constructing tree codes, and
give an informal presentation of our construction and its analysis, based on Conjecture 4 or,
more precisely, based on the asymptotic variant, Conjecture 5.

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:11

3.3 The Candidate Tree Code
Our candidate construction is a variant of the construction discussed in Section 2. In fact,
for obtaining distance larger than 1

2 , [7] modified their original construction so that at time
t, not one but some r ≥ 1 number of evaluations of the “current” polynomial ft is recorded.
This enabled them to achieve distance 1 − 1

r+1 . Our candidate construction is closely related
to that variant. We make use of this idea of multiple evaluations not for improving the
distance, but rather for relaxing the analysis so that it is plausible that the reduction modulo
a small prime p yields non-vanishing distance and, in particular, follows by Conjecture 5.

Recall, however, that Conjecture 5 holds only for pairs of length s ≥ s0 for which t1 ≥ cs0 .
Therefore, we need to introduce some mechanism to the construction so that its correctness
does not rely on the behaviour when applied with small values of s (nor on invalid pairs).
To this end, we make use of an explicit tree code construction by [12]. For every n ≥ 1, an
explicit tree code TC′ : [n2]n → [2n2]n having distance 1

log n is given (see Corollary 11 for a
precise statement). Although TC′ has a vanishing distance, it suffices for our needs as we
will not use TC′ directly for arguing about the distance; rather, we invoke TC′ to guarantee
some structure on the polynomials we need to analyze.

Take p > 2n2 a prime, and think of TC′ : [n2]n → Fn
p in the natural way. Our construction

proceeds as follows. Given m = (m0, m1, . . . , mn−1) ∈ [n2]n we first apply TC′ to obtain(
γ0, γ2, γ4, . . . , γ2(n−1)

)
= TC′(m). For t ∈ [0, n), we define ft(T) ∈ Fp[T] by ft(T) =∑t

i=0 γ2i

(
T
2i

)
. At time t ∈ [0, n), our tree code TC : [n2]n → (F3

p)n outputs TC(m)t =
(γ2t, ft(2t), ft(2t + 1)) . As mentioned, as the alphabet is of size poly(n), standard techniques
can then be used to obtain an explicit binary tree code with comparable parameters. We
thus have,

▶ Theorem 6. Assume that Conjecture 5 holds with parameters ep, es. Then, there exist
c = c(ep, es) ∈ N and δ = δ(ep, es) ∈ (0, 1) such that the following holds. For every n ∈ N
there exists an explicit tree code TC : {0, 1}n → [c]n with distance δ.

3.3.1 Sketch of the Analysis
As for the analysis, consider distinct m = (m0, m1, . . . , mn−1), m′ = (m′

0, m′
1, . . . , m′

n−1),
and let c ∈ [0, n) be the least integer for which mc ̸= m′

c. By the property of TC′ we get that
for every ℓ ∈ [0, n − c), when restricted to [c, c + ℓ], the strings γ = TC′(m), γ′ = TC′(m′) are
of distance s ≥ ℓ

log n . In particular, when considering ℓ ≥ (log n)e for some constant e > 1,
we have that s ≥ (log n)e−1. Let us assume this bound on ℓ for the moment. Observe now
that, by construction, s is precisely the sparsity of the polynomial g(T) = fc+ℓ(T) − f ′

c+ℓ(T)
with respect to the Newton basis. Thus, we can write g(T) =

∑s
j=1 γ′′

2cj

(
T

2cj

)
, where

c = c1 < c2 < · · · < cs ≤ c + ℓ < n and γ′′
2cj

= γ2cj
− γ′

2cj
.

We wish to bound the number of integers t ∈ [c, c + ℓ] for which g(2t) = g(2t + 1) = 0 as
indeed for every such t, TC(m)t and TC(m′)t agree when projected to the last two entries
of the triplet. To get a bound of b on such indices t, the natural approach is to assume
the existence of some t1 < t2 < · · · < tb in [c, c + ℓ] with g(2ti) = g(2ti + 1) = 0 for every
i ∈ [b], and try to get a contradiction via Conjecture 5 for a sufficiently large value b. Recall,
however, that for the conjecture it is required that t ≥ c which is not necessarily the case.
In [7] this technical issue is resolved by observing that one can restrict to the longest prefixes
(c1, c2, . . . , cs1), (t1, t2, . . . , ts1) of the original sequences for which ci ≤ ti for every i ∈ [s1].
Such s1 exists as c1 ≤ t1.

Our analysis is somewhat trickier as we can only invoke Conjecture 5 starting from some
s0 (and under some restriction on the pair). In particular, in the notation of Conjecture 5,
we have s0 = (log(2n))es , and it may very well be the case that the longest prefix length

APPROX/RANDOM 2021

54:12 Candidate Tree Codes via Pascal Determinant Cubes

s1 < s0. To overcome this, and to satisfy the hypothesis of Conjecture 5, we first prove a
bound of s on the number of ti’s in [cs0 , c + ℓ] rather than in [c, c + ℓ]. This can be done
based on Conjecture 5 using a similar argument to that of [7] who invoke the LGV Lemma.

To bound the number of the remaining ti’s, namely, those in [c, cs0] we bound the
length of this interval. Had c1, . . . , cs0 been arbitrary, the interval’s length could have been
unbounded. However, recall that by construction, c1, . . . , cs0 are the indices in [c, cs0] for
which TC′(m), TC′(m′) disagree. Since TC′ has distance 1

log n it follows that s0 ≥ cs0 −c

log n , and
so the interval’s length is bounded by cs0 − c ≤ s0 log n ≤ (log (2n))es+1. Hence, the total
number of ti’s is bounded by s + (log (2n))es+1, and so the distance between TC(m) and
TC(m′) when restricted to [c, c + ℓ] is at least max(s, ℓ − (s + (log (2n))es+1)). By taking ℓ

sufficiently large, the latter approaches ℓ
3 .

In the discussion above, we assumed ℓ is sufficiently large. In particular, ℓ > ℓ0 = (log n)e

for some constant e. To resolve this “lag”, namely, to handle also smaller values of ℓ, we use
a standard technique in which an explicit tree code of length O(ℓ0) is concatenated with the
construction above.

4 Preliminaries

Let n ≥ 1 be an integer and Σ some (finite or infinite) set. For a string x = (x1, . . . , xn) ∈ Σn

and integers 1 ≤ a ≤ b ≤ n, we let x[a,b] denote the substring (xa, . . . , xb). Given x, y ∈ Σn,
we write dist(x, y) for their Hamming distance. For an integer n ≥ 1 write [n] for {1, 2, . . . , n}.
For integers a < b we denote [a, b) = {a, a + 1, . . . , b − 1}. We use the conventions that the
natural numbers are N = {0, 1, 2, . . .}, and that

(
a
b

)
= 0 for integers 0 ≤ a < b.

Tree codes, as their name suggest, are trees with certain distance properties. However,
as discussed in Section 2, we use an equivalent definition of tree codes that more explicitly
specifies their online characteristic. Recall that a function f : Σn

in → Σn
out is said to be online

if for every i ∈ [n] and x ∈ Σn
in, f(x)i is determined by x1, . . . , xi. For a pair of distinct

x, y ∈ Σn, we define split(x, y) as the least integer s ∈ [n] such that xs ̸= ys.

▶ Definition 7 ([23]). An online function TC : Σn
in → Σn

out is a tree code with distance δ if
for every distinct x, y ∈ Σn

in, with s = split(x, y), and every ℓ ∈ [0, n − s),

dist
(
TC(x)[s,s+ℓ], TC(y)[s,s+ℓ]

)
≥ δ(ℓ + 1).

We refer to n as the depth of TC. We refer to Σin, Σout as the input alphabet and output
alphabet, respectively.

We are interested in some further properties of tree codes.

▶ Definition 8. Let TC : Σn
in → Σn

out be a tree code.
We say that TC is a binary tree code if Σin = {0, 1}.
We say that TC is explicit if it can be evaluated on every input m ∈ Σn

in in polynomial
time in the bit complexity of m.

5 Proof of Theorem 6

In this section we present our candidate tree code and prove Theorem 6. Our construction
is obtained in several steps, where the main part is to construct a relaxation of tree codes,
called a lagged tree code. Informally, this is a tree code whose distance property holds only
after a certain time interval.

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:13

▶ Definition 9 ([7]). An online function TC : Σn
in → Σn

out is a lagged tree code with lag ℓ0
and distance δ if for every distinct x, y ∈ Σn

in, with s = split(x, y), and every ℓ ∈ [ℓ0, n − s),

dist
(
TC(x)[s,s+ℓ], TC(y)[s,s+ℓ]

)
≥ δ(ℓ + 1).

Note that a tree code is a lagged tree code with lag parameter ℓ0 = 0. It is straightforward
to transform any lag-ℓ0 tree code to a tree code using a second tree code of length O(ℓ0). Our
construction of lagged tree codes, given below by Proposition 12, has lag ℓ0 = poly(log n). A
result by Braverman [6] provides, for every constant ε ∈ (0, 1) and integer m an asymptotically-
good tree code of length m in time 2O(mε). Thus, asymptotically-good tree codes of length ℓ0
can be obtained in time poly(n). The obtained tree code (as well as the lagged tree code that
is given by Proposition 12) is over a poly(n)-size alphabet. It is well-known how to reduce
the alphabet to binary, obtaining tree codes with comparable parameters (see, e.g., [21],
Proposition 3.1).

In light of the discussion above, we turn to present our candidate construction of
poly(log n)-lagged tree codes over poly(n)-size alphabet. Our construction makes use of a
tree code construction by [12].

▶ Lemma 10 (Lemma 5.1 in [12]). There exists an absolute constant k0 ∈ N such that the
following hold for every ε > 0 and integers k, n ∈ N such that k0·log n

ε ≤ k ≤ n. There
exists an explicit tree code C : Σk

in → Σk
out with Σin = {0, 1}

log n
ε , Σout = {0, 1}

log n
ε +1, rate

ρ′ = 1
1+ε/ log n and relative distance at least δ′ = 1

1+2 log(n)/ε .

The following is a straightforward corollary of Lemma 10 obtained by taking ε = 1
2 . Note

that the factors of 4 and 8 in the alphabet size of TC′ in Corollary 11 are for obtaining a
tree code for every n, not just a power of two as in Lemma 10.

▶ Corollary 11. There exists a universal constant n0 ≥ 1 such that for every integer n ≥ n0
there exists an explicit tree code TC′ : [4n2]n → [8n2]n with distance δ = 1

5 log n .

Given an integer n ≥ n0 we proceed as follows. Let p be the least prime number larger
than max(8n2, (2n)ep), where ep is the constant from Conjecture 5. By Corollary 11, there
exists an explicit tree code TC′ : [4n2]n → [8n2]n with distance 1

5 log n . As p > 8n2 we can
embed the output symbols of TC′ in Fp by identifying them with the field elements 1, . . . , 8n2

of Fp. Hence, we may think of TC′ as a function of the form TC′ : [4n2]n → Fn
p .

Define the function TC : [4n2]n → (F3
p)n as follows. Let m = (m0, m1, . . . , mn−1) ∈ [4n2]n.

Compute TC′(m) = (γ0, γ2, γ4, . . . , γ2(n−1)) ∈ Fn
p . For t = 0, 1, . . . , n−1 define the polynomial

ft(T) ∈ Fp[T] by

ft(T) =
t∑

i=0
γ2i

(
T

2i

)
. (5.1)

Finally, for t = 0, 1, . . . , n − 1, define

TC(m)t = (γ2t, ft(2t), ft(2t + 1)) . (5.2)

▶ Proposition 12. Assume that Conjecture 5 holds with parameters ep, es. Then, TC as
defined in Equation (5.2) is an ℓ0-lagged tree code, where ℓ0 = 15(log (2n))es+1, having
distance 1

3 and rate at least 1
2 max(2,ep) .

Proof. That the rate is bounded below by 1
2 max(2,ep) is a straightforward calculation. We turn

to analyze the distance. Note that TC is not linear and so, for the distance analysis, we consider
two distinct messages. Let m = (m0, . . . , mn−1) ∈ [4n2]n and m′ = (m′

0, . . . , m′
n−1) ∈ [4n2]n

APPROX/RANDOM 2021

54:14 Candidate Tree Codes via Pascal Determinant Cubes

distinct. Let 0 ≤ c ≤ n − 1 be the least integer for which mc ̸= m′
c, and let ℓ ∈ [ℓ0, n − c).

Denote

γ = (γ0, γ2, . . . , γ2(n−1)) = TC′(m),
γ′ = (γ′

0, γ′
2, . . . , γ′

2(n−1)) = TC′(m′).

Since TC′ has distance 1
5 log n it holds that

s ≜ dist
(

γ[c,c+ℓ], γ′
[c,c+ℓ]

)
= dist

(
(γ2c, γ2(c+1), . . . , γ2(c+ℓ)), (γ′

2c, γ′
2(c+1), . . . , γ′

2(c+ℓ))
)

≥ ℓ + 1
5 log n

.

As ℓ ≥ ℓ0 we have that s > s0, where s0 ≜ (log(2n))es . Similarly to Equation (5.1), we define
for t = 0, 1, . . . , n − 1 the polynomial f ′

t(T) ∈ Fp[T] by

f ′
t(T) =

t∑
i=0

γ′
2i

(
T

2i

)
.

Observe that s is precisely the sparsity of fc+ℓ(T) − f ′
c+ℓ(T) with respect to the Newton

basis. Let c ≤ c1 < c2 < · · · < cs ≤ c + ℓ be all the integers such that γ2cj ̸= γ′
2cj

for every
j ∈ [s]. As TC′ is a tree code (with nonzero distance) γ2c = TC′(m)c ̸= TC′(m′)c = γ′

2c, and
so c1 = c. By denoting γ′′

i = γi − γ′
i, one can write the polynomial fc+ℓ(T) − f ′

c+ℓ(T) as

g(T) =
s∑

j=1
γ′′

2cj

(
T

2cj

)
.

Define Z = {t ∈ [c, c + ℓ] | g(2t) = g(2t + 1) = 0}.

▷ Claim 13. Assuming Conjecture 5, |Z ∩ [cs0 , c + ℓ]| < s.

Proof. Assume by way of contradiction that there are distinct integers t1, . . . , ts ∈ [cs0 , c + ℓ]
such that

∀i ∈ [s] g(2ti) = g(2ti + 1) = 0. (5.3)

Assume further that t1 < · · · < ts. Let s1 ∈ {s0, s0 + 1, . . . , s} be the largest integer with
the property that for every i ∈ {s0, s0 + 1, . . . , s1}, ti ≥ ci. Note that s1 is well-defined as
ts0 ≥ cs0 (and so the maximum is taken over a non-empty, finite, set). Let M(X1, . . . , Xs1)
be the s1 × s1 matrix whose (i, j)th entry is

Mi,j(X1, . . . , Xs1) =
(

Xi + 2ti

2cj

)
,

where X1, . . . , Xs1 are formal variables. Let Φ ∈ Fp[X1, . . . , Xs1] be the polynomial that
is given by Φ(X1, . . . , Xs1) = det M(X1, . . . , Xs1). Denote t = (2t1, . . . , 2ts1) and c =
(2c1, . . . , 2cs1). Note that Φ as defined above is precisely Φp

t,c in the notation of Conjecture 5.
Clearly, t, c ∈ ([0, 2n) ∩ 2Z)s1 . We turn to show that c ≤ t. Indeed, for i ∈ {s0, s0 + 1, . . . , s1}
we have that ti ≥ ci by the definition of s1. Moreover, recall that for every i ∈ [s], ti ≥ cs0 ,
and so, for i < s0 we have that ti ≥ cs0 > ci. Recall that p ≥ (2n)ep , s1 ≥ s0 = (log(2n))es ,
and 2t1 ≥ 2cs0 . Thus, the hypothesis of Conjecture 5 is met with s, n in the notation

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:15

the conjecture taken to be s1 and 2n in our notation, respectively. Therefore, assuming
the validity of Conjecture 5 we conclude the existence of (x1, . . . , xs1) ∈ {0, 1}s1 such that
Φ(x1, . . . , xs1) ̸= 0 in Fp.

We now use (x1, . . . , xs1) to get a contradiction. Let Γ ∈ Fs1
p be the vector with ith

entry Γi = γ′′
2ci

. Observe that Γ is a nonzero vector. To see this, consider its first entry
Γ1 = γ′′

2c1
= γ′′

2c. Recall that γ′′
2c = γ2c − γ′

2c. As TC′ is a tree code (with distance larger
than 0) and since mc ̸= m′

c we have that γ2c = TC′(m)c ̸= TC′(m′)c = γ′
2c. Thus, Γ1 ̸= 0.

Since Φ(x1, . . . , xs1) ̸= 0 we have that M(x1, . . . , xs1) is nonsingular, and therefore
M(x1, . . . , xs1)Γ is a nonzero vector. Let then i ∈ [s1] be such that (M(x1, . . . , xs1)Γ)i ≠ 0.
Note that

(M(x1, . . . , xs1)Γ)i =
s1∑

j=1
γ′′

2cj

(
xi + 2ti

2cj

)
. (5.4)

Assume for the moment that s1 < s. As i ≤ s1 we have that i < s and so we may
refer to ti+1. As xi ∈ {0, 1}, we have that 2ti + xi ≤ 2ti + 1 < 2ti+1. Hence, as i ≤ s1,
2ti +xi < 2ts1+1. By the definition of s1 we have that ts1+1 < cs1+1, and so 2ti +xi < 2cs1+1.
Hence,

(
xi+2ti

2cj

)
= 0 for all j ∈ {s1 + 1, . . . , s}. Thus,

s1∑
j=1

γ′′
2cj

(
xi + 2ti

2cj

)
=

s∑
j=1

γ′′
2cj

(
xi + 2ti

2cj

)
= g(2ti + xi). (5.5)

Equation (5.5) trivially follows also when s1 = s, and so it holds in general, namely, without
any assumption on s1. Equations (5.4) and (5.5) together imply that

g(2ti + xi) = (M(x1, . . . , xs1)Γ)i ̸= 0

which, as xi ∈ {0, 1}, stands in contradiction to Equation (5.3), and thus proving the claim.
◁

▷ Claim 14. |Z| ≤ s + 5(log (2n))es+1.

Proof. As TC′ is a tree code with distance 1
5 log n , we have that

s0 = dist
(

(γ2c1 , γ2(c1+1), . . . , γ2cs0
), (γ′

2c1
, γ′

2(c1+1), . . . , γ′
2cs0

)
)

= dist
(

TC′(m)[c1,cs0], TC′(m′)[c1,cs0]
)

≥ cs0 − c1 + 1
5 log n

≥ cs0 − c

5 log n
.

Now, s0 = (log (2n))es , and so

cs0 − c ≤ 5(log n)(log (2n))es ≤ 5(log (2n))es+1.

This, together with Claim 13, implies that

|Z| ≤ (cs0 − c) + |Z ∩ [cs0 , c + ℓ]|
≤ s + 5(log (2n))es+1. ◁

▷ Claim 15. For every t ∈ [c, c + ℓ] and x ∈ {0, 1},

g(2t + x) = ft(2t + x) − f ′
t(2t + x).

APPROX/RANDOM 2021

54:16 Candidate Tree Codes via Pascal Determinant Cubes

Proof. Recall that c1, . . . , cs are precisely the indices in [c, c + ℓ] for which γ and γ′ disagree.
More precisely, for i ∈ [c, c + ℓ], γ2i ̸= γ′

2i if and only i ∈ {c1, . . . , cs}. Hence, for every
t ∈ [c, c + ℓ] and x ∈ {0, 1},

ft(2t + x) − f ′
t(2t + x) =

t∑
i=0

(γ2i − γ′
2i)

(
2t + x

2i

)
=

∑
j∈[s]
cj≤t

γ′′
2cj

(
2t + x

2cj

)

=
s∑

j=1
γ′′

2cj

(
2t + x

2cj

)
= g(2t + x),

where the penultimate equality follows since
(2t+x

2cj

)
= 0 for every j ∈ [s] for which cj > t.

Indeed, if cj > t then 2cj ≥ 2t + 2 and so
(2t

2cj

)
=

(2t+1
2cj

)
= 0. ◁

By Claim 15, t ∈ Z if and only if the last two entries of TC(m)t, namely, ft(2t), ft(2t + 1),
agree with the corresponding entries, f ′

t(2t), f ′
t(2t + 1), of TC(m′)t. As the third entry of

TC(m) and TC(m′), when restricted to [c, c + ℓ], disagree on exactly s indices, we have that
the number of indices t ∈ [c, c + ℓ] for which TC(m)t ̸= TC(m′)t (as a triplet) is bounded
below by

max (s, ℓ + 1 − |Z|) ≥ max
(
s, ℓ + 1 − s − 5(log (2n))es+1)

)
≥ ℓ − 5(log (2n))es+1 + 1

2

≥ ℓ + 1
3 ,

where the last inequality follows since ℓ ≥ ℓ0 = 15(log (2n))es+1. ◀

References
1 Martin Aigner. A course in enumeration, volume 238 of Graduate Texts in Mathematics.

Springer, Berlin, 2007. doi:10.1145/1814370.1814375.
2 Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer, Berlin, sixth edition,

2018. See corrected reprint of the 1998 original [MR1723092], Including illustrations by Karl
H. Hofmann. doi:10.1007/978-3-662-57265-8.

3 Inbar Ben Yaacov, Gil Cohen, and Anand Kumar Narayanan. Candidate tree codes via Pascal
determinant cubes. ECCC, 2020. URL: https://eccc.weizmann.ac.il/report/2020/141/.

4 Siddharth Bhandari and Prahladh Harsha. A note on the explicit constructions of tree
codes over polylogarithmic-sized alphabet. arXiv preprint arXiv:2002.08231, 2020. URL:
https://arxiv.org/abs/2002.08231.

5 Zvika Brakerski, Yael Tauman Kalai, and Raghuvansh R. Saxena. Deterministic and efficient
interactive coding from hard-to-decode tree codes. In 61st Annual IEEE Symposium on
Foundations of Computer Science—FOCS 2020, pages 446–457. IEEE Computer Soc., Los
Alamitos, CA, 2020. doi:10.1109/FOCS46700.2020.00049.

6 Mark Braverman. Towards deterministic tree code constructions. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 161–167. ACM, New York,
2012. doi:10.1145/2090236.2090250.

https://doi.org/10.1145/1814370.1814375
https://doi.org/10.1007/978-3-662-57265-8
https://eccc.weizmann.ac.il/report/2020/141/
https://arxiv.org/abs/2002.08231
https://doi.org/10.1109/FOCS46700.2020.00049
https://doi.org/10.1145/2090236.2090250

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:17

7 Gil Cohen, Bernhard Haeupler, and Leonard J. Schulman. Explicit binary tree codes with
polylogarithmic size alphabet. In STOC’18—Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 535–544. ACM, New York, 2018. doi:10.1145/
3188745.3188928.

8 Gil Cohen and Shahar Samocha. Palette-alternating tree codes. In The 35th Computational
Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.11.

9 Pierre Deligne. La conjecture de weil : I. Publications Mathématiques de l’IHÉS, 43:273–307,
1974. doi:10.1007/bf02684373.

10 Étienne Fouvry. Consequences of a result of N. Katz and G. Laumon concerning trigonometric
sums. Israel Journal of Mathematics, 120:81–96, 2000. doi:10.1007/s11856-000-1272-z.

11 Étienne Fouvry and Nicholas Katz. A general stratification theorem for exponential sums,
and applications. Journal Fur Die Reine Und Angewandte Mathematik - J REINE ANGEW
MATH, 2001:115–166, January 2001. doi:10.1515/crll.2001.082.

12 Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Towards
optimal deterministic coding for interactive communication. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1922–1936. ACM, New
York, 2016. doi:10.1137/1.9781611974331.ch135.

13 Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae. Adv.
in Math., 58(3):300–321, 1985. doi:10.1016/0001-8708(85)90121-5.

14 Richard W. Hamming. Error detecting and error correcting codes. Bell System Tech. J.,
29:147–160, 1950. doi:10.1002/j.1538-7305.1950.tb00463.x.

15 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18(5):652–656, 1972. doi:10.1109/tit.1972.1054893.

16 Sankeerth R. Karingula and Shachar Lovett. Codes over integers, and the singularity of
random matrices with large entries. CoRR, abs/2010.12081, 2020. URL: https://arxiv.org/
abs/2010.12081.

17 Nicholas Katz and Gérard Laumon. Transformation de fourier et majoration de sommes
exponentielles. Publications Mathématiques de l’IHÉS, 62:145–202, 1985. doi:10.1007/
bf02698808.

18 Serge Lang and Andre Weil. Number of points of varieties over finite fields. American Journal
of Mathematics, 76(4):819–827, 1954. URL: https://www.jstor.org/stable/2372655.

19 Cristopher Moore and Leonard J. Schulman. Tree codes and a conjecture on exponential sums.
In ITCS’14—Proceedings of the 2014 Conference on Innovations in Theoretical Computer
Science, pages 145–153. ACM, New York, 2014. doi:10.1145/2554797.2554813.

20 Anand Kumar Narayanan and Matthew Weidner. On decoding Cohen-Haeupler-Schulman
tree codes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1337–1356. SIAM, 2020. doi:10.1137/1.9781611975994.81.

21 Pavel Pudlák. Linear tree codes and the problem of explicit constructions. Linear Algebra
Appl., 490:124–144, 2016. doi:10.1016/j.laa.2015.10.030.

22 Pavel Pudlák. On matrices potentially useful for tree codes. CoRR, abs/2012.03013, 2020.
URL: https://arxiv.org/abs/2012.03013.

23 Leonard J. Schulman. Deterministic coding for interactive communication. In Proceedings
of the 25th annual ACM Symposium on Theory of Computing, pages 747–756, 1993. doi:
10.1145/167088.167279.

24 Leonard J. Schulman. Postscript of 21 september 2003 to coding for interactive communication.
http://users.cms.caltech.edu/ schulman/Papers/intercodingpostscript.txt, 1994.

25 Leonard J. Schulman. Coding for interactive communication. IEEE Trans. Inform. Theory,
42(6, part 1):1745–1756, 1996. Codes and complexity. doi:10.1109/18.556671.

26 Claude E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–
423, 623–656, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

APPROX/RANDOM 2021

https://doi.org/10.1145/3188745.3188928
https://doi.org/10.1145/3188745.3188928
https://doi.org/10.4230/LIPIcs.CCC.2020.11
https://doi.org/10.1007/bf02684373
https://doi.org/10.1007/s11856-000-1272-z
https://doi.org/10.1515/crll.2001.082
https://doi.org/10.1137/1.9781611974331.ch135
https://doi.org/10.1016/0001-8708(85)90121-5
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/tit.1972.1054893
https://arxiv.org/abs/2010.12081
https://arxiv.org/abs/2010.12081
https://doi.org/10.1007/bf02698808
https://doi.org/10.1007/bf02698808
https://www.jstor.org/stable/2372655
https://doi.org/10.1145/2554797.2554813
https://doi.org/10.1137/1.9781611975994.81
https://doi.org/10.1016/j.laa.2015.10.030
https://arxiv.org/abs/2012.03013
https://doi.org/10.1145/167088.167279
https://doi.org/10.1145/167088.167279
https://doi.org/10.1109/18.556671
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

54:18 Candidate Tree Codes via Pascal Determinant Cubes

27 Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710–1722, 1996. doi:10.1109/18.556667.

28 Michael A. Tsfasman, Serge G. Vlăduţ, and Thomas Zink. Modular curves, Shimura curves, and
Goppa codes, better than Varshamov-Gilbert bound. Mathematische Nachrichten, 109(1):21–
28, 1982. doi:10.1002/mana.19821090103.

A Combinatorics Corroborating Conjecture 4

A.1 Non-Vanishing of Φt,c on the Boolean Hypercube

In this section we prove that the integer polynomial Φt,c as in Conjecture 4 does not vanish on
any point of the Boolean hypercube. To this end, we make use of ideas similar to those used
by [7] to prove that Φt,c has no root at the origin. Fix sequences t, c as in Conjecture 4 for the
remainder of this section. Consider a directed acyclic graph G = (V, E) with edge weights
{w(e) | e ∈ E} coming from a commutative ring with identity, along with two ordered vertex
sets R = {R1, R2, . . . , Rd}, C = {C1, C2, . . . , Cd} ⊆ V of the same cardinality d. Associated
to it is the path matrix M : the square matrix indexed by R, C with the R ∈ R, C ∈ C entry
MR,C ≜

∏
P :R→C w(P) where the product is taken over all paths P from R to C and the

weight w(P) is the product of edge weights in the path P . Paths of length 0 are included
and given the weight 1. A path system P from R to C consists of a permutation σ ∈ Sd and
a set of paths {Pi : Ri → Cσ(i) | i ∈ [d]}. Let sgn(P) denote the sign of σ and w(P) denote
the product of the weights

∏d
i=1 w(Pi). The path system is called vertex disjoint if its set of

paths are vertex disjoint. The LGV Lemma is the expression for the determinant of the path
matrix M in terms of the underlying path graph

det(M) =
∑

vertex disjoint
path systems P

sgn(P)w(P).

Gessel and Viennot applied it to path graphs cut out from the square lattice and proved
the non vanishing theorem for determinants of Pascal submatrices. We next show a non
vanishing of determinants central to our construction using the same path graph but with
vertices relabelled.

0

1

2

3

4
R1

ti + xi

Ri

1

2

3
C1

cj

Cj
Ri

. Cj

.

1

1
Pti+xi−1,cj−1

Pti+xi−1,cj

Number of Ri → Cj paths

Pti+xi,cj
= Pti+xi−1,cj−1 + Pti+xi−1,cj

https://doi.org/10.1109/18.556667
https://doi.org/10.1002/mana.19821090103

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:19

▶ Lemma 16. For all strictly increasing non negative integer sequences c = (c1, . . . , cs), t =
(t1, . . . , ts) such that c ≤ t and ti is even for all i ∈ [s], and ∀(x1, x2, . . . , xs) ∈ {0, 1}s,

Φt,c(x1, . . . , xs) ̸= 0.

Proof. Fix numbers c1, . . . , cs, t1, . . . , ts, x1, . . . , xs as in the statement. Consider the direc-
ted acyclic graph below with unit edge weights and distinguished (in red) vertex subsets
{R1, R2, . . . , Rs} and {C1, C2, . . . , Cs}. The (t1 + x1)th vertex on the first column is labelled
R1, the (t2 + x2)th vertex on the first column is labelled R2 and so on. The labels Ris are
well defined, for (ti + xi)s are distinct as tis are even and xis are in {0, 1}. The cth

1 vertex
on the diagonal is labelled C1, the cth

2 vertex on the diagonal is labelled C2 and so on. To
illustrate, t1 = 4, x1 = 0, c1 = 3 in the diagram. The horizontal edges are directed from left
to right and the vertical edges from bottom to top.

Since all the edge weights are 1, the (i, j)th entry Mi,j of the path matrix is the num-
ber of paths Pti+xi,cj

from Ri to Cj . This satisfies the two term recurrence Pti+xi,cj
=

Pti+xi−1,cj−1 + Pti+xi−1,cj
as evident from the picture on the right. This is Pascal’s identity

for binomials. The boundary conditions
(

ti+xi

0
)

= 1 and
(

ti+xi

ci

)
= 1 for ti + xi = ci are

consistent with the path formulation. We conclude that the associated path matrix is
Mt,c =

{(
ti+xi

cj

) ∣∣∣ i, j ∈ [s]
}

, whose determinant Φt,c(x1, . . . , xs) is in question. The planar
geometry forces all vertex disjoint path systems to have the identity permutation, which has
sign 1. Hence the determinant is a positive number provided there is at least one vertex
disjoint path system. By the condition ti + xi ≥ ci for all i, there is at least one, namely for
each Ri → Ci, traverse ci edges right before turning up. ◀

A.2 Reformulation of Conjecture 4
In this section we provide a reformulation of Conjecture 4. Fix sequences t, c as in Conjecture 4.
Consider the variety Xt,c of intersection of the hypercube and the hypersurface generated by
Φt,c. The variety Xt,c is generated by the ideal

It,c :=
〈
Φt,c(X1, X2, . . . , Xs), X2

1 − X1, . . . , X2
s − Xs

〉
.

Clearly, the intersection variety is zero dimensional (or empty), since the hypercube is
zero dimensional and Φt,c is nonzero. The degree of the polynomial defining the hyper-
surface can be reduced through the relations carving out the hypercube as follows. Let
Ψt,c(X1, X2, . . . , Xs) ∈ Z[X1, X2, . . . , Xs] be the unique lift of

Φt,c[X1, X2, . . . , Xs] mod
〈
X2

1 − X1, X2
2 − X2, . . . , X2

s − Xs

〉
with degree in each variable at most 1. Informally, Ψt,c is merely Φt,c with every indeterminate
X∗

i replaced by Xi. The ∗ in the superscript denotes some positive exponent. Since Φt,c is
nonzero, so is Ψt,c. The respective hypersurfaces generated by Φt,c and Ψt,c have the same
intersection with the Boolean hypercube and hence we can work with either. We will proceed
with Ψt,c as it has the form

Ψt,c(X1, X2, . . . , Xs) =
∑

b=(b1,b2,...,bs)∈{0,1}s

abXb1
1 Xb2

2 . . . Xbs
s

familiar to Boolean functional analysts with possibly smaller degrees. Further, restricting to
the Boolean cube removed the structural factors that concerned us in Section 3.2.5 from Ψt,c.
Let Ψp

t,c ∈ Fp[X1, X2, . . . , Xs] be the reduction of Ψt,c modulo the prime p.

APPROX/RANDOM 2021

54:20 Candidate Tree Codes via Pascal Determinant Cubes

Conjecture 4 amounts to Ψp
t,c being a nonzero polynomial. This is, at least one of the

coefficients ab mod p, b ∈ {0, 1}s is nonzero. Equivalently, at least one of the evaluations
Ψp

t,c(e), e ∈ {0, 1}s ⊂ Fs
p is nonzero. Below we choose to reformulate the asymptotic

version, Conjecture 5.

▶ Conjecture 17 (Conjecture 5 reformulated). There exist universal constants ep, es ≥ 1 such
that for every integer n ≥ 1, prime p ≥ nep , and s ≥ (log n)es the following holds. For every
pair of strictly increasing sequences t = (t1, . . . , ts), c = (c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying
c ≤ t, it holds that Ψp

t,c(X1, X2, . . . , Xs) is nonzero.

B Arithmetic Geometry Heuristics Supporting Conjecture 4

We laboured through the whole previous section trying to argue that the restriction Ψt,c
to the Boolean hypercube of Φt,c is not identically zero modulo our chosen prime p. Our
starting observation in this section is that the reduction Φp

t,c of Φt,c is non zero, since Φt,c is
primitive (it is apparent from the defining equation that the highest total degree term of Φt,c
is monic). Therefore, the zeroes of Φp

t,c define a hypersurface (that is, of codimension 1). We
study the intersection of the Boolean hypercube sitting inside Fs

p with this hypersurface using
arithmetic geometry. Our analysis falls short of proving Conjecture 4 owing the failure to
control some error terms. But we will prove Conjecture 4 holds when relaxed to accommodate
hypercubes of side length growing with p.

It is convenient to be ambitious and target stronger versions of Conjecture 4 (or its
asymptotic variant, Conjecture 5) which, arguably, are even more natural. First, the
distribution of values obtained by evaluating Φp

t,c on the Boolean hypercube {0, 1}s, for any
t, c in question, is fairly balanced when p is taken sufficiently large compared to n. More
precisely, we postulate the following conjecture.

▶ Conjecture 18 (Strong form, value distribution). There exist universal constants ep, es ≥ 1
and β ∈ (0, 1) such that for every integer n ≥ 1, prime p ≥ nep , and s ≥ (log n)es

the following holds. For every pair of strictly increasing sequences t = (t1, . . . , ts), c =
(c1, . . . , cs) ∈ ([0, n) ∩ 2Z)s satisfying c ≤ t, it holds that∣∣∣∣∣∣

∑
(x1,...,xs)∈{0,1}s

ζΦt,c(x1,...,xs)
p

∣∣∣∣∣∣ ≤ 2βs, (B.1)

where ζp is a pth root of unity in C.

When the prime p exceeds the height of Φt,c, the sum concentrates in a wedge above the
positive real axis disturbing the equidistribution. Despite not stating explicitly, we are only
interested in (and only claim the conjecture) when p is small compared to the height of Φt,c.
What really concerns us is the distribution of zeroes

Φt,c(Fp, 2) :=
{

(x1, x2, . . . , xs) ∈ {0, 1}s ⊂ Fs
p

∣∣∣ Φp
t,c(x1, x2, . . . , xs) = 0

}
of Φp

t,c on the Boolean hypercube; suggesting another strengthening of Conjecture 5.

▶ Conjecture 19 (Strong form, point count). There exist universal constants ep, es ≥ 1 and
β ∈ (0, 1) such that for every integer n ≥ 1, prime p ≥ nep , and s ≥ (log n)es the following
holds. For every pair of strictly increasing sequences t = (t1, . . . , ts), c = (c1, . . . , cs) ∈
([0, n) ∩ 2Z)s satisfying c ≤ t, it holds that |Φt,c(Fp, 2)| ≤ 2βs.

We have gathered some data using a computer program to shed some more light on the
exponential sum in Conjecture 18, presented in a longer version of the paper [3].

I. Ben Yaacov, G. Cohen, and A. K. Narayanan 54:21

B.1 Pascal Determinant Hypersurfaces
Using arithmetic geometry, we next argue for the rarity of zeroes as stated in Conjecture 19.
We start with the most naive yet convincing argument. Before addressing the intersection with
the Boolean hypercube, consider the Fp-rational points Φt,c(Fp) :=

{
w ∈ Fp

∣∣∣ Φp
t,c(w) = 0

}
on the hypersurface of dimension s − 1 and degree ≤ ns in isolation. The Schwartz-Zippel
Lemma implies |Φt,c(Fp)| ≤ nsps−1. If Φp

t,c is irreducible or if it has only a few (say Np
t,c)

irreducible components, the Lang-Weil bound gives the improved estimate [18]∣∣|Φt,c(Fp)| − Np
t,c ps−1∣∣ = (ns − 1)(ns − 2)ps−3/2 + O(nsps−2).

With the unimportant structured factors removed from Φt,c, the remaining Ξt,c (which is also
primitive, by Gauss’s lemma) also has non zero reduction Ξp

t,c. It is not always irreducible.
For instance, if the index sets t, c are such that cj < tj+1 for some j, then the vertex disjoint
paths connecting the first j vertices are decoupled from the rest: resulting in a factorization
of Ξt,c. But for the factorization induced by such decouplings, the reduction Ξp

t,c is likely to
be irreducible. Better still, if (the homogenization of) Ξp

t,c is irreducible and defines a smooth
projective variety, then deep results arising from Deligne’s proof of the Weil conjectures [9,
Thèoréme 8.1] imply the full “square root cancellation”∣∣|Ξt,c(Fp)| − ps−1∣∣ = O(bs−1p

s−1
2)

where bs−1 ≤ 1
2 s(s + 1)(sn)s is the s − 1th Betti number. To derive our heuristic estimate,

Schwartz-Zippel will suffice. For ease of exposition, we will use Φt,c in the ensuing analysis,
even though Ξp

t,c offers some minor gains degree wise. In spirit, the probability Φp
t,c is

zero at a point in Fs
p is centred at Np

t,c
p with an error term depending on the smoothness.

Irrespective of the smoothness, the error term is negligible compared to the estimate for p

a big enough polynomial in n. We hypothesise that the hypersurface intersects generically
with the Boolean hypercube and the number of intersection points is bounded as

|Φt,c(Fp, 2)| ≈ |Φt,c(Fp)|
(

2
p

)s

. (B.2)

By the Schwartz-Zippel lemma

|Φt,c(Fp, 2)| ≈ |Φt,c(Fp)|
(

2
p

)s

= O

(
ns2s

p

)
(B.3)

suggesting Conjecture 19 holds for p > n2.

B.2 Katz-Laumon Sums and Point Counting in Hypercubes
Through arithmetic geometric bounds on exponential sums, we argue our determinant
hypersurfaces intersect generically with the Boolean hypercube. We show Conjecture 4
holds when relaxed to allow hypercubes of length (larger than 2) growing with the prime.
Quantitatively, the bounds attained fall short of proving Conjecture 4. Yet, the methods are
illuminating and suggest there are no arithmetic obstructions to our conjectures.

The key ingredient is the Katz-Laumon sum [17]. Building on Grothendieck’s foundational
trace formula for ℓ−adic cohomology and Deligne’s proof of the Weil conjectures, Katz and
Laumon studied certain trigonometric sums over arbitrary high dimensional varieties over
finite fields, parametrized by auxiliary points. They proved square root cancellation without
any strong geometric assumption (such as smoothness) on the variety, for almost all choices

APPROX/RANDOM 2021

54:22 Candidate Tree Codes via Pascal Determinant Cubes

of the parameter. Fouvry [10] and Fouvry-Katz [11] extended Katz and Laumon’s theorem
to obtain a stratified theorem. Fouvry applied Katz-Laumon sums to count points of a
variety on hypercubes (Boolean or more general). Fouvry and Katz extended this approach
and proved better bounds provided more is assumed about the geometry of the variety. We
adapt these techniques to bound the intersection of our hypersurfaces Φt,c(Fp) with Boolean
hypercubes as (a proof of the bound is in a longer version of the paper [3])

|Φt,c(Fp, 2)| =
(

2
p

)s

|Φt,c(Fp)| + O

(
p(s−1)/2(log p)s + 2s−1 log p

√
p

)
. (B.4)

The constant hidden in the asymptotic O notation may depend on s, but this dependence
will be subsumed and removed in Equation (B.5). Our ultimate goal is to claim the right
hand side is strictly less that 2s, which would prove Conjecture 4. However, p(s−1)/2 is too
large and muddies the estimate. The bounds are good enough if the hypercube side length is
extended to b > 2, since Fouvry [10] shows for every Φt,c, for large enough p,

|Φt,c(Fp, b)| =
(

b

p

)s

|Φt,c(Fp)| + O

(
p(s−1)/2(log p)s + bs−1 log p

√
p

)
. (B.5)

From the Schwartz-Zippel lemma bound Equation (B.3) on |Φt,c(Fp)| ,

|Φt,c(Fp, b)| ≤ ns2s

p
+ O

(
p(s−1)/2(log p)s + bs−1 log p

√
p

)
.

For b ≫ p3/4, |Φt,c(Fp, b)| ≪ bs. Fouvry’s theorem applies to arbitrary varieties and
the “for large enough p” clause is primarily in place to ensure the defining polynomials
do not identically vanish modulo p. To us, Φp

t,c is non zero, so the bounds should hold
uniformly for all p. Therefore, with some work to ensure uniformity of bounds, these methods
prove Conjecture 19 when relaxed to Boolean cubes of length growing b ≫ p3/4. A proof is
deferred to the full version of this paper.

We believe the large error term in Equation (B.4) and Fouvry’s theorem Equation (B.5)
to be artefacts of proof techniques and not intrinsic to the quantities. The primary lesson we
advocate from these arithmetic geometric techniques is qualitative and not quantitative. There
should be no arithmetic obstruction to equidistribution of the zeroes of the hypersurfaces
defined by our determinant polynomials in the Boolean hypercube, as claimed in the strong
form of our conjecture.

Towards a Decomposition-Optimal Algorithm for
Counting and Sampling Arbitrary Motifs in
Sublinear Time
Amartya Shankha Biswas #

CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

Talya Eden # Ñ

CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

Ronitt Rubinfeld # Ñ

CSAIL, Massachusetts Institute of Technology, Cambridge MA, USA

Abstract

We consider the problem of sampling and approximately counting an arbitrary given motif H in
a graph G, where access to G is given via queries: degree, neighbor, and pair, as well as uniform
edge sample queries. Previous algorithms for these tasks were based on a decomposition of H into a
collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ..., Okq , Sp1 , ..., Spℓ }. These algorithms
were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower
bounds were known.

We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, is
always at least as good, and for most graphs G is strictly better. The main ingredient leading to this
improvement is an improved uniform algorithm for sampling stars, which might be of independent
interest, as it allows to sample vertices according to the p-th moment of the degree distribution.

Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain at
least one odd cycle. These are the first lower bounds for motifs H with a nontrivial decomposition,
i.e., motifs that have more than a single component in their decomposition.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Sublinear time algorithms, Graph algorithms, Sampling subgraphs, Approx-
imate counting

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.55

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2107.06582

Funding Amartya Shankha Biswas: Big George Ventures Fund, MIT-IBM Watson AI Lab and
Research Collaboration Agreement No. W1771646, NSF awards CCF-173380, CCF-2006664 and
IIS-1741137.
Talya Eden: This work was supported by the NSF grant CCF-1740751, Eric and Wendy Schmidt
Fund, and Ben-Gurion University.
Ronitt Rubinfeld: This work was supported the NSF TRIPODS program (awards CCF-1740751 and
DMS 2022448), NSF award CCF-2006664 and by the Fintech@CSAIL Initiative.

Acknowledgements Talya Eden is thankful to Dana Ron and Oded Goldreich for their valuable
suggestions regarding the presentation of the lower bound results. The authors are thankful for the
anonymous reviewers for their useful comments and observations.

© Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 55; pp. 55:1–55:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asbiswas@mit.edu
mailto:talyaa01@gmail.com
https://orcid.org/0000-0001-8470-9508
mailto:ronitt@csail.mit.edu
https://people.csail.mit.edu/ronitt/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.55
https://arxiv.org/abs/2107.06582
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

1 Introduction

The problems of counting and sampling small motifs in graphs are fundamental algorithmic
problems with many applications. Small motifs statistics are used for the study and charac-
terization of graphs in multiple fields, including biology, chemistry, social networks and many
others (see e.g., [36, 30, 21, 33, 32, 43, 28, 35, 38, 41, 31]). From a theoretical perspective,
the complexity of the best known classical algorithms for exactly enumerating small motifs
such as cliques and paths of length k, grows exponentially with k [42, 9]. On the more applied
side, there is an extensive study of practical algorithms for approximate motif counting
(e.g., [39, 5, 34, 1, 27, 12, 7, 24]). We study the problems of approximate motif counting and
uniform sampling in the sublinear-time setting, where sublinear is with respect to the size of
the graph. We consider the augmented query model, introduced by [2], where the allowed
queries are degree, neighbor and pair queries as well as uniform edge sample queries.1 We
note that the model which only allows for the first three types of queries is referred to as the
general graph query model, introduced by [29].

The problems of approximate counting and uniformly sampling of arbitrary motifs of
constant size in sublinear-time have seen much progress recently, through the results of Assadi,
Kapralov and Khanna [3], and Fichtenberger, Gao and Peng [23]. The algorithms of [3, 23]
both start by computing an optimal (in a sense that will be clear shortly) decomposition of
the motif H into vertex-disjoint odd cycles and stars, defined next.

A decomposition into odd cycles and stars. A decomposition D of a motif (graph) H into
a collection of vertex disjoint small cycles and stars {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} is valid if all

vertices of H belong to either a star or an odd cycle in the collection. Each decomposition
can be associated with a weight function fD : E → {0, 1

2 , 1} which assigns weight 1 to
edges of its star components, weight 1/2 to edges of its odd cycle components and weight
0 to all other edges in H. See figure 1 for an illustration. Hence, each decomposition
{Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} has value ρ(D) =

∑
e∈H fD(e) =

∑q
i=1 ki/2 +

∑ℓ
j=1 pj , where

throughout the paper ki and pj denote the length and number of petals in the ith cycle
and jth star, respectively, in D∗(H). For every H, its optimal decomposition value is
ρ(H) = minD{ρ(D)}, and a decomposition D is said to be optimal for H if ρ(D) = ρ(H).
We fix (one of) the optimal decomposition of H, and denote it by D∗(H). In [3], it is shown
that an optimal decomposition of a motif H can be computed in polynomial time in |H|.2

The algorithm in [23] has expected running time 3 O
(

mρ(H)

h̄

)
for the task of uniformly

1 Degree queries return the degree of the queried vertex, neighbor queries with index i ≤ d(v) return the
ith neighbor of the queried vertex, pair queries return whether there is an edge between the queried
pair of vertices, and uniform edge queries return a uniformly distributed edge in the graph.

2 We note that ρ(H) is equal to the fractional edge cover value of H: the fractional edge cover value
of a motif (graph) H is the solution to the following minimization problem. Minimize

∑
e∈E

f(e)
under the constraint that for every v ∈ H,

∑
e∋v

f(e) ≥ 1. In [3], the decomposition is computed by
first computing an optimal fractional cover. However, as there exists a mapping between fractional
edge covers to decompositions which preservers their value, we choose to define ρ(H) according to the
minimal valid decomposition value.

3 Throughout the paper, unless stated otherwise, the query complexity of the mentioned sublinear-time
algorithms is the same as the minimum between their running time and min{n + m, m log n}. This is
true since any algorithm can simply query the entire graph and continue computation locally. Querying
the entire graph can either be performed by querying the neighbors of all vertices (which takes O(n + m)
queries), or by performing m log n uniform edge samples, which, with high probability, return all edges
in the graph (note that we do not care about isolated vertices, as we assume the motif H is connected).
Hence, we focus our attention on the running time complexity.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:3

Figure 1 An example of an optimal decomposition of a motif H into odd cycles and stars. The
orange edges have weight 1/2, the red edges have weight 1, and the dotted edges have zero weight.

sampling a copy of H, where h̄ is the number of copies of H in G, and m is the number of
oriented edges4 in G. The algorithm in [3] for the (1 ± ϵ)-approximation task has the same
complexity up to poly(ϵ, |H|, log n) factors, where n is the number of vertices in G.

1.1 Our results
We present improved upper and lower bounds for the tasks of estimating and sampling any
arbitrary motif in a graph G in sublinear time (with respect to the size of G). First, we give a
new, essentially optimal, star-sampler for graphs. We also show that with few modifications,
the star-sampler can be adapted to an optimal ℓp sampler, which might be of independent
interest. Based on this sampler, as well as an improved sampling approach, we present our
main algorithm for sampling a uniformly distributed copy of any given motif H in a graph G.
Our algorithm’s complexity is parameterized by what we refer to as the decomposition-cost
of H in G, denoted decomp-cost(G, H, D∗(H)). We further show that our motif sampling
algorithm can be used to obtain a (1 ± ϵ)-estimate of the motif at question (with an overhead
of an O(1/ϵ2) factor). As we shall see, our result is always at least as good as previous
algorithms for these problems (up to a log n log log n term), and greatly improves upon them
for various interesting graph classes, such as random graphs and bounded arboricity graphs.

We then continue to prove that for any motif whose optimal decomposition contains at least
one odd cycle, this bound is decomposition-optimal : we show that for every decomposition
D that contains at least one odd cycle, there exists a motif HD (with optimal decomposition
D) and a family of graphs G so that in order to sample a uniformly distributed copy of H

(or to approximate h̄) in a uniformly chosen graph in G, the number of required queries is
Ω(min{decomp-cost(G, H, D∗(H)), m}) in expectation.

We start by describing the upper bound.

1.1.1 Optimal star/ℓp-sampler
Our first contribution is an improved algorithm, Sample-a-Star, for sampling a (single) star
uniformly at random, and its variant for sampling vertices according to the pth moment. For a
vertex v, we let s̄p(v) =

(
d(v)

p

)
, if d(v) ≥ p, and otherwise, s̄p(v) = 0. We let s̄p =

∑
v∈V s̄p(v)

denote the number of p-stars in the graph. We will also be interested in the closely related
value of the pth moment of the degree distribution, µ̄p =

∑
v∈V d(v)p.

4 Throughout the paper we think of every edge {u, v} as two oriented edges (u, v) and (v, u), and let m
denote the number of oriented edges.

APPROX/RANDOM 2021

55:4 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

▶ Theorem 1. There exists a procedure, Sample-a-Star, that given query access to a graph
G, and a constant factor estimates of s̄p, returns a uniformly distributed p-star in G. The

expected query complexity and running time of the procedure are O

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
where s̄p denotes the number of p-stars in G.

We note that a constant factor estimate of s̄p can be obtained by invoking one of the

algorithms in [17, 2], in expected query complexity Õ

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
. Therefore, if

such an estimate is not known in advance, then it could be computed, with probability at
least 2/3, by only incurring a log n factor to the expected time complexity.

We will also show a variant of Sample-a-Star, denoted Sublinear-ℓp-Sampler, that gives
an optimal ℓp-sampler for any integer p ≥ 2 in sublinear time. That is, Sublinear-ℓp-Sampler
allows to sample according to the pth moment of the degree distribution, so that every vertex
v ∈ V is returned by it with probability d(v)p/µ̄p. The question of sampling according to
the pth moment for various values of p has been studied extensively in the streaming model
where ℓp samplers have found numerous applications, see, e.g., the recent survey by Cormode
and Hossein [11] and the references therein. Therefore we hope it could find applications in
the sublinear-time setting that go beyond subgraph sampling.

▶ Theorem 2. There exists an algorithm, Sublinear-ℓp-Sampler, that returns a vertex v ∈ V ,
so that each v ∈ V is returned with probability d(v)p/µ̄p. The expected running time of the

algorithm is O

(
min

{
m·np−1

µ̄p
, m

µ̄
1/p
p

})
.

Observe that for every value of p, s̄p < µ̄p. Furthermore, Since m and µ̄
1/p
p are simply

the ℓ1 and ℓp norms of the degree distribution of G, it holds that µ̄
1/p
p is smaller than m, and

could be as small as m/n1−1/p. Therefore, µ̄
1/p
p < m ⇔ µ

p−1/p
p < mp−1. and it follows that

m · min
{

np−1, s̄(p−1)/p
}

≤ m · s̄(p−1)/p
p < m · µ̄(p−1)/p

p ≤ m · mp−1 = mp. (1)

Hence, not accounting for the O(log n log log n) term, the expected complexity Õ(m ·
min{np−1, s̄(p−1)/p

p }/s̄p) of Sample-a-Star strictly improves upon the O(mp/s̄p) expected
complexity of the star-sampling algorithm by [23]. Accounting for that term, our algorithm
is preferable when either davg = ω(log n log log n) or m/s̄1/p

p = ω(log n).
Furthermore, the complexity of Sample-a-Star matches the complexities of the star

approximation algorithms by [26, 2], thus proving that uniformly sampling and approximately
counting stars in the augmented model have essentially the same complexity. Finally, the
construction of the lower bound for the estimation variant by [26] proves that Sample-a-Star
and Sublinear-ℓp-Sampler are essentially optimal.

1.1.2 An algorithm for sampling and estimating arbitrary motifs
Given the above star sampler, we continue to describe our main contribution: an algorithm,
Sample-H, that for any graph G and given motif H, outputs a uniformly distributed copy of
H in G.

To sample a copy of H we first sample copies of all basic components in its decomposition
D∗(H), and then check if they can be extended to a copy of H in G. Therefore, it will be
useful to define the costs of these sampling operations.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:5

▶ Notation 3 (Basic components, counts and costs). Let H be a motif, and let D∗(H) =
{Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} be an optimal decomposition of H. We refer to the odd cycles

and stars in D∗(H) as the basic components of the decomposition (or sometimes, abusing
notation, of H). We use the notation {Ci}i∈[r], to denote the set of all components in D∗(H),
{Ci}i∈[r] = D∗(H), where r = q + ℓ.

For every basic component Ci in D∗(H) = {Ci}i∈[r], we denote the number of copies of
Ci in G as c̄i and refer to it as the count of Ci. Similarly, ōk and s̄p denote the number of
copies of length k odd cycles and p-stars in G. respectively.

We also define the sampling cost (or just cost in short) of Ci to be:

cost(Ci) =

mk/2/ōk Ci = Ok

min
{

m·np−1

s̄p
, m

s̄1/p
p

}
Ci = Sp

.

Observe that indeed, by Theorem 1, sampling a single p-star in G takes cost(Sp) =

min
{

m·np−1

s̄p
, m

s̄1/p
p

}
queries in expectation, and by [23, Lemma 3.1], sampling a single Ok

odd cycle takes cost(Ok) = mk/2/ōk queries in expectation.

▶ Notation 4 (Decomposition-cost). For a motif H, an optimal decomposition D∗(H) of H,
and a graph G, the decomposition cost of H in G, denoted decomp-cost(G, H, D∗(H)) is

decomp-cost(G, H, D∗(H)) = max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
.

Note that the motif H determines the counts of h̄ and its decomposition D∗(H) determines
what are the basic component counts in G that are relevant to the sampling cost.

▶ Theorem 5. Let G be a graph over n vertices and m edges, and let H be a motif such
that D∗(H) = {Ok1 , ..., Okq , Sp1 , ..., Spℓ

} = {Ci}i∈[r]. There exists an algorithm, Sample-H,
that returns a copy of H in G. With probability at least 1 − 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {decomp-cost(G, H, D∗(H)), m}) · log n log log n.

In the full version of this paper ([8]), we prove that with slight modifications to the
sampling algorithm we can obtain a (1 ± ϵ)-approximation algorithm for h̄, with the same
expected query complexity and running time up to a multiplicative factor of O(1/ϵ2).

Comparison to previous bounds. We would like to compare our algorithm’s expected
complexity stated in Theorem 5, to the expected complexity O

(
mρ(H)

h̄

)
of the counting

and sampling algorithms by [3] and [23], respectively, where recall that for an optimal
decomposition D∗(H) = {Ok1 , ..., Okq , Sp1 , ..., Spℓ

} of H, ρ(H) =
∑

i∈[q[ki/2 +
∑

i∈[ℓ] pi.
Recalling Equation 1, and plugging in the costs of the basic components and the decom-

position cost, defined in Notations 3 and 4, respectively, we get that for any graph G and
motif H,

decomp-cost(G, H, D∗(H)) = max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄

= max
i∈[r]

{cost(Ci)} ·
∏

i∈[q] ōki
·
∏

i∈[ℓ] s̄pi

h̄

APPROX/RANDOM 2021

55:6 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

≤
∏

i∈[q] mki/2 ·
∏

i∈[ℓ] m · (min{npi−1, s̄(pi−1)/pi
pi })

h̄

<

∏
i∈[q] mki/2 ·

∏
i∈[ℓ] mp

h̄
= mρ(H)

h̄
.

Therefore, as long as D∗(H) contains at least one star, and not accounting for the term
O(log n log log n), our algorithm is preferable to the previous one, as we save a factor of at
least dp−1

avg for each p-star in D∗(H).
Moreover, the complexity of our sampling algorithm is parameterized by the actual counts

of the basic components Ok1 , ..., Okq , Sp1 , ..., Spℓ
of the graph G at hand, rather than by the

maximal possible counts of these components, respectively mk1/2, . . . mkq/2, mp1 , . . . mpℓ , as
is in previous algorithms. For example, if the max component cost is due to the odd cycle of
length k1, we get

O∗

(
mk1/2 · ōk2 · ... · ōkq

· s̄p1 · ... · s̄pℓ

h̄

)
vs. O∗

(
mk1/2 · mk2/2... · mkq/2 · mp1 · ... · mpℓ

h̄

)
of the previous algorithms. Importantly, this parameterization arises only in the analysis,
while the algorithm itself is very simple, and does not depend on prior knowledge of the
actual values of these counts.

Improved results for various graph classes. Our parameterization immediately implies
improved results in various interesting graph classes. For example, for sparse Erdős-Rényi
random graphs G(n, d/n), the expected count of k-odd cycles is Θ(dk), and of p-stars is
Θ(n · dp). Hence, if we consider for example a motif H that is composed of a triangle
connected to a 5-petals star, our algorithm has expected complexity O∗

(
m2.5·d4

h̄

)
, while the

algorithms in [3, 23] have expected complexity O(m6.5

h̄). In another example, for graphs
of bounded arboricity5 α, the number of k-odd cycles is upper bounded6 by α · m(k−1)/2.
Therefore, in the case that G has, e.g., constant arboricity, we save a multiplicative factor of√

m
q or

√
m

q−1, depending on whether the max cost component is due to a star or an odd
cycle, respectively (recall that q is the number of odd cycles in the decomposition).

1.1.3 Lower bound for estimating and sampling general motifs
In the full version, we prove the following lower bound, which states that for every decom-
position D that contains at least one odd cycle component and every realizable value of
decomp-cost, there exists a motif HD such that D is an optimal decomposition of HD,
and for which our upper bound is optimal.

▶ Theorem 6. For any decomposition D that contains at least one odd cycle, and for every
n and m and realizable value dc of decomp-cost, there exists a motif HD, with optimal
decomposition D, and a family of graphs G over n vertices and m edges, for which the
following holds. For every G ∈ G, decomp-cost(G, HD, D) = dc, and the expected query
complexity of sampling (whp) a uniformly distributed copy of HD in a uniformly chosen
G ∈ G is Ω(dc).

5 The arboricity of a graph G is the minimal number of forests required to cover the edge set of G.
6 In a graph G with arboricity α there exists an acyclic ordering of the graph’s vertices, such that each

vertex has O(α) vertices exceeding it in the order. We can attribute each k-cycles in the graph to its
first vertex in that ordering. It then holds that each vertex has at most (d+(v))2 · m(k−3)/2 attributed
cycles, and it follows that ōk ≤ α · m(k−1)/2, where d+(v) is the number of neighbors of v that exceed
it in the aforementioned ordering.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:7

Prior to this work, the only known lower bounds for the tasks of uniformly sampling or
approximately counting motifs H that were either a clique [19], a single odd cycle [3], or a
single star [26, 2, 19]. The above theorem provides the first lower bounds for motifs with
non-trivial decompositions. Furthermore, even though our bounds are only decomposition-
optimal (that is, they do not hold for any motif H), each decomposition D corresponds to at
least one motif HD (generally, there are multiple valid ones), for which our bounds are tight.

In order to prove Theorem 6, we actually prove a stronger theorem, which relies on a
technical notion of good counts, formally stated in Definition 17 in the full version.

▶ Theorem 7. For any decomposition D = {Ok1 , ..., Okq , Sp1 , ..., Spℓ
} = {Ci}i∈r that

contains at least one odd cycle component, for every n, m, h̄ and a set of good counts,
{c̄i}i∈[r] = {ōk1 , ..., ōkq , s̄p1 , ..., s̄pℓ

}, as defined in Definition 17 of the full version, the
following holds. There exists a motif HD, with an optimal decomposition D, and a family of
graphs G over n vertices and m edges, as follows. For every G ∈ G, the basic components
counts are as specified by {c̄i}i∈[r], the number of copies of HD is h̄, and the expected query
complexity of sampling (whp) a uniformly distributed copy of HD in a uniformly chosen
G ∈ G is

Ω
(

min
{

max
i∈[r]

{cost(Ci)} ·
∏

i c̄i

h̄
, m

})
.

In the full version, we first prove that Theorem 6 follows from Theorem 7. Theorem 7 is
essentially a substantial refinement of Theorem 6, in the following sense. Not only that for
any decomposition cost we can match the lower bound (as stated in Theorem 6), but we can
match it for a large variety of specific setting of the basic counts (as long as they are good,
as stated in Theorem 7). While Theorem 7 does not state that the lower bound holds for
any setting of the counts {c̄i}i∈[r], as we discuss in the full version, some of the constraints
on these counts are unavoidable. It remains an open question whether this set of constraints
can be weakened, or perhaps more interestingly, whether, given that a set of constraints that
is not good, can a better upper bound be devised.

1.2 Organization of the paper

We give some preliminaries in Section 2. The discussion on additional related works on
sublinear motif counting and sampling is deferred to Appendix A. In Section 3 we give a
high level overview of our techniques. We present our algorithms for uniformly sampling
stars and arbitrary motifs H in Section 4. Due to page limitation, the full details of the
ℓp-sampler, approximation algorithm, as well as the decomposition-optimal lower bounds are
deferred to the full version of this paper [8].

2 Preliminaries and Notation

Let G = (V, E) be a simple undirected graph. We let n denote the number of vertices in
the graph. We think of every edge {u, v} in the graph as two oriented edges (u, v) and
(v, u), and slightly abuse notation to let m denote the number of oriented edges, so that
m =

∑
v∈V d(v) = 2|E|, and davg = m/n. Unless explicitly stated otherwise, when we say

“edge” we mean an oriented edge. We let d(v) denote the degree of a given vertex. We let [r]
denote the set of integers 1 through r.

APPROX/RANDOM 2021

55:8 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

The augmented query model. We consider the augmented query model which allows for
the following queries. (1) A degree query, deg(v), returns the degree of v, d(v); (2) An ith

neighbor query, Nbr(v, i) returns the ith neighbor of v if i ≤ d(v), and otherwise returns
FAIL; (3) A pair query, pair(u, v), returns whether (u, v) ∈ E; and (4) Uniform edge query
returns a uniformly distributed (oriented) edge in E.

A decomposition into odd cycles and stars. Given a motif H, the result in [3] is para-
meterized by the fractional edge cover number ρ(H). The fractional edge cover number
is the optimal solution to the linear programming relaxation of the integer linear program
(ILP) for the minimum edge cover of H: The ILP allows each edge to take values in {0, 1},
under the constraint that the sum of edge values incident to any vertex v is at least 1.
The LP relaxation allows values in [0, 1] instead, and ρ(H) is the minimum possible sum
of all the (fractional) values. In [3], the authors strengthen an existing result by Atserias,
Grohe nd Marx [4], in order to prove that there always exists an optimal solution as follows.
All of the weight (i.e., non zero edges) is supported on (the edges of) vertex-disjoint odd
cycles and stars, where each odd cycle edge has weight 1/2, and each star edge has weight 1.
Consequently, the corresponding optimal solution of the LP for a given graph H is equivalent
to a decomposition of H into a collection of vertex-disjoint odd cycles and stars, denoted
D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
}. See Figure 1 for an illustration.

Generally, the motif we aim to sample (or approximate its counts) will be denoted by H,
and the corresponding decomposition will be D(H) = {Ok1 , ..., Okq , Sp1 , ..., Spℓ

} = {Ci}i∈r

for r = q + ℓ. We use a convention of using Oki
to refer to the ith decomposition component

which is an odd cycle of size ki, and Spi to refer to the ith star component, which is a star
with pi petals. We use ōk and s̄p denote the number of k-cycles and p-stars in G respectively,
and we use h̄ to denote the number of copies of H in G.

Next, we formally define the fractional edge cover of a graph (or motif), and the resulting
decomposition. We note that in this paper we will be interested in the decomposition of the
motif H, and not the graph G.

▶ Definition 8 (Fractional edge cover). A fractional edge cover of a graph is a function
f : E → R≥0 such that for every v ∈ V ,

∑
e∋v f(e) ≥ 1. We say that the cost of a given

edge cover f is
∑

e∈E f(e). For any graph (motif) H, its fractional edge cover value is the
minimum cost over all of its fractional edge covers, and we denote this value by ρ(H). An
optimal edge-cover of H is any edge cover of H with cost ρ(H).

▶ Lemma 9 (Lemma 4 in [3]). Any graph (motif) H admits an optimal fractional edge cover
x∗, whose support, denoted SUPP (x∗), is a collection of vertex-disjoint odd cycles and stars,
such that:

for every odd cycle C ∈ SUPP (x∗), for every e ∈ C, x∗(e) = 1/2.

for every e ∈ SUPP (x∗) that does not belong to an odd cycle, x∗(e) = 1.

▶ Definition 10 (Decomposition into odd-cycles and stars). Given an optimal fractional
edge-cover x∗ as in Lemma 9, let {Ok1 , ..., Okq

} be the odd-cycles in the support of x∗, and let
{Sp1 , ..., Spℓ

} be the stars. We refer to D∗(H) := {Ok1 , ..., Okq , Sp1 , ..., Spℓ
} as an (optimal)

decomposition of H.

Given a graph (motif) H, its fractional edge cover value and an optimal decomposition
can be computed efficiently:

▶ Theorem 11 (Lemma 4 and Section 3 in [3]). For any graph H, its fractional edge cover
value ρ(H) and an optimal decomposition D∗(H) can be computed in polynomial time in |H|.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:9

3 Overview of Our Results and Techniques

We start with describing the ideas behind our upper bound result.

3.1 An algorithm for sampling arbitrary motifs
We take the same approach as that of [23], of sampling towards estimating, but improve on
the query complexity of their bound using two ingredients. The first is an improved star
sampler, and the second is an improved sampling approach.

Improved star sampler. The algorithm of [23] tries to sample p-stars by sampling p edges
uniformly at random, and checking if they form a star (by simply checking if all p edges
agree on their first endpoint). Hence, each p-star is sampled with probability 1/mp. Our
first observation is that it is more efficient to sample a single edge (u, v) and then sample
p − 1 neighbors of v uniformly at random, by drawing (p − 1) indices i1, . . . , ip in [d(v)]
uniformly at random, and performing neighbor queries (v, ij) for every j ∈ [p − 1]. However,
this sampling procedure introduces biasing towards stars that are incident to lower degree
endpoints. If we were also given an upper bound dub on the maximal degree in the graph, i.e.,
a value dub such that dmax ≤ dub, where dmax is the maximum degree in G, then we could
overcome the above biasing, by “unifying” all the degrees in the graph to dub. Specifically,
this unification of degrees is achieved by querying the ith neighbor of a vertex, where i is
chosen uniformly at random in [dub], rather than in [d(v)].7 By repeating this process p − 1
times, we get that each specific copy of a p-star is sampled with equal probability 1

m·(dub)p−1 .
Observe that this is always preferable to 1/mp, i.e. 1

m·(dub)p−1 > 1
mp

, since for every graph
G, dub < m. While we are not given such a bound on the maximal degree, letting s̄p denote
the number of p-stars in G, it always holds that dmax ≤ min{n, s̄1/p

p } (since every vertex
with degree d > p contributes dp to s̄p). Hence, we can use the existing algorithms for star
approximations by [26, 2, 17] in order to first get an estimate ŝp of s̄p, and then use this
estimate to get an upper bound dub on dmax by setting dub = min{n, ŝ1/p

p }.

An improved sampling approach. In order to describe the second ingredient for improving
over the bounds of [23], we first recall their algorithm. In the first step, their algorithm
simultaneously attempts to sample a copy of each odd cycle and star in the decomposition of
H. Then if all individual sampling attempt succeed, the algorithm proceeds to check if the
sampled copies are connected in G in a way that is consistent with the non-decomposition
edges of H. However, it is easy to see that this approach is wasteful. Even if all but one of
the simultaneous sampling attempts of the first step succeed, the algorithm starts over. For
example, if D∗(H) consists of a star and a triangle, then in the first step their algorithm
attempts to sample simultaneously a star and a triangle, and in the case that, say, a triangle
is sampled but the star sampling attempt fails, then the sampled triangle is discarded, and
the algorithm goes back to the beginning of the first step.

To remedy this, in the first step our algorithm invokes the star- and odd-cycle samplers for
every basic component in D∗(H), until all samplers return an actual copy of of the requested
component. This ensures that we proceed to the next step of verifying H only once we have
actual copies of all the basic components. We then continue to check if these copies can be

7 This is effectively equivalent to rejection sampling where first v is “kept” with probability d(v)/dub, and
then a neighbor of v is sampled uniformly at random.

APPROX/RANDOM 2021

55:10 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

extended to a copy of H in G, as before. While this is a subtle change, it is exactly what
allows us to replace the dependency in the maximum number of potential copies of the basic
components, to a dependency in the actual number of copies in G.

We note that for motifs H whose decomposition has repeating smaller sub-motifs, our
sampling approach can be used recursively, which can be more efficient. That is, instead
of decomposing H to its most basic components, stars and odd-cycles, we can consider
decomposing it to collections of more complex components. For example, if H has such a
collection H1 ⊂ H that is repeated more than once, then it is more beneficial to first try
and sample all of the copies of H1 (as well as the other components of H) and only then try
to extend these copies to H. The sampling of the H1 copies can then be performed by a
recursive call to the motif sampler. It can be shown that for any repeated motif H1 in the
decomposition of H, applying the recursive sampling process results in an improved upper
bound.

From sampling to estimating

In order to obtain a (1 ± ϵ)-estimate of h̄, we can use the sampling algorithm as follows.
Consider a single sampling attempt in which we first sample all basic components of D∗(H)
(at some cost Q), and then preform all pair queries between the components to check if the
sampled components induce a copy of H (at cost O(|H|2)). By the above description such
an attempt succeeds with probability that depends on the counts of the basic components of
D∗(H) and on the count h̄. Hence we can think of the success probability of each attempt
as a coin toss with bias p, where p depends only on the counts of the components and h̄.
By standard concentration bounds, using Θ(1/(pϵ2)) sampling attempts, we can compute a
(1 ± ϵ)-estimate p̂ of p. Since we can also get (1 ± ϵ)-multiplicative estimates of the counts of
each basic component without asymptotically increasing the running time, we can deduce
from p̂ a (1 ± Θ(ϵ))-estimate of h̄. See the full version for more details.

3.2 Decomposition-optimal lower bounds
Theorem 6 follows from Theorem 7. To prove Theorems 6 and 7, we first explain why
given Theorem 7, Theorem 6 follows. We then describe at a high level a family of graphs G
in which sampling copies of a given motif is hard.

At a high level, Theorem 7 states that given (1) a decomposition D and (2) a set of good
counts {c̄i}i∈[r], we can construct (3) a motif HD (such that D is an optimal decomposition
of HD) and (4) a family of graphs G such that expected number of queries required to
sampling copies of HD in G is

max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
.

Theorem 6 states that given (a) a decomposition D and (b) a (realizable) decomposition cost
dc, that there exists (c) a motif HD and (d) a family of graphs for which the decomposition-
cost of G, D and HD is dc, and sampling copies of HD in graphs of G requires Ω(dc)
queries.

To prove that Theorem 6 follows from Theorem 7, we then prove that given (a) and (b),
we can specify a set of counts which both satisfies dc = maxi∈[r] {cost(Ci)} ·

∏
c̄i

h̄ and which
is good. Since the set of counts is good, we can invoke Theorem 7, and get that there exists
a motif HD and a family of graphs in which it is hard to sample copies of HD. Therefore, in
the rest of the section we focus our attention on the proof of Theorem 7.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:11

Ideas behind the proof of Theorem 7. Given a graph decomposition D, values n, m, h̄ and
a set of counts c̄1, ..., c̄r of its basic components, our lower bound proof starts by defining a
motif HD, and a family of graphs G such that the following holds.

The optimal decomposition of HD is D;

For every G ∈ G and Oki
, Spj

∈ D, their number of copies in G is Θ(ōki
) and Θ(s̄pj

),
respectively;

The number of copies of H in G is Θ(h̄)

Sampling a uniformly distributed copy of HD in a uniformly chosen G in G, requires
Ω (min {m, dc}) queries in expectation.

There are several challenges in proving our lower bound. First, as they are very general
and work for any given decomposition D that contains at least one odd cycle, there are many
sub cases that need to be dealt with separately, depending on the mixture of components in
D. Second, the lower bound term does not only depend on the different counts, but also on
the relations between them, which determines the component that maximizes cost(Ci). As
mentioned previously, our lower bound only holds for the case that the max cost is due to
an odd cycle component. It remains an open question whether a similar lower bound can
be proven for the case that the max cost is due to a star, or whether in that case a better
algorithm exists. The authors suspect the latter option. Third, as in most previous lower
bounds for motif sampling and counting, we prove the hardness of the task by “hiding” a
constant fraction of the copies of HD, so that the existence of these copies depends on a
small set of crucial edges. That is, we prove that we can construct the family of graphs G,
such that for every G ∈ G, a specific set of t crucial edges, for some small t that depends
on the basic counts and h̄, contributes Θ(h̄) copies of HD . We then prove that detecting
these edges requires many queries (this is formalized by a reduction from a variant of the
Set-Disjointness communication complexity problem, based on the framework of [19]).
This approach of constructing many copies of HD which all depend on small set of crucial
edges, leads the construction of the graphs G to contain very dense components, which in turn
causes correlations between the counts of the different components. A significant challenge is
therefore to define the motif HD and the graphs of G in a way that satisfies all given counts
simultaneously.

In each graph G in the hard family G, we have a corresponding “gadget” to each of
the components of D. Let k1 denote (one of) the maximum-cost odd-cycle components.
For each odd-cycle component Oki

for ki ̸= k1, we define either a few-cycles-gadget or
a cycle-gadget that induce ōki

odd cycles of length ki according to the relation between
ki and k1. For each star component Spj

we define a star-gadget that induces s̄pj
many

pj-stars. The maximum-cost cycle component Ok1 has a different gadget, a CC-gadget. This
gadget is used to hide the set of t crucial edges, and allows us to parameterize the complexity
in terms of the cost cost{Ok1}.

To formally prove the lower bound we make use the framework introduced in [19], which
uses reductions from communication complexity problems to motif sampling and counting
problems in order to prove hardness results of these latter tasks. This allows us to prove
that one cannot, with high probability, witness an edge from the set of t hidden edges, unless
Ω(m/t) queries are performed. This in turn implies that one cannot, with high probability,
witness a copy of HD contributed by these edges. Hence, we obtain a lower of Ω(m/t) for the
task of outputting a uniformly sampling. Setting t appropriately gives the desired bound.

APPROX/RANDOM 2021

55:12 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

4 Upper Bounds for Sampling Arbitrary Motifs

In this section we present our improved sampling algorithm. Recall that our upper bound
improvement has two ingredients, an improved star sampler, and an improved sampling
approach. We start with presenting the improved star sampling algorithm.

4.1 An optimal (ℓp) star-sampler
Our star sampling procedure assumes that it gets as a parameter a value ŝp which is a
constant-factor estimate of s̄p. This value can be obtained by invoking one of the star
estimation algorithm of [2, 17].

▶ Lemma 12 ([2], Theorem 1). Given query access to a graph G and an approximation
parameter ϵ, there exists an algorithm, Moment-Estimator, that returns a value ŝp, such that
with probability at least 2/3, ŝp ∈ [s̄p, 2s̄p]. The expected query complexity and running time

O

(
min

{
m, min

{
m·np−1

s̄p
, m

s̄1/p
p

}
· log log n

})
.

Given an estimate ŝp on s̄p, our algorithm sets an upper bound8 dub on the maximal
degree, dub = min{n, ŝp}. It then tries to sample a copy of a p-star as follows. In each
sampling attempt it samples a single edge (v0, v1), and then performs p − 1 neighbor queries
nbr(v0, ij) for j = 2 . . . p, where each ij is chosen independently and uniformly at random from
[dub]. In order to ensure that the sampled neighbors are distinct, and to avoid multiplicity
issues, a p-star is returned only if its petals are sampled in ascending order of ids. In every
such sampling attempt, each specific p-star is therefore sampled with equal probability 1

m·dp−1
ub

.

Hence, invoking the above m·dp−1
ub

s̄p
times, in expectation, returns a uniformly distributed copy

of a p-star.

Sample-a-Star(p, n, ŝp)
1. Let dub = min{n, (cp ·ŝp)1/p} for a value cp as specified in the proof of Theorem 1.

2. While TRUE:
a. Perform a uniform edge query, an denote the returned edge (v0, v1).
b. Choose p−1 indices i2, . . . , ip uniformly at random in [dub] (with replacement).

c. For every j ∈ [2..p], query the ith
j neighbor of v0. Let v2, . . . , vp be the

returned vertices, if all queries returned a neighbor. Otherwise break.
d. If id(v2) < id(v2) < . . . < id(vp), then return (v0, v1, . . . , vp).

▶ Theorem 13. Assume that ŝp ∈ [s̄p, c·s̄p] for some small constants c. The procedure Sample-
a-Star(p, ŝp) returns a uniformly distributed p-star in G. The expected query complexity of

the procedure is O

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
.

Proof. Let cp denote the minimal value such that for every k ∈ [n], cp ·
(

k
p

)
≥ kp (note that

cp = Θ(p!)). Then s̄p =
∑

v∈V

(
d(v)

p

)
>
(

dmax

p

)
≥ dp

max/cp, and by the assumption on ŝp,
dmax < (cp · s̄p)1/p ≤ (cp · ŝp)1/p. It follows by the setting of dub = min{n, (cp · ŝp)1/p} in
Step 1, that dub ≥ dmax.

8 Observe that dmax is dmax = maxv d(v), while dub is simply a bound on dmax, so that dmax ≤ dub.

A. S. Biswas, T. Eden, and R. Rubinfeld 55:13

Consider a specific copy S̄p = (a0, a1, . . . , ap) of a p-star in G, where a0 is the star center
and a1 through ap are its petals in ascending id order. In each iteration of the while loop,
the probability that S̄p is returned is

Pr[S̄p is returned] = Pr[(a0, a1) is sampled in Step 2a]
· Pr[a2, ..., ap are sampled in Step 2b]

= 1
m

· 1
dp−1

ub

. (2)

Note the the last equality crucially depends on d(v) ≤ dmax ≤ dub for all v ∈ V . (Indeed, if
there exists a vertex v with degree d(v) > dub, then some of its incident stars will have zero
probability of being sampled.) Hence, each copy is sampled with equal probability, implying
that the procedure returns a uniformly distributed copy of a p-star.

We now turn to bound the expected query complexity. It follows from Equation 2 and
the setting of dub, that the success probability of a single invocation of the while loop is

s̄p

m·dp−1
ub

. Hence, the expected number of invocations is m·dp−1
ub

s̄p
. It follows that, for a constant

p, the expected number of invocations is

O

(
m · min{n, (cp · s̄p)1/p}p−1

s̄p

)
= O

(
min

{
m · np−1

s̄p
,

m

s̄1/p
p

})
.

Since the query complexity and running time of a single invocation of the while loop are
constant, the above is also a bound on the expected query complexity and running time of
the while loop. ◀

In the full version of this paper, we explain how algorithm Sample-a-Star can be slightly
modified to produce an ℓp-sampler, Sublinear-ℓp-Sampler as specified in Theorem 2.

4.2 General motif sampler
Our algorithm for sampling uniform copies of a motif H in a graph G relies on the above
star sampler, and the odd cycle sampler of [23].

▶ Lemma 14 (Lemma 3.3 in [23], restated). There exists a procedure that, given a parameter
k and an estimate m̂ ∈ [m, 2m] , samples each specific copy of an odd cycle of length k with
probability 1/mk/2.

It follows that by repeatedly invoking the procedure above until an odd cycle is returned
we can get an odd cycle sampling algorithm.

▶ Corollary 15. There exists a procedure, Sample-Odd-Cycle, that, given an estimate m̂ ∈
[m, 2m], returns a uniformly distributed copy of an odd cycle of length k. The expected query
complexity is O

(
min

{
m log n, n + m, mk/2

ōk

})
, where ōk denotes the number of odd cycles

of length k in G.

We also use the following algorithm from [25] to obtain an estimate of m.

▶ Theorem 16 ([25], Theorem 1, restated). There exists an algorithm that, given query
access to a graph G, the number of vertices n, and a parameter ϵ, returns a value m̃, such
that with probability at least 2/3, m̃ ∈ [m, (1 + ϵ)m]. The expected query complexity and
running time of the algorithm is O(n/

√
m) · (log log n/ϵ2).

APPROX/RANDOM 2021

55:14 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

Our motif sampling algorithm invokes the star-sampler and odd-cycles-sampler for each
of the star and odd-cycles components in D∗(H), respectively. Once actual copies of all the
components are sampled, it checks whether they form a copy of H in G, using O(|H|2) = O(1)
additional pair queries.

Sample-H (H, n)
1. Compute a 2-factor estimate m̂ of m by invoking the algorithm of [25] with

ϵ = 1/2 for 10 log n times, and letting m̂ be the median of the returned values.
2. Compute an optimal decomposition of H, D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
}.

3. For every Spi
in D, invoke algorithm Moment-Estimator with ϵ = 1/2 and r = pi

for t = 10 log(n · ℓ) times to get t estimates of s̄pi
. Let ŝpi

be the median value
among the t received estimates of each Spi .

4. While True:
a. For every i ∈ [q] do:

i. Invoke Sample-Odd-Cycle(ki, m̂), and let Ōi be the returned odd cycle.
b. For every i ∈ [ℓ] do:

i. Invoke Sample-a-Star(pi, n, ŝpi
), and let S̄j be the returned sj-star.

c. Perform O(|H|2) pair queries to verify whether the set of components
{Ō1, . . . , Ōq, S̄1, . . . , S̄ℓ} can be extended to a copy of H in G.

d. If a copy of H is discovered, then return it.
e. If the number of queries performed exceeds n + m̂, then query all edges of

the grapha and output a uniformly distributed copy of H.
a by either performing n + 2m degree and neighbor queries, or 10m log n uniform edge queries

We are now ready to prove our main upper bound theorem, which we recall here.

▶ Theorem 17. Let G be a graph over n vertices and m edges, and let H be a motif such
that D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} = {Ci}i∈[r]. There exists an algorithm, Sample-H,

that returns a copy of H in G. With probability at least 1 − 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {decomp-cost(G, H, D∗(H)), m}) · log n log log n.

Proof. By Theorem 16, when invoked with a value ϵ = 1/2, the edge estimation algorithm
of [25] returns a value m̃ such that, with probability at least 2/3, m̃ ∈ [m, 1.5m]. Hence,
with probability at least 1 − 1/3n2, the median value m̂ of the 10 log n invocations is such
that m̂ ∈ [m, 1.5m]. We henceforth condition on this event.

We next prove that with probability at least 1 − 1/3n2, all the computed ŝpi values are
good estimates of s̄pi

. By Lemma 12, for a fixed pi, with probability at least 2/3, the value
returned from Moment-Estimator is in [ŝpi

, 1.5 · ŝpi
]. Therefore, the probability that the

median value of the t = 10 log(nℓ) invocations in Step 3 is outside this range is at most
1/(3ℓn2). Hence, taking a union bound over all i ∈ [ℓ], with probability at least 1 − 1/3n2,
for every i ∈ [ℓ], ŝpi ∈ [s̄p, 1.5 · s̄p]. We henceforth condition on this event as well.

Fix a copy H ′ of H in G, and let O′
1, ..., O′

q, S′
1, ..., S′

ℓ be its cycles and stars, corresponding
to those of D∗(H). By Corollary 15, for each O′

i, its probability of being returned in Step 4(a)i
is 1/ōki . Similarly, by Lemma 1, for each S′

i, its probability of being returned in Step 4(b)i is
1/s̄pi

. Therefore, in the case that the number of queries does not exceed m̂, in every iteration

A. S. Biswas, T. Eden, and R. Rubinfeld 55:15

of the loop, each specific copy of H is returned with equal probability 1
Πq

i=1ōki
·Πℓ

i=1s̄pi

. 9

Hence, once a copy of H is returned, it is uniformly distributed in G. In the case that the
number of queries exceeds m̂, the algorithm either performs n + 2m queries to query all
the neighbors of all vertices, or 10m log n queries, in order to discover all edges with high
probability. In the former case, the entire graph G is known. In the latter case, by the
coupon collector analysis, the probability that all edges are known at the end of the process
is at least 1 − 1/3n2. Hence, with probability at least 1 − 1/3n2, at the end of this process, a
uniformly distributed copy of H is returned.

It remains to bound the query complexity. By Lemma 12, Step 3 takes
∑

pi
t ·

min
{

m·npi−1

s̄pi
, m

s̄1/pi
pi

}
· log n log log n queries in expectation. By the above discussion, it holds

that the expected number of invocations of the while loop is Πq
i=1ōki

·Πℓ
i=1s̄pi

h̄ . Furthermore, by

Lemma 1, the expected query complexity of sampling each Spi
is min

{
m·npi−1

s̄pi
, m

s̄1/pi
pi

}
. By

Lemma 15, the expected running time of each invocation of the ki-cycle sampler is O
(

mki/2

ōki

)
.

The complexity of Step 4c is O(|H|2) = O(1) queries, and is subsumed by the complexity of
the other steps. Hence, the expected cost of each invocation of the while loop is

max
i∈[q]

{
mki/2

ōki

}
+max

i∈[ℓ]

{
min

{
m

s̄1/pi
pi

,
m · npi−1

s̄pi

}}
= max

i∈[q]

{
mki/2

ōki

}
+min

{
m

s̄1/p
p

,
m · np−1

s̄p

}
,

where the equality holds since the maximum of the second term is always achieved by the
largest star in the decomposition, Sp. Also, due to Step 4e and the assumption on m̂, the
query complexity of algorithm is always bounded by O(min{m log n, n + m}). Therefore, the
overall expected query complexity is the minimum between O(min{m log n, n + m}) and

O

((
max
i∈[q]

{
mki/2

ōki

}
+ min

{
m · np−1

s̄p
,

m

s̄1/p
p

}
· log n log log n

)
·
∏

i∈[r] c̄i

h̄

)

= O

(
min

{
max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
, m

}
· log n log log n

)
= O (min {decomp-cost(G, H, D∗(H)), m, n} · log n log log n) ,

as claimed. ◀

References
1 Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient graphlet

counting for large networks. In 2015 IEEE International Conference on Data Mining, pages
1–10. IEEE, 2015.

2 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt
Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via
edge sampling. Algorithmica, 80(2):668–697, 2018.

3 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm
for Counting Arbitrary Subgraphs via Edge Sampling. In Avrim Blum, editor, 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019), volume 124 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 6:1–6:20, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2019.6.

9 To avoid multiplicity issues, if some components are repeated in the decomposition more than once,
then we can assign ids to small components and verify they are sampled in ascending id order.

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.ITCS.2019.6

55:16 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

4 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages
739–748. IEEE, 2008.

5 Haim Avron. Counting triangles in large graphs using randomized matrix trace estimation. In
Workshop on Large-scale Data Mining: Theory and Applications, volume 10, pages 10–9, 2010.

6 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rasht-
chian, and Makrand Sinha. Edge estimation with independent set oracles. arXiv preprint
arXiv:1711.07567, 2017.

7 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Linear time subgraph counting,
graph degeneracy, and the chasm at size six. In 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages
38:1–38:20, 2020. doi:10.4230/LIPIcs.ITCS.2020.38.

8 Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld. Towards a decomposition-
optimal algorithm for counting and sampling arbitrary motifs in sublinear time, 2021. arXiv:
2107.06582.

9 Andreas Bjöklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths
and packings in halves. Algorithms - ESA 2009, page 578–586, 2009. doi:10.1007/
978-3-642-04128-0_52.

10 Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation with independent
set queries. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2916–2935, 2020. doi:
10.1137/1.9781611975994.177.

11 Graham Cormode and Hossein Jowhari. L p samplers and their applications: A survey. ACM
Computing Surveys (CSUR), 52(1):1–31, 2019.

12 Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world
graphs. In Proceedings of the 2018 World Wide Web Conference, pages 589–598. International
World Wide Web Conferences Steering Committee, 2018.

13 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in
sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

14 Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of
sampling edges. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece., pages 52:1–52:14, 2019. doi:10.4230/LIPIcs.
ICALP.2019.52.

15 Talya Eden, Dana Ron, and Will Rosenbaum. Almost optimal bounds for sublinear-
time sampling of k-cliques: Sampling cliques is harder than counting. arXiv preprint
arXiv:2012.04090, 2020.

16 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in
sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 722–734, 2018. doi:
10.1145/3188745.3188810.

17 Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree distribution
moments: The arboricity connection. SIAM J. Discrete Math., 33(4):2267–2285, 2019. doi:
10.1137/17M1159014.

18 Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number
of k-cliques in low-arboricity graphs. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1467–1478, 2020. doi:10.1137/1.9781611975994.89.

19 Talya Eden and Will Rosenbaum. Lower bounds for approximating graph parameters via
communication complexity. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume

https://doi.org/10.4230/LIPIcs.ITCS.2020.38
http://arxiv.org/abs/2107.06582
http://arxiv.org/abs/2107.06582
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.1145/3188745.3188810
https://doi.org/10.1145/3188745.3188810
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/1.9781611975994.89

A. S. Biswas, T. Eden, and R. Rubinfeld 55:17

116 of LIPIcs, pages 11:1–11:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.11.

20 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In Raimund Seidel,
editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New
Orleans, LA, USA, volume 61 of OASICS, pages 7:1–7:9. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/OASIcs.SOSA.2018.7.

21 Patrick Eichenberger, Masaya Fujita, Shane T Jensen, Erin M Conlon, David Z Rudner,
Stephanie T Wang, Caitlin Ferguson, Koki Haga, Tsutomu Sato, Jun S Liu, et al. The program
of gene transcription for a single differentiating cell type during sporulation in bacillus subtilis.
PLoS biology, 2(10):e328, 2004.

22 Uriel Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.

23 Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly
uniformly in sublinear time. In 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
pages 45:1–45:13, 2020. doi:10.4230/LIPIcs.ICALP.2020.45.

24 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques
in social networks: A new distribution-free model. SIAM J. Comput., 49(2):448–464, 2020.
doi:10.1137/18M1210459.

25 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473–493, 2008. doi:10.1002/rsa.20203.

26 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in
sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.

27 Shweta Jain and C. Seshadhri. A fast and provable method for estimating clique counts using
turán’s theorem. In Conference on the World Wide Web, pages 441–449, 2017.

28 Krzysztof Juszczyszyn, Przemysław Kazienko, and Katarzyna Musiał. Local topology of
social network based on motif analysis. In International Conference on Knowledge-Based and
Intelligent Information and Engineering Systems, pages 97–105. Springer, 2008.

29 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness
in general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004. doi:10.1137/
S0097539703436424.

30 Tong Ihn Lee, Nicola J Rinaldi, François Robert, Duncan T Odom, Ziv Bar-Joseph, Georg K
Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, Itamar Simon, et al.
Transcriptional regulatory networks in saccharomyces cerevisiae. science, 298(5594):799–804,
2002.

31 Wenzhe Ma, Ala Trusina, Hana El-Samad, Wendell A Lim, and Chao Tang. Defining network
topologies that can achieve biochemical adaptation. Cell, 138(4):760–773, 2009.

32 DE Nelson, AEC Ihekwaba, M Elliott, JR Johnson, CA Gibney, BE Foreman, G Nelson,
V See, CA Horton, DG Spiller, et al. Oscillations in nf-κb signaling control the dynamics of
gene expression. Science, 306(5696):704–708, 2004.

33 Duncan T Odom, Nora Zizlsperger, D Benjamin Gordon, George W Bell, Nicola J Rinaldi,
Heather L Murray, Tom L Volkert, Jörg Schreiber, P Alexander Rolfe, David K Gifford,
et al. Control of pancreas and liver gene expression by hnf transcription factors. Science,
303(5662):1378–1381, 2004.

34 Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112:277–281, 2012.

35 Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In
Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,
pages 601–610. ACM, 2017.

36 Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the tran-
scriptional regulation network of escherichia coli. Nature genetics, 31(1):64, 2002.

37 Jakub Tětek and Mikkel Thorup. Sampling and counting edges via vertex accesses, 2021.

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/OASIcs.SOSA.2018.7
https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.1137/18M1210459
https://doi.org/10.1002/rsa.20203
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424

55:18 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

38 Alexandru Topirceanu, Alexandra Duma, and Mihai Udrescu. Uncovering the fingerprint of
online social networks using a network motif based approach. Computer Communications,
73:167–175, 2016.

39 Charalampos E Tsourakakis. Fast counting of triangles in large real networks without counting:
Algorithms and laws. In International Conference on Data Mining, pages 608–617, 2008.

40 Jakub Tětek. Approximate triangle counting via sampling and fast matrix multiplication.
CoRR, abs/2104.08501, 2021. arXiv:2104.08501.

41 John J Tyson and Béla Novák. Functional motifs in biochemical reaction networks. Annual
review of physical chemistry, 61:219–240, 2010.

42 Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing Letters,
109(4):254–257, 2009. doi:10.1016/j.ipl.2008.10.014.

43 Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and Wang-Chien Lee. Commu-
nication motifs: a tool to characterize social communications. In Proceedings of the 19th ACM
international conference on Information and knowledge management, pages 1645–1648. ACM,
2010.

A Related Work

We note that some of the works were mentioned before, but we repeat them here for the sake
of completeness. Over the past decade, there has been a growing body of work investigating
the questions of approximately counting and sampling motifs in sublinear time. These
questions were considered for various motifs H, classes of G, and query models.

The study of sublinear time estimation of motif counts was initiated by the works of
Feige [22] and of Goldreich and Ron [25] on approximating the average degree in general
graphs. Feige [22] investigated the problem of estimating the average degree of a graph,
denoted davg, when given query access to the degrees of the vertices. By performing a careful
variance analysis, Feige proved that O

(√
n/davg/ϵ

)
queries are sufficient in order to obtain

a (1
2 − ϵ)-approximation of davg. He also proved that a better approximation ratio cannot be

achieved in sublinear time using only degree queries. The same problem was then considered
by Goldreich and Ron [25]. Goldreich and Ron proved that an (1 + ϵ)-approximation can be
achieved with O

(√
n/davg

)
· poly(1/ϵ, log n) queries, if neighbor queries are also allowed.

Building on these ideas, Gonen et al. [26] considered the problem of approximating the
number of s-stars in a graph. Their algorithm only assumed neighbor and degree queries. In
[2], Aliakbarpour, Biswas, Gouleakis, Peebles, and Rubinfeld and Yodpinyanee considered the
same problem of estimating the number of s-stars in the augmented edqu queries model, which
allowed them to circumvent the lower bounds of [26] for this problem. In [17], Eden, Ron and
Seshadhari again considered this problem, and presented improved bound for the case where
the graph G has bounded arboricity. In [13, 16, 18], Eden, Ron and Seshadhri considered the
problems of estimating the number of k-cliques in general and in bounded arboricity graphs,
in the general graph query model, and gave matching upper and lower bounds. In [40], Tětek
considers both the general and the augmented query models for approximately counting
triangles in the super-linear regime. In [19], Eden and Rosenbaum presented a framework
for proving motif counting lower bounds using reduction from communication complexity,
which allowed them to reprove the lower bounds for all of the variants listed above.

In [20, 14], Eden and Rosenbaum and Ron has initiated the study of sampling motifs
(almost) uniformly at random. They considered the general graph query model, and presented
upper and matching lower bounds up to poly(log n/1/ϵ) factors, for the task of sampling edges
almost uniformly at random, both for general graphs and bounded arboricity graphs. Recently,
Tětek and Thorup [37] presented an improved analysis which reduced the dependency in

http://arxiv.org/abs/2104.08501
https://doi.org/10.1016/j.ipl.2008.10.014

A. S. Biswas, T. Eden, and R. Rubinfeld 55:19

ϵ to log(1/ϵ). This result implies that for all practical applications, the edge sampler is
essentially as good as a truly uniform sampler. They also proved that given access to what
they refer to as hash-based neighbor queries, there exists an algorithm that samples from the
exact uniform distribution. The authors of [14] also raised the question of approximating vs.
sampling complexity, and gave preliminary results that there exists motifs H (triangles) and
classes of graphs G (bounded arboricity graphs) in which approximating the number of H’s
is strictly easier than sampling an almost uniformly distributed copy of H . This question was
very recently resolved by them, proving a separation for the tasks of counting and uniformly
sampling cliques in bounded arboricity graphs [15].

A significant result was achieved recently, when Assadi, Kapralov and Khanna gave an
algorithm for approximately counting the number of copies of any given general H, in the
edge queries augmented query model. They also gave a matching lower bound for the case
that H is an odd cycle. Fichtenberger, Gao and Peng presented a cleaner algorithm with a
mich simplified analysis for the same problem, that also returns a uniformly distributed copy
of H.

Another query model was suggested recently by Beame et al. [6], which assumes access
to only independent set (IS) queries or bipartite independent set (BIS) queries . Inspired
by group testing, IS queries allow to ask whether a given set A is an independent set, and
BIS queries allow to ask whether two sets A and B have at least one edge between them.
In this model they considered the problem of estimating the average degree and gave an
O(n2/3) · poly(log n) algorithm using IS queries, and poly(log n) algorithm using BIS queries.
Chen, Levi and Waingarten [10] later improved the first bound to O(n/

√
m) · poly(log n)

and also proved it to be optimal.

APPROX/RANDOM 2021

Ideal-Theoretic Explanation of Capacity-Achieving
Decoding
Siddharth Bhandari #

Tata Institute of Fundamental Research, Mumbai, India

Prahladh Harsha #

Tata Institute of Fundamental Research, Mumbai, India

Mrinal Kumar #

Department of Computer Science and Engineering, IIT Bombay, India

Madhu Sudan #

School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

Abstract
In this work, we present an abstract framework for some algebraic error-correcting codes with the
aim of capturing codes that are list-decodable to capacity, along with their decoding algorithm. In
the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages
are polynomials and their encoding is the residue modulo the ideals. We present an alternate way of
viewing this class of codes in terms of linear operators, and show that this alternate view makes
their algorithmic list-decodability amenable to analysis.

Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes
(which are themselves a special case of the broader class we explore). These codes are common
generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes,
while also capturing the less-studied Additive Folded Reed-Solomon codes as well as a large family
of codes that were not previously known/studied.

More significantly our framework also captures the algorithmic list-decodability of the constituent
codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes
and show that the decodability reduces to the analysis of the distance of some related codes. We
show that good bounds on this distance lead to capacity-achieving performance of the underlying
code, providing a unifying explanation of known capacity-achieving results. In the specific case
of affine Folded Reed-Solomon codes, our framework shows that they are list-decodable up to
capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded
Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes.

2012 ACM Subject Classification Mathematics of computing → Coding theory

Keywords and phrases List Decodability, List Decoding Capacity, Polynomial Ideal Codes, Multi-
plicity Codes, Folded Reed-Solomon Codes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.56

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2103.07930
Full Version: https://eccc.weizmann.ac.il/report/2021/036/

Funding Siddharth Bhandari & Prahladh Harsha: Research supported by the Department of Atomic
Energy, Government of India, under project 12-R&D-TFR-5.01-0500 and in part by the Google PhD
and Swarnajayanti Fellowships.
Madhu Sudan: Supported in part by a Simons Investigator Award and NSF Award CCF 1715187.

© Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 56; pp. 56:1–56:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddharth.bhandari@tifr.res.in
mailto:prahladh@tifr.res.in
https://orcid.org/0000-0002-2739-5642
mailto:mrinalkumar08@gmail.com
mailto:madhu@cs.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.56
https://arxiv.org/abs/2103.07930
https://eccc.weizmann.ac.il/report/2021/036/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

1 Introduction

Reed-Solomon codes are obtained by evaluations of polynomial of degree less than k at
n distinct points in a finite field F. Folded-Reed-Solomon (FRS) codes are obtained by
evaluating a polynomial at sn (carefully chosen) points that are grouped into n bundles of
size s each, and then viewing the resulting sn evaluations as n elements of Fs. Multiplicity
codes are obtained by evaluating the polynomial, and s − 1 of its derivatives and again
viewing the resulting sn evaluations as n elements of Fs.

This “bundling” (or folding, as it is called for FRS codes) in FRS codes and Multiplicity
codes may be viewed at best as a harmless operation – it does not hurt the rate and (relative)
distance of a code which is already optimal in these parameters. But far from merely
being harmless, in the context algorithmic list-decoding, bundling has led to remarkable
improvements and to two of the very few explicit capacity achieving codes in the literature.
Indeed the only other codes that achieve list-decoding capacity algorithmically and do not
use one of the above codes as an ingredient are the Folded Algebraic-Geometric codes, which
also use bundling. Despite this central role, the bundling operation is not well-understood
algebraically. Indeed it seems like an “adhoc” operation rather than a principled one.
Unearthing what bundling is and understanding when and why it turns out to be so powerful
is the primary goal of this work, and we make some progress towards this.

Turning to the algorithms for list-decoding the above codes close to capacity, there are
two significantly different ones in the literature. A (later) algorithm due to Guruswami and
Wang [6]1 which seems more generalizable, and the original algorithm of Guruswami and
Rudra [3] which is significantly more challenging to apply to multiplicity codes (see [9]). In
both cases, while the algorithm for FRS works in all (reasonable) settings, the algorithms for
multiplicity codes only work when the characteristic of the field is larger than the degrees of
the polynomials in question. Looking more closely at FRS codes, part of the careful choice of
bundling in FRS codes is to pick each bundle to be a geometric progression. If one were to
switch this to an arithmetic progression, then one would get a less-studied family codes called
the Additive-FRS. It turns out the Additive-FRS codes are also known to be list-decodable
to capacity but only via the original algorithm. Thus, the short summary of algorithmic
list-decoding is that there is no short summary! Algorithms tend to work but we need to
choose carefully and read the fine print.

The goal of this paper is to provide a unifying algebraic framework that (a) captures
bundling algebraically, (b) captures most of the algorithmic success also algebraically, leaving
well-defined parts for combinatorial analysis and (c) leads to new codes that also achieve
capacity. In this work we use basic notions from linear algebra and polynomial rings to present
a unifying definition (see Definitions 3.1 and 4.4) that captures the codes very generally, and
also the decoding ability (see Theorem 1.1). We elaborate on these below.

Polynomial ideal codes

Our starting point is what we term “polynomial ideal codes”. A polynomial ideal code over a
finite field F and parameters k, s is specified by n pairwise relatively prime monic polynomials
E0(X), . . . , En−1(X) ∈ F[X]of degree equal to s.2 The encoding maps a message p ∈ Fk

1 We note that the Guruswami-Wang algorithm is inspired by an idea due to Vadhan [12, Theorem 5.24]
that shows that it suffices to interpolate a polynomial Q which is linear in the y-variables. However,
the algorithm from [12] is not applicable to our setting since it uses polynomial factorization as well as
analysis tools that are specific to Reed-Solomon codes. The further simplifications developed in [6] are
key to the applicability in our setting.

2 Here F[X] refers to the ring of univariate polynomials in the variable X over the field F while F<k[X]
refers to the vector-space of polynomials in F[X] of degree strictly less than k.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:3

(interpreted as a polynomial of degree less than k) to n symbols as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

The codes described above, Reed-Solomon, FRS, Multiplicity and Additive-FRS, are all
examples of polynomial ideal codes. For Reed-Solomon codes, this is folklore knowledge:
the evaluation point ai corresponds to going mod Ei(X) = (X − ai). For any bundling of
the Reed-Solomon codes this follows by taking product of the corresponding polynomials.
For multiplicity codes of order s, the evaluation of a polynomial and its derivatives at ai

corresponds to going modulo Ei(X) = (X − ai)s.
The abstraction of polynomial ideal codes is not new to this work. Indeed Guruswami,

Sahai and Sudan [4, Appendix A] already proposed these codes as a good abstraction of
algebraic codes. Their framework is even more general, in particular they even consider
non-polynomial ideals such as in Z. They suggest algorithmic possibilities but do not flesh
out the details. In this work we show that polynomial ideal codes, as we define them, are
indeed list-decodable up to the Johnson radius. We note that the proof involves some steps
not indicated in the previous work but for the most part this confirms the previous thinking.

The abstraction above also captures “bundling” (or folding) nicely - we get them by
choosing Ei(X) to be a product of some Eij(X). But the above abstraction thus far fails to
capture the capacity-achieving aspects of the codes (i.e., the benefits of this bundling) and
the decoding algorithms. This leads us to the two main novel steps of this paper:

We present an alternate viewpoint of polynomial ideal codes in terms of linear operators.
We abstract the Guruswami-Wang linear-algebraic list-decoding algorithm in terms of
linear operators.

The two sets of “linear operators”, in the codes and in the decoding algorithm, are not
the same. But the linearity of both allows them to interact nicely with each other. We
elaborate further below after introducing them.

Linear operator codes

In this work, a linear operator is an F-linear function L : F[X] → F[X]. A linear operator code
is characterized by a family of linear operators L = (L0, . . . , Ls−1), a set A = {a0, . . . , an−1} ⊆
F of evaluation points and k a degree parameter such that k ≤ s · n. The corresponding
linear operator code, denoted by LOA

k (L), is given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))n−1
i=0

Linear operator codes easily capture polynomial ideal codes. For instance, the multiplicity
codes are linear operator codes wherein the linear operators are the successive derivative
operators. But they are also too general – even if we restrict the operators to map F<k[X]
to itself, an operator allows k2 degrees of freedom.

We narrow this broad family by looking subfamilies of linear operators and codes. The
specific subfamily we turn are what we call “ideal linear operators”. We say that linear
operators L0, . . . , Ls−1 are ideal linear operators with respect to a set A of evaluation points
if for every a ∈ A, the vector space

Ia(L) = {p ∈ F[X] | L(p)(a) = 0̄}

APPROX/RANDOM 2021

56:4 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

is an ideal. (When the set of evaluation points is clear from context, we drop the phrase
“with respect to A”.) Linear operator codes corresponding to ideal linear operators are called
ideal linear operator codes (see Definitions 4.1 and 4.4 for precise definitions).

It is not hard to see that a family of linear operators L = (L0, . . . , Ls−1) has the ideal
property if is satisfies the following linearly-extendibility property: There exists a matrix
M(X) ∈ F[X]s×s such that for all p ∈ F[X] we have

L(X · p(X)) = M(X) · L(p(X)).

This motivates yet another class of linear operators and code: We say that an operator family
L is a linearly-extendible linear operator if such a matrix M(X) exists and the resulting code
is said to be a linearly-extendible linear operator code (see Definitions 4.2 and 4.4 for precise
definitions).

It turns out that these three definitions of codes – polynomial ideal codes, ideal linear
operator codes and linearly-extendible linear operator codes – are equivalent (see Propo-
sitions 4.6 and 4.8 and Corollary 4.9). And while the notion of polynomial ideal codes
captures the codes mentioned thus far naturally, the equivalent notion of linearly-extendible
codes provides a path to understanding the applicability of the linear-algebraic list-decoding
algorithm of Guruswami and Wang.

While it is not the case that every linearly-extendible linear operator code (and thus
every polynomial ideal code) is amenable to this list-decoding algorithm, it turns out that
one can extract a nice sufficient condition on the linear-extendibility for the algorithm to be
well-defined. This allows us to turn the question of list-decodability into a quantitative one –
how many errors can be corrected. And the linear operator framework now converts this
question into analyzing the rank of an associated matrix.

The sufficient condition we extract is the following: we say that an operator L : F[X] →
F[X] is degree-preserving if degX(Lf) ≤ degX(f) for all f ∈ F[X]. Observe that any
degree-preserving linear operator when restricted to F<k[X] can be represented by an upper-
triangular matrix in Fk×k. A family of linear operators obtained by repeated iteration,
L = (I = L0, L = L1, L2, . . . , Ls−1) is called an iterative family. We associate with any
degree-preserving family L = (L0, . . . , Ls−1) of linear operators a simple matrix in Fs×k

called Diag(L), whose ith row is the diagonal of Li and consider the code in Fk generated by
Diag(L).

The following theorem now shows that for any degree-preserving iterative linearly-
extendible operator codes, lower bound on the distance of Diag(L) yields an upper bound on
the list size obtained by the Guruswami-Wang algorithm, even when the number of errors
approaches (1 − rate) of the code.

▶ Theorem 1.1. Suppose L : F[X] → F[X] is a degree-preserving linear operator and A a
set of evaluation points such that for L = (L0, L1, . . . , Ls−1) the corresponding code C is a
linearly-extendible linear operator code. Furthermore, if the matrix Diag(L) ∈ Fs×k formed
by stacking the diagonals of the s linear operators as the rows is the generator matrix of a
code with distance 1 − ℓ

k , then, C is list-decodable up to the distance 1 − k
(s−m+1)n − 1

m with
list size qℓ for any 1 ≤ m ≤ s.

We remark that our actual theorem is more general (see Theorem 5.2) where we further
separate the role of linear operators used to build the code, from those that seed the decoding
algorithm. But it immediately implies Theorem 1.1 above, which in turn already suffices to
capture the capacity achieving decodability of FRS, multiplicity and additive-FRS codes.
Regarding the aspect of the need to lower bound the distance of the code generated by

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:5

Diag(L), to bound the list size of the codes, we stress that for each of these codes the lower
bound on the distance follows from fairly simple arguments. Indeed the generality of the
arguments allows us to capture broader families of codes uniformly, as described next.

A Common Generalization

Our framework leads very naturally to a new class of codes that we call the Affine Folded Reed-
Solomon (Affine-FRS) codes: these are codes defined by ideals of the form

∏s−1
i=0 (X − ℓ(i)(a))

where ℓ(z) = αz + β is any linear form and ℓ(i)(z) = ℓ(ℓ . . . ℓ(z) . . .)︸ ︷︷ ︸
i times

. These codes generalize

all the previously considered codes: The case ℓ(z) = γz are the FRS codes, the case ℓ(z) = z

are the Multiplicity codes, and the case ℓ(z) = z + β are the Additive FRS codes!

▶ Theorem 1.2 (Informal statement – see Theorem A.8). Let ℓ be any linear form such that
either ord(ℓ) ≥ k or (char(F) ≥ k and β ̸= 0) 3. Then the Affine-FRS codes corresponding to
the linear form ℓ are list-decodable up to capacity.

Previously, even for the special case of the Additive FRS codes, list-decodability close to
capacity was only achieved by the more involved algorithm of Guruswami & Rudra [3] and
Kopparty [9] (see paragraph on Additive Folding and Footnote 4 in [2, Section III]). (A
similar approach can be extended to cover the case of ord(ℓ) ≥ k in Theorem 1.2: however,
it seems difficult to do so for the case when ord(ℓ) is small.)

Thus, our Affine-FRS codes lead to the first common abstraction of the three codes as
well as the first common algorithm for solving the list-decoding problem for these codes.
(Furthermore, this algorithm is linear-algebraic.)‘ Arguably thus, even if the Affine-FRS
codes had been studied previously, it is not clear that the ability to decode them for every
choice of ℓ(z) would be obvious.

Organization
The rest of the paper is organized as follows. We begin with some preliminaries in Section 2.
We then formally define polynomial ideal codes and linear operator codes in Sections 3 and 4
respectively. In Section 5, we discuss list-decoding algorithms for polynomial ideal codes.
We first present the list-decoding algorithm for all polynomial ideal codes up to the Johnson
radius in Section 5.1 and then the list-decoding algorithm beyond the Johnson radius for
special families of linear operator codes in Section 5.2. Finally, we conclude by demonstrating
how these results can be used to show that several well-known families of codes (Folded
Reed-Solomon, multiplicity, additive Folded Reed-Solomon codes) as well as their common
generalization affine folded Reed-Solomon achieve list-decoding capacity in Appendix A.

Throughout the paper, we skip the proofs of various claims due to space constraints. We
refer the interested reader to the full version of the paper [1] for the complete proofs.

2 Notations and Preliminaries

We start with some notations that we follow in the rest of this paper.
For a natural number n, [n] denotes the set {0, 1, . . . , n − 1}.
F denotes a field.

3 ord(ℓ) refers to the smallest positive integer u such that ℓ(u)(z) = z.

APPROX/RANDOM 2021

56:6 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

For a, b, i, j ∈ Z, where a, b, i, j ≥ 0 the bivariate monomial XiY j is said to have (a, b)-
weighted degree at most d if ai + bj ≤ d. N(a, b) denotes the number of bivariate
monomials of (1, a)-weighted degree at most b.
For a, b ∈ Z, a bivariate polynomial Q(X, Y) is said to have (a, b)-weighted degree at
most d, if it is supported on monomials of (a, b)-weighted degree at most d.
We say that a function f(n) : N → N is poly(n), if there are constants c, n0 ∈ N such that
for all n ≥ n0, f(n) ≤ nc.
F[X] is the ring of univariate polynomials with coefficients in F, and for every k ∈ N,
F<k[X] denotes the set of polynomials in F[X] of degree strictly less than k.
For a multivariate polynomial f(X0, X1, . . . , Xn−1) ∈ F[X0, X1, . . . , Xn−1], degXi

(f)
denotes the degree of f , when viewing it as a univariate in Xi, with coefficients in the
polynomial ring on the remaining variables over the field F.

Estimates on N(a, b)

We rely on the following simple lemma to estimate the number of bivariate monomials with
(1, a)-weighted degree at most b. See the full version [1] for the proof.

▶ Lemma 2.1. For every a, b ∈ N, let N(a, b) denote the number of bivariate monomials
with (1, a)-weighted degree at most b. Then, the following are true.
1. N(a − 1, b) ≥ b2/2a.
2. For every η ∈ N, if a divides b, then

N(a, b) − N(a, b − aη) − η(b − aη + 1) = aη(η + 1)/2 .

Johnson radius

▶ Theorem 2.2 (List decoding up to Johnson radius). Let q ∈ N be a natural number. Any
code with block length n and relative distance δ over an alphabet of size q is (combinatorially)
list decodable from (1 −

√
(1 − δ)) fraction of errors with list size at most n2qδ.

We have the following bound for codes, referred to popularly as the Singleton bound [11],
though the bound appears earlier in the works of Joshi [7] and Komamiya [8].

▶ Theorem 2.3 (Komamiya-Joshi-Singleton bound). The rate R and the relative distance δ

of a code satisfy R + δ ≤ 1 + o(1).

In particular, for codes which lie on the Komamiya-Joshi-Singleton bound, we have that they
are combinatorially list decodable from 1 −

√
R − o(1) fraction errors with polynomial list

size.

List-decoding upto capacity

▶ Definition 2.4 (List-decoding Capacity). Consider a family of codes C = {C1, . . . , Cn, . . .}
where Cn has rate ρn and block length n with alphabet Σn. Then, C is said to achieve
list-decoding capacity if ∀ε > 0 there exists an n0 such that ∀n ≥ n0 and all received
words w ∈ Σn, there exists at most a polynomial number of codewords c ∈ Cn such that
δ(c, w) ≤ (1 − ρn(1 + ε)).

Further, if there exists an efficient algorithm for finding all these codewords, then, C is
said to achieve list-decoding capacity efficiently. Ideally, we want to keep Σn as small as
possible.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:7

Chinese remainder theorem

We also rely on the following version of the Chinese Remainder Theorem for the polynomial
ring.
▶ Theorem 2.5. Let E0(X), E1(X), . . . , Es−1(X) be univariate polynomials of degree equal
to d over a field F such that for every distinct i, j ∈ [s], Ei and Ej are relatively prime. Then,
for every s-tuple of polynomials (r0(X), . . . , rs−1(X)) ∈ F[X]s such that each ri is of degree
strictly less than d (or zero), there is a unique polynomial p(X) ∈ F[X] of degree at most
ds − 1 such that for all i ∈ [s],

p(X) = ri(X) mod Ei(X) .

Polynomial ideals

▶ Definition 2.6. A subset I ⊆ F[X] of polynomials is said to be an ideal if the following
are true.

0 ∈ I.
For all p(X), q(X) ∈ I, p + q ∈ I.
For every p(X) ∈ I and q(X) ∈ F[X], p(X) · q(X) ∈ I.

For the univariate polynomial ring F[X], we also know that every ideal I is principal, i.e.
there exists a polynomial p(X) ∈ I such that

I = {p(X)q(X) : q(X) ∈ F[X]} .

3 Polynomial ideal codes

In this section, we discuss polynomial ideal codes in more detail, and see how this framework
captures some of the well studied families of algebraic error correcting codes.

We start with the formal definition of polynomial ideal codes.
▶ Definition 3.1 (polynomial ideal codes). Given a field F, parameters s, k and n satisfying
k < s · n, the polynomial ideal code is specified by a family of n polynomials E0, . . . , En−1 in
the ring F[X] of univariate polynomials over the field F satisfying the following properties.

1. For all i ∈ [n], polynomial Ei has degree exactly s.
2. The Ei’s are monic polynomials.
3. The polynomials Ei’s are pairwise relatively prime.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0

As is clear from the definition, polynomial ideal codes are linear over F and have rate k/sn

and relative distance (1 − (k − 1)/sn). Since the sum of rate and relative distance satisfy the
Komamiya-Joshi-Singleton bound, these codes are maximal-distance separable (MDS) codes.

We note that in general, Ei’s need not have the same degree, but for notational convenience,
we work in the setting when each of them is of degree equal to s. We also note that these
codes continue to be well defined even if the Ei’s are not relatively prime. In this case, the
condition, k < s · n is replaced by k being less than the degree of the lowest common multiple
of E0, E1, . . . , En−1. However, the distance of the code suffers in this case, and such codes
need not approach the Komamiya-Joshi-Singleton bound. We now observe that some of the
standard and well studied family of algebraic error correcting codes are in fact instances of
polynomial ideal codes for appropriate choice of E0, E1, . . . , En−1.

APPROX/RANDOM 2021

56:8 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

3.1 Some well known codes via polynomial ideals
The message space for all these codes is identified with univariate polynomials of degree
at most k − 1 in F[X]. We assume that the underlying field F is of size at least n for this
discussion, else, we work over a large enough extension of F.

Reed-Solomon Codes

Let a0, a1, . . . , an−1 be n distinct elements of F. In a Reed-Solomon code, we encode a
message polynomial p(X) ∈ F[X]<k by its evaluation on a0, a1, . . . , an−1. To view these as
a polynomial ideal code, observe that p(ai) = p(X) mod (X − ai). Thus, we can set the
polynomials Ei(X) in Definition 3.1 to be equal to (X − ai) for each i ∈ [n]. Thus, s = 1.
Clearly, the Ei’s are relatively prime since a0, a1, . . . , an−1 are distinct.

Folded Reed-Solomon Codes [3]

Let γ ∈ F∗
q be an element of multiplicative order at least s, i.e. γ0, γ, . . . , γs−1 are all distinct

field elements. Further, let the set of evaluation points be A = {a0, . . . , an−1} such that for
any two distinct i and j the sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint.
In a Folded Reed-Solomon code, with block length n and folding parameter s is defined by
the following encoding function.

p(X) 7−→
(

p(ai), p(aiγ
1), . . . , p(aiγ

(s−1))
)n−1

i=0

Thus, these are codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =

∏s−1
j=0(X − aiγ

j). Clearly,
each such Ei is a polynomial of degree equal to s, and since for any two distinct i and
j the sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint, the polynomials
E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between these two viewpoints observe that p(aiγ
j) = p(X)

mod (X − aiγ
j). Moreover, (X − aiγ

j) are all relatively prime as j varies in [s] for every
i ∈ [n]. Thus, by the Chinese Remainder Theorem over F[X], there is a bijection between
remainders of a polynomial modulo {(X − aiγ

j) : j ∈ [s]} and the remainder modulo the
product Ei =

∏
j∈[s](X − aiγ

j) of these polynomials.

Additive Folded Reed-Solomon Codes [3]

Additive Folded Reed-Solomon codes are a variant of the Folded Reed-Solomon codes defined
above. Let Fq have characteristic at least s and let β ∈ F∗

q . Further, let the set of evaluation
points be A = {a0, . . . , an−1} where ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j.
Here, s denotes the folding parameter. The encoding is defined as follows.

p(X) 7−→ (p(ai), p(ai + β), . . . , p(ai + β(s − 1)))n−1
i=0

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes, we set Ei(X) =

∏s−1
j=0(X − ai + βj). Clearly,

each such Ei is a polynomial of degree equal to s, and since ai − aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j, the polynomials E0, E1, . . . , En−1 are all relatively prime.

To see the equivalence between the two definitions, the argument is again identical to that
for Folded Reed-Solomon codes discussed earlier in this section. We just observe (X −ai + βj)
are all relatively prime j varies in [s] for every i ∈ [n], and thus by the Chinese Remainder

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:9

Theorem over F[X], there is a bijection between remainders of a polynomial modulo {(X −
ai + βj) : j ∈ [s]} and the remainder modulo the product Ei =

∏
j∈[s](X − ai + βj) of these

polynomials.

Univariate Multiplicity Codes [10]

Univariate multiplicity codes, or simply multiplicity codes are a variant of Reed-Solomon,
where in addition to the evaluation of the message polynomial at every ai, we also give the
evaluation of its derivatives of up to order s − 1. While they can be defined over all fields,
for the exposition in this paper, we consider these codes over fields F of characteristic at
least sn. Moreover, we also work with the standard derivatives (from analysis), as opposed
to Hasse derivatives which is typically the convention in coding theoretic context. Let
a0, a1, . . . , an−1 ∈ F be distinct field elements.

The encoding is defined as follows.

p(X) 7−→
(

p(ai),
∂p

∂X
(ai), . . . ,

∂s−1p

∂Xs−1 (ai)
)n−1

i=0

Here, ∂jp
∂Xj−1 denotes the (standard) jth order derivative of p with respect to X.

To view these as polynomial ideal codes, we set Ei(X) = (X − ai)s. Clearly, each such
Ei is a polynomial of degree equal to s, and since ai’s are all distinct, these polynomials
E0, E1, . . . , En−1 are all relatively prime.

The equivalence of these two definitions follows from an application of Taylor’s theorem
to univariate polynomials, which says the following.

p(X) = p(ai + X − ai)

= p(ai) + (X − ai)
∂p

∂X
(ai) + · · · + 1

(s − 1)! (X − ai)s−1 ∂s−1p

∂Xs−1 (ai) + (X − ai)s · q(X)

for some polynomial q(X) ∈ F[X]. Thus,

p(X) mod (X − ai)s = p(ai) + (X − ai)
∂p

∂X
(ai) + · · · + 1

(s − 1)! (X − ai)s−1 ∂s−1p

∂Xs−1 (ai).

Therefore, p(X) mod (X − ai)s we can read off the evaluations of the derivatives of p of
order up to s − 1 at ai by explicitly writing p(X) mod (X − ai)s as a polynomial in (X − ai)
(via interpolation for instance), and reading off the various coefficients. Similarly, using the
above expression, given the evaluation of all the derivatives of order up to s − 1 of p at ai,
we can also reconstruct p(X) mod (X − ai)s.

Affine Folded Reed-Solomon Codes

We now describe a common generalization of the codes defined above, which we call Affine
Folded Reed-Solomon Codes. Fix integers k, n, q with n ≤ q. Let α ∈ F∗

q and β ∈ Fq such
that the multiplicative order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ̸= 1, i.e, u > 1 then, βu = β ·
∑u−1

j=0 αj = 0 and hence ℓ(u)(X) = ℓ(0)(X).
Let ord(ℓ) denote the smallest positive integer t such that ℓ(t)(X) = X. The message
space of the Affine Folded Reed-Solomon code of degree k with block length n and folding

APPROX/RANDOM 2021

56:10 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

parameter s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq.
Let the set of evaluation points be A = {a0, . . . , an−1} such that for distinct i, j the sets{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and
{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.
The encoding function of Affine Folded Reed-Solomon Codes is given as: (Recall that

t = ord(ℓ); let s = v · t + r where r < t.)

p(X) 7−→

p(ℓ(0)(ai)) ∂p

∂X
(ℓ(0)(ai)) . . . ∂v−1p

∂Xv−1 (ℓ(0)(ai)) ∂vp
∂Xv (ℓ(0)(ai))

...
... . . .

...
...

...
... . . .

... ∂vp
∂Xv (ℓ(r−1)(ai))

p(ℓ(t−1)(ai)) ∂p
∂X

(ℓ(t−1)(ai)) . . . ∂v−1p
∂Xv−1 (ℓ(t−1)(ai))

n−1

i=0

.

Thus, these are also codes over the alphabet Fs.
To view these as polynomial ideal codes we set

Ei(X) =
s−1∏
j=0

(X − αjai − βj) =
r−1∏
j=0

(X − ℓ(j)(ai))v+1 ·
t−1∏
j=r

(X − ℓ(j)(ai))v.

For the choice of A as above, the polynomials Ei = E(X, ai) are pairwise co-prime. Similar to
the previous cases of Folded/Additive Reed-Solomon and Multiplicy codes we have a bijection
between the remainders of a polynomial modulo Ei and the encoding of the polynomial at ai.

3.2 An alternate definition
We now discuss an alternate definition of polynomial ideal codes; the advantage being that this
definition ties together the polynomials E0, E1, . . . , En−1 into a single bivariate polynomial.
This would be useful later on when we discuss the connection between polynomial ideal codes
and linear operator codes.

▶ Definition 3.2 (polynomial ideal codes (in terms of bivariate polynomials)). Given a field
F, parameters s, k and n satisfying k < s · n, the polynomial ideal code is specified by a
bivariate polynomial E(X, Y) over the field F and a set of n field elements a0, a1 . . . , an−1 in
F satisfying the following properties.
1. degX E(X, Y) = s.
2. E(X, Y) is a monic polynomial in the variable X.
3. The polynomials E(X, ai)’s are pairwise relatively prime.
Since E is monic and has (exact) degree s in the variable X, any polynomial p ∈ F[X] has
the following unique representation.

p(X) = Q(p)(X, Y) · E(X, Y) + R(p)(X, Y) where degX(R(p)(X, Y)) < s.

The encoding of the polynomial ideal code maps is as follows:

F<k[X] −→ (F<s[X])n

p(X) 7−→
(

R(p)(X, ai)
)n−1

i=0
.

The equivalence of Definitions 3.1 and 3.2 is not hard to see. We summarize this in the
simple observation below.

▶ Observation 3.3. Definitions 3.1 and 3.2 are equivalent.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:11

Proof. Given a code as per Definition 3.1, we can view this as a code according to Defini-
tion 3.2 by picking n distinct a0, a1, . . . , an−1 ∈ F (or in a large enough extension of F of size
at least n) and use standard Lagrange interpolation to find a bivariate polynomial E(X, Y)
such that for every i ∈ [n],

E(X, ai) = Ei .

More precisely, we define E(X, Y) as follows.

E(X, Y) :=
∑
i∈[n]

 ∏
j∈[n]\{i}

(Y − aj)
(aj − ai)

 · Ei(X) .

Clearly, E(X, ai)’s are relatively prime, and their degree in X equals s and E(X, Y) is monic
in X. The equivalence of the encoding function also follows immediately from the definitions.

The other direction is even simpler. Given a code as per Definition 3.2, we can view this
as a code as per Definition 3.1 by just setting Ei(X) to be equal to E(X, ai) for every i ∈ [n].
The condition on the degree of Ei and their relative primality follows immediately from the
fact that E(X, Y) is monic in X of degree s, and E(X, ai)’s are relatively prime. Once again,
the encoding map can be seen to be equivalent in both the cases. ◀

From Observation 3.3 and the discussion in Section 3.1, the Reed-Solomon codes, Folded
Reed-Solomon codes, Additive Folded Reed-Solomon codes and Multiplicity codes can also
be viewed as polynomial ideal codes as per Definition 3.2.

Reed-Solomon codes: We take E(X, Y) to be equal to (X − Y), the set of points
a0, . . . , an−1 remain the same.
Folded Reed-Solomon codes: We take E(X, Y) =

∏
j∈[s](X − γjY) and the set of

evaluation points a0, . . . , an−1 are set as before, and γ ∈ F∗ is an element of high enough
order.
Additive Folded Reed-Solomon codes: We take E(X, Y) =

∏
j∈[s](X − Y + βj) and

the set of evaluation points a0, . . . , an−1 are set as before. Recall that F is taken to be a
field of characteristic at least s for these codes.
Multiplicity codes: We take E(X, Y) to be equal to (X − Y)s, the set of points
a0, . . . , an−1 are distinct.
Affine Folded Reed-Solomon codes: We take E(X, Y) =

∏s−1
i=0 (X − ℓ(i)(Y)) where

ℓ(Y) = αY + β with α ∈ F∗
q and β ∈ Fq. Recall that the set of evaluation points

A = {a0, . . . , an−1} is such that for distinct i, j the sets
{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

It follows immediately from these definitions that all the desired properties in Definition 3.2
are indeed satisfied. We skip the remaining details.

4 Linear operator codes

In this section, we give an alternate viewpoint of polynomial ideal codes in terms of codes
defined based on linear operators on the ring of polynomials.

▶ Definition 4.1 (linear operators). Let L = (L0, . . . , Ls−1) be a of s linear operators where
each Li : F[X] → F[X] is a F-linear operator over the ring F. For any f ∈ F[X], it will be
convenient to denote by L(f) the (row) vector (L0(f), . . . , Ls−1(f)) ∈ F[X]s.

APPROX/RANDOM 2021

56:12 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

Given any such family L and element a ∈ F, define

Ia(L) = {p(X) ∈ F[X] | L(p)(a) = 0̄}.

If the family L of linear operators family and the set of field elements A ⊆ F further satisfy
the property that Ia(L) is an ideal for each a ∈ A, we refer to the family L as an ideal family
of linear operators with respect to A.

In this case, since F[X] is a principal ideal domain, for each a ∈ A, Ia(L) = ⟨Ea(L)(X)⟩
for some monic polynomial Ea(L) ∈ F [X].

We now define a special condition on the family of linear operators L which will help us
capture when Ia(L) forms an ideal.

▶ Definition 4.2 (linearly-extendible linear operators). The family L of linear operators is said
to be linearly-extendible if there exists a matrix M(X) ∈ F[X]s×s such that for all p ∈ F [X]
we have

L(X · p(X)) = M(X) · L(p(X)). (1)

We give two examples to illustrate the definition:
Let L0(f(X)) = f(X) and L1(f(X)) = f ′(X) where f ′ is the formal derivative of f . Then,
by the product rule L1(Xf(X)) = X · f ′(X) + f(X). Hence, in this case M(X) =

(
X 0
1 X

)
.

Let L0(f(X)) = f(X) and L1(f(X)) = f(γX) where γ ∈ Fq is non-zero. Then, we have
L1(Xf(X)) = γXf(γX). Hence, in this case M(X) =

(1 0
0 γX

)
.

▶ Observation 4.3. Suppose L is linearly-extendible and M(X) is the corresponding matrix
from Equation (1).

For any j ≥ 0 we have L(Xj · p(X)) = (M(X))j · L(p(X)). Thus, by linearity we have
that for any q ∈ F[X]:

L(q(X) · p(X)) = q(M(X)) · L(p(X)).

For instance if q(X) = Xj then L(Xj · p(X)) = (M(X))j · L(p(X)).
The family L is completely specified by L(1) and M(X). In other words, L(p(X)) =
p(M(X)) · L(1).
For every set A of evaluation points, L is an ideal family of linear operators with
respect to A. This is because if at a point a we have L(p)(a) = 0 then L(Xp)(a) =
(M(X) · L(p(X)))(a) = M(X = a) · L(p)(a) = 0 . This means that if p(X) ∈ Ia(L) then
Xp(X) ∈ Ia(L), and hence by linearity for any q(X) ∈ F[X] we have q(X) ·p(X) ∈ Ia(L).

▶ Definition 4.4 (linear operator codes). Let L = (L0, . . . , Ls−1) be a family of linear
operators, A = {a1, . . . , an} ⊆ F be a set of evaluation points and k a degree parameter such
that k ≤ s · n. Then the linear operator code generated by L and A, denoted by LOA

k (L), is
given as follows:

F<k[X] −→ (Fs)n

p(X) 7−→ (L(p)(ai))n
i=1 .

If L is an ideal family of linear operators with respect to A where the polynomials
Ei := Eai(L), which are the monic generator polynomials for the ideals Iai(L), further
satisfy the following:

1. For all i ∈ [n], polynomial Ei has degree exactly s.
2. The polynomials Ei’s are pairwise relatively prime.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:13

Then the linear operator code is said to be an ideal linear operator code and denoted by
ILOA

k (L).
If the ideal linear operator code ILOA

k (L) further satisfies that L is linearly-extendible,
then the ideal linear operator code is said to be a linearly-extendible linear operator code,
denoted by LELOA

k (L).

▶ Remark 4.5. The rate of the LOA
k (L) code is k/sn. Further, if the the code is an ideal

linear operator code, i.e., ILOA
k (L), then its distance is 1 − k−1

sn . Hence, ILOA
k (L) is an

MDS code.

▶ Proposition 4.6. Any polynomial ideal code is a linearly-extendible linear operator code.

See the full version [1] for a proof.
▶ Remark 4.7. (degree preserving) If the bivariate polynomial E(X, Y) has total degree s, then,
the linear operator in the LELO code obtained above has the property that degX Li(Xj) ≤ j:
in fact, degX Li(Xj) ≤ j − i.

▶ Proposition 4.8. Any ideal linear operator code is a polynomial ideal code.

Proof. Consider an ideal linear operator code ILOA
k (L). For any polynomial p(X) ∈ F[X]

and a point ai ∈ A, giving L(p(X))(a) is equivalent to giving p(X) mod ⟨Ei⟩ where ⟨Ei⟩ =
Iai(L). However, the Eis readily satisfy Definition 3.1. ◀

Now, we state a corollary which further corroborates the notion of linear-extendibility.

▶ Corollary 4.9 (Equivalence of ILO and LELO). From Propositions 4.6 and 4.8 it follows
that every ideal linear operator code is also a linearly-extendible linear operator code.

Below we state some well known codes in their linear operator descriptions (a more formal
treatment is given in Appendix A):

Reed-Solomon Codes: Let A = {a0, . . . , an−1} be distinct elements in Fq These are
LELOL,A where L = (I). That is the encoding of the message polynomial p(X) ∈ F<k[X]
at a point a is L(f(X))(a) = f(a).
Folded Reed-Solomon Codes: Let γ ∈ F ∗

q with multiplicative order at least s.
FRS[k, n] with folding parameter s are linearly-extendible linear operator codes LELOL,A

where:
L = (L0, . . . , Ls−1) with L1(f(X)) = f(γY) for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j

the sets
{

ai, aiγ, . . . , aiγ
s−1} and

{
aj , ajγ, . . . , ajγs−1} are disjoint.

Multiplicity Codes: Then, MULT [k, n] codes of order s are linearly-extendible linear
operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = X ·I[i = j]+i·I[i−1 = j]
for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

Additive Folded Reed-Solomon Codes: Let β ∈ Fq be a non-zero element and the
characteristic of Fq be at least s. Then, Additive-FRS[k, n] codes with folding parameter
s are linearly-extendible linear operator codes LELOL,A where:

APPROX/RANDOM 2021

56:14 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

L = (L0, . . . , Ls−1) with L1(f(X)) = f(X + β) for f(X) ∈ Fq[X] and Li = Li
1 for

i ∈ {0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ai − aj /∈
{0, β, 2β, . . . , (s − 1)β} for distinct i and j.

Affine Folded Reed-Solomon Codes: Let α ∈ F∗
q and β ∈ Fq. Further, let ℓ(X) =

αX + β with ord(ℓ) = u. Then Affine-FRS[k, n] codes with folding parameter s are
linearly-extendible codes LELOL,A described below. (See Observation A.7 for more
details.)
Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)

∂X and S1 : F[X] → F[X] as S1(f(X)) =
f(ℓ(X)). Further, for i ≥ 0 let Di = Di

1 and Si = Si
1. Recall, that the order of α is u.

For any integer r ∈ [s] let r = r1u + r0, with r0 < u, be the unique representation of r.
Define Lr : F[X] → F[X] as Lr(f(X)) = Sr0(Dr1f(X)). Set L = (L0, . . . , Ls−1).
Clearly, L is a family of linear operators.
Lr(Xf) = Sr0(Dr1f) = Sr0(r1 ·Dr1−1f +X ·Dr1f) = r1 ·Lr−uf +Sr0(X) ·Lrf : hence,
L is a set of linearly-extendible linear operators.
The set of evaluation points A = {a0, . . . , an−1} is such that for distinct i, j the sets{

ℓ(0)(ai), . . . , ℓ(s−1)(ai)
}

and
{

ℓ(0)(aj), . . . , ℓ(s−1)(aj)
}

are disjoint.

5 List-decoding of polynomial ideal codes

In this section, we discuss the list-decoding of polynomial ideal codes.

5.1 List-decoding up to to the Johnson radius
We first observe that polynomial ideal codes are list decodable in polynomial time, up to the
Johnson radius.

▶ Theorem 5.1. Let k, s, n ∈ N be such that k < sn and s < k − 1. Let
E0(X), E1(X), . . . , En−1(X) ∈ F[X] be relatively prime monic polynomials of degree equal to
s each. Let Enc : F<k[X] −→ (F<s[X])n be the encoding function defined as

p(X) 7−→ (p(X) (mod Ei(X)))n−1
i=0 .

Then, there is an algorithm, which takes as input a received word c = (c0, c1, . . . , cn) ∈
F<s[X]n and for every ε > 0 outputs all polynomials f ∈ F<k[X] such that Enc(f) and c
agree on at least (k/sn)1/2 + ε fraction of coordinates in time poly(n, 1/ε).

Observe that the rate of this code is k/sn and distance is 1 − (k − 1)/sn, and thus
Theorem 5.1 gives us an algorithmic analog of Theorem 2.2 for these codes.

The list decoding algorithm for polynomial ideal codes is an (almost immediate) extension
of an algorithm of Guruswami, Sahai and Sudan [4] for list decoding codes based on Chinese
Remainder Theorem to this setting. This algorithm, in turn, relies on ideas in an earlier
algorithm of Guruswami and Sudan [5] for list decoding Reed-Solomon codes up to the
Johnson radius.

As noted in the introduction, most of the ideas for the proof of Theorem 5.1 were already
there in the work of Guruswami, Sahai and Sudan [4] and all we do in this section is to
flush out some of the details. Due to space constraints, we refer the interested reader to full
version [1] for details.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:15

5.2 List-decoding beyond the Johnson radius
In this section, we use the linear operator viewpoint of polynomial ideal codes to study their
list-decodability beyond the Johnson radius. We show that if the family of linear operators
L and the evaluation points satisfy some further properties, then the linear operator code is
list-decodable all the way up to the distance of the code.

Let G = (G0, . . . , Gm−1) and T = (T0, T1, . . . , Tr−1) be two families of linear operators
such that Gi : F[X] → F[X] and T is a linearly-extendible family of linear operators. We say
that the pair (T , G) list-composes in terms of L at the set of evaluation points A if we have
the following. For every linear operator G ∈ G and field element a ∈ A, there exists a linear
function hG,a : Fs → Fr such that for every polynomial f ∈ F[X] we have

T (G(f))(a) = hG,a(L(f)(a)).

▶ Theorem 5.2. If LOA
k (L) is a linear operator code and there exists two families of linear

operators G = (G0, . . . , Gm−1) and T = (T0, . . . , Tr−1) such that
1. (T , A) forms a linearly-extendible linear operator code LELOA

k+nr/m(T)
2. The pair (T , G) list-composes in terms of L at the set of evaluation points
3. G is degree-preserving
4. Diag(G) ∈ F|G|×k is the generator matrix of a code with distance k − ℓ.

Then, LOA
k (L) is list-decodable up to the distance 1 − k

rn − 1
m with list size qℓ.

This theorem clearly implies Theorem 1.1. We refer the interested reader to the full
version of the paper [1] for the proof.

References
1 Siddharth Bhandari, Prahladh Harsha, Mrinal Kumar, and Madhu Sudan. Ideal-theoretic

explanation of capacity-achieving decoding. (manuscript). arXiv:2103.07930, eccc:2021/
TR21-036.

2 Venkatesan Guruswami. Linear-algebraic list decoding of folded Reed-Solomon codes. In Proc.
26th IEEE Conf. on Comput. Complexity, pages 77–85, 2011. doi:10.1109/CCC.2011.22.

3 Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Trans. Inform. Theory, 54(1):135–150, 2008.
(Preliminary version in 38th STOC, 2006). eccc:2005/TR05-133, doi:10.1109/TIT.2007.
911222.

4 Venkatesan Guruswami, Amit Sahai, and Madhu Sudan. "Soft-decision" decoding of Chinese
Remainder Codes. In Proc. 41st IEEE Symp. on Foundations of Comp. Science (FOCS),
pages 159–168, 2000. doi:10.1109/SFCS.2000.892076.

5 Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inform. Theory, 45(6):1757–1767, 1999. (Preliminary version in
39th FOCS, 1998). eccc:1998/TR98-043, doi:10.1109/18.782097.

6 Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of Reed-
Solomon codes. IEEE Trans. Inform. Theory, 59(6):3257–3268, 2013. (Preliminary version
in 26th IEEE Conference on Computational Complexity, 2011 and 15th RANDOM, 2011).
eccc:2012/TR12-073, doi:10.1109/TIT.2013.2246813.

7 Durga Datt Joshi. A note on upper bounds for minimum distance codes. Information and
Control, 1(3):289–295, 1958. doi:10.1016/S0019-9958(58)80006-6.

8 Yasuo Komamiya. Application of logical mathematics to information theory. Proc. 3rd Japan.
Nat. Cong. Appl. Math, 437, 1953.

9 Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11:149–182, 2015.
eccc:2012/TR12-044, doi:10.4086/toc.2015.v011a005.

APPROX/RANDOM 2021

http://arxiv.org/abs/2103.07930
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-036
https://eccc.weizmann.ac.il/eccc-reports/2021/TR21-036
http://dx.doi.org/10.1109/CCC.2011.22
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-133
http://dx.doi.org/10.1109/TIT.2007.911222
http://dx.doi.org/10.1109/TIT.2007.911222
http://dx.doi.org/10.1109/SFCS.2000.892076
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-043
http://dx.doi.org/10.1109/18.782097
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-073
http://dx.doi.org/10.1109/TIT.2013.2246813
http://dx.doi.org/10.1016/S0019-9958(58)80006-6
https://eccc.weizmann.ac.il/eccc-reports/2012/TR12-044
http://dx.doi.org/10.4086/toc.2015.v011a005

56:16 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

10 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-
time decoding. J. ACM, 61(5):28:1–28:20, 2014. (Preliminary version in 43rd STOC, 2011).
eccc:2010/TR10-148, doi:10.1145/2629416.

11 Richard Collom Singleton. Maximum distance q-nary codes. IEEE Trans. Inform. Theory,
10(2):116–118, 1964. doi:10.1109/TIT.1964.1053661.

12 Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

A Example of Codes Achieving List-Decoding Capacity

In this section we will use Theorem 5.2 to (re)prove the list-decoding capacity of the Folded
Reed-Solomon codes, multiplicity codes and additive Folded Reed-Solomon codes. We then
introduce a common generalization of all these codes, which we refer to as affine Folded
Reed-Solomon codes and prove the list-decoding up to capacity of these codes.

A.1 Folded Reed-Solomon (F RS) Codes
Fix integers k, n, q with n ≤ q. Fix γ ∈ F∗

q of multiplicative order at least s. The message
space of the FRSγ

s [k, n] code with folding parameter s is polynomials of degree at most
k − 1 over F[X], i.e., F<k[X] where F = Fq. Then, FRS codes are linearly-extendible linear
operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = f(γX) for f(X) ∈ Fq[X] and Li = Li
1 for i ∈

{0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = γiX · I[i = j] for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where for any two distinct i and j the
sets

{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint.

▶ Remark A.1.
1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code

representation is E(X, Y) =
∏s−1

i=0 (X − γiY).
2. For the choice of A as above, the rate of the code is k

sn and its distance is 1 − k−1
sn as the

polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.2 ([6]). Let γ ∈ F∗
q be an element of order at least k. Further, let A =

{a0, . . . , an−1} be a set of evaluation points where for any two distinct i and j the sets{
ai, aiγ, . . . , aiγ

s−1} and
{

aj , ajγ, . . . , ajγs−1} are disjoint. For every ε > 0 there exists s

large enough (s ≥ Ω(1/ε2)) such that FRSγ
s [k, n] at the set of evaluation points A can be

efficiently list-decoded up to distance 1 − k
sn − ε.

Proof. We will prove this by applying Theorem 5.2. Set G = (L0, . . . , Lm−1) for some integer
m < s to be set later and T = (T0, . . . , Tr−1) with r = s − m + 1 and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code
LELOA

k+nr/m(T) which is FRSγ
r [k + nr/m, n] at the set of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]: Tj(Gi(f))(a) = Li+j(f)(a). Notice that Li+j ∈ L as i + j ≤ s − 1.

Theorem 5.2-Item 3: Gi(xj) = γijyj , and hence G is degree preserving.
Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij = γij for i ∈ [m] and

j ∈ [k]. Hence, as long as γ has order at least k this is the generator matrix of RS[m − 1, k]
and hence its distance is k − m + 1.

Thus FRSγ
s [k, n] can be efficiently list-decoded up to distance 1 − k−1

rn − 1
m with list size

qm−1. By choosing a large enough m and s we can ensure that 1 − k−1
rn − 1

m > 1 − k
sn − ε. ◀

https://eccc.weizmann.ac.il/eccc-reports/2010/TR10-148
http://dx.doi.org/10.1145/2629416
http://dx.doi.org/10.1109/TIT.1964.1053661
http://dx.doi.org/10.1561/0400000010

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:17

A.2 Multiplicity (MULT) Codes
Fix integers k, n, q with n ≤ q. The message space of the MULTs[k, n] code of order s is
polynomials of degree at most k−1 over F[X], i.e., F<k[X] where F = Fq. Then, MULTs[k, n]
codes are linearly-extendible linear operator codes LELOL,A where:

L = (L0, . . . , Ls−1) with L1(f(X)) = ∂f(X)
∂X for f(X) ∈ Fq[X] and Li = Li

1 for i ∈
{0, 1, . . . , s − 1}.
For the above family of operators M(X) is given by M(X)ij = X · I[i = j] + i · I[i − 1 = j]
for i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ais are all distinct.

▶ Remark A.3.
1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code

representation is E(X, Y) = (X − Y)s.
2. For the choice of A as above, MULTs[k, n] is a code with rate k

sn and distance 1 − k−1
sn

as the polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.4 ([6]). Let the characteristic of Fq be at least max(s, k). Further, let the
set of evaluation points be A = {a0, . . . , an−1} where ais are all distinct. Then, for every
ε > 0 there exists s large enough (s ≥ Ω(1/ε2)) such that MULTs[k, n] can be efficiently
list-decoded up to distance 1 − k

sn − ε.

Proof. We will again appeal to Theorem 5.2. Set G = (G0, . . . , Gm−1) where Gi = Xi

i! · Li

for i ∈ {0, 1, . . . , m − 1} for some integer m < s to be set later and T = (T0, . . . , Tr−1) with
r = s − m + 1 and Ti = Li.

Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code
LELOA

k+nr/m(T) which is MULTr[k + nr/m, n] of order r at the set of evaluation points A.
Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial

f ∈ F[X]:

Tj(Gi(f))(a) = (
j∑

b=0

(
j

b

)(
i

b

)
· (b!/i!) · Xi−bLi+b(f))(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Item 3: Gi(Xj) =

(
j
i

)
· Xj , and hence G is degree preserving.

Theorem 5.2-Item 4: The matrix Diag(G) is given by Diag(G)ij =
(

j
i

)
for i ∈ [m]

and j ∈ [k]. This matrix can be transformed via elementary row operations to a RS[m, k]
generator matrix with points of evaluations as 0, 1, . . . , k−1; thus, as long as the characteristic
of Fq is at least k we have that the distance of Diag(G) is k − m + 1.

Thus MULTs[k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list size
qm−1. By choosing a large enough m and s we can ensure that 1 − k−1

rn − 1
m > 1 − k

sn − ε. ◀

A.3 Additive Folded Reed-Solomon (Additive-FRS) Codes
Fix integers k, n, q with n ≤ q. Let β ∈ Fq be a non-zero element and characteristic of Fq

is at least s. The message space of the Additive-FRSβ
s [k, n] code with folding parameter

s is polynomials of degree at most k − 1 over F[X], i.e., F<k[X] where F = Fq. Then,
Additive-FRSβ

s [k, n] codes are linearly-extendible linear operator codes LELOL,A where:
L = (L0, . . . , Ls−1) with L1(f(X)) = f(X + β) for f(X) ∈ Fq[X] and Li = Li

1 for
i ∈ {0, 1, . . . , s − 1}.

APPROX/RANDOM 2021

56:18 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

For the above family of operators M(X) is given by M(X)ij = (X + iβ) · I[i = j] for
i, j ∈ [s].
The set of evaluation points is A = {a0, . . . , an−1} where ai −aj /∈ {0, β, 2β, . . . , (s − 1)β}
for distinct i and j.

▶ Remark A.5.
1. Recall that the bivariate polynomial E(X, Y) corresponding to the polynomial ideal code

representation is E(X, Y) =
∏s−1

i=0 (X − Y − iβ).
2. For the choice of A as above, Additive-FRSβ

s [k, n] is a code with rate k
sn and distance

1 − k−1
sn as the polynomials Ei = E(X, ai) are pairwise co-prime.

▶ Theorem A.6. Let the characteristic of Fq be at least max(s, k) and β ∈ Fq be a non-
zero element. Further, let the set of evaluation points A = {a0, . . . , an−1} be such that
ai − aj /∈ {0, β, 2β, . . . , (s − 1)β} for distinct i and j. Then, for every ε > 0 there exists s

large enough (s ≥ Ω(1/ε2)) such that Additive-FRSβ
s [k, n] over the set of evaluation points A

can be efficiently list-decoded up to distance 1 − k
sn − ε.

Proof. We will again appeal to Theorem 5.2. To define G = (G0, . . . , Gm−1) for some integer
m < s, we need the following definitions. Let B ∈ Fm×m

q be a matrix where Bij = (j)i

for i, j ∈ [m], i.e, the transpose of the Vandermonde matrix at the points {0, 1, . . . , m − 1}:
these points are distinct since the characteristic of the field is at least k. Further, let
bi ∈ Fm

q be a vector such that Bbi = ei for i ∈ [m] where eis are the standard basis vectors:
bis exist because B is full rank. Now, define Gi = Xi ·

∑m−1
c=0 bi(c)Lc for i ∈ [m]. Set

T = (T0, . . . , Tr−1) with r = s − m + 1 and Ti = Li.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T) which is Additive-FRSβ

r [k + nr/m, n] with folding parameter r at the set
of evaluation points A.

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A, we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) = Tj

(
Xi ·

m−1∑
c=0

bi(c)Lc

)
(a)

=
(

(X + jβ)i ·
m−1∑
c=0

bi(c)Lc+j

)
(a).

Notice that the above expression only involves Lis where i < s. Theorem 5.2-Item 3:

Gi(Xj) = Xi ·
m−1∑
c=0

bi(c)Lc(Xj)

= Xi ·
m−1∑
c=0

bi(c)(X + cβ)j

= Xi ·
m−1∑
c=0

bi(c)
∑
h≤j

(
j

h

)
Xh · (cβ)j−h

= Xi ·

(j

i

)
βiXj−i +

∑
h≤j−m

αhXh

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:19

(this is because Bbi = ei which means that for h > j − m we have
∑m−1

c=0 bi(c) · (c)j−h =
I[j − h = i]; αh are field constants)

=
(

j

i

)
βi−1Xj + . . . ,

and hence G is degree preserving.
Theorem 5.2-Item 4: By the above, the matrix Diag(G) is given by Diag(G)ij =

(
j
i

)
βi for

i ∈ [m] and j ∈ [k]. Up to scaling this is the same code as Diag(G) in Theorem A.4: and
hence, if the characteristic of the field is at least k then its distance is k − m + 1.

Thus Additive-FRSβ
s [k, n] can be efficiently list-decoded up to distance 1− k−1

rn − 1
m with list

size qm−1. By choosing a large enough m and s we can ensure that 1− k−1
rn − 1

m > 1− k
sn −ε. ◀

A.4 Affine Folded Reed-Solomon (Affine-FRS) Codes
We first recall the defintion of Affine-FRS codes. Fix integers k, n, q with n ≤ q. Let α ∈ F∗

q

and β ∈ Fq such that the multiplicative order of α is u. Further, define ℓ(X) = αX + β and

ℓ(i)(X) = ℓ(ℓ . . . ℓ(X))︸ ︷︷ ︸
i times

= αiX + β ·
i−1∑
j=0

αj = αiX + βi.

In fact, if α ≠ 1, i.e, u > 1 then, ℓ(u)(X) = ℓ(0)(X). Let ord(ℓ) denote the smallest
positive integer t such that ℓ(t)(z) = z. The message space of the Affine-FRSα,β

s [k, n]
code with folding parameter s is polynomials of degree at most k − 1 over F[X], i.e.,
F<k[X] where F = Fq. Let the set of evaluation points be A = {a0, . . . , an−1} such that
for distinct i, j the sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint.

Then, Affine-FRSα,β
s [k, n] codes are polynomial ideal codes where:

The bivariate polynomial E(X, Y) corresponding to the polynomial ideal code represen-
tation is E(X, Y) =

∏s−1
i=0 (X − αiY − βi).

For the choice of A as above, Affine-FRSα,β
s [k, n] is a code with rate k

sn and distance
1 − k−1

sn as the polynomials Ei = E(X, ai) are pairwise co-prime.

We will now recall the description of Affine-FRS codes in terms of linear operators
which will be helpful while list-decoding. Define D1 : F[X] → F[X] as D1(f(X)) = ∂f(X)

∂X

and S1 : F[X] → F[X] as S1(f(X)) = f(ℓ(X)). Further, for i ≥ 0 let Di = Di
1 and

Si = Si
1. Recall, that the order of α is u. For any integer r ∈ [s] let r = r1u + r0,

with r0 < u, be the unique representation of r. Then, define Lr : F[X] → F[X] as
Lr(f(X)) = Sr0(Dr1f(X)). Set L = (L0, . . . , Ls−1). Clearly, L is a family of linear operators.
Further, Lr(Xf) = Sr0(Dr1Xf) = Sr0(r1 · Dr1−1f + X · Dr1f) = r1 · Lr−uf + Sr0(X) · Lrf :
hence, L is a set of linearly-extendible linear operators.

▶ Observation A.7. If u > 1 then at an evaluation point a ∈ Fq the following pieces of
information are the same:

f(X) mod
∏s−1

i=0 (X − αia − βi)
L(f)(a).

Hence, if u > 1, then, Affine-FRSα,β
s [k, n] at the points of evaluation A is LELOL,A.

▶ Theorem A.8. For every ε > 0, there exists a large enough s such that the follow holds.
Let Fq be a field, k a parameter and ℓ(X) = α · X + β such that α ∈ F∗

q and β ∈ Fq.
Furthermore, let the evaluation points A = {a0, . . . , an−1} be such that for distinct i, j the
sets

{
ℓ(0)(ai), . . . , ℓ(s−1)(ai)

}
and

{
ℓ(0)(aj), . . . , ℓ(s−1)(aj)

}
are disjoint. Then, if either:

APPROX/RANDOM 2021

56:20 Ideal-Theoretic Explanation of Capacity-Achieving Decoding

ord(ℓ) ≥ k or
char(Fq) > k and β ̸= 0

holds, Affine-FRSα,β
s [k, n] over the set of evaluation points A can be efficiently list-decoded

up to distance 1 − k
sn − ε.

Proof. We will again appeal to Theorem 5.2. Let u be the multiplicative order of α. Let
v = ⌊s/u⌋.

Case ord(ℓ) ≥ k. This means that u ≥ k. This is similar to decoding FRS codes. We
skip the details.

Henceforth, we assume that char(Fq) ≥ k and β ̸= 0.

Case u = 1. This is the same case as for Additive-FRS codes. Thus, by Theorem A.6 we
are done.

Case u > 1 and v ≥
√

s. (This case is similar to MULTv[k, n].)
Define G = (G0, . . . , Gm−1) for some integer m < s, as Gi(f) = (Xi/i!) · Dif . Let

r = (v − m)u and set T = {L0, L1, . . . , Lr−1}.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T) which is Affine-FRSα,β

r [k + nr/m, n] at the set of evaluation points A.
Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial

f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0Dj1(Xi

i! · Di(f))
)

(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!/i!) · Xi−bDi+b(f)

)
(a)

=
(

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!/i!) · (Sj0Xi−b) · Lj0+(i+b)u(f)

)
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: are identical to the corresponding items in Theorem A.4.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list
size qm−1. By choosing a large enough m and s we can ensure that 1 − k−1

rn − 1
m > 1 − k

sn − ε.

Case u >
√

s. (This case is similar to Additive-FRSβ
u[k, n].) As in Theorem A.6, to

define G = (G0, . . . , Gm−1) for some integer m < u, we need the following definitions. Let
B ∈ Fm×m

q be a matrix where Bij = (β(αj − 1)/(αj))i for i, j ∈ [m], i.e, the transpose of
the Vandermonde matrix at the points

{
β(αj − 1)/(αj) | j ∈ [m]

}
: these points are distinct

since the order of u is at least m. Further, let bi ∈ Fm
q be a vector such that Bbi = ei for

i ∈ [m] where eis are the standard basis vectors: bis exist because B is full rank.
Define G = (G0, . . . , Gm−1) for some integer m < s, as Gi = Xi ·

∑m−1
c=0 bi(c)Sc. Let

r = s − m + 1 and set T = {L0, . . . , Lr−1}.
Theorem 5.2-Item 1: Clearly, (T , A) forms a linearly-extendible linear operator code

LELOA
k+nr/m(T) which is Affine-FRSα,β

r [k + nr/m, n] at the set of evaluation points A.

S. Bhandari, P. Harsha, M. Kumar, and M. Sudan 56:21

Theorem 5.2-Item 2: For all Gi ∈ G, Tj ∈ T and a ∈ A we have that for every polynomial
f ∈ F[X]:

Tj(Gi(f))(a) =
(

Sj0Dj1

(
Xi ·

m−1∑
c=0

bi(c)Scf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−bDb

(
m−1∑
c=0

bi(c)Scf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−b

(
m−1∑
c=0

(bi(c)αb
c)ScDbf

))
(a)

=
(

Sj0

j1∑
b=0

(
j1

b

)(
i

b

)
· (b!) · Xi−b

(
m−1∑
c=0

(bi(c)αb
c)Lbu+cf

))
(a).

Notice that the above expression only involves Lis where i < s.
Theorem 5.2-Items 3 and 4: follow almost identically to the corresponding items in

Theorem A.6.
Thus Affine-FRSβ

s [k, n] can be efficiently list-decoded up to distance 1− k−1
rn − 1

m with list
size qm−1. By choosing a large enough m and s we can ensure that 1− k−1

rn − 1
m > 1− k

sn −ε. ◀

APPROX/RANDOM 2021

Visible Rank and Codes with Locality
Omar Alrabiah #

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Venkatesan Guruswami #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We propose a framework to study the effect of local recovery requirements of codeword symbols
on the dimension of linear codes, based on a combinatorial proxy that we call visible rank. The
locality constraints of a linear code are stipulated by a matrix 𝐻 of ★’s and 0’s (which we call a
“stencil”), whose rows correspond to the local parity checks (with the ★’s indicating the support of
the check). The visible rank of 𝐻 is the largest 𝑟 for which there is a 𝑟 × 𝑟 submatrix in 𝐻 with a
unique generalized diagonal of ★’s. The visible rank yields a field-independent combinatorial lower
bound on the rank of 𝐻 and thus the co-dimension of the code.

We point out connections of the visible rank to other notions in the literature such as unique
restricted graph matchings, matroids, spanoids, and min-rank. In particular, we prove a rank-nullity
type theorem relating visible rank to the rank of an associated construct called symmetric spanoid,
which was introduced by Dvir, Gopi, Gu, and Wigderson [5]. Using this connection and a construction
of appropriate stencils, we answer a question posed in [5] and demonstrate that symmetric spanoid
rank cannot improve the currently best known 𝑂(𝑛(𝑞−2)/(𝑞−1)) upper bound on the dimension of
𝑞-query locally correctable codes (LCCs) of length 𝑛. This also pins down the efficacy of visible
rank as a proxy for the dimension of LCCs.

We also study the 𝑡-Disjoint Repair Group Property (𝑡-DRGP) of codes where each codeword
symbol must belong to 𝑡 disjoint check equations. It is known that linear codes with 2-DRGP must
have co-dimension Ω(

√
𝑛) (which is matched by a simple product code construction). We show that

there are stencils corresponding to 2-DRGP with visible rank as small as 𝑂(log 𝑛). However, we show
the second tensor of any 2-DRGP stencil has visible rank Ω(𝑛), thus recovering the Ω(

√
𝑛) lower

bound for 2-DRGP. For 𝑞-LCC, however, the 𝑘’th tensor power for 𝑘 ⩽ 𝑛𝑜(1) is unable to improve
the 𝑂(𝑛(𝑞−2)/(𝑞−1)) upper bound on the dimension of 𝑞-LCCs by a polynomial factor.Inspired by
this and as a notion of intrinsic interest, we define the notion of visible capacity of a stencil as the
limiting visible rank of high tensor powers, analogous to Shannon capacity, and pose the question
whether there can be large gaps between visible capacity and algebraic rank.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Visible Rank, Stencils, Locality, DRGP Codes, Locally Correctable Codes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.57

Category RANDOM

Funding Research supported in part by NSF grants CCF-1814603 and CCF-1908125.

1 Introduction

The notion of locality in error-correcting codes refers to the concept of recovering codeword
symbols as a function of a small number of other codeword symbols. Local decoding
requirements of various kinds have received a lot of attention in coding theory, due to both
their theoretical and practical interest. For instance, 𝑞-query locally correctable codes (LCCs)
aim to recover any codeword symbol as a function of 𝑞 other codeword symbols in a manner

© Omar Alrabiah and Venkatesan Guruswami;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 57; pp. 57:1–57:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oalrabia@andrew.cmu.edu
mailto:venkatg@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Visible Rank and Codes with Locality

robust to a constant fraction of errors. On the other hand, locally recoverable codes (LRCs),
in their simplest incarnation, require each codeword symbol to be a function of some ℓ other
codeword symbols, allowing local recovery from any single erasure.1

LCCs have been extensively studied in theoretical computer science, and have connections
beyond coding theory to topics such as probabilistically checkable proofs and private inform-
ation retrieval. We refer the reader to [31] and the introduction of [13] for excellent surveys
on LCCs and their connections. LRCs were motivated by the need to balance global fault
tolerance with extremely efficient repair of a small number of failed storage nodes in modern
large-scale distributed storage systems [12]. They have led to intriguing new theoretical
questions, and have also had significant practical impact with adoption in large scale systems
such as Microsoft Azur [17] and Hadoop [25].

Let us define the above notions formally, in a convenient form that sets up this work. We
will restrict attention to linear codes in this work, i.e., subspaces 𝐶 of F𝑛𝑞 for some finite field
F𝑞 . In this case, the 𝑖’th symbol 𝑐𝑖 of every codeword 𝑐 = (𝑐1 , . . . , 𝑐𝑛) ∈ 𝐶 can be recovered
as a function of the symbols 𝑐 𝑗 , for indices 𝑗 in a (minimal) subset 𝑅𝑖 ⊂ [𝑛] \ {𝑖}, iff 𝑐𝑖 and
{𝑐 𝑗 | 𝑗 ∈ 𝑅𝑖} satisfy a linear check equation, or in other words, there is a dual codeword whose
support equals {𝑖} ∪ 𝑅𝑖 . The set 𝑅𝑖 is called a repair group for the 𝑖’th codeword symbol
(other terminology used in the literature includes regenerating sets and recovery sets).

The 𝑞-LCC property, for a fixed number of queries 𝑞 and growing 𝑛, corresponds to
having Ω(𝑛) disjoint groups of size ⩽ 𝑞 for each position 𝑖 ∈ [𝑛], or equivalently Ω(𝑛) dual
codewords of Hamming weight at most (𝑞 + 1) whose support includes 𝑖 and are otherwise
disjoint. The ℓ -LRC corresponds to having a dual codeword of Hamming weight at most
(ℓ + 1) whose support includes 𝑖, for each 𝑖 ∈ [𝑛]. A property that interpolates between
these extremes of a single repair group and Ω(𝑛) disjoint repair groups is the Disjoint Repair
Group Property (𝑡-DRGP) where we require 𝑡 disjoint repair groups for each position 𝑖 ∈ [𝑛]
(equivalently 𝑡 dual codewords whose support includes 𝑖 but are otherwise disjoint).

There is an exponentially large gap between upper and lower bounds on the trade-off
between code dimension and code length for 𝑞-LCCs. The best known code constructions
have dimension only 𝑂((log 𝑛)𝑞−1) (achieved by generalized Reed-Muller codes or certain
lifted codes [14]), whereas the best known upper bound on the dimension of 𝑞-LCCs is much
larger and equals 𝑂(𝑛(𝑞−2)/(𝑞−1)) [19, 29, 18]2. Narrowing this huge gap has remained open
for over two decades.

In contrast the best possible dimension of a ℓ -LRC is easily determined to be ⌊ ℓ𝑛
ℓ+1 ⌋.3

However, for 𝑡-DRGP, there are again some intriguing mysteries. For 2-DRGP, we have tight
bounds – the minimum possible redundancy (co-dimension) equals

√
2𝑛 ± Θ(1). The lower

bound is established via very elegant proofs based on the polynomial method [30] or rank
arguments [24]. However, for fixed 𝑡 > 2, we do not know better lower bounds, and the best
known constructions have co-dimension ≈ 𝑡

√
𝑛 [6]. There are better constructions known

for some values of 𝑡 = 𝑛Θ(1) [8, 20]. A lower bound on the co-dimension of 𝑐(𝑡)
√
𝑛 for some

function 𝑐(𝑡) that grows with 𝑡 seems likely, but has been elusive despite various attempts,
and so far for any fixed 𝑡, the bound for 𝑡 = 2 is the best known.

1 There is also a distance requirement on LRCs to provide more global error/erasure resilience.
2 The 𝑂(·) and Ω̃(·) are used to suppress factors poly-logarithmic in 𝑛.
3 In this case, a more interesting trade-off is a Singleton-type bound that also factors in the distance of

the code [12].

O. Alrabiah and V. Guruswami 57:3

This work was motivated in part by these major gaps in our knowledge concerning 𝑞-LCCs
and 𝑡-DRGPs. Our investigation follows a new perspective based on visible rank (to be
defined soon), which is a combinatorial proxy for (linear-algebraic) rank that we believe
is of broader interest. This is similar in spirit to a thought-provoking recent work [5] that
introduced a combinatorial abstraction of spanning structures called spanoids4 to shed light
on the limitations of current techniques to prove better upper bounds on the dimension of
𝑞-LCCs. They noted that current techniques to bound LCC dimension apply more generally
to the associated spanoids, which they showed could have rank as large as Ω̃(𝑛(𝑞−2)/(𝑞−1)).
Therefore to improve the LCC bound one needs techniques that are more specific than
spanoids and better tailored to the LCC setting. One such possibility mentioned in [5] is
to restrict attention to symmetric spanoids, which have a natural symmetry property that
linear LCCs imply.

Our visible rank notion turns out to be intimately related to symmetric spanoids via a
rank-nullity type theorem (Theorem 14). While technically simple in hindsight, it offers a
powerful viewpoint on symmetric spanoids which in particular resolves a question posed in [5]
– we show that symmetric spanoids are also too coarse a technique to beat the 𝑂(𝑛(𝑞−2)/(𝑞−1))
upper bound on 𝑞-LCC dimension.

1.1 Stencils and visible rank

With the above backdrop, we now proceed to describe the setup we use to study these
questions, based on the rank of certain matrix templates which we call “stencils.” We can
represent the support structure of the check equations (i.e., dual codewords) governing a
locality property by an 𝑛-column matrix of 0’s and ★’s. For each check equation involving
the 𝑖’th symbol and a repair group 𝑅𝑖 ⊂ [𝑛] \ {𝑖}, we place a row in the stencil with ★’s
precisely at 𝑅𝑖 ∪ {𝑖} (i.e., with ★’s at the support of the associated dual codeword). For the
ℓ -LRC property for instance, an associated stencil would be an 𝑛 × 𝑛 matrix with ★’s on the
diagonal and ℓ other ★’s in each row. For 𝑞-LCC, we would have a 𝛿𝑛2 × 𝑛 matrix whose
rows are split into 𝑛 groups with the rows in the 𝑖’th group having a ★ in the 𝑖’th column
and 𝑞 other ★’s in disjoint columns.

The smallest co-dimension of linear codes over a field F with certain locality property is,
by design, the minimum rank rkF(𝐻) of the associated stencil 𝐻 when the ★’s are replaced
by arbitrary nonzero entries from F. In this work, our goal is to understand this quantity via
field oblivious methods based only on the combinatorial structure of the stencil of ★’s.

The tool we put forth for this purpose is the visible rank of 𝐻, denoted vrk(𝐻) and
defined to be the largest 𝑟 for which there is a 𝑟 × 𝑟 submatrix of 𝐻 that has exactly
one general diagonal whose entries are all ★’s. By the Leibniz formula, the determinant
of such a submatrix is nonzero for any substitution of nonzero entries for the ★’s. Thus
rkF(𝐻) ⩾ vrk(𝐻) for every field F.

Our goal in this work is to understand the interrelationship between visible rank and
the co-dimension of linear codes under various locality requirements. This can shed further
light on the bottleneck in known techniques to study trade-offs between locality and code
dimension, and optimistically could also lead to better constructions.

4 We defer a precise description of spanoids, along with their strong connection to visible rank, to
Section 2.4.

APPROX/RANDOM 2021

57:4 Visible Rank and Codes with Locality

1.2 Visible rank and Locality
For ℓ -LRCs, a simple greedy argument shows that its associated parity-check stencil 𝐻

satisfies vrk(𝐻) ⩾ 𝑛/(ℓ + 1). Thus visible rank captures the optimal trade-off between code
dimension and locality ℓ .

For 𝑞-LCCs with 𝑞 ⩾ 3, an argument similar to (in fact a bit simpler than and implied
by) the one for spanoids in [5] shows that the stencil corresponding to 𝑞-LCCs has visible
rank at least 𝑛 −𝑂(𝑛(𝑞−2)/(𝑞−1)), showing an upper bound of 𝑂(𝑛(𝑞−2)/(𝑞−1)) on the dimension
of 𝑞-LCCs. We show that visible rank suffers the same bottleneck as spanoids in terms of
bounding the dimension of 𝑞-LCCs.

▶ Theorem 1. For 𝑞 ⩾ 3, there exist 𝑛-column stencils 𝐻 with ★’s structure compatible with
𝑞-LCCs for which vrk(𝐻) ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)).

Through the precise connection we establish between between visible rank and symmetric
spanoids, this shows the same limitation for symmetric spanoids, thus answering a question
posed in [5].

For the 𝑡-DRGP property, we focus on the 𝑡 = 2 case, with the goal of finding a
combinatorial substitute for the currently known Ω(

√
𝑛) lower bounds on co-dimension [30, 8]

which are algebraic. Unfortunately, we show that visible rank, in its basic form, is too weak
in this context.

▶ Theorem 2. There exist 2𝑛 × 𝑛 stencils 𝐻 with ★’s structure compatible with 2-DRGP for
which vrk(𝐻) ⩽ 𝑂(log 𝑛).

1.3 Visible rank and tensor powers
In view of Theorem 2, we investigate avenues to get better bounds out of the visible rank
approach. Specifically, we study the visible rank of tensor powers of the matrix. It turns out
that the visible rank is super-multiplicative: vrk(𝐻 ⊗ 𝐻) ⩾ vrk(𝐻)2, while on the other hand
algebraic rank is sub-multiplicative, so higher tensor powers could yield better lower bounds
on the rank. Indeed, we are able to show precisely this for 2-DRGP:

▶ Theorem 3. For every 2𝑛 × 𝑛 stencil 𝐻 with ★’s structure compatible with 2-DRGP, we
have vrk(𝐻 ⊗ 𝐻) ⩾ Ω(𝑛), and thus rkF(𝐻) ⩾ Ω(

√
𝑛) for every field F.

On the other hand, for 𝑞-LCCs with 𝑞 ⩾ 3, we show that higher tensor powers suffer the
same bottleneck as Theorem 1.

▶ Theorem 4. For 𝑞 ⩾ 3, there exist 𝑛-column stencils 𝐻 with ★’s structure compatible with
𝑞-LCCs for which vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))/𝑘 for any integer 𝑘. In particular even
for 𝑘 = 𝑛𝑜(1), we get no polynomial improvements to the current upper bounds on dimension
of 𝑞-LCCs.

1.4 Visible capacity
Given the super-multiplicativity of visible rank under tensor powers, and drawing inspiration
from the Shannon capacity of graphs, we put forth the notion of visual capacity of a matrix
𝐻 of 0’s and ★’s, defined as Υ(𝐻) := sup𝑘 vrk(𝐻⊗𝑘)1/𝑘 . The visual capacity is also a field
oblivious lower bound on algebraic rank rkF(𝐻) for any field F. It is not known whether there
are stencils that exhibit a gap between visible capacity and its minimum possible rkF(𝐻)
over all fields F.

O. Alrabiah and V. Guruswami 57:5

The proofs of our results are technically simple, once the framework is set up. Our
contributions are more on the conceptual side, via the introduction and initial systematic
study of visible rank and its diverse connections. Our inquiry also raises interesting questions
and directions for future work, some of which are outlined in Section 7, including the
relationship between visible capacity and algebraic rank.

1.5 Connections and related work
Studying the interplay between the combinatorial structure of a matrix and its rank is a
natural quest that arises in several contexts. See Chapter 3 of [26] for a survey of works on
lower bounding the algebraic rank. For works specific to codes with locality, the work of [3]
analyzed the combinatorial properties of design matrices over the reals to improve bounds on
LCCs over the real numbers, although the methods used are particular to the field of reals
and do not carry over to any field.

Visible rank in particular turns out to have a diverse array of connections, some of which
we briefly discuss here. The connection to spanoids, that we already mentioned, is described
in more detail in Section 2.4.

Uniquely restricted matchings. Given a stencil 𝐻 ∈ {0,★}𝑚×𝑛 , there is a canonical bipartite
graph 𝐺 between the rows and columns of 𝐻, where a row connects to a column if and
only if their shared entry has a star. Visual rank has a nice graph-theoretic formulation: it
turns out (see Section 2.3) that a submatrix of 𝐻 has a unique general diagonal of ★’s iff
the corresponding induced subgraph has a unique perfect matching. Such induced bipartite
graphs are known in the literature as Uniquely Restricted Matchings (URMs) and have been
extensively studied [11, 9, 16, 22, 27, 7] They were first introduced in [11], wherein they
proved that computing the maximum URM of a bipartite graph is NP-complete. It was later
shown in [22] that 𝑛1/3−𝑜(1) approximations of the maximum URM is also NP-hard unless
NP = ZPP and additionally that the problem of finding the maximum URM is APX-complete.

Matroids. One can encode any matroid into a stencil. Recall that a circuit of a matroid is
a minimal dependent set – that is, a dependent set whose proper subsets are all independent
(the terminology reflects the fact that in a graphic matroid, the circuits are cycles of the
graph).Given a matroid ℳ on universe [𝑛] and a set 𝒞 = {𝐶1 , . . . , 𝐶𝑚} of circuits of ℳ,
we consider a 𝑚 × 𝑛 stencil 𝐻 where the entry at (𝑖 , 𝑗) is a ★ if and only if 𝑗 ∈ 𝐶𝑖 . For this
matrix, one can show that a collection of visibly independent columns (see Section 2.2 for
the definition of visible independence) is an independent set in the dual matroid. Therefore,
we have rk(ℳ) + vrk(𝐻) ⩽ 𝑛 – this also follows from our rank-nullity theorem for symmetric
spanoids as one can associate a symmetric spanoid with any matroid (the collection of sets
in Definition 13 will just be the circuits of the matroid).

Min-rank. The minimum possible rank of a square 0-★ stencil over assignments to the ★’s
from some field has been well studied in combinatorics.5 For example, we have Haemers’
classic bound on independent set of a graph and its applications to Shannon capacity [15].

5 There is a slight difference in the minrank setup, in that the ★’s can take any value including 0, except
the ★’s on the diagonal which must take nonzero values.

APPROX/RANDOM 2021

57:6 Visible Rank and Codes with Locality

Note that in this case we are using a linear-algebraic tool to understand a combinatorial
quantity, whereas visible rank goes the other way, serving as a combinatorial proxy for a
linear-algebraic quantity. Recent interest in minrank has included their characterization of
the most efficient linear index codes [2]. The minrank of stencils corresponding to 𝑛-vertex
random Erdös-Rényi graphs was recently shown to be Θ(𝑛/log 𝑛) over any field that is
polynomially bounded [10].

Matrix Rigidity. Given a square matrix 𝐴 ∈ F𝑛×𝑛 and a natural number 𝑟 ⩽ 𝑛, the rigidity
of 𝐴 is the minimal number of entries that one can perturb in 𝐴 so that it rank becomes at
most 𝑟. Matrix rigidity was introduced in the seminal work [28] and since then had expansive
research on constructing explicit rigid matrices. See [23] for a recent survey on matrix rigidity
and related connections. The visible rank provides a combinatorial guarantee on the rank
of a matrix, and that conjures up the possibility of constructing explicit rigid matrices by
finding explicit stencils whose visible rank is robust to small amounts of corruptions of its
entries.

Incidence Theorems. Given an 𝑚 × 𝑛 matrix 𝐴 over the field F with rank 𝑟, one can
decompose 𝐴 = 𝑀𝑁 where 𝑀 and 𝑁 are 𝑚 × 𝑟 and 𝑟 × 𝑛 matrices. If we consider the rows
of 𝑀 as hyperplanes over the projective plane PF𝑟−1 of dimension (𝑟 − 1) and the columns of
𝑁 as points in PF𝑟−1, then the stencil of 𝐴 defines a point-hyperplane incidence over PF𝑟−1.
In particular, when 𝑟 = 3, the stencil of 𝐴 defines a point-line incidence over the field F.
Thus studying the combinatorial properties of a stencil whose F-rank (see Definition 6) is at
most 3 is equivalent to studying the combinatorics of point-line incidences over the field F.
For more on incidence theorems, see [4] for an excellent survey in the area.

Communication complexity. The visible rank provides a connection between deterministic
and nondetereministic communication complexity [21]. For a communication problem
𝑓 : 𝑋 × 𝑌 → {0, 1}, define the stencil 𝐻 𝑓 ∈ {0,★}𝑋×𝑌 by 𝐻 𝑓 (𝑥, 𝑦) = ★ if 𝑓 (𝑥, 𝑦) = 0 and
𝑀 𝑓 (𝑥, 𝑦) = 0 if 𝑓 (𝑥, 𝑦) = 1. Then it is known that 𝐷(𝑓) ⩽ (log2 vrk(𝐻 𝑓)) · (𝑁(𝑓) + 1)
where 𝐷(𝑓) and 𝑁(𝑓) are respectively the deterministic and nondeterministic communication
complexity of 𝑓 [21, Thm 3.5].

1.6 Organization

We begin in Section 2 by formally introducing the notations and terminology for stencils, and
establishing some simple but very useful combinatorial facts about visible rank. We use these
to show that there are 𝑞-LCC stencils for 𝑞 ⩾ 3 with visible rank at most 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))
(Section 3), and the existence of a 2-DRGP stencil with visible rank of at most 𝑂(log 𝑛)
(Section 4). In Section 5, we introduce a tensor product operation on stencils and prove
various properties about them. In Section 6, we utilize tensor powers to show that the rank
of a 2-DRGP over any field F is at least

√
𝑛, which asymptotically matches the current best

lower bounds on 𝑡-DRGP codes. We also show that for 𝑞-LCC stencils, the tensor powers
at the 𝑘’th level for 𝑘 ⩽ polylog(𝑛) do not yield better lower bounds on the rank than the
ones obtained from the visible rank. Finally, in Section 7, we discuss further directions and
questions inspired by this work.

O. Alrabiah and V. Guruswami 57:7

2 Stencils and their visible rank

In this section, we will be formally setting up the model of stencils and all the associated
definitions and notations. We denote [𝑛] to be the set {1, 2, . . . , 𝑛}. For any matrix
𝐻 ∈ {0,★}𝑚×𝑛 , we denote it as a stencil. For an 𝑚 × 𝑛 stencil 𝐻, we denote its entry in the
𝑖’th row and 𝑗’th column by 𝐻[𝑖 , 𝑗]. Any restriction to the specific sub-collection of the rows
and columns of 𝐻 is said to be a sub-stencil of 𝐻. For given sets 𝐴 and 𝐵, a stencil 𝐻 is
said to be an 𝐴 × 𝐵 if it is an |𝐴| × |𝐵| stencil along with an associated indexing of the rows
by 𝐴 and the columns by 𝐵. Given a square stencil 𝑀 ∈ {0,★}𝑛×𝑛 , a general diagonal of 𝑀,
is a collection of entries {𝑀[1,𝜋(1)], . . . , 𝑀[𝑛,𝜋(𝑛)]} where 𝜋 is a permutation on [𝑛]. We
say that a general diagonal is a star diagonal if all its 𝑛 entries are ★’s.

2.1 Algebraic witnesses of stencils

Instantiating a code with the locality properties stipulated by a stencil amounts to filling its
★’s with field entries, or realizing an algebraic witness as defined below.

▶ Definition 5 (Algebraic witness). For field F and stencil 𝐻 ∈ {0,★}𝑚×𝑛, a matrix 𝑊 ∈ F𝑚×𝑛

is said to be an F-witness of 𝐻 if it satisfies the property that 𝑊[𝑖 , 𝑗] ≠ 0 if and only if
𝐻[𝑖 , 𝑗] = ★. More generally, any F-witness of 𝐻 is said to be an algebraic witness of 𝐻.

We stress that every ★ in the stencil 𝐻 must be replaced by a nonzero entry from F and
cannot be zero. Of the possible algebraic witnesses for 𝐻, we will be primarily focused in
this paper on the algebraic witnesses that attain the smallest feasible rank, which leads us to
the following definition.

▶ Definition 6 (Rank). Given an 𝑚 × 𝑛 stencil 𝐻, the F-rank of 𝐻 is the smallest natural
number 𝑟 such that there exists a field F and an F-witness 𝑊 ∈ F𝑚×𝑛 whose rank is equal to
𝑟. We denote the value 𝑟 by rkF(𝐻).

2.2 Visible Rank

In this section, we introduce our notion of the visible rank of a stencil. The main motivation
of introducing the visible is to be able to determine the most optimal lower bound on the
rank of a matrix with only the knowledge of knowing the support of a matrix and nothing
else about the values of that support.

Consider a square matrix 𝐴 ∈ F𝑛×𝑛 , and suppose we are interested in determining if it is
full rank. A natural approach would be to inspect its determinant. From the Leibniz formula,
we know that det(𝐴) = ∑

𝜋∈𝑆𝑛
∏𝑛

𝑖=1 (−1)sgn(𝜋)𝐴𝑖 ,𝜋(𝑖), where 𝑆𝑛 denotes the symmetric group
of order 𝑛 and sgn(𝜋) denotes the sign of a permutation 𝜋. From Leibniz formula, notice
that det(𝐴) is a linear combination of the nonzero general diagonals of 𝐴. If our hope is
to obtain det(𝐴) ≠ 0 without any knowledge of the values of the support of 𝐴, one way to
guarantee it is to say that 𝐴 has exactly one nonzero general diagonal. In such a case, we
can guarantee that det(𝐴) ≠ 0. As when 𝐴 has more than one general diagonal, there is no
guarantee if det(𝐴) ≠ 0 without inspecting the values of the support of 𝐴.

From the previous discussion, it seems natural to define the notion of a rank on stencils
as follows.

APPROX/RANDOM 2021

57:8 Visible Rank and Codes with Locality

▶ Definition 7 (Visibly Full Rank). For a square stencil 𝑀 ∈ {0,★}𝑛×𝑛, we say that 𝑀 is
visibly full rank if 𝑀 has exactly one star diagonal. That is, a general diagonal whose entries
are all ★’s.

Of course, in most cases, when we are given a matrix 𝐴 ∈ F𝑚×𝑛 , we would be interested
in determining its rank. One way to define the rank of the matrix 𝐴 is to say that rank(𝐴) is
the size of the largest square submatrix in 𝐴 that is full-rank. From this viewpoint, it seems
clear to define the rank of a stencil in a similar fashion.

▶ Definition 8 (Visible Rank). For a stencil 𝐻 ∈ {0,★}𝑚×𝑛, the visible rank of 𝐻, denoted
vrk(𝐻), is the largest square sub-stencil in 𝐻 that is visibly full rank.

We also say that a set of 𝑘 columns in 𝐻 is visibly independent if there exists a 𝑘 × 𝑘

sub-stencil within these 𝑘 columns that is visibly full rank. Of course, not all full-rank square
matrices 𝐴 ∈ F𝑛×𝑛 necessarily have exactly one nonzero general diagonal, but all squares
that have exactly one nonzero general diagonal are necessarily full-rank. Thus if we are
interested in determining rank(𝐴) by finding the size of the largest square submatrix in 𝐴

that is full-rank, we can instead search for the largest square submatrix in 𝐴 that has exactly
one nonzero general diagonal. Since that square submatrix has rank at most the rank of 𝐴,
this leads us to the following proposition.

▶ Proposition 9. Given a field F and stencil 𝐻 ∈ {0,★}𝑚×𝑛, we have rkF(𝐻) ⩾ vrk(𝐻).

2.3 Combinatorial properties of visible rank
In this subsection, we will be proving some properties about visible rank. In particular, we
will show that any visibly independent stencil 𝑀 is permutationally equivalent to an upper
triangular stencil, and from this observation, we will be able to upper bound the visible
rank by the largest rectangle of zeros in the stencil, which will be our main tool in our
constructions of 𝑞-LCC and 𝑡-DRGP stencils. We also show an upper bound on the rank of
a stencil by the maximum number of zeros in each row.

Given two stencils 𝐻1 , 𝐻2 ∈ {0,★}𝑚×𝑛 , we say that 𝐻1 is permutationally equivalent to 𝐻2
if there are permutations 𝜋 : [𝑚] → [𝑚] and 𝜎 : [𝑛] → [𝑛] such that 𝐻1[𝑖 , 𝑗] = 𝐻2[𝜋(𝑖), 𝜎(𝑗)]
for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. For such 𝐻1 and 𝐻2, we introduce the notation 𝐻2 = (𝐻1)𝜋,𝜎 to
say that 𝐻2 is obtained from 𝐻1 by permuting the rows with the permutation 𝜋 and the
columns by the permutation 𝜎 (We remark that row permutations commute with column
permutations).

▶ Lemma 10. Let 𝑀 ∈ {0,★}𝑛×𝑛 be visibly full rank. Then there exists permutations 𝜋

and 𝜎 on [𝑛] such that 𝑁 B 𝑀𝜋,𝜎 is an upper triangular stencil. That is, 𝑁[𝑖 , 𝑖] = ★ and
𝑁[𝑖 , 𝑗] = 0 for all 𝑖 , 𝑗 ∈ [𝑛] with 𝑖 > 𝑗.

Proof. First, we claim that for any visibly full rank stencil 𝑀 ∈ {0,★}𝑛×𝑛 , there exists a row
in 𝑀 with exactly one star. Indeed, assume (for the sake of a contradiction) that such a row
doesn’t exist. Since no row can be all zeros in 𝑀, then each row has at least two ★’s. Index
the rows of 𝑀 by 𝑅 = {𝑟1 , . . . , 𝑟𝑛} and the columns by 𝐶 = {𝑐1 , . . . , 𝑐𝑛}. Let 𝐺 = (𝑅, 𝐶, 𝑆)
be a bipartite graph on the rows and columns of 𝑀 with edges 𝑆, where 𝑆 is the set of ★’s
in 𝑀. Because 𝑀 is visibly independent, 𝐺 has a unique perfect matching. Moreover, by
our initial assumption, 𝑑𝐺(𝑣) ⩾ 2 for all 𝑣 ∈ 𝑅. Thus if we color the edges of the unique

O. Alrabiah and V. Guruswami 57:9

matching of 𝐺 red and all remaining edges of 𝐺 blue, then by the fact that 𝑑𝐺(𝑣) ⩾ 2 for
all 𝑣 ∈ 𝑅, we can find an alternating cycle 𝐶 with red edges 𝑅𝐶 and blue edges 𝐵𝐶 . Since
𝑅𝐶 and 𝐵𝐶 match the same vertex sets, then replacing the edges in 𝑅𝐶 with those of 𝐵𝐶 in
the unique matching will produce another matching, but that’s a contradiction as 𝐺 has a
unique perfect matching. This proves our claim.

Next, we proceed by induction on 𝑛. The base case 𝑛 = 1 is immediate to see. As for
the induction step, we know by the previous claim that there exists some row in 𝑀 with
exactly one ★. Thus we can find a permutationally equivalent matrix 𝑀′ of 𝑀 with the 𝑛’th
row having exactly one ★ at the 𝑛’th column. Because 𝑀 is visibly independent, then so
is 𝑀′. Moreover, any general diagonal in 𝑀′ must contain 𝑀[𝑛, 𝑛]. This means that the
(𝑛 − 1) × (𝑛 − 1) minor 𝑀′

0, which is obtained by deleting row 𝑛 and column 𝑛 of 𝑀′, is
visibly independent. By our induction hypothesis, we can permute the rows and columns of
𝑀′

0 to make it upper triangular, and thus we conclude that 𝑀’s rows and columns can be
permuted to make it upper triangular. ◀

Thus we can characterize all visibly full rank matrices, and that help us obtain the
following upper bound on the visible rank.

▶ Lemma 11. Given an 𝑚 × 𝑛 stencil 𝐻, if there are natural numbers 𝑎, 𝑏 such that 𝐻 has
no 𝑎 × 𝑏 sub-stencil of zeros, then we have vrk(𝐻) < 𝑎 + 𝑏.

Proof. Assume (for the sake of a contradiction) that 𝐻 has a (𝑎+𝑏)×(𝑎+𝑏) square sub-stencil
𝐻0 that is visibly independent. By Lemma 10, we know that 𝐻0 is permutationally equivalent
to an (𝑎 + 𝑏) × (𝑎 + 𝑏) upper triangle. Since such triangle has a 𝑎 × 𝑏 sub-stencil of zeros, we
arrive to a contradiction. ◀

We also provide an upper bound on the rank of a stencil by the maximum number of
zeros in each rows.

▶ Proposition 12. For any 𝑚 × 𝑛 stencil 𝐻. If each row of 𝐻 has at most 𝑑 zeros, then we
have that rkF(𝐻) ⩽ 𝑑 + 1 for all fields F such that |F| ⩾ 𝑛.

Proof. Pick a field |F| ⩾ 𝑛. Label the columns of 𝐻 by pairwise distinct entries 𝑎1 , . . . , 𝑎𝑛 ∈ F.
For row 𝑖, let the columns that are zero along row 𝑖 be 𝑍𝑖 ⊆ {𝑎1 , . . . , 𝑎𝑛}. Consider the
polynomial 𝑝𝑖(𝑥) B

∏
𝑎∈𝑍𝑖

(𝑥 − 𝑎). Notice that 𝑝𝑖 evaluates to zero on 𝑍𝑖 . On everywhere
else, it evaluates to a nonzero value. Thus the matrix 𝐸 ∈ F𝑚×𝑛 defined by 𝐸𝑖 𝑗 = 𝑝𝑖(𝑎 𝑗) is an
F-witness of 𝐻. Moreover, since |𝑍𝑖 | ⩽ 𝑑 for each 𝑖 ∈ [𝑚], then we know that the monomials
{1, 𝑥, . . . , 𝑥𝑑} span the polynomials {𝑝1 , . . . , 𝑝𝑚}. This shows that rank(𝐸) ⩽ 𝑑 + 1 and thus
rkF(𝐻) ⩽ 𝑑 + 1. ◀

We remark that the bound |𝐹 | ⩾ 𝑛 is crucial for Propsition 12. Consider the stencil
𝐷 ∈ {0,★}𝑛×𝑛 that has ★’s everywhere except on the diagonal. Such a stencil has a visible
rank of 2, but one can show that its rank over F2 is at least 𝑛 − 1.

2.4 A Rank-Nullity Type Theorem Between Stencils and Symmetric
Spanoids

In this subsection, we formally setup spanoids and prove a rank-nullity type theorem between
symmetric spanoids and stencils.

APPROX/RANDOM 2021

57:10 Visible Rank and Codes with Locality

A spanoid 𝒮 is a collection of inference rules in the form of pairs (𝑆, 𝑖), which are written
in the form 𝑆 → 𝑖, where 𝑆 ⊆ [𝑛] and 𝑖 ∈ [𝑛]. The objective in spanoids is to determine the
size of the smallest subset 𝐵 ⊆ [𝑛] such that one can use the inference rules of 𝒮 to obtain all
of [𝑛]. Spanoids were introduced in [5] as an abstraction of LCCs, wherein they proved that
the spanoid analog of 𝑞-LCCs satisfy the upper bound 𝑂(𝑛(𝑞−2)/(𝑞−1)) on the rank. Moreover,
they also showed that there are 𝑞-LCC spanoids for which their rank is Ω̃(𝑛(𝑞−2)/(𝑞−1)).

Let us setup the definitions needed for spanoids. A derivation in 𝒮 of 𝑖 ∈ [𝑛] from a set
𝑇 ⊆ [𝑛] is a sequence of sets 𝑇0 = 𝑇, 𝑇1 , . . . , 𝑇𝑟 satisfying 𝑇𝑗 = 𝑇𝑗−1 ∪ {𝑖 𝑗} for some 𝑖 𝑗 ∈ [𝑛],
𝑗 ∈ [𝑟], and with 𝑖𝑟 = 𝑖. Further, for every 𝑗 ∈ [𝑟], there is a rule (𝑆 𝑗−1 , 𝑖 𝑗) in 𝒮 for some
𝑆 𝑗−1 ⊆ 𝑇𝑗−1. The span of a set 𝑇 ⊆ [𝑛], denoted span𝒮(𝑇), is the set of all 𝑖 ∈ [𝑛] for which
there is a derivation of 𝑖 from 𝑇. The rank of a spanoid, denoted rank(𝒮), is the size of the
smallest set 𝑇 ⊆ [𝑛] such that span𝒮(𝑇) = [𝑛]. Finally, we define symmetric spanoids below.

▶ Definition 13 (Symmetric Spanoids). A spanoid 𝒮 over [𝑛] is a symmetric spanoid if
there are a collection of sets {𝑆1 , . . . , 𝑆𝑚} so that the inference rules of 𝒮 are of the form
𝑆 𝑗 \ {𝑖} → {𝑖} for any 𝑖 ∈ 𝑆 𝑗 and 𝑗 ∈ [𝑚].

Now we may proceed to prove our theorem that relates the rank of symmetric spanoids
with the visible rank of an associated stencil.

▶ Theorem 14. For any symmetric spanoid 𝒮 over [𝑛] with 𝑚 sets, there exists a canonical
stencil 𝐻 of size 𝑚 × 𝑛 such that for any collection of columns 𝐶 ⊆ [𝑛] in 𝐻, they are visibly
independent if and only if span𝒮([𝑛] \ 𝐶) = [𝑛]. Moreover, we have vrk(𝐻) + rank(𝒮) = 𝑛.

Proof. Define 𝐻[𝑖 , 𝑗] = ★ if 𝑗 ∈ 𝑆𝑖 and zero otherwise. We claim that such 𝐻 satisfies the
conditions. Indeed, suppose that the columns 𝐶 = {𝑐1 , . . . , 𝑐𝑘} are visibly independent. Then
that means there are rows 𝑟1 , . . . , 𝑟𝑘 so that the 𝑘× 𝑘 sub-stencil formed by these columns and
rows is visibly full rank. Denote this matrix as 𝐻𝐶 . By Lemma 10, we can find permutations
𝜋, 𝜎 over [𝑘] such that the matrix 𝐻′

𝐶
B 𝐻𝜋,𝜎 is upper triangular. In terms of spanoids, that

means 𝑐𝜎(𝑖) ∈ 𝑆𝑟𝜋(𝑖) and 𝑆𝑟𝜋(𝑖) ⊆ [𝑛] \ {𝑐𝜎(1) , . . . , 𝑐𝜎(𝑖−1)} for all 𝑖 ∈ [𝑘]. We can rewrite the last
set containment as 𝑆𝑟𝜋(𝑖) ⊆ ([𝑛] \ 𝐶) ∪ {𝑐𝜎(𝑖) , . . . , 𝑐𝜎(𝑘)}. Thus we apply the inference rules
𝑆𝑟𝜋(𝑘) \ 𝑐𝜎(𝑘) → 𝑐𝜎(𝑘) , 𝑆𝑟𝜋(𝑘−1) \ 𝑐𝜎(𝑘−1) → 𝑐𝜎(𝑘−1) , . . . , 𝑆𝑟𝜋(1) \ 𝑐𝜎(𝑘) → 𝑐𝜎(1) in that order with the
set [𝑛] \ 𝐶, to deduce that the set [𝑛] \ 𝐶 spans the set [𝑛] in 𝒮. Thus span𝒮([𝑛] \ 𝐶) = [𝑛].

Now, suppose that span𝒮([𝑛]\𝐶) = [𝑛]. Then that means that we can find sets 𝑆𝑖1 , . . . , 𝑆𝑖𝑘

and a permutation 𝜎 over [𝑘] such that 𝑐𝜎(𝑗) ∈ 𝑆𝑖 𝑗 and we can apply the inference rules
𝑆𝑖1 \ {𝑐𝜎(1)} → 𝑐𝜎(1) , . . . , 𝑆𝑖𝑘 \ {𝑐𝜎(𝑘)} → 𝑐𝜎(𝑘) in that order. That implies then that 𝑆𝑖 𝑗 ⊆
([𝑛] \ 𝐶) ∪ {𝑐𝜎(1) , . . . , 𝑐𝜎(𝑗)}. In terms of the stencil 𝐻, that means 𝐻[𝑖 𝑗 , 𝜎(𝑗)] = ★ and
𝐻[𝑖ℓ , 𝜎(𝑗)] = 0 for ℓ < 𝑗. Thus the 𝑘 × 𝑘 sub-stencil 𝐻′ that is restricted to the columns
𝑐𝜎(1) , . . . , 𝑐𝜎(𝑘) and rows 𝑖1 , . . . , 𝑖𝑘 in that order forms a lower triangular stencil, which is
permutationally equivalent to an upper triangular stencil. Thus we deduce that the set of
columns 𝐶 is visibly independent.

Now, for any set 𝑆 ⊆ [𝑛] such that span𝒮(𝑆) = [𝑛], we know that [𝑛] \ 𝑆 is visibly
independent in 𝐻. Thus 𝑛− |𝑆 | ⩽ vrk(𝐻). Since this holds for any such set 𝑆, then we deduce
that rank(𝒮) + vrk(𝐻) ⩾ 𝑛. On the other hand, for any collection of columns 𝐶 in 𝐻 that
is visibly independent, we know that span𝒮([𝑛] \ 𝐶) = [𝑛]. This implies 𝑛 − |𝐶 | ⩾ rank(𝒮).
Since this holds for any visibly independent set of columns 𝐶 in 𝐻, then we find that
𝑛 ⩾ rank(𝒮) + vrk(𝐻). Hence rank(𝒮) + vrk(𝐻) = 𝑛. ◀

O. Alrabiah and V. Guruswami 57:11

3 Constructing 𝒒-LCC Stencils

In this section, we define 𝑞-LCC stencils and construct 𝑞-LCC stencils whose visible rank
achieves the known lower bounds up to polylog factors.

▶ Definition 15 (𝑞-LCC Stencils). For 𝛿 > 0, a 𝛿𝑛2 × 𝑛 stencil 𝐻 whose rows are labelled by
[𝑛] × [𝛿𝑛] is said to be a 𝑞-LCC stencil if 𝐻[(𝑖 , 𝑗), 𝑖] = ★ for all (𝑖 , 𝑗) ∈ [𝑛] × [𝛿𝑛]. Moreover,
for every 𝑘 ∈ [𝑛] \ {𝑖}, the collection of entries {𝑀[(𝑖 , 1), 𝑘], . . . , 𝑀[(𝑖 , 𝑡), 𝑘]} has at most
one star, and the number of ★’s in each row of 𝐻 is at most 𝑞 + 1.

Now we proceed to prove our main theorem for this section.

▶ Theorem 16. For 𝑞 ⩾ 3, there exists a 𝑞-LCC stencil 𝑀 for which vrk(𝑀) ⩽ 𝑛 −
Ω̃

(
𝑛(𝑞−2)/(𝑞−1)

)
.

Proof. For (𝑖 , 𝑗) ∈ [𝑛] × [𝛿𝑛]. Define 𝑟 𝑖
𝑗
B {𝑘 ∈ [𝑛] : 𝐻[(𝑖 , 𝑗), 𝑘] = ★} to be the support

of row (𝑖 , 𝑗), and let 𝐺𝑖 B {𝑟 𝑖
𝑗

: 𝑗 ∈ [𝛿𝑛]} be the 𝛿𝑛 groups for column 𝑖. We shall
show that by picking the groups 𝐺𝑖 uniformly at random, the visible rank will at most be
𝑛 − 𝑛(𝑞−2)/(𝑞−1)/log 𝑛 with high probability.

Consider natural numbers 𝑠 > 𝑘 where 𝑠 = 𝑛
𝑞−2
𝑞−1 and 𝑘 = 𝑠/log 𝑛 = 𝑛

𝑞−2
𝑞−1 /log 𝑛. Let 𝐸𝑠,𝑘

be the event that there aren’t any (𝑠 − 𝑘) × (𝑛 − 𝑠) sub-stencils in 𝐻 that are all zeros. We
shall show that 𝐸𝑠,𝑘 occurs with high probability, which will yield an upper bound of 𝑛 − 𝑘

on the visible rank via Lemma 11. We will use an equivalent form of the event 𝐸𝑠,𝑘 , which
is the event that there are no 𝑠 − 𝑘 rows in 𝐻 whose union of supports is at most 𝑠. Now,
consider a collection of columns 𝐶 of size 𝑠 and a collection of 𝑠 − 𝑘 rows 𝑅, where 𝑅 and 𝐶

denote the collection of their supports. Enumerate 𝑅 ∩ 𝐺𝑖 = {𝑟 𝑖1 , . . . , 𝑟 𝑖𝑎𝑖 }. By the chain rule,
the definition of 𝐺𝑖 , and the independence of the 𝐺𝑖 ’s, we find that

Pr

[∧
𝑟∈𝑅

𝑟 ⊆ 𝐶

]
=

𝑛∏
𝑖=1

Pr

[∧
𝑟∈𝑅∩𝐺𝑖

𝑟 ⊆ 𝐶

]
=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

Pr
[
𝑟 𝑖𝑗 ⊆ 𝐶

���� 𝑟 𝑖𝑘 ⊆ 𝐶 for 𝑘 ∈ [𝑗 − 1]
]

=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

Pr
[
𝑟 𝑖𝑗 \ {𝑖} ⊆ 𝐶 \ {𝑟 𝑖1 , . . . , 𝑟 𝑖𝑗−1}

���� 𝑟 𝑖𝑘 ⊆ 𝐶 for 𝑘 ∈ [𝑗 − 1]
]

=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

(𝑠−(𝑗−1)𝑞−1
𝑞

)(𝑛−(𝑗−1)𝑞−1
𝑞

) ⩽ ((𝑠−1
𝑞

)(𝑛−1
𝑞

)) 𝑠−𝑘 ⩽ (𝑠
𝑛

) 𝑞(𝑠−𝑘)
Therefore, from the definition of 𝐸𝑠,𝑘 , by applying a Union Bound over all possible collections
of columns 𝐶 of size 𝑠 and 𝑠 − 𝑘 collections of rows 𝑅 and use the bound

(𝑎
𝑏

)
⩽

(
𝑒𝑎
𝑏

)𝑏 , we

APPROX/RANDOM 2021

57:12 Visible Rank and Codes with Locality

deduce that

Pr [𝐸𝑠,𝑘] ⩽
(
𝑛

𝑠

) (
𝛿𝑛𝑠
𝑠 − 𝑘

) (𝑠
𝑛

) 𝑞(𝑠−𝑘)
⩽

(𝑒𝑛
𝑠

) 𝑠 (
𝑒𝛿𝑛𝑠
𝑠 − 𝑘

) 𝑠−𝑘 (𝑠
𝑛

) 𝑞(𝑠−𝑘)
=

(𝑒𝑛
𝑠

) 𝑘 ©«
𝑒2𝛿𝑠𝑞−1(

1 − 𝑘
𝑠

)
𝑛𝑞−2

ª®®¬
𝑠−𝑘

=

(
𝑒𝑛1/(𝑞−1)

) 𝑘 ©«
𝑒2𝛿(

1 − 1
log 𝑛

) ª®®¬
𝑛

𝑞−2
𝑞−1

(
1− 1

log 𝑛

)

Thus for small enough 𝛿 < 𝑒−2, the quantity above becomes exp
(
−Ω(𝑛(𝑞−2)/(𝑞−1))

)
. Thus we

can find a 𝑞-LCC stencil 𝑀 such that no 𝑠− 𝑘 rows whose support is entirely contained within
𝑠 columns. That is equivalent to saying that there is no (𝑠 − 𝑘) × (𝑛 − 𝑠) sub-stencil that is all
zeros. By Lemma 11, we therefore conclude that vrk(𝑀) < 𝑛 − 𝑘 = 𝑛 −Ω

(
𝑛

𝑞−2
𝑞−1 /log 𝑛

)
. ◀

4 𝒕-DRGP Stencils

We now define the stencils that capture the requirement of each codeword symbol having 𝑡

disjoint recovery groups.

▶ Definition 17 (𝑡-DRGP Stencils). A 𝑡𝑛 × 𝑛 stencil 𝐻 whose rows are labelled by [𝑛] × [𝑡]
is said to be a 𝑡-DRGP stencil if 𝐻[(𝑖 , 𝑗), 𝑖] = ★ for all (𝑖 , 𝑗) ∈ [𝑛] × [𝑡]. Moreover, for every
𝑘 ∈ [𝑛] \ {𝑖}, the collection of entries {𝑀[(𝑖 , 1), 𝑘], . . . , 𝑀[(𝑖 , 𝑡), 𝑘]} has at most one star.

Now we proceed to prove our main theorem for this section.

▶ Theorem 18. For any fixed natural number 𝑡 ⩾ 2, there exists a 𝑡-DRGP stencil 𝐻

satisfying vrk(𝐻) ⩽ 𝑂(𝑡2 log 𝑛).

Proof. Consider a random 𝑡-DRGP stencil 𝐻 as follows: define the set of entries 𝑆𝑖 , 𝑗 B

{(𝑖 , 𝑠), 𝑗) | 𝑠 ∈ [𝑡]}. Set for each 𝑖 ≠ 𝑗 ∈ [𝑛], set all of the entries 𝑆𝑖 ,𝑖 to be ★’s, and uniformly
sample an entry from 𝑆𝑖 , 𝑗 to be a ★ while everything else in 𝑆𝑖 , 𝑗 is set to be zero.

We will show that vrk(𝐻) ⩽ 𝑐1 log 𝑛 occurs with high probability. Indeed, fix 𝑘 ∈ N.
Given any square sub-stencil 𝐻0 of 𝐻 of size 𝑘, we have by Lemma 10 that if 𝐻0 is visibly
independent, then we must have at least

(𝑘
2
)

zeros. Let this set of entries be 𝑍 ⊆ ([𝑛]×[𝑡])×[𝑛].
Since 𝑍 must all be zeros, then we deduce that 𝑍 ⊆ ∪𝑖≠𝑗𝑆𝑖 , 𝑗 . Since each 𝑆𝑖 , 𝑗 has size 𝑡, then
𝑍 has at least

(𝑘
2
)
/𝑡 entries, each of which belongs to an 𝑆𝑖 , 𝑗 that is different than the other.

Let That is, for each 𝑖 ≠ 𝑗 ∈ [𝑛] such that 𝑍 ∩ 𝑆𝑖 , 𝑗 ≠ ∅, arbitrarily pick an entry 𝑒 ∈ 𝑍 ∩ 𝑆𝑖 , 𝑗 ,
and let 𝑇 be those set of entries. Then we know that 𝑇 ⩾

(𝑘
2
)
/𝑡. Moreover, the events that

the entries in 𝑇 are zero are all independent, with each having a chance of at most 1 − 1/𝑡 of
being zero. Thus the chance that 𝑍 is all-zeros is at most (1 − 1/𝑡)(𝑘2)/𝑡 . By a Union Bound
over all possible such 𝑍’s, which is enumerated over all (𝑘!)2 different permutations of the
rows and columns, we deduce that

Pr [𝐻0 is visibly independent] ⩽ (𝑘!)2
(
1 − 1

𝑡

) (𝑘2)
𝑡

⩽

(
𝑘2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
.

O. Alrabiah and V. Guruswami 57:13

And by applying another Union Bound over all such 𝐻0, we find that

Pr [vrk(𝐻) ⩾ 𝑘] ⩽
(
𝑡𝑛

𝑘

) (
𝑛

𝑘

) (
𝑘2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
⩽

(
𝑘2𝑡𝑛2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
.

Picking 𝑘 = 6𝑡2 ln 𝑛 + 1 makes the right hand side less than 1 for large enough 𝑛. ◀

5 Tensor Products

In this section, we will be introducing a tensor product operation on stencils and explore its
properties. Given the natural tensor product 𝐴 ⊗ 𝐵 for matrices 𝐴 and 𝐵, notice that the
support of 𝐴 ⊗ 𝐵 is determined completely by the support of the matrices 𝐴 and 𝐵. As a
consequence of this observation, we will be able to define the stencil of 𝐴 ⊗ 𝐵 based solely on
the stencils of 𝐴 and 𝐵. This leads us to our definition of a tensor product over stencils.

▶ Definition 19 (Tensor product). Given an 𝐴1 × 𝐵1 stencil 𝐻1 and an 𝐴2 × 𝐵2 stencil 𝐻2,
let 𝐻1 ⊗ 𝐻2 be a (𝐴1 × 𝐴2) × (𝐵1 × 𝐵2) stencil such that

(𝐻1 ⊗ 𝐻2)[(𝑎1 , 𝑎2), (𝑏1 , 𝑏2)] =
{
★ if 𝐻1[𝑎1 , 𝑏1] and 𝐻2[𝑎2 , 𝑏2] both equal ★,
0 if at least one of 𝐻1[𝑎1 , 𝑏1] and 𝐻2[𝑎2 , 𝑏2] equals 0.

We remark that our tensor product follows similar properties as the natural tensor product
for matrices, such as associativity and non-commutativity.

5.1 Algebraic witnesses of tensor products
In this subsection, we will be proving that any algebraic witnesses of the stencils 𝐻1 and
𝐻2 is also an algebraic witness of 𝐻1 ⊗ 𝐻2. This will therefore show us that the F-rank is a
sub-multiplicative function with respect to the tensor product.

▶ Proposition 20. Let 𝑀 and 𝑁 be matrices over a field F who are F-witnesses to stencils
𝐻1 , 𝐻2, respectively. Then 𝑀 ⊗ 𝑁 is an F-witness of 𝐻1 ⊗ 𝐻2.

Proof. For every entry in 𝐻1 ⊗𝐻2, we know that (𝐻1 ⊗𝐻2)[(𝑖1 , 𝑖2), (𝑗1 , 𝑗2)] is a ★ if and only
if 𝐻1[𝑖1 , 𝑗1] and 𝐻2[𝑖2 , 𝑗2] are both ★’s. This holds if and only if 𝑀𝑖1 𝑗1 and 𝑁𝑖2 𝑗2 are both
nonzero. Because (𝑀 ⊗ 𝑁)(𝑖1 ,𝑖2),(𝑗1 , 𝑗2) = 𝑀𝑖1 𝑗1𝑁𝑖2 𝑗2 , then the entry (𝑀 ⊗ 𝑁)(𝑖1 , 𝑖2), (𝑗1 , 𝑗2) is
nonzero if and only if 𝑀𝑖1 𝑗1 and 𝑁𝑖2 𝑗2 are both nonzero. Thus 𝑀 ⊗ 𝑁 is an F-witness of
𝐻1 ⊗ 𝐻2. ◀

By applying Proposition 20 on the F-witnesses of 𝐻1 and 𝐻2 with the smallest ranks, we
deduce the following corollary.

▶ Corollary 21. For a field F, we have the inequality rkF(𝐻1)rkF(𝐻2) ⩾ rkF(𝐻1 ⊗ 𝐻2)

5.2 Visible rank and tensor products
In this subsection, we will show that the tensor product of two visibly full rank stencils is
also visibly full rank. This will therefore show us that the visible rank is super-multiplicative
with respect to the tensor product. We will also show an upper bound on the visible rank of
the tensor product with respect to the visible rank of one of the stencils.

APPROX/RANDOM 2021

57:14 Visible Rank and Codes with Locality

▶ Proposition 22. Given visibly independent matrices 𝐴 and 𝐵 of size 𝑛, their tensor 𝐴 ⊗ 𝐵

is also visibly independent.

Proof. By Lemma 10, we know that there are permutations 𝜋𝐴 , 𝜎𝐴 ,𝜋𝐵 , 𝜎𝐵 on [𝑛] such that
the stencils 𝐴0 = (𝐴)𝜋𝐴 ,𝜎𝐴 and 𝐵0 = (𝐵)𝜋𝐵 ,𝜎𝐵 are both upper triangular stencils. Moreover,
we see that 𝐴0 ⊗ 𝐵0 = (𝐴 ⊗ 𝐵)(𝜋𝐴 ,𝜋𝐵),(𝜎𝐴 ,𝜎𝐵). Therefore, it suffices for us to show that 𝐴0 ⊗ 𝐵0
is an upper triangular stencil.

Consider the lexicographical ordering on [𝑛] × [𝑛]. When (𝑖1 , 𝑖2) > (𝑗1 , 𝑗2), then we
know that one of the inequalities 𝑖1 > 𝑗1 and 𝑖2 > 𝑗2 must hold, which means one of
𝐴0[𝑖1 , 𝑗1] or 𝐵0[𝑖2 , 𝑗2] must be a zero. This proves that (𝐴0 ⊗ 𝐵0)[(𝑖1 , 𝑖2), (𝑗1 , 𝑗2)] = 0
whenever (𝑖1 , 𝑖2) > (𝑗1 , 𝑗2). As for when (𝑖1 , 𝑖2) = (𝑗1 , 𝑗2), then we immediately know that
(𝐴0 ⊗ 𝐵0)[(𝑖1 , 𝑖2), (𝑖1 , 𝑖2)] = ★ as 𝐴0[𝑖1 , 𝑖1] = 𝐵0[𝑖2 , 𝑖2] = ★. Hence 𝐴0 ⊗ 𝐵0 is an upper
triangular stencil with respect to the lexicographical ordering. ◀

Given stencils 𝐻1 and 𝐻2, we know by Proposition 22 that the tensor product of any of
their visibly full rank sub-stencils will also be visibly full rank in 𝐻1 ⊗ 𝐻2. This yields us the
following corollary.

▶ Corollary 23. For stencils 𝐻1 and 𝐻2, We have the inequality vrk(𝐻1 ⊗ 𝐻2) ⩾
vrk(𝐻1)vrk(𝐻2).

Lastly, we end this subsection with an upper bound on the visible rank of 𝐻1 ⊗ 𝐻2.

▶ Proposition 24. For stencils 𝐻1 and 𝐻2 of sizes 𝑚1 × 𝑛1 and 𝑚2 × 𝑛2, respectively, We
have the inequality vrk(𝐻1 ⊗ 𝐻2) ⩽ vrk(𝐻1)𝑛2.

Proof. Consider a visibly full rank substencil 𝑀 in 𝐻1 ⊗ 𝐻2 of size 𝑘 × 𝑘. By Lemma 10,
we can find a 𝑘 × 𝑘 permutationally equivalent matrix 𝑀′ of 𝑀. Let the columns and
rows of 𝑀′ be indexed as (𝑎1 , 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘) and (𝑐1 , 𝑑1), . . . , (𝑐𝑘 , 𝑑𝑘). Define 𝑏𝑚𝑎𝑥 to
be the most frequent column of 𝐻2 in {𝑏1 , . . . , 𝑏𝑘}. Let 𝐼 B {𝑖1 , . . . , 𝑖𝑠} be the indices
such that 𝑏𝑖 𝑗 = 𝑏𝑚𝑎𝑥 . We know that 𝑠 ⩾ 𝑘/𝑛2 by definition of 𝑏𝑚𝑎𝑥 . Moreover, the
substencil 𝑀0 of 𝑀′ attained by taking the rows and columns with index in 𝐼 is upper
triangular. Since 𝑀′[(𝑐𝑖 𝑗 , 𝑑𝑖 𝑗), (𝑎𝑖 𝑗 , 𝑏𝑚𝑎𝑥)] = ★, then 𝐻2[𝑑𝑖 𝑗 , 𝑏𝑚𝑎𝑥] = ★ for all 𝑗 ∈ [𝑠]. Because
𝑀0 is upper triangular, then if we consider the 𝑠 × 𝑠 substencil 𝑁1 in 𝐻1 with columns
and rows {𝑎𝑖1 , . . . , 𝑎𝑖𝑠 } and {𝑐𝑖1 , . . . , 𝑐𝑖𝑠 }, we deduce that 𝑁1 is upper triangular. Thus
vrk(𝐻1) ⩾ vrk(𝑁1) = 𝑠 ⩾ 𝑘/𝑛2. Hence 𝑛2vrk(𝐻1) ⩾ 𝑘 for any visibly full rank 𝑘 × 𝑘

substencil 𝑀 in 𝐻1 ⊗ 𝐻2. ◀

5.3 Visible rank of the tensor powers

Naturally, one would be interested in tensoring a stencil 𝐻 with itself several times and
examine such a stencil.

▶ Definition 25 (Tensor power). Given an 𝑚 × 𝑛 stencil 𝐻, the 𝑘’th tensor of 𝐻 is the
𝑚𝑘 × 𝑛𝑘 stencil 𝐻⊗𝑘 defined as 𝐻⊗𝑘 B 𝐻 ⊗ 𝐻 ⊗ . . . ⊗ 𝐻︸ ︷︷ ︸

𝑘 times

.

By combining all the results from the previous subsections, we obtain the following corollary.

O. Alrabiah and V. Guruswami 57:15

▶ Corollary 26. For a natural number 𝑘 and an 𝑚 × 𝑛 stencil 𝐻, we have the inequality

rkF(𝐻) ⩾ rkF(𝐻⊗𝑘)1/𝑘 ⩾ vrk(𝐻⊗𝑘)1/𝑘 ⩾ vrk(𝐻)

Moreover, we also have the inequality vrk(𝐻⊗𝑘) ⩽ 𝑛𝑘−1vrk(𝐻).

From the previous corollary, we can see that by consider the visible rank of the higher
tensor powers of a stencil 𝐻, one might hope to attain better lower bounds on the F-rank.
Naturally, one would define the highest possible bound achieved through this vein.

▶ Definition 27 (Visible Capacity). The visible capacity of a stencil 𝐻, denoted as Υ(𝐻), is
defined as Υ(𝐻) B sup𝑘 vrk(𝐻⊗𝑘)1/𝑘.

By Corollary 26, we deduce that rkF(𝐻) ⩾ Υ(𝐻) over any field F. It is not known to us if
there are stencils for which there is a gap between its visible capacity and all its F-ranks. We
leave the discussion of this point to Question 1 in Section 7.

6 Tensor Powers of Stencils for 2-DRGP Codes and 𝒒-LCCs

In this section, we will be considering the tensor product in the previous section and use it
to analyze the visible rank of the tensor powers of 2-DRGP and 𝑞-LCC stencils to see if they
might yield better lower bounds on the rank via Corollary 26.

6.1 2-DRGP stencils
In this subsection, we prove that the second tensor power of an arbitrary 2-DRGP stencil
has a large visible rank.

▶ Theorem 28. For any 2-DRGP stencil 𝐻, we have vrk(𝐻 ⊗ 𝐻) ⩾ 𝑛.

Proof. We cite [24, 30] for the proof of this part. We will follow the notations given in [30]
closely. While both proofs show that rkF(𝐻) ⩾

√
2𝑛 − 𝑂(1), we will prove that rkF(𝐻) ⩾

√
𝑛

by showing that vrk(𝐻 ⊗ 𝐻) ⩾ 𝑛 and then applying Corollary 26. We rewrite their proofs in
terms of tensor powers.

Consider the 𝑛 × 𝑛 sub-stencil 𝐷 in 𝐻 ⊗ 𝐻 whose columns are (1, 1), . . . , (𝑛, 𝑛) and
whose rows are ((1, 1), (1, 2)), . . . , ((𝑛, 1), (𝑛, 2)). We claim that 𝐷 has ★’s along the diagonal
and zero everywhere else, which implies that it is visibly full rank. Indeed, the entry
𝐷[((𝑖 , 1), (𝑖 , 2)), (𝑗 , 𝑗)] equals ★ if and only if both 𝐻[(𝑖 , 1), 𝑗] and 𝐻[(𝑖 , 2), 𝑗] are ★’s. Since
𝐻 is a 2-DRGP stencil, this happens precisely when 𝑖 = 𝑗. Thus 𝐷 is a diagonal stencil. ◀

Thus by Corollary 26, we obtain a lower bound rkF(𝐻) ⩾
√
𝑛 for any field F. On the

other hand, the best known lower bounds yield rkF(𝐻) ⩾
√

2𝑛 − 𝑂(1), and so one might
be interested in achieving this lower bound through the viewpoint of tensor products. In
order to improve the lower bound that we have, we first have to translate our proof into
linear-algebraic terms.

Given a field F, suppose that we have an F-witness 𝐴 of the 2-DRGP stencil 𝐻 whose
rank is 𝑟. Decompose 𝐴 = 𝑀𝑁 where 𝑀 is an 2𝑛 × 𝑟 matrix and 𝑁 is an 𝑟 × 𝑛 matrix.
Denote the 𝑖’th column of 𝑁 by 𝑤𝑖 Then the proof of Theorem 28 is equivalent to saying
that the tensors {𝑤𝑖 ⊗ 𝑤𝑖}𝑛𝑖=1 are linearly independent. Since they live in a space F𝑟 ⊗ F𝑟 ,
then we obtain the inequality 𝑟2 ⩾ 𝑛, which gives us the same lower bound as we obtained

APPROX/RANDOM 2021

57:16 Visible Rank and Codes with Locality

in Theorem 28. Now, if one is more careful about the vector space, one can notice that the
tensors {𝑤𝑖 ⊗ 𝑤𝑖}𝑛𝑖=1 belong to the space of symmetric tensors, which has a dimension of(𝑟+1

2
)
. Thus we obtain the inequality

(𝑟+1
2

)
⩾ 𝑛, which gives us 𝑟 ⩾

√
2𝑛 − 𝑂(1).

6.2 𝒒-LCC stencils
In this subsection, we will show that the visible ranks of the 𝑘’th tensor power of a 𝑞-
LCC stencil would not improve the current bound of 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)) in Theorem 16 for
𝑘 ⩽ polylog(𝑛). More generally, we will show that the visible rank of small tensor powers
could are not significantly bigger than the visible rank for the regime of high-rate stencils.

▶ Proposition 29. Let 𝐻 be an 𝑚 × 𝑛 stencil whose visible rank is at most 𝑛 − 𝑠. For any
fixed natural number 𝑘, we have vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − 𝑠

𝑘
.

Proof. By Corollary 26 and the inequality (1 − 𝑥)1/𝑘 ⩽ 1 − 𝑥
𝑘

for 𝑥 ⩾ 0, we have that

vrk(𝐻⊗𝑘)1/𝑘 ⩽
(
𝑛𝑘−1vrk(𝐻)

)1/𝑘
⩽

(
𝑛𝑘−1(𝑛 − 𝑠)

)1/𝑘
= 𝑛

(
1 − 𝑠

𝑛

)1/𝑘
⩽ 𝑛

(
1 − 𝑠

𝑘𝑛

)
= 𝑛− 𝑠

𝑘
.◀

From Proposition 29, we notice that looking at the visible rank of the 𝑛𝑜(1) level tensor
powers of a 𝑞-LCC stencil would not improve the current bounds on 𝑞-LCCS by a polynomial
factor. We state it more formally in the following corollary.

▶ Corollary 30. Let 𝐻 be a 𝑞-LCC stencil whose visible rank is at most 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)).
For any natural number 𝑘, we have vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))/𝑘.

7 Further Directions and Discussion

Stencils provide an initial framework toward combinatorial methods for effectively lower
bounding the rank of a matrix. However, we have seen the limitations of the visible rank
with 2-DRGP stencils as well as small tensor powers of 𝑞-LCC stencils. We leave the reader
with questions that remain open about the current framework and possibilities of imposing
further restrictions on the model to obtain sharper lower bounds on the rank.

1. While we may have shown that the 𝑘’th tensor power of a 𝑞-LCC does not yield better
lower bounds for 𝑘 ⩽ 𝑛𝑜(1), this does not rule out the possibility that the visible capacity
might yield better lower bounds. In fact, we do not know if there are any stencils for
which the visible capacity does not match the lowest possible rank for the stencil. In
other words, does there exist a stencil 𝐻 such that rkF(𝐻) > Υ(𝐻) for every field F?.

2. Random 2-DRGP patterns have shown an exponential gap between the visible ranks
of the first and second tensor powers, but one might be curious to see an exponential
separation between the visible ranks of the (𝑡 − 1)’th and 𝑡’th tensor powers. Formally
speaking, for every natural number 𝑡 greater than 1, does there exist a 𝑚 × 𝑛 stencil
𝐻 and a constant 𝑐 > 0 such that vrk(𝐻⊗𝑖) = 𝑂(log𝑐𝑖 𝑛) for 𝑖 = 1, 2, . . . , 𝑡 − 1 while
vrk(𝐻⊗𝑡) = Ω(𝑛)? Such a phenomena holds with Shannon capacity [1].

3. In this paper, we shown a polynomial gap between rkF(𝐻) and vrk(𝐻) by proving that
there are 2-DRGP stencils 𝐻 with vrk(𝐻) = 𝑂(log 𝑛) and rkF(𝐻) = Ω(

√
𝑛). On the other

hand, can there also be a similar polynomial gap with the quantities 𝑛 − rkF(𝐻) and
𝑛 − vrk(𝐻)? From Proposition 29, we have seen that the visible ranks of the 𝑘’th tensor

O. Alrabiah and V. Guruswami 57:17

power for 𝑘 ⩽ 𝑛𝑜(1) would not suffice to show this polynomial gap. Nonetheless, it still
leaves the possibility of using the visible capacity to showing this polynomial gap, but we
do not know of any methods that can lower bound the visible capacity other than the
visible ranks of finite tensor powers. Note that this question is the symmetric spanoid
version of Question 2 posed in [5].

References
1 Noga Alon and Eyal Lubetzky. The shannon capacity of a graph and the independence

numbers of its powers. IEEE Transactions on Information Theory, 52(5):2172–2176, 2006.
2 Ziv Bar-Yossef, Yitzhak Birk, T. S. Jayram, and Tomer Kol. Index coding with side information.

IEEE Trans. Inf. Theory, 57(3):1479–1494, 2011.
3 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matrices

with applications to combinatorial geometry and locally correctable codes. In Proceedings of
the forty-third annual ACM symposium on Theory of computing, pages 519–528, 2011.

4 Zeev Dvir. Incidence theorems and their applications. arXiv preprint arXiv:1208.5073, 2012.
5 Zeev Dvir, Sivakanth Gopi, Yuzhou Gu, and Avi Wigderson. Spanoids - an abstraction of

spanning structures, and a barrier for LCCs. SIAM J. Comput., 49(3):465–496, 2020.
6 Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed PIR with low

storage overhead. In IEEE International Symposium on Information Theory, pages 2852–2856,
2015.

7 Mathew C Francis, Dalu Jacob, and Satyabrata Jana. Uniquely restricted matchings in interval
graphs. SIAM Journal on Discrete Mathematics, 32(1):148–172, 2018.

8 S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via partially
lifted codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, volume 81 of LIPIcs, pages 43:1–43:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017.

9 Harold N Gabow, Haim Kaplan, and Robert E Tarjan. Unique maximum matching algorithms.
Journal of Algorithms, 40(2):159–183, 2001.

10 Alexander Golovnev, Oded Regev, and Omri Weinstein. The minrank of random graphs.
IEEE Trans. Inf. Theory, 64(11):6990–6995, 2018.

11 Martin Charles Golumbic, Tirza Hirst, and Moshe Lewenstein. Uniquely restricted matchings.
Algorithmica, 31(2):139–154, 2001.

12 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the locality of
codeword symbols. IEEE Transactions on Information theory, 58(11):6925–6934, 2012.

13 Sivakanth Gopi. Locality in coding theory. PhD thesis, Princeton University, 2018.
14 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In

Proceedings of the Innovations in Theoretical Computer Science Conference, pages 529–540,
2013.

15 Willem H. Haemers. On some problems of Lovász concerning the Shannon capacity of a graph.
IEEE Trans. Inf. Theory, 25(2):231–232, 1979.

16 Thanh Minh Hoang, Meena Mahajan, and Thomas Thierauf. On the bipartite unique perfect
matching problem. In International Colloquium on Automata, Languages, and Programming,
pages 453–464. Springer, 2006.

17 Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan,
Jin Li, and Sergey Yekhanin. Erasure coding in windows azure storage. In USENIX Annual
Technical Conference, 2012.

18 Eran Iceland and Alex Samorodnitsky. On coset leader graphs of structured linear codes.
Discrete and Computational Geometry, 63:560–576, 2020.

APPROX/RANDOM 2021

57:18 Visible Rank and Codes with Locality

19 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, pages 80–86, 2000.

20 Ray Li and Mary Wootters. Lifted multiplicity codes and the disjoint repair group property.
IEEE Trans. Inf. Theory, 67(2):716–725, 2021.

21 László Lovász. Communication complexity: A survey. Technical report, Princeton University
TR-204-89, February 1989. University of Zurich, Department of Informatics.

22 Sounaka Mishra. On the maximum uniquely restricted matching for bipartite graphs. Electronic
Notes in Discrete Mathematics, 37:345–350, 2011.

23 C. Ramya. Recent progress on matrix rigidity–a survey. arXiv preprint arXiv:2009.09460,
2020.

24 Sankeerth Rao and Alexander Vardy. Lower bound on the redundancy of PIR codes. arXiv
preprint arXiv:1605.01869, 2016.

25 Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros Dima-
kis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. XORing elephants: Novel erasure
codes for big data. Proc. VLDB Endow., 6:325–336, 2013.

26 Maguy Tréfois. Topics in combinatorial matrix theory. PhD thesis, PhD thesis, UCL, 2016.
27 Maguy Trefois and Jean-Charles Delvenne. Zero forcing sets, constrained matchings and

minimum rank. Linear and Multilinear Algebra, 2013.
28 Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Sym-

posium on Mathematical Foundations of Computer Science, pages 162–176. Springer, 1977.
29 David P. Woodruff. A quadratic lower bound for three-query linear locally decodable codes

over any field. J. Comput. Sci. Technol., 27(4):678–686, 2012.
30 Mary Wootters. Linear codes with disjoint repair groups. unpublished manuscript, 2016.
31 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer

Science, 6(3):139–255, 2012. doi:10.1561/0400000030.

https://doi.org/10.1561/0400000030

Pseudorandom Generators for Read-Once
Monotone Branching Programs
Dean Doron # Ñ

Department of Computer Science, Stanford University, CA, USA

Raghu Meka # Ñ

Department of Computer Science, University of California at Los Angeles, CA, USA

Omer Reingold # Ñ

Department of Computer Science, Stanford University, CA, USA

Avishay Tal # Ñ

Department of Electrical Engineering and Computer Sciences, University of California at Berkeley,
CA, USA

Salil Vadhan # Ñ

John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA,
USA

Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line
of work on constructing pseudorandom generators (PRGs) against various forms of read-once
branching programs (ROBPs), with a goal of improving the O(log2 n) seed length of Nisan’s classic
construction [33] to the optimal O(log n).

In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs
that are monotone, meaning that the states at each time step can be ordered so that edges with the
same labels never cross each other. Equivalently, for each fixed input, the transition functions are a
monotone function of the state. This result is complementary to a line of work that gave PRGs with
seed length O(log n) for (ordered) permutation ROBPs of constant width [7, 26, 12, 37], since the
monotonicity constraint can be seen as the “opposite” of the permutation constraint.

Our PRG also works for monotone ROBPs that can read the input bits in any order, which
are strictly more powerful than read-once AC0. Our PRG achieves better parameters (in terms of
the dependence on the depth of the circuit) than the best previous pseudorandom generator for
read-once AC0, due to Doron, Hatami, and Hoza [13].

Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated
pseudorandom restrictions [1, 18]. We give a randomness-efficient width-reduction process which
proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent
applications of the Forbes–Kelley pseudorandom restrictions [16].

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Circuit complexity

Keywords and phrases Branching programs, pseudorandom generators, constant depth circuits

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.58

Category RANDOM

Funding Dean Doron: Supported by NSF award CCF-1763311 and Simons Foundation investigators
award 689988.
Raghu Meka: Supported by NSF Career award CCF-1553605 and NSF award CCF-2007682.
Omer Reingold: Supported by Supported by NSF award CCF-1763311 and Simons Foundation
investigators award 689988.
Salil Vadhan: Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

Acknowledgements We are grateful to Kristoffer Hansen for pointing us to [3] and explaining how
their results imply Theorem 3.

© Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 58; pp. 58:1–58:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ddoron@stanford.edu
https://cs.stanford.edu/~ddoron/
mailto:raghum@cs.ucla.edu
https://raghumeka.github.io/
mailto:reingold@stanford.edu
https://omereingold.wordpress.com/
mailto:atal@berkeley.edu
http://www.avishaytal.org/
mailto:salil_vadhan@harvard.edu
https://salil.seas.harvard.edu/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 PRGs for Read-Once Monotone Branching Programs

1 Introduction

Branching programs are a fundamental model in computational complexity, capturing both
space-bounded computation and circuit classes. In this paper, we study a restricted class
of branching programs we call monotone, giving a new pseudorandom generator for their
read-once version.

1.1 Monotone Branching Programs

First we recall the standard definition of a layered branching program:

▶ Definition 1. For w, n, s ∈ N, a (layered) branching program (BP) B on n variables, with
length s and width w, or an [n, s, w] BP, is specified by a start state v0 ∈ [w], a set of accept
states Vacc ⊆ [w], a sequence of variable indices i1, . . . , is ∈ [n], and sequence of transition
functions Ej : {0, 1} × [w] → [w] for j = 1, . . . , s.

A branching program B as above naturally defines a function B : {0, 1}n → {0, 1}: Start
at the starting state v0, and then for j = 1, . . . , s, read the input bit xij

and then transition to
state vj = Ej(xij , vj−1), The branching program accepts (B(x) = 1) if vn ∈ Vacc and rejects
(B(x) = 0) otherwise.

B is a read-once branching program, or an [n, w] ROBP, if s = n and i1, . . . , is is a
permutation of [n]. If this is the identity permutation (i.e. the variables are read in order),
then we say B is an ordered branching program.

A layered branching program B has an associated directed graph. The vertex set has
s+1 layers of w vertices each. For each j = 1, . . . , s, layer j is labelled with an input variable,
namely xij

, and there are two edges, labelled 0 and 1, going from each vertex v in layer j to
vertices layer j + 1, namely Ej(0, v) and Ej(1, v).

We now introduce the model of monotone programs that we consider.

▶ Definition 2 (monotone branching program (MBP)). We say a BP B is monotone if for
every j ∈ [s] and σ ∈ {0, 1}, the j-th transition function with input bit restricted to σ, denoted
Eσ

j ≜ Ej(σ, ·) : [w] → [w], is a monotone function according to the standard ordering of [w],
i.e. if v ≥ v′, then Eσ

j (v) ≥ Eσ
j (v′).

That is, put differently, if we draw the layered graph as an w × (s + 1) grid, then whenever
we consider the edges associated with a fixed input x, there are no edges crossing. We will
refer to BPs that are both monotone and read once as read-once MBPs.

It is important to note that this definition only requires monotonicity with respect to the
state of the branching program; MBPs can easily compute functions that are non-monotone
as a function of their input (as we will see below). We remark that the definition of read-
once MBPs as defined here is different from the notion of locally monotone studied in [10].
Importantly, the latter property is not preserved under restrictions and hence is less nice
structurally. The read-once definition also coincides with the notion of monotone ROBPs as
defined in [31], if we require all reject states to precede the accepting ones in the last layer.1
However, the formulation above is more convenient for us.

1 In fact, for the sake of constructing PRGs, we can remove this requirement by replacing ε with ε/w.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:3

1.2 Monotone Branching Programs and AC0

Recall Barrington’s celebrated theorem that constant-width branching programs are equivalent
in power to NC1 circuits [2]. However, when we restrict to monotone branching programs,
then they become equivalent in power to the much weaker AC0 circuits. Our model of
monotone branching programs is closely related to the models of planar branching programs
studied in [3, 4] and the following can be deduced from their results:2

▶ Theorem 3 (corollary of [4]). A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if
and only if it is computable by a constant-width MBP of polynomial length.

In this paper, our focus is on read-once MBPs. We prove that these are strictly stronger
than read-once AC0:

▶ Proposition 4.
1. If a sequence of functions fn : {0, 1}n → {0, 1} is in read-once AC0, then it can be

computed by constant-width read-once MBP. Moreover, if fn can be computed in depth w

read-once AC0, then it can be computed by width w + 1 read-once MBPs.
2. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a width 3

read-once MBP, but not computable by any read-once De Morgan formula (regardless of
depth).
Item 1 is proven in the same way as the easier direction of Theorem 3, noting that if we

start with a read-once AC0 circuit, we end up with a read-once MBP. Item 2 is proven by
showing that simple functions, like checking whether the input contains at least two ones
cannot be computed by a read-once De Morgan formula, but can be computed be width
three MBPs. We give the proof for Item 2 in Section 4.

Thus, constant-width read-once MBPs form an intermediate class between read-once AC0

and AC0.3

1.3 Pseudorandom Generators for Read-Once Branching Programs
A longstanding quest in complexity theory is to understand the power of randomness in
relation to space complexity. A central challenge in this direction is to construct pseudorandom
generators for read-once branching programs.

In this work we study the question of designing explicit PRGs for small-width ROBPs.

▶ Definition 5. Given a class of functions F : {0, 1}n → {0, 1}, a function G : {0, 1}r →
{0, 1}n is a PRG for F with error ε if for any f ∈ F , we have∣∣∣∣ Pr

y∈u{0,1}r
[f(G(y)) = 1] − Pr

x∈u{0,1}n
[f(x) = 1]

∣∣∣∣ ≤ ε.

We call r the seed length of the generator and the generator is explicit if its output can
be computed in polynomial time (in n). We often say G ε-fools F .

2 In an earlier version of our paper [15], we claimed Theorem 3 as a new contribution. Kristoffer Hansen
then explained to us how the result follows from [3]. More precisely, there are simple gadget reductions
to show that a constant-width monotone branching program according to our definition can be simulated
by a planar branching program according to the definition of [3]. Thus the result of [3] establishing the
equivalence of the latter with AC0 implies the “if” direction of Theorem 3. The “only if” direction is
much easier, and amounts to observing that the standard simulation of AC0 by constant-width branching
programs yields a monotone program. For completeness, we provide a direct and self-contained proof of
both directions of Theorem 3 in Appendix A.

3 Both inclusions are strict, since there are functions in AC0 that cannot be computed by circuits of size
smaller than n4, and the proof of Theorem 3 shows that any constant-width read-once MBP can be
simulated by an AC0 circuit of size O(n3).

APPROX/RANDOM 2021

58:4 PRGs for Read-Once Monotone Branching Programs

Designing pseudorandom generators against ordered ROBPs has received a lot of attention
and is intimately connected to the question of understanding the power of randomness vs.
space. It has also found a number of applications beyond derandomizing space. ([29, 35, 21,
24, 25, 19] are just few examples.)

The best known PRGs for ordered ROBPs to date are those of Nisan [33] and Impagliazzo–
Nisan–Wigderson [23] which give seed length O(log2 n) when w = nO(1) and ε = 1/nO(1).
However, even for width four and constant error their construction requiring seed length
O(log2 n) is still the best. Improving on this seed length, even for constant width, has been
a longstanding barrier. We do have better PRGs for various special classes of ROBPs that
are independently interesting:

Braverman, Rao, Raz, and Yehudayoff [7] construct PRGs with Õ(log n) seed length
for constant-width ordered regular branching programs and ε = 1/ poly(log n). Regular
branching programs are a special class of ROBPs where we require the structural condition
that each vertex has the same in-degree in the underlying layered graph.
Starting with the work of Koucký, Nimbhorkar, and Pudlák [26], several works [12, 37, 22]
have achieved a seed length of O(log n) (with no log log n factors) for the further restricted
model of ordered permutation branching programs. In these, we require that at each layer
j, and for each symbol σ, the transition function Eσ

i is a permutation of [w].
Meka, Reingold, and Tal [30] construct PRGs with Õ(log n) seed length for width
three ordered ROBPs and ε = 1/ poly(log n), as well as for unordered ones with ε =
1/ poly(log log n).
[16] gave a PRG that is significantly different from that of [33, 23] and achieves seed
length O(log3 n) for polynomial width and Õ(log2 n) for constant-width ROBPs (again,
even unordered).

1.4 Our Main Result
We give an explicit PRG with seed length Õ(log(n/ε)) for read-once MBPs.

▶ Theorem 6 (see Section 3.2). For any positive integers n, w ≤ n, and ε ∈ (0, 1/2), there
is an explicit PRG that ε-fools [n, w] read-once MBPs (even unordered ones) with seed length
O
(
w2 log(n/ε) · (log log(n/ε))2) .

We believe that fooling read-once MBPs is an important (and clearly necessary) step
toward breaking the O(log2 n)-barrier for constant-width ROBPs. The class of (ordered)
branching programs that we understand best from the perspective of pseudorandomness is that
of permutation branching programs, thanks to the aforementioned works of [7, 26, 12, 37, 22],
all of which obtain their results by showing that the Impagliazzo–Nisan–Wigderson [23]
pseudorandom generator can be analyzed better for such programs. Monotone BPs can be
seen as the extreme opposite of permutation BPs: the only monotone function E : [w] → [w]
that is also a permutation is the identity. Thus the only layers a monotone BP can share with
a permutation BP are redundant (can be eliminated from the branching program without
changing its functionality). Furthermore, in stark contrast to the case of ordered permutation
branching programs, it is known that instantiations of the classical constructions of [33, 23]
with Õ(log n) seed length provably do not work against ordered MBPs of width 3 [8].

Technically, our arguments build on the paradigm of using random restrictions for fooling
ROBPs as studied in the works of [18, 34, 38, 11, 20, 28, 10, 16, 30, 27, 13, 14]. This gives
more evidence that this approach can perhaps lead to Õ(log n) seed length for constant-width
ROBPs. Our analysis introduces the idea of exploiting width reduction combined with
alphabet reduction that could be useful for the general problem.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:5

By Proposition 4, the PRG of Theorem 6 is also a PRG for read-once De Morgan formulas.
For read-once AC0, corresponding to width w = O(1), it achieves a better dependence on
the width w than the previous generator for read-once AC0, which has a seed of length
log(n/ε) · O(w log log(n/ε))2w+2 for depth-w formulas [13] (our dependence on w is w2). For
read-once formulas of arbitrary depth, the best PRG prior to our work was the PRG of Forbes
and Kelley [16], which has seed length O(log(n/ε) log2 n). Thus, the PRG of Theorem 6
attains better seed length for read-once formulas that have depth up to w = o

(
log n

log log(n/ε)

)
.

We note that constructing PRGs that are not sensitive to the ordering of the bits in which
the input is read is a natural question. First, fooling read-once AC0, for example, is inherently
an unordered task. But also, PRGs for ROBPs that follows the “classical” and successful
seed recycling approach due to Nisan (e.g., [33, 23, 26, 7, 6]) heavily depends on the ordering
of the bits. In fact, Tzur [39] proved that Nisan’s PRG can in fact be distinguished from
uniform by an unordered constant width branching program (see also [5]). Thus, the hope is
that PRGs that are not sensitive to the ordering will help make progress on the problem of
fooling ordered ROBPs with seed length o(log2 n).

1.5 Techniques
We proceed by giving an overview of the construction of our PRG and of the techniques we
use.

1.5.1 The Iterated Restrictions Approach
We construct our PRG using the iterated pseudorandom restrictions approach, pioneered
by Ajtai and Wigderson [1] and further developed by Gopalan et al. [18]. That is, we
pseudorandomly assign values to a pseudorandomly chosen subset of the variables, and
then repeat the process until we assigned values to all variables. Intuitively, designing a
pseudorandom restriction for some function f is easier than fooling f outright, because
designing a pseudorandom restriction amounts to fooling a “smoothed out” version of f [18],
or equivalently, designing a PRG that would fool f after some noise was added [20]. Previous
works that used this approach include PRGs for unordered ROBPs [34, 10, 16], PRGs for
width-3 ROBPs [18, 38, 30], PRGs for bounded-depth read-once formulas [18, 11, 13, 14],
and PRGs for arbitrary-order product tests [20, 28, 27].

Following the iterated restrictions approach, we need our pseudorandom distribution
X over restrictions to satisfy two key properties. The first property is that the restriction
should approximately preserve the expectation of the function. i.e., in expectation over
X, the restricted function f |X should have approximately the same bias as f itself, i.e.
EX [EU [f |X(U)]] ≈ EU [f(U)], where U denotes the uniform distribution on the appropriate
number of bits. This feature ensures that after sampling the restriction X, our remaining
task is simply to fool f |X . The second property is the simplification property. That is, we
want that the restricted function, for a typical restriction, should be in a sense simpler than
f itself. Clearly, simplifying f would make it easier to fool.

To achieve the first property of preserving the expectation, we follow Forbes and Kelley
[16], who constructed a simple pseudorandom distribution over restrictions that approximately
preserves the expectation of any constant-width ROBP. In the Forbes–Kelley distribution, we
determine which coordinates stay alive in an almost k-wise independent manner, and sample
the fixed coordinates using a small-bias space. This distribution, per a single restriction, can
be sampled using Õ(log(n/ε)) uniform bits. Next, we proceed to discuss how to achieve the
simplification property.

APPROX/RANDOM 2021

58:6 PRGs for Read-Once Monotone Branching Programs

1.5.2 Iterative Width Reduction
In our setting, we design our restrictions in a way that fits nicely with the [16] distribution.
Thus, the remaining challenge is indeed to ensure that such restrictions simplify constant
width monotone ROBPs. In [16], the measure of complexity was simply the number of
remaining unset variables. That is, Forbes and Kelley argued that after applying O(log n)
independent pseudorandom restrictions, with high probability, all variables are set, and hence
there is nothing left to fool. Such an analysis gives seed length of Õ(log(n/ε) · log n), and
recent works used more sophisticated measures of complexity to show that for more restricted
classes of bounded width ROBPs, one can reach a function which is simple enough after
only O(log log n) independent pseudorandom restrictions [18, 30, 13, 14]. In this work, we
continue this line of research, and show that after O(log log n) iterations, roughly speaking,
the width of the ROBP decreases by 1.

Since the construction and analysis of PRG will not depend on the ordering of the input
bits, for simplicity we will describe it here assuming that the monotone ROBP B is ordered
(to avoid the indexing ij of input variables). Before getting to the construction, we highlight
the key concept of colliding layers in a branching program, which was also paramount in
[8, 36, 38, 10, 30]. We say that a BP layer i is a collision one, if there exist two edges with
the same label σ that are mapped to the same vertex, i.e. Eσ

i is not a permutation. We say
a collision is realized if a restriction fixes xi to σ, and thus effectively introduces a layer with
smaller width. The property of monotone BPs we use is that every non-identity layer is a
collision one, and crucially, that this property is preserved under restrictions.

Another technical, yet powerful, component of our analysis is treating a branching program
with edges labeled 0 and 1, i.e., over the alphabet {0, 1}, as a branching program over a
much larger alphabet. Expressing the branching program over a larger alphabet preserves
monotonicity and allows us to reduce the width of the BP in some cases. In fact, we will
treat both the width and the alphabet size as progress measures.

Towards describing our iterative simplifying process, express our ROBP B, over {0, 1},
as a branching program over Σ = {0, 1}ℓ in the straightforward way, where ℓ will start out
as O(log(n/ε)) and eventually will be reduced to O(log log(n/ε)). Each “layer” is now a
function from Σ × [w] to [w]. Initially, moving to a larger alphabet only makes our task more
difficult, but the generality will be useful as we induct on the width below (i.e. even if we
start out with a width w program with alphabet {0, 1}, the argument below will force us to
handle width w − 1 programs having alphabet {0, 1}O(log(n/ε)).

We iteratively apply the following two observations.
1. Realizing a collision. After a suitable pseudorandom restriction X1, in every sequence

of exp(O(ℓ)) · log(n/ε) = exp(O(ℓ)) collision layers, we will have a collision in one of these
layers. As each layer in a read-once MBP is either an identity layer or a collision layer,
and this remains true also after transitioning to a larger alphabet, we can deduce that
after X1 every Cℓ consecutive nontrivial layers contains a layer of width at most w − 1,
for a sufficiently large constant C.

2. Alphabet reduction. After a suitable pseudorandom restriction X2, up to a few
“unruly” layers, we can shrink the alphabet size of B so that all layers are effectively over
{0, 1}ℓ/2. Specifically, we can assume that in every sequence of Cℓ consecutive layers of
alphabet size B, all but O(log(n/ε)) of them will have their alphabet size reduced to
{0, 1}ℓ/2.

Both X1 and X2 will consist of almost k-wise independent distributions on {0, 1, ⋆} where ⋆

represents the bits not assigned by the restriction and we take X1 to have ⋆-probability 1/2
and X2 to have a smaller, yet still constant, ⋆-probability.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:7

Equipped with the above two observations, aiming at reducing the width of B, we apply,
independently, the above X1 and X2 for t = O(log log(n/ε)) iterations. After the first
application of X1, we can write B as B = B1 ◦ . . . ◦ Br, each Bi is of length at most Cℓ over
an ℓ-bit alphabet, starting and ending in a layer of width w − 1. Then the first application of
X2 will reduce the alphabet of each of the Bi-s to consist of ℓ/2 bits, except for O(log(n/ε))
unruly layers within each Bi. The second application of X1 will now create collisions every
Cℓ/2 non-unruly layers, refining the program further into B = B′

1 ◦ · · · B′
r′ , where each B′

i

is of length at most Cℓ/2 over an ℓ/2-bit alphabet (except for O(log(n/ε)) unruly layers),
starting and ending with a layer of width w − 1. The second of application of X2 will then
reduce the alphabet size of each B′

i to at most ℓ/4 except for O(log(n/ε)) additional unruly
layers within each B′

i. In general, each iteration reduces the distance between consecutive
layers of width w −1 and reduces the alphabet size, except for increasing the number of unruly
layers by O(log(n/ε)) within each interval. Finally after t = O(log log(n/ε)) iterations, we
will have an alphabet where each symbol consists of ℓ∗ = O(log log(n/ε)) bits, so the distance
between width w − 1 layers is at most Cℓ∗ = poly(log(n/ε)). Even including the unruly
layers, we can now view our as a width w − 1 read-once MBP over Σ′ = {0, 1}poly(log(n/ε)).

Before we can repeat the above process and reduce the width from w −1 to w −2, etc., we
need to reduce Σ′ back to Σ = {0, 1}O(log(n/ε)). We can achieve this by an additional alphabet
reduction using an almost k-wise independent distribution with ⋆-probability 1/ poly log(n/ε)
suffices.

Recall that due to [16], we can set the above restrictions to preserve the expectation of
our original B, up to a small error. Hence, with seed of length Õ(log(n/ε)) we can both
preserve the expectation and reduce the width by 1. Applying this w − 1 times, with high
probability our program will be very simple – a function depending on only O(log(n/ε)) bits
(i.e. a junta), which is fooled by an almost O(log(n/ε))-wise independent distribution.

All in all, our construction consists of commonly used primitives for PRGs: pseudorandom
restrictions in which both the choice of live variables and the the choice of fixed coordinates
are sampled from an almost k-wise independent distributions, with varying parameters. The
analysis of iterative width reduction via resorting to larger alphabets is new, and we believe
can be of use for designing PRGs for other models of computation. Naturally, there are some
additional subtleties in the analysis and the choice of parameters, which we leave to the
complete analysis in Section 3.

2 Preliminaries

We denote by Un the uniform distribution over {0, 1}n. Suppose C is a class of functions
in {0, 1}n → R and G is a distribution over {0, 1}n. We say that G ε-fools C if for every
f ∈ C it holds that |E[f(G)] − E[f(Un)]| ≤ ε. Recall that a PRG ε-fooling C is a function
G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand, we often write E[f] to
denote E[f(Un)], and omit the subscript n when the number of input bits is clear from
context.

2.1 Branching Programs
We extend the definition of branching programs from Definition 1 to large alphabets. We
do so by grouping together at most ℓ consecutive bits in a single edge-layer of the program.
The main advantage in such a transformation is that we can potentially express a width
w program over {0, 1} as a width w′ < w program over {0, 1}ℓ. This will be crucial in our
analysis.

APPROX/RANDOM 2021

58:8 PRGs for Read-Once Monotone Branching Programs

We say that a read-once branching program (ROBP) B is a [n, w′]ℓ ROBP if B can be
written as a directed layered graph with m + 1 layers (for some m ≤ n) denoted V1, . . . , Vm+1.
Each Vi consists of at most w′ many vertices. Furthermore, there exists a partition of [n] to
disjoint subsets S1, . . . , Sm ⊆ [n] of size at most ℓ each, and between every consecutive layers
of vertices Vi and Vi+1 there exists a set of directed edges such that any vertex in Vi has 2|Si|

edges going towards Vi+1. We can treat the the i-th layer of edges as a transition function
Ei : {0, 1}Si × [w′] → [w′] between Vi and Vi+1. Namely, for each σ ∈ {0, 1}Si we have the
function Eσ

i ≜ Ei(σ, ·) : [w] → [w] that is defined in the natural way by following the edges
labeled σ from Vi to Vi+1. Such a program naturally describes a read-once computation on
x ∈ {0, 1}n, where in the i-th step we follow the edge marked with xSi

∈ {0, 1}Si from a
vertex in Vi to a vertex in Vi+1. We often denote ℓ as the alphabet length of B and 2ℓ as the
alphabet size of B.

We say that an [n, w′]ℓ ROBP is monotone if for every i ∈ [m], its i-th layer Ei satisfies the
following. For any σ ∈ {0, 1}Si and distinct x1, x2 ∈ [w′], x1 ≥ x2 implies Eσ

i (x1) ≥ Eσ
i (x2).

We say Ei is an identity layer if for any σ ∈ {0, 1}Si it holds that Eσ
i is the identity function.

We say that Ei is a collision layer if there exists σ ∈ {0, 1}Si such that Eσ
i contains a

collision, i.e., there exist distinct x1, x2 ∈ [w′] such that Eσ
i (x1) = Eσ

i (x2). We will make use
of the following key observation.

▷ Claim 7. In a read-once MBP, every layer is either an identity layer or a collision layer.

As noted above, our techniques will also hold for the unordered setting, so we may assume
that the bits of x are permuted by some permutation π ∈ Sn, i.e., the i-th layer of the
program follow the edge marked by xπ(i). Since we are in the unordered setting we can
assume without loss of generality that there are no identity layers in the program, by skipping
these layers.

Observe that if an (unordered) [n, w] ROBP B over {0, 1} has m + 1 of its n + 1 vertex-
layers with width at most w′ and of distance at most ℓ apart, then we can write B as a
[n, w′]ℓ ROBP B′. Furthermore, if B is monotone so is B′.

2.2 k-Wise and δ-Biased Distributions
We say that a random variable Y ∼ {0, 1}n is δ-biased if it δ-fools all parity functions.
Namely, if for any nonempty I ⊆ [n] it holds that∣∣∣∣∣Pr

[⊕
i∈I

Yi = 1
]

− 1
2

∣∣∣∣∣ ≤ δ.

There are explicit constructions of δ-biased distributions over {0, 1}n that can be sampled
efficiently with O(log n + log 1

δ) truly random bits [32].

▶ Lemma 8 (Vazirani’s XOR Lemma, See e.g., [17, Section 1]). Let Y ∼ {0, 1}n be a δ-biased
distribution, and let S ⊆ [n]. Then,

∣∣YS − U|S|
∣∣ ≤ 2|S|/2 · δ.

For p ∈ [0, 1], we denote by Bernoulli(p)⊗n the distribution over {0, 1}n where the
bits are i.i.d. and each bit has expectation p. We say that Z ∼ {0, 1}n is γ-almost k-
wise independent with marginals p if for every set I ⊆ [n] satisfying |I| ≤ k it holds that∣∣ZI − Bernoulli(p)⊗|I|

∣∣ ≤ γ. We can sample such distributions efficiently.

▷ Claim 9 (see, e.g., in [14]). For any positive integers n, k, C, and any γ > 0, there is
an explicit γ-almost k-wise independent distribution with marginals p = 2−C that can be
sampled efficiently with O(Ck + log 1

γ + log log n) truly random bits.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:9

Moreover, we have good tail bounds for almost k-wise distribution.

▶ Lemma 10 (following [9, 38]). Let X1, . . . , Xn be γ-almost k-wise independent random
variables over {0, 1} with marginals q, and let α > 0. Then, for an even k ≤ qn,

Pr
[∣∣∣∣∣ ∑

i∈[n]

Xi − qn

∣∣∣∣∣ ≥ αqn

]
≤
(

16k

α2qn

)k/2
+ 2kγ

(
1

αq

)k

.

▶ Corollary 11. Let X ′
1, . . . , X ′

n be γ-almost k-wise independent random variables over {0, 1}
with marginals ≥ q. Then, for an even k ≤ qn,

Pr
[∑

i∈[n]

X ′
i = 0

]
≤
(

16k

qn

)k/2
+ 2kγ

(
1
q

)k

.

Proof. Take Xi = X ′
i ∧ Yi where Yi is a coin toss with Pr[Yi = 1] = q/E[X ′

i]. We have that
E[Xi] = q, and that X1, . . . , Xn are γ-almost k-wise independent with marginals q. Applying
Lemma 10 with α = 1 implies that

Pr
[∑

i∈[n]

Xi = 0
]

≤
(

16k

qn

)k/2
+ 2kγ

(
1
q

)k

.

The proof is complete since Pr
[∑

i∈[n] X ′
i = 0

]
≤ Pr

[∑
i∈[n] Xi = 0

]
. ◀

2.3 Restrictions and Pseudorandom Restrictions
A restriction is a string x ∈ {0, 1, ⋆}n. Intuitively, xi = ⋆ means the i-th coordinate has not
been set by the restriction. A restriction x can be specified by two strings y, z ∈ {0, 1}n where
z determines the ⋆ locations and y determines the assigned values in the non-⋆ locations.
Namely, we define Res: {0, 1}n × {0, 1}n → {0, 1, ⋆} by

Res(y, z)i =
{

⋆ zi = 1,

yi zi = 0.

We define a composition operation on restrictions, by

(x ◦ x′)i =
{

xi xi ̸= ⋆,

x′
i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by f |x(x′) =
f(x ◦ x′).

We will repeatedly use the following fact.

▷ Claim 12. Let B be a read-once MBP of length n, and let x ∈ {0, 1, ⋆}n be any restriction.
Then, B|x is a read-once MBP.

Given a function f : {0, 1}n → R and a distribution X ∼ {0, 1, ⋆}n, we say that X

preserves the expectation of f with error ε if |E [f |X(U)] − E[f]| ≤ ε.

Forbes and Kelley showed that pseudorandom restrictions preserve the expectation of
constant-width ROBPs. We give a “with high probability” version of their result, proved
in [14].

APPROX/RANDOM 2021

58:10 PRGs for Read-Once Monotone Branching Programs

▶ Lemma 13 ([16], restated). There exists a constant c ≥ 1 such that the following holds for
any positive integers n, w, and η > 0. Let Z be a γ-almost k-wise independent distribution
over {0, 1}n, where k ≥ c log nw

η and γ ≤ 2−k. Let Y be a δ-biased distribution over {0, 1}n,
where log 1

δ ≥ cwk log log n. Then, for any [n, w, {0, 1}] BP B it holds that with probability
at least 1 − η over z ∼ Z,∣∣∣∣ EY,U

[
B|Res(Y,z)(U)

]
− E[B]

∣∣∣∣ ≤ η.

For X ∼ {0, 1, ⋆}n and a positive integer t, we denote by X◦t the distribution over
{0, 1, ⋆}n obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing them,
namely x = x(1) ◦ . . . ◦ x(t). We record two easy claims.

▷ Claim 14. Let F ⊆ {0, 1}n → R be some function class which is closed under restrictions.
Then, if X preserves the expectation of every f ∈ F with error ε, then X◦t preserves the
expectation of every f ∈ F with error t · ε.

▷ Claim 15. Let X = Res(Y, Z) where Y ∼ {0, 1}n and Z is γ-almost k-wise independent
with marginals p. Then, for any positive integer t, the distribution of the ⋆ positions in X◦t

is (tγ)-almost k-wise independent with marginals pt.

Finally, we turn to define the notion of realizing a collision, in which a restriction “hits”
a symbol in a collision layer that indeed causes a collision.

▶ Definition 16 (realizing a collision). Let B be an [n, w]ℓ ROBP and let Ei : {0, 1}Si × [w] →
[w] be a collision layer in B for some i ∈ [n]. We say a string (y, z) ∈ {0, 1}n×{0, 1}n realizes
a collision in Ei if for any symbol σ ∈ {0, 1}Si consistent with the restriction Res(y, z) (i.e.,
σj = yj for all j ∈ Si with zj = 0) we have that Eσ

i contains a collision (i.e. Eσ
i (v) = Eσ

i (v′)
for two distinct states v, v′). We say (y, z) realizes a collision in B if it realizes a collision in
some layer Ei.

We will always use the special case where a collision is realized by zSi
= 0|Si| and E

ySi
i

having a collision.

3 PRGs for Constant-Width Read-Once MBPs

We set forth two auxiliary lemmas that will serve as the building blocks for our iterative
argument.

The first claim states that in a read-once MBP with enough colliding layers from [w]
to [w], each depending on at most ℓ bits, it is likely that one of the layers will realize a
collision under a pseudorandom restriction. The second claim will help us implement alphabet
reduction as outlined in the introduction.

▶ Lemma 17 (realizing a collision). Let ℓ ∈ N and m ≥ 16ℓ. For i = 1, . . . , m, let
Ei : {0, 1}Si × [w] → [w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most ℓ. Sup-
pose that each Ei is a collision layer. Let Y, Z ∼ {0, 1}n be γ-almost k-wise independent
distributions, for ℓ ≤ k ≤ 2ℓ/16. Then,

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ 1 − 2−k/2 − γ · 8k.

Proof. For j ∈ [m] let Ej be the event that zSi
= 0|Si| and ySi

= σi, where σi is an arbitrary
choice of a string for which Eσi

i collides. Observe that when Ej occurs, (Y, Z) realizes a
collision in Ej . Thus, it suffices to lower bound the probability that some of the Ej occurs.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:11

The key observation is that the events E1, . . . , Em are 2γ-almost k/ℓ-wise independent
with marginals ≥ 4−ℓ. Indeed, for any test that depends on k/ℓ of the events E1, . . . , Em,
the test can be written as a function of k bits from Y and k bits from Z, and since any k

bits from Y are γ-almost uniform and any k bits of Z are γ-almost uniform, we get that the
test is fooled by the distribution with error at most 2γ. Since on the uniform distribution
zSi = 0|Si| and ySi = σi has probability 4−|Si| ≥ 4−ℓ, we get that E1, . . . , Em are 2γ-almost
k/ℓ-wise independent with marginals ≥ 4−ℓ.

By Corollary 11,

Pr

 m∑
j=1

1Ej
= 0

 ≤
(

16k/ℓ

4−ℓ16ℓ

)k/2ℓ

+ 4(k/ℓ)γ
(

1
4−ℓ

)k/ℓ

≤ (2ℓ/4ℓ)k/2ℓ + γ · 2ℓ · (4ℓ)k/ℓ ≤ 2−k/2 + γ · 8k.

Thus, we get

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ Pr
[m∑

j=1
1Ej

> 0
]

≥ 1 − 2−k/2 + γ · 8k. ◀

▶ Lemma 18 (alphabet reduction). For every constant C > 1 there exists a constant
p ∈ (0, 1) such that the following holds. Let ℓ ∈ N and m ≤ Cℓ. For i = 1, . . . , m, let
Ei : {0, 1}Si × [w] → [w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most ℓ. Let
Z ∼ {0, 1}n be a γ-almost k-wise independent distribution with marginals p, for k ≥ ℓ. For
j = 1, . . . , m let Bj be the indicator that ZSj

has more than ℓ/2 ones. Then,

Pr

 m∑
j=1

Bj ≥ k
ℓ

 ≤ Ck · γ + 2−k

Proof. Fix a set T ⊆ [m] of size t = k
ℓ . For j ∈ T , let Bj(z) be the indicator random variable

that is 1 if and only if zSj has more than ℓ
2 ones. We bound PrZ [∀j ∈ T : Bj(Z) = 1]. Note

that this event depends only on k bits of Z and thus

Pr
Z

[∀j ∈ T , Bj(Z) = 1] ≤ Pr
U

[∀j ∈ T : Bj(U) = 1] + γ.

To bound the probability of ∀j ∈ T , Bj(U) we note that each Bj happens with probability at
most

(
ℓ

ℓ/2
)
pℓ/2 ≤ 2ℓpℓ/2 and that k/ℓ of these events happen simultaneously with probability

at most (2ℓpℓ/2)k/ℓ = 2kpk/2.
Taking the union-bound over all subsets, we get the probability there exists T ⊆ [m] of

size t for which Bj = 1 for every j ∈ T is at most(
Cℓ

t

)(
γ + 2kpk/2

)
≤ Cℓt ·

(
γ + 2kpk/2

)
= Ck · γ + 2−k,

for p = 1
16C2 . ◀

3.1 Width Reduction
▶ Lemma 19. Let B be an [n, w]ℓ read-once MBP, and let ε > 0. Let k = max(ℓ, 4 log(2n/ε))
and γ = 32−k. Set t = log(ℓ/ log(16k)). Also, for every j ∈ [t],

Let Y j
1 ∼ {0, 1}n and Zj

1 ∼ {0, 1}ℓn be γ-almost k-wise independent distribution;

APPROX/RANDOM 2021

58:12 PRGs for Read-Once Monotone Branching Programs

Let Y j
2 ∼ {0, 1}n be any distribution; and,

Let Zj
2 ∼ {0, 1}n be a γ-almost k-wise independent distribution with marginal probability

p as obtained from Lemma 18 for the constant C = 16.
For every j ∈ [t] we denote the j-th restriction as

Xj = Xj,1 ◦ Xj,2 = Res(Y j
1 , Zj

1) ◦ Res(Y j
2 , Zj

2),

and we set the pseudorandom restriction X = X1 ◦ . . . ◦ Xt.
Then, with probability at least 1 − ε over x ∼ X, B|x can be written as an [n, w − 1]ℓ′

read-once MBP for ℓ′ = O(k9).

Proof. Consider ℓ0 = ℓ, ℓ1 = ℓ/2, . . . , ℓt = ℓ/2t. Note that for all i we have ℓi ≤ k ≤ 2ℓi/16.
Denote Σ(0) = Σ and ℓ0 = ℓ. Consider the pseudorandom restriction X1,1, denoting
A1 = B|X1,1 . By Lemma 17, followed by a union bound, we get that with probability at least

1 − n ·
(

2−k/2 + γ · 8k
)

≥ 1 − ε/2n,

every 16ℓ0 consecutive layers of A1 contains a layer of vertices of width w − 1. 4 In the
following, we condition on the event mentioned in the previous sentence. After the restriction
we identify all layers of width w − 1 and decompose the program to a concatenation of
subprograms starting and ending with width at most w − 1. That is, we can write A1 as
A1

1 ◦ . . . ◦ A1
r, where A1

i has initial and final width at most w − 1, and length at most 16ℓ0

over alphabet Σ(0) = {0, 1}ℓ0 .
Next, consider the application of X1,2 on A1 = A1

1 ◦ . . . ◦ A1
r. By Lemma 18 and a union

bound, with probability at least

1 − n(16kγ + 2−k) ≥ 1 − ε/2n,

we can reduce the alphabet in each A1
i |X1,2 to Σ(1) = {0, 1}ℓ0/2, except for k/ℓ0 ≤ k “unruly”

wide layers whose alphabet is a subset of {0, 1}ℓ0 . To sum up, after the first restriction, with
probability at least 1 − ε/n, B1 = B|X1 can be written as a read-once MBP B̃1

1 ◦ . . . B̃1
r ,

such that for every subprogram B̃1
i : (i) starts and ends with width w − 1 (ii) has at most

16ℓ0 good layers with alphabet length ≤ ℓ1, and (iii) has up to k unruly layers with alphabet
length ≤ ℓ0.

We show by induction on j that, with probability at least 1 − εj/n, after the j-th
restriction Bj = B|X1◦···◦Xj can be written as B̃1

1 ◦ . . . B̃1
rj

, such that for every subprogram
B̃1

i :
Starts and ends with width w − 1,
Has at most 16ℓj−1 good layers with alphabet length ≤ ℓj , and,
Has up to jk unruly layers with alphabet length ≤ ℓ0.

Assume this to be the case for some j < t, we show how to prove it to be the case
for j + 1. We denote by Aj+1 = Bj |Xj+1,1 . By Lemma 17, with probability at least
1 − n · (2−k + γ · 8k) ≥ 1 − ε/2n, every 16ℓj consecutive good layers of Bj+1 realizes a collision
in Aj+1. We write Aj+1 as

Aj+1
1 ◦ . . . Aj+1

rj+1
,

4 Observe that if 16ℓ0 > n we may not apply Lemma 17. However, then the statement that “every 16ℓ0

consecutive layers of A1 contains a layer of vertices of width w − 1” is always true.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:13

where each subprogram Aj+1
i : (i) starts and ends with width w − 1, (ii) has at most 16ℓj

good layers with alphabet length ≤ ℓj , and (iii) has up to jk unruly layers with alphabet
length ≤ ℓ0. To see Item (iii) note that the partition to subprograms is a refinement of the
previous partition and thus cannot increase the maximal number of “unruly” layers in a
subprogram.

Applying Xj+1,2, by Lemma 18, with probability at least 1 − n(16kγ + 2−k) ≥ 1 − ε/2n,
in each subprogram Aj+1

i we can reduce the alphabet to Σj+1 = {0, 1}ℓj+1 except for at most
the previous jk unruly layers and potentially k new unruly layers.

Overall, with probability at least 1 − tε/n ≥ 1 − ε, the branching program Bt can be
written as Bt = Bt

1 ◦ . . . Bt
rt

, where Bt
i starts and ends with width w − 1, has at most 16ℓt−1

good layers and at most kt unruly layers. Thus, each Bt
i is a function of at most

16ℓt−1 · ℓt + kt · ℓ0 ≤ k · 162(4+log(k)) + k3 = O(k9)

bits. We can merge all bits participating in Bt
i to a single symbol in Σ′ = {0, 1}ℓ′ where

ℓ′ = O(k9). We can thus write Bt as an [n, w − 1]ℓ′ read-once MBP. ◀

As a second step, we reduce the alphabet size from poly(log(n/ε)) down to O(log(n/ε)).

▶ Lemma 20. Let ε > 0, k = 4 log(n/ε), γ = 1/(16ℓ)k. Let B be an [n, w]ℓ read-once MBP.
Let Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p2 = 1/2ℓ;
Let Y be any distribution over {0, 1}n. Let X = Res(Y, Z).

Then, with probability at least 1−ε over x ∼ X, B|x can be written as an [n, w]k read-once
MBP.

Proof. Let z ∼ Z. As in Lemma 18, for each layer j let Bj be the indicator random variable
that is 1 if and only if zj has more than k ones. By the union bound,

Pr
Z

[Bj = 1] ≤
(

ℓ

k

)
· (pk

2 + γ) ≤ ℓkpk
2 + ℓk · γ ≤ 2 · 2−k.

Union bounding over all layers, the probability that we failed to reduce the alphabet size to
2k in any of the layers is at most 1 − 2n2−k ≥ 1 − ε. ◀

3.2 Putting It Together
Our process will apply a sequence of w − 1 restrictions sampled using Lemma 13, reducing
the program width one at a time, with high probability, while preserving the acceptance
probability.

Let c be a large enough constant. Set k = c log(nw/ε) and t = log(k). Set γ = 1/(ck9)k

and δ = min{γ/2k, 2−cwk log log n}. Set C = 16, p1 = 1
16C2 and p2 = 1

ck9 .
For i ∈ [w − 2] and for j ∈ [t]:
Let Xi,j,1 = Res(Y i,j,1, Zi,j,1) be a restriction from Lemma 13 with parameters k, γ

and δ as above. We have that Y i,j,1 is a δ-biased distribution, which is also a γ-almost
k-wise independent distribution (due to Lemma 8). We have that Zi,j,1 is γ-almost k-wise
independent (with marginals 1/2).
Let Xi,j,2 = Res(Y i,j,2, Zi,j,2) be a composition of log(1/p1) = O(1) restrictions from
Lemma 13 with parameters k, γ and δ as above. We have that Y i,j,1 is a δ-biased
distribution, which is also a γ-almost k-wise independent distribution. By Claim 15 we
have that Zi,j,2 is log(1/p1)γ-almost k-wise independent with marginals p1.

APPROX/RANDOM 2021

58:14 PRGs for Read-Once Monotone Branching Programs

Let X̃i = Res(Ỹ i, Z̃i) be a composition of log(1/p2) = O(log log(nw/ε)) restrictions
from Lemma 13 with parameters k, γ and δ as above. By Claim 15 we have that Z̃i is
log(1/p2)γ-almost k-wise independent with marginals p2.

We define Xi,j = (Xi,j,1 ◦ Xi,j,2) and Xi = (Xi,1 ◦ Xi,2 ◦ · · · ◦ Xi,t) ◦ X̃i. And finally,
X = X1 ◦ X2 ◦ · · · ◦ Xw−1. Let S ∼ {0, 1}n be a ε-almost k-wise independent distribution.
Our PRG G is given by

G = X ◦ S.

Let s = s(n, w, ε) be the seed length required to sample from G. Following the seed
lengths of the above primitives in Section 2, we can give the following bound.

▷ Claim 21. It holds that s = O
(
w2 log(n/ε) · (log log(n/ε))2) .

▷ Claim 22. G fools width-w read-once MBPs of length n with error at most 4εn.

Proof. Let B be an [n, w]1 read-once MBP, which can also be written as an [n, w]k read-
once MBP by grouping every k-consecutive layers. Note that this transformation preserves
monotonicity. Since our restriction is picked as a m = O(t · w + w log k) ≤ n compositions
of restrictions that each maintain the acceptance probability of the ROBP up to error ε

(Lemma 13), we see that∣∣∣∣ EX,U
[B|X(U)] − E

U
[B(U)]

∣∣∣∣ ≤ ε · n.

It remains to show that EX,U [B|X(U)] ≈ EX,S [B|X(S)]. For that we show that with high
probability B|X can be expressed as a [n, 1]k read-once MBP. Let E = E

(
X
)

be the union
of the following bad events:

There exists an i ∈ [w − 1] such that (Xi,1 ◦ Xi,2 ◦ · · · ◦ Xi,t) fails to reduce the width, in
the sense of Lemma 19.
There exists an i ∈ [w − 1] such that X̃i fails to reduce the alphabet size from O(k9) to
k, in the sense of Lemma 20.

By Lemmas 19 and 20, Pr[E] ≤ 2wε. Note that in the case that E does not occur, we have
that B|X is a [n, 1]k ROBP or in other words that it is a junta that depends on at most k

bits. In such a case, B|X will be ε-fooled by S. Overall we have∣∣∣∣ EX,U
[B|X(U)] − E

X,S
[B|X(S)]

∣∣∣∣ ≤ Pr[E] + Pr[Ē] ·
∣∣∣E
X

[
E
U

[B|X(U)] − E
S

[B|X(S)] | Ē
]∣∣∣

≤ 2wε + ε.

Combining both estimates we see that∣∣∣E
G

[B(G)] − E
U

[B(U)]
∣∣∣ ≤ ε · (n + 2w + 1) ≤ 4εn. ◁

▶ Theorem 23. Let n ∈ N, ε′ > 0 and w ≤ n. There exists a generator G that fools
width-w read-once MBPs of length n, with error at most ε′ and seed-length O(w2 · log(n/ε′) ·
(log log(n/ε′))2).

Proof. Apply Claim 22 and Claim 21 with ε = ε′/4n. ◀

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:15

4 Relation to Read-Once AC0

In this section we study the relation between constant-width read-once MBPs and read-once
AC0:

▶ Proposition 4.
1. If a sequence of functions fn : {0, 1}n → {0, 1} is in read-once AC0, then it can be

computed by constant-width read-once MBP. Moreover, if fn can be computed in depth w

read-once AC0, then it can be computed by width w + 1 read-once MBPs.
2. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a width 3

read-once MBP, but not computable by any read-once De Morgan formula (regardless of
depth).
First, we establish Item 1 of Proposition 4 by observing that the known implication, that

read-once AC0 formulas can be computed by constant-width ROBPs, yields a monotone
ROBP.

▶ Lemma 24. Let f : {0, 1}n → {0, 1} be a function computable by a read-once, depth-w
AC0 formula. Then, f can also be computed by an [n, w + 1] read-once MBP.

Proof. We prove the claim by induction on the depth w, and further prove that the ’accept’
states in our read-once MBP are above the ’reject’ states (that is, if s is an accept state
and s′ is a reject state than s ≥ s′). For w = 1, f computes either the disjunction or the
conjunction of at most s literals. This can clearly be done by an [n, s, 2] read-once MBP, if
we set state 2 to be an accept state (and so state 1 is a reject one).

Next, fix some f computable by a formula F : {0, 1}n → {0, 1} of depth w > 1 and size
s, and assume that its top gate is an AND gate (the other case is similar). We denote the
subformulas feeding into the top gate as F1, . . . , Fm, and these are on disjoint variables
because the formula is read-once. By the induction’s hypothesis, each subformula Fi is
computable by a width w read-once MBP over its variables with the accept states being on
top.

To construct B that computes F , we can concatenate the Bi-s and add another “sudden
reject” level at level s = 1.5 The starting vertex of B is the starting vertex of B1. Whenever
a computation of some Bi, for some i < m, reaches its final layer, we rewire the edges in
that layer to either the sudden reject level, if Bi did not reach an accepting vertex, or to the
starting vertex of Bi+1. The accept vertices of B are the accept vertices of Bm. Note that
this transformation preserves the ordering between accepts and reject states, since Bm does.

The fact that B computes f readily follows, and B is read-once because the Bi-s are on
disjoint variables. To argue that monotonicity is preserved, simply observe that the rewiring
preserves the order: In the AND case, accept vertices are rewired to the next starting vertex,
which is indeed above the sudden reject level, to which all reject vertices are rewired. The
OR case is similar. ◀

We now prove Item 2 of Proposition 4, giving a family of functions computable by
read-once MBPs but not by read-once formulas. Our proof also gives a new characterization
of read-once formulas.

5 In a sudden reject level, each vertex transitions to the same level with both its edges, and the last vertex
in that level is a reject vertex. When the top gate is an OR gate, we would replace the sudden reject
level with a sudden accept level at at s = w + 1, and make the last vertex of the sudden accept level an
accepting vertex.

APPROX/RANDOM 2021

58:16 PRGs for Read-Once Monotone Branching Programs

▶ Lemma 25. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a
width 3 read-once MBP, but not computable by any read-once De Morgan formula (regardless
of depth).

Proof. We first give a property of functions computable by read-once formulas. Given
g : {0, 1}m → {0, 1} and b ∈ {0, 1}, let Wb(g) ∈ {0, . . . , m} denote the size of the smallest set
of coordinates I ⊆ [m] for which there exists a z ∈ {0, 1}|I| such that for every x ∈ {0, 1}m

it holds that xI = z implies g(x) = b.

▶ Lemma 26. Let g : {0, 1}n → {0, 1} be a function computable by a read-once De Morgan
formula. Then, W0(g) · W1(g) ≤ n.

Roughly speaking, this lemma says that for a function computable by a read-once formula, we
can either find a short witness for it being 0, or a short witness for it being 1. In particular,
it cannot be highly resilient.

Proof. We prove the lemma by induction on the formula’s depth d. For d = 1, g is either an
AND of literals or an OR of literals. For the AND function, W0(AND) = 1 and W1(AND) = n.
For the OR function, W0(OR) = n and W1(OR) = 1. Thus, indeed, W0(g) · W1(g) ≤ n.

Assume our lemma holds for formulas of depth d ≥ 1, and let g be some formula of depth
d + 1, say with an AND top gate, so g = AND(f1, . . . , fk), each fi : {0, 1}ni → {0, 1} is a
depth-d formula. In this case, W0(g) = minj∈[k] W0(fj) and W1(g) =

∑
i∈[k] W1(fi). By our

induction’s hypothesis, we get that

W0(g) · W1(g) =
(

min
j∈[k]

W0(fj)
)

·
∑
i∈[k]

W1(fi) ≤
∑
i∈[k]

W0(fi) · W1(fi) ≤
∑
i∈[k]

ni = n.

The case of an OR top gate is analogous. ◀

Now, our function f : {0, 1}n → {0, 1} will simply be the Thrn
2 function, that returns 1 if and

only if the Hamming weight of the input string x ∈ {0, 1}n is at least 2. There, W1(f) = 2
and W0(f) = n − 1, so it is not computable by read-once formulas, however f is computable
by a simple width-3 read-once MBP. ◀

We note that we can also construct balanced functions f separating read-once MBPs
from read-once De Morgan formulas. In particular, f = ANDm ◦ Thrw

2 for m = O(2w/w)
(which resembles the Tribes function) has this property. More generally, one can consider,
say, Thr2, as a “gadget” to construct richer families of read-once MBPs not computable by
read-once formulas.

References
1 Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth

circuits. Advances in Computing Research, 5(199-222):1, 1989.
2 David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly

those languages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.
3 David A. Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. Searching constant

width mazes captures the AC0 hierarchy. In Proceedings of the 15th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 1998), pages 73–83. Springer, 1998.

4 David A. Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. On monotone planar
circuits. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity
(CCC 1999), pages 24–31. IEEE, 1999.

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:17

5 Andrej Bogdanov, Periklis A Papakonstaninou, and Andrew Wan. Pseudorandomness for
read-once formulas. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2011), pages 240–246. IEEE, 2011.

6 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM Journal on Computing,
49(5):STOC18–242–STOC18–299, 2020. doi:10.1137/18M1197734.

7 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

8 J. Brody and E. Verbin. The coin problem and pseudorandomness for branching programs. In
Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer Science (FOCS
2012), pages 30–39, October 2010. doi:10.1109/FOCS.2010.10.

9 L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash
families and faster evaluation. SIAM Journal on Computing, 42(3):1030–1050, 2013.

10 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudoran-
domness for unordered branching programs through local monotonicity. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing (STOC 2018), pages 363–375. ACM,
2018.

11 Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once, constant-
depth circuits. arXiv preprint arXiv:1504.04675, 2015.

12 Anindya De. Pseudorandomness for permutation and regular branching programs. In Proceed-
ings of the 26th Annual IEEE 26th Annual Conference on Computational Complexity (CCC
2011), pages 221–231. IEEE, 2011.

13 Dean Doron, Pooya Hatami, and William M. Hoza. Near-optimal pseudorandom generators
for constant-depth read-once formulas. In Proceedings of the 34th Computational Complexity
Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

14 Dean Doron, Pooya Hatami, and William M. Hoza. Log-seed pseudorandom generators via
iterated restrictions. In Proceedings of the 35th Computational Complexity Conference (CCC
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

15 Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Monotone
branching programs: Pseudorandomness and circuit complexity. In Electronic Colloquium on
Computational Complexity (ECCC), number TR21-018, February 2021. Version 1.

16 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In Proceedings of the 59th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2018). IEEE, 2018.

17 Oded Goldreich. Three XOR-lemmas – an exposition. In Studies in Complexity and Crypto-
graphy. Miscellanea on the Interplay between Randomness and Computation, pages 248–272.
Springer, 2011.

18 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 120–129.
IEEE, 2012.

19 Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate.
SIAM Journal on Computing, 40(6):1486–1528, 2011.

20 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM Journal on Computing, 47(2):493–523, 2018. doi:10.1137/17M1129088.

21 Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to amplify
hardness. SIAM Journal on Computing, 35(4):903–931, 2006.

22 William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-
width permutation branching programs. In James R. Lee, editor, 12th Innovations in The-
oretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference,
volume 185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITCS.2021.7.

APPROX/RANDOM 2021

https://doi.org/10.1137/18M1197734
https://doi.org/10.1109/FOCS.2010.10
https://doi.org/10.1137/17M1129088
https://doi.org/10.4230/LIPIcs.ITCS.2021.7

58:18 PRGs for Read-Once Monotone Branching Programs

23 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(STOC 1994), pages 356–364. ACM, 1994.

24 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM, 53(3):307–323, 2006.

25 Adam R. Klivans, Homin Lee, and Andrew Wan. Mansour’s conjecture is true for random
DNF formulas. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT
2010), 2010.

26 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC
2011), pages 263–272. ACM, New York, 2011. doi:10.1145/1993636.1993672.

27 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In Proceedings of
the 34th Computational Complexity Conference (CCC 2019), pages 7:1–7:25. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019.

28 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom
generators for read-once polynomials. In Electronic Colloquium on Computational Complexity
(ECCC), volume 24, page 167, 2017.

29 Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting of
depth-2 circuits. In Proceedings of the 2nd Annual Israel Symposium on Theory and Computing
Systems (ISTCS 1993), pages 18–24. IEEE, 1993.

30 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC
2019), pages 626–637. ACM, New York, 2019.

31 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. SIAM Journal on Computing, 42(3):1275–1301, 2013.

32 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, 1993.

33 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

34 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branch-
ing programs via Fourier analysis. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 655–670. Springer, 2013.

35 D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC 2002), pages 619–626. ACM, 2002.

36 John Steinberger. The distinguishability of product distributions by read-once branching
programs. In Proceedings of the 28th IEEE Conference on Computational Complexity (CCC
2013), pages 248–254. IEEE, 2013.

37 Thomas Steinke. Pseudorandomness for permutation branching programs without the group
theory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity
(ECCC), July 2012. URL: http://eccc.hpi-web.de/report/2012/083/.

38 Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier-growth
bounds for width-3 branching programs. Theory of Computing, 13(1):1–50, 2017.

39 Yoav Tzur. Notions of weak pseudorandomness and GF(2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

A Monotone Branching Programs and AC0 Circuits

In this section we give a self-contained proof of the equivalence between constant width
MBPs and AC0 circuits, proving Theorem 3:

▶ Theorem 3 (corollary of [4]). A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if
and only if it is computable by a constant-width MBP of polynomial length.

https://doi.org/10.1145/1993636.1993672
http://eccc.hpi-web.de/report/2012/083/

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:19

First we note that the “if” direction follows from Lemma 24.

▶ Lemma 27. Let f : {0, 1}n → {0, 1} be a function computable by a (read-many) AC0

formula of depth w and size s. Then, f can also be computed by an [n, s, w + 1] MBP.

(Here take the size of an AC0 formula to be the number of leaves.)

Proof. Let F (x1, . . . , xn) be depth-w AC0 formula of size s. Then by putting distinct
variables on the leaves of F we obtain a read-once AC0 formula G(y1, . . . , ys) on s variables
such that F (x1, . . . , xn) = G(σ1xi1 , . . . , σsxis

) where i1, . . . , is ∈ [n] and σ1, . . . , σs ∈ {±1}
(referring to whether or not the variable is negated at each leaf). By Lemma 24, there is a
read-once MBP B(y1, . . . , ys) of width w + 1 computing G. Then, B(σ1xi1 , . . . , σsxis

) is a
(read-many) MBP of width w + 1 and length s computing F . ◀

The result naturally extends to AC0 circuits, due to the standard transformation expressing
a size s depth w AC0 circuit as a size sw depth w AC0 formula.

▶ Corollary 28. Let f : {0, 1}n → {0, 1} be a function computable by a depth-w AC0 circuit
of size s. Then, f can also be computed by an [n, sw, w + 1] MBP.

Next, we give the other direction of Theorem 3. Similarly to the other direction, we start
by showing that read-once MBPs can the simulated by (read-many) AC0:

▶ Lemma 29. Let f : {0, 1}n → {0, 1} be a function computable by a read-once MBP of
width w. Then, f can also be computed by a circuit of depth O(w) and size O(w4n3).

Proof. We prove this lemma by induction on the width. For w = 1 the claim is trivial. Fix
some w > 1 and let B be an [n, w] read-once MBP. We define two BPs, Bu and Bℓ, each of
width w − 1, as follows.

For Bu, we remove the first level of vertices (that is, removing state number 1 in each
layer) and reroute edges that go into state 1 to state 2. Formally, each transition
U b

i : {2, . . . , w} → {2, . . . , w} of Bu is defined by U b
i (x) = max

{
Eb

i (x), 2
}

, for Eb
i : [w] →

[w] being the corresponding transition of B.
Similarly, for Bℓ, we remove the last level of vertices: Each transition Lb

i : [w−1] → [w−1]
of Bℓ is defined by Lb

i (x) = min
{

Eb
i (x), w − 1

}
.

Notice that these transformations preserve monotonicity. Roughly speaking, our goal is to
first argue that at each transition, B acts the same as either Bu or Bℓ, depending on whether
B last reached the state 1 or the state w. Then, we show that we can efficiently detect, given
any layer j and an input x, if indeed B(x) passed through the state 1 or through the state w

before reaching the layer j.
Let s0 be the starting vertex of B, and denote u0 = max {s0, 2} and ℓ0 = min {s0, w − 1}.

Given some input x ∈ {0, 1}n, we consider the computation path of all three BPs on x.
Towards this end, denote by s1, . . . , sn ∈ [w] the states that x traverses in B, u1, . . . , un ∈
{2, . . . , w} the states that x traverses in Bu and ℓ1, . . . , ℓn ∈ [w−1] the states that x traverses
in Bℓ. First, observe that:

▷ Claim 30. For every i ∈ [n], ui ≥ si ≥ ℓi.

The above claim readily follows by induction on i, using the monotonicity property. Next,
we argue:

▷ Claim 31. For every i ∈ [n], let j ≤ i be the largest integer such that sj ∈ {1, w}, if it
exists. Thus, if sj = w then ui = si and if sj = 1 then ℓi = si.

APPROX/RANDOM 2021

58:20 PRGs for Read-Once Monotone Branching Programs

Proof. Fix some i ∈ [n] and assume that j ≤ i is the largest integer such that sj ∈ {1, w},
say sj = 1. By Claim 30, we must also have ℓj = 1. Then by induction, we also have ℓj′ = sj′

for all j′ = j, j + 1, . . . , i, because the only way in which the transition in Bℓ and B can differ
is if sj′ = w, which by assumption does not occur in this interval. ◁

Hence, for each layer i, we know that either si = ui or si = ℓi, and we know which is the
case by looking at the last place the original path reached either 1 or w.

By our induction’s hypothesis, for every i ∈ [n] and s ∈ {2, . . . , w} there exists a circuit
Cu

i,s : {0, 1}n → {0, 1} such that Cu
i,s(x) = 1 if and only if Bu reached the state s after

reading x1, . . . , xi. Similarly, there exists a circuit Cℓ
i,s that detects whether Bℓ reached

s ∈ [w − 1] in the i-th layer upon traversing with x. Using these circuits, for each s ∈ [w], we
will construct a circuit Cs(x) that determined whether sn = s.

The construction goes as follows. The circuit will determine the last j where there was a
“switch” between the two cases of Claim 31, i.e., the smallest j ∈ [n] such that sj ∈ {1, w}
and for every k ≥ j it holds that sk ∈ {2, . . . , w − 1} ∪ {sj}. Observe that if sj = 1 then
sj−1 = uj−1, so E

xj

j (uj−1) = 1. Afterward, we keep following Bℓ, i.e., sk = ℓk and so
E

xk+1
k+1 (ℓk) ̸= w for all k ≥ j. The converse also holds. Namely, E

xj

j (uj−1) = 1 implies that
sj = ℓj = 1 (since ℓj−1 ≤ uj−1 and the program is monotone) and E

xk+1
k+1 (ℓk) ̸= w for all

k ≥ j implies that indeed sk+1 = ℓk+1. Thus, the predicate

PL(x) =

 ∨
j∈[n]

((
E

xj

j (uj−1) = 1
)

∧
∧
k≥j

(
E

xk+1
k+1 (ℓk) ̸= w

)) ∨

(
u1 ̸= w ∧

∧
k≥1

E
xk
k (ℓk) ̸= w

)

evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = 1, or sj

never equals w (and hence sn = ℓn). Following the same reasoning,

PU (x) =

 ∨
j∈[n]

((
E

xj

j (ℓj−1) = w
)

∧
∧
k≥j

(
E

xk+1
k+1 (uk) ̸= 1

)) ∨

(
ℓ1 ̸= 1

∧
k≥1

E
xk
k (uk) ̸= 1

)

evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = w, or
sj never equals 1 (and hence sn = un).

We now wish to compute PL : {0, 1}n → {0, 1} by a shallow circuit. Determining uj−1
can be done by querying Cu

j−1,s(x) for each s ∈ {2, . . . , w}. Similarly, determining ℓk can be
done by querying Cℓ

k,s(x) for each s ∈ [w−1]. The functions Eb
j and Eb

k+1, for each b ∈ {0, 1},
are determined solely by B and can be hardwired. Letting size(w − 1) and depth(w − 1) be
the size and depth upper bound for the circuits guaranteed to us by the hypothesis, we can
bound size(PL) by 2nw · size(w − 1) + O(wn2) and depth(PL) by depth(w − 1) + O(1). The
same bounds for PU : {0, 1}n → {0, 1} also hold.

Equipped with circuits CL and CU computing PL and PU respectively, we are ready
to compute B. Indeed, all that is left is to determine whether sn = ℓn or sn = un

and invoke the relevant circuit from the previous level. This incurs additional constant
depth and O(wn) size. Overall, the size and depth of C satisfies the recurrence relations
size(w) = O(nw)·size(w−1)+O(wn2) and depth(w) = depth(w−1)+O(1). As size(1) = O(n)
and depth(1) = O(1), this gives us depth O(w) and size wO(w) · nw.

We can improve the size of the circuit by a dynamic programming approach. For
1 ≤ a ≤ b ≤ w, let B[a,b] be the ROBP in which we keep only the levels a, . . . , b and rewire
edges accordingly. Namely, we replace each Eσ

i (x) with max {a, min {b, Eσ
i (x)}}. Observe

that for when a < b, (B[a,b])ℓ = B[a,b−1] and (B[a,b])u = B[a+1,b].

D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:21

For every 1 ≤ a ≤ b ≤ w and s ∈ {a, . . . , b}, let Xa,b,s
i be the indicator which is 1 if and

only if upon reading the first i bits of x, the program B[a,b] reached the state s. Note that
there are at most w3 · n such indicators overall.

Fix some integer ∆ ∈ {0, . . . , w − 1}. We can compute the values

I∆ =
{

Xa,a+∆,s
i : a ∈ [w − ∆], s ∈ [a, a + ∆], i ∈ [n]

}
in the following manner. For ∆ = 0, all indicators are true. For ∆ ≥ 1, assume we already
computed the values

I∆−1 =
{

Xa,a+∆−1,s
i : a ∈ [w − (∆ − 1)], s ∈ [a, a + ∆ − 1], i ∈ [n]

}
.

Thus, to compute a single indicator from I∆ given I∆−1, we can use the above recurrence
relations, as each ℓi and ui correspond to some indicator from I∆−1. This takes O(wn2) size
and O(1) depth. Computing the entire I∆ thus takes O(w3n3) size and O(1) depth. Overall,
computing ◀

Similarly to the proof of Lemma 27, we can handle the read-many case by noting that
a read-many MBP of length s can be obtained from a read-once MBP on s variables by a
variable substitution. This gives us the “only if” direction of Theorem 3:

▶ Corollary 32. Let f : {0, 1}n → {0, 1} be a function computable by an [n, s, w] MBP for
s ≥ n. Then, f can also be computed by a circuit of depth O(w) and size O(w4s3).

APPROX/RANDOM 2021

On the Power of Choice for k-Colorability of
Random Graphs
Varsha Dani # Ñ

Ronin Institute, Montclair, NJ, USA
Dept. of Computer Science, Rochester Institute of Technology, NY, USA

Diksha Gupta #

School of Computing, National University of Singapore, Singapore

Thomas P. Hayes # Ñ

Dept. of Computer Science, University of New Mexico, Albuquerque, NM, USA

Abstract
In an r-choice Achlioptas process, random edges are generated r at a time, and an online strategy is
used to select one of them for inclusion in a graph. We investigate the problem of whether such a
selection strategy can shift the k-colorability transition; that is, the number of edges at which the
graph goes from being k-colorable to non-k-colorable.

We show that, for k ≥ 9, two choices suffice to delay the k-colorability threshold, and that for
every k ≥ 2, six choices suffice.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes; Theory of
computation → Generating random combinatorial structures

Keywords and phrases Random graphs, Achlioptas Processes, Phase Transition, Graph Colorability

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.59

Category RANDOM

Acknowledgements The authors would like to thank Will Perkins for suggesting the problem of
shifting the threshold for k-coloring, and Will Perkins and Cris Moore for helpful conversations.

1 Introduction

In studying the evolution of a random graph, a field launched by the seminal paper of Erdős
and Rényi [7], one starts from an empty graph, and adds edges one by one, generating each
one independently and uniformly at random. In this context, a common object of study is
the size of the graph at which some property of interest changes. For instance, if we are
interested in k-colorability, there will eventually be some edge whose addition changes the
graph from being k-colorable to non-k-colorable.

The k-colorability transition threshold conjecture states that there is a particular threshold
d(k) such that, almost surely, the k-colorability transition occurs when G has average degree
approximately d(k); more precisely, when the average degree lies between (1 − ε)d(k) and
(1 + ε)d(k), for any fixed ε > 0. Substantial progress has been made on pinning down
this transition threshold, especially by Achlioptas and Naor [2] and by Coja-Oghlan and
Vilenchik [5], culminating in a rather precise formula for the asymptotics of d(k) for large k.
However, for fixed k ≥ 3, the conjecture remains open.

An interesting twist on the evolution of the random graph was proposed by Achlioptas in
2001: Suppose that two random edges are sampled at each step in the construction of G, and
an online algorithm selects one of them, which is then added to G. A more general version
of this process proposes r random edges in each step, from which the algorithm selects one.
After m edges have been chosen in this way, how different can the resulting graph be from
the usual Erdős-Rényi random graph G(n, m)?

© Varsha Dani, Diksha Gupta, and Thomas P. Hayes;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 59; pp. 59:1–59:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:varsha@cs.unm.edu
http://ronininstitute.org/research-scholars/varsha-dani/
mailto:dcsdg@nus.edu.sg
mailto:hayest@cs.unm.edu
http:cs.unm.edu/~hayest
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.59
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Power of Choice for k-Colorability

Earlier work on the “power of choice” to affect the outcome of random processes has
investigated questions like load-balancing in balls and bins models, scheduling, routing and
more; for more, see the excellent survey by Richa, Mitzenmacher and Sitaraman [10]. More
specifically, Achlioptas processes have been studied in the context of formation of the giant
component in a random graph [3, 4, 13, 11], and the satisfiability threshold for random
boolean formulas [12, 6, 9]. In each of these cases, the upshot has been that fairly simple
heuristics are capable of shifting the thresholds to a significant extent. However, the heuristics
and their analyses remain fairly problem-specific.

The main contribution of the present work is a proof that, for every k ≥ 2, there exist fairly
simple choice strategies that significantly delay the k-coloring threshold, given a constant
number of choices for each edge. Our proof leverages existing upper and lower bounds on
the k-colorability threshold, and works even if the k-Colorability Threshold Conjecture turns
out to be false. More precisely, we establish the following result.

▶ Theorem 1. For every k ≥ 2, there exist 2 ≤ r ≤ 6, an explicit edge selection strategy for
the r-choice Achlioptas process, and a real number d such that, if G is the graph produced by
running our strategy for dn/2 steps, and H is an Erdős-Rényi random graph with the same
number of edges, then G is almost surely k-colorable and H is almost surely not k-colorable.
In particular, r = 2 choices suffice for k = 2 and k ≥ 9, r = 3 suffices for all k ̸= 3, and
r = 6 suffices for all k.

If, rather than delaying, one wants to hasten the k-colorability threshold, this can be
done very easily by “densifying” the graph, an idea used in [6] to hasten the k-SAT threshold
for random boolean formulas. Unlike our main result, this technique easily extends to any
monotone graph property that has a sharp threshold in the Erdős-Rényi model. More
precisely,

▶ Observation 2. Let P be any graph property that is monotone in the sense that P (G)
implies P (G′) for every subgraph G′ of G. Then, if the threshold conjecture is true for P , we
can lower the threshold using r choices, whenever r ≥ 2. Moreover, even without the threshold
conjecture for P , if there exist real numbers 0 < α1 < α2 such that P almost surely holds
for G(n, α1n), and almost surely fails to hold for G(n, α2n), then there exists r = r(α1, α2)
and d = d(α1, α2), and an explicit edge selection strategy for the r-choice Achlioptas process,
such that, if G is the graph produced by running our strategy for dn/2 steps, and H is an
Erdős-Rényi random graph with the same number of edges, then H almost surely has property
P , and G almost surely does not. In the case when P is k-colorability, r = 2 choices suffices
to lower the k-coloring threshold when k = 2 or k ≥ 12, r = 3 suffices when k ≥ 6, r = 4
suffices when k ̸= 4, and r = 5 suffices for all k.

The interested reader may refer to Appendix A for additional details.

1.1 Strategy for Delaying the k-Colorability Transition
Our basic strategy for delaying the k-colorability transition is to try to create a large bipartite
subgraph. This can be achieved very simply by, ab initio, partitioning the vertex set into
two equal parts, and then by choosing, whenever possible, a crossing edge, that is, one whose
endpoints lie in both sides of the partition. As we shall see, this extremely simple heuristic
suffices to establish Theorem 1 when k ≥ 6, and with slight modifications, for k ≤ 5 as well.

For intuition about why this approach works, think about what happens in the limit
as r becomes very large. Since the probability of being offered all non-crossing edges in a
particular step is less than 2−r, by choosing crossing edges whenever possible, our graph

V. Dani, D. Gupta, and T. P. Hayes 59:3

becomes “more and more bipartite” as r increases. Indeed, when r = 3 log n, G will almost
surely become a complete bipartite graph before it is forced to include any non-crossing
edges! Obviously, this is a huge delay to any of the k-colorability thresholds, which all take
place after linearly many edges.

For more intuition, consider the case when k is very large, but r ≥ 2 is constant. We
expect about a 2−r fraction of the edges to be non-crossing, and hence the average degree
of the graph induced by one side of G will be about 2−r times the average degree of G.
Since, asymptotically for large k, we know that the k-colorability occurs somewhere around
d ≈ 2k ln(k), (See Theorem 3 for a more precise statement.) which is a nearly-linear function,
this tells us that each side of G should need almost 2r times fewer colors than G(n, m).
Hence, if we color the two sides with disjoint sets of colors, so that the crossing edges cannot
cause any monochromatic edges, we would expect to need almost 2r−1 times fewer colors to
color our graph than a random graph with the same average degree.

The above approach works as stated for k ≥ 6. For smaller values of k, it is necessary
to improve the above strategy by adding an additional “filtering” step that checks to see
whether the edge proposed by the basic strategy would create an obstacle to k-coloring; in
this case, we make a different edge choice. This is the most technical part of the paper.
particularly the case k = 3, for which the filtering algorithm is fairly complicated.

For k = 4 and k = 5, since we are splitting the colors among the two sides of G, at least
one side gets only two colors. This is a bit of a special case because, unlike with more colors,
two-coloring does not have a sharp phase transition at a particular average degree. Instead,
the transition for G(n, d/n) is spread out over the range 0 < d < 1. However, as we shall see,
for Achlioptas processes, it is possible to delay this threshold until the emergence of a giant
component at d = 1 (and even beyond!).

For k = 3, we need a further modification to our plan as outlined above. With only three
colors, one side of the graph would only get one color, and would need to remain empty of
edges! Since this is clearly impossible, we modify our plan of prescribing disjoint sets of
colors for the two sides of the graph. Instead, we allow one of the three colors to be used on
both sides. As will be seen, this complicates both the edge selection process and its analysis,
and increases the number of choices we need, to r = 6.

We point out an interesting qualitative difference between the problem of delaying the
k-coloring threshold and that of delaying the k-SAT threshold. Earlier work on delaying the
k-SAT threshold, in particular by Perkins [9] and by Dani et al. [6], took advantage of the
fact that, with enough choices, the 2-SAT threshold can be shifted past the k-SAT threshold.
The analogous statement for k-coloring would require us to keep our graph bipartite past
the formation of a giant component. Although Bohman and Frieze [3] showed that it is
possible to delay the formation of a giant component, it obviously cannot be delayed past
d = 2, and indeed, as shown by Bohman, Frieze and Wormald [4, Theorem 1(d)], not past
d = 1.93. After a linear-size giant component has formed, each step of our Achlioptas process
has a constant probability that all r offered edges will fall within the giant component, and
moreover all violate bipartiteness. Thus, there is no hope of keeping the graph 2-colorable
past the 3-colorability threshold, for any constant (or indeed sub-logarithmic) number of
choices. This “fragility” of the property of 2-colorability may provide some intuition for the
increased difficulty of our attempts to shift the k-colorability threshold for small values of k.

1.2 Organization of the Paper
The remainder of the paper is divided into numbered sections. For the most part, each
section introduces one or two new ideas that are needed for a particular range of the number
of colors, k. Many of the sections depend on concepts introduced in earlier sections, so it is
easiest to read them in order.

APPROX/RANDOM 2021

59:4 Power of Choice for k-Colorability

In Section 2 (Preliminaries), we introduce various notation and terminology, as well as
stating the key results from past work that we will need for our work. In Section 3 we
formally state the PreferCrossing strategy, and show how it can be used directly to raise
the k-colorability threshold for k ≥ 6. In Section 4, we handle the case k = 2 by showing
that odd cycles (indeed all cycles) can be delayed until a giant component forms, and that
this idea can be combined with previous work on delaying the birth of the giant component.
In Section 5, we handle the cases k = 4 and k = 5. These are treated separately from the
large k cases because now one of the two sides will be colored using only two colors, which
requires the cycle-avoidance technique developed in Section 4. In Section 6, we handle the
hardest case: k = 3, which involves a significant extension to the technique for avoiding cycles
introduced in Section 4. In Section 7, we show how an improved bound on the 3-coloring
transition threshold, due to Achlioptas and Moore [1], can be used to reduce the number of
choices we need for k = 9 from 3 to 2.

Finally, Appendix A presents a proof of Observation 2, about hastening the transition for
(almost) any monotone graph property.

2 Preliminaries

Let V be a fixed vertex set, of size n. In the rest of the paper, unless otherwise specified,
whenever we use aymptotic notations such as big-O and little-O, these refer to limits as
n → ∞, while all the other key parameters, namely, average degree d̄, number of choices, r,
and number of colors, k, are held constant. When we state that something happens “almost
surely,” we mean that the corresponding event has probability 1 − o(1).

When we talk about the Erdős-Rényi random graph, G(n, m), we assume that m inde-
pendent random edges are sampled from

(
V
2
)
, with replacement. Edges are undirected and

self-loops are not allowed.
In an r-choice Achlioptas process, at each step, r independent random edges are sampled

from
(

V
2
)
, with replacement. An online algorithm, which we call a “strategy” is used to select

one of these edges for inclusion in the edge set of the graph, which is initially empty. We
allow duplicate edges both in the set of proposed edges, as well as the graph itself. However,
observe that, when the total number of edges is linear in n, and r = O(1), the expected
number of duplicate edges seen during the entire process is O(1). Consequently, in this range
of parameters, it should be easy to see that very similar results hold even when duplicate
edges are not allowed.

Key Results from Prior Work
The following result is due to Achlioptas and Naor [2, See Lemma 3 and Proposition 4]

▶ Theorem 3 (Achlioptas and Naor). Suppose k is a positive integer, and d < 2(k−1) ln(k−1).
Then, almost surely, G(n, dn/2) is k-colorable. If, instead, d > (2k − 1) ln(k), then, almost
surely, G(n, dn/2) is not k-colorable.

For notational convenience, we introduce a shorthand for the upper and lower bounds on
the transition threshold from Theorem 3.

▶ Definition 4. For k a positive integer, denote

Lk = 2(k − 1) ln(k − 1) and Uk = (2k − 1) ln(k).

V. Dani, D. Gupta, and T. P. Hayes 59:5

Subsequent work by Coja-Oghlan and Vilenchik [5] established an asymptotically sharper
bound, pinning down the chromatic number for a set of degrees having asymptotic density
one. However, their bounds are only stated asymptotically in k, and do not lead to improved
bounds for fixed values of k.

For the case k = 3, Achlioptas and Moore [1] proved a tighter lower bound on the
3-colorability threshold by analysing the success probability of a naive 3-coloring algorithm
using the differential equations method.

▶ Theorem 5 (Aclioptas and Moore). Almost all graphs with average degree 4.03 are 3-
colorable.

Although Theorem 3 is sharp enough to derive most of our bounds, we will need Theorem 5
in order to shift the transition threshold for k = 7 using r = 3 choices, and k = 9 using only
r = 2 choices. We note that future improvements to the bounds on the k-coloring transition
thresholds for G(n, m) might produce further improvements to our bounds.

For the cases whose analysis involve 2-coloring, we will make use of past work on
accelerating or delaying the formation of the giant component. We start with a classical
result of Erdős and Rényi:

▶ Theorem 6. When d < 1, almost surely, all connected components of G(n, dn/2) have size
O(log n), but when d > 1, almost surely, G(n, dn/2) has a “giant” component of size Θ(n).

Bohman and Frieze [3] showed that, in an Achlioptas process, it is possible to delay
this threshold, inspiring many related papers. The following result is due to Spencer and
Wormald [13].

▶ Theorem 7. There exists an edge selection strategy for the 2-choice Achlioptas process, in
which, almost surely, the largest component size is still O(log n) after the inclusion of dn/2
edges, where d = 1.6587.

The details of Spencer and Wormald’s elegant algorithm will not be important in the
present work. In Section 4 we will show how to modify their strategy to additionally delay
G’s first cycle until the giant component forms, but these modifications treat the original
strategy as a black box. We note that, in the same paper, Spencer and Wormald presented
another strategy for hastening the arrival of giant component, causing it to appear at average
degree d = 0.6671.

3 Main Idea, Many Colors

Our general approach to delaying the k-colorability threshold is to partition both the vertex
and color sets into two parts, and then to assign a disjoint set of colors to each side of the
graph. The intuition for this was already discussed in Section 1.1. We now formalize some of
these ideas.

Let V be the set of vertices and K the set of colors. Then |V | = n and |K| = k. We will
partition V into disjoint subsets V1 and V2, called “sides,” each of size n/2. (Since we are
interested in the asymptotic behaviour in n we do not need to worry about its parity.)

We also partition K into disjoint sets K1 and K2. When we color the graph, we will use
colors in Ki to color side Vi. Most of the time we will partition the set of colors so that
|K1| = ⌊k/2⌋ and |K2| = ⌈k/2⌉, although we will have some occasions to deviate from this.

We will use an Achlioptas process to build a graph G with m edges on V . G1 and G2
will denote the subgraphs of G induced by V1 and V2. By abuse of notation, we will also
refer to the graphs obtained partway through the Achlioptas process as G, G1 and G2.
Based on the partition V = V1

⊔
V2, we classify the possible edges into two types:

APPROX/RANDOM 2021

59:6 Power of Choice for k-Colorability

(a). (b).

Figure 1 Illustration for: (a) Disjoint color sets K1 and K2, and vertex sets V1 and V2 assigned
to G1 and G2, respectively; and (b) Types of edges using solid lines for non-crossing edges and
dashed lines for crossing edges.

a crossing edge: An (undirected) edge {u, v} with u ∈ V1 and v ∈ V2.
a non-crossing edge on side i, or an edge in Gi : An (undirected) edge {u, v} where
both u, v ∈ Vi.

Note that since we are using disjoint sets of colors for V1 and V2, a crossing edge is never
violated by a coloring.
Each edge offered to us in the Achlioptas process is sampled uniformly at random from all(
n
2
)

pairs of vertices. The probability of a single offered edge being a crossing edge is

(n/2)(n/2)
n(n − 1)/2 = 1

2 + 1
2(n − 1) = 1/2 + o(1) ≈ 1/2

while for i = 1, 2, the probability of a single offered edge being a non-crossing edge on side i

is
1
2 (n/2)((n/2) − 1)

n(n − 1)/2 = 1
4 − 1

4(n − 1) = 1/4 − o(1) ≈ 1/4

Let r denote the number of edges offered to the algorithm at each step of the Achlioptas
process. As a reminder, each edge is sampled independently and uniformly from

(
V
2
)
.

We use the following strategy to select an edge at every step, unless stated otherwise:

▶ Strategy 1. PreferCrossing
Select the first crossing edge, if any. Otherwise, select the first edge.

Note that in the event that no crossing is available, the selected edge is equally likely to
be on either side, and is a uniformly random edge conditioned on being on the side it is.

Let m be the total number of edges inserted into G, so the average degree of G is
d̄ = 2m/n. For i ∈ {1, 2}, let d̄i denote the average degree of the graph Gi.

We use the PreferCrossing strategy to choose the edge to be inserted into G at each
step. A non-crossing edge is inserted only if all r candidate edges are non-crossing, so the
probability of inserting a non-crossing edge is at most 1/2r. Also, in this case we insert the
first edge, which is equally likely to be on either side. So the probability of inserting an edge
into Gi is 1/2r+1.

It follows that in expectation, there are m/2r+1 edges in each Gi and the rest are crossing
edges. Using this we can calculate the expected average degrees on the two sides as follows:

V. Dani, D. Gupta, and T. P. Hayes 59:7

E[d̄i] <
2m/2r+1

n/2 =
(

2m

n

)
1
2r

= d̄

2r

By the Law of Large Numbers, it follows that, almost surely,

d̄i < (1 + o(1)) d̄

2r
. (1)

Now, since whichever of the three classes of edge (crossing, non-crossing on side 1, non-
crossing on side 2) the PreferCrossing strategy selects, the edge is uniformly random within
that class, it follows that, conditioned on d̄1 and d̄2, G1 and G2 are uniformly random graphs
with that number of edges. Therefore, assuming each d̄i is below a known lower bound on
the ki-colorability transition, it will follow that each Gi is almost surely ki-colorable, and
hence G is (k1 + k2)-colorable. If, additionally, d̄ is greater than a known upper bound on the
k-colorability threshold, and k = k1 + k2, we will have shifted the k-colorability transition
threshold.

Theorem 3 tells us that for κ ≥ 3, the κ-colorability transition threshold (if it exists) lies
between Lκ and Uκ (see Definition 4.) Additionally, we will sometimes also use the improved
lower bound L′

3 = 4.03 from Theorem 5
Since the expression for Lκ is monotone, the graphs Gi are ki-colorable (and hence G

is k-colorable) until d̄1 = d̄2 = min{Lk1 , Lk2}. It therefore makes sense to split the colors
as evenly as possible. We will set k1 = ⌊k/2⌋, k2 = ⌈k/2⌉. Then G1 and G2 are k1- and
k2-colorable respectively until d̄1 = d̄2 = L⌊k/2⌋

Now, we know from Eq. (1) that

d̄ ≥ 2rd̄1 ≥ 2rL⌊k/2⌋

and we will have delayed the k-colorability transition if this exceeds Uk

Since Lk and Uk are both asymptotically equal to 2k ln k, this shows that for sufficiently
large k two choices suffice to raise the k-colorability threshold. Indeed, using Mathematica
to solve the inequalities

2rL⌊k/2⌋ ≥ Uk

for r = 2, 3 and 4, we see that
two choices suffice for even k ≥ 10 and odd k ≥ 13
three choice suffice for even k ≥ 6 and odd k ≥ 9 and
four choices suffice for k = 7.

Moreover, if we use the improved lower bound L′
3 = 4.03, instead of L3 for the case of k = 7,

then we see that

8L′
3 = 8 × 4.03 = 32.24 > 25.3 = U7

so that three choices suffice k = 7. This establishes Theorem 1 for k ≥ 6, except for the cases
k = 9 and k = 11.

For k = 9, 11 we have established that three choices suffice, but we want to show that in
fact we only need two. We will tackle the case k = 11 here and leave k = 9 for Section 7.

When k = 11, we allocate five colors to side 1, and six colors to side 2. The five-colorability
of G1 is only guaranteed until d̄1 = 8 ln 4 ≈ 11.09. With r = 2 choices, at this point d̄

is about 44.36, smaller than 20 ln 10 = 46.05, so that although G is 11-colorable, so is

APPROX/RANDOM 2021

59:8 Power of Choice for k-Colorability

G(n, m = 44.36n/2), so we have not shifted the threshold. In order to increase d̄ past
U11 = 21 ln 11 = 50.356, we note that d̄2 is also about 11.09, since we are equally like to
add a non-crossing edge to side 2 as to side 1. But d̄2 is allowed to go to 10 ln 5 ≈ 16.09
before we can no longer guarantee the 6-colorability of G2. This means we have a fair bit of
slack to favor G2 when adding non-crossing edges. Suppose we put a φ < 1/2 fraction of the
non-crossing edges into G1 and a (1 − φ) fraction of them into G2. What should φ be to
ensure the best outcome? Note that we need φ ≥ 2−r, since if all the non-crossing choices
are on side 1, then we cannot add an edge in side 2. However, subject to this constraint, we
are adding mφ/2r edges to G1 and m(1 − φ)/2r edges to G2 in expectation. But this means
that E[d̄1] = d̄φ/2r−1 and E[d̄2] = d̄(1 − φ)/2r−1. Since these random variables stay close to
their expectations, it follows that d̄1 and d̄2 are in the ratio φ/(1 − φ). Now, its is best if we
can arrange it so that both G1 and G2 lose their guarantee of colorability at the same time
(so that there is no slack). But this means

L5

L6
= φ

1 − φ

But this means we should set

φ = L5

L5 + L6
= 11.09

11.09 + 16.09 ≈ 2
5

Since 2/5 > 1/4, it is possible to achieve a 2/5 − 3/5 split of the non-crossing edges, when
there are two choices.

Finally, what does this make the average degree of the graph G at the time when
11-colorability can no longer be guaranteed?? Since

d̄ ≈ 2r−1d̄1

φ
≈ 2r−1d̄2

1 − φ

when r = 2 and φ = 2/5 we get

d̄ ≈ 2L5

2/5 = 55.45 > 50.356 = U11.

Thus two choices suffice to raise the 11-colorability threshold.
To write down an explicit edge selection strategy, note that if when we are not forced to

take an edge on a particular side, we toss a biased coin that selects side 1 with probability γ,
then the overall probability of adding an edge to side 1 conditioned on adding a non-crossing
edge is 1/4 + γ/2. Since we want this to be 2/5 we should set γ = 3/10. Here is the strategy
we use.

▶ Strategy 2. BiasedPreferCrossing for k = 11
Given two edges, select the first crossing edge, if any.
Otherwise if both non crossing edges are on the same side, select the first one
Otherwise there is one edge offered on each side. Select the one on side 1 with
probability 0.3, and the one on side 2 with probability 0.7.

4 Emergence of Giant component and Emergence of Cycles

The case k = 2 differs from larger k in one very important way: namely, the k-Colorability
Threshold Conjecture is false when k = 2; for G(n, p) where p = d/n, rather than a sharp
transition from colorable to non-colorable at a critical value of d, instead this transition is
spread across the whole range 0 < d < 1.

V. Dani, D. Gupta, and T. P. Hayes 59:9

To see this, we observe that the expected number of triangles is
(

n
3
)
p3 ≈ d3/6, which is a

positive constant for all 0 < d < 1. It is not much harder to prove that the probability that
at least one triangle exists is also Θ(1) whenever d = Θ(1), and hence the probability that
G(n, p) is not 2-colorable is bounded away from zero.

On the other hand, it is also not hard to prove that, as long as p < (1 − ϵ)/n, G(n, p)
is a forest with probability bounded below by a constant, and hence the probability that
G(n, p) is 2-colorable is also bounded away from zero. In other words, the transition from
G(n, d/n) being almost surely 2-colorable to being almost surely not 2-colorable is not sharp,
but is rather spread over the entire interval 0 < d < 1.

Even though there isn’t a sharp threshold for 2-colorability in G(n, p), we will prove in
this section that, given r = 2 choices, we can both create a sharp threshold, and shift it.

Two-colorability is of course, equivalent to the absence of odd cycles, and it turns out
that the presence of odd cycles–indeed, of any cycles–is intimately linked with the emergence
of the giant component.

Consider a 2-choice Achlioptas process, using the following, very simple, edge selection
rule:

▶ Strategy 3. SimpleAvoidCycles
Select the first edge, unless it would create a cycle, in which case, select the second
edge.

SimpleAvoidCycles manages to avoid the emergence of cycles until the average degree is
1, the threshold for the emergence of the giant component. On the other hand, once a giant
component forms, it very quickly grows to size ω(

√
n), at which point it is almost certain that

a pair of edges will be offered within o(n) steps, both of which lie within the giant component.
Therefore it is not possible to avoid cycles for more than a few steps after the formation
of a giant component. Thus, with two choices, this very simple heuristic results in a sharp
threshold for the emergence of cycles (and similarly for odd cycles, a.k.a. non-2-colorability).

4.1 Analysis of SimpleAvoidCycles
As before, let m = dn/2, where d < 1. Consider the graph G′ = G(n, m′), where m′ =
m + log n.

For our purposes, G(n, m′) means the graph obtained from sampling m′ independent
edges uniformly from

(
n
2
)

(with replacement).

▶ Lemma 8. The number of edges of G′ contained in one or more cycles is o(log n), almost
surely.

Proof. This is a standard result, so we present an abbreviated proof. The expected number
of cycles of length k in the G(n, p) model is(

n

k

)
k!
2k

pk <
(np)k

2k
.

Since each k-cycle contains k edges, it follows that the expected number of edges in k-cycles
is less than (np)k/2. If we set np = 1 − ϵ and sum over all k ≥ 3, we get

n∑
k=3

(1 − ϵ)k

2 <
∞∑

k=3

(1 − ϵ)k

2 = (1 − ϵ)3

2ϵ
= O(1).

APPROX/RANDOM 2021

59:10 Power of Choice for k-Colorability

We omit the details of the comparison between the G(n, m) model and the G(n, p) model,
which are standard. Since the expected number of edges in cycles is O(1), whereas log(n)
tends to infinity, by Markov’s inequality it is almost certain that the actual number of edges
in cycles is o(log n). ◀

▶ Lemma 9. The probability that any of the edges em+1, . . . em′ are contained in a cycle of
G′ is O(log(n)/n).

Proof. Since, by Lemma 8, the expected number of edges in cycles is O(1), and since the m′

edges of G′ are identically distributed, it follows that each edge ej has probability O(1/m′) to
be part of a cycle. Hence, by linearity of expectation and Markov’s inequality, the probability
that any of the edges em+1, . . . , em′ is part of a cycle is O((m′ − m)/m′) = O(log(n)/n). ◀

▶ Theorem 10. For d < 1, SimpleAvoidCycles outputs a cycle-free graph, almost surely.

Proof. We couple the m choices made by SimpleAvoidCycles with the edges chosen in
G(n, m′). For each 1 ≤ i ≤ m, let ei be the first edge offered to SimpleAvoidCycles. For each
j’th edge rejected by SimpleAvoidCycles, we let em+j be the second edge offered to Sim-
pleAvoidCycles. When j is greater than the number of edges rejected by SimpleAvoidCycles,
we let em+j be a uniformly random edge, chosen independently from all others.

Our first observation is that the sequence of edges e1, . . . , em′ is uniformly random in(
n
2
)m′

. This is because each ej is uniformly random, conditioned on e1, . . . , ej−1.
Now, suppose the output of SimpleAvoidCycles contains a cycle. This means that at

least one of the “second edges” chosen by SimpleAvoidCycles is contained in a cycle in the
output of SimpleAvoidCycles. This implies that either SimpleAvoidCycles rejected more
than m′ − m first edges, in which case e1, . . . , em contains more than m′ − m cycles, and
hence so does G′. This is unlikely by Lemma 8. Or SimpleAvoidCycles rejected fewer than
m′ − m edges, but one of the second edges formed a cycle in its output, which is a subgraph
of G′. But Lemma 9 bounds the probability of this event. Applying the union bound to
these two events, we get the desired upper bound on the probability that the output of
SimpleAvoidCycles contains a cycle. ◀

4.2 Avoiding Cycles Longer
Next we will show how to keep G a forest as long as the average degree is less than 1.6587,
the threshold from Theorem 7. More generically, we will show how, if any strategy for a
2-choice Achlioptas process can delay the giant component until average degree d, we can
tweak it to additionally keep G a forest up to the same average degree threshold. We will
refer to this strategy as DelayGiant. To be more precise, we will assume that, for every
d′ < d, DelayGiant run for d′n/2 steps almost surely outputs a graph whose components all
have O(n1/4) vertices.

First, we argue that, without loss of generality, DelayGiant can be assumed to have the
following two properties:
1. If exactly one of the two offered edges make a cycle, DelayGiant selects it.
2. In this case, the subsequent behavior of DelayGiant is independent of the second, unse-

lected edge.
The first property is obvious, since if an edge forms a cycle, adding it to G does not increase
any of the component sizes; therefore it dominates any edge that doesn’t form a cycle. The
second property is less obvious, but the idea is that any strategy can be made “forgetful”
by making it resample any state information it might be maintaining, from its conditional

V. Dani, D. Gupta, and T. P. Hayes 59:11

distribution, conditioned on the edges it has accepted so far. It follows from the Law of Total
Probability that this does not change the distribution of the output. An algorithm that is
forgetful in this sense, and satisfies property 1, necessarily satisfies property 2 as well. The
motivation for property 2 is that it will allow us to apply the Principle of Deferred Decisions
to the edges chosen by our strategy in steps when it deviates from DelayGiant’s choices.

Now our strategy for delaying the appearance of the first cycle in G can be described in
one sentence:

▶ Strategy 4. AvoidCycles
Select the edge chosen by the DelayGiant algorithm, unless it would form a cycle, in
which case, select the other edge.

▶ Theorem 11. For d < 1.6587, with high probability, the 2-choice Achlioptas process run
for m = dn/2 steps using strategy AvoidCycles outputs a cycle-free graph.

Consider a run of the DelayGiant algorithm. Let {(e1, e′
1), (e2, e′

2) . . . (em, e′
m)} be the

edges that are offered to the algorithm during this run. Let Gi be the graph produced by
DelayGiant after the first i steps, i.e. Gi has i edges, one out of each pair (ej , e′

j), 1 ≤ j ≤ i.
Let

S := {i| neither of the edges ei, e′
i forms a cycle when added to Gi−1}

Let DelayGiant′ be an algorithm that emulates DelayGiant on the steps in S, but adds
no edge on the m − |S| steps when DelayGiant would add a cycle-forming edge. Let G′

i be
the intermediate graph produced by DelayGiant′ after i steps. Note that for all i, G′

i is a
spanning forest of Gi.

By assumption, almost surely, all the components of Gm have size o(n1/4). Hence also,
for all 1 ≤ i ≤ m, the components of Gi, and therefore also G′

i have size O(n1/4). Now,
consider an arbitrary forest all of whose components are of size at most t. We make two
observations:

▶ Observation 12. Let G be a graph, all of whose components are of size at most t. Then
the probability that adding one random edge to G creates a cycle is at most t−1

n−1 .

▶ Observation 13. Let G be a graph, all of whose components are of size at most t. Add
any ℓ edges to G. Then, the largest component of the resulting graph has size at most ℓt

Applying Observation 12 inductively to each G′
i, with t = O(n1/4), we see that the

expected number of steps on which DelayGiant′ adds no edge, E[m − |S|], is at most
m

(
t−1
n−1

)
, which is O(n1/4).

When DelayGiant′ has run for m steps, the resulting graph G′
m is a forest with |S| edges,

whose components are size O(n1/4). Let DelayGiant′′ be the algorithm that runs DelayGiant′

and then expands G′
m to a graph with m edges by adding m − |S| = O(n1/4) uniformly

random edges. Applying Observation 13, the components of this graph have size at most
O(n1/2). Since each of the O(n1/4) random edges to be added has at most O(n−1/2) chance
of forming a cycle, by Markov’s inequality, the probability that this graph contains a cycle is
at most O(n−1/4). Thus, the graph produced by DelayGiant′′ is almost surely a forest.

The proof of Theorem 11 will be complete once we establish the following Lemma, relating
AvoidCycles to DelayGiant′′.

APPROX/RANDOM 2021

59:12 Power of Choice for k-Colorability

▶ Lemma 14. AvoidCycles is better at avoiding cycles than DelayGiant′′, i.e., for every m,

P(AvoidCycles is cycle-free after m edges) ≥ P(DelayGiant′′ is cycle-free after m edges).

Proof. It will suffice to couple the choices made by the two algorithms in such a way that
each edge chosen by DelayGiant′′ is either the same as the one chosen by AvoidCycles, or
forms a cycle. Consider the edge chosen by AvoidCycles at a particular timestep i ∈ [m] ∖ S.
Also, let Ai denote the set of all possible edges that would form a cycle if added to Gi−1,
and let Bi =

(
n
2
)
∖ Ai. We apply the principle of deferred decisions to the edges (ei, e′

i).
Conditioned on Gi−1 and the event that i /∈ S, the distribution of (ei, e′

i) is uniform in
(Ai ∪ Bi)2 ∖B2

i . This means that the edge selected by AvoidCycles in step i has a conditional
distribution which is uniform in Ai with probability |Ai|

|Ai|+2|Bi| and uniform in Bi with
probability 2|Bi|

|Ai|+2|Bi| .
Let us compare this distribution with that of a uniformly random edge. A uniformly

random edge is uniform in Ai with probability |Ai|
|Ai|+|Bi| , and uniform in Bi with probability

|Bi|
|Ai|+|Bi| . Now, observing that

a

a + 2b
<

a

a + b

whenever a, b > 0, we see that the edge selected by AvoidCycles can be coupled with the
uniformly random edge so that either the two edges are either equal, or the edge selected by
AvoidCycles is in Bi and the uniformly random edge is in Ai. Since an edge in Ai would
have formed a cycle even at step i, it definitely forms a cycle when added to the final result
of DelayGiant.

Moreover, conditioned on the edges e1, . . . , em, the deferred edges em+j are fully independ-
ent, since Property 2 tells us that DelayGiant does not take the identities of previously rejected
edges into account when making its decisions. Thus, the sequence of edges em+1, . . . , em′ is
less likely to make a cycle than a sequence of m′ − m uniformly random edges. It follows that
there is a coupling between the output of AvoidCycles and DelayGiant′′ such that the graphs
produced are always identical except when DelayGiant′′ contains at least one cycle. ◀

5 Four or Five Colors

When we get down to fewer than six colors, the basic PreferCrossing strategy runs into some
difficulties, since at least one of the sides has fewer than three colors. This is problematic
because even at low edge densities, G(n, m) has a constant chance of having an odd cycle
and therefore cannot be two-colored. This means that the subgraph Gi of G on the side with
only two colors will stop being two-colorable even before it has a linear number of edges.
Fortunately, as we saw in the previous section, given a choice of two edges to choose from,
we can can avoid the appearance of cycles and keep the graph two-colorable until it reaches
an average degree of about 1.6587.

When k = 4, we partition V into two sides as usual, and assign two of the four colors
to each side. We prefer crossing edges as usual, and select a crossing edge whenever we are
offered one. If there at least three edges to choose from, and we are not offered any crossing
edges, then at least two of the offered non-crossing edges are on the same side, and we have
some room to be selective about the edge we are adding, and avoid cycles in the graph. Note
that either side is equally likely to have two or more edges, and conditioned on the side, the
edge choices are uniformly random from that side.

Here is an explicit description of the edge-selection strategy used:

V. Dani, D. Gupta, and T. P. Hayes 59:13

▶ Strategy 5. PreferCrossing with Two-sided Cycle Avoidance (PCTCA)
Choose r = 3 edges independently and uniformly at random
if there are any crossing edges then

Select the first crossing edge.
else

Let Gi be the side with more candidate edges
Select the edge chosen by AvoidCycles on Gi.

end

Using the above edge selection strategy, we can show that

▶ Theorem 15. Three choices suffice to increase the 4-colorability threshold.

Proof. Let m be the total number of edges inserted into G, so the average degree of G is
d̄ = 2m/n. For i ∈ {1, 2}, let d̄i denote the average degree of the graph Gi.

The probability of inserting a crossing edge into G is 7/8. When there are no crossing
edges, the chance that a particular side has two edge choices is 1/16. We choose one of the
two or more offered edges using the AvoidCycles strategy so that for i ∈ {1, 2} the expected
number of edges inserted into Gi is m/16. Thus E[d̄i] = 2m/16

n/2 = d̄
8 , and as usual,

d̄i ≤ (1 + o(1))d̄/8

Since we are using the AvoidCycles strategy to insert edges into G1 and G2, by Theorem 11
we can push d̄1 to 1.6587 before Gi stops being two-colorable. At that point,

d̄ = 8 × 1.6587 = 13.2696 > 9.704 = 7 ln 4 = U4

so that G is 4-colorable at a density where G(n, m) isn’t, and we have shifted the threshold. ◀

When k = 5 we assign two colors to G1 and three colors to G2. Again, we choose crossing
edges whenever we can; if there are r = 3 choices we can do this about 7/8 of the time.

What happens when we can’t choose a crossing edge? Half the time, there will be two
edges offered on side 1 and we can use AvoidCycles to choose one of them. If we choose an
edge on side 2 the other half the time, the we will have d̄1 = d̄2 = d̄/8 and as we know from
the four-colorability analysis above, we can push this up to d̄1 = 1.6587 and d̄ = 13.2696
before the 2-coloring on G1 breaks down. But 13.2696 < 14.485 = 9 ln 5 = U5 so we haven’t
shifted the 5-colorability threshold. Of course, at this point, d̄2 is also only 1.6587, and has a
lot of slack before it reaches L′

3 = 4.03, or even L3 = 2.77.
So we want to use a biased strategy that favors choosing edges from side 2 when no

crossing edges are available. We could figure out the optimal bias that makes both sides
reach their limits at the same time, as we did in the k = 11 case. Instead we opt for the
following simple explicit strategy.

APPROX/RANDOM 2021

59:14 Power of Choice for k-Colorability

▶ Strategy 6. PreferCrossing with One-sided Cycle Avoidance (PCOCA)
Choose r = 3 edges independently and uniformly at random
if there are any crossing edges then

Select the first crossing edge.
else

if the first two edges are both in V 2
1 then

Select one of them according to AvoidCycles, run on G1
else

(In this case at least one edge is in V 2
2)

Select the first edge in V 2
2 .

end
end

▶ Theorem 16. Three choices suffice to increase the 5-colorability threshold.

Proof. Let m be the total number of edges inserted into G so the average degree of G is
d̄ = 2m/n. Similarly, for i ∈ {1, 2}, let d̄i denote the average degree of the graph Gi.

The probability of choosing a crossing edge is 7/8. The probability of choosing an edge
on side 1 is (1/4)(1/4)(1/2) = 1/32, and the probability of choosing an edge on side 2 is
3/32. Then E[d̄1] = d̄/16 and E[d̄2] = 3d̄/16

If we set m = 8n then d̄ = 16 > U5 is a density at which G(n, m) is not 5-colorable.
On the other hand if d̄ = 16 in G constructed using PCOCA, then d̄1 = 1 < 1.6586
and d̄2 = 3 < 4.03 = L′

3, so that G1 is two-colorable, G2 is 3-colorable and hence G is
5-colorable. ◀

6 Three Colors

For k = 3, we face a new challenge to our approach, namely: there is no longer any hope
of using disjoint color sets to color the two sides of our graph. Instead, we try to make the
color sets as disjoint as possible. Specifically, we try to color G using red and yellow for the
first side, and blue and yellow for the second side. Although the crossing edges may cause
problems now, at least the only bad color assignment for a crossing edge is (yellow, yellow).
We call this kind of 3-coloring a (Y, ∗)-coloring, since the non-yellow colors are determined
by their side.

Note that this specific type of coloring can be found in linear time, since it is a special
case of Constrained Graph 3-Coloring, which is reducible to 2-SAT (see [8, Problem 5.6]).
Here is our strategy:

▶ Strategy 7. PreferCrossingButCheck (PCBC)
Choose r = 6 edges independently and uniformly at random.
Let e be the edge chosen by the PreferCrossing heuristic.
Check whether G ∪ {e} remains (Y,*)-colorable. If it is, select e. Otherwise, select
the first edge other than e.

We note that with an appropriate data structure, all m of the colorability checks can be
performed in combined expected time O(n). However, since our goal is just to show that the
colorability transition can be shifted, we leave the details as an exercise.

V. Dani, D. Gupta, and T. P. Hayes 59:15

We claim that, when r = 6, the output of PCBC is almost surely (Y, ∗)-colorable. To see
this, observe that, in order for a greedy approach to coloring to fail, the graph must have a
cycle of length 2k + 1 with edges (in order) (e1, e2, . . . , e2k+1), where the k even edges e2i are
all non-crossing. This is analogous to the fact that a graph fails to be 2-colorable if and only
if it has an odd cycle. However, note that in the case of 2-coloring, the criterion is “if and
only if,” whereas here there is only an implication; the cycle is only guaranteed to cause a
problem if we start by coloring the wrong vertex yellow. We call a cycle of this type a “bad
odd cycle.”

▶ Proposition 17. Let d > 0. Let G be the output of an Achlioptas process with r choices,
running the PreferCrossing heuristic, for dn/2 steps. Also suppose that d2 < 2r. Then the
expected number of edges contained in bad odd cycles of G is O(1).

Proof. Note that, for every vertex v, the expected degree is d, but the expected number of
non-crossing edges incident with v is d2−r. With a little work we can see that the expected
number of walks of length 2k starting at a particular node, in which all the even steps are
along non-crossing edges is at most dk(d2−r)k. In order to complete such a walk to a cycle
of length 2k + 1, we need a particular edge to be present, which is an event of probability at
most d/(n/2). Since there are n possible starting points for our walk, this gives the following
bound on the number of edges contained in a bad odd cycle:

n
∑
k≥1

d

n/2(d22−r)k(2k + 1) = 2d
∑ ∑

k≥1
(2k + 1)(d22−r)k,

which since d2 < 2r, is a convergent sum. ◀

Thus, in expectation, PCBC deviates from the choices made by PreferCrossing on only
O(1) steps. Denote this number of steps by m′ − m. On the steps when it deviates, it takes
the first alternative edge. Since PreferCrossing makes its edge choice based only on which
edges are crossing or not, this alternative edge must be uniformly random, conditioned on
whether it is a crossing edge or not. It follows that PCBC succeeds at least as often as a
variant PCBC′ that, instead of taking each rejected edge from PreferCrossing, instead adds
one uniformly random crossing edge and one uniformly random non-crossing edge.

PCBC′ , in turn, will almost surely perform at least as well as another variant, PCBC′′ ,
which, instead of adding one uniformly random crossing edge, and one uniformly random
non-crossing edge, instead adds C2r edges chosen by an Achlioptas process running the
PreferCrossings strategy, where C → ∞. But now, observe that PCBC′′ is just PreferCross-
ings run for m′′ = m + o(n) steps, with all of its bad odd cycles from the first m steps broken
up. Since PreferCrossings run for m′′ steps still has, in expectation, O(1) edges involved in
bad odd cycles, and these edges are uniformly randomly distributed among the m′ steps, the
probability that any of them occur in the last m′′ −m steps is O((m′′ −m)/m′′) = o(1). Hence
the output of PCBC′′ almost surely has no bad odd cycles, and is therefore (Y, ∗)-colorable.
Since by our earlier remarks, PCBC almost surely performs at least as well as PCBC′′ , this
establishes the result.

7 Two choices for 9 colors

In Section 3 as part of a unified analysis for k ≥ 6 we showed that three choices were enough
to raise the 9-colorability threshold. In this section we will show that in fact just two choices
suffice. Surprisingly, this result involves a more uneven split of the colors, with three colors

APPROX/RANDOM 2021

59:16 Power of Choice for k-Colorability

reserved for V1 and six for V2. This helps partly because, for k = 3, the improved lower
bound L′

3 = 4.03 of Theorem 5 is significantly better than the bound of Theorem 3.
The main idea is to use a biased PreferCrossing strategy which favors the six color

side when a non-crossing edge is forced. We have two choices, so we will be putting in a
non-crossing edge only a fourth of the time. Conditioned in that, we want to make the
colorabilty on the two sides break at roughly the same time. As we saw before, this means
that we should add edges to side 1 (with three colors) with probability φ, where

φ

1 − φ
= L′

3
L6

= 4.03
16.094 ≈ 1

4

from which we get that φ should be approximately 1/5... and that is a problem. If the
probability of selecting an edge from side 1 conditioned on a non-crossing edge is 1/5, then
the overall probability is 1/20, but this is not achievable with two choices, since there is a
1/16 chance that both edges are on side 1!

So where does that leave us? It turns out that we can still tweak this to make it work.
From the beginning, we have made the a priori division of the vertex set into two equal sized
disjoint subsets because that maximizes our ability to put in crossing edges. But having
found ourselves in a situation where we want to put in fewer edges into side one than is
possible, the obvious solution seems to be to make side one smaller. So let’s start over, and
partition V into disjoint sets V1 and V2, where |V1| = αn and |V2| = (1 − α)n. It turns out
that α = 0.47 works well. With this parameter setting, we choose crossing edges whenever
possible, and failing that, edges in G2, with edges in G1 as a last resort. This leads to average
degrees d̄1 = 0.1038d̄ and d̄2 = 0.3830d̄. Since 0.1038U9 ≤ L3 and 0.3830U9 ≤ L6, this shows
that we have shifted the 9-coloring threshold with r = 2 choices.

References
1 Dimitris Achlioptas and Cristopher Moore. Almost all graphs with average degree 4 are

3-colorable. Journal of Computer and System Sciences, 67(2):441–471, 2003.
2 Dimitris Achlioptas and Assaf Naor. The two possible values of the chromatic number of a

random graph. Annals of mathematics, 162(3):1335–1351, 2005.
3 Tom Bohman and Alan Frieze. Avoiding a giant component. Random Structures & Algorithms,

19(1):75–85, 2001.
4 Tom Bohman, Alan Frieze, and Nicholas C Wormald. Avoidance of a giant component in half

the edge set of a random graph. Random Structures & Algorithms, 25(4):432–449, 2004.
5 Amin Coja-Oghlan and Dan Vilenchik. Chasing the k-colorability threshold. In 2013 IEEE

54th Annual Symposium on Foundations of Computer Science, pages 380–389. IEEE, 2013.
6 Varsha Dani, Josep Diaz, Thomas Hayes, and Cristopher Moore. The power of choice for

random satisfiability. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 484–496. Springer, 2013.

7 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

8 Cristopher Moore and Stephan Mertens. The nature of computation. OUP Oxford, 2011.
9 Will Perkins. Random k-SAT and the power of two choices. Random Structures & Algorithms,

47(1):163–173, 2015.
10 Andrea W Richa, M Mitzenmacher, and R Sitaraman. The power of two random choices: A

survey of techniques and results. Combinatorial Optimization, 9:255–304, 2001.
11 Oliver Riordan and Lutz Warnke. Achlioptas process phase transitions are continuous. The

Annals of Applied Probability, 22(4):1450–1464, 2012.
12 Alistair Sinclair and Dan Vilenchik. Delaying satisfiability for random 2-SAT. Random

Structures & Algorithms, 43(2):251–263, 2013.

V. Dani, D. Gupta, and T. P. Hayes 59:17

13 Joel Spencer and Nicholas Wormald. Birth control for giants. Combinatorica, 27(5):587–628,
2007.

Appendix A: Hastening the threshold

Here we present a sketch of the proof of Observation 2. Since the choice strategy and the
proof technique are exactly the same as in [6], we omit most of the details.

Proof Sketch for Observation 2. The choice strategy is to favor some vertex set S, where
|S| = γn. For instance, let S = {1, 2, . . . γn}. By always choosing a random edge in

(
S
2
)

when one is available, we find that the induced graph on S is uniformly random, but denser
than G as a whole, having average degree asymptotically equal to (1 − (1 − γ2)r)/γ times the
average degree of G. Choosing γ to maximize this expression, we obtain the desired choice
strategy. For instance, setting γ = 1/

√
r, we can see that (1 − (1 − γ2)r)/γ = Θ(

√
r), which

tends to infinity. This shows that the favored subgraph can be made arbitrarily more dense
than G, thus bridging the gap between any upper and lower bounds on the threshold. ◀

APPROX/RANDOM 2021

Memory-Sample Lower Bounds for Learning Parity
with Noise
Sumegha Garg #

Department of Computer Science, Harvard University, Cambridge, MA, USA

Pravesh K. Kothari #

Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Pengda Liu #

Department of Computer Science, Stanford University, CA, USA

Ran Raz #

Department of Computer Science, Princeton University, NJ, USA

Abstract
In this work, we show, for the well-studied problem of learning parity under noise, where a learner
tries to learn x = (x1, . . . , xn) ∈ {0, 1}n from a stream of random linear equations over F2 that are
correct with probability 1

2 + ε and flipped with probability 1
2 − ε (0 < ε < 1

2), that any learning
algorithm requires either a memory of size Ω(n2/ε) or an exponential number of samples.

In fact, we study memory-sample lower bounds for a large class of learning problems, as
characterized by [8], when the samples are noisy. A matrix M : A × X → {−1, 1} corresponds to the
following learning problem with error parameter ε: an unknown element x ∈ X is chosen uniformly
at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i,
ai ∈ A is chosen uniformly at random and bi = M(ai, x) with probability 1/2 + ε and bi = −M(ai, x)
with probability 1/2 − ε (0 < ε < 1

2). Assume that k, ℓ, r are such that any submatrix of M of at
least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of at most 2−r. We show that any
learning algorithm for the learning problem corresponding to M , with error parameter ε, requires
either a memory of size at least Ω

(
k·ℓ
ε

)
, or at least 2Ω(r) samples. The result holds even if the

learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that
for a large class of learning problems, same as those in [8], any learning algorithm requires either a
memory of size at least Ω

((log |X|)·(log |A|)
ε

)
or an exponential number of noisy samples.

Our proof is based on adapting the arguments in [21, 8] to the noisy case.

2012 ACM Subject Classification Theory of computation → Machine learning theory

Keywords and phrases memory-sample tradeoffs, learning parity under noise, space lower bound,
branching program

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.60

Category RANDOM

Funding Sumegha Garg: Research supported by Michael O. Rabin Postdoctoral Fellowship.
Pravesh K. Kothari: Research supported by NSF CAREER Award No. 2047933.
Ran Raz: Research supported by the Simons Collaboration on Algorithms and Geometry, by a
Simons Investigator Award and by the National Science Foundation grants No. CCF-1714779,
CCF-2007462.

Acknowledgements We would like to thank Avishay Tal and Greg Valiant for the helpful discussions.

1 Introduction

In this work, we study the number of samples needed for learning under noise and memory
constraints. The study of the resources needed for learning, under memory constraints
was initiated by Shamir [22] and Steinhardt, Valiant and Wager [24], and has been studied

© Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 60; pp. 60:1–60:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sumegha.garg@gmail.com
mailto:kotpravesh@gmail.com
mailto:pengda@stanford.edu
mailto:ran.raz.mail@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.60
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Memory-Sample Lower Bounds for Learning Parity with Noise

in the streaming setting. In addition to being a natural question in learning theory and
complexity theory, lower bounds in this model also have direct applications to bounded storage
cryptography [20, 26, 16, 25, 11, 13, 6, 12]. [24] conjectured that any algorithm for learning
parities of size n (that is, learning x ∈ {0, 1}n from a stream of random linear equations
in F2) requires either a memory of size Ω(n2) or an exponential number of samples. This
conjecture was proven in [20] and in follow up works, this was generalized to learning sparse
parities in [16] and more general learning problems in [21, 17, 19, 8, 2, 5, 18, 23, 9, 4, 10].

In this work, we extend this line of work to noisy Boolean function learning problems. In
particular, we consider the well-studied problem of learning parity under noise (LPN). In
this problem, a learner wants to learn x ∈ {0, 1}n from independent and uniformly random
linear equations in F2 where the right hand sides are obtained by independently flipping
the evaluation of an unknown parity function with probability 1

2 − ε. Learning Parity with
Noise (LPN) is a central problem in Learning and Coding Theory (often referred to as
decoding random linear codes) and has been extensively studied. Even without memory
constraints, coming up with algorithms for the problem has proven to be challenging and the
current state-of-the-art for solving the problem is still the celebrated work of Blum, Kalai
and Wasserman [3] that runs in time 2O(n/ log2(n)). Over time, the hardness of LPN (and
its generalization to non-binary finite fields) has been used as a starting point in several
hardness results [14, 7] and constructing cryptographic primitives [1]. On the other hand,
lower-bounds for the problem are known only in restricted models such as Statistical Query
Learning1 [15].

Learning under noise is at least as hard as learning without noise and thus, memory-
sample lower bounds for parity learning [20] holds for learning parity under noise too. It is
natural to ask – can we get better space lower bounds for learning parities under noise? In
this work, we are able to strengthen the memory lower bound to Ω(n2/ε) for parity learning
with noise.

Our results actually extend to a broad class of learning problems under noise. As in [21]
and follow up works, we represent a learning problem using a matrix. Let X, A be two finite
sets (where X represents the concept-class that we are trying to learn and A represents the
set of possible samples). Let M : A × X → {−1, 1} be a matrix. The matrix M represents
the following learning problem with error parameter ε (0 < ε < 1

2): An unknown element
x ∈ X was chosen uniformly at random. A learner tries to learn x from a stream of samples,
(a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai, x)
with probability 1

2 + ε.

1.1 Our Results
We use extractor-based characterization of the matrix M to prove our lower bounds, as done
in [8]. Our main result can be stated as follows (Corollary 19): Assume that k, ℓ, r are such
that any submatrix of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias
of at most 2−r. Then, any learning algorithm for the learning problem corresponding to M

with error parameter ε requires either a memory of size at least Ω (k · ℓ/ε), or at least 2Ω(r)

samples. Thus, we get an extra factor of 1
ε in the space lower bound for all the bounds on

learning problems that [8] imply, some of which are as follows (see [8] for details on why the
corresponding matrices satisfy the extractor-based property):

1 The SQ model does not seem to distinguish between noisy and noiseless variants of parity learning and
yields the same lower bound in both cases.

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:3

1. Parities with noise: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n, from (a stream
of) random linear equations over F2 which are correct with probability 1

2 + ε and flipped
with probability 1

2 − ε. Any learning algorithm requires either a memory of size Ω(n2/ε)
or an exponential number of samples.

2. Sparse parities with noise: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n of
sparsity ℓ, from (a stream of) random linear equations over F2 which are correct with
probability 1

2 + ε and flipped with probability 1
2 − ε. Any learning algorithm requires:

a. Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ/ε) or 2Ω(ℓ) samples.
b. Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99/ε) or ℓΩ(ℓ) samples.

3. Learning from noisy sparse linear equations: A learner tries to learn x =
(x1, . . . , xn) ∈ {0, 1}n, from (a stream of) random sparse linear equations, of sparsity ℓ,
over F2, which are correct with probability 1

2 + ε and flipped with probability 1
2 − ε. Any

learning algorithm requires:
a. Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ/ε) or 2Ω(ℓ) samples.
b. Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99/ε) or ℓΩ(ℓ) samples.

4. Learning from noisy low-degree equations: A learner tries to learn x =
(x1, . . . , xn) ∈ {0, 1}n, from (a stream of) random multilinear polynomial equations
of degree at most d, over F2, which are correct with probability 1

2 + ε and flipped with
probability 1

2 − ε. We prove that if d ≤ 0.99 · n, any learning algorithm requires either a
memory of size Ω

((
n

≤d

)
n

d·ε

)
or 2Ω(n/d) samples (where

(
n

≤d

)
=

(
n
0
)

+
(

n
1
)

+ . . . +
(

n
d

)
).

5. Low-degree polynomials with noise: A learner tries to learn an n′-variate multilinear
polynomial p of degree at most d over F2, from (a stream of) random evaluations of p

over Fn′

2 , which are correct with probability 1
2 + ε and flipped with probability 1

2 − ε.
We prove that if d ≤ 0.99 · n′, any learning algorithm requires either a memory of size
Ω

((
n′

≤d

)
· n′

d·ε

)
or 2Ω(n′/d) samples.

1.2 Techniques
Our proof follows the proof of [21, 8] very closely and builds on that proof. We extend
the extractor-based result of [8] to the noisy case and a straightforward adaptation to its
proof gives the stronger lower bound for the noisy case (which reflects on the strength of
the current techniques). The main contribution of this paper is not a technical one but
establishing stronger space lower bounds for a well-studied problem of learning parity with
noise, using the current techniques.

1.3 Discussion and Open Problem
Let’s look at a space upper bound for the problem of learning parity with noise, that is,
a learner tries to learn x ∈ {0, 1}n from a stream of samples of the form (a, b), where
a ∈ {0, 1}n is chosen uniformly at random and b = a ·x with probability 1

2 +ε and b = 1−a ·x
with probability 1

2 − ε (here, a · x represents the inner product of a and x in F2, that is,
a · x =

∑
i aixi mod 2).

Upper Bound
Consider the following algorithm A: Store the first m = O(n/ε2) samples. Check for every
x′ ∈ {0, 1}n, if for at least

(1
2 + ε

2
)

fraction of the samples (a1, b1), . . . , (am, bm), ai · x′ agrees
with bi. Output the first x′ that satisfies the check. In expectation, ai · x would agree with
bi for

(1
2 + ε

)
fraction of the samples, and otherwise for x′ ̸= x, in expectation, ai · x′ would

APPROX/RANDOM 2021

60:4 Memory-Sample Lower Bounds for Learning Parity with Noise

agree with bi for half the samples. Therefore, for large enough m, using Chernoff bound and
a union bound, with high probability (1 − o(1)) over the m samples, x′ satisfies the check if
and only if x′ = x, and A outputs the correct answer under such an event. A uses O(n/ε2)
samples and O(n2/ε2) bits of space.

In this paper, we prove that any algorithm that learns parity with noise from a stream of
samples (as defined above) requires Ω(n2/ε) bits of space or exponential number of samples.
Improving the lower bound to match the upper bound (or vice versa) is a fascinating open
problem and we conjecture that the upper bound is tight. As each sample gives at most
O(ε2) bits of information about x, we can at least show that a learning algorithm requires
O(n/ε2) samples to learn x (which corresponds to using O(n2/ε2) bits of space if each sample
is stored).

▶ Conjecture 1. Any learner that tries to learn x ∈ {0, 1}n from a stream of samples of the
form (a, b), where a ∈ {0, 1}n is chosen uniformly at random and b = a · x with probability
1
2 + ε and b = 1 − a · x with probability 1

2 − ε, requires either Ω(n2/ε2) bits of memory or
2Ω(n) samples.

The proof of the conjecture, if true, would lead to new technical insights (beyond extractor-
based techniques) into proving time-space (or memory-sample) lower bounds for learning
problems.

1.4 Outline of the Paper
In Section 2, we establish certain notations and definitions, which are borrowed from [21, 8].
We give a proof overview in Section 3 and prove the main theorem in Section 4.

2 Preliminaries

Denote by UX : X → R+ the uniform distribution over X. Denote by log the logarithm
to base 2. For a random variable Z and an event E, we denote by PZ the distribution of
the random variables Z, and we denote by PZ|E the distribution of the random variable Z

conditioned on the event E.

Viewing a Learning Problem, with error 1
2 − ε, as a Matrix

Let X, A be two finite sets of size larger than 1. Let n = log2 |X| and n′ = log2 |A|.
Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following

learning problem with error parameter ε (0 < ε < 1
2). There is an unknown element

x ∈ X that was chosen uniformly at random. A learner tries to learn x from samples (a, b),
where a ∈ A is chosen uniformly at random, and b = M(a, x) with probability 1

2 + ε and
b = −M(a, x) with probability 1

2 − ε. That is, the learning algorithm is given a stream of
samples, (a1, b1), (a2, b2) . . ., where each at is uniformly distributed, and bt = M(at, x) with
probability 1

2 + ε and b = −M(at, x) with probability 1
2 − ε.

Norms and Inner Products
Let p ≥ 1. For a function f : X → R, denote by ∥f∥p the ℓp norm of f , with respect to the
uniform distribution over X, that is:

∥f∥p =
(

E
x∈RX

[|f(x)|p]
)1/p

.

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:5

For two functions f, g : X → R, define their inner product with respect to the uniform
distribution over X as

⟨f, g⟩ = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the
function corresponding to the a-th row of M . Note that for a function f : X → R, we have
⟨Ma, f⟩ = (M ·f)a

|X| . Here, M · f represents the matrix multiplication of M with f .

L2-Extractors and L∞-Extractors
▶ Definition 2 (L2-Extractor). Let X, A be two finite sets. A matrix M : A × X → {−1, 1}
is a (k, ℓ)-L2-Extractor with error 2−r, if for every non-negative f : X → R with ∥f∥2

∥f∥1
≤ 2ℓ

there are at most 2−k · |A| rows a in A with

|⟨Ma, f⟩|
∥f∥1

≥ 2−r .

Let Ω be a finite set. We denote a distribution over Ω as a function f : Ω → R+ such
that

∑
x∈Ω f(x) = 1. We say that a distribution f : Ω → R+ has min-entropy k if for all

x ∈ Ω, we have f(x) ≤ 2−k.

▶ Definition 3 (L∞−Extractor). Let X, A be two finite sets. A matrix M : A × X → {−1, 1}
is a (k, ℓ ∼ r)-L∞-Extractor if for every distribution px : X → R+ with min-entropy at least
(log(|X|) − ℓ) and every distribution pa : A → R+ with min-entropy at least (log(|A|) − k),∣∣∣∣ ∑

a′∈A

∑
x′∈X

pa(a′) · px(x′) · M(a′, x′)
∣∣∣∣ ≤ 2−r.

Branching Program for a Learning Problem
In the following definition, we model the learner for the learning problem that corresponds
to the matrix M , by a branching program, as done by previous papers starting with [20].

▶ Definition 4. Branching Program for a Learning Problem: A branching program of
length m and width d, for learning, is a directed (multi) graph with vertices arranged in m + 1
layers containing at most d vertices each. In the first layer, that we think of as layer 0, there
is only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All vertices
in the last layer are leaves (but there may be additional leaves). Every non-leaf vertex in
the program has 2|A| outgoing edges, labeled by elements (a, b) ∈ A × {−1, 1}, with exactly
one edge labeled by each such (a, b), and all these edges going into vertices in the next layer.
Each leaf v in the program is labeled by an element x̃(v) ∈ X, that we think of as the output
of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A × {−1, 1} that are given as
input, define a computation-path in the branching program, by starting from the start vertex
and following at step t the edge labeled by (at, bt), until reaching a leaf. The program outputs
the label x̃(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that
x̃ = x, where x̃ is the element that the program outputs, and the probability is over
x, a1, . . . , am, b1, . . . , bm (where x is uniformly distributed over X and a1, . . . , am are uni-
formly distributed over A, and for every t, bt = M(at, x) with probability 1

2 +ε and −M(at, x)
with probability 1

2 − ε).

APPROX/RANDOM 2021

60:6 Memory-Sample Lower Bounds for Learning Parity with Noise

A learning algorithm, using m samples and a memory of s bits, can be modeled as a branching
program2 of length m and width 2O(s). Thus, we will focus on proving width-length tradeoffs
for any branching program that learns an extractor-based learning problem with noise, and
such tradeoffs would translate into memory-sample tradeoffs for the learning algorithms.

3 Overview of the Proof

The proof adapts the extractor-based time-space lower bound of [8] to the noisy case, which
in turn built on [21] that gave a general technique for proving memory-samples lower bounds.
We recall the arguments in [21, 8] for convenience.

Assume that M is a (k′, ℓ′)-L2-extractor with error 2−r′ , and let r = min{k′, ℓ′, r′}. Let
B be a branching program for the noisy learning problem that corresponds to the matrix
M . We want to prove that B has at least 2Ω(r) length or requires at least 2Ω(k′ℓ′

ε) width
(that is, any learning algorithm solving the learning problem corresponding to the matrix M

with error parameter ε, requires either Ω(k′ℓ′

ε) memory or exponential number of samples).
Assume for a contradiction that B is of length m = 2cr and width d = 2c k′ℓ′

ε , where c > 0 is
a small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching
a leaf if certain “bad” events occur. Nevertheless, we show that the probability that T
stops before reaching a leaf is negligible, so we can think of T as almost identical to the
computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote by
Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am, b1, . . . , bm),
and we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned on the
event Ev. Similarly, for an edge e of the branching program B, let Ee be the event that T
traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee

.
A vertex v of B is called significant if∥∥Px|v

∥∥
2 > 2ℓ′

· 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v,
a non-negligible amount of information is known about x. In order to guess x with a
non-negligible success probability, T must reach a significant vertex. Lemma 6 shows that
the probability that T reaches any significant vertex is negligible, and thus the main result
follows.

To prove Lemma 6, we show that for every fixed significant vertex s, the probability that
T reaches s is at most 2−Ω(k′ℓ′/ε) (which is smaller than one over the number of vertices
in B). Hence, we can use a union bound to prove the lemma.

The proof that the probability that T reaches s is extremely small is the main part of
the proof. To that end, we use the following functions to measure the progress made by the
branching program towards reaching s.

2 The lower bound holds for randomized learning algorithms because a branching program is a non-uniform
model of computation, and we can fix a good randomization for the computation without affecting the
width.

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:7

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of
edges e from layer-(i − 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k′/2ε,

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k′/2ε.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.
We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to

calculate that Z0 = 2− 2nk′
2ε , it follows that Zi is close to 2− 2nk′

2ε , for every i. On the other
hand, if s is in layer-i then Zi is at least Pr(s) · ⟨Px|s,Px|s⟩ k′

2ε . Thus, Pr(s) · ⟨Px|s,Px|s⟩ k′
2ε

cannot be much larger than 2−2n k′
2ε . Since s is significant, ⟨Px|s,Px|s⟩ k′

2ε > 2(2ℓ′−2n) k′
2ε and

hence Pr(s) is at most 2−Ω(k′ℓ′
ε).

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps: Claim 17
shows by a simple convexity argument that Zi ≤ Z ′

i. The hard part, that is done in Claim 15
and Claim 16, is to prove that Z ′

i may only be negligibly larger than Zi−1.
For this proof, we define for every vertex v, the set of edges Γout(v) that are going out

of v, such that Pr(e) > 0. Claim 15 shows that for every vertex v,∑
e∈Γout(v)

Pr(e) · ⟨Px|e,Px|s⟩k′/2ε

may only be negligibly higher than

Pr(v) · ⟨Px|v,Px|s⟩k′/2ε.

For the proof of Claim 15, which is the hardest proof in the paper, we follow [21, 8]
and consider the function Px|v · Px|s. We first show how to bound

∥∥Px|v · Px|s
∥∥

2. We then
consider two cases: If

∥∥Px|v · Px|s
∥∥

1 is negligible, then ⟨Px|v,Px|s⟩k′/2ε is negligible and
doesn’t contribute much, and we show that for every e ∈ Γout(v), ⟨Px|e,Px|s⟩k′/2ε is also
negligible and doesn’t contribute much. If

∥∥Px|v · Px|s
∥∥

1 is non-negligible, we use the bound
on

∥∥Px|v · Px|s
∥∥

2 and the assumption that M is a (k′, ℓ′)-L2-extractor to show that for almost
all edges e ∈ Γout(v), we have that ⟨Px|e,Px|s⟩k′/2ε is very close to ⟨Px|v,Px|s⟩k′/2ε. Only
an exponentially small (2−k′) fraction of edges are “bad” and give a significantly larger
⟨Px|e,Px|s⟩k′/2ε. In the noiseless case, any “bad” edge can increase ⟨Px|v,Px|s⟩ by a factor
of 2 in the worst case, and hence [8] raised ⟨Px|v,Px|s⟩ and ⟨Px|e,Px|s⟩ to the power of k′,
as it is the largest power for which the contribution of the “bad” edges is still small (as
their fraction is 2−k′). But in the noisy case, any “bad” edge can increase ⟨Px|v,Px|s⟩ by a
factor of at most (1 + 2ε) in the worst case, and thus, we can afford to raise ⟨Px|v,Px|s⟩ and
⟨Px|e,Px|s⟩ to the power of k′/2ε. This is where our proof differs from that of [8].

This outline oversimplifies many details. To make the argument work, we force T to stop
at significant vertices and whenever Px|v(x) is large, that is, at significant values, as done
in previous papers. And we force T to stop before traversing some edges, that are so “bad”
that their contribution to Z ′

i is huge and they cannot be ignored. We show that the total
probability that T stops before reaching a leaf is negligible.

APPROX/RANDOM 2021

60:8 Memory-Sample Lower Bounds for Learning Parity with Noise

4 Main Result

▶ Theorem 5. Let 1
100 < c < ln 2

3 . Fix γ to be such that 3c
ln 2 < γ2 < 1. Let X, A be two finite

sets. Let n = log2 |X|. Let M : A × X → {−1, 1} be a matrix which is a (k′, ℓ′)-L2-extractor
with error 2−r′ , for sufficiently large3 k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r := min
{

r′

2 , (1−γ)k′

2 , (1−γ)ℓ′

2 − 1
}

. (1)

Let B be a branching program, of length at most 2r and width at most 2c·k′·ℓ′/ε, for the
learning problem that corresponds to the matrix M with error parameter ε. Then, the success
probability of B is at most O(2−r).

Proof. We recall the proof in [8, 21] and adapt it to the noisy case. Let

k := γ ln 2
2ε

k′ and ℓ := γℓ′/3. (2)

Our proof differs from [8] starting with Claim 10, which allows us to set k to a larger value
of γ ln 2

2ε k′ instead of γ(ln 2)k′ as set in [8]. Note that by the assumption that k′, ℓ′ and r′

are sufficiently large, we get that k, ℓ and r are also sufficiently large. Since ℓ′ ≤ n, we have
ℓ + r ≤ γℓ′

3 + (1−γ)ℓ′

2 < ℓ′

2 ≤ n
2 . Thus,

r < n/2 − ℓ. (3)

Let B be a branching program of length m = 2r and width4 d = 2c·k′·ℓ′/ε for the learning
problem that corresponds to the matrix M with error parameter ε. We will show that the
success probability of B is at most O(2−r).

4.1 The Truncated-Path and Additional Definitions and Notation
We will define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Formally, we define T , together with several
other definitions and notations, by induction on the layers of the branching program B.

Assume that we already defined the truncated-path T , until it reaches layer-i of B.
For a vertex v in layer-i of B, let Ev be the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am, b1, . . . , bm), and we denote by Px|v = Px|Ev

the distribution of the random
variable x conditioned on the event Ev.

There will be three cases in which the truncated-path T stops on a non-leaf v:
1. If v is a, so called, significant vertex, where the ℓ2 norm of Px|v is non-negligible.

(Intuitively, this means that conditioned on the event that T reaches v, a non-negligible
amount of information is known about x).

2. If Px|v(x) is non-negligible. (Intuitively, this means that conditioned on the event that T
reaches v, the correct element x could have been guessed with a non-negligible probability).

3. If (M · Px|v)(ai+1) is non-negligible. (Intuitively, this means that T is about to traverse
a “bad” edge, which is traversed with a non-negligibly higher or lower probability than
probability of traversal under uniform distribution on x).

Next, we describe these three cases more formally.

3 By “sufficiently large” we mean that k′, ℓ′, r′ are larger than some constant that depends on γ.
4 width lower bound is vacuous for ε < 2−r/2 as regardless of the width, Ω(n/ε2) > 2r samples are needed

to learn.

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:9

Significant Vertices
We say that a vertex v in layer-i of B is significant if∥∥Px|v

∥∥
2 > 2ℓ · 2−n.

Significant Values
Even if v is not significant, Px|v may have relatively large values. For a vertex v in layer-i
of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 22ℓ+2r · 2−n.

Bad Edges
For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)

∣∣ ≥ 2−r′
.

The Truncated-Path T
We define T by induction on the layers of the branching program B. Assume that we already
defined T until it reaches a vertex v in layer-i of B. The path T stops on v if (at least) one
of the following occurs:
1. v is significant.
2. x ∈ Sig(v).
3. ai+1 ∈ Bad(v).
4. v is a leaf.
Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the
computational-path).

4.2 Proof of Theorem 5
Since T follows the computation-path of B, except that it sometimes stops before reaching a
leaf, the success probability of B is bounded (from above) by the probability that T stops
before reaching a leaf, plus the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 5 is Lemma 6 that shows that the
probability that T reaches a significant vertex is at most O(2−r).

▶ Lemma 6. The probability that T reaches a significant vertex is at most O(2−r).

Lemma 6 is proved in Section 4.3. We will now show how the proof of Theorem 5 follows
from that lemma.

Lemma 6 shows that the probability that T stops on a non-leaf vertex, because of the
first reason (i.e., that the vertex is significant), is small. The next two claims imply that the
probabilities that T stops on a non-leaf vertex, because of the second and third reasons, are
also small. We defer the proofs to Appendix A (proved as in [8]).

▷ Claim 7. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2r.

APPROX/RANDOM 2021

60:10 Memory-Sample Lower Bounds for Learning Parity with Noise

▷ Claim 8. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−2r.

We can now use Lemma 6, Claim 7 and Claim 8 to prove that the probability that T
stops before reaching a leaf is at most O(2−r). Lemma 6 shows that the probability that T
reaches a significant vertex and hence stops because of the first reason, is at most O(2−r).
Assuming that T doesn’t reach any significant vertex (in which case it would have stopped
because of the first reason), Claim 7 shows that in each step, the probability that T stops
because of the second reason, is at most 2−2r. Taking a union bound over the m = 2r steps,
the total probability that T stops because of the second reason, is at most 2−r. In the
same way, assuming that T doesn’t reach any significant vertex (in which case it would have
stopped because of the first reason), Claim 8 shows that in each step, the probability that T
stops because of the third reason, is at most 2−2r. Again, taking a union bound over the 2r

steps, the total probability that T stops because of the third reason, is at most 2−r. Thus,
the total probability that T stops (for any reason) before reaching a leaf is at most O(2−r).

Recall that if T doesn’t stop before reaching a leaf, it just follows the computation-path
of B. Recall also that by Lemma 6, the probability that T reaches a significant leaf is at most
O(2−r). Thus, to bound (from above) the success probability of B by O(2−r), it remains to
bound the probability that T reaches a non-significant leaf v and x̃(v) = x. Claim 9 shows
that for any non-significant leaf v, conditioned on the event that T reaches v, the probability
for x̃(v) = x is at most 2−r, which completes the proof of Theorem 5.

▷ Claim 9. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−r.

Refer to Appendix A for the proof (proved as in [8]). This completes the proof of
Theorem 5. ◀

4.3 Proof of Lemma 6
Proof. We need to prove that the probability that T reaches any significant vertex is at
most O(2−r). Let s be a significant vertex of B. We will bound from above the probability
that T reaches s, and then use a union bound over all significant vertices of B. Interestingly,
the upper bound on the width of B is used only in the union bound.

The Distributions Px|v and Px|e

Recall that for a vertex v of B, we denote by Ev the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am, b1, ..., bm), and we denote by Px|v = Px|Ev

the distribution of the random
variable x conditioned on the event Ev.

Similarly, for an edge e of the branching program B, let Ee be the event that T traverses
the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over x, a1, . . . , am, b1, ..., bm),
and Px|e = Px|Ee

.

▷ Claim 10. For any edge e = (v, u) of B, labeled by (a, b), such that Pr(e) > 0, for any
x′ ∈ X,

Px|e(x′) =

0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:11

where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Also, since Pr(e) > 0, we know that a ̸∈ Bad(v) (as otherwise T never traverses e

and hence Pr(e) = 0).
If T reaches v, it traverses the edge e if and only if: x ̸∈ Sig(v) (as otherwise T stops

on v) and ai+1 = a, bi+1 = b. Therefore, by Bayes’ rule, for any x′ ∈ X,

Px|e(x′) =

0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ ̸∈Sig(v) ∧ M(a,x′)=b}

Px|v(x′)(1 + 2ε)

+
∑

{x′ : x′ ̸∈Sig(v) ∧ M(a,x′)̸=b}

Px|v(x′)(1 − 2ε)

= (1 + 2ε) · Pr
x

[(x ̸∈ Sig(v)) ∧ (M(a, x) = b) | Ev]

+ (1 − 2ε) · Pr
x

[(x ̸∈ Sig(v)) ∧ (M(a, x) ̸= b) | Ev].

Since v is not significant, by Claim 7,

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2r.

Since a ̸∈ Bad(v),∣∣∣Pr
x

[M(a, x) = 1 | Ev] − Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣ ≤ 2−r′

,

and hence for every b′ ∈ {−1, 1},

Pr
x

[M(a, x) = b′ | Ev] ≥ 1
2 − 2−r′

.

Hence, by the union bound,

ce ≥ (1 + 2ε) · (1
2 − 2−r′

− 2−2r) + (1 − 2ε) · (1
2 − 2−r′

− 2−2r) ≥ 1 − 4 · 2−2r

(where the last inequality follows since r ≤ r′/2, by Equation (1)). ◁

Bounding the Norm of Px|s

We will show that
∥∥Px|s

∥∥
2 cannot be too large. Towards this, we will first prove that for

every edge e of B that is traversed by T with probability larger than zero,
∥∥Px|e

∥∥
2 cannot

be too large. We defer the proofs of the following claims to Appendix A (proved as in [8]).

▷ Claim 11. For any edge e of B, such that Pr(e) > 0,∥∥Px|e
∥∥

2 ≤ 4 · 2ℓ · 2−n.

▷ Claim 12.∥∥Px|s
∥∥

2 ≤ 4 · 2ℓ · 2−n.

APPROX/RANDOM 2021

60:12 Memory-Sample Lower Bounds for Learning Parity with Noise

Similarity to a Target Distribution
Recall that for two functions f, g : X → R+, we defined

⟨f, g⟩ = E
z∈RX

[f(z) · g(z)].

We think of ⟨f, g⟩ as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

▷ Claim 13.

⟨Px|s,Px|s⟩ > 22ℓ · 2−2n.

Proof. Since s is significant,

⟨Px|s,Px|s⟩ =
∥∥Px|s

∥∥2
2 > 22ℓ · 2−2n. ◁

▷ Claim 14.

⟨UX ,Px|s⟩ = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

⟨UX ,Px|s⟩ = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n. ◁

Measuring the Progress
For i ∈ {0, . . . , m}, let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. For
i ∈ {1, . . . , m}, let Γi be the set of edges e from layer-(i − 1) of B to layer-i of B, such that
Pr(e) > 0. Recall that k = γ ln 2

2ε k′ (Equation (2)).
For i ∈ {0, . . . , m}, let

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k.

For i ∈ {1, . . . , m}, let

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.
For a vertex v of B, let Γout(v) be the set of all edges e of B, that are going out of v,

such that Pr(e) > 0. Note that∑
e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v).
The next four claims show that the progress made by the branching program is slow.

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:13

▷ Claim 15. For every vertex v of B, such that Pr(v) > 0,∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k ≤ ⟨Px|v,Px|s⟩k ·

(
1 + 2−r

)k +
(
2−2n+2)k

.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty
and thus the left hand side is equal to zero and the right hand side is positive, so the claim
follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R+ as follows. For any x′ ∈ X,

P (x′) =
{

0 if x′ ∈ Sig(v)
Px|v(x′) if x′ ̸∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X,

P (x′) ≤ 22ℓ+2r · 2−n. (4)

Define f : X → R+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 12 and Equation (4),

∥f∥2 ≤ 22ℓ+2r · 2−n ·
∥∥Px|s

∥∥
2 ≤ 22ℓ+2r · 2−n · 4 · 2ℓ · 2−n = 23ℓ+2r+2 · 2−2n. (5)

By Claim 10, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =

0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r.

Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) = f(x′) · (1 + 2ε · b · M(a, x′)) · c−1
e

and hence, we have

⟨Px|e,Px|s⟩ = E
x′∈RX

[Px|e(x′) · Px|s(x′)] = E
x′∈RX

[f(x′) · (1 + 2ε · b · M(a, x′)) · c−1
e]

= (∥f∥1 + 2ε · b · ⟨Ma, f⟩) · (ce)−1

< (∥f∥1 + 2ε|⟨Ma, f⟩|) ·
(
1 + 2−2r+3)

(6)

(where the last inequality holds by the bound that we have on ce, because we assume that
k′, ℓ′, r′ and thus r are sufficiently large).

We will now consider two cases:

Case I: ∥f∥1 < 2−2n. In this case, we bound |⟨Ma, f⟩| ≤ ∥f∥1 (since f is non-negative
and the entries of M are in {−1, 1}) and (1 + 2−2r+3) < 2 (since we assume that k′, ℓ′, r′

and thus r are sufficiently large) and obtain for any edge e ∈ Γout(v),

⟨Px|e,Px|s⟩ < 4 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim 15 follows, as the left hand side of the claim is smaller

than the second term on the right hand side.

APPROX/RANDOM 2021

60:14 Memory-Sample Lower Bounds for Learning Parity with Noise

Case II: ∥f∥1 ≥ 2−2n. For every a ∈ A, define

t(a) = |⟨Ma, f⟩|
∥f∥1

.

By Equation (6),

⟨Px|e,Px|s⟩k < ∥f∥k
1 · (1 + 2ε · t(a))k ·

(
1 + 2−2r+3)k

. (7)

Note that by the definitions of P and f ,

∥f∥1 = E
x′∈RX

[f(x′)] = ⟨P,Px|s⟩ ≤ ⟨Px|v,Px|s⟩.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),
and at most one edge e(a,−1) ∈ Γout(v), labeled by (a, −1), and we have

Pr(e(a,1))
Pr(v) + Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (7),∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k < ⟨Px|v,Px|s⟩k · E

a∈RA

[
(1 + 2ε · t(a))k

]
·
(
1 + 2−2r+3)k

. (8)

It remains to bound

E
a∈RA

[
(1 + 2ε · t(a))k

]
, (9)

using the properties of the matrix M and the bounds on the ℓ2 versus ℓ1 norms of f .
By Equation (5), the assumption that ∥f∥1 ≥ 2−2n, Equation (1) and Equation (2), we

get

∥f∥2
∥f∥1

≤ 23ℓ+2r+2 ≤ 2ℓ′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| rows a ∈ A

with t(a) = |⟨Ma,f⟩|
∥f∥1

≥ 2−r′ . We bound the expectation in Equation (9), by splitting the
expectation into two sums

E
a∈RA

[
(1 + 2ε · t(a))k

]
= 1

|A| ·
∑

a : t(a)≤2−r′

(1 + 2ε · t(a))k + 1
|A| ·

∑
a : t(a)>2−r′

(1 + 2ε · t(a))k
.

(10)

We bound the first sum in Equation (10) by (1 + 2ε · 2−r′)k. As for the second sum in
Equation (10), we know that it is a sum of at most 2−k′ · |A| elements, and since for every
a ∈ A, we have t(a) ≤ 1, we have

1
|A| ·

∑
a : t(a)>2−r′

(1 + 2ε · t(a))k ≤ 2−k′
· (1 + 2ε)k ≤ 2−k′

e2εk ≤ 2−2r

(where in the last inequality we used Equations (1) and (2)). Overall, using Equation (1)
again, we get

E
a∈RA

[
(1 + 2ε · t(a))k

]
≤ (1 + 2ε · 2−r′

)k + 2−2r ≤ (1 + 2−2r)k+1. (11)

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:15

Substituting Equation (11) into Equation (8), we obtain∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k < ⟨Px|v,Px|s⟩k ·

(
1 + 2−2r

)k+1 ·
(
1 + 2−2r+3)k

< ⟨Px|v,Px|s⟩k ·
(
1 + 2−r

)k

(where the last inequality uses the assumption that r is sufficiently large). This completes
the proof of Claim 15. ◁

The following three claims use Claim 15 to quantify the progress over the layers and we
defer the proofs to Appendix A (proved as in [8]).

▷ Claim 16. For every i ∈ {1, . . . , m},

Z ′
i ≤ Zi−1 ·

(
1 + 2−r

)k +
(
2−2n+2)k

.

▷ Claim 17. For every i ∈ {1, . . . , m},

Zi ≤ Z ′
i.

▷ Claim 18. For every i ∈ {1, . . . , m},

Zi ≤ 24k+2r · 2−2k·n.

Proof of Lemma 6
We can now complete the proof of Lemma 6. Assume that s is in layer-i of B. By Claim 13,

Zi ≥ Pr(s) · ⟨Px|s,Px|s⟩k > Pr(s) ·
(
22ℓ · 2−2n

)k = Pr(s) · 22ℓ·k · 2−2k·n.

On the other hand, by Claim 18,

Zi ≤ 24k+2r · 2−2k·n.

Thus, using Equation (1) and Equation (2), we get

Pr(s) ≤ 24k+2r · 2−2ℓ·k ≤ 2 2k′
ε · 2− γ2 ln 2

3ε (k′ℓ′).

Recall that we assumed that the width of B is at most 2ck′ℓ′/ε for some constant c < ln 2/3,
and that the length of B is at most 2r. Recall that we fixed γ such that γ2(ln 2)/3 > c.
Taking a union bound over at most 2r · 2ck′ℓ′/ε ≤ 2k′ · 2ck′ℓ′/ε significant vertices of B, we
conclude that the probability that T reaches any significant vertex is at most 2−Ω(k′ℓ′/ε).
Since we assume that k′ and ℓ′ are sufficiently large, 2−Ω(k′ℓ′/ε) is certainly at most 2−k′ ,
which is at most 2−r. ◀

▶ Corollary 19. Let X, A be two finite sets. Let M : A × X → {−1, 1} be a matrix. Assume
that k, ℓ, r ∈ N are large enough and such that any submatrix of M of at least 2−k · |A| rows
and at least 2−ℓ · |X| columns, has a bias of at most 2−r.

Then, any learning algorithm for the learning problem corresponding to M with error
parameter ε, requires either a memory of size at least Ω

(
k·ℓ
ε

)
, or at least 2Ω(r) samples. The

result holds even if the learner has an exponentially small success probability (of 2−Ω(r)).

Corollary follows from the equivalence between L2-Extractors and L∞-Extractors (up to
constant factors) observed in [8].

APPROX/RANDOM 2021

60:16 Memory-Sample Lower Bounds for Learning Parity with Noise

References
1 Michael Alekhnovich. More on average case vs approximation complexity. In 44th Symposium

on Foundations of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA,
Proceedings, pages 298–307. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238204.

2 Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-space tradeoffs for learning finite
functions from random evaluations, with applications to polynomials. In Conference On
Learning Theory, pages 843–856, 2018.

3 Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM, 50(4):506–519, 2003. doi:10.1145/792538.792543.

4 Yuval Dagan, Gil Kur, and Ohad Shamir. Space lower bounds for linear prediction in the
streaming model. In Conference on Learning Theory, pages 929–954. PMLR, 2019.

5 Yuval Dagan and Ohad Shamir. Detecting correlations with little memory and communication.
In Conference On Learning Theory, pages 1145–1198, 2018.

6 Wei Dai, Stefano Tessaro, and Xihu Zhang. Super-linear time-memory trade-offs for symmetric
encryption. Cryptology ePrint Archive, Report 2020/663, 2020. URL: https://eprint.iacr.
org/2020/663.

7 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On
agnostic learning of parities, monomials, and halfspaces. SIAM J. Comput., 39(2):606–645,
2009. doi:10.1137/070684914.

8 Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for
learning. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 990–1002. ACM, 2018.

9 Sumegha Garg, Ran Raz, and Avishay Tal. Time-space lower bounds for two-pass learning. In
34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

10 Uma Girish, Ran Raz, and Wei Zhan. Quantum logspace algorithm for powering matrices
with bounded norm. arXiv preprint arXiv:2006.04880, 2020.

11 Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded storage model. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
500–524. Springer, 2019.

12 Jiaxin Guan and Mark Zhandry. Disappearing cryptography in the bounded storage model.
IACR Cryptol. ePrint Arch., 2021:406, 2021.

13 Joseph Jaeger and Stefano Tessaro. Tight time-memory trade-offs for symmetric encryption. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 467–497. Springer, 2019.

14 Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio. Agnostically
learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008. doi:10.1137/060649057.

15 Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998. doi:10.1145/293347.293351.

16 Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1067–1080. ACM, 2017.

17 Dana Moshkovitz and Michal Moshkovitz. Mixing implies lower bounds for space bounded
learning. In Conference on Learning Theory, pages 1516–1566. PMLR, 2017.

18 Dana Moshkovitz and Michal Moshkovitz. Entropy samplers and strong generic lower bounds
for space bounded learning. In 9th Innovations in Theoretical Computer Science Conference
(ITCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

19 Michal Moshkovitz and Naftali Tishby. Mixing complexity and its applications to neural
networks. arXiv preprint arXiv:1703.00729, 2017.

20 Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
266–275. IEEE, 2016.

https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1145/792538.792543
https://eprint.iacr.org/2020/663
https://eprint.iacr.org/2020/663
https://doi.org/10.1137/070684914
https://doi.org/10.1137/060649057
https://doi.org/10.1145/293347.293351

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:17

21 Ran Raz. A time-space lower bound for a large class of learning problems. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 732–742, 2017.

22 Ohad Shamir. Fundamental limits of online and distributed algorithms for statistical learning
and estimation. Advances in Neural Information Processing Systems, 27:163–171, 2014.

23 Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear
regression with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 890–901, 2019.

24 Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Conference on Learning Theory, pages 1490–1516. PMLR, 2016.

25 Stefano Tessaro and Aishwarya Thiruvengadam. Provable time-memory trade-offs: symmetric
cryptography against memory-bounded adversaries. In Theory of Cryptography Conference,
pages 3–32. Springer, 2018.

26 Gregory Valiant and Paul Valiant. Information theoretically secure databases. arXiv preprint
arXiv:1605.02646, 2016.

A Omitted Proofs from Section 4

Proof of Claim 7. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=

∑
x′∈X

[
Px|v(x′)2]

= 2n · E
x′∈RX

[
Px|v(x′)2]

≤ 22ℓ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 22r · 22ℓ · 2−n

]
≤ 2−2r.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev

]
= Pr

x

[(
Px|v(x) > 22r · 22ℓ · 2−n

) ∣∣ Ev

]
≤ 2−2r. ◀

Proof of Claim 8. Since v is not significant,
∥∥Px|v

∥∥
2 ≤ 2ℓ · 2−n. Since Px|v is a distribution,∥∥Px|v

∥∥
1 = 2−n. Thus,∥∥Px|v

∥∥
2∥∥Px|v

∥∥
1

≤ 2ℓ ≤ 2ℓ′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| elements α ∈ A

with∣∣⟨Mα,Px|v⟩
∣∣ ≥ 2−r′

·
∥∥Px|v

∥∥
1 = 2−r′

· 2−n

The claim follows since ai+1 is uniformly distributed over A and since k′ ≥ 2r (Equation (1)).
◀

Proof of Claim 9. Since v is not significant,

E
x′∈RX

[
Px|v(x′)2]

≤ 22ℓ · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | Ev] = Px|v(x′) ≤ 2ℓ · 2−n/2 ≤ 2−r

since r ≤ n/2 − ℓ (Equation (3)). In particular, Pr[x̃(v) = x | Ev] ≤ 2−r. ◀

APPROX/RANDOM 2021

60:18 Memory-Sample Lower Bounds for Learning Parity with Noise

Proof of Claim 11. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0.
Since Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Thus,∥∥Px|v

∥∥
2 ≤ 2ℓ · 2−n.

By Claim 10, for any x′ ∈ X,

Px|e(x′) =

0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r > 1
2 .

(where the last inequality holds because we assume that k′, ℓ′, r′ and thus r are sufficiently
large.) Thus,

∥∥Px|e
∥∥

2 ≤ c−1
e · (1 + 2ε)

∥∥Px|v
∥∥

2 ≤ 4 · 2ℓ · 2−n. ◀

Proof of Claim 12. Let Γin(s) be the set of all edges e of B, that are going into s, such that
Pr(e) > 0. Note that∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′)2.

Summing over x′ ∈ X, we obtain,∥∥Px|s
∥∥2

2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e
∥∥2

2 .

By Claim 11, for any e ∈ Γin(s),∥∥Px|e
∥∥2

2 ≤
(
4 · 2ℓ · 2−n

)2
.

Hence,
∥∥Px|s

∥∥2
2 ≤

(
4 · 2ℓ · 2−n

)2
. ◀

Proof of Claim 16. By Claim 15,

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k =
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k

≤
∑

v∈Li−1

Pr(v) ·
(

⟨Px|v,Px|s⟩k ·
(
1 + 2−r

)k +
(
2−2n+2)k

)
= Zi−1 ·

(
1 + 2−r

)k +
∑

v∈Li−1

Pr(v) ·
(
2−2n+2)k

≤ Zi−1 ·
(
1 + 2−r

)k +
(
2−2n+2)k

◀

S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:19

Proof of Claim 17. For any v ∈ Li, let Γin(v) be the set of all edges e ∈ Γi, that are going
into v. Note that∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ Li and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x′),

and hence

⟨Px|v,Px|s⟩ =
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩.

Thus, by Jensen’s inequality,

⟨Px|v,Px|s⟩k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k.

Summing over all v ∈ Li, we get

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k

≤
∑
v∈Li

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k

=
∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k

= Z ′
i. ◀

Proof of Claim 18. By Claim 14, Z0 = (2−2n)k. By Claim 16 and Claim 17, for every
i ∈ {1, . . . , m},

Zi ≤ Zi−1 ·
(
1 + 2−r

)k +
(
2−2n+2)k

.

Hence, for every i ∈ {1, . . . , m},

Zi ≤
(
2−2n+2)k · (m + 1) ·

(
1 + 2−r

)km
.

Since m = 2r,

Zi ≤ 2−2k·n · 22k · (2r + 1) · ek ≤ 2−2k·n · 24k+2r. ◀

APPROX/RANDOM 2021

Testing Hamiltonicity (And Other Problems) in
Minor-Free Graphs
Reut Levi #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Nadav Shoshan #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Abstract
In this paper we provide sub-linear algorithms for several fundamental problems in the setting in
which the input graph excludes a fixed minor, i.e., is a minor-free graph. In particular, we provide
the following algorithms for minor-free unbounded degree graphs.
1. A tester for Hamiltonicity with two-sided error with poly(1/ϵ)-query complexity, where ϵ is the

proximity parameter.
2. A local algorithm, as defined by Rubinfeld et al. (ICS 2011), for constructing a spanning

subgraph with almost minimum weight, specifically, at most a factor (1 + ϵ) of the optimum,
with poly(1/ϵ)-query complexity.

Both our algorithms use partition oracles, a tool introduced by Hassidim et al. (FOCS 2009), which
are oracles that provide access to a partition of the graph such that the number of cut-edges is
small and each part of the partition is small. The polynomial dependence in 1/ϵ of our algorithms
is achieved by combining the recent poly(d/ϵ)-query partition oracle of Kumar-Seshadhri-Stolman
(ECCC 2021) for minor-free graphs with degree bounded by d.

For bounded degree minor-free graphs we introduce the notion of covering partition oracles
which is a relaxed version of partition oracles and design a poly(d/ϵ)-time covering partition oracle
for this family of graphs. Using our covering partition oracle we provide the same results as above
(except that the tester for Hamiltonicity has one-sided error) for minor-free bounded degree graphs,
as well as showing that any property which is monotone and additive (e.g. bipartiteness) can be
tested in minor-free graphs by making poly(d/ϵ)-queries.

The benefit of using the covering partition oracle rather than the partition oracle in our algorithms
is its simplicity and an improved polynomial dependence in 1/ϵ in the obtained query complexity.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Property Testing, Hamiltonian path, minor free graphs, sparse spanning
sub-graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.61

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2102.11728

Funding Reut Levi: This research was supported by the Israel Science Foundation grant No. 1867/20.

Acknowledgements We would like to thank Dana Ron and Oded Goldreich for helpful comments.

1 Introduction

The family of minor-free graphs has been at the focus of attention ever since the theory of
graph minors began many decades ago and has been drawing much attention in the field of
computer science as well. Aside from being an important family that includes natural families
of graphs such as planar graphs, it also has the appeal that some hard graph problems
become easy when restricted to this family of graphs (e.g. Graph Isomorphism [15]).

© Reut Levi and Nadav Shoshan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 61; pp. 61:1–61:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reut.levi1@idc.ac.il
https://orcid.org/0000-0003-3167-1766
mailto:nadav.shoshan1@post.idc.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.61
https://arxiv.org/abs/2102.11728
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

Minor-free graphs have been extensively studied also in the realm of sublinear algorithms
and in particular property testing (see e.g. [4, 5, 29, 21, 17, 3, 10, 18, 7, 6, 19, 20]). In
particular, in the general-graph model [30] where there is much less body of work, compared
to the bounded-degree graph model [11] and the dense graph model [13], these graphs draw
attention as they allow for better characterization compared to general unbounded degree
graphs. A notable example is the result by Czumaj and Sohler [7] who recently gave a full
characterization of properties that can be tested with one-sided error with query complexity
that is independent of the size of the graph (i.e. testable). They showed that the latter is
possible if and only if testing the property can be reduced to testing for a finite family of
finite forbidden subgraphs. This raises the question regarding the testability of properties
that can not be reduced to testing for a finite family of finite forbidden subgraphs when
we allow the tester to have two-sided error. A well known example of such property is the
property of being Hamiltonian.

Another question, which is also relevant for bounded degree graphs, is whether we can
obtain algorithms with query complexity which is only polynomial in 1/ϵ where ϵ is the
proximity parameter. Newman and Sohler [29] showed that any property of bounded degree
hyperfinite graphs and in particular minor-free graphs is testable. Their algorithm learns the
graph up to modifications of ϵdn edges with query complexity which is super-polynomial
in d and ϵ. While this approach works for all properties of graphs, more efficient testers
can be obtained for specific properties of graphs. In particular, properties of graphs which
are monotone and additive can be tested by using O(d/ϵ) queries to a partition oracle, a
tool introduced by Hassidim et al. [14]. Thus, an implication of the recent poly(d/ϵ)-query
partition oracle of Kumar-Seshadhri-Stolman [20] is that monotone and additive properties
are testable with poly(d/ϵ)-queries. Thus the question of designing testers with poly(1/ϵ)-
queries remains open for properties which are not monotone or not additive, as the property
of being Hamiltonian.

An additional motivation for studying Hamiltonicity in minor-free graphs is, as shown by
Yoshida-Ito [33] and Goldreich [12], that it can not be tested with sublinear query complexity
in general bounded degree graphs.

1.1 Our Results

All our algorithms work under the promise that the input graph is minor-free.

1.1.1 Testing Hamiltonicity

In the general graph model, we provide an algorithm for approximating the distance from
Hamiltonicity up to an additive error of ϵn where n denotes the number of vertices in
the input graph with query complexity which is poly(1/ϵ) and time complexity which is
exponential in poly(1/ϵ). This also implies a tolerant tester with two-sided error for testing
Hamiltonicity with the same complexities.

In the bounded-degree graph model, we provide an algorithm for testing Hamiltonicity
with one-sided error with query complexity which is poly(d/ϵ), where d denotes the bound
on the degree, and time complexity which is exponential in poly(d/ϵ).

R. Levi and N. Shoshan 61:3

1.1.2 Local algorithm for constructing spanning subgraphs of almost
optimum weight

In the general graph model, we provide a local algorithm for constructing a sparse spanning
subgraph of weight at most (1 + ϵ)OPT where OPT denotes the weight of the MST of
the input graph. The algorithm receives as parameters ϵ and an upper bound, W , on the
maximum weight of an edge in the graph. Moreover, the number of edges of the output
graph that do not belong to the MST of the input graph1 is O(ϵn/W). The query complexity
and time complexity of the algorithm is poly(W/ϵ). We note that in addition to incidence
queries our algorithm also use random neighbour queries.

In the bounded-degree graph model, we provide a simpler algorithm with the same
guarantees whose query complexity and time complexity is poly(dW/ϵ), where the polynomial
of the complexity is somewhat improved compared to the algorithm for graphs of unbounded
degree.

1.1.3 Testing monotone and additive properties of graphs

We prove that any property which is monotone (closed under removal of edges and vertices)
and additive (closed under the disjoint union of graphs) can be tested in the bounded degree
model with poly(d/ϵ)-query complexity under the promise that the input graph is minor-free.
The same result was recently shown independently by Kumar-Seshadhri-Stolman [20]. While
in [20] they use partition oracles in the proof, we use a relaxed notion of partition oracles
(which we introduce in this paper) and consequently obtain a somewhat improved polynomial
dependence in the query complexity and a simpler algorithm.

1.2 Our algorithms for minor-free unbounded degree graphs

1.2.1 Testing Hamiltonicity

We begin by proving that the distance from Hamiltonicity of any graph G = (V, E) equals
the size of the minimum path cover of G minus 1, where a path cover of a graph is a set of
disjoint paths such that each v ∈ V belongs to exactly one path (see Claim 11).

We then prove that if we remove O(ϵ|V |) edges from G as well as edges that are incident
to O(ϵ|V |) vertices in G then the distance from Hamiltonicity may be increased by (at most)
O(ϵ|V |) (see Claims 12 and 13).

Thus, in order to obtain an approximation, with an additive error of O(ϵ|V |), to the size
of the minimum path cover of G (and hence to its distance from Hamiltonicity) it suffices to
obtain such approximation to the size of the minimum path cover of Ĝ where Ĝ is defined
as follows. We obtain Ĝ from G by first removing the edges incident to vertices of high
degree, which we refer to as heavy vertices, then running the partition oracle on the resulting
graph and then removing the cut-edges of the partition. An approximation to the size of the
minimum path cover of Ĝ can be obtained by sampling vertices u.a.r. from V and computing
the size of the minimum path cover of their connected component in Ĝ.

Since we obtain an approximation algorithm for the distance from being Hamiltonian we
also obtain a tolerant tester with two-sided error for this property.

1 Without loss of generality we assume that the weights of the edges are distinct and hence that there is
a unique MST.

APPROX/RANDOM 2021

61:4 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

1.2.2 Constructing spanning subgraphs with almost optimum weight
We present our algorithm as a global algorithm and prove its correctness. Thereafter, we
describe the local implementation of this global algorithm.

Our global algorithm proceeds as follows. In the first step, the algorithm adds all the
edges between heavy vertices to the edges of the constructed spanning subgraph, E′, where a
heavy vertex is defined to be a vertex of degree greater than some threshold.

It then runs the partition oracle on the graph induced on the vertices that are not heavy,
i.e., light vertices and adds all the cut-edges of the partition to E′.

In the second step, each part of the partition is partitioned into subparts by running a
controlled variant of Borůvka’s algorithm for finding an MST on each part independently.
The edges spanning the sub-parts are then added to E′. Then, for each each sub-part, the
algorithm adds a single edge to a single heavy vertex which is adjacent to the sub-part
(assuming there is one).

We prove that all the edges added in the second step belong to the minimum spanning
forest (MSF) of a graph which is O(ϵ/WG)-close to G, where WG denotes the maximum
weight of an edge in G. Additionally we prove that if we remove O(ϵ|V |/WG) edges from G,
then the weight of the minimum spanning forest (MSF) may increase by (at most) O(ϵ|V |).

The second step partitions the vertices of the graph into clusters and isolated parts, where
isolated parts are parts that are not adjacent to any heavy vertex, and the clusters are
defined as follows. Each cluster contains a single heavy vertex, which we refer to a the center
of the cluster and sub-parts that are adjacent in the constructed graph to the center (each
sub-part is adjacent to at most a single center).

In the third step the algorithm adds edges to E′ between pairs of cluster that are adjacent
to each other. For every edge {u, v} which is adjacent to two different clusters, A and B, the
algorithm runs another algorithm that samples edges incident to A and B and returns the
lightest one. The edge {u, v} is added to E′ if it is lighter than the returned edge.

We note that the algorithm that samples edges incident to a pair of specific clusters, A

and B may not sample sufficient number of edges or may not return any edge (this is likely
when the degree of both centers is large compared to the number of edges which are incident
to both A and B). In the analysis which is adapted from [28], we show that nonetheless,
w.h.p. the number of edges added in the third step is sufficiently small. The main idea
is to consider the graph in which each cluster is contracted into a single vertex and then
to analyse the sampling algorithm with respect to this graph which is also minor-free and
hence has bounded arboricity 2. The bounded arboricity of the contracted graph ensures
that w.h.p. the sampling algorithm samples enough edges which are incident to A and B as
long as the cut between these clusters is sufficiently large. On the other hand, if this is not
the case then we show that we can afford to add to E′ all the edges in the cut.

The local implementation of the above-mention global algorithm is quite straightforward
and is presented in Section B.7.

1.3 Our algorithms for minor-free bounded degree graphs

1.3.1 Covering partition oracles
We introduce a relaxed version of partition oracles which we call covering partition oracles
and design such an oracle for minor-free graphs with query complexity poly(d/ϵ). Given
query access to a graph G = (V, E) and parameter ϵ a partition oracle provides access to

2 The arboricity of a graph is the minimum number of forests into which its edges can be partitioned.

R. Levi and N. Shoshan 61:5

a partition of V , P, such that the size of each part of P is small (usually poly(1/ϵ)), the
number of cut-edges of P is at most ϵ|V | (w.h.p.) and P is determined only by G and the
randomness of the oracle. On query v ∈ V the oracle returns the part of v in P.

A covering partition oracle has the same guarantees only that the requirement to return
the part of v on query v ∈ V is relaxed as follows. On query v ∈ V the oracle is required to
return a (small) subset S such that S contains the part of v in P.

Our covering partition oracle builds on a central theorem from the recent work of [19].
The theorem states that for any minor-free bounded degree graph there exists a partition
of the graph into small parts with small number of cut-edges such that for each part of
the partition, P , there exists a vertex, s ∈ V , such that if we preform sufficiently many
(polynomial in 1/ϵ) lazy random walks from s then w.h.p. we encounter all the vertices in P .
Building on this theorem we prove that the simple algorithm that on query v ∈ V performs a
set of lazy random walks from v (of different lengths) and then performs a set of lazy random
walks from each endpoint of these walks is a covering partition oracle.

The algorithms described in Subsections 1.3.2-1.3.4, use our covering partition oracle.
We note that since a partition oracle is a special case of a covering partition oracle

(with stronger guarantees) all our algorithms for bounded degree graphs also work when one
replaces calls to the covering partition oracle by calls to a partition oracle.

As mentioned above, the use of covering partition oracles has two benefits. The first
benefit is that the implementation of the covering partition oracles is much simpler and
the second benefit is that the query complexity per oracle query is better (though both our
covering partition oracle and the partition oracle of [20] have query complexity which is
poly(d/ϵ)), which consequently affects the query complexity of the algorithms.

Another conceptual benefit in introducing covering partition oracles is that for some
families of graphs the gap in the query complexity can be more dramatic. To give a concrete
example consider (ϵ, ρ(ϵ))-hyperfinite graphs 3. It is straightforward to obtain a covering
partition oracle with query complexity O(dρ(ϵ)) for this family of graphs while the best known
partition oracle for this family has query complexity which is O(2dρ(cϵ3)) [14], where c is some
constant. We note that all our algorithms for bounded degree graphs work for any family of
graphs for which there is a covering partition oracle (including (ϵ, ρ(ϵ))-hyperfinite graphs).

1.3.2 Testing Hamiltonicity
In addition to relating the distance from Hamiltonicity of any graph G = (V, E) to the size
of its minimum path cover, as mentioned above, we also prove that given a subset S ⊂ V ,
if the size of the minimum path cover of G[S] is greater than the number of edges in the
cut of S and V \ S then G is not Hamiltonian. Using this claim it becomes straightforward
to design a one-sided error tester for Hamiltonicity that uses O(1/ϵ) queries to a partition
oracle. We prove that it suffices to use the same number of queries to the covering partition
oracle. We note that in this case there is a trade-off between the query complexity and time
complexity. In particular while using the covering partition oracle rather than the partition
oracle results in a better polynomial dependence of the query complexity it also results in a
worse polynomial dependence in the exponent of the running time (in both cases the running
time is exponential in ϵ−1 since we find the size of the minimum path cover by brute force 4).

3 Let ρ be a function from R+ to R+. A graph G = (V, E) is (ϵ, ρ(ϵ))-hyperfinite if for every ϵ > 0 it is
possible to remove ϵ|V | edges of the graph such that the remaining graph has connected components of
size at most ρ(ϵ).

4 Finding the minimum path cover is APX-hard since (as noted by Chandra Chekuri at stackex-
change.com [16]) we can reduce the TSP-path problem in metrics with distances 1 and 2 to it. The
latter problem is APX-hard [9]).

APPROX/RANDOM 2021

61:6 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

1.3.3 Constructing spanning subgraphs with almost optimum weight
As mentioned-above, given a weighted graph G = (V, E, w) if we remove O(ϵ|V |/WG) edges
from G then the weight of the MSF of the resulting graph may increase by at most O(ϵ|V |)
compared to the weight of G. Thus given access to a partition of V such that the subgraph
induced on each part is connected and the number of cut-edges is O(ϵ|V |/WG) we can
proceed as follows. For each part of the partition we add to E′ the edges of the MST of
the subgraph induced on this part. In addition, we add to E′ the cut-edges of the partition.
Consequently, the total weight of the edges in E′ is greater than the weight of the MST of G

by at most O(ϵ|V |/WG). Hence, if on query {u, v} we query the partition oracle on u and v

then it is possible to determine whether {u, v} ∈ E′ where E′ is constructed as described
above with respect to the partition of the oracle. We prove that the same approach works
when we preform the same queries to the covering partition oracle.

1.3.4 Testing monotone and additive properties
One of the main applications of the partition oracle is a general reduction for testing monotone
and additive properties of bounded degree minor-free graphs. The idea of the reduction
(from testing to the partition oracle) is to sample O(d/ϵ) vertices and for each vertex v in the
sample to test whether the subgraph induced on the part of v has the properties. The tester
accepts iff all sampled parts pass the test. We prove that the same reduction works when we
replace the queries to the partition oracle by queries to the covering partition oracle.

1.4 Organization
Due to space limitations, an extended section on related work as well as omitted proofs and
details of Section 3 appear in the appendix.

2 Preliminaries

In this section we introduce several definitions and some known results that will be used in
the following sections. Unless stated explicitly otherwise, we consider simple graphs, that is,
with no self-loops and no parallel edges.

Let G = (V, E) be a graph over n vertices. Each vertex v ∈ V has an id, id(v), where
there is a full order over the ids.

The total order over the vertices induces a total order (ranking) ρ over the edges of
the graph in the following straightforward manner: ρ((u, v)) < ρ((u′, v)) if and only if
min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′} (recall
that V = [n]). Thus, given a weighted graph, we may assume without loss of the generality
that the weights of the edges are unique by breaking ties according to the order over the edges.

For a subset of vertices X, we let G[X] denote the subgraph of G induced by X.
When we consider bounded degree graphs, we consider the bounded-degree graph

model [11]. The graphs we consider have a known degree bound d, and we assume we
have query access to their incidence-lists representation. Namely, for any vertex v and index
1 ≤ i ≤ d it is possible to obtain the ith neighbor of v (where if v has less than i neighbors,
then a special symbol is returned). If the graph is edge-weighted, then the weight of the
edge is returned as well. When we consider graphs with unbounded degree we consider the
general graph model [30] equipped with an additional type of query: random neighbor query.
Namely, when we query any given vertex v a random neighbor of v is returned 5.

5 We note that we do not use the random neighbor query in our tester for Hamiltonicity.

R. Levi and N. Shoshan 61:7

For a graph G = (V, E) and two sets of vertices V1, V2 ⊆ V , we let EG(V1, V2) denote
the set of edges in G with one endpoint in V1 and one endpoint in V2. That is E(V1, V2) def=
{(v1, v2) ∈ E : v1 ∈ V1, v2 ∈ V2}. If G is clear from the context we may omit it from the
notation.

A tester with two-sided error for a property P receives a parameter ϵ and query access to
a graph G = (V, E) and has the following guarantees. If G ∈ P then the tester accepts with
probability at least 2/3. If G is ϵ-far 6 from P then the tester rejects with probability at
least 2/3 . A tester with one-sided error accepts G ∈ P with probability 1.

2.1 Partition oracles and covering partition oracles
▶ Definition 1. For ϵ ∈ (0, 1], k ≥ 1 and a graph G = (V, E), we say that a partition
P = (V1, . . . , Vt) of V is an (ϵ, k)-partition (w.r.t. G), if the following conditions hold:
1. For every 1 ≤ i ≤ t it holds that |Vi| ≤ k;
2. For every 1 ≤ i ≤ t the subgraph induced by Vi in G is connected;
3. The total number of edges whose endpoints are in different parts of the partition is at

most ϵ|V | (that is, |{(vi, vj) ∈ E : vi ∈ Vj , vj ∈ Vj , i ̸= j}| ≤ ϵ|V |).

Let G = (V, E) be a graph and let P be a partition of V . We denote by gP the function
from v ∈ V to 2V (the set of all subsets of V), that on input v ∈ V , returns the subset Vℓ ∈ P
such that v ∈ Vℓ. We denote the set of cut-edges of P by EG

P = {(u, v) ∈ E : gP(v) ̸= gP(u)}
(we may omit G from the notation when it is clear from the context).

▶ Definition 2 ([14]). An oracle O is a partition oracle if, given query access to the incidence-
lists representation of a graph G = (V, E), the oracle O provides query access to a partition
P = (V1, . . . , Vt) of V , where P is determined by G and the internal randomness of the
oracle. Namely, on input v ∈ V , the oracle returns gP(v) and for any sequence of queries, O
answers consistently with the same P. An oracle O is an (ϵ, k)-partition oracle with respect
to a class of graphs C if the partition P it answers according to has the following properties.
1. For every Vℓ ∈ P , |Vℓ| ≤ k and the subgraph induced by Vℓ in G is connected.
2. If G belongs to C, then |EP | ≤ ϵ|V | with high constant probability, where the probability

is taken over the internal coin flips of O.
We consider the following relaxation of Definition 2.

▶ Definition 3. An oracle O is a covering partition oracle if, given query access to the
incidence-lists representation of a graph G = (V, E), the oracle O, on input v ∈ V , returns
a subset S ⊆ V such that gP(v) ⊆ S where P is a partition of V determined by G and the
internal randomness of the oracle. For any sequence of queries, O answers consistently
according to the same P. An oracle O is an (ϵ, k)-covering partition oracle with respect to a
class of graphs C if the following conditions hold.
1. On every query, the subgraph induced by the subset returned by O, S, is connected and

|S| ≤ k.
2. If G belongs to C, then w.h.p., |EP | ≤ ϵ|V |, where the probability is taken over the internal

coin flips of O.

6 In the bounded degree model, a graph G = (V, E) is said to be ϵ-far from a property P if for every
graph G′ = (V, E′) ∈ P of maximum degree d it holds that the symmetric difference between E and E′

has cardinality which is greater than ϵ · d|V |/2. In the general graph model, a graph G = (V, E) is said
to be ϵ-far from a property P if for every graph G′ = (V, E′) ∈ P it holds that the symmetric difference
between E and E′ has cardinality which is greater than ϵ · max{|E|, |E′|}.

APPROX/RANDOM 2021

61:8 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

2.2 Graph minors
Recall that a graph R is called a minor of a graph G if R is isomorphic to a graph that can be
obtained by zero or more edge contractions on a subgraph of G. A graph G is R-minor-free if
R is not a minor of G. We next quote two results that will play a central role in this work.

▶ Fact 4. Let R be a fixed graph with r edges. For every R-minor-free graph G = (V, E) it
holds that:
1. |E| ≤ r · |V |;
2. E can be partitioned into at most r forests.

Unless stated otherwise, in all our algorithms, we assume that the input graph is R-minor-
free graph where R is a fixed graph with r edges (we could receive r as a parameter but we
make this assumption for the sake of brevity).

2.3 Hamiltonian path and minimum path cover
▶ Definition 5 (Hamiltonian path). A Hamiltonian path in G = (V, E) is a path between two
vertices of G that visits each vertex of G exactly once.

▶ Definition 6 (minimum path cover). Given an undirected graph G = (V, E), a path cover is
a set of disjoint paths such that every vertex v ∈ V belongs to exactly one path. The minimum
path cover of G is a path cover of G having the least number of paths.

2.4 Local algorithms for constructing sparse spanning subgraphs
▶ Definition 7 ([28]). An algorithm A is a local sparse spanning graph (LSSG) algorithm
if, given n ≥ 1, ϵ > 0, and query access to the incidence-lists representation of a connected
graph G = (V, E) over n vertices, it provides oracle access to a subgraph G′ = (V, E′) of G

such that:
1. G′ is connected.
2. |E′| ≤ (1 + ϵ) · n with high constant probability 7, where E′ is determined by G and the

internal randomness of A.
More specifically, on query u, v ∈ E, A returns whether (u, v) ∈ E′, and for any sequence of
edges, A answers consistently with the same G′.

An algorithm A is an LSSG algorithm for a family of graphs C if the above conditions
hold, provided that the input graph G belongs to C.

▶ Definition 8 ([26]). A local algorithm for (1 + ϵ)-approximating the minimum weight
spanning graph of a graph G = (V, E, w) with positive weights and mine∈E w(e) ≥ 1, is a
local algorithm for (1 + ϵ)-sparse spanning graph of G = (V, E, w) for which the following
holds:

∑
e∈E′ w(e) ≤ (1 + ϵ)α, where α is the weight of a minimum weight spanning tree

of G.

For a graph G = (V, E, w) we define WG = maxe∈E w(e) (when it is clear from the context,
we sometimes omit the subscript G). We denote by MSF(G) the set of edges the minimum-
spanning-forest of G (as mentioned above we assume without loss of generality that all weights
are distinct and thus the minimum-spanning-forest is unique). For a connect weighted graph
we denote by MST(G) the set of edges the minimum-spanning-forest of G. For a subset of
edges S ⊆ E, we define w(S) def=

∑
e∈S w(e).

7 In some papers the required success probability is high, i.e. at least 1 − 1/Ω(n).

R. Levi and N. Shoshan 61:9

Our algorithms build on the following rules.
1. The cut rule states that for any cut of the graph (a cut is a partition of the vertices into

two sets), the lightest edge that crosses the cut must be in the MST.
2. The cycle rule states that if we have a cycle, the heaviest edge on that cycle cannot be in

the MST.

3 Algorithms for minor-free graphs with unbounded degrees

3.1 Testing Hamiltonicity
In this section we prove the following Theorem.

▶ Theorem 9. Given query access to an input graph G = (V, E) where G is a minor-free
unbounded degree graph and parameters ϵ and |V |, there exists an algorithm that accepts
G with probability at least 2/3 if G is ϵ/2-close to being Hamiltonian and rejects G with
probability at least 2/3 if G is ϵ-far from being Hamiltonian. The query complexity of the
algorithm is poly(1/ϵ) and the running time is exponential in poly(1/ϵ).

Theorem 9 is a direct consequence of following claim (which is proved in the sequel).

▷ Claim 10. Given an input graph G = (V, E) which is a minor-free graph, and parameter ϵ,
Algorithm 1 outputs a value x such that with high constant probability δHAM(G) − ϵ|V | ≤
x ≤ δHAM(G) + ϵ|V |.

We next state a couple of claims which we use in the proof of Claim 10.

▷ Claim 11. Let G = (V, E) be a graph and let k be the size of a minimum path cover of G.
Then the distance of G for being Hamiltonian, δHAM(G), is k − 1.

▷ Claim 12. Let G = (V, E) be a graph and let F ⊆ E be a subset of edges. Then

δHAM(G) ≤ δHAM(G′) ≤ δHAM(G) + |F |,

where G′ = (V, E′) and E′ = E \ F .

▷ Claim 13. Let G = (V, E) be a graph and let S ⊆ V be a subset of vertices. Then

δHAM(G) ≤ δHAM(G′) ≤ δHAM(G) + 2|S|,

where G′ = (V, E′) and E′ is the set of edges in E that are not incident to vertices in S.

Proof of Claim 10. Let P denote the partition for which the partition oracle executed in
Step 3(a)i answers according to. With high constant probability |EP | ≤ ϵ|V |

4 . Let E1 denote
this event.

Let G′ = (V, E′) be the graph such that E′ is the set of edges that are not incident to
vertices in H and are not in EP . By Claims 12 and 13,

δHAM(G) ≤ δHAM(G′) ≤ δHAM(G) + |EP | + 2|H|.

By Markov’s inequality and Fact 4, |H| ≤ ϵ|V |
4 . We prove that, conditioned that E1 occurs,

Algorithm 1 outputs with high constant probability a (1 + ϵ)-approximation to δHAM(G′).
For each v ∈ V define the random variable xv as defined in Step 3 of Algorithm 1. Let

T ∈ P be a part in P , then
∑

v∈T xv = k where k is the minimum path cover of G[T]. Thus∑
v∈V xv is the minimum path cover of G′. Since for every v ∈ V , xv ∈ (0, 1], it follows by

APPROX/RANDOM 2021

61:10 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

Algorithm 1 Approximating the distance to Hamiltonicity in minor-free, unbounded degree,
graphs.

Input: Oracle access to a minor-free, unbounded-degree, graph G = (V, E)
Output: (1 + ϵ)-approximation to δHAM(G)

1. Define ∆ def= 8c(h)/ϵ, H to be the set of vertices of degree greater than ∆, and L
def= V \H .

2. Sample a set S of y = Θ(1/ϵ2) vertices u.a.r.
3. For each vertex v ∈ S:

a. If v ∈ L then:
i. Query the partition oracle on v with parameter ϵ/4 w.r.t. the graph G[L].

Let Sv denote the returned set.
ii. Set xv = k/|Sv| where k is the size of the minimum path cover of G[Sv].

b. Otherwise, set xv = 1.
4. Output

∑
v∈S

xv

|S| · |V |.

the additive Chernoff’s bound that with high constant probability
∣∣∣∣∑

v∈S
xv

|S| −
∑

v∈V
xv|

|V |

∣∣∣∣ ≤ ϵ
4 .

Thus, with high constant probability,

δHAM(G) − ϵ|V |
4 ≤

∑
v∈S xv

|S|
· |V | ≤ δHAM(G) + ϵ|V |,

as desired. ◁

3.2 A Local algorithm for constructing a spanning subgraph with almost
optimum weight

In this section we prove the following theorem.

▶ Theorem 14. There exists a local algorithm for (1 + ϵ)-approximating the minimum weight
spanning graph for the family of unbounded degree minor-free graphs, with positive weights
and minimum weight which is at least 1. The query complexity and time complexity of the
algorithm is poly(W/ϵ) where W is an upper bound on the maximum weight. The algorithm
receives ϵ and W as parameters.

▷ Claim 15. Let G = (V, E, w) be a weighted graph and let G′ = (V, E′, w) be a graph
such that E′ = E \ S where S ⊆ E. Then w(MSF(G′)) ≤ w(MSF(G)) + |S|WG. Moreover,
|MSF(G′) \ MSF(G)| ≤ |S|.

We next describe our algorithm from a global point of view.

3.2.1 The global algorithm
Our global algorithm, which is listed in Algorithm 2, proceeds as follows. In Step 2, the
algorithm adds all the edges between heavy vertices to E′ where a heavy vertex is defined to
be a vertex of degree greater than ∆ def= 6r2W/ϵ.

It then runs the partition oracle on the graph induced on the light vertices, namely
vertices that are not heavy, and adds all the cut-edges of the partition, P, to E′ (Step 4).

R. Levi and N. Shoshan 61:11

Algorithm 2 Global algorithm for approximated-MST in unbounded-degree minor-free graphs.

Input: parameters ϵ and W and access to a minor-free graph G = (V, E).
Output: G = (V, E′) which is an approximated-MST of G.
1. Let H denote the set of all vertices of degree greater than ∆ and let L = V \ H.
2. Add all the edges of G[H] to E′.
3. Run the partition oracle with parameter ϵ/(6W) on all vertices in G[L]. Let P

denote the resulting partition.
4. Add all the edges in EP to E′.
5. For each S ∈ P :

a. Run Algorithm 4 and let F = (S, A) denote the returned graph.
b. Add the edges in A to E′.
c. For each connected component of F , C:

i. Add to E′ the lightest edges which is adjacent to C and H (if such edge
exists).

6. For each v ∈ H, define the cluster of v, denoted by C(v), to be subset of vertices
that contains v and all the vertices in sub-parts B such that there exists an edge
in E′ that is incident to v and a vertex in B. v is referred to as the center of the
cluster.

7. For each edges {u, v} ∈ E such that u and v belong to different clusters:
a. Run Algorithm 3 and add {u, v} to E′ if it is lighter than the edge returned by

the algorithm or if it returned null.
8. Return G′ = (V, E′).

Step 5 consists of two parts. In Sub-step 5a the algorithm runs Algorithm 4 on each part
in P. Algorithm 4 partitions the parts into connected sub-parts by preforming a controlled
variant of Borůvka’s algorithm. The edges added in Sub-step 5a are the edges that span the
sub-parts. In Sub-step 5c, for each sub-part, the algorithm adds a single edge to a single
vertex in H which is adjacent to the sub-part (assuming there is one).

This partitions the vertices of the graph into clusters and isolated parts, namely, parts
in P that are not adjacent to any vertex in H. Each cluster contains a single heavy vertex,
which we refer to as the center of the cluster and sub-parts that are connected by a single
edge to the center.

In Step 7 the algorithm adds edges to E′ between pairs of clusters that are adjacent to
each other in G′ = (V, E \ EP). For every edge {u, v} which is adjacent to two different
clusters, A and B, the algorithm runs Algorithm 3 which samples edges incident to A and B

and returns the lightest one. The edge {u, v} is added to E′ if it is lighter than the edge
returned by Algorithm 3 (or if the algorithm returned null).

We note that we do not have direct access to uniform samples of edges incident to a pair
of specific clusters, A and B. In fact, it could be the case that Algorithm 3 does not return
any edge (this is likely when the degree of both centers is large compared to the number of
edges which are incident to both A and B). By adapting the analysis in [28], we show that
nonetheless, w.h.p. the number of edges added in Step 7 is sufficiently small.

This concludes the description of the global algorithm. The proof of correctness as well
as the local implementation (Algorithm 8) are differed to the appendix.

APPROX/RANDOM 2021

61:12 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

Algorithm 3 Return sampled lightest edge.

Input: a ∈ H and b ∈ H.
Output: The sampled lightest edge between C(a) and C(b)
1. Initially A = ∅ and let x be an upper bound on the size of the parts returned by

the partition oracle when executed with parameter ϵ/(6W).
2. Sample a set, S, of Θ̃(W 2r3x∆/ϵ2) edges incident to a.
3. For each {a, u} ∈ S do:

a. If u ∈ H then add it to A if and only u = b.
b. Otherwise, find the part of u and the sub-parts of this part.
c. For each sub-part find its center.
d. Add to A all the edges between the sub-part of u and sub-parts that belong

to C(b).
4. Repeat Steps 2-3 where a and b switch roles.
5. Return the lightest edge in A (if A = ∅ then return null).

Algorithm 4 Partition into sub-parts.

Input: Access to the input graph G = (V, E) and a subset S ⊆ L such that G[S] is connected.
Output: A graph F = (S, A) such that each connected component of F is a sub-part of S

1. Initially every vertex in S is a in its own sub-part (a singleton) and A = ∅.
2. We say a sub-part B is active if the

lightest in EG(B, S \ B) is lighter than the lightest edge in EG(B, H) or if EG(B, H) = ∅.
3. While there are still active sub-parts do:

a. Each active sub-part B selects the lightest edge in EG(B, S \ B), denoted
by eB .

b. For each active sub-part, B, add eB to A

c. Update the new sub-parts to be the connected components of the graph
F = (S, A) (each connected component is a sub-part).

4. Return F .

4 Algorithms for minor-free graphs with bounded degrees

4.1 Covering partition oracle
In this section we prove the following theorem.

▶ Theorem 16. Algorithm 5 is an (ϵ, poly(ϵ−1))-covering-partition oracle for minor-free
bounded degree graphs with query complexity poly(ϵ−1). Specifically, the size of the sets
returned by the oracle is O(ϵ−640 log2(1/ϵ)).

We begin with a couple of definitions and lemmas from [20] that we build on.

▶ Definition 17 ([20]). Given x ∈ (R+)|V | and parameter ξ ∈ [0, 1), the ξ-clipped vector
cl(x, ξ) is the lexicographically least vector y optimizing the program: min ∥y∥2, subject to
∥x − y∥1 ≤ ξ and ∀v ∈ V, y(v) ≤ x(v).

▶ Lemma 18 ([20]). There is an absolute constant α such that the following holds. Let H

be a graph on r vertices. Suppose G is a H-minor-free graph. Then for any h ≥ αr3, there
exists at least (1 − 1/h)n vertices such that ∥cl(pv,ℓ, 3/8)∥2

2 ≥ h−7.

R. Levi and N. Shoshan 61:13

Given two parameters ϵ ∈ [0, 1/2], and a graph R on r ≥ 3 vertices. The length of the
random walk is ℓ = αr3 + ⌈ϵ−20⌉ where α is some absolute constant.

▶ Theorem 19 ([20]). Suppose there are at least (1−1/ℓ1/5)n vertices s s.t. ∥cl(ps,ℓ, 1/4)∥2
2 >

ℓ−c. Then, there is a partition {P1, P2, . . . , Pb} of the vertices s.t.:
1. For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,

∑
t<10ℓc+1 ps,t(v) ≥ 1/8ℓc+1.

2. The total number of edges crossing the partition is at most 8dn
√

cℓ−1/5 log ℓ.

▶ Corollary 20. Let G = (V, E) be a graph which is R-minor-free where R is a graph on r

vertices. There exists a partition {P1, P2, . . . , Pb} of the V such that:
1. For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,

∑
t<10ℓ8 ps,t(v) ≥ 1/8ℓ8.

2. The total number of edges crossing the partition is at most ϵdn.

Proof. We first note that 8dn
√

cℓ−1/5 log ℓ ≤ ϵdn for sufficiently large constant α.
By Lemma 18 there exist at least (1 − 1/ℓ)n vertices such that ∥cl(pv,ℓ, 3/8)∥2

2 ≥ ℓ−7.
Thus the corollary follows from the facts that (1−1/ℓ)n ≥ (1−1/ℓ1/5)n and ∥cl(ps,ℓ, 1/4)∥2

2 ≥
∥cl(ps,ℓ, 3/8)∥2

2. ◀

Algorithm 5 Covering-partition oracle.

Input: v ∈ V .
Output: A subset S which covers the part of v.
1. For every t < 10ℓ8 perform x

def= Θ(ℓ8 log ℓ) random walks of length t from v.
2. Let R denote the endpoints of the random walks preformed in the previous step.
3. For every vertex r ∈ R, for every t < 10ℓ8, perform x random walks of length t

from r.
4. Let S denote the set of all vertices encountered by the random walks performed in

Step 1 and Step 3.
5. Return S.

Proof of Theorem 16. Let G = (V, E) be a graph which is R-minor-free where R is a graph
over r vertices. Consider the partition of V , P = {P1, P2, . . . , Pb} as defined in Corollary 20
when we take the proximity parameter to be ϵ/2. We shall define another partition P ′ which
is a refinement of P such that Algorithm 5 returns for every v ∈ V , a subset S such that
P ′ ⊆ S where P ′ denotes the part of v in P ′. Thereafter, we shall prove that, w.h.p., the
number of cut-edges of P ′ is not much greater than the number of cut-edges of P.

For every v ∈ V , we say that v fails if Algorithm 5, when queried on v, does not return S

such that P v ⊆ S, where P v denotes the part of v in P. We define P ′ as follows. For every
v ∈ V , if there exists u ∈ P v such that u fails, then the part of v in P ′ is defined to be the
singleton {v} (namely, the entire part P v is partitioned into singletons in P ′). Otherwise, it
is defined to be P v.

We next show that w.h.p. the cut-edges of P ′ is at most ϵd|V |. For every v, the probability
that v fails is at most p

def= ℓ−c1 for an appropriate setting of x (with accordance to the
Theta-notation), where c1 is a constant that will be determined later. Let y = ℓc2 be an
upper bound on the number of vertices in the parts of P, where c2 is a constant. 8

8 Clearly, since for each Pi, there exists s ∈ V such that: ∀v ∈ Pi,
∑

t<10ℓ8 ps,t(v) ≥ 1/8ℓ8, it follows
that y ≤ 10ℓ8 · 8ℓ8.

APPROX/RANDOM 2021

61:14 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

For every v ∈ V , define the random variable Xv as follows. If v fails then Xv = |Pv|/y and
otherwise Xv = 0. Clearly y ·

∑
v∈V Xv ≥ |P ′| − |P|. Note that {Xv}v∈V are independent

random variables ranging in [0, 1].
For every v ∈ V , we define the random variable Yv as follows. With probability p,

Yv = 1 and otherwise Xv = 0. Clearly, Yv dominates Xv. Since {Yv}v∈V are identical
independent random variables, it follows by the multiplicative Chernoff’s bound that w.h.p.
y ·

∑
v∈V Yv ≤ y · |V | · 2p.

Since for sufficiently large c1, p ≤ ϵ
4y , it follows that w.h.p. |P ′| − |P| ≤ ϵ|V |/2. Thus, the

number of cut-edges in P ′ is greater than the number of cut-edges in P by at most ϵd|V |/2
(recall that the algorithm refines P by decomposing entire parts into singletons). ◀

4.2 Testing Hamiltonicity
In this section we prove the following theorem.

▶ Theorem 21. Given query access to an input graph G = (V, E) where G is a minor-free
bounded degree graph and a parameters ϵ and |V |, Algorithm 6 accepts G with probability
1 if G is Hamiltonian and rejects G with probability at least 2/3 if G is ϵ-far from being
Hamiltonian. The query complexity of the algorithm is poly(d/ϵ) and the running time is
exponential in poly(d/ϵ).

The correctness of Algorithm 6 builds on the following claim which, given S ⊂ V , bounds
the size of a minimum path cover in G[S] by the size of the cut of S.

▷ Claim 22. Let G = (V, E) be a graph and let S ⊂ V be a subset of vertices of G. Let k

be the size of a minimum path cover in G[S]. If k − 1 > |E(S, V \ S)|/2, then there is no
Hamiltonian path in G. Moreover, any Hamiltonian path in G must include at least 2(k − 1)
edges from E(S, V \ S).

Proof. Let G = (V, E) be a graph. Assume toward contradiction that there exists Hamiltonian
path in G, H = (v1, v2, . . . , v|V |) and a subset S ⊂ V such that k − 1 > |E(S, V \ S)|/2,
where k is the size of a minimum path cover in G[S]. Let P ′

S denote the set of all maximal
sub-paths of H in G[S]. In order to connect the sub-paths in P ′

S it must hold that H
leaves and returns to G[S] at least 2(P ′

S − 1) times, each time using a different edge. Thus,
|E(S, V \ S)| ≥ 2(|P ′

S | − 1). Since P ′
S is a path cover of G[S] it follows that |P ′

S | ≥ k, thus,
|E(S, V \ S)| ≥ 2(k − 1), in contradiction to our assumption. Hence the claim follows. ◁

We next list our algorithm and prove its correctness.

Proof of Theorem 21. By Claim 22, Algorithm 6 never rejects graphs which are Hamilto-
nian.

Let G be a minor-free bounded degree graph which is ϵ-far from being Hamiltonian. We
shall prove that Algorithm 6 rejects G with probability at least 2/3. Let P denote the
partition that the oracle, executed in Step 2a, answers according to. With high constant
probability, it holds that |EP | ≤ ϵ|V |

6 . Let E1 denote the event that this conditions holds.
Let F denote the set of parts, S, in P , such that E(S, V \ S) = ∅ or for which the size of

the minimum path cover of G[S] is greater |E(S, V \ S)|/2 + 1
Assume towards contradiction that E1 occurs and that |F| < ϵ|V |/(2x) where x is an

upper bound on the number of vertices in each part of P . We next show that δHAM(G) ≤ ϵ|V |
in contradiction to our assumption.

For each part S ∈ F we construct a path over S that visits each vertex in S exactly once
by adding at most |S| − 1 ≤ x − 1 edges to G.

R. Levi and N. Shoshan 61:15

Algorithm 6 Testing Hamiltonicity in minor-free, bounded degree, graphs.

Input: Oracle access to a minor-free, bounded-degree, graph G = (V, E)
Output: Tests if G is Hamiltonian with one-sided error.
1. Sample a subset, S ⊆ V , of y

def= Θ(x/ϵ) vertices, uniformly at random, where x is
an upper bound on the size of the sets returned by the covering partition oracle
when execute with parameter ϵ/6.

2. For each v ∈ S do:
a. Query the covering partition oracle on v with parameter ϵ/6, and let Sv denote

the returned set.
b. If E(Sv, V \ Sv) = ∅ then return REJECT.
c. For each subset T ⊆ Sv such that G[T] is connected, find the size of the

minimum path cover of T and return REJECT if it is greater than |E(T, V \ T)|/2 + 1.

For each part S ∈ P \F , let CS denote a minimum path cover of G[S]. We construct a path
over S that visits each vertex in S exactly once by adding at most |CS | − 1 ≤ |E(S, V \ S)|/2
edges to G.

We then connect all the paths induced on the different parts of P by adding at most
|P| = |F| + |P \ F| edges.

Overall the number of edges added is at most:

|F| · (x − 1) + |EP | + |F| + |P \ F| ≤ |F| · x + 3 |EP | < ϵ|V |,

where the first inequality follows from the fact that |P \ F| ≤ 2|EP | as for each S ∈ P \ F it
holds that E(S, V \ S) ∩ EP ̸= ∅ and each edge in EP is adjacent to at most 2 parts in P.

Thus, if δHAM(G) > ϵ|V | and E1 occurs then |F| ≥ ϵ|V |/(2x). Thus, the number of
vertices in parts that belong to F is at least ϵ|V |/(2x), which implies that G is rejected
w.h.p. either in Step 2b or in Step 2c of Algorithm 6, as desired. ◀

4.3 Local algorithms for constructing a spanning subgraph with almost
optimum weight

In this section we prove the following theorem.

▶ Theorem 23. Algorithm 7 is a local algorithm for (1 + ϵ)-approximating the minimum
weight spanning graph for minor-free graphs, with high constant success probability and time
and query complexity poly(W, d, ϵ−1).

Proof. Let P denote the partition that the oracle, executed in Step 1, answers according to.
With high constant probability, it holds that |EP | ≤ ϵ|V |/W . Let E1 denote the event that
this conditions holds. We claim that the number edges for which Algorithm 7 returns YES
for which both endpoints belong to the same part is at most |V | − 1. To see this consider a
part T ∈ P and a cycle C in G[T]. Let {u, v} denote the heaviest edge in the cycle. When
queried on u and v the covering partition oracle returns sets Su and Sv such that T ⊆ Su ∪Sv.
Thus the cycle C is contained in G[Su ∪ Sv]. Therefore the algorithm returns NO on {u, v}
in Step 3. By the cycle rule the number of edges in G[T] for which the algorithm returns
YES is exactly |T | − 1.

Hence conditioned on E1, the total number of edges for which Algorithm 7 returns YES
is at most (|V | − 1) + ϵ|V |/W .

APPROX/RANDOM 2021

61:16 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

By the cycle rule, any edge, e, for which Algorithm 7 returns NO does not belong to the
MST of G. Since the MST consists of exactly |V | − 1 edges, it follows that, conditioned on
E1, the number of edges that do not belong to the MST and for which Algorithm 7 returns
YES is at most ϵ|V |/W as desired. ◀

Algorithm 7 Local algorithm for approximated-MST in bounded-degree minor-free graphs.

Input: {u, v} ∈ E and parameters ϵ and W .
Output: YES if {u, v} belongs to the approximated-MST and NO otherwise.
1. Perform a query u and a query v to the covering-partition oracle with parameter

ϵ/W . Let Su and Sv denote the subsets returned by the oracle, respectively.
2. Find the subgraph induced on Su ∪ Sv, denoted by G[Su ∪ Sv].
3. Return NO if and only if {u, v} is the heaviest edge on any cycle in G[Su ∪ Sv].

4.4 Testing monotone and additive properties
▶ Theorem 24. Any property of graphs which is monotone (closed under removal of edges
and vertices) and additive (closed under the disjoint union of graphs) can be tested with
one-sided error in minor-free graphs with bounded degree d with query complexity which is
poly(d/ϵ) where ϵ is the proximity parameter.

Proof. Let T be a property of graphs which is monotone and additive. We propose the
following algorithm for testing P on an input graph G which is a minor-free graphs of degree
bounded by d. Sample a set of O(d/ϵ) vertices, S, uniformly at random and run the covering
partition oracle on each v ∈ S with parameter ϵ/2.

For each v ∈ S, let Sv denote the set returned by the covering partition oracle when
queried on v. Return ACCEPT iff for all v ∈ S, G[Sv] has the property T .

If G has the property T then since T is monotone it follows that for all v ∈ S, G[Sv] has
the property T as well.

Let P denote the partition that the covering partition oracle answers according to. With
high constant probability |EP | ≤ ϵ|V |/2. Let E1 denote the event that this condition holds.
If G is ϵ-far from having the property T then, conditioned on E1, G′ = (V, E \EP) is (ϵ/2)-far
from having the property T .

Thus we need to remove at least ϵ|V |/2 edges from G′ to obtain the property T . By the
additivity and monotonicity of T it follows that G′ has the property T if and only if for
every T ∈ P, G[T] has the property T . Thus, there are at least ϵ|V |/2 edges, and hence
at least ϵ|V |/(2d) vertices, that belong to parts, T ∈ P such that G[T] does not have the
property T . Hence, with high constant probability the algorithm sample one of these vertices
and rejects G. This concludes the proof. ◀

References
1 Isolde Adler and Noleen Köhler. An explicit construction of graphs of bounded degree that

are far from being hamiltonian, 2021. arXiv:2008.05801.
2 N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms.

In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1132–1139, 2012.

http://arxiv.org/abs/2008.05801

R. Levi and N. Shoshan 61:17

3 Jasine Babu, Areej Khoury, and Ilan Newman. Every property of outerplanar graphs is
testable. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages
21:1–21:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
APPROX-RANDOM.2016.21.

4 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 393–402.
ACM, 2008. doi:10.1145/1374376.1374433.

5 Artur Czumaj, Oded Goldreich, Dana Ron, C. Seshadhri, Asaf Shapira, and Christian Sohler.
Finding cycles and trees in sublinear time. Random Struct. Algorithms, 45(2):139–184, 2014.
doi:10.1002/rsa.20462.

6 Artur Czumaj, Morteza Monemizadeh, Krzysztof Onak, and Christian Sohler. Planar graphs:
Random walks and bipartiteness testing. Random Struct. Algorithms, 55(1):104–124, 2019.
doi:10.1002/rsa.20826.

7 Artur Czumaj and Christian Sohler. A characterization of graph properties testable for general
planar graphs with one-sided error (it’s all about forbidden subgraphs). In David Zuckerman,
editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 1525–1548. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00089.

8 Alan Edelman, Avinatan Hassidim, Huy N. Nguyen, and Krzysztof Onak. An efficient
partitioning oracle for bounded-treewidth graphs. In Leslie Ann Goldberg, Klaus Jansen,
R. Ravi, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 14th International Workshop, APPROX 2011,
and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011.
Proceedings, volume 6845 of Lecture Notes in Computer Science, pages 530–541. Springer,
2011. doi:10.1007/978-3-642-22935-0_45.

9 Lars Engebretsen and Marek Karpinski. Approximation hardness of TSP with bounded
metrics. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata,
Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July
8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 201–212.
Springer, 2001. doi:10.1007/3-540-48224-5_17.

10 Hendrik Fichtenberger, Reut Levi, Yadu Vasudev, and Maximilian Wötzel. A sublinear
tester for outerplanarity (and other forbidden minors) with one-sided error. In Ioannis
Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018, July
9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 52:1–52:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.52.

11 O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–
343, 2002. doi:10.1007/s00453-001-0078-7.

12 Oded Goldreich. On testing hamiltonicity in the bounded degree graph model. Electron.
Colloquium Comput. Complex., 27:109, 2020. URL: https://eccc.weizmann.ac.il/report/
2020/109.

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

14 A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for approx-
imation and testing. In Proceedings of the Fiftieth Annual Symposium on Foundations of
Computer Science (FOCS), pages 22–31, 2009. doi:10.1109/FOCS.2009.77.

15 John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of
Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research

APPROX/RANDOM 2021

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
https://doi.org/10.1145/1374376.1374433
https://doi.org/10.1002/rsa.20462
https://doi.org/10.1002/rsa.20826
https://doi.org/10.1109/FOCS.2019.00089
https://doi.org/10.1007/978-3-642-22935-0_45
https://doi.org/10.1007/3-540-48224-5_17
https://doi.org/10.4230/LIPIcs.ICALP.2018.52
https://doi.org/10.1007/s00453-001-0078-7
https://eccc.weizmann.ac.il/report/2020/109
https://eccc.weizmann.ac.il/report/2020/109
https://doi.org/10.1145/285055.285060
https://doi.org/10.1109/FOCS.2009.77

61:18 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 131–152.
Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_13.

16 Bell (https://cstheory.stackexchange.com/users/48832/bell). Hardness of approximation for
minimum path cover in an undirected graph? Theoretical Computer Science Stack Exchange.
URL:https://cstheory.stackexchange.com/q/40344 (version: 2018-03-08). arXiv:https://
cstheory.stackexchange.com/q/40344.

17 Hiro Ito. Every property is testable on a natural class of scale-free multigraphs. In Piotr
Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 51:1–51:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.51.

18 Akash Kumar, C. Seshadhri, and Andrew Stolman. Finding forbidden minors in sublinear time:
A nˆ1/2+o(1)-query one-sided tester for minor closed properties on bounded degree graphs. In
Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 509–520. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00055.

19 Akash Kumar, C. Seshadhri, and Andrew Stolman. Random walks and forbidden minors II:
a poly(d ϵ-1)-query tester for minor-closed properties of bounded degree graphs. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 559–567.
ACM, 2019. doi:10.1145/3313276.3316330.

20 Akash Kumar, C. Seshadhri, and Andrew Stolman. Random walks and forbidden minors III:
poly(d/?)-time partition oracles for minor-free graph classes. Electron. Colloquium Comput.
Complex., 28:8, 2021. URL: https://eccc.weizmann.ac.il/report/2021/008.

21 Mitsuru Kusumoto and Yuichi Yoshida. Testing forest-isomorphism in the adjacency list model.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer
Science, pages 763–774. Springer, 2014. doi:10.1007/978-3-662-43948-7_63.

22 C. Lenzen and R. Levi. A centralized local algorithm for the sparse spanning graph problem.
In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 87:1–87:14, 2018.

23 R. Levi and M. Medina. A (centralized) local guide. Bulletin of the EATCS, 122, 2017.
24 R. Levi, G. Moshkovitz, D. Ron, R. Rubinfeld, and A. Shapira. Constructing near spanning

trees with few local inspections. Random Struct. Algorithms, 50(2):183–200, 2017.
25 R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded

minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015.
26 R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. In Proceedings

of the Eighteenth International Workshop on Randomization and Computation (RANDOM),
pages 826–842, 2014.

27 R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. CoRR,
abs/1402.3609, 2014. URL: http://arxiv.org/abs/1402.3609.

28 Reut Levi, Dana Ron, and Ronitt Rubinfeld. Local algorithms for sparse spanning graphs.
Algorithmica, 82(4):747–786, 2020. doi:10.1007/s00453-019-00612-6.

29 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM J.
Comput., 42(3):1095–1112, 2013. doi:10.1137/120890946.

30 Michal Parnas and Dana Ron. Testing the diameter of graphs. Random Struct. Algorithms,
20(2):165–183, 2002. doi:10.1002/rsa.10013.

31 M. Parter, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee. Local computation algorithms
for spanners. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, pages 58:1–58:21, 2019.

32 R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In Proceedings
of The Second Symposium on Innovations in Computer Science (ICS), pages 223–238, 2011.

https://doi.org/10.1007/978-1-4684-2001-2_13
http://arxiv.org/abs/https://cstheory.stackexchange.com/q/40344
http://arxiv.org/abs/https://cstheory.stackexchange.com/q/40344
https://doi.org/10.4230/LIPIcs.ESA.2016.51
https://doi.org/10.1109/FOCS.2018.00055
https://doi.org/10.1145/3313276.3316330
https://eccc.weizmann.ac.il/report/2021/008
https://doi.org/10.1007/978-3-662-43948-7_63
http://arxiv.org/abs/1402.3609
https://doi.org/10.1007/s00453-019-00612-6
https://doi.org/10.1137/120890946
https://doi.org/10.1002/rsa.10013

R. Levi and N. Shoshan 61:19

33 Yuichi Yoshida and Hiro Ito. Query-number preserving reductions and linear lower bounds for
testing. IEICE Trans. Inf. Syst., 93-D(2):233–240, 2010. doi:10.1587/transinf.E93.D.233.

A Related Work

A.1 Partition Oracles
Partition oracles were introduced by Hassidim et al. [14] as a tool for approximating para-
meters and testing properties of minor-free bounded degree graphs. The query complexity of
the partition oracle of [14] is exponential in 1/ϵ. The query complexity was later improved
in [25] to be quasi-polynomial in 1/ϵ. Very recently, Kumar-Seshadhri-Stolman [20] obtained
a partition oracle with query complexity which is polynomial in 1/ϵ.

Edelman et al. [8] obtained a partition oracle with query complexity polynomial which is
in 1/ϵ for graphs with bounded treewidth.

A.2 Testing Hamiltonicity
Yoshida and Ito [33] and more recently Goldreich [12] proved a linear (in the number of
vertices) lower bound for testing Hamiltonicity (even with two-sided error) in bounded degree
graphs. Adler and Köhler [1] provided a deterministic construction of families of graphs for
which testing Hamiltonicity with one-sided error requires linear number of queries.

A.3 Testing properties of minor-free graphs
Newman and Sohler [29] showed that any property of hyperfinite graphs and in particular
minor-free graphs can be tested with query complexity that depends only on 1/ϵ and d

where d is a bound on the maximum degree. In fact, they proved a stronger claim, that a
minor-free graph can be learned up to a precision of ϵdn edges with such query complexity.
However, although the query complexity of their canonical tester is independent of n it is
super-polynomial in d/ϵ.

For minor-free graphs of unbounded degrees, Czumaj et al. [6] obtained an algorithm
whose query complexity depends only on 1/ϵ for testing Bipartiteness. More recently, this
result was generalized by Czumaj ans Sohler [7] who proved that any property of minor-free
graphs can be tested with one-sided error with query complexity that depends only on 1/ϵ

if and only if it can be reduced to testing for a finite family of finite forbidden subgraphs.
Czumaj et al. [6] also provide a canonical tester for testing H-subgraph freeness for any fixed
H with query complexity that is independent of n, however super polynomial in 1/ϵ.

It was shown that for other restrictive families of graphs of unbounded degree that every
property is testable with query complexity which is at most polylogarithmic in n [21, 17, 3].
Specifically, Kusumoto and Yoshida [21] proved that any property of forests can be tested
with query complexity poly(log n) and that testing Isomorphism of forests requires Ω(

√
log n).

This result was generalized in Babu-Khoury-Newman [3] for k-outerplanar graphs.

A.4 Local algorithms for constructing sparse spanning subgraphs
The model of local computation algorithms as considered in this work, was defined by
Rubinfeld et al. [32] (see also Alon et al. [2] and survey in [23]). The problem of constructing
sparse spanning subgraphs in this model was studied in several papers [26, 24, 25, 22, 31, 28].
This problem is a special case of constructing an ϵ-almost MST in which the weights of all
the edges are identical.

APPROX/RANDOM 2021

https://doi.org/10.1587/transinf.E93.D.233

61:20 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

For restricted families of graphs, it was shown that the complexity of the problem is
independent of n. Specifically, it was shown in [24] that for families of graph that are, roughly
speaking, sufficiency non-expanding, one can provide an algorithm with query complexity
that is independent of n (however, super-exponential in 1/ϵ). This is achieved by simulating
a localized version of Kruskal’s algorithm. On the negative side, it was also shown in [24]
that for graphs with expansion properties that are a little better, there is no local algorithm
that inspects a number of edges that is independent of n.

In [28] there is an algorithm for locally constructing sparse spanning subgraphs in minor-
free, unbounded degree, graphs with query complexity and time complexity which are
polynomial in d and 1/ϵ. Thus our algorithm for unbounded degree graphs generalizes this
result for the weighted case.

In [26, 27] it was shown that a spanning subgraph of almost optimum weight can be
constructed locally in minor-free graph with degree bounded by d with query complexity
and time complexity which are quasi-polynomial in d, 1/ϵ and W where W is the maximum
weight of an edge. Thus our algorithm for unbounded degree graphs generalizes this result
to unbounded degree graphs and improves the complexity of the upper bound from quasi-
polynomial to polynomial in d, 1/ϵ and W .

B Omitted proofs and details

B.1 Proof of Claim 11
Let G = (V, E) be a graph and let C = {P1, . . . , Pk} be a minimum path cover of G.

We first prove that δHAM(G) ≤ k − 1. For every 1 ≤ i ≤ k − 1 we add an edge which
connects the end-vertex of Pi to the start-vertex of Pi+1. Thus, by adding k − 1 edges we
constructed a Hamiltonian path in G.

We next prove that δHAM(G) ≥ k − 1. By definition, there exist δHAM(G) edges such
that when added to G, G becomes Hamiltonian. Let E′ denote a set of δHAM(G) such
edges and let G′ = (V, E ∪ E′) be the graph resulting from adding these edges to G. Let
H = (s1, . . . , s|V |) denote a Hamiltonian path in G′. After we remove back the edges in E′

we break H into |E′| + 1 connected components (each edge we remove adds an additional
connected component), i.e. into |E′| + 1 paths. Thus the size of the minimum path cover of
G is at most |E′| + 1 = δHAM(G) + 1. Thus k ≤ δHAM(G) + 1 and so δHAM(G) ≥ k − 1 as
desired.

B.2 Proof of Claim 12
The claim that δHAM(G) ≤ δHAM(G′) follows from the fact that the distance from being
Hamiltonian can not decrease when we remove edges.

Let C be a minimum path cover of G. By Claim 11, δHAM(G) = |C| − 1. Now consider
removing the edges in F one by one and how this affects the number of paths in C. After
removal of a single edge, the number of paths may increase by at most one. Thus, after
removing all the edges in F the paths in C break into at most |C|+ |F | paths. Thus the size of
the minimum path cover of G′ is at most |C| + |F |. By claim 11, δHAM(G′) ≤ |C| + |F | − 1 =
δHAM(G) + |F |, as desired.

B.3 Proof of Claim 13
The proof of this claim is similar to the proof of Claim 12.

The claim that δHAM(G) ≤ δHAM(G′) follows from the fact that the distance from being
Hamiltonian can not decrease when we remove edges.

R. Levi and N. Shoshan 61:21

Let C be a minimum path cover of G. By Claim 11, δHAM(G) = |C| − 1. Now consider
removing the edges adjacent to vertices in S vertex by vertex and how this affects the number
of paths in C. After removal of edges incident to a specific vertex, the number of paths may
increase by at most two. This follows from the fact that each vertex v belongs to exactly one
path, P , and the fact that when the edges incident to v are removed, P may break into at
most 3 different paths. Thus, after removing all the edges incident to vertices in S the paths
in P break into at most |C| + 2|S| paths. Thus the size of the minimum path cover of G′ is
at most |C| + 2|S|. By claim 11, δHAM(G′) ≤ |C| + 2|S| − 1 = δHAM(G) + 2|S|, as desired.

B.4 Proof of Claim 15
We claim that MSF(G) ⊆ MSF(G′) ∪ S. To see this observe that for every edge e ∈
E′ \ MSF(G′), it holds, by the cycle rule, that there exists a cycle in G′ such that e is the
heaviest edges in this cycle. Thus, these edges are not in MSF(G) either (because all the
cycles in G′ exist in G as well).

Since the number of connected components in G is at most the number of connected
components in G′ it holds that |MSF(G′)| ≤ |MSF (G)|. Thus,

|MSF(G) \ MSF(G′)| ≥ |MSF(G′) \ MSF(G)| . (1)

Since MSF(G) ⊆ MSF(G′) ∪ S it holds that MSF(G) \ MSF (G′) ⊆ S. Thus,

|MSF(G) \ MSF(G′)| ≤ |S| . (2)

It follows from Equations 1 and 2 that |MSF(G′) \ MSF(G)| ≤ |S|. Thus, the claim follows
from the bound on the maximum weight of an edge in G.

B.5 Correctness of Algorithm 2
▷ Claim 25. With high constant probability, the number of edges added to E′ in steps 2
and 4 of Algorithm 2 is at most ϵ|V |/(3W).

Proof. With high constant probability |EP | ≤ ϵ|V |/(6W). Since G is minor-free it follows
by Fact 4 and Markov’s inequality the number of edges in G[H] is at most ϵ|V |/(6W). The
claim follows. ◁

▷ Claim 26. All edges added to E′ in step 5 of Algorithm 2 belong to MSF(Ĝ) where
Ĝ = (V, E \ EP).

Proof. Let S ∈ P and let F = (S, A) denote the graph returned by Algorithm 4.
We first prove that all the edges in A belong to MSF(Ĝ). Since each sub-part B of S

is active (see Step 2 of Algorithm 4) as long as the lightest edge in EG(B, S \ B) is lighter
than the lightest edge in EG(B, H) it follows that eB (see Step 3a of Algorithm 4) is the
lightest edge in EĜ(B, V \ B). Thus, all the edges of A belong to MSF(Ĝ) by the cut rule
(see Subsection 2.4).

We next prove that for each connected component of F , C, the lightest edge which is
adjacent to C and H (if such edge exists) is in MSF(Ĝ). We first note that we only need
to consider S such that EG(S, H) ̸= ∅. In this case each connected component of F , C, is
adjacent to at least one vertex in H . Since C is not active it follows that lightest edge which
is adjacent to C and H is the lightest edge in the cut of C in Ĝ. Thus the claim follows from
the cut rule. This concludes the proof of the claim. ◁

In the proof of the following claim we closely follow the analysis in [28] (see proof in
Subsection B.6).

APPROX/RANDOM 2021

61:22 Testing Hamiltonicity (And Other Problems) in Minor-Free Graphs

▷ Claim 27. Let U denote the set of edges in E′ that are incident to two different clusters
(namely, each endpoint belongs to a different cluster). With probability 1 − 1/Ω(|V |),
|U | ≤ ϵ|V |/(3W) .

▷ Claim 28. Let G = (V, E) be a connected minor-free graph, then with high constant
probability the graph returned by Algorithm 2, G′ = (V, E′), is connected and

∑
e∈E′ w(e) ≤

(1 + ϵ)OPT, where OPT is the weight of a minimum weight spanning tree of G.

Proof. We begin by proving G′ is connected. To see this observe that each vertex either
belongs to a cluster or to a subset S ∈ P such that EG(S, H) = ∅.

By construction, the subgraph induced on each cluster in G′ is connected. For any two
clusters which are connected by an edge the lightest edge that connects the clusters belongs
to E′. This follows from Step 7 in Algorithm 2. If EG(S, H) = ∅ then G′[S] is connected
by Algorithm 2, as all sub-parts of S remain active throughout the entire execution of the
algorithm. Moreover, all the edges in EG(S, V \ S) are in E′ as well. Thus G′ is connected.
The claim regrading the weight of the edges of G′ follows from Claim 15 and Claims 25-27.

◁

B.6 Proof of Claim 27
For each cluster B, we charge to B a subset of the edges incident to B so that the union of
all the charged edges (over all clusters) contains U . Our goal is to show that with probability
1 − 1/Ω(n), the total number of charged edges is at most ϵ|V |/(3W).

Let Ĝ = (V, Ê) be such that Ê = E \ EP . Consider the auxiliary graph, denoted G̃,
that results from contracting each cluster B and isolated parts in Ĝ into a mega-vertex in
G̃, which we denote by v(B). For each pair of clusters B and B′ such that EĜ(B, B′) is
non-empty, there is an edge (v(B), v(B′)) in G̃, which we refer to as a mega edge, and whose
weight is |EĜ(B, B′)|. Since G is minor-free, so is G̃. By Fact 4, which bounds the arboricity
of minor-free graphs, we can partition the mega-edges of G̃ into r forests. Consider orienting
the mega-edges of G̃ according to this partition (from children to parents in the trees of
these forests), so that each mega-vertex has at most r outgoing mega-edges. For cluster B

and a cluster B′ such that (v(B), v(B′)) is an edge in G̃ that is oriented from v(B) to v(B′),
we shall charge to B a subset of the edges in EĜ(B, B′), as described next.

Let x be an upper bound on the size of parts returned by the partition oracle when
executed with parameter ϵ/(6W). Thus x is an upper bound on the size of part in the
partition P of G[L]. Let Eb(B, B′) denote the subset of edges in EĜ(B, B′) that are the
(ϵ/(9rW)) · |E(B, B′)| lightest edges of E(B, B′). We charge all the edges in Eb(B, B′) to
B. The rationale is that for these edges it is likely that the algorithm won’t sample an edge
in EĜ(B, B′) which is lighter. The total number of such edges is at most (ϵ/(9rW)) · |E| ≤
ϵ|V |/(9W).

For a light vertex y let subpart(y) denote the subpart of y. Let u be the center of the
cluster B, and let N b(u, B′) be the set of vertices, y ∈ N(u), such that:(

y ∈ B′ and (u, y) ∈ Eb(B, B′)
)

or
(
∃(y′, z) ∈ Eb(B, B′) s.t. y′ ∈ subpart(y)

)
.

That is, N b(u, B′) is the subset of neighbors of u such that if Algorithm 3 selects one of
them in Step 2, then it obtains an edge in Eb(B, B′). We consider two cases.

First case: |N b(u, B′)|/|N(u)| < ϵ2/(162W 2r3x∆). In this case we charge all edges
in EĜ(B, B′) to B. For each part subpart(y) such that y ∈ N b(u, B′) there are at most
|subpart(y)| · ∆ edges (y′, z) ∈ Eb(B, B′) for which y′ ∈ subpart(y). Therefore, in this case

R. Levi and N. Shoshan 61:23

|Eb(B, B′)| ≤ x∆ · |N b(u, B′)| ≤ N(u) · ϵ2/(162W 2r3) and hence |E(B, B′)| < (9rW/ϵ) ·
ϵ2/(162W 2r3) · N(u). It follows that the total number of charged edges of this type is at
most (ϵ/(18rW)) · 2|E| ≤ ϵn/(9W).

Second case: |N b(u, B′)|/|N(u)| ≥ ϵ2/(162W 2r3x∆). For each u and B′ that fall under
this case we define the set of edges Y (u, B′) = {(u, v) : v ∈ N b(u, B′)} and denote by Y the
union of all such sets (over all such pairs u and B′). Edges in Y are charged to B if and only
if they belong to U and are incident to a vertex in B. Fix an edge in Y that is incident to
B, and note that the selection of neighbors of u is done according to a t-wise independent
distribution for t > 4q, where q is the sample size set in Step 2 of the Algorithm 3. Therefore,
the probability that the edge belongs to U is upper bounded by (1 − ϵ2/(162W 2r3x∆))q,
which by the setting of q, is at most p = ϵ/(18Wr) (for sufficiently large constant w.r.t. the
Theta notation).

We next show, using Chebyshev’s inequality, that w.h.p., the number of edges in Y that
are in U is at most 2p|E|. For y ∈ Y , define Jy to be an indicator variable that is 1 if and
only if y ∈ F . Then for a fixed y ∈ Y , E[Jy] ≤ p and {Jy} are pairwise independent (this is
due to the fact that the samples of every pair of edges are pairwise independent). Therefore,
by Chebyshev’s inequality,

Pr

[∑
y∈Y

Jy ≥ 2p|E|

]
≤

Var[
∑

y∈Y
Jy]

(p|E|)2 =
∑

y∈Y
Var(Jy)

(p|E|)2 ≤ p(1 − p)|E|
(p|E|)2 = 1 − p

p|E| = 1
Ω(n) ,

and the proof of Claim 27 is completed.
▶ Remark 29. The random seed that Algorithm 2 uses consists of two parts. The first part
is for running the partition oracle. The second part is for selecting random neighbors in
Step 2 of Algorithm 3. Since the selection of neighbors is according to a t-wise independent
distribution we obtain that a random seed of length Õ(log n) is sufficient.

B.7 The local implementation of Algorithm 2
Algorithm 8 is the local implementation of Algorithm 2 and is listed next.

Algorithm 8 Local algorithm for approximated-MST in unbounded-degree minor-free graphs.

Input: {u, v} ∈ E.
Output: YES if {u, v} belongs to the approximated-MST and NO otherwise.
1. If both u and v are in H return YES.
2. If both u and v are light:

a. Query the partition oracle on u and v and return YES if they belong to different parts.
b. Find the sub-parts of u and v by running Algorithm 4.
c. If u and v are in the same sub-part:

i. Return YES if {u, v} is in the set of edges returned by Algorithm 4 (when running on u).
ii. Otherwise, return NO.

d. Otherwise, set Cu to be the center of u and Cv to be the center of v.
e. If Cu = Cv return NO.

3. Otherwise, if u is light and v is heavy (and analogously if v is light and u is heavy) then:
a. Find the sub-part of u and set Cu to be the center of this sub-part
b. Set Cv = v

4. Run Algorithm 3 on Cu and Cv and return YES if the edge {u, v} is lighter than the edge
returned by the algorithm. Otherwise, return NO.

APPROX/RANDOM 2021

Parallel Repetition for the GHZ Game: A Simpler
Proof
Uma Girish # Ñ

Department of Computer Science, Princeton University, NJ, USA

Justin Holmgren # Ñ

NTT Research, Sunnyvale, CA, USA

Kunal Mittal # Ñ

Department of Computer Science, Princeton University, NJ, USA

Ran Raz # Ñ

Department of Computer Science, Princeton University, NJ, USA

Wei Zhan # Ñ

Department of Computer Science, Princeton University, NJ, USA

Abstract

We give a new proof of the fact that the parallel repetition of the (3-player) GHZ game reduces the
value of the game to zero polynomially quickly. That is, we show that the value of the n-fold GHZ
game is at most n−Ω(1). This was first established by Holmgren and Raz [18]. We present a new
proof of this theorem that we believe to be simpler and more direct. Unlike most previous works on
parallel repetition, our proof makes no use of information theory, and relies on the use of Fourier
analysis.

The GHZ game [15] has played a foundational role in the understanding of quantum information
theory, due in part to the fact that quantum strategies can win the GHZ game with probability 1.
It is possible that improved parallel repetition bounds may find applications in this setting.

Recently, Dinur, Harsha, Venkat, and Yuen [7] highlighted the GHZ game as a simple three-player
game, which is in some sense maximally far from the class of multi-player games whose behavior
under parallel repetition is well understood. Dinur et al. conjectured that parallel repetition
decreases the value of the GHZ game exponentially quickly, and speculated that progress on proving
this would shed light on parallel repetition for general multi-player (multi-prover) games.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Parallel Repetition, GHZ, Polynomial, Multi-player

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.62

Category RANDOM

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/101/

Funding Uma Girish: Simons Collaboration on Algorithms and Geometry, by a Simons Investigator
Award and by the National Science Foundation grants No. CCF-1714779, CCF-2007462.
Kunal Mittal: Simons Collaboration on Algorithms and Geometry, by a Simons Investigator Award
and by the National Science Foundation grants No. CCF-1714779, CCF-2007462.
Ran Raz : Simons Collaboration on Algorithms and Geometry, by a Simons Investigator Award and
by the National Science Foundation grants No. CCF-1714779, CCF-2007462.
Wei Zhan: Simons Collaboration on Algorithms and Geometry, by a Simons Investigator Award and
by the National Science Foundation grants No. CCF-1714779, CCF-2007462.

© Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 62; pp. 62:1–62:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ugirish@cs.princeton.edu
https://www.cs.princeton.edu/~ugirish/
mailto:holmgren@alum.mit.edu
http://justinholmgren.com
mailto:kmittal@cs.princeton.edu
https://www.cs.princeton.edu/~kmittal/
mailto:ranr@cs.princeton.edu
http://www.wisdom.weizmann.ac.il/~/ranraz/
mailto:weizhan@cs.princeton.edu
https://www.cs.princeton.edu/~weizhan/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.62
https://eccc.weizmann.ac.il/report/2021/101/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Parallel Repetition for the GHZ Game: A Simpler Proof

1 Introduction

The focus of this paper is multi-player games, and in particular their asymptotic behavior
under parallel repetition.

Multi-player games consist of a one-round interaction between a referee and k players.
In this interaction, the referee first samples a “query” (q1, . . . , qk) from some joint query
distribution Q, and for each i sends qi to the ith player. The players are required to
respectively produce “answers” a1, . . . , ak without communicating with one another (that is,
each ai is a function only of qi) and they are said to win the game if (q1, . . . , qk, a1, . . . , ak)
satisfy some predicate W that is fixed and associated with the game.

Suppose that a game G has the property that the maximum probability with which
players can win is 1 − ϵ, no matter what strategy they use. This quantity is called the value
of G. The parallel repetition question [13] asks

How well can the players concurrently play in n independent copies of G?

More precisely, consider the following k-player game, which we call the n-wise parallel
repetition of G and denote by Gn:
1. The referee samples, for each i ∈ [n] independently, query tuples (qi

1, . . . , qi
k) ∼ Q. We

refer to the index i as a coordinate of the parallel repeated game.
2. The jth player is given (q1

j , . . . , qn
j) and is required to produce a tuple (a1

j , . . . , an
j).

3. The players are said to win in coordinate i if (qi
1, . . . , qi

k, ai
1, . . . , ai

k) satisfies W . They
are said to win (without qualification) if they win in every coordinate i ∈ [n].

One might initially conjecture that the value of Gn is (1 − ϵ)n. However, this turns out
not to be true [14, 9, 12, 25], as players may benefit from correlating their answers across
different coordinates. Still, Raz showed that if G is a two-player game, then the value of Gn

is 2−Ω(n), where the Ω hides a game-dependent constant [23, 17]. Tighter results, based on
the value of the initial game are also known [8, 5]. For many applications, such bounds are
qualitatively as good as the initial flawed conjecture.

Games involving three or more players have proven more difficult to analyze, and the best
known general bound on their parallel repeated value is due to Verbitsky [26]. This bound
states that the value of Gn approaches 0, but the bound is extremely weak (it shows that
the value is at most 1

α(n) , where α denotes an inverse Ackermann function). The weakness of
this bound is generally conjectured to reflect limitations of current proof techniques rather
than a fundamental difference in the behavior of many-player games. In the technically
incomparable but related no-signaling setting however, Holmgren and Yang showed that
three-player games genuinely behave differently than two-player games [19]. Specifically, they
showed that there exists a three-player game with “no-signaling value” bounded away from 1
such that no amount of parallel repetition reduces the no-signaling value at all.

Parallel repetition is a mathematically natural operation that we find worthy of study in
its own right. At the same time, parallel repetition bounds have found several applications
in theoretical computer science (see this survey by [24]). For example, parallel repetition
of 2 player games shares intimate connections with multi-player interactive proofs [4],
probabilistically checkable proofs and hardness of approximation [3, 10, 16], geometry of
foams [11, 20, 1], quantum information [6], and communication complexity [22, 2]. Recent
work also shows that strong parallel repetition for a particular class of multiprover games
implies new time lower bounds on Turing machines that can take advice [21].

Dinur et al. [7] describe a restricted class of multi-player games for which Raz’s approach
generalizes (giving exponential parallel bounds). Specifically, they consider games whose
query distribution satisfies a certain connectivity property. For games outside this class,

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:3

Verbitsky’s bound was the best known. Dinur et al. highlighted one simple three-player
game, called the GHZ game [15], that in some sense is maximally far from the aforementioned
tractable class of multi-player games. In the GHZ game, the players’ queries are (q1, q2, q3)
chosen uniformly at random from {0, 1}3 such that q1 ⊕q2 ⊕q3 = 0, and the players’ goal is to
produce (a1, a2, a3) such that a1 ⊕a2 ⊕a3 = q1 ∨q2 ∨q3. Dinur et al. conjectured that parallel
repetition decreases the value of the GHZ game exponentially quickly, and speculated that
progress on proving this would shed light on parallel repetition for general games. The GHZ
game has also played a foundational role in the understanding of quantum information theory,
due in part to the fact that quantum strategies can win the GHZ game with probability 1.
It is possible that improved parallel repetition bounds will find applications in this setting as
well.

In a recent work, Holmgren and Raz [18] proved the following polynomial upper bound
on the parallel repetition of the GHZ game:
▶ Theorem 1. The value of the n-wise repeated GHZ game is at most n−Ω(1).

Our main contribution is a different proof of this theorem that, in our view, is significantly
simpler and more direct than the proof of [18]. Like [18], we actually do not rely on any
properties of the GHZ game other than its query distribution, and in particular we do not
rely on specifics of the win condition. Furthermore, unlike most previous works on parallel
repetition, our proof makes no use of information theory, and instead relies on the use of
Fourier analysis.

1.1 Technical Overview
Let P denote the distribution of queries in the n-wise parallel repeated GHZ game. Let
α = Θ(1/nε) for a small constant ε > 0 and E = E1 × E2 × E3 be any product event with
significant probability under P, i.e., P(E) ≥ α. The core of our proof is establishing that
for a random coordinate i ∈ [n], the query distribution P|E (P conditioned on E) is mildly
hard in the ith coordinate. That is, given queries sampled from P|E, the players’ maximum
winning probability in the ith coordinate is bounded away from 1. Using standard arguments
from the parallel repetition literature, this will imply an inverse polynomial bound for the
value of the n-fold GHZ game. The difficulty, as usual, is that the n different queries in P|E
may not be independent.

Our approach at a high level is to:
1. Identify a class D of simple distributions (over queries for the n-wise repeated GHZ game)

such that it is easy to analyze (in step 3 below) which coordinates are hard for any given
D ∈ D. By hard, we mean that the players’ maximum winning probability in the ith

coordinate is 3
4 .

2. Approximate P|E by a convex combination of distributions from D. That is, we write

P|E ≈
∑

j

pjDj ,

where {Dj} are distributions in D, pj are non-negative reals summing to 1, and ≈ denotes
closeness in total variational distance.

3. Show that in the above convex combination, “most” of the Di have many hard coordinates.
More precisely, if we sample j with probability pj , then the expected fraction of coordinates
in which Dj is hard is at least a constant (say 1/3).

Completing this approach implies that if i ∈ [n] is uniformly random, then the ith coordinate
of P|E can be won with probability at most 1 − Ω(1). We elaborate on each of these steps
below.

APPROX/RANDOM 2021

62:4 Parallel Repetition for the GHZ Game: A Simpler Proof

Bow Tie Distributions

For our class of “simple” distributions D, we introduce the notion of a “bow tie” distribution.
We then define D to be the set of all bow tie distributions. A bow tie is a set B of the form

(x0, y0, z0),
(x0, y1, z1),
(x1, y0, z1),
(x1, y1, z0)

 ⊆ (Fn
2)3

such that for each (x, y, z) in B, we have x + y + z = 0. In particular this requires that
x0 + x1 = y0 + y1 = z0 + z1. A bow tie distribution is the uniform distribution on a bow
tie. Our name of “bow tie” is based on the fact that bow ties are thus determined by
{(x0, y0), (x0, y1), (x1, y0), (x1, y1)}, which we sometimes view as a set of edges in a graph.
In this case, bow ties are special kinds of K2,2 subgraphs, where K2,2 denotes the complete
bipartite graph.

The main property of a bow tie distribution D is that for every coordinate i for which
(x0)i ̸= (x1)i (equivalently (y0)i ≠ (y1)i, or (z0)i ̸= (z1)i), the ith coordinate of D is as hard
as the GHZ game (i.e. players cannot produce winning answers for the ith coordinate with
probability more than 3

4). This follows by “locally embedding” the (unrepeated) GHZ query
distribution into the ith coordinate of D as follows. We first swap x0 ↔ x1, y0 ↔ y1, z0 ↔ z1
as necessary to ensure that

(x0)i = (y0)i = (z0)i = 0. (1)

An even number of swaps are required to do this by the assumption that x0 +y0 +z0 = 0, and
bow ties are invariant under an even number of such swaps. Thus Equation (1) is without
loss of generality. Suppose f̄1, f̄2, f̄3 : Fn

2 → F2 comprise a strategy for the ith coordinate
of D. Then a strategy f1, f2, f3 : F2 → F2 for the basic (unrepeated) GHZ game can be
constructed as

f1(b) = f̄1(xb)
f2(b) = f̄2(yb)
f3(b) = f̄3(zb).

The winning probability of this strategy is the same as the winning probability of f̄1, f̄2, f̄3
in the ith coordinate because

(
(xb1)i, (yb2)i, (zb3)i

)
= (b1, b2, b3). Hence both probabilities

are at most 3/4.

Approximating P|E by Bow Ties

We now sketch how to approximate P|E by a convex combination of bow tie distributions,
where E is a product event E1 × E2 × E3. We assume for now that the non-zero Fourier
coefficients of each Ej are small. We will return to this assumption at the end of the overview
– it turns out to be nearly without loss of generality.

We show that P|E is close in total variational distance to the distribution obtained by
sampling a uniformly random bow tie B ⊆ E, and then outputting a random element of B.
The latter distribution is equivalent to sampling (x, y, z) with probability proportional to
the number of bow ties B ⊆ E that contain (x, y, z). This number is

(∑
z′∈Fn

2
E1(y + z′)E2(x + z′)E3(z′)

)
− 1 if (x, y, z) ∈ supp(P|E)

0 otherwise,
(2)

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:5

where we identify E1, E2, and E3 with their indicator functions. Note that we are subtracting
1 to cancel the term corresponding to z′ = z.

Intuitively, the fact that all Ej have small Fourier coefficients means that they look
random with respect to linear functions. Thus, one might guess that the above sum is close
to 2n · µ(E1)µ(E2)µ(E3) for most (x, y, z) ∈ supp(P|E), where µ(S) = |S|/2n denotes the
measure of S under the uniform distribution on Fn

2 . If “close to” and “most” have the right
meanings, then this would imply that our distribution is close in total variational distance to
P|E as desired.

Our full proof indeed establishes this. More precisely, we view Equation (2) as a vector
indexed by (x, y, z) and establish bounds on that vector’s ℓ1 and ℓ2 norms as a criterion for
near-uniformity. In the process our proof repeatedly uses the following claims (see Lemma 16).
For all sets S, T ⊆ Fn

2 that are sufficiently large, we have

E
z∼Fn

2
x∼Fn

2

[S(x) · T (x + z) · E3(z)] ≈ µ(S) · µ(T) · µ(E3)

and

E
z∼Fn

2

[(
E

x∼Fn
2

[S(x) · E2(x + z)]
)2

· E3(z)
]

≈ µ(S)2 · µ(E2)2 · µ(E3).

Most Bow Ties are Hard in Many Coordinates

For the final step of our proof, we need to show that the distribution of bow ties analyzed in
the previous step produces (with high probability) bow ties that differ in many coordinates.

We begin by parameterizing a bow tie by (x0, y0, x0 ⊕ x1) and noting that in the previous
step, we essentially showed that E contains 23n−O(log n) different bow ties. The O(log n)
term in the exponent arises from the fact that the events {Ej} have density in Fn

2 that is
inverse polynomial in n. A simple counting argument then shows that for a random bow tie,
the min-entropy of x0 ⊕ x1 is close to n. This means that x0 ⊕ x1 is close to the uniform
distribution in the sense that any event occurring with probability p under the uniform
distribution occurs with probability p · nO(1) under the distribution of x0 ⊕ x1. Thus we can
finally apply a Chernoff bound to deduce that with all but 2−Ω(n) probability, x0 ⊕ x1 has
Hamming weight at least n/3.

In other words, a bow tie sampled uniformly at random differs in at least a 1
3 fraction of

coordinates. By the main property of bow ties, this implies that the corresponding bow tie
distribution is hard on a 1

3 fraction of coordinates (indeed, the same set of coordinates).

Handling General Events

For general (product) events E = E1 × E2 × E3 (where the sets {Ei} need not have small
Fourier coefficients), we can partition the universe Fn

2 × Fn
2 × Fn

2 into parts π such that for
most of the parts π, the event E restricted to π has the structure that we already analyzed.
For this to make sense, we ensure several properties of the partition. First, π should be a
product set (π = π1 × π2 × π3) so that E ∩ π is a product set as well, i.e. E ∩ π has the form
Ẽ1 × Ẽ2 × Ẽ3. Second, each πi should be an affine subspace of Fn

2 so that we can do Fourier
analysis with respect to this subspace. Finally π1, π2, and π3 should all be affine shifts of
the same linear subspace so that the set {(x, y, z) ∈ π : x + y + z = 0} has the same Fourier-
analytic structure as the parallel repeated GHZ query set {(x, y, z) ∈ (Fn′

2)3 : x + y + z = 0}
for some n′ < n.

APPROX/RANDOM 2021

62:6 Parallel Repetition for the GHZ Game: A Simpler Proof

We prove the existence of such a partition with n′ not too small (n′ = n − o(n)) by a
simple iterative approach, which is similar to [18].

1.2 Comparison to [18]
Our proof has some similarity to [18] – in particular, both proofs partition (Fn

2)3 into
subspaces according to Fourier-analytic criteria and analyze these subspaces separately – but
the resemblance ends there. In fact, there are fundamental high-level differences between the
two proofs.

The biggest qualitative difference is that our high-level approach decomposes any condi-
tional distribution P|E into components (bow tie distributions) for which many coordinates
are hard. [18] takes an analogous approach, but it establishes a weaker result that differs in
the order of quantifiers: it first fixes a strategy f , and then decomposes P|E into components
such that f performs poorly on many coordinates of many components. This difference
is due to the fact that [18] uses uniform distributions on high-dimensional affine spaces as
their basic “hard” distributions. It is not in general possible to express P|E as a convex
combination of such distributions (for example if each Ej is a uniformly random subset of
Fn

2). Instead, [18] expresses P|E as a convex combination of “pseudo-affine” distributions.
This significantly complicates their proof, and we avoid this complication entirely by our use
of bow tie distributions, which are novel to this work.

The remainder of our proof (the analysis of hardness within each part of the partition) is
entirely different.

2 Notation & Preliminaries

A significant portion of these preliminaries is taken verbatim from [18].
We write exp(t) to denote et for t ∈ R.
Let n ∈ N. For a vector v ∈ Rn and i ∈ [n], we write v(i) or vi to denote the i-th

coordinate of v. For p ∈ N, we write ∥v∥p
def=

(∑
i∈[n] |v(i)|p

)1/p

to denote the ℓp norm of v.

For z ∈ {0, 1}∗, hwt(z) def= ∥z∥1 denotes the Hamming weight of z.
We crucially rely on the Cauchy-Schwarz inequality.

▶ Fact 2 (Cauchy-Schwarz). Let k ∈ N and a1, . . . , ak, b1, . . . , bk ∈ R. Then,
∑k

i=1 |ai · bi| ≤√∑k
i=1 a2

i ·
√∑k

i=1 b2
i .

2.1 Set Theory
Let Ω be a universe. By a partition of Ω, we mean a collection of pairwise disjoint subsets of
Ω, whose union equals Ω. If Π is a partition of Ω and ω is an element of Ω, we will write Π(ω)
to denote the (unique) element of Π that contains ω. Thus, we can view Π as a function
Π : Ω → 2Ω.

For a set S ⊆ Ω, we identify S with its indicator function S : Ω → {0, 1} defined at ω ∈ Ω
by

S(ω) =
{

1 if ω ∈ S

0 otherwise.

For sets S, T ⊆ Ω such that T ̸= ∅, we use S|T ⊆ T to denote the set S ∩ T when viewed
as a subset of T . In particular, S|T is an indicator function from T to {0, 1}.

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:7

2.2 Probability Theory
Probability Distributions

Let P be a distribution over a universe Ω. We sometimes think of P as a vector in R|Ω| whose
value in coordinate ω ∈ Ω is P (ω). In particular, we use ∥P −Q∥1 to denote the ℓ1 norm of the
vector P − Q ∈ R|Ω|, where P and Q are probability distributions. We use ω ∼ P to denote
a random element ω distributed according to P . We use supp(P) = {ω ∈ Ω : P (ω) > 0} to
denote the support of the distribution P .

Random Variables

Let Σ be any alphabet. We say that X : Ω → Σ is a Σ-valued random variable. If Σ = R,
we say that the random variable is real-valued. If X is a real-valued random variable, the
expectation of X under P is denoted Eω∼P [X(ω)]. Often, the underlying distribution P is
implicit, in which case we simply use E[X]. If X is a Σ-valued random variable and P is a
probability distribution, we write PX or X(P) to denote the induced probability distribution
of X under P , i.e., PX(σ) = (X(P))(σ) def= P (X = σ) for all σ ∈ Σ. In particular, we say
that X is distributed according to PX and we use σ ∼ X(P) to denote a random variable σ

distributed according to PX . The distribution P is often implicit, and we identify X with
the underlying distribution PX .

Events

We refer to subsets of Ω as events. We use standard shorthand for denoting events. For
instance, if X is a Σ-valued random variable and x ∈ Σ, we write X = x to denote the event
{ω ∈ Ω : X(ω) = x}. Similarly, for a subset F ⊆ Σ, we write X ∈ F to denote the event
{ω ∈ Ω : X(ω) ∈ F}. We use P (E) to denote the probability of E under P . When P is
implicit, we use the notation Pr(E) to denote P (E).

Conditional Probabilities

Let E ⊆ Ω be an event with P (E) > 0. Then the conditional distribution of P given E is
denoted (P |E) : Ω → R and is defined to be

(P |E)(ω) =
{

P (ω)/P (E) if ω ∈ E

0 otherwise.

If E is an event, we write PX|E as shorthand for (P |E)X .

Measure under Uniform Distribution

For any set S ⊆ Ω, we sometimes identify S with the uniform distribution over S. In
particular, we use x ∼ S to denote x sampled according to the uniform distribution on S.
For S, π ⊆ Ω such that π ̸= ∅, we use µπ(S) = |S∩π|

|π| to denote the measure of S under the
uniform distribution over π. When π = Ω, we omit the subscript and simply use µ(S).

2.3 Fourier Analysis
Fourier Analysis over Subspaces

For any (finite) vector space V over F2, the character group of V, denoted V̂, is the set of
group homomorphisms mapping V (viewed as an additive group) to {−1, 1} (viewed as a

APPROX/RANDOM 2021

62:8 Parallel Repetition for the GHZ Game: A Simpler Proof

multiplicative group). Each such homomorphism is called a character of V. For functions
mapping V → R, we define the inner product

⟨f, g⟩ def= E
x∼V

[f(x)g(x)] .

The character group of V forms an orthonormal basis under this inner product. We refer to
the all-ones functions χ : V → {−1, 1}, χ ≡ 1 as the trivial character or the zero character and
denote this by χ = ∅.

For all characters χ ̸= ∅, since ⟨χ, ∅⟩ = 0, we have Ex∼V [χ(x)] = 0, in particular, χ(V)
is a uniform {±1}-random variable. Let ∅ ̸= S ⊆ V be a set. Then µV(S) ≜ |S∩V|

|V| = Ŝ(∅),
where we identify S with its indicator function S : V → {0, 1} as mentioned before. For
χ ∈ V̂, we have Ex∼S [χ(x)] = Ŝ(χ)

Ŝ(∅)
.

▶ Fact 3. Given a choice of basis for V, there is a canonical isomorphism between V and V̂.
Specifically, if V = Fn

2 , then the characters of V are the functions of the form

χγ(v) = (−1)γ·v

for γ ∈ Fn
2 .

▶ Definition 4. For any function f : V → R, its Fourier transform is the function f̂ : V̂ → R
defined by

f̂(χ) def= ⟨f, χ⟩ = E
x∼V

[f(x)χ(x)] .

Since the characters of V are orthonormal and V is finite, we can deduce that f is equal to∑
χ∈V̂ f̂(χ) · χ.

▶ Theorem 5 (Plancherel). For any f, g : V → R,

⟨f, g⟩ =
∑
χ∈V̂

f̂(χ) · ĝ(χ).

An important special case of Plancherel’s theorem is Parseval’s theorem:

▶ Theorem 6 (Parseval). For any f : V → R,

E
x∼V

[
f(x)2]

=
∑
χ∈V̂

f̂(χ)2.

Fourier Analysis over Affine Subspaces

Fix any subspace V ⊆ Fn
2 and a vector a ∈ Fn

2 . Let U = a + V denote the affine subspace
obtained by shifting V by a. For every function f : V → R, we associate it with a function
fa : U → R defined by fa(x) = f(x + a) for all x ∈ U . This is a bijective correspondence
between the set of functions from U to R and the set of functions from V to R. Under this
association, we can identify χ ∈ V̂ with χa : U → {−1, 1} where χa(x) = χ(x + a) for all
x ∈ U . This defines an orthonormal basis Ûa := {χa : U → {−1, 1} | χ ∈ V̂} for the vector
space of functions from U to R. We call this the Fourier basis for U with respect to a. This
basis depends on the choice of the shift a ∈ U . However, for all possible shifts b ∈ U and
character functions χ ∈ V̂ , the functions χa and χb only differ by a sign. To see this, observe
that

χa(x) = χ(a + x) = χ(b + x) · χ(a + b) = χb(x) · χ(a + b)

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:9

We will sometimes ignore the subscript and simply use χ ∈ V̂ to index functions in the
Fourier basis of U . This is particularly the case when the properties we are dealing are
independent of choice of basis (for example, the absolute values of Fourier coefficients of a
function).

2.4 Multi-Player Games
In parallel repetition we often work with Cartesian product sets of the form (X1 × · · · × Xk)n.
For these sets, we will use subscripts to index the inner product and superscripts to index
the outer product. That is, for X = X1 × . . . × Xk we view elements x of X n as tuples
(x1, . . . , xk), where xi ∈ X n

i . We use xj
i or xi(j) to refer to the jth coordinate of xi. We use

xj to denote the vector (xj
1, . . . , xj

k).
If {Ei ⊆ Xi}i∈[k] is a collection of subsets, we write E1 × · · · × Ek to denote the set

{x ∈ X : ∀i ∈ [k], xi ∈ Ei}. We say that f : (X1 × · · · × Xk)n → (Y1 × · · · × Yk)n is a product
function if f = f1 × · · · × fk for some functions fi : X n

i → Yn
i .

▶ Definition 7 (Multi-player Games). A k-player game is a tuple (X , Y, Q, W), where X =
X1 × · · · × Xk and Y = Y1 × · · · × Yk are finite sets, Q is a probability measure on X , and
W : X × Y → {0, 1} is a “winning” predicate. We refer to Q as the query distribution or the
input distribution of the game.

▶ Definition 8 (Deterministic Strategies). A deterministic strategy for a k-player game
G = (X , Y, Q, W) is a function f = f1 × · · · × fk where each fi : Xi → Yi. The success
probability of f in G is denoted and defined as

val(G, f) def= Pr
x∼Q

[
W

(
x, f(x)

)
= 1

]
.

The most important quantity associated with a game is the maximum probability with
which the game can be “won”.

▶ Definition 9. The value of a k-player game G = (X , Y, Q, W), denoted val(G), is the
maximum, over all deterministic strategies f , of val(G, f).

It is often easier to construct probabilistic strategies for a game, i.e. strategies in which
players may use shared and/or individual randomness in computing their answers.

▶ Definition 10 (Probabilistic Strategies). Let G = (X , Y, Q, W) be a k-player game. A
probablistic strategy for G is a distribution F of deterministic strategies for G. The success
probability of F in G is denoted and defined as

val(G, F) def= Pr
x∼Q
f∼F

[
W

(
x, f(x)

)
= 1

]
.

A standard averaging argument implies that for every game, probabilistic strategies
cannot achieve better success probability than deterministic strategies:

▶ Fact 11. Replacing “deterministic strategies” by “probabilistic strategies” in Definition 9
yields an equivalent definition.

The main operation on multi-player games that we consider in this paper is parallel
repetition:

APPROX/RANDOM 2021

62:10 Parallel Repetition for the GHZ Game: A Simpler Proof

▶ Definition 12 (Parallel Repetition). Given a k-player game G = (X , Y, Q, W), its n-fold
parallel repetition, denoted Gn, is defined as the k-player game (X n, Yn, Qn, W n), where
W n(x, y) def=

∧n
j=1 W (xj , yj). For x ∈ X n, we refer to xi ∈ X n

i as the input to the i-th
player.

To bound the value of parallel repeated games, it is helpful to analyze the probability of
winning in a particular instance of the game under various modified query distributions.

▶ Definition 13 (Value in jth coordinate). If G = (X , Y, Q, W n) is a game (with a product
winning predicate), the value of G in the jth coordinate for j ∈ [n], denoted val(j)(G), is the
value of the game (X , Y, Q, W ′), where W ′(x, y) = W (xj , yj).

▶ Definition 14 (Game with Modified Query Distribution). Let G = (X , Y, Q, W) be a game.
For a probability measure P on X , we write G|P to denote the game (X , Y, P, W). For an
event E on X , we write G|E to denote the game (X , Y, QE , W).

2.5 GHZ Distribution
Let X = X1 × X2 × X3 and Y = Y1 × Y2 × Y3 where Xi = Yi = F2. Let Q denote the
uniform distribution over {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Define W : X × Y → {0, 1} at
x ∈ X , y ∈ Y by W (x, y) = 1 if and only if x1 ∨ x2 ∨ x3 = y1 + y2 + y3 (mod 2). The GHZ
game refers to the 3-player game (X , Y, Q, W), which has value 3/4. The n-fold repeated
GHZ game refers to the n-fold parallel repetition of (X , Y, Q, W). Our parallel repetition
results easily generalize with any other (constant-sized) answer alphabet Y ′ and any predicate
W ′, as long as the game (X , Y ′, Q, W ′) has value less than 1.

We typically use X = (X1, X2, X3) ∈ X n to denote a random variable distributed
according to Qn where Xi ∈ X n

i denotes the input to the i-th player.

3 Partitioning into Pseudorandom Subspaces

We make use of the notion of affine partition similar to the one defined in [18]. We say that
Π is an affine partition of (Fn

2)3 of codimension at most d if Π is a partition on (Fn
2)3 and:

Each part π ∈ Π has the form aπ + V3
π where Vπ is a subspace of Fn

2 and aπ ∈ (Fn
2)3, and

Each Vπ has codimension at most d.
The main take-away from this section is Proposition 15, which states the following: Given
the query distribution to the n-fold GHZ game, and a product event E ⊆ (Fn

2)3 with large
enough probability mass, we can find an affine partition Π of (Fn

2)3 such that on a typical
part π ∈ Π, the non-zero Fourier coefficients of the indicator functions E1|π1 , E2|π2 , E3|π3

are small. Recall that Ei|πi : πi → {0, 1} is the indicator function of the set Ei ∩ πi ⊆ πi.
Formally, the proposition is as follows:

▶ Proposition 15. Let P = Qn. Let E = E1 × E2 × E3 ⊆ (Fn
2)3 be such that P(E) = α.

For all δ > 0, there exists an affine partition Π of (Fn
2)3 of codimension at most 3

δ3 such
that the following holds. With probability at least 1 − δ

α over π ∼ Π(P|E), for all i ∈ [3] and
non-zero χ ∈ V̂, we have

∣∣∣Êi|πi
(χ)

∣∣∣ ≤ δ, where π is of the form π1 × π2 × π3 for affine shifts
π1, π2, π3 of some subspace V of Fn

2 .

Recall that Π(P|E) is the distribution induced by sampling x ∼ P|E and outputting the
part of Π to which x belongs. Note that in the statement of the proposition, we don’t specify
a choice of Fourier basis for πi. This is because for any set S ⊆ πi, the quantity

∣∣∣Ŝ(χai)
∣∣∣ is

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:11

independent of choice of ai ∈ πi so we simply write
∣∣∣Ŝ(χ)

∣∣∣. The proof of Proposition 15 is
similar in nature to the proof of Lemma 6.2 in [18], but is much simpler and is presented in
the full version of the paper.

4 Key Fourier Analytic Lemmas

We crucially make use of the following lemma, the proof of which can be found in the full
version of the paper.

▶ Lemma 16. Let V ⊆ Fn
2 be a subspace and a1, a2, a3 ∈ Fn

2 be such that a1 + a2 + a3 = 0.
Let π = π1 × π2 × π3 where πi = ai + V. Let A ⊆ π1, B ⊆ π2, C ⊆ π3 be sets such that for
all non-zero χ ∈ V̂, we have

∣∣∣Ĉ(χ)
∣∣∣ ≤ δ1. Then,∣∣∣∣∣ E

z∼π3
x∼π1

[A(x) · B(x + z) · C(z)] − µπ1(A) · µπ2(B) · µπ3(C)

∣∣∣∣∣ ≤ δ1.

If furthermore for all non-zero χ ∈ V̂, we have
∣∣∣B̂(χ)

∣∣∣ ≤ δ2, then∣∣∣∣∣ E
z∼π3

[(
E

x∼π1
[A(x) · B(x + z)]

)2
· C(z)

]
− µπ1(A)2 · µπ2(B)2 · µπ3(C)

∣∣∣∣∣ ≤ δ2
2 + δ1.

Recall from Section 2.2 that µπi(S) ≜ |S∩πi|
|πi| . In the statement of this lemma, we don’t

specify a choice of Fourier basis for π2 and π3. Since the properties
∣∣∣Ĉ(χa3)

∣∣∣ ≤ δ1 and∣∣∣B̂(χa2)
∣∣∣ ≤ δ2 are independent of the choice of a2 and a3, we simply write

∣∣∣Ĉ(χ)
∣∣∣ ≤ δ1 and∣∣∣B̂(χ)

∣∣∣ ≤ δ2.

5 Main Proof

We use the following Parallel Repetition Criterion which is similar to, but weaker than the
one from [18] for the GHZ game and has a slightly simpler proof.

Let G refer to the n-fold parallel repetition of the GHZ game. Let P = Qn.

▶ Lemma 17 (Parallel Repetition Criterion). Let c ∈ (0, 1] be a constant and ρ(n) : N → R be a
function such that ρ(n) ≥ exp(−n). Suppose for all large n ∈ N and all subsets E1, E2, E3 ⊆
Fn

2 such that P(E) ≥ ρ(n) where E = E1 × E2 × E3, we have Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c.

Then,

val(G) ≤ ρ(n)Ω(1).

This lemma is proved in [18] under the weaker assumption that there is some coordinate
i ∈ [n] for which val(i)(G|E) ≤ 1 − c. The proof is slightly simpler under our stronger
assumption that Ei∼[n]

[
val(i)(G|E)

]
≤ 1 − c. We prove this in Appendix A.1.

Given this criterion, our goal of showing an inverse polynomial bound for val(G) reduces
to showing the following. Let E = E1 × E2 × E3 be any event such that P(E) = α ≥ 1

n1/100

and n be large enough. It suffices to show that Ei∼[n]

[
val(i)(G|E)

]
≤ 0.95. We do this as

follows.
Let δ = α20

n1/40 . Proposition 15 implies the existence of a partition Π of (Fn
2)3 into affine

subspaces of codimension at most O
(1

δ3

)
= o(n) such that:

APPROX/RANDOM 2021

62:12 Parallel Repetition for the GHZ Game: A Simpler Proof

Every π ∈ Π is of the form a + V3 where V ⊆ Fn
2 is a subspace and a ∈ (Fn

2)3.
With probability at least 1 − δ

P(E) ≥ 1 − o(1) over π ∼ Π(P|E), we have
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ

for all i ∈ [3] and non-zero χ ∈ V̂ , where V is the subspace of Fn
2 for which π is an affine

shift of V3.

Under the distribution Π(P|E), the probability that π is sampled equals (P|π)(E)·P(π)
P(E) by

Bayes’ rule. This implies that the probability that π ∼ Π(P|E) satisfies (P|π)(E) ≤ P(E)/10
is at most 1/10. We will focus on π = π1 × π2 × π3 that satisfy both these properties, namely,
the measure of E under P|π is significant, furthermore, for all i ∈ [3], all non-zero Fourier
coefficients of the sets Ei restricted to πi are small.

▶ Definition 18. We say that π is good if

(P|π)(E) ≥ α/10, and for all non-zero χ ∈ V̂ and i ∈ [3], we have
∣∣∣Êi|πi(χ)

∣∣∣ ≤ δ. (3)

By a union bound, a random π ∼ Π(P|E) will be good with probability at least 1 − 1
10 − δ

α .
Fix any such good π = π1 × π2 × π3 ∈ Π, and let V be the subspace such that π is an affine
shift of V3.

For all z ∈ E3 ∩ π3, define a (partial) matching Mz between π1 and π2 as follows. For
x ∈ π1 ∩ E1, y ∈ π2 ∩ E2, z ∈ π3 ∩ E3 such that x + y = z, put an edge (x, y). Let Lz (resp.
Rz) be the left (resp. right) endpoints of Mz. Let G = ∪z∈E3∩π3Mz be the bipartite graph
between π1 and π2 obtained by combining edges from the matchings for z ∈ E3 ∩π3. Let E(G)
denote the set of edges in G. For every edge e ∈ E(G), we can identify e with a valid input
to the n-fold GHZ game that is contained in E ∩ π. Namely, we associate (x0, y0) ∈ E(G) to
the input (x0, y0, x0 + y0) ∈ supp(P) ∩ E ∩ π. This is a bijective correspondence because of
the way we defined the graph G. Under this correspondence, the uniform distribution over
edges of G corresponds to the distribution P|E, π. We now introduce the important notion
of a bow tie.

▶ Definition 19 (Bow Tie). We say that a subset of edges b ⊆ E(G) is a bow tie if
b = {x0, x1} × {y0, y1} for some x0 ̸= x1 ∈ π1, y0 ̸= y1 ∈ π2 such that x0 + y0 = x1 + y1 (or
equivalently x0 + y1 = x1 + y0). Alternatively, for z0 = x0 + y0 and z1 = x0 + y1, we have
(xi, yj , zk) ∈ supp(P) for all (i, j, k) ∈ supp(Q).

Let b = {x0, x1} × {y0, y1} be a bow tie. As before, we identify b with the indicator
vector b ∈ {0, 1}E(G) of the edges of b, that is, b(e) = 1 iff e ∈ {(xi, yj) : i, j ∈ {0, 1}}.
We use b̃ to denote the uniform distribution on the edges of the bow tie, when viewed as
inputs to the n-fold GHZ game. More precisely, b̃ denotes the uniform distribution on
{(xi, yj , xi + yj) | i, j ∈ {0, 1}}.

We say that b differs in the i-th coordinate for i ∈ [n] if x0(i) ̸= x1(i), or equivalently,
y0(i) ̸= y1(i), or equivalently, z0(i) ̸= z1(i).

Let b be a bow tie and I ⊆ [n] be the coordinates on which b differs. The following claim
shows that val(i)(G|b̃) ≤ 3/4 for all i ∈ I. The proof is deferred to Appendix A.2

▷ Claim 20. Let b = {x0, x1}×{y0, y1} be a bow tie. Let I ⊆ [n] be the subset of coordinates
on which b differs. Then, val(i)(G|b̃) ≤ 3/4 for all i ∈ I.

Let B denote the set of all bow ties. Consider the distribution on edges defined by first
sampling a uniformly random bow tie from B, and then a uniformly random edge from the
bow tie. We now provide an alternate description of this distribution. For each z ∈ E3 ∩ π3,
define 1z ∈ {0, 1}|E(G)| as follows. For each e = (x, y) ∈ E(G), define 1z(e) = 1 if x and y

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:13

are both matched in Mz but not to each other, and define 1z(e) = 0 otherwise. Alternatively,
1z is the indicator of the set ((Lz × Rz) \ Mz) ∩ E(G). Let v := Ez∼E3∩π3 [1z]. Note that v

has |E(G)| coordinates, each of which have non-negative values, so v induces a distribution
on E(G). Consider this distribution ṽ = v

∥v∥1
on E(G) defined by normalizing v. We show

that this distribution is an alternate description of the aforementioned distribution.

▷ Claim 21. v = |E3 ∩ π3|−1 ·
(∑

b∈B b
)
. In particular, we can think of the distribution

ṽ := v
∥v∥1

on E(G) as obtained by sampling a uniformly random bow tie b in G and outputting
a uniformly random edge of b.

The proof of this is deferred to Appendix A.3. Our goal now is to show that the
distribution ṽ is close to the uniform distribution over edges of G. To do so, we study some
properties of G. Observe that |E(G)| ≜ |V|2 · Ex∼π1

z∼π3
[E1(x) · E2(x + z) · E3(z)]. We apply

Lemma 16 with parameters A = E1 ∩π1, B = E2 ∩π2, C = E3 ∩π3. Since π ∈ supp(Π(P|E)),
the set π ∩ supp(P) is non-empty, therefore, we may choose a ∈ supp(P) so that π = a + V3.
This, along with Equation (3) implies that the first hypothesis of Lemma 16 is satisfied.
Lemma 16 implies that∣∣∣|E(G)| − |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3)

∣∣∣ ≤ |V|2 · δ. (4)

We make use of the following bounds on the ℓ1 and ℓ2 norms of v. The proofs of these are
by Fourier analysis and are deferred to Appendices A.4 and A.5.

▷ Claim 22.

∥v∥1 ≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)
− |V| ·

(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1)

(5)

▷ Claim 23.

∥v∥2
2 ≤ |V|2 ·

(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·

√
δ
)

(6)

We now bound ∥ṽ∥2 = ∥v∥2
∥v∥1

by plugging in appropriate bounds on δ and dividing
Equation (6) by Equation (5). Our choice of δ = α20/n1/40, and our assumption that
α/10 ≤ (P|π)(E) (which in turn is at most mini∈[3] (µπi

(Ei))) implies that δ is much smaller
than any µπi

(Ei). In particular, we highlight that
√

δ = o
(
µπ1(E1)3 · µπ2(E2)3 · µπ3(E3)

)
δ = o

(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)
δ = o

(
µπ1(E1) · µπ2(E2) · µπ3(E3)

)
Furthermore, since |V| = 2Ω(n) and 1 ≥ µπi

(Ei) = Ω(α) = n−O(1), we have

|V| · µπ1(E1) · µπ2(E2) = o
(
|V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)

)
.

Thus the dominant term on the right-hand side of Equation (5) is |V|2 · µπ1(E1)2 ·
µπ2(E2)2 · µπ3(E3), and the dominant term on the right-hand side of Equation (6) is
|V|2 · µπ1(E1)3 · µπ2(E2)3 · µπ3(E3). More precisely, we have

∥v∥1 ≥ (1 − o(1)) · |V|2 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) (7)
∥v∥2

2 ≤ (1 + o(1)) · |V|2 · µπ1(E1)3 · µπ2(E2)3 · µπ3(E3). (8)

APPROX/RANDOM 2021

62:14 Parallel Repetition for the GHZ Game: A Simpler Proof

This implies that

∥ṽ∥2
2 = ∥v∥2

2
∥v∥2

1
≤ 1 + o(1)

|V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3) (9)

In comparison, Equation (4) gave that

|E(G)| ∈ (1 ± o(1)) · |V|2 · µπ1(E1) · µπ2(E2) · µπ3(E3).

Thus we can rewrite Equation (9) as

∥ṽ∥2 ≤ 1 + o(1)√
|E(G)|

(10)

This, together with the fact that by construction ∥ṽ∥1 = 1, is sufficient to deduce that
ṽ is close to the “uniform distribution” vector ũ

def= (1
|E(G)| , . . . , 1

|E(G)|). More formally, we
have:

▶ Fact 24. Suppose that ṽ ∈ Rm is an m-dimensional vector such that ∥ṽ∥1 = 1, and
∥ṽ∥2 = 1+β√

m
for some β ∈ [0, 1]. Then

∥ṽ − ũ∥1 ≤
√

3β,

where ũ denotes the vector (1
m , . . . , 1

m).

The proof of Fact 24 is deferred to Appendix A.6
Applying Fact 24 to Equation (10) shows that dTV(ṽ, ũ) = o(1). In other words, a

uniformly random edge of a uniformly random bow tie is distributed close to uniformly on
E(G).

We now show that a typical bow tie differs in a considerable fraction of coordinates.

▷ Claim 25. Pri∼[n]
b∼B

[b differs in i-th coordinate] ≥ 1/3 − o(1).

The proof of Claim 25 is deferred to Appendix A.7.
Claim 20, along with Claim 25 implies that Pri∼[n]

b∼B

[val(i)(G|b̃) ≤ 3/4] ≥ 1/3 − o(1) ≥

0.3. For those i ∈ [n] and b ∈ B such that b doesn’t differ at the i-th coordinate, we
bound val(i)(G|b̃) by 1. This, along with Claim 21 implies that Ei∼[n]

[
val(i)(G|ṽ)

]
≤

Ei∼[n]
b∼B

[val(i)(G|b̃)] ≤ 0.75 × 0.3 + 1 × 0.7 ≤ 0.925. Since dTV(ũ, ṽ) ≤ o(1) and ũ corres-

ponds to P|π, E, this implies that Ei∼[n]

[
val(i)(G|π, E)

]
= 0.925 + o(1) ≤ 0.93. Since

π ∼ Π(P|E) is good with probability at least 1 − δ · α−1 − 1/10 ≥ 0.9 − o(1) ≥ 0.8, we have
Ei∼[n]

[
val(i)(G|E)

]
≤ E

i∼[n]
π∼Π(P|E)

[
val(i)(G|E, π)

]
≤ 0.8 × 0.93 + 0.2 × 1 < 0.95. This, along

with Lemma 17 completes the proof.

References
1 Noga Alon and Bo’az Klartag. Economical toric spines via Cheeger’s inequality. J. Topol.

Anal., 1(2):101–111, 2009.
2 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive

communication. SIAM J. Comput., 42(3):1327–1363, 2013. (also in STOC 2010).

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:15

3 Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability—
towards tight results. SIAM J. Comput., 27(3):804–915, 1998. (also in FOCS 1995).

4 Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: How to remove intractability assumptions. In STOC, pages 113–131, 1988.

5 Mark Braverman and Ankit Garg. Small value parallel repetition for general games. In STOC,
pages 335–340, 2015.

6 Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and limits of
nonlocal strategies. In CCC, pages 236–249, 2004.

7 Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. Multiplayer parallel repetition
for expanding games. In ITCS, volume 67 of LIPIcs, pages Art. No. 37, 16, 2017.

8 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages
624–633, 2014.

9 Uriel Feige. On the success probability of the two provers in one-round proof systems. In
CCC, pages 116–123. IEEE Computer Society, 1991.

10 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
(also in STOC 1996).

11 Uriel Feige, Guy Kindler, and Ryan O’Donnell. Understanding parallel repetition requires
understanding foams. In CCC, pages 179–192, 2007.

12 Uriel Feige and Oleg Verbitsky. Error reduction by parallel repetition - A negative result.
Comb., 22(4):461–478, 2002.

13 Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-power interactive
protocols. In CCC, pages 156–161. IEEE Computer Society, 1988.

14 Lance Jeremy Fortnow. Complexity-theoretic aspects of interactive proof systems. PhD thesis,
MIT, 1989.

15 Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going Beyond Bell’s Theorem,
pages 69–72. Springer Netherlands, Dordrecht, 1989.

16 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. (also
in STOC 1997).

17 Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case. Theory
Comput., 5:141–172, 2009. (also in STOC 2007).

18 Justin Holmgren and Ran Raz. A parallel repetition theorem for the GHZ game. CoRR,
abs/2008.05059, 2020. URL: https://arxiv.org/abs/2008.05059.

19 Justin Holmgren and Lisa Yang. The parallel repetition of non-signaling games: counter-
examples and dichotomy. In STOC, pages 185–192. ACM, 2019.

20 Guy Kindler, Ryan O’Donnell, Anup Rao, and Avi Wigderson. Spherical cubes and rounding
in high dimensions. In FOCS, pages 189–198, 2008.

21 Kunal Mittal and Ran Raz. Block rigidity: Strong multiplayer parallel repetition implies super-
linear lower bounds for turing machines. In ITCS, volume 185 of LIPIcs, pages 71:1–71:15,
2021.

22 Itzhak Parnafes, Ran Raz, and Avi Wigderson. Direct product results and the GCD problem,
in old and new communication models. In STOC, pages 363–372. 1997.

23 Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. (also in
STOC 1995).

24 Ran Raz. Parallel repetition of two prover games. In CCC, pages 3–6. 2010.
25 Ran Raz. A counterexample to strong parallel repetition. SIAM J. Comput., 40(3):771–777,

2011.
26 Oleg Verbitsky. Towards the parallel repetition conjecture. In CCC, pages 304–307. IEEE

Computer Society, 1994.

APPROX/RANDOM 2021

https://arxiv.org/abs/2008.05059

62:16 Parallel Repetition for the GHZ Game: A Simpler Proof

A Appendix

A.1 Proof of Lemma 17
Proof of Lemma 17. Let P = Qn. Choose the largest integer m ≥ 0 such that 32−m ≥ ρ(n)·
2
c . Note that m = Θ(log(1/ρ(n))). Fix any deterministic product strategy f̄ = (f̄1, f̄2, f̄3) for
the players where f̄i : Fn

2 → Fn
2 denotes the strategy for the i-th player. Let Yi = f̄i(Xi) ∈ Fn

2
denote the output of player i on input Xi. Let {j1, . . . , jm} ⊆ [n] be a set of coordinates.
Let Wi denote the event of winning the GHZ game in the ji-th coordinate under the strategy
f̄ and let W≤i := W1 ∧ . . . ∧ Wi. Observe that

val(G, f̄) ≤
m−1∏
i=0

Pr [Wi+1 | W≤i] .

We show how to construct a sequence of coordinates so that every term in the above
product is at most 1 − c/2. This would imply that val(G) ≤ (1 − c/2)Θ(log(1/ρ(n)) = ρ(n)Ω(1).

Fix any i ∈ {0, . . . , m − 1} and assume that we have found j1, . . . , ji. Let X ∼ P and X≤i

denote X restricted to the coordinates {j1, . . . , ji}. Let Y≤i denote the outputs of the players
restricted to the coordinates {j1, . . . , ji}. Let Z≤i = (X≤i, Y≤i). Since W≤i is a function of
Z≤i, we have

Pr [Wi+1 | W≤i] = E
z≤i∼Z≤i|W≤i

[Pr [Wi+1 | Z≤i = z≤i]]

≤ E
z≤i∼Z≤i|W≤i

[
val(ji+1) (G|Z≤i = z≤i)

]
. (11)

Let F = F (z≤i) denote the event that P [Z≤i = z≤i|W≤i] ≥ c
2 · 1

N where N = 32i ≥
supp(Z≤i). We argue that F occurs with probability at least 1 − c/2. This is because we
are sampling z≤i with probability P[Z≤i = z≤i|W≤i], hence the measure of z≤i for which
P[Z≤i = z≤i|W≤i] ≤ c

2 · 1
N is at most c

2 . Fix any z≤i such that F holds. Our choice of m

implies that 1
N · c

2 ≥ ρ(n). Note that we can express the distribution P|Z≤i = z≤i as P|E
where E = E1 ×E2 ×E3 for E1, E2, E3 ⊆ Fn

2 and P(E) ≥ ρ(n). The hypothesis of Lemma 17
implies that Ej∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ 1 − c. This implies that

E
z≤i∼Z≤i|W≤i

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ Pr

z≤i∼Z≤i|W≤i

[¬F]

+ E
z≤i∼Z≤i|W≤i,F

j∼[n]

[
val(j) (G|Z≤i = z≤i)

]
≤ c

2 + 1 − c = 1 − c
2 .

By linearity of expectation, we can fix a j ∈ [n] such that E
z≤i∼Z≤i|W≤i

[
val(j) (G|Z≤i = z≤i)

]
≤

1 − c
2 . Note that j /∈ {j1, . . . , ji} since we already win the game on these coordinates. This,

along with Equation (11) completes the proof. ◀

A.2 Proof of Claim 20
Proof of Claim 20. Let i ∈ I. Since the bow tie b differs in the i-th coordinate, we have

{x0(i), x1(i)} = {y0(i), y1(i)} = {z0(i), z1(i)} = {0, 1}.

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:17

We may thus assume without loss of generality that x0(i) = y0(i) = 0. Define embeddings
ϕ1 : F2 → {x0, x1}, ϕ2 : F2 → {y0, y1} and ϕ3 : F2 → {z0, z1} at a ∈ F2 by ϕ1(a) = xa,
ϕ2(a) = ya and ϕ3(a) = za. It follows for all a ∈ {0, 1} and j ∈ [3], we have (ϕj(a))(i) = a. In
particular, for ϕ = ϕ1 ×ϕ2 ×ϕ3, the distribution ϕ(Q) is exactly the distribution b̃. Given any
strategies f̄1, f̄2, f̄3 : Fn

2 → Fn
2 for the players for the n-fold GHZ game restricted to the query

distribution b̃, the functions ϕ1, ϕ2, ϕ3 induce a strategy for the GHZ game as follows. Define
fj : F2 → F2 by fj(a) = (f̄j(ϕj(a)))(i). The success probability of the strategy f1 × f2 × f3
on the distribution Q is exactly the success probability in the i-th coordinate of the strategy
f̄1 × f̄2 × f̄2 on the distribution b̃. It follows that val(i)(G|b̃) ≤ 3/4. ◁

A.3 Proof of Claim 21
Proof of Claim 21. Fix any e ∈ E(G), e = (x0, y0). This implies that x0 ∈ E1∩π1, y0 ∈ E2∩π2
and z0 := x0 + y0 ∈ E3 ∩ π3. Note that v(e) = Prz∼E3∩π3 [(x0, y0) ∈ (Lz × Rz) \ Mz]. For
any z1 ∈ E3 ∩ π3,

e ∈ (Lz1 × Rz1) \ Mz1 ⇐⇒ x0 + z1 ∈ E2 ∩ π2, y0 + z1 ∈ E1 ∩ π1, z1 ̸= z0

⇐⇒ x0, x1 ∈ E1 ∩ π1, y0, y1 ∈ E2 ∩ π2, z1 ̸= z0 ∈ E3 ∩ π3

where x1 := y0 + z1, y1 := x0 + z1

⇐⇒ {x0, x1} × {y0, y1} is a bow tie
where x1 := y0 + z1, y1 := x0 + z1.

This implies that for all e = (x0, y0) ∈ E(G) and z1 ∈ E3 ∩ π3, we have 1z1(e) = 1 if and
only if b = {x0, x1} × {y0, y1} is a bow tie. Observe that as we vary z1 ∈ E3 ∩ π3, we obtain
all possible bow ties that contain the edge e, i.e. the bow ties b for which b(e) ̸= 0. This
implies that v ≜ Ez1∼E3∩π3 [1z] = |E3 ∩ π3|−1 ·

(∑
b∈B b

)
. ◁

A.4 Proof of Claim 22
For ease of notation, we define weight functions as follows.

▶ Definition 26 (Weight functions). Let P = Qn. For z ∈ π3, let

wtπ(z) := Pr
X∼P

[(X1 ∈ E1 and X2 ∈ E2)|(X ∈ π and X3 = z)] = E
x∼π1

[E1(x)E2(x + z)] .

Proof of Claim 22. Let z ∈ E3 ∩ π3. Note that wtπ(z) = µπ1(Lz) = µπ2(Rz). Observe that
∥1z∥1 = |E(G) ∩ (Lz × Rz) \ Mz|. We apply Lemma 16 with parameters A = Lz ∩ π1, B =
Rz ∩ π2, C = E3 ∩ π3. The first hypothesis of Lemma 16 is satisfied due to Equation (3).
Lemma 16 implies that

|E(G) ∩ (Lz × Rz)| ≜ |V|2 · E
z′∼π3
x∼π1

[Lz(x) · Rz(x + z′) · E3(z′)]

≥ |V|2 · (µπ1(Lz) · µπ2(Rz) · µπ3(E3) − δ)
≜ |V|2 ·

(
wtπ(z)2 · µπ3(E3) − δ

)
.

Similarly, |Mz| ≜ |V| · Ex∼π1 [E1(x) · E2(x + z)] = |V| · wtπ(z). We apply Lemma 16 with
parameters A = E1, B = E2, C = E3. All the hypothesis are satisfied due to Equation (3).
Lemma 16, along with conditioning z ∼ π3 on z ∈ E3 implies that∣∣∣∣ E

z∼E3∩π3

[
wtπ(z)2]

− µπ1(E1)2 · µπ2(E2)2
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1. (12)

APPROX/RANDOM 2021

62:18 Parallel Repetition for the GHZ Game: A Simpler Proof

∣∣∣∣ E
z∼E3∩π3

[wtπ(z)] − µπ1(E1) · µπ2(E2)
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

Substituting this in the previous inequalities and taking an expectation over z ∼ E3 ∩ π3,

∥v∥1 = E
z∼E3∩π3

[∥1z∥1] = E
z∼E3∩π3

[|E(G) ∩ (Lz × Rz)| − |Mz|]

≥ |V|2 ·
(

E
z∼E3∩π3

[
wtπ(z)2]

· µπ3(E3) − δ

)
− |V| · E

z∼E3∩π3
[wtπ(z)]

≥ |V|2 ·
(
µπ1(E1)2 · µπ2(E2)2 · µπ3(E3) − 3 · δ

)
− |V| ·

(
µπ1(E1) · µπ2(E2) + 2 · δ · µπ3(E3)−1)

. ◀

A.5 Proof of Claim 23
Proof of Claim 23. Define wtπ(·) as in the proof of Claim 22. Let z, z′ ∈ E3 ∩ π3. Observe
that ⟨1z, 1z′⟩ = |E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)|. We apply Lemma 16 with
parameters A = Lz ∩ Lz′ ∩ π1, B = Rz ∩ Rz′ ∩ π2 and C = E3 ∩ π3. The first hypothesis is
satisfied due to Equation (3). Lemma 16 implies that

⟨1z, 1z′⟩ =
∣∣E(G) ∩ ((Lz ∩ Lz′) × (Rz ∩ Rz′)) \ (Mz ∪ Mz′)

∣∣
≤ |V|2 · (µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ) .

Taking an expectation over z′ ∼ E3 ∩ π3 and applying Cauchy-Schwartz yields that

E
z′∼E3∩π3

[⟨1z, 1z′⟩]

≤ |V|2 · E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′) · µπ2(Rz ∩ Rz′) · µπ3(E3) + δ]

≤ |V|2 ·
(√

E
z′∼E3∩π3

[µπ1(Lz ∩ Lz′)2] ·
√

E
z′∼E3∩π3

[µπ2(Rz ∩ Rz′)2] · µπ3(E3) + δ

)
.

Observe that µπ1(Lz ∩ Lz′) = Ex∼π1 [Lz(x)E2(x + z′)] for all z′ ∈ E3 ∩ π3. We now apply
Lemma 16 with parameters A = Lz ∩ π1, B = E2 ∩ π2, C = E3 ∩ π3. All the hypotheses are
satisfied due to Equation (3). Lemma 16, along with the aforementioned observation implies
that∣∣∣∣ E

z′∼E3∩π3

[
µπ1(Lz ∩ Lz′)2]

− µπ1(Lz)2 · µπ2(E2)2
∣∣∣∣ ≤ 2 · δ · µπ3(E3)−1.

An analogous inequality holds for |Rz ∩ Rz′ |. Substituting this in the previous inequality
and using the fact that

√
a + b ≤

√
a +

√
b, we have

E
z′∼E3∩π3

[⟨1z, 1z′⟩]

≤ |V|2 ·
((

µπ1(Lz) · µπ2(E2) +
√

2·δ
µπ3 (E3)

)
·
(

µπ2(Rz) · µπ1(E1) +
√

2·δ
µπ3 (E3)

)
· µπ3(E3)

+ δ
)

≤ |V|2 ·
(

µπ1(Lz) · µπ2(Rz) · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·
√

δ
)

= |V|2 ·
(

wtπ(z)2 · µπ1(E1) · µπ2(E2) · µπ3(E3) + 8 ·
√

δ
)

.

We now take an expectation over z ∼ E3 ∩ π3 and use Equation (12) to conclude that

E
z,z′∼E3∩π3

[⟨1z, 1z′⟩] ≤ |V|2 ·
(

µπ1(E1)3 · µπ2(E2)3 · µπ3(E3) + 10 ·
√

δ
)

. ◀

U. Girish, J. Holmgren, K. Mittal, R. Raz, and W. Zhan 62:19

A.6 Proof of Fact 24
Proof of Fact 24.

∥ṽ − ũ∥2
2 = ⟨ṽ − ũ, ṽ − ũ⟩

= ∥ṽ∥2
2 + ∥ũ∥2

2 − 2⟨ũ, ṽ⟩

= 1 + 2β + β2

m
+ 1

m
− 2

m

= 2β + β2

m
≤ 3β

m
.

Finally, we bound the ℓ1 distance in terms of the ℓ2 distance:

∥ṽ − ũ∥1 ≤ ∥ṽ − ũ∥2 ·
√

m ≤
√

3β. ◀

A.7 Proof of Claim 25
Proof of Claim 25. It suffices to show that a random b ∼ B differs in less than n/3 coordinates
with probability at most 2−Ω(n) = o(1).

The Chernoff bound implies that Prx0,x1∼Fn
2

[hwt(x0 + x1) < n/3] ≤ 2−Ω(n). We condition
on x0, x1 ∈ π1 to conclude that Prx0,x1∼π1 [hwt(x0 + x1) < n/3] ≤ 2−Ω(n) · 22n

|V|2 .
Let b = {x0, x1} × {y0, y1} be a bow tie. By definition, we have y1 = x0 + x1 + y0. In

particular, the bow tie b is uniquely identified by x0, x1, y0. This implies that the probability
that a random b ∼ B differs in less than n/3 coordinates is precisely

|V|3

|B|
Pr

x0,x1∼π1
y0∼π2

y1=x0+x1+y0

[{x0, x1} × {y0, y1} ∈ B and hwt(x0 + x1) < n/3]

≤ |V|3

|B|
Pr

x0,x1∼π1
[hwt(x0 + x1) < n/3]

≤ |V|3

|B|
· 2−Ω(n) · 22n

|V|2

Recall that v = Ez∼E3∩π3 [1z] = 1
µπ3 (E3)·|V|

∑
z∈E3∩π3

1z, where for each e,
∑

z∈E3∩π3
1z(e)

equals the number of bow ties containing the edge e. Since each bow tie contains 4 edges, we
have that ∥v∥1 = 4

µπ3 (E3)·|V| · |B|. Then, equation (7) implies that

|B| ≥ 1
8 · |V|3 · µπ1(E1)2 · µπ2(E2)2 · µπ3(E3)2 ≥ 1

8 · |V|3 · α6.

This implies that |V|3

|B| ≤ 8/α6. Recall that α ≥ n−O(1) and the co-dimension of V is
o(n). This implies that 22n

|V|2 = 2o(n). This along with the above calculation implies that the
probability that a uniformly random b ∼ B differs in less than n/3 coordinates is at most
8·2−Ω(n)

α6 · 2o(n) = 2−Ω(n). This completes the proof. ◁

APPROX/RANDOM 2021

	p000-Frontmatter
	Preface

	p001-Bhaskar
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Envy-Freeness for Binary Valued Chores
	5 EF1 For Doubly Monotone Instances
	5.1 An Algorithm for Monotone Chores
	5.2 An Algorithm for Doubly Monotone Instances

	6 Approximate Envy Freeness for Mixed Resources
	6.1 Preliminaries for Instances with Divisible and Indivisible Resources
	6.2 Background: Indivisible Goods and Cake
	6.3 EFM for Doubly Monotone Indivisible Items and Bad Cake
	6.4 Special Case Results with Indivisible Chores and Divisible Cake

	A Appendix
	A.1 Proof of Lemma 5
	A.2 Proof of Lemma 13
	A.3 Proof of Lemma 14
	A.4 Proof of Lemma 15
	A.5 Proof of Theorem 16
	A.6 Special Case Results for EFM with Indivisible Chores and Divisible Cake

	p002-Albers
	1 Introduction
	2 Deterministic algorithms for maximum-cardinality b-matching
	3 Randomized algorithms for maximum-cardinality b-matching
	4 Vertex-weighted b-matching
	A Comparison of RelativeBalance and Allocation
	B Analysis of Random

	p003-Gupta
	1 Introduction
	1.1 Related Work
	1.2 Paper Organization

	2 Problem Statement and the Omega(K) Hardness
	3 The Scheduling Algorithm
	3.1 Properties of the Rate Assignment
	3.2 Defining the Blocks

	4 The Analysis and Intuition
	4.1 Simplifying the dual LP
	4.2 Interpreting the Duals and the High-Level Proof Idea

	5 Analysis I: A Weaker O(K + log n) Guarantee
	6 Analysis II: An Improved Guarantee for a Single Job
	6.1 The Intuition Behind the Improvement
	6.2 Defining the New Epochs
	6.3 Setting the Duals

	7 Analysis III: Proof for O~(K^3) Guarantee
	8 Discussion
	A Missing Proofs of Section 2
	B Missing proofs of Section 3
	C Missing Proofs of Section 4

	p004-Bhattacharya
	1 Introduction
	1.1 Related Works
	1.2 Technical Overview and Contributions

	2 Useful Facts and Inequalities
	2.1 Preliminaries

	3 Inapproximability of Euclidean k-Median
	3.1 Completeness
	3.2 Soundness

	4 Bi-criteria Hardness of Approximation
	4.1 Bi-criteria Inapproximability: k-Median

	A Proof of Lemma 9
	B Bi-criteria Inapproximability: k-means
	B.1 Completeness
	B.2 Soundness

	p005-Grigorescu
	1 Introduction
	1.1 Our contributions
	1.1.1 Directed spanners
	1.1.2 Directed Steiner forests
	1.1.3 Summary

	1.2 An efficient online covering and packing framework
	1.2.1 Separation oracles in the online setting
	1.2.2 A primal-dual bound on separation oracles

	1.3 High-level technical overview for online network optimization problems
	1.3.1 Online pairwise spanners
	1.3.2 Online pairwise spanners with uniform edge lengths
	1.3.3 Online Steiner forests with uniform costs

	1.4 Organization

	2 Online Pairwise Spanners with Uniform Lengths
	2.1 Outline of the proof of Theorem 1
	2.1.1 Junction tree approximation
	2.1.2 Reduction to Steiner label cover
	2.1.3 An online algorithm for Steiner label cover on H

	3 Online Pairwise Spanners
	3.1 An O~(n^{4/5})-competitive online algorithm for pairwise spanners
	3.1.1 A simple O~(n^{4/5})-approximate offline algorithm based on [34]
	3.1.2 An O~(n^{4/5})-competitive online algorithm

	3.2 Online pairwise spanners with uniform edge lengths
	3.3 Online directed Steiner forests with uniform costs

	4 Conclusions and Open Problems
	A Additional background and related work
	B Proof of Theorem 2
	B.1 Converting and solving LP (5) online
	B.2 Conditional edge selection
	B.3 Summary

	C Online Covering in Polynomial Time

	p006-Bishnu
	1 Introduction
	2 Estimation algorithm
	2.1 Overview of our algorithm
	2.2 Formal Algorithm (Proof of Theorem 1.1)

	3 Lower bounds
	3.1 Communication Complexity
	3.2 Proofs of Theorems 1.2 and 1.3

	4 Conclusion
	A Application of our approach to other cut problems
	B Probability Results

	p007-Kim
	1 Introduction and main ideas of our results
	2 Preliminary definitions and results
	3 The primal-dual approach
	4 Discussion

	p008-Balogh
	1 Introduction
	2 The lower bound for large values of {d}
	2.1 Assembling the pieces together

	3 A lower bound for medium sized dimensions
	4 The case {d = 3}
	5 The case {d = 8}
	A Adaptive constructions for deterministic algorithms

	p009-Bringmann
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Technical Overview
	4 The Reduction
	4.1 Consequences
	4.2 The Hybrid Problem
	4.3 Universe Reduction

	A Reducing OptSPk Formulas to the Hybrid Problem

	p010-Jowhari
	1 Introduction
	1.1 Previous Works
	1.2 The estimator in this paper
	1.3 Related Works

	2 Graph properties
	3 Algorithms
	3.1 The streaming algorithm
	3.2 A simultaneous communication protocol

	4 Conclusion

	p011-Jayaram
	1 Introduction
	1.1 Graph Streaming
	1.2 Triangle Counting in Graph Streams
	1.3 Additional Graph Parameters for Triangle Counting
	1.4 Our Algorithm
	1.5 Other Related Work

	2 Overview of the Algorithm
	3 The Triangle Counting Algorithm
	3.1 Description of the Algorithm
	3.2 Analysis of the Algorithm

	4 Conclusion

	p012-Housni
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 NP-hardness
	2.2 Greedy Approach
	2.3 Single Scenario

	3 Explicit Scenarios
	3.1 Two scenarios
	3.2 Constant number of scenarios

	4 Implicit Scenarios
	4.1 Warm-up: no surplus
	4.2 Small surplus

	5 Conclusion
	A NP-Hardness proofs for TSRMB
	B Implicit scenarios: small surplus

	p013-Borodin
	1 Introduction
	1.1 Preliminaries
	1.2 Our Results
	1.3 Our Technical Contributions

	2 Vertex Weights
	2.0.1 Defining the Primal-Dual Charging Schemes
	2.0.2 Proving Dual Feasibility: Lemma 2.5

	3 Edge Weights
	4 Conclusion and Open Problems
	A Solving LP-config Efficiently
	A.1 Solving LP-config Efficiently

	B Proofs and Additions to Section 2
	C Proofs and Additions to Section 3

	p014-Huang
	1 Introduction
	1.1 Our Contribution
	1.2 Our Technique

	2 Maximum Weight b-Matching
	2.1 Description of the Algorithm
	2.2 Analysis for Maximum Weight b-Matching

	3 Submodular Function Maximization
	3.1 Description of the Algorithm
	3.2 Analysis for Monotone Submodular Function Maximization
	3.3 Analysis for Non-Monotone Submodular Function Maximization

	4 Matroid-constrained Maximum Submodular b-Matching
	4.1 Description of the Algorithm
	4.2 Analysis for Monotone Submodular Function Maximization
	4.3 Analysis for Non-Monotone Submodular Function Maximization

	A Making Algorithm 1 Memory-Efficient
	B Example of Different Behavior Compared to [12]

	p015-Fairstein
	1 Introduction
	1.1 Problem Definition
	1.2 Our Results
	1.3 Related Work

	2 Approximation Scheme for –GMK
	2.1 Bounded Time Horizon
	2.2 General Time Horizon

	3 Hardness Results
	A Omitted Proofs and Definition

	p016-Banerjee
	1 Introduction
	2 Definitions and Preliminary Claims
	3 The Algorithm
	4 Proofs

	p017-Singer
	1 Introduction
	1.1 Orderings and Constraint Satisfaction Problems
	1.2 Approximability
	1.3 Streaming algorithms
	1.4 Main result and comparison to prior and related works
	1.5 Techniques
	1.5.1 Special case: The intuition for MAS
	1.5.2 Extending to general ordering CSPs

	2 Preliminaries and definitions
	2.1 Basic notation
	2.2 Concentration bound

	3 The streaming space lower bound
	3.1 Distribution of hard instances
	3.2 Statement of key lemmas

	4 Bounds on Max-OCSP(Pi) values of G^Y and G^N
	4.1 CSPs and coarsening
	4.2 G^Y has high Max-OCSP(Pi) values
	4.3 G^N has low Max-OCSP(Pi) values
	4.3.1 G^N is a good SSHE with high probability
	4.3.2 G^N has low coarsened Max-CSP(f_Pi^q) values with high probability

	5 Streaming indistinguishability of G^Y and G^N
	A Example hard instances for MAS

	p018-Arutyunova
	1 Introduction
	2 Preliminaries
	3 Approximation Guarantee of Single Linkage
	4 Lower Bounds for Complete Linkage
	4.1 A Lower Bound for Diameter-Based Cost
	4.2 A Lower Bound for Radius-Based Costs

	5 An Upper Bound for Complete Linkage
	5.1 An Upper Bound for Radius-Based Cost
	5.2 An Upper Bound for Diameter-Based Cost

	A Single Linkage
	B A Lower Bound for Complete Linkage without Bad Ties
	B.1 Diameter-Based Cost
	B.2 Radius-Based Cost

	C An Upper Bound for Radius-Based Cost

	p019-Konrad
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	3.1 Goel et al.'s Lower Bound for One-pass Algorithms
	3.2 Our Lower Bound Construction
	3.2.1 Ruzsa-Szemerédi Graphs with Near-Perfect Matchings
	3.2.2 Lower Bound Proof

	4 Algorithm
	4.1 Analysis of Algorithm 3
	4.2 Optimality of the Analysis

	5 Conclusion
	A Strengthening Lemma 9

	p020-Galvez
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Demand Profile and Left-Pushing
	2.2 Container-based Scheduling

	3 A Simple 2-Approximation for DSP
	4 A (5/3+epsilon)-Approximation for DSP
	4.1 Containers for Tall and Large Tasks
	4.2 Containers for Horizontal Tasks
	4.3 Scheduling Narrow Tasks

	5 Comparison between DSP and GSP
	A Hardness of Approximation for Square-DSP
	B A PTAS for DSP with short tasks

	p021-Deppert
	1 Introduction
	2 Cases solved with Steinberg's algorithm
	3 (5/3 + epsilon)-Approximation
	4 AEPTAS for NPDM
	5 Conclusion
	A Proof of Theorem 4
	B Proof of Theorem 5 (First Steinberg Case)
	C Proof of Theorem 6 (Second Steinberg Case)

	p022-Khan
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminaries
	3 Guillotinable Packing of Skewed Rectangles
	3.1 Packing With Slicing
	3.2 The skewed4Pack Algorithm
	3.3 Creating Shelves

	4 Almost-Optimal Bin Packing of Skewed Rectangles
	4.1 Classifying and Rounding Items
	4.2 Structural Theorem
	4.3 Packing Algorithm
	4.3.1 Enumerating Packing of Compartments
	4.3.2 Fractionally Packing Items into Compartments
	4.3.3 Converting a Fractional Packing to a Non-Fractional Packing
	4.3.4 Summary

	A Linear Grouping
	B skewed4Pack: Packing Items into Containers
	C Details of skewedCPack
	C.1 Removing Medium Items
	C.2 Converting a Fractional Packing to a Non-Fractional Packing
	C.3 Pseudocode for skewedCPack

	D Lower Bound on APoG

	p023-Brubach
	1 Introduction
	1.1 Motivation
	1.2 Our Generalization Scheme and Comparison with Previous Results
	1.3 Outline and Contributions
	1.4 Notation and Important Subroutines

	2 Generalizing to the Black-Box Setting
	3 Approximation Algorithm for 2S-Sup-BB
	3.1 A 3-Approximation Algorithm for 2S-Sup-Poly
	3.2 Generalizing to the Black-Box Setting

	4 Approximation Algorithm for 2S-MatSup-BB
	4.1 A 5-Approximation Algorithm for 2S-MatSup-Poly
	4.2 Generalizing to the Black-Box Setting

	A Applying the Standard SAA Method in Supplier Problems
	B Auxiliary Lemmas
	C Approximation Algorithm for 2S-MuSup-BB
	C.1 Reducing 2S-MuSup-Poly to Robust Weighted Multi-Knapsack-Supplier
	C.2 Generalizing to the Black-Box Setting
	C.3 Connections to 2S-MatSup

	p024-Chekuri
	1 Introduction
	1.1 Results
	1.2 Overview of main ideas
	1.3 Other related work

	2 Preliminaries and notation
	3 Fast swap rounding in the spanning tree polytope
	3.1 Randomized swap rounding
	3.2 Setup for fast implementation in graphs
	3.3 Fast implementation of swap-round

	4 Sparsification via the LP Solution
	5 Fast approximation scheme for solving the LP relaxation
	A Putting things together and extensions
	A.1 Proofs of corollaries
	A.2 Extensions and related problems

	p025-Goke
	1 Introduction
	1.1 Our results
	1.2 Our approach

	2 Primal-dual algorithm for ECT on node-weighted planar graphs
	2.1 Blended inequalities and compression
	2.2 Pockets and their variants
	2.3 Identifying families of even cycles via tilings
	2.4 The algorithm in detail
	2.5 Analysis of approximation ratio

	A Obtaining a 2/3-quasi-perfect tiling
	A.1 Proof of Theorem 17

	p026-Bhawalkar
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Model and Preliminaries
	3 Node Model: One Trip Per Vehicle
	4 Separate Price & Route Optimization
	4.1 Price Setting
	4.2 Construction of the Orienteering Instance

	5 Joint Price and Route Optimization
	5.1 Concave Approximate Revenue Functions
	5.2 Construction of the Orienteering Instance

	6 Selfish drivers
	7 Transportation Network Pricing with Dynamic Demands
	7.1 Step 1: Transportation Network Pricing to Transportation Network Routing
	7.2 Step 2: Transportation Network Routing to Directed Orienteering

	8 Capacitated Vehicles

	p027-Borndorfer
	1 Introduction
	1.1 Related work

	2 Preliminaries
	3 Approximation for BCP on c-claw-free graphs
	4 Approximation of the Győri-Lovász Theorem for k-connected Graphs
	4.1 Bounded Partition for k-connected Graphs
	4.2 Both-side Bounded Partition for k-connected Graphs

	p028-Hoza
	1 Introduction
	1.1 Derandomization
	1.2 Pseudorandom Generators
	1.3 Weighted PRGs
	1.4 Main Result: An Improved WPRG
	1.5 Derandomization that Beats the Saks-Zhou Bound
	1.6 Overview of Proofs
	1.6.1 Overview of our Improved WPRG
	1.6.2 Overview of our Improved Derandomization

	1.7 WPRGs vs. HSGs

	2 Preliminaries
	2.1 Pseudodistributions
	2.2 Weighted PRGs
	2.3 Applying Pseudodistributions to ROBPs
	2.4 Local Consistency

	3 Amplifying Local Consistency
	3.1 Construction
	3.2 Analysis

	4 Our Improved WPRG for ROBPs
	4.1 Construction
	4.2 Correctness
	4.3 Explicitness and Seed Length

	5 Directions for Further Research
	A Derandomization Beyond Saks-Zhou
	B Local Consistency vs. Approximate Inverse Laplacian

	p029-Brakerski
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Open Problems and Future Directions
	1.4 Other Related Works
	1.5 Organization of the Paper

	2 Preliminaries
	2.1 Probability
	2.2 Hitting probabilities
	2.3 Lattices and Lattice Problems

	3 Variants of Average-case k-SUM: Totality and Reductions
	3.1 From k-SUM to Modular k-SUM and Back

	4 The faster Algorithm for Average-case k-SUM
	5 From Worst-case Lattice Problems to Average-case k-SUM
	A Total k-SUM and Computational Geometry

	p030-Bhargava
	1 Introduction
	1.1 Our Results
	1.2 Proof techniques

	2 Achieving Cone-closed basis by shift
	3 Hitting set for orbit of any-order ROABPs
	4 Hitting Set for orbit of ROABPs
	5 Conclusion
	A Preliminaries
	A.1 Hitting sets
	A.2 Some useful polynomial maps
	A.3 Algebraic independence
	A.4 Various notions of rank concentration

	B Proof of Lemma 5

	p031-Harris
	1 Introduction
	1.1 Example application: latin transversals
	1.2 Overview of our approach

	2 Background and Basic Definitions
	2.1 The new commutativity definition

	3 Witness DAGs and matrix bounds
	4 Estimating weights of wdags
	5 Parallel algorithms
	6 Distributional properties
	7 Compositional properties for resampling oracles
	A Necessity of transition matrix commutativity for Lemma 5
	B Proof of Theorem 28
	C Proof of Theorem 30 and Theorem 31

	p032-Liu
	1 Introduction
	1.1 Our Contributions
	1.2 Main Technical Result
	1.3 Independent Work
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Spin Systems
	2.2 Discrete Product Spaces and Homogeneous Set Systems
	2.3 Spectral Independence and The Down-Up Walk

	3 Stein's Method for Markov Chains
	4 Discrete Ricci Curvature on Product Spaces
	4.1 Dobrushin Uniqueness and Spectral Independence

	5 Spectral Independence for Proper List-Colorings
	5.1 The Flip Dynamics
	5.2 Variable-Length Path Coupling: Proof of flipdistbound

	6 Future Directions
	A Variance and Entropy Decay
	B Missing Proofs

	p033-Karingula
	1 Introduction
	1.1 Connections to coding theory - alphabet size for MDS codes
	1.2 Related works on the singularity of random matrices
	1.3 Proof techniques
	1.4 Directions for further research and applications

	2 General approach
	3 Preliminary estimates
	4 Compressible vectors
	5 The LCD condition
	6 Bounding the LCD
	7 Completing the proof

	p034-Chakraborty
	1 Introduction
	1.1 Property Testing of Graph Isomorphism
	1.2 Earth Mover's Distance (EMD)
	1.3 Our Results
	1.3.1 Implication of Theorem 1.4 to Query Complexity of Tolerant GI
	1.3.2 Implication of Theorem 1.4 to Communication Complexity of Tolerant GI

	2 Discussion on our proof of Theorem 1.4
	2.1 Reduction from tolerant EMD testing to tolerant graph isomorphism testing (Lower bound part of Theorem 1.4)
	2.2 Reduction from tolerant graph isomorphism to tolerant EMD testing (Upper bound part of Theorem 1.4)

	3 Tolerant graph isomorphism is as hard as tolerant EMD testing
	3.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 3.2

	4 Tolerant EMD testing is as hard as tolerant graph isomorphism testing
	4.1 Algorithm for tolerant graph isomorphism testing
	4.1.1 Phase 1
	4.1.2 Phase 2
	4.1.3 Phase 3

	5 Conclusion
	A Preliminaries
	A.1 Notion of distance between two graphs
	A.2 Property Testing of Distribution Properties

	B Earth Mover's Distance (EMD) over Hamming Cube

	p035-Li
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Upper Bound
	4 Lower Bound
	4.1 Calculation of the Mean
	4.2 Calculation of the Variance

	A Proof of Proposition 12
	B Omitted Calculations in Section 4.1
	C Omitted Calculations in Section 4.2
	D Exact Variance when r = 2

	p036-Galanis
	1 Introduction
	1.1 Main Results

	2 Polymers
	3 Application to unbounded-degree graphs
	3.1 Expansion of random graphs with specified degree sequences

	p037-Servedio
	1 Introduction
	1.1 Background: Deterministic approximate counting algorithms for PTFs
	1.1.1 Algorithms for PTFs over Gaussian space

	1.2 This work: Upgrading algorithms for Gaussian space into ones for Boolean space
	1.3 Our results: New deterministic approximate counting algorithms for PTFs over Boolean space
	1.4 Our approach: Derandomizing Meka and Zuckerman's regularity lemma
	1.4.1 Applying the derandomized regularity lemma

	2 Preliminaries
	2.1 Fourier analysis of Boolean functions
	2.2 PTFs, regularity, and the critical index

	3 Derandomizing Meka and Zuckerman's regularity lemma
	3.1 Overview of [19]'s regularity lemma and its proof
	3.2 The high level idea of our approach: Derandomizing each ``atomic step'' in a bias-preserving manner
	3.3 Proof of Theorem 15: Bias-preserving derandomization of [19]'s regularity lemma
	3.3.1 Composing single atomic steps: Proof of Theorem 15 given Lemma 17

	4 Instantiating our derandomized regularity lemma: Proofs of Theorems 1 and 2
	4.1 The G_{PTF} PRG
	4.2 Proof of Theorem 1
	4.3 Proof of Theorem 2

	A Proof of Fact 6
	B Proof of Lemma 13 and Lemma 14
	B.1 Proof of Lemma 13 (derandomized Lemma 5.2 of [8]: large critical index)
	B.2 Proof of Lemma 14 (derandomized Lemma 5.1 of [8]: small critical index)

	p038-Golowich
	1 Introduction
	1.1 High-dimensional expanders
	1.2 Contributions

	2 Background and preliminaries
	3 Construction
	3.1 Main result
	3.2 Decomposition into permutation-invariant subsets
	3.3 Relative weights of overlapping faces

	4 Local and global expansion
	4.1 Proof of Theorem 18

	5 Discussion and future directions

	p039-Iliopoulos
	1 Introduction
	1.1 Application to coloring pseudo-random hypergraphs
	1.2 Technical overview
	1.3 Organization of the paper

	2 Background and preliminaries
	2.1 The Lovász Local Lemma
	2.2 Talagrand's inequality

	3 List-coloring high-girth hypergraphs
	3.1 Proof of Lemma 18

	4 A sufficient pseudo-random property for coloring

	p040-Shah
	1 Introduction
	1.1 Motivation for low-rank noise
	1.2 Our results
	1.3 Previous techniques and our approach
	1.4 Why would the perturbed matrix even be full rank?
	1.5 Related works
	1.6 Notation

	2 Preliminaries
	3 Proof of main theorems
	3.1 Sub-Gaussian perturbations
	3.2 Application to linear systems

	4 Perturbation beyond rank k
	A Numerical experiments
	B Low-rank noise model for other problems in smoothed analysis
	B.1 Simplex method
	B.2 k-means clustering

	p041-Ghosh
	1 Introduction
	2 Previous works
	3 Proof techniques
	3.1 Proof Idea of Theorem 1
	3.2 Proof idea of Theorem 3

	p042-Srinivasan
	1 Introduction
	1.1 Background and motivation
	1.2 Results
	1.3 Proof Outline

	2 Preliminaries
	3 The Lower Bound: Proof of Theorem 4
	3.1 The case of large sensitivity
	3.2 The case of small sensitivity
	3.3 Finishing the proof of Theorem 4

	4 The Upper Bound: Proof of Theorem 5
	A Proof of Lemma 15
	B Proof of the Random function lower bound (Lemma 17)

	p043-Blanca
	1 Introduction
	2 Preliminaries
	3 Variance Mixing implies fast mixing: Proof of Theorem 1
	3.1 Equivalence between VM and PVM: Proof of Theorem 7

	4 Entropy Mixing: Proof of Theorem 2

	p044-Bishnu
	1 Introduction
	1.1 Query oracle definition and motivation, problem statements and our results
	1.2 Related work

	2 Matrix-Distance between two symmetric matrices
	2.1 Technical preliminaries to prove Lemma 2.2
	2.2 Proof of Lemma 2.2

	3 Distance between two arbitrary matrices
	4 Lower bound results
	4.1 Proof of Theorem 4.1
	4.2 Proof of Theorem 4.2

	5 Conclusion
	A Formal correctness proof of Dist-Symm-Matrix-Guess(A, B,epsilon,T)
	B Communication complexity
	C Probability Results

	p045-Blanc
	1 Introduction
	1.1 Background and prior work
	1.2 This work: Lower bounds in the smoothed setting
	1.3 Related Work

	2 Preliminaries
	3 Proof overview and formal statements of our results
	4 Warm-Up: A Weaker Lower Bound
	4.1 Address is Almost Uniform
	4.2 Memory Bits are Queried First
	4.3 Proof of the Weaker Version

	5 Proof of Theorem 10
	6 Proof of Theorem 11
	7 Conclusion

	p046-Rajgopal
	1 Introduction
	1.1 Unconditional Results for Hardness of Learning
	1.2 Robustness for Hardness of Learning
	1.3 Reducing Succinct Search to Decision for Learning
	1.4 Barriers for Establishing NP-Hardness of Learning
	1.5 Further Discussion

	2 Unconditional Results for Hardness of Learning
	3 Robustness of Hardness of Learning
	4 Reducing Succinct Search to Decision
	A Preliminaries
	A.1 Samplability and Learnability
	A.2 Self-Reducibility
	A.3 Kolmogorov Complexity

	B Barriers for Conditional Hardness of Learning

	p047-Blanca
	1 Introduction
	2 Proof sketch and techniques
	2.1 The burn-in period
	2.2 Coupling to the same component structure
	2.3 Coupling to the same configuration

	3 Coupling to the same component structure: proof of Lemma 11
	3.1 Local limit theorem
	3.2 Random graphs estimates
	3.3 Proof of Lemma 11

	p048-Assadi
	1 Introduction
	1.1 Our Techniques
	1.2 Further Aspects of Our Results
	1.3 Further Related Work

	2 Preliminaries
	3 Warm-up: A 0.656-Approximation Under Adversarial Partitions
	3.1 The Protocol
	3.2 The Analysis: Proof of Proposition 3

	4 A 0.7167-Approximation Under Random Partitions
	4.1 The Protocol
	4.2 The Analysis of Algorithm 2

	5 Lifting Knowledge of Distribution via Minimax Theorems

	p049-Parulekar
	1 Introduction
	1.1 Related Work

	2 Preliminaries: Subspace Embeddings and Importance Sampling
	2.1 Properties of Lewis Weights

	3 Proof Overview
	3.1 Lower Bounds

	4 Proof of Theorem 11
	4.1 Proof of Lemma 28

	A Constant-factor approximation
	B Proofs of Lemmas
	B.1 Proof of Claims 15, 18, 19, 24, and 25

	p050-Saha
	1 Introduction
	1.1 The models
	1.2 Our results
	1.3 Proof techniques
	1.4 Related work

	2 Preliminaries
	2.1 The Shpilka-Volkovich generator
	2.2 Low support rank concentration
	2.3 Algebraic rank and faithful homomorphisms

	3 Hitting sets for the orbits of commutative ROABPs
	3.1 The goal: low support rank concentration
	3.2 Achieving rank concentration

	4 Hitting sets for the orbits of multilinear constant-width ROABPs
	4.1 Low support rank concentration: an inductive argument
	4.2 Details of the induction step

	5 Conclusion
	A Missing proofs from Section 3
	A.1 Proof of Lemma 25
	A.2 Proof of Theorem 21
	A.3 Proof of Theorem 6

	B Missing proofs from Section 4
	B.1 Proof of Lemma 31
	B.2 Proof of Lemma 28
	B.3 Proof of Theorem 8

	p051-Eden
	1 Introduction
	1.1 Results
	1.2 Technical Overview
	1.3 Comparison to Previous Work
	1.4 Further Related Work

	2 Preliminaries
	3 Multiple Edge Sampling
	3.1 Preprocessing
	3.2 Sampling an edge
	3.2.1 The sampling procedures

	p052-Girish
	1 Introduction
	1.1 Communication Complexity
	1.2 Bounded Depth Circuits
	1.3 Decision Trees
	1.4 The Main Theorem
	1.5 Overview of Proof of the Main Theorem for k=2
	1.6 Organization of the Paper
	1.7 Related Work

	A Formal Description of the Main Results
	A.1 The Forrelation Problem
	A.2 Hard Distributions over R2kN̂
	A.3 Rounding Distributions to the Boolean Hypercube
	A.4 The Forrelation Distribution
	A.5 Closure under Restrictions

	B The Main Result
	B.1 Applications to Quantum versus Classical Separations

	p053-Blasiok
	1 Introduction
	1.1 Background: L_1 Fourier norms and Fourier growth
	1.2 Motivation for this work: Fourier growth, pseudorandomness, F_2-polynomials, and the CHLT conjecture
	1.2.1 Pseudorandom generators from Fourier growth bounds
	1.2.2 F_2-polynomials and the CHLT conjecture
	1.2.3 Extending the CHLT conjecture

	1.3 Our results: Fourier bounds for structured F_2-polynomials
	1.3.1 Symmetric F_2-polynomials
	1.3.2 Read-Delta F_2-polynomials
	1.3.3 A composition theorem

	1.4 Applications of our results
	1.4.1 Pseudorandom generators
	1.4.2 Correlation bounds

	1.5 Related work

	2 Our techniques
	2.1 Symmetric polynomials (Theorem 8, Section 4)
	2.2 Read-Delta polynomials (Theorem 9, Section 5)
	2.3 Composition theorem (Theorem 12, Section 6)

	3 Preliminaries
	4
	4.1 Proof idea
	4.2 Proof of Theorem 8

	5 L_{1,k} bounds for read-Delta polynomials
	5.1 Proof idea
	5.2 Proof of Theorem 9

	6 L_{1,k} bounds for disjoint compositions
	6.1 Proof idea
	6.2 Useful notation
	6.3 The random restriction R_{beta}
	6.4 Proof of Theorem 12

	A Reduction to bound without acceptance probability

	p054-BenYaacov
	1 Introduction
	1.1 Our Contribution
	1.2 Recent Developments

	2 Cohen-Haeupler-Schulman Tree Codes
	3 Our Contribution
	3.1 The Unlikeliness of an LGV-Like Lemma Over Small Fields
	3.2 A Conjecture
	3.2.1 Preliminary Informal Discussion on the Plausibility of Equation (3.1)
	3.2.2 The Conjecture
	3.2.3 Experiments Supporting Conjecture 4
	3.2.4 Asymptotic Version of Conjecture 4
	3.2.5 Structural Factors of Phi_{t,c} and Its Linearization

	3.3 The Candidate Tree Code
	3.3.1 Sketch of the Analysis

	4 Preliminaries
	5 Proof of Theorem 6
	A Combinatorics Corroborating Conjecture 4
	A.1 Non-Vanishing of Phi_{t,c} on the Boolean Hypercube
	A.2 Reformulation of Conjecture 4

	B Arithmetic Geometry Heuristics Supporting Conjecture 4
	B.1 Pascal Determinant Hypersurfaces
	B.2 Katz-Laumon Sums and Point Counting in Hypercubes

	p055-Biswas
	1 Introduction
	1.1 Our results
	1.1.1 Optimal star/l_p-sampler
	1.1.2 An algorithm for sampling and estimating arbitrary motifs
	1.1.3 Lower bound for estimating and sampling general motifs

	1.2 Organization of the paper

	2 Preliminaries and Notation
	3 Overview of Our Results and Techniques
	3.1 An algorithm for sampling arbitrary motifs
	3.2 Decomposition-optimal lower bounds

	4 Upper Bounds for Sampling Arbitrary Motifs
	4.1 An optimal (l_p) star-sampler
	4.2 General motif sampler

	A Related Work

	p056-Bhandari
	1 Introduction
	2 Notations and Preliminaries
	3 Polynomial ideal codes
	3.1 Some well known codes via polynomial ideals
	3.2 An alternate definition

	4 Linear operator codes
	5 List-decoding of polynomial ideal codes
	5.1 List-decoding up to to the Johnson radius
	5.2 List-decoding beyond the Johnson radius

	A Example of Codes Achieving List-Decoding Capacity
	A.1 Folded Reed-Solomon (FRS) Codes
	A.2 Multiplicity (MULT) Codes
	A.3 Additive Folded Reed-Solomon (Additive-FRS) Codes
	A.4 Affine Folded Reed-Solomon (Affine-FRS) Codes

	p057-Alrabiah
	1 Introduction
	1.1 Stencils and visible rank
	1.2 Visible rank and Locality
	1.3 Visible rank and tensor powers
	1.4 Visible capacity
	1.5 Connections and related work
	1.6 Organization

	2 Stencils and their visible rank
	2.1 Algebraic witnesses of stencils
	2.2 Visible Rank
	2.3 Combinatorial properties of visible rank
	2.4 A Rank-Nullity Type Theorem Between Stencils and Symmetric Spanoids

	3 Constructing q-LCC Stencils
	4 t-DRGP Stencils
	5 Tensor Products
	5.1 Algebraic witnesses of tensor products
	5.2 Visible rank and tensor products
	5.3 Visible rank of the tensor powers

	6 Tensor Powers of Stencils for 2-DRGP Codes and q-LCCs
	6.1 2-DRGP stencils
	6.2 q-LCC stencils

	7 Further Directions and Discussion

	p058-Doron
	1 Introduction
	1.1 Monotone Branching Programs
	1.2 Monotone Branching Programs and AC0
	1.3 Pseudorandom Generators for Read-Once Branching Programs
	1.4 Our Main Result
	1.5 Techniques
	1.5.1 The Iterated Restrictions Approach
	1.5.2 Iterative Width Reduction

	2 Preliminaries
	2.1 Branching Programs
	2.2 k-Wise and delta-Biased Distributions
	2.3 Restrictions and Pseudorandom Restrictions

	3 PRGs for Constant-Width Read-Once MBPs
	3.1 Width Reduction
	3.2 Putting It Together

	4 Relation to Read-Once AC0
	A Monotone Branching Programs and AC0 Circuits

	p059-Dani
	1 Introduction
	1.1 Strategy for Delaying the k-Colorability Transition
	1.2 Organization of the Paper

	2 Preliminaries
	3 Main Idea, Many Colors
	4 Emergence of Giant component and Emergence of Cycles
	4.1 Analysis of SimpleAvoidCycles
	4.2 Avoiding Cycles Longer

	5 Four or Five Colors
	6 Three Colors
	7 Two choices for 9 colors

	p060-Garg
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Discussion and Open Problem
	1.4 Outline of the Paper

	2 Preliminaries
	3 Overview of the Proof
	4 Main Result
	4.1 The Truncated-Path and Additional Definitions and Notation
	4.2 Proof of Theorem 5
	4.3 Proof of Lemma 6

	A Omitted Proofs from Section 4

	p061-Levi
	1 Introduction
	1.1 Our Results
	1.1.1 Testing Hamiltonicity
	1.1.2 Local algorithm for constructing spanning subgraphs of almost optimum weight
	1.1.3 Testing monotone and additive properties of graphs

	1.2 Our algorithms for minor-free unbounded degree graphs
	1.2.1 Testing Hamiltonicity
	1.2.2 Constructing spanning subgraphs with almost optimum weight

	1.3 Our algorithms for minor-free bounded degree graphs
	1.3.1 Covering partition oracles
	1.3.2 Testing Hamiltonicity
	1.3.3 Constructing spanning subgraphs with almost optimum weight
	1.3.4 Testing monotone and additive properties

	1.4 Organization

	2 Preliminaries
	2.1 Partition oracles and covering partition oracles
	2.2 Graph minors
	2.3 Hamiltonian path and minimum path cover
	2.4 Local algorithms for constructing sparse spanning subgraphs

	3 Algorithms for minor-free graphs with unbounded degrees
	3.1 Testing Hamiltonicity
	3.2 A Local algorithm for constructing a spanning subgraph with almost optimum weight
	3.2.1 The global algorithm

	4 Algorithms for minor-free graphs with bounded degrees
	4.1 Covering partition oracle
	4.2 Testing Hamiltonicity
	4.3 Local algorithms for constructing a spanning subgraph with almost optimum weight
	4.4 Testing monotone and additive properties

	A Related Work
	A.1 Partition Oracles
	A.2 Testing Hamiltonicity
	A.3 Testing properties of minor-free graphs
	A.4 Local algorithms for constructing sparse spanning subgraphs

	B Omitted proofs and details
	B.1 Proof of Claim 11
	B.2 Proof of Claim 12
	B.3 Proof of Claim 13
	B.4 Proof of Claim 15
	B.5 Correctness of Algorithm 2
	B.6 Proof of Claim 27
	B.7 The local implementation of Algorithm 2

	p062-Girish
	1 Introduction
	1.1 Technical Overview
	1.2 Comparison to [HR20]

	2 Notation & Preliminaries
	2.1 Set Theory
	2.2 Probability Theory
	2.3 Fourier Analysis
	2.4 Multi-Player Games
	2.5 GHZ Distribution

	3 Partitioning into Pseudorandom Subspaces
	4 Key Fourier Analytic Lemmas
	5 Main Proof
	A Appendix
	A.1 Proof of Lemma 5.1
	A.2 Proof of Claim 5.2
	A.3 Proof of Claim 5.3
	A.4 Proof of Claim 5.4
	A.5 Proof of Claim 5.5
	A.6 Proof of Fact 5.6
	A.7 Proof of Claim 5.7

