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Abstract
We consider the online bipartite matching problem within the context of stochastic probing with
commitment. This is the one-sided online bipartite matching problem where edges adjacent to an
online node must be probed to determine if they exist based on edge probabilities that become
known when an online vertex arrives. If a probed edge exists, it must be used in the matching. We
consider the competitiveness of online algorithms in the adversarial order model (AOM) and the
secretary/random order model (ROM). More specifically, we consider an unknown bipartite stochastic
graph G = (U, V, E) where U is the known set of offline vertices, V is the set of online vertices, G has
edge probabilities (pe)e∈E , and G has edge weights (we)e∈E or vertex weights (wu)u∈U . Additionally,
G has a downward-closed set of probing constraints (Cv)v∈V , where Cv indicates which sequences of
edges adjacent to an online vertex v can be probed. This model generalizes the various settings of
the classical bipartite matching problem (i.e. with and without probing). Our contributions include
the introduction and analysis of probing within the random order model, and our generalization
of probing constraints which includes budget (i.e. knapsack) constraints. Our algorithms run in
polynomial time assuming access to a membership oracle for each Cv.

In the vertex weighted setting, for adversarial order arrivals, we generalize the known 1
2 competit-

ive ratio to our setting of Cv constraints. For random order arrivals, we show that the same algorithm
attains an asymptotic competitive ratio of 1 − 1/e, provided the edge probabilities vanish to 0
sufficiently fast. We also obtain a strict competitive ratio for non-vanishing edge probabilities when
the probing constraints are sufficiently simple. For example, if each Cv corresponds to a patience
constraint ℓv (i.e., ℓv is the maximum number of probes of edges adjacent to v), and any one of
following three conditions is satisfied (each studied in previous papers), then there is a conceptually
simple greedy algorithm whose competitive ratio is 1 − 1

e
.

When the offline vertices are unweighted.
When the online vertex probabilities are “vertex uniform”; i.e., pu,v = pv for all (u, v) ∈ E.
When the patience constraint ℓv satisfies ℓv ∈ {[1, |U |} for every online vertex; i.e., every online
vertex either has unit or full patience.

Finally, in the edge weighted case, we match the known optimal 1
e

asymptotic competitive ratio for
the classic (i.e. without probing) secretary matching problem.
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13:2 Secretary Matching Meets Probing with Commitment

1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty
and more specifically, stochastic optimization. Unlike more standard forms of stochastic
optimization, it is not just that there is some possible stochastic uncertainty in the set
of inputs, stochastic probing problems involve inputs that cannot be determined without
probing (at some cost and/or within some constraint) so as to reveal the inputs. Applications
of stochastic probing occur naturally in many settings, such as in matching problems where
compatibility (for example, in online dating and kidney exchange applications) or legality
(for example, a financial transaction that must be authorized before it can be completed)
cannot be determined without some trial or investigation. Amongst other applications, the
online bipartite stochastic matching problem notably models online advertising where the
probability of an edge can correspond to the probability of a purchase in online stores or
to pay-per-click revenue in online searching. Commitment reflects the fact that one usually
chooses the next probe based on some concept of expected value but in many applications
(e.g. kidney exchanges) the cost or invasiveness of probing makes it practically necessary
to commit. In some applications, there may be a legal requirement to commit (e.g., if a
contract is possibly being offered and commitment is required).

The (offline) stochastic matching problem was introduced by Chen et al. [9]. In this
problem, the input is an adversarially generated stochastic graph G = (V, E) with a probability
pe associated with each edge e and a patience (or time-out) parameter ℓv associated with
each vertex v. An algorithm probes edges in E within the constraint that at most ℓv edges
are probed incident to any particular vertex v ∈ V . Also, when an edge e is probed, it is
guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, it is added
to the matching and then u and v are no longer available. The goal is to maximize the
expected size of a matching constructed in this way. Chen et al. showed that by probing
edges in non-increasing order of edge probability, one attains an approximation ratio of 1/4.
The analysis was later improved by Adamczyk [1], who showed that this algorithm in fact
attains an approximation ratio of 1/2. This problem can be generalized to vertices or edges
having weights.

Mehta and Panigrahi [22] adapted the offline stochastic matching model to online bipartite
matching as originally studied in the classical (non-stochastic) adversarial order online model.
That is, they consider the setting where the stochastic graph is unknown and online vertices
are determined by an adversary. More specifically, they studied the problem in the case of
an unweighted stochastic graph G = (U, V, E) where U is the set of known offline vertices
and the vertices in V arrive online without knowledge of future online node arrivals. They
considered the special case of uniform edge probabilities (i.e, pe = p for all e ∈ E) and unit
patience values, that is ℓv = 1 for all v ∈ V . They considered a greedy algorithm which
attains a competitive ratio of 1

2 (1 + (1− p)2/p), which limits to 1
2 (1 + e−2) ≈ .567 as p→ 0.

Mehta et al. [23] considered the unweighted online stochastic bipartite setting with arbitrary
edge probabilities, attaining a competitive ratio of 0.534, and recently, Huang and Zhang [16]
additionally handled the case of arbitrary offline vertex weights, while improving this ratio
to 0.572. However, as in [22], both [23] and [16] are restricted to unit patience values, and
moreover require edge probabilities which are vanishingly small1. Goyal and Udwani [12]
improved on both of these works by showing a 0.596 competitive ratio in the same setting.

1 Vanishingly small edge probabilities must satisfy maxe∈E pe → 0, where the asymptotics are with
respect to the size of G.
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In all our results we will assume commitment; that is, when an edge is probed and found
to exist, it must be included in the matching (if possible without violating the matching
constraint). The patience constraint can be viewed as a simple form of a budget (equivalently,
knapsack) constraint for the online vertices. We generalize patience and budget constraints
by associating a downward-closed set Cv of probing sequences for each online node v where
Cv indicates which sequences of edges adjacent to vertex v can be probed. In the general
query and commit framework of Gupta and Nagarajan [14], the Cv constraints are the outer
constraints.

1.1 Preliminaries

An input to the (online) stochastic matching problem is a (bipartite) stochastic
graph, specified in the following way. Let G = (U, V, E) be a bipartite graph with edge
weights (we)e∈E and edge probabilities (pe)e∈E . We draw an independent Bernoulli random
variable of parameter pe for each e ∈ E. We refer to this Bernoulli as the state of the edge e,
and denote it by st(e). If st(e) = 1, then we say that e is active, and otherwise we say that
e is inactive. For each v ∈ V , denote ∂(v) as the edges of G which include v. Define ∂(v)(∗)

as the collection of strings (tuples) formed from the edges of ∂(v) whose characters (entries)
are all distinct. Note that we use string/tuple notation and terminology interchangeably.
Each v ∈ V has an online probing constraint Cv ⊆ ∂(v)(∗) which is downward-closed.
That is, Cv has the property that if e ∈ Cv, then so is any substring or permutation of e.
Thus, in particular, our setting encodes the case when v has a patience value ℓv, and more
generally, when Cv corresponds to a matroid or budgetary constraint2 on ∂(v). Note that we
will often assume w.l.o.g. that E = U × V , as we can always set pu,v := 0.

A solution to the online stochastic matching problem is an online probing algorithm.
An online probing algorithm is initially only aware of the identity of the offline vertices
U of G. We think of G, as well as the relevant edges probabilities, weights, and probing
constraints, as being generated by an adversary. An ordering on V is then generated either
through an adversarial process or uniformly at random. We refer to the former case as
the adversarial order model (AOM) and the latter case as the random order model
(ROM).

Based on whichever ordering is generated on V , the nodes are then presented to the
online probing algorithm one by one. When an online node v ∈ V arrives, the online
probing algorithm sees all the adjacent edges and their associated probabilities, as well as
Cv. However, the edge states (st(e))e∈∂(v) remain hidden to the algorithm. Instead, the
algorithm must perform a probing operation on an adjacent edge e to reveal/expose its
state, st(e). Moreover, the online probing algorithm must respect commitment. That is, if
an edge e = (u, v) is probed and turns out to be active, then e must be added to the current
matching, provided u and v are both currently unmatched. The probing constraint Cv of the
online node then restricts which sequences of probes can be made to ∂(v). As in the classical
problem, an online probing algorithm must decide on a possible match for an online node v

before seeing the next online node. The goal of the online probing algorithm is to return a
matching whose expected weight is as large as possible. Since Cv may be exponentially large
in the size of U , in order to discuss the efficiency of an online probing algorithm, we work
in the membership oracle model. That is, upon receiving the online vertex v ∈ V , we

2 In the case of a budget Bv and edge probing costs (be)e∈∂(v), any subset of ∂(v) may be probed, provided
its cumulative cost does not exceed Bv.

APPROX/RANDOM 2021



13:4 Secretary Matching Meets Probing with Commitment

assume the online probing algorithm has access to a membership oracle. The algorithm
may query any string e ∈ ∂(v)(∗), thus determining in a single operation whether or not
e ∈ ∂(v)(∗) is in Cv.

It is easy to see we cannot hope to obtain a non-trivial competitive ratio against the
expected value of an optimal matching of the stochastic graph. Consider a single online vertex
with patience 1, and k ≥ 1 offline (unweighted) vertices where each edge e has probability 1

k

of being present. The expectation of an online probing algorithm will be at most 1
k while the

expected size of an optimal matching will be 1−(1− 1
k )k → 1− 1

e . This example clearly shows
that no constant ratio is possible if the patience is sublinear in k = |U |. Thus, the standard in
the literature is to instead benchmark the performance of an online probing algorithm against
an optimal offline probing algorithm. An offline probing algorithm knows G = (U, V, E),
but initially the edge states (st(e))e∈E are hidden. It can adaptively probe the edges of E in
any order, but must satisfy the probing constraints (Cv)v∈V at each step of its execution3,
while respecting commitment; that is, if a probed edge e = (u, v) turns out to be active,
then e is added to the matching (if possible). The goal of an offline probing algorithm is
to construct a matching with optimal weight in expectation. We define the committal
benchmark OPT(G) for G as the value of an optimal offline probing algorithm. We abuse
notation slightly, and also use OPT(G) to refer to the strategy of the committal benchmark
on G. In the arXiv version of the paper [4], we introduce the stronger non-committal
benchmark, and indicate which of our results hold against it.

1.2 Our Results
We first consider the case when the stochastic graph G = (U, V, E) has (offline) vertex
weights – i.e., there exists (wu)u∈U such that wu,v = wu for each v ∈ N(u), and arbitrary
downward-closed probing constraints (Cv)v∈V . We consider a greedy online probing algorithm.
That is, upon the arrival of v, the probes to ∂(v) are made in such a way that v gains as much
value as possible (in expectation), provided the currently unmatched nodes of U are equal to
R ⊆ U . As such, we must follow the probing strategy of the committal benchmark when
restricted to the induced stochastic graph4 G[{v} ∪R], which we denote by OPT(R, v)
for convenience.

Observe that if v has unit patience, then OPT(R, v) reduces to probing the adjacent edge
(u, v) ∈ R × {v} such that the value wu · pu,v is maximized. Moreover, if v has unlimited
patience, then OPT(R, v) corresponds to probing the adjacent edges of R × {v} in non-
increasing order of the associated vertex weights. Building on a result in Purohit et al. [24],
Brubach et al. [8] showed how to devise an efficient probing strategy for v whose expected
value matches OPT(R, v), for any patience value. Using this probing strategy, they devised
an online probing algorithm which achieves a competitive ratio of 1/2 for arbitrary patience
values. The challenge in extending this competitive ratio to more general probing constraints
comes from the fact that it is unclear how to compute OPT(R, v) efficiently. We show that
this is possible to do when the probing constraints are downward-closed, and provide a
primal-dual proof of the following theorem:

3 Edges e ∈ E(∗) may be probed in the order specified by e, provided ev ∈ Cv for each v ∈ V , where ev

is the substring of e restricted to edges of ∂(v).
4 Given R ⊆ U, V ′ ⊆ V , the induced stochastic graph G[R ∪ V ′] is formed by restricting the edges weights

and probabilities of G to those edges within R × V ′. Similarly, each probing constraint Cv is restricted
to those strings whose entries lie entirely in R × {v}.
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▶ Theorem 1.1. Suppose the adversary presents a vertex weighted stochastic graph G =
(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned
by Algorithm 1 when executing on G, then

E[w(M)] ≥ 1
2 ·OPT(G),

provided the vertices of V arrive in adversarial order. Moreover, Algorithm 1 can be
implemented efficiently in the membership oracle model.

Since Algorithm 1 is deterministic, the 1/2 competitive ratio is best possible for determ-
inistic algorithms in the adversarial arrival setting. One direction is thus to instead consider
what can be done if the online probing algorithm is allowed randomization, which has received
much attention in the case of unit patience [22, 23, 12, 16]. We instead make partial progress
to understanding the performance of Algorithm 1 for downward-closed probing constraints in
the ROM setting. However, unlike the adversarial setting, the complexity of the constraints
greatly impacts what we are able to prove. The first part of our result is asymptotic in
that it yields a good competitive ratio when applied to a stochastic graph whose maximum
edge probability pv := maxe∈∂(v) pe vanishes sufficiently fast relevant to the maximum string
length of Cv, namely cv := maxe∈Cv

|e|, for each v ∈ V . Note that the vanishing probability
setting is similar in spirit to the small bid to budget assumption in the Adwords problem
(see Goyal and Udwani [12] for details). The second part of our result applies to stochastic
graphs which we refer to as rankable. Roughly speaking, a vertex v ∈ V of G is rankable,
provided there exists a fixed/non-adaptive ranking πv of ∂(v) which can be used to specify
the greedy strategy OPT(v, R) of v, no matter which vertices R ⊆ U are available when
v is processed. For example, this includes the well-studied unit patience setting, in which
case v ranks its adjacent edges in non-increasing order of (wupu,v)u∈U , as well as when G

is unweighted and has arbitrary patience values, in which case v ranks its adjacent edges
in non-increasing order of edge probability. A stochastic graph is rankable if all its online
vertices are rankable. We defer the precise definition to Section 2.

▶ Theorem 1.2. Suppose Algorithm 1 returns the matching M when executing on the vertex
weighted stochastic graph G = (U, V, E) with downward-closed constraints (Cv)v∈V , and the
vertices of V arrive u.a.r.. We then have the following two results:
1. If cv := maxe∈Cv

|e| and pv := maxe∈∂(v) pe, then

E[w(M)] ≥ min
v∈V

(1− pv)cv ·
(

1− 1
e

)
·OPT(G).

Thus, if cv · pv → 0 (as |G| → ∞) for each v ∈ V , then E[w(M)] ≥ (1− o(1)) (1− 1/e) ·
OPT(G).

2. If G is rankable (which includes the specific cases outlined in the abstract), then

E[w(M)] ≥
(

1− 1
e

)
·OPT(G).

▶ Remark 1.3. The analysis of Algorithm 1 is tight, as an execution of Algorithm 1 corresponds
to the seminal Karp et al. [17] Ranking algorithm for unweighted non-stochastic (i.e.,
pe ∈ {0, 1} for all e ∈ E) bipartite matching.

In the unit patience setting of [22], Mehta and Panigrahi showed that .621 < 1 − 1
e is

a randomized inapproximation with regard to guarantees made against LP-std-unit, the
LP introduced by [22] to upper bound/relax the committal benchmark in the unit patience

APPROX/RANDOM 2021



13:6 Secretary Matching Meets Probing with Commitment

setting. This hardness result led Goyal and Udwani [12] to consider a new unit patience
LP that is a tighter relaxation of OPT(G) than LP-std-unit, thereby allowing them to
prove a 1− 1/e competitive ratio for the case of vertex-decomposable5 edge probabilities.
However, they also discuss the difficulty of extending this result to the case of arbitrary edge
probabilities in the context of the Adwords problem with arbitrary budget to bid ratios. It
remains open whether a randomized algorithm can attain a competitive ratio of 1 − 1/e

against the committal benchmark for adversarial arrivals and arbitrary edge probabilities. A
corollary of Theorem 1.2 is that in the ROM setting these difficulties do not arise.

▶ Corollary 1.4. Suppose the adversary presents a vertex weighted stochastic graph G =
(U, V, E), with unit patience values. If M is the matching returned by Algorithm 1 when
executing on G, then

E[w(M)] ≥
(

1− 1
e

)
OPT(G),

provided the vertices of V arrive in random order.

▶ Remark 1.5. The guarantee of Theorem 1.2 is proven against a new LP relaxation (LP-DP)
whose optimum value we denote by LPOPTDP(G). In the special case when G has unit
patience, LPOPTstd(G) ≤ LPOPTDP(G). Thus, the 0.621 inapproximation of Mehta and
Panigraphi against LP-std-unit does not apply (even for deterministic probing algorithms) to
the ROM setting. Corollary 1.4 therefore implies that deterministic probing algorithms in the
ROM setting have strictly more power than randomized probing algorithms in the adversarial
order model. This contrasts with the classic ROM setting where it is unknown whether a
deterministic algorithm can improve upon 1− 1/e, the optimal competitive attainable by
randomized algorithms in the adversarial setting.
We next consider the unknown stochastic matching problem in the most general setting
of arbitrary edge weights, and downward-closed probing constraints. Since no non-trivial
competitive ratio can be proven in the case of adversarial arrivals, even in the classical setting,
we work in the ROM setting. We generalize the matching algorithm of Kesselheim et al. [18]
so as to apply to the stochastic probing setting.

▶ Theorem 1.6. Suppose the adversary presents an edge-weighted stochastic graph G =
(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned
by Algorithm 2 when executing on G, then

E[w(M)] ≥
(

1
e
− 1
|V |

)
·OPT(G),

provided the vertices of V arrive uniformly at random (u.a.r.). Moreover, Algorithm 2 can
be implemented efficiently in the membership oracle model.

▶ Remark 1.7. For context, the previous best known approximation ratio known for the
offline bipartite stochastic matching problem with two-sided or one-sided patience is 0.352
due to Adamczyk et al. [3]. Since 1/e > 0.352, Theorem 1.6 in fact improves on this result
for the case of one-sided patience, despite the fact that Algorithm 2 works in the unknown
graph setting and for more general one-sided probing constraints. Very recently, Brubach et
al. [7] proved an approximation ratio of 0.382 for general stochastic graphs.

5 Vertex-decomposable means that there exists probabilities (pu)u∈U and (pv)v∈V , such that p(u,v) = pu·pv

for each (u, v) ∈ E.
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1.3 Our Technical Contributions
In the vertex weighted setting, the first challenge is to establish a greedy strategy for a single
online vertex which runs efficiently for general probing constraints. We provide a dynamic
programming based algorithm (DP-OPT) for solving this problem, which builds upon the
work of Brubach et al. [8], and before that, Purohit et al. [24] (see Theorem 2.1). In the
adversarial arrival setting, we prove a competitive ratio of 1/2 by comparing the performance
of Algorithm 1 to the dual of LP-DP, an extension of the LP considered by Brubach et al.
[8] from patience values to general probing constraints.

We next move to the ROM/secretary setting. In the unit patience setting of Corollary 1.4,
DP-OPT reduces to probing a single edge which yields the largest value in expectation, and
LP-DP is a relaxation of LP-std-unit (upper bounds its optimum value). While we do not
show this, one could work directly with LP-std-unit and follow the primal-dual argument of
Devanur et al. [10]. In contrast, Theorem 1.2 applies to downward-closed probing constraints
which comes with two main technical challenges. First, Brubach et al. [8] showed that even
the offline committal benchmark has a 0.544 inapproximation against the generalization of
LP-std-unit to arbitrary patience (LP-std). Moreover, this inapproximation applies to a
stochastic graph which is both rankable and has vanishingly small edge probabilities. Thus,
Theorem 1.2 cannot be proven by comparing the performance of Algorithm 1 to LP-std
and its dual, even for patience values. Our solution is to instead work with LP-DP and
its dual, LP-dual-DP. When a match between u ∈ U and v ∈ V is successfully made, we
apply the well-studied cost sharing function g(z) := exp(z − 1) to split the weight of u, as in
[10]. However, LP-dual-DP contains variables which do not have an analogue in the classical
setting. Specifically, the online vertices are associated with exponentially many variables, and
we cost share with the offline vertices which were available when v was matched to u, opposed
to just v itself. The second main technical challenge is that when moving away from the unit
patience setting, the executions of Algorithm 1 become non-monotonic. Specifically, while
v may get matched to u, if a new online vertex v∗ is added to the graph ahead of v, then u

may not be matched at all. This complicates the analysis, and is the reason the competitive
ratio of Theorem 1.2 does not hold unconditionally, as we explain in Section 2.

In the edge weighted setting, upon receiving the online vertices Vt := {v1, . . . , vt}, in
order to generalize the matching algorithm of Kesselheim et al. [18], Algorithm 2 would
ideally probe the edges of ∂(vt) suggested by OPT(Gt), where Gt := G[U ∪Vt] is the induced
stochastic graph on U ∪ Vt. However, since we wish for our algorithms to be efficient in
addition to attaining optimal competitive ratios, this strategy is not feasible. We instead
make use of a new LP (LP-config) recently introduced by the authors in [5] and independently
by Brubach et al. in [6, 13] for the special case of patience values, an updated version of [8].
This LP has exponentially many variables which accounts for the many probing strategies
available to an arriving vertex v with probing constraint Cv. We solve this LP efficiently by
using DP-OPT as a deterministic separation oracle for LP-config-dual, the dual of LP-config,
in conjunction with the ellipsoid algorithm [26, 11]. This LP closely resembles what the
committal benchmark is capable of doing, and thus leads to a probing algorithm with an
optimum competitive ratio.

2 Vertex Weights

In this section, we define Algorithm 1 and introduce the techniques needed to prove Theorems
1.1 and 1.2. However, for space considerations, we defer the dual-fitting argument used in
the adversarial arrival setting of Theorem 1.1 to Appendix B.

APPROX/RANDOM 2021



13:8 Secretary Matching Meets Probing with Commitment

Suppose that G = (U, V, E) is a vertex weighted stochastic graph with weights (wu)u∈U .
Let us now fix s ∈ V , and define val(e) to be the expected weight of the edge matched,
provided the edges of e are probed in order, where e ∈ Cs. Observe then the following claim:

▶ Theorem 2.1. There exists a dynamic programming (DP) based algorithm DP-OPT,
which given access to G[{s} ∪ U ], computes a tuple e′ ∈ Cs, such that OPT(s, U) = val(e′).
Moreover, DP-OPT executes in time O(|U |2), assuming access to a membership oracle for
the downward-closed constraint Cs.

Proof of Theorem 2.1. It will be convenient to denote wu,s := wu for each u ∈ U such that
(u, s) ∈ ∂(s). We first must show that there exists some e′ ∈ Cs such that val(e′) = OPT(s, U),
where

val(e) :=
|e|∑
i=1

pei
wei

i−1∏
j=1

(1− pei
), (2.1)

for e ∈ Cs, and OPT(s, U) is the value of the committal benchmark on G[{s} ∪ U ]. Since
the committal benchmark must respect commitment – i.e., match the first edge to s which it
reveals to be active – it is clear that e′ exists.

Our goal is to now show that e′ can be computed efficiently. Now, for any e ∈ Cs, let
er be the rearrangement of e, based on the non-increasing order of the weights (we)e∈e.
Since Cs is downward-closed, we know that er is also in Cs. Moreover, val(er) ≥ val(e)
(following observations in [24, 8]). Hence, let us order the edges of ∂(s) as e1, . . . , em, such
that we1 ≥ . . . ≥ wem

, where m := |∂(s)|. Observe then that it suffices to maximize (2.1) over
those strings within Cs which respect this ordering on ∂(s). Stated differently, let us denote Is

as the family of subsets of ∂(s) induced by Cs, and define the set function f : 2∂(s) → [0,∞),
where f(B) := val(b) for B = {b1, . . . , b|B|} ⊆ ∂(s), such that b = (b1, . . . , b|B|) and
wb1 ≥ . . . ≥ wb|B| . Our goal is then to efficiently maximize f over the set-system (∂(s), Is).
Observe that Is is downward-closed and that we can simulate oracle access to Is, based on
our oracle access to Cs.

For each i = 0, . . . , m− 1, denote ∂(s)>i := {ei+1, . . . , em}, and ∂(s)>m := ∅. Moreover,
define the family of subsets I>i

s := {B ⊆ ∂(s)>i : B ∪ {ei} ∈ Is} for each 1 ≤ i ≤ m,
and I>0

s := Is. Observe then that (∂(s)>i, I>i
s ) is a downward-closed set system, as Is is

downward-closed. Moreover, we may simulate oracle access to I>i
s based on our oracle access

to Is.
Denote OPT(I>i

s ) as the maximum value of f over constraints I>i
s . Observe then that

for each 0 ≤ i ≤ m− 1, the following recursion holds:

OPT(I>i
s ) := max

j∈{i+1,...,m}
(pej
· wej

+ (1− pej
) ·OPT(I>j

s )) (2.2)

Hence, given access to the values OPT(I>i+1
s ), . . . , OPT(I>m

s ), we can compute OPT(I>i
s )

efficiently. Moreover, OPT(I>m
s ) = 0 by definition. Thus, it is clear that we can use (2.2)

to recover an optimal solution to f . We can define DP-OPT to be a memoization based
implementation of (2.2). It is clear DP-OPT can be implemented in the claimed time
complexity. ◀

Given R ⊆ U , consider the induced stochastic graph, G[{s} ∪ R] for R ⊆ U which has
probing constraint CR

s ⊆ Cv, constructed by restricting Cs to those strings whose entries
all lie in R × {s}. Moreover, denote the output of executing DP-OPT on G[{s} ∪ R] by
DP-OPT(s, R). Consider now the following online probing algorithm:
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Algorithm 1 Greedy-DP.

Input: offline vertices U with vertex weights (wu)u∈U .
Output: a matching M of active edges of the unknown stochastic graph G = (U, V, E).

1: M← ∅.
2: R← U .
3: for t = 1, . . . , n do
4: Let vt be the current online arrival node, with constraint Cvt

.
5: Set e← DP-OPT(vt, R)
6: for i = 1, . . . , |e| do
7: Probe ei.
8: if st(ei) = 1 then
9: Add ei to M, and update R← R \ {ui}, where ei = (ui, vt).

10: return M.

In general, the behaviour of the committal benchmark, namely OPT(s, R), can change
very much, even for minor changes to R. For instance, if R = U , then OPT(s, U) may
probe the edge (u, s) first – thus giving it highest priority – whereas if u∗ ∈ U is removed
from U (where u∗ ̸= u), OPT(s, U \ {u∗}) may not probe (u, v) at all (see Example B.1 for
an explicit instance of this behaviour). As a result, it is easy to consider an execution of
Algorithm 1 on G where v is matched to u, but if a new vertex v∗ is added to G ahead of v,
u is never matched. We thus refer to Algorithm 1 as being non-monotonic. This contrasts
with the classical setting, in which the deterministic greedy algorithm in the ROM setting
does not exhibit this behaviour, and thus is monotonic. The absence of monotonicity isn’t
problematic in the adversarial setting of Theorem 1.1 because our primal-dual charging
assignment does not depend on the order of the online vertex arrivals (see Appendix B). This
contrasts with the ROM setting, in which Example B.1 can be extended to show that the
cost sharing rule g(z) := exp(z− 1) will not work in general. Our approach is thus to restrict
our attention to stochastic graphs in which executions of Algorithm 1 are either monotonic,
or monotonic with high probability. This leads us to the definition of rankability, which
characterizes a large number of settings in which Algorithm 1 is monotonic.

Given a vertex v ∈ V , and an ordering πv on ∂(v), if R ⊆ U , then define πv(R) to be the
longest string constructible by iteratively appending the edges of R × {v} via πv, subject
to respecting constraint CR

v . More precisely, given e′ after processing e1, . . . , ei of R× {v}
ordered according to πv, if (e′, ei+1) ∈ CR

v , then update e′ by appending ei+1 to its end,
otherwise move to the next edge ei+2 in the ordering πv, assuming i + 2 ≤ |R|. If i + 2 > |R|,
return the current string e′ as πv(R). We say that v is rankable, provided there exists
a choice of πv which depends solely on (pe)e∈∂(v), (we)e∈∂(v) and Cv, such that for every
R ⊆ U , the strings DP-OPT(v, R) and πv(R) are equal. Crucially, if v is rankable, then
when vertex v arrives while executing Algorithm 1, one can compute the ranking πv on
∂(v) and probe the adjacent edges of R× {v} based on this order, subject to not violating
the constraint CR

v . By following this probing strategy, the optimality of DP-OPT ensures
that the expected weight of the match made to v will be OPT(v, R). We consider three
(non-exhaustive) examples of rankability:

▶ Proposition 2.2. Let G = (U, V, E) be a stochastic graph, and suppose that v ∈ V . If v

satisfies either of the following conditions, then v is rankable:
1. v has unit patience or unlimited patience; that is, ℓv ∈ {1, |U |}.
2. v has patience ℓv, and for each u1, u2 ∈ U , if pu1,v ≤ pu2,v then wu1 ≤ wu2 .
3. G is unweighted, and v has a budget Bv with edge probing costs (bu,v)u∈U , and for each

u1, u2 ∈ U , if pu1,v ≤ pu2,v then bu1,v ≥ bu2,v.
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13:10 Secretary Matching Meets Probing with Commitment

▶ Remark 2.3. Note that the cases of Proposition 2.2 subsume all the settings listed in the
abstract. The rankable assumption is similar to assumptions referred to as laminar, agreeable
and compatible in other applications.

We refer to the stochastic graph G as rankable, provided all of its vertices are themselves
rankable. We emphasize that distinct vertices of V may each use their own separate rankings
of their adjacent edges.

As discussed in Subsection 1.3, the 0.544 inapproximation against LP-std [8] prevents us
from proving a performance guarantee against LP-std, even for patience values. We instead
upper bound OPT(G) using a tighter LP relaxation that comes with the additional benefit
of applying to downward-closed probing constraints. For each u ∈ U and v ∈ V , let xu,v be
a decision variable corresponding to the probability that OPT(G) probes the edge (u, v).

maximize
∑
u∈U

∑
v∈V

wu · pu,v · xu,v (LP-DP)

subject to
∑
v∈V

pu,v · xu,v ≤ 1 ∀u ∈ U (2.3)∑
u∈R

wu · pu,v · xu,v ≤ OPT(v, R) ∀v ∈ V, R ⊆ U (2.4)

xu,v ≥ 0 ∀u ∈ U, v ∈ V (2.5)

Denote LPOPTDP(G) as the optimal value of this LP. Constraint (2.3) can be viewed as
ensuring that the expected number of matches made to u ∈ U is at most 1. Similarly,
(2.4) can be interpreted as ensuring that expected stochastic reward of v, suggested by
the solution (xu,v)u∈U,v∈V , is actually attainable by the committal benchmark. Thus,
OPT(G) ≤ LPOPTDP(G) (a formal proof specific to patience values is proven in [8]).

2.0.1 Defining the Primal-Dual Charging Schemes
In order to prove Theorems 1.1 and 1.2, we employ primal-dual charging arguments based
on the dual of LP-DP. For each u ∈ U , define the variable αu. Moreover, for each R ⊆ U

and v ∈ V , define the variable ϕv,R (these latter variables correspond to constraint (2.4)).

minimize
∑
u∈U

αu +
∑
v∈V

∑
R⊆U

OPT(v, R) · ϕv,R (LP-dual-DP)

subject to pu,v · αu +
∑

R⊆U :
u∈R

wu · pu,v · ϕv,R ≥ wu · pu,v ∀u ∈ U, v ∈ V (2.6)

αu ≥ 0 ∀u ∈ U (2.7)
ϕv,R ≥ 0 ∀v ∈ V, R ⊆ U (2.8)

The dual-fitting argument used to prove Theorem 1.2 has an initial set-up which proceeds
similarly to the argument in Devanur et al. [10]. Specifically, first define g : [0, 1] → [0, 1]
where g(z) := exp(z − 1) for z ∈ [0, 1]. We shall use g to perform our charging/cost sharing.
Moreover, recall that given v ∈ V , we defined cv := maxe∈Cv

|e| and pv := maxe∈∂(v) pe.
Using these definitions, we define F = F (G), where

F (G) :=
{

1− 1
e G is rankable(

1− 1
e

)
·minv∈V (1− pv)cv otherwise

(2.9)
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In order to prove Theorem 1.2, we shall prove that Algorithm 1 returns a matching of
expected weight at least F (G) · LPOPTDP(G) when executing on the stochastic graph G in
the ROM setting. Clearly, we may assume F (G) > 0, as otherwise there is nothing to prove,
so we shall make this assumption for the rest of the section. Note that F (G) ≤ 1− 1/e no
matter the stochastic graph G.

For each v ∈ V , draw Yv ∈ [0, 1] independently and uniformly at random. We assume
that the vertices of V are presented to Algorithm 1 in a non-decreasing order, based on the
values of (Yv)v∈V . We now describe how the charging assignments are made while Algorithm
1 executes on G. First, we initialize a dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) where all the
variables are set equal to 0. Next, we take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If
R consists of the unmatched vertices of v when it arrives at time Yv, then suppose that
Algorithm 1 matches v to u while making its probes to a subset of the edges of R × {v}.
In this case, we charge wu · (1 − g(Yv))/F to αu and wu · g(Yv)/(F · OPT(v, R)) to ϕv,R.
Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,

E[w(M)] = F ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (2.10)

where the expectation is over the random variables (Yv)v∈V and (st(e))e∈E . If we now set
α∗

u := E[αu] and ϕ∗
v,R := E[ϕv,R] for u ∈ U, v ∈ V and R ⊆ U , then (2.10) implies the

following lemma:

▶ Lemma 2.4. Suppose G = (U, V, E) is a stochastic graph for which Algorithm 1 returns the
matching M when presented V based on (Yv)v∈V generated u.a.r. from [0, 1]. In this case, if
the variables ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U ) are defined through the above charging scheme, then

E[w(M)] = F ·

∑
u∈U

α∗
u +

∑
v∈V

∑
R⊆U

OPT(v, R) · ϕ∗
v,R

 .

We claim the following regarding ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ):

▶ Lemma 2.5. If the online nodes of G = (U, V, E) are presented to Algorithm 1 based on
(Yv)v∈V generated u.a.r. from [0, 1], then the solution ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U ) is a feasible

solution to LP-dual-DP.

Since LP-DP is a relaxation of the committal benchmark, Theorem 1.2 follows from Lemmas
2.4 and 2.5 in conjunction with weak duality.

2.0.2 Proving Dual Feasibility: Lemma 2.5
Let us suppose that the variables ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) are defined as in the charging
scheme of Section 2.0.1. In order to prove Lemma 2.5, we must show that for each fixed
u0 ∈ U and v0 ∈ V , we have that

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (2.11)

Our strategy for proving (2.11) first involves the same approach as used in Devanur et al.
[10]. Specifically, we define the stochastic graph G̃ := (U, Ṽ , Ẽ), where Ṽ := V \ {v0} and
G̃ := G[U ∪ Ṽ ]. We wish to compare the execution of the algorithm on the instance G̃ to its
execution on the instance G. It will be convenient to couple the randomness between these
two executions by making the following assumptions:
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1. For each e ∈ Ẽ, e is active in G̃ if and only if it is active in G.
2. The same random variables, (Yv)

v∈Ṽ
, are used in both executions.

If we now focus on the execution of G̃, then define the random variable Ỹc where Ỹc := Yvc
if

u0 is matched to some vc ∈ Ṽ , and Ỹc := 1 if u0 remains unmatched after the execution on
G̃. We refer to the random variable Ỹc as the critical time of vertex u0 with respect to v0.
We claim the following lower bounds on αu0 in terms of the critical time Ỹc.

▶ Proposition 2.6.
If G is rankable, then αu0 ≥

(
1− 1

e

)−1
wu0(1− g(Ỹc)).

Otherwise, E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(
1− 1

e

)−1
wu0(1− g(Ỹc)).

▶ Remark 2.7. Note that Proposition 2.6 is the only part of the proof of Theorem 1.2
which is affected by whether or not G is rankable. We defer the proof of Proposition 2.6 to
Appendix B.
By taking the appropriate conditional expectation, we can also lower bound the random
variables (ϕv0,R)R⊆U :

u0∈R
.

▶ Proposition 2.8.

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz.

Proof of Proposition 2.8. We first define Rv0 as the unmatched vertices of U when v0
arrives (this is a random subset of U). We also once again use M to denote the matching
returned by Algorithm 1 when executing on G. If we now take a fixed subset R ⊆ U , then
the charging assignment to ϕv0,R ensures that

ϕv0,R = w(M(v0)) · g(Yv0)
F ·OPT(v0, R) · 1[Rv0 =R],

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if
v0 remains unmatched after the execution on G). In order to make use of this relation, let
us first condition on the values of (Yv)v∈V , as well as the states of the edges of Ẽ; that is,
(st(e))

e∈Ẽ
. Observe that once we condition on this information, we can determine g(Yv0), as

well as Rv0 . As such,

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F ·OPT(v0, R) E[w(M(v0)) | (Yv)v∈V , (st(e))

e∈Ẽ
]·1[Rv0 =R].

On the other hand, the only randomness which remains in the conditional expectation
involving w(M(v0)) is over the states of the edges adjacent to v0. Observe now that since
Algorithm 1 behaves optimally on G[{v0} ∪Rv0 ], we get that

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (2.12)

and so for the fixed subset R ⊆ U ,

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]

after multiplying each side of (2.12) by the indicator random variable 1[Rv0 =R]. Thus,

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

1[Rv0 =R],
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after cancellation. We therefore get that

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

∑
R⊆U :
u0∈R

1[Rv0 =R].

Let us now focus on the case when v0 arrives before the critical time; that is, 0 ≤ Yv0 < Ỹc.
Up until the arrival of v0, the executions of the algorithm on G̃ and G proceed identically,
thanks to the coupling between the executions. As such, u0 must be available when v0 arrives.
We interpret this observation in the above notation as saying the following:

1[Yv0 <Ỹc] ≤
∑

R⊆U :
u0∈R

1[Rv0 =R].

As a result,

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥ g(Yv0)
F

1[Yv0 <Ỹc].

Now, if we take expectation over Yv0 , while still conditioning on the random variables (Yv)
v∈Ṽ

,
then we get that

E[g(Yv0) · 1[Yv0 <Ỹc] | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] =
∫ Ỹc

0
g(z) dz,

as Yv0 is drawn uniformly from [0, 1], independently from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

. Thus,
after applying the law of iterated expectations,

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz,

and so the claim holds. ◀

With Propositions 2.6 and 2.8, the proof of Lemma 2.5 follows easily (see Appendix B),
and so Theorem 1.2 is proven.

3 Edge Weights

Let us suppose that G = (U, V, E) is a stochastic graph with arbitrary edge weights,
probabilities and downward-closed probing constraints (Cv)v∈V . For each k ≥ 1 and e =
(e1, . . . , ek) ∈ E(k), define g(e) :=

∏k
i=1(1 − pei

). Notice that g(e) corresponds to the
probability that all the edges of e are inactive, where g(λ) := 1 for the empty string λ. We
also define e<ei := (e1, . . . , ei−1) for each 2 ≤ i ≤ k, which we denote by e<i when clear. By
convention, e<1 := λ. Observe then that val(e) :=

∑|e|
i=1 pei

wei
· g(e<i) corresponds to the

expected weight of the first active edge if e is probed in order of its indices, where val(λ) := 0.
For each v ∈ V , we introduce a decision variable denoted xv(e), which may loosely be

interpreted as the likelihood the committal benchmark probes the edges in the order specified
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by e = (e1, . . . , ek) 6. With this notation, we express the following LP:

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑
v∈V

∑
e∈Cv:

(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (3.1)

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (3.2)

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (3.3)

Denote LPOPTconf(G) as the optimal value of LP-config. This LP was developed from
insights relevant to both the secretary and prophet settings. Specifically, the DP-OPT
algorithm of Theorem 2.1 can be used as a (deterministic) polynomial time separation oracle
for the dual of LP-config. This ensures that LP-config can be solved in polynomial time as a
consequence of how the ellipsoid algorithm [26, 11] executes (see Theorem A.1 in Appendix
A for details). In [5], we prove that LP-config is a relaxation of the committal benchmark.
Unlike previous LP relaxations of the committal benchmark, we are not aware of an easy
proof of this fact, and we consider it to be a technical contribution.

We now define a fixed vertex probing algorithm, called VertexProbe, which is applied
to an online vertex s of an arbitrary stochastic graph (potentially distinct from G) with
probing constraints Cs on ∂(s). Specifically, given non-negative values (z(e))e∈Cs

which
satisfy

∑
e∈Cs

z(e) = 1, draw e′ with probability z(e′). If e′ = (e′
1, . . . , e′

k) for k := |e′| ≥ 1,
then probe the edges of e′ in order, and match s to the first edge revealed to be active. If no
such edge exists, or e′ = λ, then return ∅.

▶ Lemma 3.1. Suppose VertexProbe is passed a fixed online node s of a stochastic graph,
and values (z(e))e∈Cs

which satisfy
∑

e∈Cs
z(e) = 1. If for each e ∈ ∂(s),

z̃e :=
∑

e′∈Cv:
e∈e′

g(e′
<e) · zv(e′),

then e is probed with probability z̃e, and returned by the algorithm with probability pe · z̃e.

▶ Remark 3.2. If VertexProbe outputs the edge e = (u, s) when executing on the fixed
node s, then we say that s commits to the edge e = (u, s), or that s commits to u.
Returning to the problem of designing an online probing algorithm for G, let us assume that
n := |V |, and that the online nodes of V are denoted v1, . . . , vn, where the order is generated
u.a.r. Denote Vt as the set of first t arrivals of V ; that is, Vt := {v1, . . . , vt}. Moreover, set
Gt := G[U ∪ Vt], and LPOPTconf(Gt) as the value of an optimal solution to LP-config (this
is a random variable, as Vt is a random subset of V ). The following inequality then holds:

▶ Lemma 3.3. For each t ≥ 1, E[LPOPTconf (Gt)] ≥ t
n LPOPTconf (G).

In light of this observation, we design an online probing algorithm which makes use of Vt,
the currently known nodes, to derive an optimal LP solution with respect to Gt. As such,
each time an online node arrives, we must compute an optimal solution for the LP associated
to Gt, distinct from the solution computed for that of Gt−1.

6 While this is the natural interpretation of the decision variables of LP-config, to the best of our
knowledge, formally defining the variables in this way does not lead to a proof that LP-config relaxes
the committal benchmark. We discuss this in detail in [5].
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Algorithm 2 Unknown Stochastic Graph ROM.

Input: U and n := |V |.
Output: a matching M from the (unknown) stochastic graph G = (U, V, E) of active edges.

1: Set M← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . , n do
4: Input vt, with (we)e∈∂(vt), (pe)e∈∂(vt) and Cvt

.
5: Compute Gt, by updating Gt−1 to contain vt (and its relevant information).
6: if t < ⌊n/e⌋ then
7: Pass on vt.
8: else
9: Solve LP-config for Gt and find an optimal solution (xv(e))v∈Vt,e∈Cv

.
10: Set et ← VertexProbe(vt, ∂(vt), (xv(e))e∈Cvt

).
11: if et = (ut, vt) ̸= ∅ and ut is unmatched then
12: Add et to M.
13: return M.

▶ Remark 3.4. Unlike the algorithm of Kesselheim et al., our algorithm is randomized,
and we do not know whether the polytope LP-config always admits an optimum integral
solution. We leave it as an interesting open question as to whether or not Algorithm 2 can
be derandomized.

Let us consider the matching M returned by the algorithm, as well as its weight, which
we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉. For each αn ≤ t ≤ n,
define Rt as the unmatched vertices of U when vertex vt arrives. Note that committing to
et = (ut, vt) is necessary, but not sufficient, for vt to match to ut. With this notation, we
have that E[w(M)] =

∑n
t=αn E[w(ut, vt) · 1[ut∈Rt]]. Moreover, we claim the following:

▶ Lemma 3.5. For each t ≥ ⌈αn⌉, E[w(et)] ≥ LPOPTconf (G)/n.

▶ Lemma 3.6. For each t ≥ ⌈αn⌉, define f(t, n) := ⌊αn⌋/(t − 1). In this case, P[ut ∈
Rt |Vt, vt] ≥ f(t, n), where Vt = {v1, . . . , vt} and vt is the tth arriving node of V 7.

The proofs of Lemmas 3.5 and 3.6 mostly follow the analogous claims as proven by Kesselheim
et al. in the classic secretary matching problem. We present formal proofs in the arXiv
version [4]. With these lemmas, together with the efficient solvability of LP-config, the proof
of Theorem 1.6 follows easily (see Appendix C).

4 Conclusion and Open Problems

We considered the online stochastic bipartite matching with commitment in a number of
different settings establishing several competitive bounds against the committal benchmark.
Our work leaves open a number of challenging problems. For context we note that currently,
even for the classical (i.e., non-probing) setting, 1− 1

e is the best known ratio for deterministic
algorithms operating on unweighted or vertex weighted graphs with random order vertex
arrivals. The best known ROM inapproximation of 0.823 (due to Manshadi et al. [21]) comes
from the classical i.i.d. unweighted graph setting for a known distribution and applies to
randomized as well as deterministic algorithms.

7 Note that since Vt is a set, conditioning on Vt only reveals which vertices of V encompass the first t
arrivals, not the order they arrived in. Hence, conditioning on vt as well reveals strictly more information.
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What is the best ratio that a deterministic or randomized online algorithm can obtain for
all vertex weighted stochastic graphs in the ROM setting? That is, what competitive ratio
can be achieved without the rankable assumption? Is there an online probing algorithm
which can surpass the 1− 1/e “barrier” with or without the rankable assumption? Here
we note that in the classical ROM setting, the Ranking algorithm achieves a 0.696 ratio
for unweighted graphs (due to Mahdian and Yan [20]) and a 0.6534 ratio (due to Huang
et al. [15]) for vertex weighted graphs. Thus, randomization seems to significantly help
in the classical ROM setting.
What is the best ratio that a randomized online algorithm can obtain for stochastic graphs
in the adversarial arrival model? The Mehta and Panigraphi [22] 0.621 inapproximation
shows that randomized probing algorithms (even for unweighted graphs and unit patience)
cannot achieve a 1− 1/e performance guarantee against LP-std-unit, however the work of
Goyal and Udwani [12] suggests that this is because LP-std-unit is too loose a relaxation
of the committal benchmark.
For edge weighted graphs, can we achieve a 1

e competitive ratio (or any constant ratio)
by a combinatorial (and more efficient) algorithm? Our vertex weighted algorithm can be
viewed as a truthful online (or random order) posted price mechanism. Can we modify
the edge weighted algorithm to be a truthful mechanism thereby generalizing the truthful
mechanism of Reiffenhauser [25]? Note that unlike the vertex weighted algorithm, our
algorithm for edge weights does not necessarily make an optimal social welfare decision
for each online node.
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A Solving LP-config Efficiently

Suppose that we are given an arbitrary stochastic graph G = (U, V, E). We contrast LP-config
with LP-std, which is defined only when G has patience values (ℓv)v∈V :

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑

e∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.1)

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (A.2)

∑
e∈∂(v)

xe ≤ ℓv ∀v ∈ V (A.3)

0 ≤ xe ≤ 1 ∀e ∈ E. (A.4)

Observe that LP-config and LP-std are the same LP in the case of unit patience:

maximize
∑
v∈V

∑
e∈∂(v)

we · pe · xe (LP-std-unit)

subject to
∑

e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.5)

∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (A.6)

xe ≥ 0 ∀e ∈ E (A.7)

A.1 Solving LP-config Efficiently

We now show how LP-config be solved efficiently under the assumptions of Theorem 1.6.

▶ Theorem A.1. Suppose that G = (U, V, E) in a stochastic graph with downward-closed
probing constraints (Cv)v∈V . In the membership oracle model, LP-config is efficiently solvable
in |G|.

https://doi.org/10.1002/bimj.4710320805
https://doi.org/10.1145/1993636.1993740
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We prove Theorem A.1 by first considering the dual of LP-config. Note, that in the below LP
formulation, if e = (e1, . . . , ek) ∈ Cv, then we set ei = (ui, v) for i = 1, . . . , k for convenience.

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-config-dual)

subject to βv +
|e|∑

j=1
pej
· g(e<j) · αuj

≥
|e|∑

j=1
pej
· wej

· g(e<j) ∀v ∈ V, e ∈ Cv

αu ≥ 0 ∀u ∈ U

βv ∈ R ∀v ∈ V

Observe that to prove Theorem A.1, it suffices to show that LP-config-dual has a
(deterministic) polynomial time separation oracle, as a consequence of how the ellipsoid
algorithm [26, 11] executes (see [28, 27, 2, 19] for more detail).

Suppose that we are presented a particular selection of dual variables, say (αu)u∈U and
(βv)v∈V , which may or may not be a feasible solution to LP-config-dual. Our separation oracle
must determine efficiently whether these variables satisfy all the constraints of LP-config-dual.
In the case in which the solution is infeasible, the oracle must additionally return a constraint
which is violated.

It is clear that we can accomplish this for the non-negativity constraints, so let us
fix a particular v ∈ V in what follows. We wish to determine whether there exists some
e = (e1, . . . , e|e|) ∈ Cv, such that if ei = (ui, v) for i = 1, . . . , k, then

f(e) :=
|e|∑

j=1
(wej

− αuj
) · pej

· g(e<j) > βv, (A.8)

where f(e) := 0 if e = λ.

▶ Lemma A.2. In the membership oracle model, DP-OPT of Proposition 2.1 can be used
to efficiently check whether f(e′) > βv for some e′ ∈ Cv, provided Cv is downward-closed.
Moreover, if such a tuple exists, then it can be found efficiently.

Proof. In order to make this statement, it suffices to show how one can use DP-OPT to
maximize the function f efficiently.

Compute w̃e := we − αu for each e = (u, v) ∈ ∂(v), and define P := {e ∈ ∂(v) : w̃e ≥ 0}.
First observe that if P = ∅, then (A.8) is maximized by the empty-string λ. Thus, for now on
assume that P ̸= ∅. Since Cv is downward-closed, it suffices to consider those e ∈ Cv whose
edges all lie in P . As such, for notational convenience, let us hereby assume that ∂(v) = P .
Observe then that maximizing f corresponds to executing DP-OPT on the stochastic graph
G[U ∪ {v}], with edge weights replaced by (w̃e)e∈∂(v). ◀

B Proofs and Additions to Section 2

Proof of Theorem 1.1. Let G = (U, V, E) be a vertex weighted stochastic graph, and assume
that Algorithm 1 returns the matchingM when the online vertices of G are presented to the
algorithm in adversarial order.

We now define a charging assignment as Algorithm 1 executes on G. First, initialize a
dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) where all the variables are set equal to 0. Let us
now take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If R consists of the unmatched vertices
when v it arrives, then suppose that Algorithm 1 matches v to u while making its probes to

APPROX/RANDOM 2021



13:20 Secretary Matching Meets Probing with Commitment

a subset of the edges of R× {v}. In this case, we charge wu to αu and wu/OPT(v, R) to
ϕv,R. Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,

E[w(M)] = 1
2 ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (B.1)

where the expectation is over (st(e))e∈E . Let us now set α∗
u := E[αu] and ϕ∗

v,R := E[ϕv,R]
for u ∈ U, v ∈ V and R ⊆ U . We claim that ((α∗

u)u∈U , (ϕ∗
v,R)v∈V,R⊆U ) is a feasible solution

to LP-dual-DP. To show this, we must prove that for each fixed u0 ∈ U and v0 ∈ V , we have
that

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (B.2)

We first define Rv0 as the unmatched vertices of U when v0 arrives (this is a random subset
of U). Moreover, define Ẽ := E \ ∂(v0). We claim the following inequality:∑

R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[u0∈Rv0 ].

To see this, observe that if we take a fixed subset R ⊆ U , then the charging assignment to
ϕv0,R ensures that

ϕv0,R = w(M(v0)) · 1
OPT(v0, R) · 1[Rv0 =R],

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if v0
remains unmatched after the execution on G). In order to make use of this relation, let us
first condition on (st(e))

e∈Ẽ
. Observe that once we condition on this information, we can

determine Rv0 . As such,

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1
OPT(v0, R) E[w(M(v0)) | (st(e))

e∈Ẽ
] · 1[Rv0 =R].

On the other hand, the only randomness which remains in the conditional expectation
involving w(M(v0)) is over (st(e))e∈∂(v0). However, since Algorithm 1 behaves optimally on
G[{v0} ∪Rv0 ], we get that

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (B.3)

and so for the fixed subset R ⊆ U ,

E[w(M(v0)) | (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]

after multiplying each side of (B.3) by the indicator random variable 1[Rv0 =R]. Thus,

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[Rv0 =R],

after cancellation. We therefore get that∑
R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] =
∑

R⊆U :
u0∈R

1[Rv0 =R] = 1[u0∈Rv0 ],
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as claimed. On the other hand, if we focus on the vertex u0, then observe that if u0 /∈ Rv0 ,
then αu0 must have been charged wu. In other words, αu0 ≥ wu · 1[u0 /∈Rv0 ]. As a result,

E[pu0,v0αu0 +wu0pu0,v0

∑
R⊆U :
u0∈R

ϕv,R | (st(e))
e∈Ẽ

] ≥ wu0pu0,v0 ·1[u0 /∈Rv0 ] +wu0pu0,v0 ·1[u0∈Rv0 ],

and so (B.2) follows after taking expectations. The solution ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ) is
therefore feasible, and so since OPT(G) ≤ LPOPTDP(G), the proof is complete after applying
weak duality and (B.1). ◀

▶ Example B.1. Let G = (U, V, E) be a bipartite graph with U = {u1, u2, u3, u4}, V = {v}
and ℓv = 2. Set pu1,v = 1/3, pu2,v = 1, pu3,v = 1/2, pu4,v = 2/3. Fix ε > 0, and let the
weights of offline vertices be wu1 = 1 + ε, wu2 = 1 + ε/2, wu3 = wu4 = 1. We assume that ε

is sufficiently small – concretely, ε ≤ 1/12. If R1 := U , then OPT(v, R1) probes (u1, v) and
then (u2, v) in order. On the other hand, if R2 = R1 \ {v2}, then OPT(v, R2) does not probe
(u1, v). Specifically, OPT(v, R2) probes (u3, v) and then (u4, v).

Proof of Proposition 2.6. For each v ∈ V , denote Raf
v (G) as the unmatched (remaining)

vertices of U right after v is processed (attempts its probes) in the execution on G. We
emphasize that if a probe of v yields an active edge, thus matching v, then this match is
excluded from Raf

v (G). Similarly, define Raf
v (G̃) in the same way for the execution on G̃

(where v is now restricted to Ṽ ).
We first consider the case when G is rankable, and so F (G) = 1 − 1/e. Observe that

since the constraints (Cv)v∈V are substring-closed, we can use the coupling between the two
executions to inductively prove that

Raf
v (G) ⊆ Raf

v (G̃), (B.4)

for each v ∈ Ṽ 8. Now, since g(1) = 1 (by assumption), there is nothing to prove if Ỹc = 1.
Thus, we may assume that Ỹc < 1, and as a consequence, that there exists some vertex
vc ∈ V which matches to u0 at time Ỹc in the execution on G̃.

On the other hand, by assumption we know that u0 /∈ Raf
vc

(G̃) and thus by (B.4), that
u0 /∈ Raf

vc
(G). As such, there exists some v′ ∈ V which probes (u0, v′) and succeeds in

matching to u0 at time Yv′ ≤ Ỹc. Thus, since g is monotone,

αu0 ≥
(

1− 1
e

)−1
wu0 · (1− g(Yv′)) · 1[Ỹc<1] ≥

(
1− 1

e

)−1
wu0 · (1− g(Ỹc)),

and so the rankable case is complete.
We now consider the case when G is not rankable. Suppose that M(v0) is the vertex

matched to v0 when the algorithm executes on G, where M(v0) := ∅ provided no match is
made. Observe then that if no match is made to v0 in this execution, then the execution
proceeds identically to the execution on G̃. As a result, we get the following relation:

αu0 ≥
wu0

F
(1− g(Ỹc)) · 1[M(v0)=∅].

Now, let us condition on (st(e))
e∈Ẽ

and (Yv)v∈V , and recall the definitions of pv0 :=
maxe∂(v0) pe and cv0 := maxe∈Cv0

|e|. Observe that if every probe involving an edge of

8 Example B.1 shows why (B.4) will not hold if G is not rankable.
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∂(v0) is inactive, then M(v0) = ∅. On the other hand, each probe independently fails with
probability at least (1− pv0), and there are at most cv0 probes made to ∂(v0). Thus,

P[M(v0) = ∅ | (st(e))
e∈Ẽ

, (Yv)v∈V ] ≥ (1− pv0)cv0

Now, since F (G) = (1− 1/e) ·minv∈V (1− pv)cv , we get that

E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0(1− g(Ỹc)),

and so the proof is complete. ◀

Proof of Lemma 2.5. We first observe that by taking the appropriate conditional expecta-
tion, Proposition 2.6 ensures that

E[αu0 | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0 · (1− g(Ỹc)),

where the right-hand side follows since Ỹc is entirely determined from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

.
Thus, combined with Proposition 2.8,

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

], (B.5)

is lower bounded by(
1− 1

e

)−1
wu0 · pu0,v0 · (1− g(Ỹc)) + wu0 pu0,v0

F

∫ Ỹc

0
g(z) dz. (B.6)

However, g(z) := exp(z − 1) for z ∈ [0, 1] by assumption, so

(1− g(Ỹc)) +
∫ Ỹc

0
g(z) dz =

(
1− 1

e

)
,

no matter the value of the critical time Ỹc. Thus,(
1− 1

e

)−1
(

(1− g(Ỹc)) + 1− 1/e

F

∫ Ỹc

0
g(z) dz

)
≥ 1, (B.7)

as F ≤ 1− 1/e by definition (see (2.9)). If we now lower bound (B.6) using (B.7) and take
expectations over (B.5), it follows that

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R] ≥ wu0 · pu0,v0 .

As the vertices u0 ∈ U and v0 ∈ V were chosen arbitrarily, the proposed dual solution of
Lemma 2.5 is feasible, and so the proof is complete. ◀

C Proofs and Additions to Section 3

Proof of Theorem 1.6. Clearly, Algorithm 2 can be implemented efficiently, since LP-config
is efficiently solvable. Thus, we focus on proving the algorithm attains the desired asymptotic
competitive ratio.
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Let us consider the matching M returned by the algorithm, as well as its weight, which
we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉, where we define Rt to
be the unmatched vertices of U when vertex vt arrives. Moreover, define et as the edge vt

commits to, which is the empty-set by definition if no such commitment is made. Observe
that

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) · 1[ut∈Rt]]. (C.1)

Fix ⌈αn⌉ ≤ t ≤ n, and first observe that w(ut, vt) and {ut ∈ Rt} are conditionally independent
given (Vt, vt), as the probes involving ∂(vt) are independent from those of v1, . . . , vt−1. Thus,

E[w(ut, vt) · 1[ut∈Rt] |Vt, vt] = E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt].

Moreover, Lemma 3.6 implies that

E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt] ≥ E[w(ut, vt) |Vt, vt]f(t, n),

and so E[w(ut, vt) 1[ut∈Rt] |Vt, vt] ≥ E[w(ut, vt) |Vt, vt] f(t, n). Thus, by the law of iterated
expectations9

E[w(ut, vt) · 1[ut∈Rt]] = E[E[w(ut, vt) · 1[ut∈Rt] |Vt, vt] ]
≥ E[E[w(ut, vt) |Vt, vt]f(t, n) ] = f(t, n)E[w(ut, vt)].

As a result, using (C.1), we get that

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) 1[ut∈Rt]] ≥
n∑

t=⌈αn⌉

f(t, n)E[w(ut, vt)].

We may thus conclude that

E[w(M)] ≥ LPOPTconf (G)
n∑

t=⌈αn⌉

f(t, n)
n

,

after applying Lemma 3.5. As
∑n

t=⌈αn⌉ f(t, n)/n ≥ (1/e− 1/n), the result holds. ◀

9 E[w(ut, vt)·1[ut∈Rt] | Vt, vt] is a random variable which depends on Vt and vt, and so the outer expectation
is over the randomness in Vt and vt.
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