
Optimal Algorithms for Online b-Matching with
Variable Vertex Capacities
Susanne Albers #

Department of Computer Science, Technische Universität München, Germany

Sebastian Schubert1 #

Department of Computer Science, Technische Universität München, Germany

Abstract
We study the b-matching problem, which generalizes classical online matching introduced by Karp,
Vazirani and Vazirani (STOC 1990). Consider a bipartite graph G = (S∪̇R, E). Every vertex s ∈ S

is a server with a capacity bs, indicating the number of possible matching partners. The vertices
r ∈ R are requests that arrive online and must be matched immediately to an eligible server. The
goal is to maximize the cardinality of the constructed matching. In contrast to earlier work, we
study the general setting where servers may have arbitrary, individual capacities. We prove that the
most natural and simple online algorithms achieve optimal competitive ratios.

As for deterministic algorithms, we give a greedy algorithm RelativeBalance and analyze
it by extending the primal-dual framework of Devanur, Jain and Kleinberg (SODA 2013). In the
area of randomized algorithms we study the celebrated Ranking algorithm by Karp, Vazirani and
Vazirani. We prove that the original Ranking strategy, simply picking a random permutation of
the servers, achieves an optimal competitiveness of 1 − 1/e, independently of the server capacities.
Hence it is not necessary to resort to a reduction, replacing every server s by bs vertices of unit
capacity and to then run Ranking on this graph with

∑
s∈S

bs vertices on the left-hand side. From
a theoretical point of view our result explores the power of randomization and strictly limits the
amount of required randomness. From a practical point of view it leads to more efficient allocation
algorithms.

Technically, we show that the primal-dual framework of Devanur, Jain and Kleinberg cannot
establish a competitiveness better than 1/2 for the original Ranking algorithm, choosing a permuta-
tion of the servers. Therefore, we formulate a new configuration LP for the b-matching problem
and then conduct a primal-dual analysis. We extend this analysis approach to the vertex-weighted
b-matching problem. Specifically, we show that the algorithm PerturbedGreedy by Aggarwal,
Goel, Karande and Mehta (SODA 2011), again with a sole randomization over the set of servers, is
(1 − 1/e)-competitive. Together with recent work by Huang and Zhang (STOC 2020), our results
demonstrate that configuration LPs can be strictly stronger than standard LPs in the analysis of
more complex matching problems.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, primal-dual analysis, configuration LP, b-matching,
variable vertex capacities, unweighted matching, vertex-weighted matching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.2

Category APPROX

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Corresponding author

© Susanne Albers and Sebastian Schubert;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 2; pp. 2:1–2:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:albers@in.tum.de
mailto:sebastian.schubert@tum.de
https://orcid.org/0000-0002-3883-2297
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

1 Introduction

Matching in bipartite graphs is a fundamental problem with numerous applications in
computer science. We study the b-matching problem [13], where the vertices of one set of the
bipartition may be matched multiple times. It generalizes the standard matching problem.
Furthermore, it models capacitated allocations as well as interesting special cases of the
timely AdWords problem.

More specifically, let G = (S∪̇R, E) be a bipartite graph. The vertices of S are servers.
Each server s ∈ S has an individual capacity bs, indicating the maximum number of possible
matching partners. The vertices of R are requests that have to be assigned to the servers. We
consider the online problem where the set S of servers is known in advance and the requests
of R arrive sequentially one by one. Whenever a new request r ∈ R arrives, its incident edges
are revealed. The request has to be matched immediately and irrevocably to an eligible
server, provided that there is one. The goal is to maximize the number of matching edges.

Prior work on b-matchings has mostly focused on the case that all servers have the same
capacity, i.e. bs = b, for all s ∈ S. In this paper we study the general setting of individual
server capacities, as described above. This setting is particularly relevant in applications.
Furthermore, we examine the vertex-weighted problem extension, where additionally each
server s ∈ S has a weight ws and the value of every matching edge incident to s is multiplied
by ws. The goal is to maximize the total weight of the constructed matching. Again this
extension is interesting in allocation problems.

If bs = 1 for all s ∈ S, the b-matching problem is equal to classic online bipartite matching,
which was introduced in a seminal paper by Karp et al. [15] and has received tremendous
research interest over the last 30 years. The b-matching problem models a range of interesting
applications. Naturally, the servers can be compute servers that process persistent jobs
arriving over time. Furthermore, the servers can be facilities that stream content online,
host web pages or store data remotely [5]. More generally, the servers can represent stations
in mobile computing, queues in a network switch or even locations in a hash table [2, 5, 9].
Obviously, each server can only handle a limited number of clients.

Another relevant application are the AdWords problem and ad auctions in search engine
companies [18]. There is a set of advertisers, each with a daily budget, who wish to link their
ads to search keywords and issue respective bids. Queries along with their keywords arrive
online and must be allocated instantly to the advertisers. The b-matching problem models
the basic setting where all bids are either 0 or 1. The vertex-weighted extension captures the
scenario where all the bids of an advertiser s ∈ S have a value of 0 or ws.

We analyze the performance of algorithms for the b-matching problem using competitive
analysis. Given an input graph G, let Alg(G) denote the size (or weight) of the matching
constructed by an online algorithm Alg. Let Opt(G) be the corresponding value of an
optimal offline algorithm Opt. Algorithm Alg is c-competitive if Alg(G) ≥ c · Opt(G)
holds, for all G. If Alg is a randomized algorithm, then Alg(G) has to be replaced by the
expected value E[Alg(G)].

Related Work. Straightforward arguments show that any algorithm that matches an
incoming request to an eligible server with remaining capacity, if there exists one, is 1

2 -
competitive. Kalyanasundaram and Pruhs [13] investigate the b-matching problem if all
servers have equal capacity, i.e. bs = b for all s ∈ S. They present a deterministic Balance
algorithm that matches a new request to an adjacent server whose current load is smallest.
Kalyanasundaram and Pruhs prove that Balance achieves an optimal competitive ratio

S. Albers and S. Schubert 2:3

of 1 − 1/(1 + 1/b)b. As b grows, the latter expression tends to 1 − 1/e ≈ 0.63. Azar and
Litichevsky [2] give an alternative analysis of the Balance algorithm. Chaudhuri et al. [5]
and Grove et al. [9] study b-matchings with a different objective. At any time an algorithm
must maintain a matching between the requests that have arrived so far and the servers. The
goal is to minimize the total number of switches where a request is reassigned to a different
server.

In a famous paper, Karp et al. [15] introduced the online bipartite matching problem. This
is a b-matching problem where all servers have a capacity of 1, i.e. each vertex in the graph may
be incident to at most one matching edge. Online bipartite matching has received tremendous
research interest over the last years and we only mention the most important results relevant
to our work. Again, any algorithm that matches an incoming request to an arbitrary available
partner is 1

2 -competitive. No deterministic online algorithm can be better than 1
2 -competitive.

Karp et al. [15] show that an algorithm Random, which matches a request to an available
partner chosen uniformly at random, does not achieve a competitiveness greater than 1/2.
As a main result they propose the celebrated Ranking algorithm. This strategy initially
chooses a random permutation of the vertices in S. Thereby, each such vertex is assigned
a priority or rank. Whenever a vertex of R arrives, it is matched to the eligible vertex of
highest rank in S. Karp et al. prove that Ranking is (1 − 1/e)-competitive. This ratio is
best possible for randomized algorithms [15].

Simplified and alternative analyses of Ranking were provided in [1, 3, 6, 7]. In particular,
Devanur et al. [6] developed an elegant primal-dual analysis. Aggarwal et al. [1] defined
online vertex-weighted bipartite matching, where each vertex s ∈ S has a weight ws. Again,
all vertices of S have a capacity of 1. The goal is to maximize the total weight of the
constructed matching. Aggarwal et al. [1] devise a generalization of Ranking, named
Perturbed-Greedy, and prove that it is (1 − 1/e)-competitive. Devanur et al. [6] analyze
this strategy in their compact primal-dual framework. Further work on online bipartite
matching considers different input models [8, 12, 14, 16] or refined matching models [10, 17].

The AdWords problem was formally defined by Mehta et al. [18]. They present a
deterministic online algorithm that achieves a competitive ratio of 1 − 1/e, under the
assumption that the bids are small compared to the advertisers’ budgets. No randomized
algorithm can obtain a better competitive factor. Buchbinder et al. [4] develop a primal-dual
algorithm that attains a competitiveness of (1 − 1/c)(1 − Rmax), where c = (1 + Rmax)1/Rmax

and Rmax is the maximum ratio between the bid of any advertiser and its total budget.
Huang et al. [11] give a 0.5016-competitive algorithm, for AdWords without the small-bids
assumption.

Our Contributions. We present a comprehensive study of the b-matching problem with
variable server capacities. As a main contribution we show that the most natural and simple
online algorithms obtain optimal competitive ratios.

First, we concentrate on the unweighted setting, with the objective to maximize the
cardinality of the constructed matching. In Section 2 we study deterministic algorithms. We
formulate and analyze a strategy RelativeBalance that assigns an incoming request to
an eligible server with minimum relative load. The relative load of a server s is the number
requests that are currently matched with s divided by the capacity bs. Thus the algorithm
considers which fraction of a server’s capacity is already used. This is the most straightforward
greedy policy for the setting with variable server capacities. We show that RelativeBalance
achieves a competitive ratio of 1 − 1/(1 + 1/bmin)bmin , where bmin = mins bs is the minimum
server capacity. The performance ratio is best possible for deterministic online algorithms.

APPROX/RANDOM 2021

2:4 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

In order to evaluate RelativeBalance we conduct a primal-dual analysis. We extend
the framework by Devanur et al. [6], this time to analyze a deterministic algorithm different
from Ranking. We remark that Balance by Kalyanasundaram and Pruhs [13] does not
achieve a competitive ratio of 1 − 1/(1 + 1/bmin)bmin when using only bmin spots of each server
because Opt may use the additional capacity. Moreover, we would like to add that the results
by Buchbinder et al. [4] also imply a deterministic online algorithm with a competitiveness
of 1 − 1/(1 + 1/bmin)bmin for the b-matching problem. However, their algorithm is not equal
to RelativeBalance. In fact, their strategy may assign a request to a server not having
the smallest relative load and does not necessarily use the full capacity of a server, leaving
requests unmatched. This leads to somewhat unintuitive assignments. We give details in
Appendix A. Of course, Buchbinder et al. [4] were interested in the general AdWords problem
and did not tailor their analysis to b-matchings.

In Section 3 we study randomized online algorithms. In a first step we examine the
Random algorithm, which assigns an incoming request to a random adjacent server with
remaining capacity. We prove that the competitive factor of Random is not better than
1/2. The major part of Section 3 investigates the original Ranking algorithm. More
specifically, Ranking initially picks a random permutation of the servers. An incoming
request is matched to the eligible server of highest rank. We prove that Ranking achieves a
competitive ratio of 1 − 1/e, independently of the server capacities. The ratio of 1 − 1/e is
best possible for randomized algorithms [18]. Surprisingly, the original Ranking algorithm
has an optimal competitiveness for the more complex b-matching problem. We are not aware
of any other generalization of the classical online matching problem where this holds true.

Observe that we can also obtain a competitive ratio of 1−1/e using the following reduction
to standard online bipartite matching: Replace each server s with capacity bs by exactly
bs individual vertices of capacity 1. Each request adjacent to s gets incident edges to each
of these bs vertices. On the resulting graph with

∑
s∈S bs vertices on the left-hand side of

the bipartition, execute the Ranking algorithm. Such a reduction can also be applied for
deterministic online algorithms but only gives a competitive factor of 1/2.

Our result for the original Ranking algorithm, executed on the initial input graph G,
has the following implications. (1) From a theoretical point of view, an interesting question
is how much randomness is needed to obtain a competitiveness of 1 − 1/e. Our analysis
demonstrates that a straightforward execution of the barely random Ranking strategy
attains this ratio. No randomization over the server spots is necessary. (2) In practical
applications a ranking of the servers leads to simple and efficient allocation algorithms. With
a random permutation of a huge number of server spots, assignments might be difficult,
perhaps even impossible to compute.

In our analysis we first demonstrate that the framework by Devanur et al. [6] cannot
establish a competitiveness of 1 − 1/e for Ranking, when executed on the original graph
G. It only yields a competitiveness of 1/2. Therefore, as a main technical contribution, we
formulate a new configuration linear program (LP) for the b-matching problem. Using this
configuration LP, we then conduct a primal-dual analysis by extending the framework of
Devanur et al. [6]. We point out that, for the bipartite matchings with stochastic rewards,
Huang and Zhang [10] recently were the first to employ configuration LPs. However, the
concrete LPs used in [10] and in this paper are different, apart from a modeling of vertex
neighborhoods. Also, the analyses differ so as to obtain the desired performance ratios.

In Section 4 we investigate vertex-weighted b-matching, with the objective to maximize
the total weight of the constructed matching. We focus on randomized strategies and study
Perturbed-Greedy [1], which was introduced for vertex-weighted online bipartite matching,

S. Albers and S. Schubert 2:5

where each vertex s ∈ S has a capacity of 1. The algorithm, for each s ∈ S, computes a
rank based on an initial random choice. A request is matched to the eligible vertex s ∈ S

of highest rank. We investigate Perturbed-Greedy for the b-matching problem when
executed on the original input graph G, without the above reduction of splitting a server s

into bs vertices of unit capacity. We extend our analysis approach based on configuration
LPs and prove that the algorithm achieves an optimal competitive ratio of 1 − 1/e.

In summary, simple rank-based algorithms that make initial random choices for the servers
(but not for the server spots) achieve an optimal competitive ratio of 1 − 1/e, independently
of the server capacities. Furthermore, the paper by Huang and Zhang [10] and our work
show that configuration LPs can be more powerful than standard LPs in the analysis of more
advanced matching problems.

2 Deterministic algorithms for maximum-cardinality b-matching

It is easy to verify that an online algorithm that matches a new request to an eligible server
with largest remaining capacity does not achieve a competitiveness greater than 1/2.

In the following we present our natural RelativeBalance algorithm. Let loads denote
the (absolute) load of a server s ∈ S, i.e. the number of requests assigned to s so far. We
define the relative server load as ls := loads/bs. RelativeBalance simply assigns incoming
requests to an eligible neighbor with minimum relative server load.

Algorithm 1 RelativeBalance.

while a new request r ∈ R arrives do
Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min{ls : s ∈ N(r)} (break ties arbitrarily);
end

end

We analyze RelativeBalance by conducting a primal-dual analysis. For this, consider
the classical (relaxed) primal and dual LP of maximum cardinality online bipartite b-matching.
Here, we use a primal variable m(s, r) for each edge e = {s, r} ∈ E, where s ∈ S and r ∈ R,
indicating whether or not e is contained in the matching.

Primal: max
∑

{s,r}∈E

m(s, r)

s.t.
∑

r:{s,r}∈E

m(s, r) ≤ bs, (∀s ∈ S)

∑
s:{s,r}∈E

m(s, r) ≤ 1, (∀r ∈ R)

m(s, r) ≥ 0, (∀{s, r} ∈ E) .

Dual: min
∑
s∈S

bs · x(s) +
∑
r∈R

y(r)

s.t. x(s) + y(r) ≥ 1, (∀{s, r} ∈ E)
x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

APPROX/RANDOM 2021

2:6 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Devanur et al. [6] developed an elegant framework that unifies the analysis of randomized
online algorithms for matching problems. We will extend their framework to analyze our
deterministic algorithm RelativeBalance. Whenever an online algorithm assigns a request
r to a server s, the gain of 1 in the primal objective function (and thus the size of the
matching) is translated into a gain of 1/c in the dual objective function by splitting it across
the dual variables x(s) and y(r). Here, c is a constant that will be maximized during the
analysis and will denote the competitive ratio of the algorithm, 0 < c ≤ 1. If an arriving
request remains unmatched, the dual solution will remain unchanged as well.

It then has to be shown that this can be done in a way such that all the dual constraints
are satisfied in the end. Let P and D be the value of the constructed primal and dual
solution, respectively. By summing over all steps of the algorithm, we get P = c · D, and
thus P ≥ c · Opt, by weak duality. This implies that the online algorithm is c-competitive.

In the case without vertex capacities, Devanur et al. [6] show that for the known optimal
randomized online algorithms that choose a random value xs ∈ [0, 1] for every server s ∈ S,
the gain of matching a request r to s can be split across x(s) and y(r) according to the
function g(xs) = exs−1. More precisely, in the unweighted scenario, they argue that setting

x(s) = g(xs)
c

and y(r) = 1 − g(xs)
c

with c = 1 − 1/e results in a dual solution that is feasible in expectation.
In our case with vertex capacities, we first have to deal with the fact that a server s

may be assigned multiple requests. Therefore, we increase the value of x(s) whenever this
happens. Moreover, we change the function that determines how the gain is split. Our
algorithm uses the relative load of the servers for its matching decisions instead of a ranking
based on the random values. Therefore, whenever RelativeBalance matches a request r

to a server s, we update

∆x(s) = f(ls)
c · bs

and y(r) = 1 − f(ls)
c

,

where f : [0, 1] → [0, 1] is a monotonically non-decreasing function and ls denotes the relative
load of s before the assignment. Observe that this increases the value of the dual solution by
exactly 1/c and guarantees x(s) ≥ 0 and y(r) ≥ 0 for all s ∈ S and r ∈ R, respectively.

Now, we have to show that f and c can be chosen such that this results in a feasible
dual solution, i.e. x(s) + y(r) ≥ 1 holds for all edges {s, r} ∈ E. If r is not matched by
RelativeBalance, then y(r) = 0. Nonetheless, we know that all of r’s neighbors had to be
fully loaded when r arrived. Thus, in this case, for all bs, we need that

x(s) + y(r) = 1
c · bs

bs−1∑
i=0

f

(
i

bs

)
≥ 1 . (1)

On the other hand, if r is matched to a server s′ by RelativeBalance, then we know
that ls′ ≤ ls had to hold at the time of r’s arrival. In this case, it therefore needs to hold that

x(s) + y(r) = 1
c

(
1
bs

loads−1∑
i=0

f

(
i

bs

)
+ 1 − f

(
loads′

bs′

))
≥ 1 , (2)

for all ratios loads′/bs′ ≤ loads/bs. Recall that loads′ and loads are absolute server loads.

▷ Claim 1. Let c := 1 − 1/d, where d > 1. Then, f (ls) = dls−1 satisfies both (1) and (2) if
d ≤ (1 + 1/bs)bs .

S. Albers and S. Schubert 2:7

Proof. First, observe that d ≤ (1 + 1/bs)bs implies d
1

bs − 1 ≤ 1/bs. It then follows that

1
c · bs

bs−1∑
i=0

f

(
i

bs

)
= 1

c · bs · d

bs−1∑
i=0

(
d

1
bs

)i

= 1
c · bs · d

· d − 1
d

1
bs − 1

≥ d − 1
c · bs · d · 1

bs

= 1 .

The last step follows from the choice of c. Moreover, we can show that

1
c

(
1
bs

loads−1∑
i=0

f

(
i

bs

)
+ 1 − f

(
loads′

bs′

))
= 1

c

(
1

bs · d

loads−1∑
i=0

(
d

1
bs

)i

+ 1 − dls′ −1

)

= 1
c

(
1

bs · d
· dls − 1

d
1

bs − 1
+ 1 − dls′ −1

)
≥ 1

c

(
dls − 1

d
+ 1 − dls′ −1

)
≥ 1

c

(
1 − 1

d

)
= 1 . ◁

We have now shown that the combination of f (ls) := dls−1 with c = 1 − 1/d yields a
feasible dual solution if 1 < d ≤ (1 + 1/bs)bs , for all s ∈ S. Here c denotes the competitiveness
of RelativeBalance. (1 + 1/bs)bs is a monotonically increasing function for bs > 0. The
largest possible value for d is therefore (1 + 1/bmin)bmin , where bmin = mins bs is the smallest
server capacity.

▶ Theorem 2. RelativeBalance achieves a competitiveness of 1 − 1/ (1 + 1/bmin)bmin ,
where bmin := mins∈S bs.

The competitive ratio of 1 − 1/ (1 + 1/bmin)bmin is optimal for deterministic algorithms:
Kalyanasudaram and Pruhs [13] showed that no deterministic online algorithm can achieve a
competitiveness greater than 1 − 1/ (1 + 1/b)b if all servers have a uniform capacity equal to
b. We can take their nemesis sequence and add servers with capacity b′ > b that are adjacent
to few (or no) extra requests.

3 Randomized algorithms for maximum-cardinality b-matching

Karp et al. [15] proposed an algorithm Random, for online bipartite matching, which assigns
a newly arriving request to a random eligible neighbor. They showed that Random is not
better than 1

2 -competitive. We prove that the performance ratio does not improve, for the
b-matching problem, even if all servers have a uniform capacity of b ≥ 2. The material on
Random with the proof of the following theorem is given in Appendix B.

▶ Theorem 3. Random does not achieve a competitive ratio better than 1/2 for the maximum
cardinality online b-matching problem, even if all server capacities are equal.

The remainder of this section is devoted to the Ranking algorithm. We will prove that
the algorithm achieves an optimal competitiveness of 1 − 1/e, for the maximum cardinality
online b-matching problem. Again, we execute Ranking on the original input graph G. We
will work with a version of Ranking (see Alg. 2) that is similar to that in [6]. Note that,
importantly, there is a single random choice for each server s ∈ S. Initially, a Zs ∈ [0, 1]
is picked uniformly at random. This value is used as a rank for s. An incoming request is
matched to the eligible server with smallest Z-value.

First, we argue that the classical primal-dual framework fails here, meaning that it is not
able to establish a competitive ratio better than 1/2. As usual, whenever Ranking assigns a
request r to a server s, we increase x(s) by and set y(r) to

∆x(s) = g(Zs)
c · bs

and y(r) = 1 − g(Zs)
c

,

APPROX/RANDOM 2021

2:8 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Algorithm 2 Ranking.

foreach server s ∈ S do
Pick Zs ∈ [0, 1] uniformly at random;

end
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min {Zs : s ∈ N(r)} (break ties consistently);
end

end

respectively. Again, g : [0, 1] → [0, 1] is a monotonically non-decreasing function and c is a
constant that will denote the competitive ratio of the algorithm. Let P and D be random
variables denoting the value of the random primal and dual solution, respectively. If we
were able to show that a combination of g and c yields a dual solution that is feasible
in expectation, then this would imply a competitive ratio of c. To see this, create a new
(deterministic) dual solution that sets its variables to the expected value of the corresponding
variable of the random solution and denote its value by D′. It then holds that the new dual
solution satisfies all dual constraints and thus Opt ≤ D′ = E[D]. Moreover, the framework
yields P = c · D, always, implying E[P] = c · E[D] ≥ c · Opt.

Now, consider the two input graphs GA and GB (see Fig. 1). If there was a combination of
g and c that always yields a dual solution that is feasible in expectation, then this combination
also has to satisfy the constraint for the edge {s, r} in both GA and GB in expectation. In
graph GA, this means

E[x(s) + y(r)] = E[g(Zs)]
c · bs

+ 1 − E[g(Zs)]
c

!
≥ 1 bs≥2⇐⇒ E[g(Zs)] ≤ (1 − c) · bs

bs − 1 .

In GB however, this means

E[x(s) + y(r)] = bs · E[g(Zs)]
c · bs

+ 0
!
≥ 1 ⇐⇒ E[g(Zs)] ≥ c .

Combining these two inequalities yields c ≤ (1 − c) · bs

bs−1 . This is equivalent to c ≤ bs

2bs−1 ,
which implies that the best competitive ratio that may be shown for Ranking with this
framework approaches 1/2 for larger server capacities bs.

...

GA: GB:

s r s

r

bs

Figure 1 Two example input graphs for Ranking. Graph GA only consists of a single edge
between a server s and a request r, whereas GB consists of a server s and its bs + 1 neighboring
requests. Request r denotes the last arriving request.

S. Albers and S. Schubert 2:9

Given this fact, we proceed and model the b-matching problem by a configuration LP. Let
Ns denote the set of neighbors of a server s. The configuration LP differs from the classical
matching LP in that it does not use a variable for every edge {s, r} indicating whether this
edge is chosen by the algorithm. Instead it uses a variable m(s, N), for every server s and
every subset N ⊆ Ns, indicating whether this subset is the set of requests matched to s.

Config LP: max
∑
s∈S

∑
N⊆Ns

min{|N |, bs} · m(s, N)

s.t.
∑

N⊆Ns

m(s, N) ≤ 1, (∀s ∈ S)

∑
s∈S

∑
N⊆Ns:r∈N

m(s, N) ≤ 1, (∀r ∈ R)

m(s, N) ≥ 0, (∀s ∈ S, ∀N ⊆ Ns) .

Dual CLP: min
∑
s∈S

x(s) +
∑
r∈R

y(r)

s.t. x(s) +
∑
r∈N

y(r) ≥ min{|N |, bs}, (∀s ∈ S, ∀N ⊆ Ns)

x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

Obviously, every valid b-matching in a graph G is captured by a solution of the configuration
LP. Its optimal solution is an upper bound on the cardinality of the maximum b-matching in
G. Hence the configuration LP is a suitable primal program for a primal-dual analysis.

We adapt the primal-dual analysis framework. Initially, all primal and dual variables are
set to 0. Whenever a new request r ∈ R arrives and Ranking assigns it to a server s, we
update the primal variables of s accordingly, keeping track of the set N of matching partners.
The value of the primal solution increases by 1. Moreover, we update the dual variables

∆x(s) = g(Zs)
c

and y(r) = 1 − g(Zs)
c

,

where g : [0, 1] → [0, 1] is a monotonically non-decreasing function to be determined during
the analysis and c is a constant that will denote the competitive ratio of the algorithm. Note
that we now do not have to divide the gain of x(s) by bs, since the dual objective function
does not have a factor bs before x(s). Therefore, we still translate a gain of 1 in the primal
solution to a gain of 1/c in the dual solution, guaranteeing that P = c ·D, where P and D are
the random variables denoting the value of the primal and dual solution, respectively. Similar
arguments to before imply that it is sufficient to satisfy all dual constraints in expectation to
show a competitive ratio of c.

Thus, it remains to show is that we can choose g and c such that

E

[
x(s) +

∑
r∈N

y(r)
]

≥ min{|N |, bs} ,

for all servers s ∈ S and all N ⊆ Ns. For this, we will need two lemmas similar to the
Dominance and Monotonicity Lemmas in [6]. We will consider two executions of Ranking
on G and on G \ s, for some server s ∈ S. Here, G \ s denotes the graph induced by the
vertex set S \ {s} ∪ R. We assume that Ranking uses the same Z-values Zt for all servers
t ∈ S \ {s} in both executions. Further, let r ∈ R be any request in G and let zr be the

APPROX/RANDOM 2021

2:10 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

Z-value of its matching partner in the G \ s execution. If r is unmatched, we set zr := 1
and assign a dummy matching partner. Moreover, let ys(r) be the value of y(r) in the G \ s

execution. We impose from now on that g(1) = 1, which implies ys(r) = (1 − g (zr))/ c. We
use the idea of server spots. A server spot si of a server s, 1 ≤ i ≤ bs, denotes an individual
unit of a server that can accept a request. When Ranking assigns requests to a server s, we
assume without loss of generality that it assigns the j-th request to the server spot sj . A
server spot is matched if it has been assigned a request, and unmatched otherwise.

▶ Lemma 4. At any point during the parallel execution of Ranking on G and G \ s, the set
of unmatched server spots U in the G execution forms a superset of the unmatched server
spots Ũ in the G \ s execution. For all server spots s′

i ∈ U \ Ũ , it holds that Zs′ ≥ Zs. If
Zs′ = Zs and s′ ̸= s, then s has a higher priority in the tiebreaking.

Proof. By induction. Initially, the properties trivially hold, since U \ Ũ = {s1, . . . , sbs}
at the start. Then, whenever a new request r arrives, Ũ ⊆ U can only be violated if r is
assigned to a server spot ti ∈ Ũ in the G execution, but r is not assigned to ti in the G \ s

execution. There, it is either unmatched or matched to a different server spot, which leads
to a contradiction in either case. Since ti ∈ Ũ and r is a neighbor of the server t, r cannot
be unmatched in the G \ s execution. If Ranking chooses a different server spot tj for r in
the G \ s execution, then either i < j or i > j has to hold. i < j results in a contradiction
because ti ∈ Ũ and we defined that Ranking always chooses the unmatched server spot
with smallest index. Furthermore, i > j also results in a contradiction because tj ∈ Ũ ⊆ U

and thus Ranking would have chosen tj in the G execution as well. Moreover, if Ranking
assigns r to a server spot of a different server t′ in the G \ s execution, then Zt′ ≤ Zt has to
hold. However, Ũ ⊆ U implies that this server spot would also be unmatched and available in
the G execution. If Zt′ < Zt, Ranking would not have chosen an unmatched neighbor with
smallest Z-value in the G execution, and if Zt′ = Zt, then the tiebreak would be inconsistent
between the two executions.

Moreover, a new server spot t′
i is only added to U \ Ũ if the matching decision for r is

different in the two execution, i.e. the G execution assigns r to some server spot tj ∈ U \ Ũ

and the G \ s execution assigns r to t′
i ∈ Ũ . Therefore, it has to hold that either Zt′ > Zt

or Zt′ = Zt and t has a higher tiebreak priority than t′. By induction hypothesis, Zt ≥ Zs

and thus Zt′ ≥ Zs. If t′ ̸= s and Zt′ = Zt = Zs, then by induction hypothesis s has a higher
tiebreak priority than t, which in turn has a higher priority than t′. We conclude that s has
a higher tiebreak priority than t′. ◀

Hence, if a request r is unmatched in the G execution, it is also unmatched in the G \ s

execution. If r gets matched, its matching partner has a Z-value of at most zr. Since g is
non-decreasing with g(1) = 1, the following statement holds.

▶ Corollary 5. Given Zt for all servers t ∈ S \ {s}, y(r) ≥ ys(r) holds for all possible values
of Zs.

▶ Lemma 6. Given Zt for all servers t ∈ S \ {s}, let z1 ≥ . . . ≥ zk be the Z-values of the
matching partners of the k = |Ns| neighbors of s in a G \ s execution in non-increasing order.
Then, server s has at least min{a, bs} matching partners in an execution of Ranking on G,
where a is the largest possible integer such that Zs < za ≤ . . . ≤ z1.

Proof. Whenever a neighbor ri of s with zi > Zs arrives and s still has remaining capacity,
then by Lemma 4 ri will be matched to s. Among adjacent servers with remaining capacity,
s has the smallest Z-value and the highest priority in case of ties. ◀

S. Albers and S. Schubert 2:11

Now, we can finally show how to choose g and c such that the dual constraints are
satisfied in expectation. Let s be any server in G with k neighbors. Let zi be the Z-value
of the matching partner of neighbor ri ∈ Ns, 1 ≤ i ≤ k, in the G \ s execution. If k < bs,
we further define zk+1 = . . . = zbs = 0. Let z′

1 ≥ . . . ≥ z′
bs

then be the bs largest values of
{z1, . . . , zmax{k,bs}} in non-increasing order. Lemma 6 implies that

E

x(s)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥
bs∑

i=1

∫ z′
i

0

g(t)
c

dt .

Moreover, by Corollary 5, it holds for every neighbor r ∈ Ns of s

E

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ys(r) = 1 − g (zr)
c

,

where zr = zi for some i, 1 ≤ i ≤ k. Putting everything together yields

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ 1
c

(
bs∑

i=1

∫ z′
i

0
g(t) dt +

∑
r∈N

(1 − g (zr))
)

.

Note that
∑

r∈N (1 − g (zr)) is lower bounded by
∑min{|N |,bs}

i=1 (1 − g (z′
i)), since g is a non-

decreasing function with g(1) = 1 and the z′-values are an upper bound for the zr-values.
Plugging this in, we get

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ 1
c

min{|N |,bs}∑
i=1

(∫ z′
i

0
g(t) dt + 1 − g (z′

i)
)

!
≥ min{|N |, bs} .

Observe that the last inequality holds if g and c satisfy the following inequality, which is the
same inequality that emerges in the analysis of Ranking without server capacities.∫ z

0
g(t) dt + 1 − g (z) ≥ c , ∀z ∈ [0, 1] . (3)

It is easy to check that the combination of g(x) = ex−1 with c = 1 − 1/e satisfies (3) and
our additional condition g(1) = 1. By applying the law of total expectation, we finish the
proof:

E

[
x(s) +

∑
r∈N

y(r)
]

=
∫ 1

0
. . .

∫ 1

0
E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

dzt . . . dzt′

≥
∫ 1

0
. . .

∫ 1

0
min{|N |, bs} dzt . . . dzt′ = min{|N |, bs} .

▶ Theorem 7. Ranking is (1 − 1/e)-competitive for the maximum-cardinality online b-
matching problem (with variable server capacities).

APPROX/RANDOM 2021

2:12 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

4 Vertex-weighted b-matching

The work by Buchbinder et al. [4] implies a deterministic online algorithm with an optimal
competitiveness of 1−1/(1+1/bmin)bmin . We are not aware of any simpler strategy. Therefore,
we focus on randomized algorithms and extend our previous result for Ranking to the
vertex-weighted case. We will show that Perturbed-Greedy [1] achieves a competitiveness
of 1 − 1/e for vertex-weighted b-matching. Again, we execute the algorithm on the initial
input graph G.

Perturbed-Greedy is similar to Ranking; only the definition of ranks differs. For
each server s ∈ S, a single number Zs ∈ [0, 1] is chosen uniformly at random. The rank of s

is ws(1 − g(Zs)), where g : [0, 1] → [0, 1] is a monotonically increasing function that will be
set to g(x) = ex−1.

Algorithm 3 Perturbed-Greedy.

foreach server s ∈ S do
Pick Zs ∈ [0, 1] uniformly at random;

end
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to arg max{ws (1 − g (Zs)) : s ∈ N(r)} (break ties consistently);
end

end

We formulate the configuration LP and its dual for the vertex-weighted b-matching
problem, where we take into account that each matching edge incident to a server s has a
value of ws.

Config LP: max
∑
s∈S

∑
N⊆Ns

ws · min{|N |, bs} · m(s, N)

s.t.
∑

N⊆Ns

m(s, N) ≤ 1, (∀s ∈ S)

∑
s∈S

∑
N⊆Ns:r∈N

m(s, N) ≤ 1, (∀r ∈ R)

m(s, N) ≥ 0, (∀s ∈ S, ∀N ⊆ Ns) .

Dual CLP: min
∑
s∈S

x(s) +
∑
r∈R

y(r)

s.t. x(s) +
∑
r∈N

y(r) ≥ ws · min{|N |, bs}, (∀s ∈ S, ∀N ⊆ Ns)

x(s), y(r) ≥ 0, (∀s ∈ S, ∀r ∈ R) .

In the primal-dual analysis, we again update the primal variables as well as the dual
variables x(s) and y(r) whenever Perturbed-Greedy matches a request r to a server s.
We set

∆x(s) = wsg(Zs)
c

and y(r) = ws (1 − g(Zs))
c

S. Albers and S. Schubert 2:13

to ensure that the value of the dual solution is always 1/c times the value of the solution for
the configuration LP. Here, g : [0, 1] → [0, 1] is a monotonically increasing function and c is a
constant that will be the competitive ratio of the algorithm.

As before, it is sufficient to show that the dual constraints are satisfied in expectation. For
this, we have to adapt Lemma 4 and Lemma 6. We consider two execution of Perturbed-
Greedy on G and G \ s with the same Z-values Zt for all servers t ∈ S \ {s}. Moreover,
denote the neighbors of s in G by {r1, . . . , rk} = Ns and let zi, 1 ≤ i ≤ k, be the Z-value of
the matching partner σi of request ri in the G \ s execution, if ri is matched there. If ri is
unmatched, we set zr := 1 and assign a dummy matching partner σi with wσi := 0. Now,
further define ζi as the unique value in [0, 1] such that

ws (1 − g (ζi)) = wσi
(1 − g (zi)) ,

if it exists. Assuming that g is a monotonically increasing function with g(1) = 1, note that
such a solution can only not exist if wσi

(1 − g (zi)) > ws (1 − g (0)), in which case we define
ζi := 0. It is easy to see that Perturbed-Greedy would prefer server s over server σi if
Zs < ζi. Moreover, let ys(ri) be the value of y(ri) in the G \ s execution. It follows that

ys(ri) = wσi
(1 − g (zi))

c
≥ ws (1 − g (ζi))

c
.

We assume that Perturbed-Greedy assigns the j-th request matched to a server s to the
server spot sj .

▶ Lemma 8. At any point during the parallel execution of Perturbed-Greedy on G and
G \ s, it holds that the set of unmatched server spots U in the G execution forms a superset
of the unmatched server spots Ũ in the G \ s execution. For all server spots s′

i ∈ U \ Ũ ,
it holds that ws′ (1 − g (Zs′)) ≤ ws (1 − g (Zs)). If equality holds and s′ ̸= s, then s has a
higher priority in the tiebreaking.

Proof. By induction. The properties trivially hold initially. Then, whenever a new request
r arrives, Ũ ⊆ U can only be violated if r is assigned to a server spot ti ∈ Ũ in the G

execution, but r is not assigned to ti in the G \ s execution. There, it is either unmatched
or matched to a different server spot, which leads to a contradiction in either case. Since
ti ∈ Ũ and r is a neighbor of the server t, r cannot be unmatched in the G \ s execution. If
Perturbed-Greedy chooses a different server spot tj for r in the G\s execution, then either
i < j or i > j has to hold. i < j results in a contradiction because ti ∈ Ũ and we defined that
Perturbed-Greedy always chooses the server spot with smallest index. Furthermore, i > j

also results in a contradiction because tj ∈ Ũ ⊆ U and thus Perturbed-Greedy would have
chosen tj in the G execution as well. Moreover, if Perturbed-Greedy assigns r to a server
spot of a different server t′ in the G \ s execution, then wt′ (1 − g (Zt′)) ≥ wt (1 − g (Zt))
has to hold. However, Ũ ⊆ U implies that this server spot would also be unmatched and
available in the G execution. If wt′ (1 − g (Zt′)) > wt (1 − g (Zt)), Perturbed-Greedy
would not have chosen the correct neighbor in the G execution according to its definition,
and if wt′ (1 − g (Zt′)) = wt (1 − g (Zt)), then the tiebreak would be inconsistent between
the two executions.

Moreover, a new server spot t′
i is only added to U \ Ũ if the matching decision for

r is different in the two execution, i.e. the G execution assigns r to some server spot
tj ∈ U \ Ũ and the G \ s execution assigns r to t′

i ∈ Ũ . Therefore, it has to hold that either
wt′ (1 − g (Zt′)) < wt (1 − g (Zt)) or wt′ (1 − g (Zt′)) = wt (1 − g (Zt)) and t has a higher
tiebreak priority than t′. The induction hypothesis then finishes the proof. ◀

APPROX/RANDOM 2021

2:14 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

▶ Corollary 9. Given Zt for all servers t ∈ S \ {s}, y(ri) ≥ ys(ri) ≥ ws (1 − g (ζi))/ c holds
for all i, 1 ≤ i ≤ k, and all possible values of Zs.

▶ Lemma 10. Given Zt for all servers t ∈ S \ {s}, let ζ1 ≥ . . . ≥ ζk be the ζ-values of the
k = |Ns| neighbors of s in a G \ s execution in non-increasing order. Then, server s has at
least min{a, bs} matching partners in an execution of Perturbed-Greedy on G, where a

is the largest possible integer such that Zs < ζa ≤ . . . ≤ ζ1.

Proof. Whenever a neighbor ri of s with ζi > Zs (note that this implies ζi > 0) arrives
and s still has remaining capacity, then Lemma 8 implies that ri will be matched to s since
ws (1 − g (Zs)) > ws (1 − g (ζi)) = wσi

(1 − g (zi)) holds by definition. ◀

We finally show how to choose g and c such that the dual constraints are satisfied in
expectation. Let s be any server in G with k neighbors. Let ζi be the ζ-value of neighbor
ri ∈ Ns, 1 ≤ i ≤ k, in the G \ s execution. If k < bs, we further define ζk+1 = . . . = ζbs

= 0.
Let z′

1 ≥ . . . ≥ z′
bs

then be the bs largest values of {ζ1, . . . , ζmax{k,bs}} in non-increasing order.
Lemma 10 implies that

E

x(s)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 =
bs∑

i=1
ws

∫ z′
i

0

g(t)
c

dt .

Moreover, by Corollary 9, it holds for every neighbor r ∈ Ns of s

E

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws (1 − g (ζr))
c

,

where ζr = ζi for some i, 1 ≤ i ≤ k. Putting everything together yields

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws

c

(
bs∑

i=1

∫ z′
i

0
g(t) dt +

∑
r∈N

(1 − g (ζr))
)

.

Note that
∑

r∈N (1 − g (ζr)) is lower bounded by
∑min{|N |,bs}

i=1 (1 − g (z′
i)), since g is an

increasing function with g(1) = 1 and the z′-values are an upper bound for the ζr-values.
Plugging this in, we get

E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

 ≥ ws

c

min{|N |,bs}∑
i=1

(∫ z′
i

0
g(t) dt + 1 − g (z′

i)
)

!
≥ ws min{|N |, bs} .

Observe that this holds true if g and c fulfill the same inequality (3) as for Ranking. As
argued before, it is satisfied for g(x) = ex−1 and c = 1−1/e, which also satisfies our additional
constraint g(1) = 1. Therefore, using the law of total expectation, we conclude that

E

[
x(s) +

∑
r∈N

y(r)
]

=
∫ 1

0
. . .

∫ 1

0
E

x(s) +
∑
r∈N

y(r)

∣∣∣∣∣∣
∧

t∈S\{s}

Zt = zt

dzt . . . dzt′

≥
∫ 1

0
. . .

∫ 1

0
ws min{|N |, bs} dzt . . . dzt′ = ws min{|N |, bs} .

▶ Theorem 11. Perturbed-Greedy is (1 − 1/e)-competitive for the vertex-weighted online
b-matching problem (with variable server capacities).

S. Albers and S. Schubert 2:15

References

1 G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching
and single-bid budgeted allocations. In Proceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1253–1264. SIAM, 2011.

2 Y. Azar and A. Litichevskey. Maximizing throughput in multi-queue switches. Algorithmica,
45(1):69–90, 2006.

3 B.E. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,
39(1):80–87, 2008.

4 N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-auctions
revenue. In Proceedings of the 15th Annual European Symposium on Algorithms (ESA), volume
4698 of Lecture Notes in Computer Science, pages 253–264. Springer, 2007.

5 K. Chaudhuri, C. Daskalakis, R.D. Kleinberg, and H. Lin. Online bipartite perfect matching
with augmentations. In Proceedings of the 28th IEEE International Conference on Computer
Communications (INFOCOM), pages 1044–1052, 2009.

6 N.R. Devanur, K. Jain, and R.D. Kleinberg. Randomized primal-dual analysis of RANKING
for online bipartite matching. In Proceedings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 101–107, 2013.

7 A. Eden, M. Feldman, A. Fiat, and K. Segal. An economics-based analysis of RANKING for
online bipartite matching. In Proceedings of the 4th Symposium on Simplicity in Algorithms
(SOSA), pages 107–110, 2021.

8 G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to adwords. In Proceedings of the 19thAnnual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 982–991, 2008.

9 E.F. Grove, M.-Y. Kao, P. Krishnan, and J.S. Vitter. Online perfect matching and mobile
computing. In Proceedings 4th International Workshop, on Algorithms and Data Structures
(WADS), volume 955 of Lecture Notes in Computer Science, pages 194–205. Springer, 1995.

10 Z. Huang and Q. Zhang. Online primal dual meets online matching with stochastic rewards:
configuration LP to the rescue. In Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 1153–1164, 2020.

11 Z. Huang, Q. Zhang, and Y. Zhang. Adwords in a panorama. In Proceedings of the 61st IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 1416–1426, 2020.

12 B. Jin and D.P. Williamson. Improved analysis of RANKING for online vertex-weighted
bipartite matching. CoRR, abs/2007.12823, 2020. arXiv:2007.12823.

13 B. Kalyanasundaram and K. Pruhs. An optimal deterministic algorithm for online b-matching.
Theor. Comput. Sci., 233(1-2):319–325, 2000.

14 C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 587–596.
ACM, 2011.

15 R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), pages 352–358, 1990.

16 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing LPs. In Proceedings of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 597–606, 2011.

17 A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 728–737, 2012.

18 A. Mehta, A. Saberi, U.V. Vazirani, and V.V. Vazirani. Adwords and generalized online
matching. J. ACM, 54(5):22, 2007.

APPROX/RANDOM 2021

http://arxiv.org/abs/2007.12823

2:16 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

A Comparison of RelativeBalance and Allocation

Consider the algorithm Allocation [4] specialized for maximum cardinality online b-
matching. It is the other known optimal deterministic online algorithm for this problem
besides RelativeBalance.

Algorithm 4 Allocation.

Initialize x(s) = 0, ∀s ∈ S, and y(r) = 0, ∀r ∈ R;
while a new request r ∈ R arrives do

Let N(r) denote the set of neighbors s of r with x(s) < 1;
if N(r) = ∅ then

Do not match r;
else

Match r to arg min{x(s) : s ∈ N(r)} (break ties arbitrarily);
Upadte y(r) = 1 − x(s);
Update x(s) = x(s) ·

(
1 + 1

bs

)
+ 1

(d−1)bs
;

end
end

The analysis of Buchbinder et al. [4] can be extended to show that Allocation constructs
a feasible solution for the classical dual matching LP with its variables x(s) and y(r). Moreover,
it can be shown that the size of the constructed matching is at least c = 1 − 1/d times
the value of the constructed dual solution, where d = (1 + 1/bmin)bmin . This implies that
Allocation achieves the optimal competitiveness of 1 − 1/ (1 + 1/bmin)bmin .

Recall that RelativeBalance matches a request r to an eligible neighbor with minimum
relative server load. In contrast, Allocation matches r to a neighbor s with minimum
x(s), if x(s) < 1. It can be proven by induction that at any point during the execution of
Allocation, a server s with capacity bs and loads assigned requests has

x(s) = 1
d − 1

((
1 + 1

bs

)loads

− 1
)

. (4)

This has two consequences: on the one hand, Allocation may choose a different
matching partner for r compared to RelativeBalance in certain situations, since loads/bs ≤
loads′/bs′ does not imply (1 + 1/bs)loads ≤ (1 + 1/bs′)loads′ . On the other hand, Allocation
considers s to be full once x(s) ≥ 1. Equation (4) implies that this is the case when

(
1 + 1

bs

)loads

≥
(

1 + 1
bmin

)bmin

.

Observe that this may occur before loads becomes bs, meaning before s actually has been
assigned bs requests. This implies that an unmodified version of Allocation may leave
some server spots unused and thus not create a maximal matching.

S. Albers and S. Schubert 2:17

B Analysis of Random

We start with a pseudo-code description of Random.

Algorithm 5 Random.

while a new request r ∈ R arrives do
Let N(r) denote the set of neighbors of r with remaining capacity;
if N(r) = ∅ then

Do not match r;
else

Match r to a random s ∈ N(r);
end

end

We extend Random’s worst case input graph of the problem without server capacities
and show that Random also does not achieve a competitive ratio better than 1

2 for the online
b-matching problem, even if all server capacities are equal. Consider a graph with n servers
S = {s1, . . . , sn} and n rounds of requests R = R1∪̇ . . . ∪̇Rn, where n = 2k. Every server s

has the same capacity bs := b and each round contains b identical requests that all have the
same neighbors. The different rounds arrive one after another, such that the first request of
Ri+1 only arrives after the last request of Ri arrived, 1 ≤ i < n. Requests within the same
round can arrive in an arbitrary order. All requests r ∈ Ri of the i-th round are adjacent to
server si. This implies that there exists a perfect matching of size b · n that matches Ri to si.
Moreover, all requests r ∈ R1∪̇ . . . ∪̇Rk of the first half of rounds are additionally adjacent
to all servers sk+1, . . . , sn of the second half (see Fig. 2).

S R

arrival

Figure 2 A bad input for Random. There are n = 6 servers, each with capacity b = 3, and n

rounds of requests, each containing b identical requests. For clarity, the adjacencies of a round are
depicted as a whole. Note that requests still arrive individually one after another and not together
with their complete round.

Intuitively, Random performs poorly on this graph since its very unlikely that it makes
the correct matching decision for the requests from the first half or rounds, i.e. assigning
a request from Ri to server si. Observe that - irrespective of the matching decision made

APPROX/RANDOM 2021

2:18 Optimal Algorithms for Online b-Matching with Variable Vertex Capacities

by Random for the requests of the first half of rounds - every server of the second half will
be assigned exactly b requests. Let X be a random variable indicating how many requests
were matched to the first half of servers by Random. The size of the constructed matching
M is then |M | = b · k + X. Therefore, it is possible to compute the expected size of the
constructed matching by determining the expected value of X.

Let Xi, 1 ≤ i ≤ k, be the number of requests assigned to server si. It holds that
X =

∑k
i=1 Xi. By design, only requests from Ri may be assigned to si, for 1 ≤ i ≤ k. Let r

be any request from such a round Ri and let pi be the probability that Random assigns
r to its perfect matching partner si. Observe that pi depends on the number of servers in
the second half with remaining capacity. At most b · (i − 1) + (b − 1) requests arrived before
r (r may be the last request of Ri). Hence at most (i − 1) of the last k servers can be full,
implying at least (k − i + 1) eligible neighbors in the second half of servers for all requests
from Ri. Furthermore, server si cannot become full before the last request of Ri arrives.
Random has therefore at least (k − i + 2) servers to choose from when assigning a request
from round Ri. This yields

E[X] =
k∑

i=1
E[Xi] ≤

k∑
i=1

b · pi ≤ b

k∑
i=1

1
k + 2 − i

= b

k+1∑
j=2

1
j

= b (Hk+1 − 1) ≤ b ln(k + 1) ,

where Hn denotes the n-th harmonic number and the inequality Hn ≤ ln(n) + 1 is used. The
size of the perfect matching in this graph is b · n. Thus, Random achieves a competitive
ratio of

E[|M |]
b · n

≤ b · k + b ln(k + 1)
b · n

= 1
2 + ln(n/2 + 1)

n

n→∞−→ 1
2 .

This finishes the proof of Theorem 3.

	1 Introduction
	2 Deterministic algorithms for maximum-cardinality b-matching
	3 Randomized algorithms for maximum-cardinality b-matching
	4 Vertex-weighted b-matching
	A Comparison of RelativeBalance and Allocation
	B Analysis of Random

