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Abstract
Three decades ago, Nisan constructed an explicit pseudorandom generator (PRG) that fools width-n
length-n read-once branching programs (ROBPs) with error ε and seed length O(log2 n + log n ·
log(1/ε)) [19]. Nisan’s generator remains the best explicit PRG known for this important model of
computation. However, a recent line of work starting with Braverman, Cohen, and Garg [6, 8, 10, 22]
has shown how to construct weighted pseudorandom generators (WPRGs, aka pseudorandom
pseudodistribution generators) with better seed lengths than Nisan’s generator when the error
parameter ε is small.

In this work, we present an explicit WPRG for width-n length-n ROBPs with seed length
O(log2 n + log(1/ε)). Our seed length eliminates log log factors from prior constructions, and our
generator completes this line of research in the sense that further improvements would require
beating Nisan’s generator in the standard constant-error regime. Our technique is a variation of a
recently-discovered reduction that converts moderate-error PRGs into low-error WPRGs [10, 22].
Our version of the reduction uses averaging samplers.

We also point out that as a consequence of the recent work on WPRGs, any randomized space-S
decision algorithm can be simulated deterministically in space O

(
S3/2/

√
log S

)
. This is a slight

improvement over Saks and Zhou’s celebrated O(S3/2) bound [23]. For this application, our improved
WPRG is not necessary.
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1 Introduction

1.1 Derandomization
Randomization is a versatile technique in algorithm design. However, random bits are
not always available. Therefore, we would like to deterministically simulate randomized
algorithms as efficiently as possible. In this paper, we focus on space efficiency. After fixing
its input, the output of a small-space algorithm as a function of its random bits can be
computed by a read-once branching program (ROBP).

▶ Definition 1.1 (ROBP). A width-w length-n ROBP is a directed graph consisting of n + 1
layers of vertices V0, . . . , Vn with w vertices in each layer. For each i ∈ [n], each vertex in
Vi−1 has two outgoing edges labeled 0 and 1 leading to Vi. On input x ∈ {0, 1}n, the program
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starts at a designated start vertex vstart ∈ V0, then reads the bits x1, . . . , xn in order and
traverses the corresponding edges. The program accepts or rejects depending on whether the
final vertex in this path is a designated accept vertex vacc ∈ Vn. In this way, the program
computes a function f : {0, 1}n → {0, 1}.

Arguably, the most important case is w = n, which captures (log n)-space randomized
algorithms that always halt. To derandomize such an algorithm, we would like to estimate
the expectation of the corresponding ROBP on a uniform random input.

1.2 Pseudorandom Generators
The traditional approach to derandomization is to design a pseudorandom generator (PRG).

▶ Definition 1.2 (PRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for
F is a function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,∣∣∣∣ E

x∈{0,1}r
[f(G(x))] − E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.

Here r is the seed length of G.

By the probabilistic method, there exists a (nonexplicit) PRG for width-n length-n ROBPs
with seed length O(log(n/ε)). A corresponding explicit1 construction would imply a complete
derandomization of space-bounded computation (L = BPL), because we could determinis-
tically estimate the expectation of a given ROBP f by computing 2−r ·

∑
x∈{0,1}r f(G(x)).

Babai, Nisan, and Szegedy designed the first explicit PRG for width-n length-n ROBPs [4],
with seed length

2O(
√

log n) · log(1/ε).

In a subsequent breakthrough [19], Nisan designed a PRG with a much better seed length of

O(log2 n + log n · log(1/ε)).

1.3 Weighted PRGs
In the decades since Nisan’s work [19], despite intense effort, the problem of designing PRGs
for width-n length-n ROBPs has stubbornly resisted further attacks. Nisan’s PRG [19]
remains the best explicit PRG known for this model. However, PRGs are not the only
possible approach to derandomization. Braverman, Cohen, and Garg recently introduced an
intriguing generalization of PRGs called weighted pseudorandom generators (WPRGs), aka
pseudorandom pseudodistribution generators [6].

▶ Definition 1.3 (WPRG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-WPRG
for F is a pair of functions (G, ρ), where G : {0, 1}r → {0, 1}n and ρ : {0, 1}r → R, such that
for every f ∈ F ,∣∣∣∣ E

x∈{0,1}r
[ρ(x) · f(G(x))] − E

x∈{0,1}n
[f(x)]

∣∣∣∣ ≤ ε.

Here r is the seed length of (G, ρ). If ρ maps {0, 1}r → [−K, K], we say the WPRG is
K-bounded.

1 We say that a function G : {0, 1}r → {0, 1}n is explicit if it can be computed in space O(r). More
precisely, we are considering a family of functions indexed by one or more parameters (e.g., n and ε).
The algorithm for computing G is given both the parameters and the input to G.
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A standard (“unweighted”) PRG is the case ρ(x) ≡ 1. Just like an unweighted PRG, a
WPRG for ROBPs can be used to estimate the expectation of a given ROBP f , because
we can compute 2−r ·

∑
x∈{0,1}r ρ(x) · f(G(x)). As long as r is small and G and ρ are both

efficiently computable, this is still an efficient derandomization. Thus, optimal WPRGs
for ROBPs would immediately imply L = BPL. Furthermore, WPRGs imply hitting set
generators (HSGs).

▶ Definition 1.4 (HSG). Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-HSG for F
is a function G : {0, 1}r → {0, 1}n such that for every f ∈ F ,

E
x∈{0,1}n

[f(x)] ≥ ε =⇒ ∃x ∈ {0, 1}r, f(G(x)) = 1.

If (G, ρ) is an ε-WPRG for F , then G is an ε′-HSG for F for any ε′ > ε [6]. HSGs
have been studied since the 80s [2], but prior to Braverman, Cohen, and Garg’s work [6],
no explicit HSG for width-n length-n ROBPs was known that was any better than Nisan’s
PRG (except when ε is extremely small; see Table 1). For these reasons, it was exciting
when Braverman, Cohen, and Garg presented an explicit WPRG that fools width-n length-n
ROBPs [6] with seed length

Õ(log2 n + log(1/ε)),

which is better than Nisan’s PRG’s seed length when ε ≪ 1/ poly(n).
Admittedly, Braverman, Cohen, and Garg’s result [6] did not yet imply an improved

derandomization of space-bounded computation, but still, their innovative and complex
work provides valuable insights. The additional flexibility in the definition of a WPRG
means that WPRGs can be easier to construct compared to unweighted PRGs. In fact,
in one setting (unbounded-width permutation ROBPs with a single accept vertex), Pyne
and Vadhan recently showed that there is an explicit WPRG [22] with a seed length that
is provably impossible to attain by unweighted PRGs [12], a testament to the power of the
WPRG approach to derandomization.

Subsequent to Braverman, Cohen, and Garg’s work [6], Chattopadhyay and Liao gave a
simpler WPRG construction [8] that fools width-n length-n ROBPs with the improved seed
length

Õ(log2 n) + O(log(1/ε)). (1)

Very recently, Cohen, Doron, Renard, Sberlo, and Ta-Shma [10] and Pyne and Vadhan [22]
independently obtained an even simpler WPRG that fools width-n length-n ROBPs with
seed length

O(log2 n) + Õ(log(1/ε)). (2)

(These last two constructions and analyses are nearly identical [10, 22].)

1.4 Main Result: An Improved WPRG
In this work, we present another WPRG for ROBPs with a better seed length.

▶ Theorem 1.5. For any w, n ∈ N and ε > 0, there is an explicit ε-WPRG for width-w
length-n ROBPs with seed length O(log(wn) log n + log(1/ε)). Furthermore, the WPRG is
poly(1/ε)-bounded.

APPROX/RANDOM 2021
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Table 1 Known PRGs, WPRGs, and HSGs for width-n length-n ROBPs. As a reminder,
PRG =⇒ WPRG =⇒ HSG.

Seed length Type of generator Reference
Õ
(√

n
)

+ O(log(1/ε)) HSG [2]2

2O
(√

log n
)

· log(1/ε) PRG [4]
O(log2 n + log(1/ε) · log n) PRG [19]
Õ(log2 n + log(1/ε)) WPRG [6]
O(log2 n + log(1/ε)) HSG [14]
Õ(log2 n) + O(log(1/ε)) WPRG [8]
O(log2 n) + Õ(log(1/ε)) WPRG [10, 22]
O(log2 n + log(1/ε)) WPRG This work
O(log n + log(1/ε)) PRG Optimal (non-explicit)

When w = n, our WPRG has seed length O(log2 n + log(1/ε)), giving the “best of both
worlds” compared to Equations (1) and (2). Our WPRG is the first to achieve seed length
O(log2 n) with error n− log n. Furthermore, our WPRG represents the completion of the
research project of designing WPRGs for width-n length-n ROBPs while focusing on the
seed length’s dependence on ε [6, 8, 10, 22]. After all, even an HSG must have seed length
at least Ω(log(1/ε)), so obtaining a better WPRG for width-n length-n ROBPs requires
beating Nisan’s generator in the traditional, challenging constant-error regime. (That being
said, see Section 5.)

Our WPRG generalizes some other recent work on the small-ε regime. Hoza and
Zuckerman constructed an explicit ε-HSG for width-n length-n ROBPs with seed length
O(log2 n + log(1/ε)) [14], which follows also from our WPRG. Meanwhile, Cheng and Hoza
gave a deterministic algorithm for estimating E[f ] ± ε in space O(log2 n + log(1/ε)) given
query access to a constant-width ROBP f [9]; Theorem 1.5 immediately implies such an
algorithm for the more general case of polynomial-width ROBPs.

1.5 Derandomization that Beats the Saks-Zhou Bound
Next we turn to the general problem of derandomizing space-S decision algorithms, whether
by PRGs, WPRGs, HSGs, or any other method. Early work [24, 16, 5] showed that these
algorithms can be simulated deterministically in space O(S2) (in fact these early papers show
how to simulate more powerful models). Saks and Zhou gave an improved simulation that
runs in space O(S3/2) [23], which has remained unbeaten for decades. We point out that as
a consequence of the recent progress on WPRGs, it is now possible to slightly improve the
bound.

▶ Theorem 1.6. For any function S(N) ≥ log N , we have

BPSPACE(S) ⊆ DSPACE
(

S3/2
√

log S

)
.

2 For any w ∈ N, Ajtai, Komlos, and Szemeredi designed an explicit (1/w)-HSG for width-w length-n
ROBPs where n = O(log2 w/ log log w) with optimal seed length O(log w) [2]. Turning things around,
for any n ∈ N and ε > 0, we can let w = 2

√
n log n/ε and get an explicit ε-HSG for width-w length-n

ROBPs (hence also for width-n length-n ROBPs) with seed length O(
√

n log n + log(1/ε)).
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(We use N to denote the input length, reserving n to denote the length of an ROBP.
Recall that BPSPACE(S) is the class of languages that can be decided by randomized
algorithms that run in space O(S) and always halt.3) Admittedly, O(S3/2/

√
log S) is barely

any better than Saks and Zhou’s O(S3/2) bound [23]. However, we hope that Theorem 1.6
might break a “psychological barrier” by demonstrating that the Saks-Zhou algorithm [23]
has room for improvement.

Our improved WPRG is not necessary for proving Theorem 1.6. Instead, Theorem 1.6
follows by combining several prior works [23, 3, 17, 8, 10, 22].

1.6 Overview of Proofs
1.6.1 Overview of our Improved WPRG
The proof of Theorem 1.5 is similar to the recent WPRG constructions by Cohen et al. and
Pyne and Vadhan [10, 22]. Say we would like to fool some width-n length-n ROBP f with
low error ε ≪ 1/ poly(n). The starting point is a PRG G that fools ROBPs with moderate
error 1/ poly(n). Building on work by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and
Vadhan [1], Cohen et al. and Pyne and Vadhan [10, 22] showed a bound of the form∣∣∣∣∣E[f ] −

K∑
i=1

σi · E[f(Ai)]

∣∣∣∣∣ ≤ ε, (3)

where K = poly(1/ε), each σi = ±1, and each random variable Ai is a concatenation of
O
(

log(1/ε)
log n

)
truncations of independent samples from G. From here, we could immediately

obtain an ε-WPRG by taking G to be Nisan’s generator [19], but such a WPRG would
have seed length Ω(log(1/ε) · log n) due to the cost of sampling Ai via independent seeds
to Nisan’s generator. To get a better seed length, we would like to use correlated seeds to
Nisan’s generator.

The approach of Cohen et al. and Pyne and Vadhan [10, 22] is to use the Impagliazzo-
Nisan-Wigderson (INW) PRG [15] to generate a pseudorandom sequence of seeds to Nisan’s
generator. Because the INW generator is non-optimal, this approach leads to the seed length
O(log2 n + log(1/ε) log logn(1/ε)).

Our approach is based on a simple observation. The proof of Equation (3) does not
actually require that G fool all width-n length-n ROBPs. Indeed, Equation (3) holds under
the weaker assumption that G fools all subprograms of the specific ROBP f that we are
analyzing.

To exploit this observation, we apply a trick that uses an “averaging sampler” Samp. We
start with a PRG G0 for width-n length-n ROBPs with moderate error 1/ poly(n) and seed
length O(log2 n), such as Nisan’s generator [19]. Our WPRG selects a string x of length
O(log2 n + log(1/ε)) uniformly at random. The sampler condition implies that for any ROBP
f , with high probability over x, the PRG G(y) def= G0(Samp(x, y)) fools all subprograms of f

with error 1/ poly(n) and optimal seed length O(log n). Our WPRG now applies Equation (3)
to G rather than G0. Because G has such a short seed length, sampling Ai only costs us
O(log(1/ε)) truly random bits now, which we can afford. (Similar tricks have been used
previously in space-bounded derandomization [20, 3, 14].)

3 In the older literature, the notation “BPSPACE(S)” refers to a different model where the algo-
rithm is not required to always halt. The class that we study in this paper is sometimes denoted
“BPHSPACE(S)” in older papers.

APPROX/RANDOM 2021
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In general, our reduction converts any PRG for width-w length-n ROBPs with error
1/ poly(wn) and seed length r into a WPRG for width-w length-n ROBPs with any desired
error ε and seed length O(r + log(wn/ε)). Our reduction is incomparable with the prior
reduction by Cohen, Doron, Renard, Sberlo, and Ta-Shma and Pyne and Vadhan [10, 22],
because we get a better seed length, but we require the initial PRG to have error 1/ poly(wn),
whereas the prior reduction merely requires the initial PRG to have error 1/ poly(n). (This
is shown by Cohen et al. [10], who give a slightly tighter analysis compared to Pyne and
Vadhan [22].)

We also take this opportunity to give a slightly different perspective on the proof of
Equation (3), the basis of both our reduction and the earlier reduction [10, 22]. The original
proof of Equation (3) is based on “preconditioned Richardson iteration,” a method for
improving the accuracy of an approximate matrix inverse [1, 10, 22]. Cohen et al. pointed
out that the proof has a resemblance to the notion of local consistency errors introduced
by Cheng and Hoza [9]. We show how Equation (3) can be understood in terms of local
consistency without bringing any matrices into the picture. As we explain in Appendix B,
this is not a substantially different proof, but rather a different way of thinking about the
same proof. We hope that this alternative perspective might yield new insights in the future.

1.6.2 Overview of our Improved Derandomization
The proof of Theorem 1.6 (simulating randomized space S in deterministic space o(S3/2))
builds on Saks and Zhou’s algorithm [23]. To derandomize space-(log w) algorithms, Saks
and Zhou rely heavily on Nisan’s PRG for width-w length-n ROBPs. Crucially, Saks and
Zhou set n to be much smaller than w. To fool such programs with error ε, Nisan’s PRG
has seed length O(log(wn/ε) log n), so by choosing n = 2O(

√
log w) and ε = 1/ poly(w), the

seed length of Nisan’s PRG is only O(log3/2 w). The crux of Saks and Zhou’s work [23] is
a clever method of reusing a seed of this PRG many times to derandomize a (log w)-space
algorithm even though it might use up to w random bits.

Saks and Zhou’s work therefore provides extra motivation for studying width-w length-n
ROBPs when n ≪ w. These programs correspond to algorithms that only use a small
amount of randomness. In this “low-randomness” regime, PRGs have long been known
that are slightly better than Nisan’s PRG. Most famously, Nisan and Zuckerman designed a
PRG for the case n = polylog w with error 2− log0.99 w and optimal seed length O(log w) [21].
Later, Armoni designed a PRG that interpolates between Nisan’s PRG [19] and the Nisan-
Zuckerman PRG [21], suitable for the regime polylog w ≪ n ≪ w [3]. Using extractors that
were not available to Armoni at the time of his work [3], Armoni’s PRG can be implemented
[17] to have seed length

O

(
log(wn/ε) log n

max{1, log log w − log log(n/ε)}

)
.

For n ≪ w and ε = 1/ poly(n), this is better than Nisan’s PRG by a factor of Θ(log log w).
Furthermore, although Saks and Zhou [23] relied on the specific structure of Nisan’s PRG

[19], Armoni showed how to modify the Saks-Zhou algorithm to use any generic PRG for
ROBPs [3]. It is therefore natural to try to improve the Saks-Zhou theorem by replacing
Nisan’s PRG with Armoni’s, and indeed, it has been suggested that Theorem 1.6 follows
already from Armoni’s work.4

4 I have heard a speaker make this claim during an oral presentation, but the speaker clarified that they
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However, it seems that Theorem 1.6 does not follow directly from Armoni’s work. The
trouble is the error parameter. For the Saks-Zhou method to work, it seems to be necessary
that the PRG has error 1/ poly(w) rather than 1/ poly(n). When ε = 1/ poly(w), Armoni’s
PRG is no better than Nisan’s PRG, so we get no improvement. Armoni himself understood
this issue and did not claim to beat the Saks-Zhou bound in the general case. Instead,
he showed how to use his PRG to get an improved derandomization of low-randomness
algorithms [3].

Today, however, we have new tools for fooling ROBPs with low error. In particular, we
can use the recent error reduction procedure due to Cohen et al. and Pyne and Vadhan
[10, 22]. Cohen et al. show how to convert a PRG for width-w length-n ROBPs with error
1/ poly(n) and seed length r into a WPRG for width-w length-n ROBPs with any desired
error ε and seed length r + Õ(log(w/ε)) [10]. Applying this reduction to Armoni’s PRG with
n = 2

√
log w·log log w (slightly larger than the choice in Saks and Zhou’s original work [23]),

we obtain a WPRG for width-w length-n ROBPs with error 1/ poly(w) and seed length

O

(
log3/2 w√
log log w

)
+ Õ(log w) = O

(
log3/2 w√
log log w

)
.

Meanwhile, Chattopadhyay and Liao showed [8] that WPRGs can be used in place of
PRGs in Saks and Zhou’s algorithm, provided the WPRG is poly(w)-bounded. The WPRG
from Cohen et al.’s reduction [10] is indeed poly(1/ε)-bounded, completing the proof of
Theorem 1.6. The more detailed proof is in Appendix A.

1.7 WPRGs vs. HSGs
We remark that the proof of Theorem 1.6 sheds light on the relative strengths of HSGs
and WPRGs. Cheng and Hoza recently showed that optimal HSGs would imply L = BPL
[9], which might cause one to question whether WPRGs have value above and beyond the
value of HSGs. Chattopadhyay and Liao addressed this concern by showing that WPRGs
could hypothetically be used in the Saks-Zhou algorithm to prove a new and improved
derandomization of space-bounded computation [8], whereas it is still not known how to use
HSGs in the Saks-Zhou algorithm. Theorem 1.6 makes the hypothetical possibility envisioned
by Chattopadhyay and Liao a reality5 and thereby demonstrates the strength of the WPRG
approach to derandomization.

2 Preliminaries

2.1 Pseudodistributions
For most of our analysis, we will work with pseudodistributions rather than the WPRG
formalism. For our purposes, a pseudodistribution is a generalization of a probability
distribution in which probabilities are replaced with “pseudoprobabilities,” which are arbitrary
real numbers that do not necessarily sum to one.

were not familiar with a careful proof and were merely communicating what someone else had said. I
am also aware of an instance in which this claim was made in typeset lecture notes, but the claim was
removed after a revision.

5 To be clear, we only achieve derandomization in space O(S3/2/
√

log S), whereas Chattopadhyay and
Liao proposed a route toward the much better bound O(S4/3) [8], developing an earlier proposal by
Braverman, Cohen, and Garg [6].

APPROX/RANDOM 2021
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▶ Definition 2.1 (Pseudodistribution). A pseudodistribution over {0, 1}n is a formal real
linear combination of n-bit strings,6 i.e., a sum of the form

A =
R∑

i=1
ai · x(i),

where ai ∈ R and x(i) ∈ {0, 1}n. A probability distribution over {0, 1}n is the special case
that ai ≥ 0 and

∑R
i=1 ai = 1. We define Un to be the uniform distribution over {0, 1}n, i.e.,

Un =
∑

x∈{0,1}n 2−n ·x. We often identify a function f on {0, 1}n with the induced probability
distribution f(Un). We define the pseudoexpectation of a function f : {0, 1}n → R under the
pseudodistribution A by

Ẽ[f(A)] =
R∑

i=1
ai · f(x(i)).

We say that A fools f with error ε if
∣∣∣E[f ] − Ẽ[f(A)]

∣∣∣ ≤ ε.

▶ Definition 2.2 (Operations on Pseudodistributions). Linear combinations of pseudodistribu-
tions over {0, 1}n are defined in the natural way. The tensor product of two pseudodistribu-
tions is given by(

R∑
i=1

ai · x(i)

)
⊗

 R′∑
j=1

bj · y(j)

 =
R∑

i=1

R′∑
j=1

aibj · (x(i) ◦ y(j)),

where ◦ denotes concatenation. Thus if A is a pseudodistribution over {0, 1}n and B is a
pseudodistribution over {0, 1}n′ , then A ⊗ B is a pseudodistribution over {0, 1}n+n′ .

The following facts are easy to verify.

▶ Proposition 2.3. Let A and B be pseudodistributions over {0, 1}n, let c ∈ R, and let
f : {0, 1}n → R. Then Ẽ[f(A + cB)] = Ẽ[f(A)] + c · Ẽ[f(B)].

▶ Proposition 2.4. For b ∈ {0, 1}, let nb ∈ N, let Ab be a pseudodistribution over {0, 1}nb ,
and let fb : {0, 1}nb → R. Let f(x, y) = f0(x) · f1(y). Then

Ẽ[f(A0 ⊗ A1)] = Ẽ[f0(A0)] · Ẽ[f1(A1)].

2.2 Weighted PRGs
As discussed in Section 1, a WPRG is a pair (G, ρ), where G : {0, 1}r → {0, 1}n and
ρ : {0, 1}r → R. Each WPRG has a corresponding pseudodistribution, just as a PRG has a
corresponding distribution.

▶ Definition 2.5 (Pseudodistribution Sampled by a WPRG). If (G, ρ) is a WPRG with seed
length r, the pseudodistribution sampled by (G, ρ) is A =

∑
x∈{0,1}r 2−r · ρ(x) · G(x). Note

that (G, ρ) is an ε-WPRG for f if and only if A fools f with error ε.

6 Equivalently, A is a vector in the n-fold tensor product space R2 ⊗ · · · ⊗ R2 ∼= R2n

. The reader might
find it helpful to make an analogy with quantum computing; recall that a pure state of an n-qubit
system is a vector in the n-fold tensor product space C2 ⊗ · · · ⊗C2 ∼= C2n

. We could even have used ket
notation for pseudodistributions: A =

∑R

i=1 ai · |x(i)⟩.
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WPRGs can be combined in the same ways as pseudodistributions. Consideration of these
operations will help us verify the seed length, boundedness, and efficiency of our WPRG.

▶ Definition 2.6 (Operations on WPRGs). Suppose we have two WPRGs (G0, ρ0) and
(G1, ρ1), where Gb : {0, 1}rb → {0, 1}nb and ρb : {0, 1}rb → R. We define the tensor product
(G0, ρ0) ⊗ (G1, ρ1) to be a WPRG (G, ρ) with seed length r0 + r1 given by

G(x, y) = G0(x) ◦ G1(y) ρ(x, y) = ρ0(x) · ρ1(y).

If n0 = n1, we define the sum (G0, ρ0) + (G1, ρ1) to be a WPRG (G, ρ) with seed length r + 1
given by

G(x, b) = Gb(x) ρ(x, b) = 2 · ρb(x).

(There is a factor of 2 because in the definition of WPRGs, we look at an expectation over seeds
rather than a sum.) For a WPRG (G, ρ) and a real number c, we define c · (G, ρ) = (G, ρ′),
where ρ′(x) = c ·ρ(x). Under these definitions, if (Gb, ρb) samples from the pseudodistribution
Ab over {0, 1}nb , then (G0, ρ0) ⊗ (G1, ρ1) samples from A0 ⊗ A1, and if n0 = n1, then
(G0, ρ0) + c · (G1, ρ1) samples from A0 + cA1. Furthermore, if (Gb, ρb) is Kb-bounded, then
(G0, ρ0) ⊗ (G1, ρ1) is (K0K1)-bounded; if (G0, ρ0) and (G1, ρ1) are both K-bounded, then
(G0, ρ0) + (G1, ρ1) is (2K)-bounded; if (G, ρ) is K-bounded, then c · (G, ρ) is (cK)-bounded.

2.3 Applying Pseudodistributions to ROBPs

Let f be an ROBP with layers V0, . . . , Vn. Let u ∈ Vi and v ∈ Vj . When j ≥ i, we define
the subprogram fu→v : {0, 1}j−i → {0, 1} to be the length-(j − i) ROBP obtained from f by
setting u to be the start vertex and v to be the accept vertex. For convenience, we extend
fu→v to a function fu→v : {0, 1}≥j−i → {0, 1} that ignores all but the first j − i bits of its
input.

If A is a pseudodistribution over {0, 1}d with i + d ≥ j, we define A[u → v] to be the
pseudoprobability of reaching v from u using A, i.e., A[u → v] = Ẽ[fu→v(A)]. We extend
the definition by defining A[u → v] = 0 when i > j.

2.4 Local Consistency

As mentioned in Section 1.6.1, we will present a WPRG analysis based on the notion of local
consistency introduced by Cheng and Hoza [9]. The idea behind local consistency is that we
measure the quality of a pseudodistribution by using it to estimate E[fu→v] in two different
ways and comparing the results.

▶ Definition 2.7 (Local Consistency Error). Let f be an ROBP with layers V0, . . . , Vn. Let
u ∈ Vi and v ∈ Vj with i < j, and let A be a pseudodistribution over {0, 1}d with i + d ≥ j.
The local consistency error LCErru→v(A) is defined by

LCErru→v(A) =

 ∑
t∈Vj−1

A[u → t] · U1[t → v]

− A[u → v].

We extend the definition by setting LCErru→v(A) = 0 when j ≤ i. We say that A is α-locally
consistent with respect to f if for every u, v we have | LCErru→v(A)| ≤ α.
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Note that Un is 0-locally consistent. As we explain in Appendix B, local consistency is
closely connected to approximating the inverse of the random walk Laplacian matrix of f .
Cheng and Hoza’s work [9] shows that local consistency and fooling are equivalent, up to
some loss in the error parameter [9]. We repeat the argument here for clarity.

▶ Lemma 2.8. Let A be a pseudodistribution over {0, 1}n and let f be a width-w length-n
ROBP.
1. If A fools every subprogram fu→v of f with error α, then A is (2wα)-locally consistent

with respect to f .
2. If A is ε-locally consistent with respect to f , then A fools every subprogram fu→v of f

with error wnε.

Proof. First, suppose A fools every subprogram fu→v with error α. Then if u ∈ Vi and
v ∈ Vj with i < j, we have

| LCErru→v(A)| =

∣∣∣∣∣∣A[u → v] −
∑

t∈Vj−1

A[u → t] · U1[t → v]

∣∣∣∣∣∣
≤ |A[u → v] − Un[u → v]| +

∣∣∣∣∣∣Un[u → v] −
∑

t∈Vj−1

A[u → t] · U1[t → v]

∣∣∣∣∣∣
≤ α +

∑
t∈Vj−1

|Un[u → t] − A[u → t]| · U1[t → v]

≤ (w + 1)α ≤ 2wα.

Conversely, suppose A is ε-locally consistent with respect to f . Then for any u ∈ Vi and any
j > i,

∑
v∈Vj

|A[u → v] − Un[u → v]| ≤
∑
v∈Vj

∣∣∣∣∣∣
∑

t∈Vj−1

A[u → t]U1[t → v] − Un[u → v]

∣∣∣∣∣∣+ ε


≤ wε +

∑
v∈Vj

∑
t∈Vj−1

|A[u → t] − Un[u → t]| · U1[t → v]

= wε +
∑

t∈Vj−1

|A[u → t] − Un[u → t]| ·
∑
v∈Vj

U1[t → v]

= wε +
∑

t∈Vj−1

|A[u → t] − Un[u → t]|.

By induction on j − i, it follows that∑
v∈Vj

|A[u → v] − Un[u → v]| ≤ wnε,

and hence A fools every subprogram with error wnε. ◀

We remark that there is a version of Lemma 2.8 that eliminates both factors of w. To
obtain such bounds, one can consider the sum over all v ∈ Vj of each type of error u → v.
We have no need of this more refined analysis, so we omit the details.
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3 Amplifying Local Consistency

Let G be a given pseudodistribution over {0, 1}n. (Ultimately we will take G to be a
probability distribution, but this stage of the construction makes sense in the more general
setting of pseudodistributions.) We will show how to combine multiple samples from G to
improve its local consistency. Throughout this section, fix a length-n ROBP f with layers
V = V0 ∪ · · · ∪ Vn, and for convenience, define Vi = ∅ when i > n.

3.1 Construction
For each d ≤ n, define Gd to be the pseudodistribution obtained by drawing a sample from
G and truncating to the first d bits. That is, if G =

∑R
i=1 ai · x(i), then

Gd =
R∑

i=1
ai · x

(i)
1...d. (4)

For d ∈ [n], define a pseudodistribution ∆d over {0, 1}d by

∆d = Gd−1 ⊗ U1 − Gd.

The definition of ∆d should remind the reader of local consistency errors. (See Lemma 3.2.)
Now we define a “multi-hop” generalization of ∆d. For d ∈ [n] and m ∈ [d], define a
pseudodistribution ∆(m)

d over {0, 1}d by

∆(m)
d =

∑
d1+···+dm=d

∆d1 ⊗ · · · ⊗ ∆dm
,

where the sum is over all m-tuples of positive integers (d1, . . . , dm) that sum to d. Next, for
each m ≥ 1, define a pseudodistribution T (m) over {0, 1}n by

T (m) =
n∑

d=m

∆(m)
d ⊗ Gn−d,

and finally, for each m ≥ 0, define a pseudodistribution G(m) over {0, 1}n by

G(m) = G +
m∑

i=1
T (i) = G +

m∑
i=1

n∑
d=m

∆(i)
d ⊗ Gn−d.

We will show that as m gets large, G(m) becomes increasingly locally consistent.

3.2 Analysis
For m ≥ 1, define a “multi-hop” generalization of local consistency errors by

LCErr(m)
u→v(G) =

∑
u=u0,u1,...,um=v

m∏
j=1

LCErruj−1→uj
(G),

where the sum is over all sequences of m + 1 vertices starting with u and ending with v. Our
goal in this section is to prove the following exact formula for the local consistency errors of
G(m) in terms of the local consistency errors of G.

▶ Lemma 3.1. For any two vertices u, v and any m ≥ 0, we have LCErru→v(G(m)) =
LCErr(m+1)

u→v (G).
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Let us briefly pause to marvel at this phenomenon. In most settings, when several
imperfect ingredients are combined, we expect that the errors will compound on each other,
so the combination has more error than any individual ingredient. We typically consider
ourselves lucky if we can prove that the errors compund mildly. The remarkable feature of
Lemma 3.1 is that it involves products of errors, i.e., the local consistency errors of G are
actually combining in our favor !

Toward proving Lemma 3.1, we begin by analyzing ∆d. It is immediate from the definitions
that if u ∈ Vi and v ∈ Vi+d, then ∆d[u → v] = LCErru→v(G). More generally, we have the
following formula.

▶ Lemma 3.2. Let d ∈ [n] and i, j ≤ n. Let u ∈ Vi and v ∈ Vj and let A be a pseudodistri-
bution over {0, 1}n−d. Then

(∆d ⊗ A)[u → v] =
∑

t∈Vi+d

LCErru→t(G) · A[t → v]. (5)

Proof. For the first case, suppose i + d ≤ j. Then for any x ∈ {0, 1}d and any y ∈ {0, 1}n−d,
we have fu→v(x, y) =

∑
t∈Vi+d

fu→t(x) · ft→v(y). Therefore, for any pseudodistribution B

over {0, 1}d whatsoever, we have

(B ⊗ A)[u → v] =
∑

t∈Vi+d

B[u → t] · A[t → v].

Since ∆d[u → t] = LCErru→t(G), we are done in this case.
For the second case, suppose i + d > j. Then either i > j, or else the pseudodistributions

Gd−1 ⊗ U1 ⊗ A and Gd ⊗ A agree on their first j − i bits.7 Either way, (∆d ⊗ A)[u → v] = 0.
Meanwhile, for each t ∈ Vi+d, trivially A[t → v] = 0, so both sides of Equation (5) are zero
in this case. ◀

More generally, we have the following relationship between ∆(m)
d and LCErr(m).

▶ Lemma 3.3. Let d ∈ [n], m ∈ [d], and i, j ≤ n and m ≥ 0. Let u ∈ Vi and v ∈ Vj and let
A be a pseudodistribution over {0, 1}n−d. Then

(∆(m)
d ⊗ A)[u → v] =

∑
t∈Vi+d

LCErr(m)
u→t(G) · A[t → v].

Proof. The base case m = 1 was proven in Lemma 3.2. For the inductive step, note that

∆(m+1)
d =

d−1∑
k=m

∆(m)
k ⊗ ∆d−k,

7 I.e., the induced pseudodistributions on the first j − i bits (see Equation (4)) are identical.
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so

(∆(m+1)
d ⊗ A)[u → v]

=
d−1∑
k=m

(∆(m)
k ⊗ ∆d−k ⊗ A)[u → v] (Linearity)

=
d−1∑
k=m

∑
s∈Vi+k

LCErr(m)
u→s(G) · (∆d−k ⊗ A)[s → v] (Induction)

=
d−1∑
k=m

∑
s∈Vi+k

∑
t∈Vi+d

LCErr(m)
u→s(G) · LCErrs→t(G) · A[t → v] (Lemma 3.2)

=
∑

t∈Vi+d

LCErr(m+1)
u→t (G) · A[t → v]. ◀

Proof of Lemma 3.1. For any u ∈ Vj and v ∈ Vk, by Lemma 3.3,

T (m)[u → v] =
n∑

d=m

∑
t∈Vj+d

LCErr(m)
u→t(G) · G[t → v] =

∑
t∈V

LCErr(m)
u→t(G) · G[t → v].

Therefore, if u ∈ Vj and v ∈ Vk with j < k, then

LCErru→v(T (m))

=

 ∑
s∈Vk−1

T (m)[u → s] · U1[s → v]

− T (m)[u → v]

=

 ∑
s∈Vk−1

∑
t∈V

LCErr(m)
u→t(G) · G[t → s] · U1[s → v]

−
∑
t∈V

LCErr(m)
u→t(G) · G[t → v]

=
∑
t∈V

LCErr(m)
u→t(G) ·

 ∑
s∈Vk−1

G[t → s] · U1[s → v]

− G[t → v]


︸ ︷︷ ︸

(∗)

.

Quantity (∗) is exactly the local consistency error LCErrt→v(G), except in one edge case:
when t = v, LCErrt→t(G) = 0, whereas (∗) = −1. Therefore,

LCErru→v(T (m)) =
(∑

t∈V

LCErr(m)
u→t(G) · LCErrt→v(G)

)
− LCErr(m)

u→v(G)

= LCErr(m+1)
u→v (G) − LCErr(m)

u→v(G).

Thus, we get a telescoping sum:

LCErru→v(G(m)) = LCErru→v(G) +
m∑

i=1
LCErru→v(T (i))

= LCErru→v(G) +
m∑

i=1

(
LCErr(i+1)

u→v (G) − LCErr(i)
u→v(G)

)
= LCErr(m+1)

u→v (G).

(If j ≥ k, then LCErru→v(G(m)) = LCErr(m+1)
u→v (G) = 0, so the lemma holds trivially in this

case.) ◀
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The following corollary corresponds to Equation (3).

▶ Corollary 3.4. If G fools every subprogram fu→v with error α, then for every m ≥ 0, G(m)

fools f with error wn · (2w2nα)m+1.

Proof. For any u and v, by Lemma 3.1,

| LCErru→v(G(m))| = | LCErr(m+1)
u→v (G)|

≤
∑

u=u0,u1,...,um+1=v

m+1∏
j=1

| LCErrui−1→ui(G)|

≤ (wn)m · (2wα)m+1 (Lemma 2.8)
≤ (2w2nα)m+1.

The corollary follows by Lemma 2.8. ◀

We reiterate that Corollary 3.4 follows already from the work of Cohen et al. and Pyne
and Vadhan [10, 22], and indeed the proof we have given is not substantially different (see
Appendix B). In keeping with our remark after Lemma 2.8, we also remark that there is a
version of Corollary 3.4 that eliminates the factors of w by assuming that for each layer j,
the sum of errors |G[u → v] − Un[u → v]| over all v ∈ Vj is at most α. We omit the details.

4 Our Improved WPRG for ROBPs

In this section, we will show how to convert a moderate-error PRG for width-w length-n
ROBPs into a low-error WPRG for width-w length-n ROBPs. If the given PRG has error
1/ poly(wn) and seed length r, then for any ε > 0, we will obtain a WPRG with error ε and
seed length O(r + log(wn/ε)).

4.1 Construction
Recall the standard notion of an averaging sampler, which is essentially equivalent to a
seeded randomness extractor [25].

▶ Definition 4.1 (Sampler). A function Samp : {0, 1}ℓ ×{0, 1}q → {0, 1}r is an (α, γ)-sampler
if for every function f : {0, 1}r → [0, 1],

Pr
x∈{0,1}ℓ

∣∣∣∣∣∣E[f ] − 2−q
∑

y∈{0,1}q

f(Samp(x, y))

∣∣∣∣∣∣ ≤ α

 ≥ 1 − γ.

Let α = 1
4w3n2 and let G : {0, 1}r → {0, 1}n be a given α-PRG for width-w length-n

ROBPs. Define

m =
⌈

log(wn/ε)
log(wn)

⌉
and γ = ε

2w2n2 · ((8n)m+1 + 1) =
( ε

wn

)O(1)
,

and let Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r be an (α, γ)-sampler. For each x ∈ {0, 1}ℓ, let Gx

be the distribution G(Samp(x, Uq)), and let G
(m)
x be the corresponding pseudodistribution

with amplified local consistency as defined in Section 3.1. Our final pseudodistribution G′ is
G

(m)
x for a uniform random x, i.e.,

G′ =
∑

x∈{0,1}ℓ

2−ℓ · G(m)
x .
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4.2 Correctness
▷ Claim 4.2. If f is a width-w length-n ROBP, then G′ fools f with error ε.

Proof. For each pair of vertices u, v, since G is an α-PRG for width-w ROBPs, G fools fu→v

with error α. Therefore, by the sampler condition, with probability 1 − γ over a uniform
random choice of x, Gx fools fu→v with error 2α. Let BAD be the set of x such that there
exist vertices u, v such that Gx does not (2α)-fool fu→v. By the union bound,

|BAD| ≤ γ · w2n2 · 2ℓ = ε

2 · ((8n)m+1 + 1) · 2ℓ.

For any x, unpacking the definitions, we see that G
(m)
x has the form

∑K
i=1 ±Ai, where

K ≤ (m + 1) · (n + 1) · (n + 1)m · 2m ≤ (8n)m+1

and each Ai is a tensor product of probability distributions. Therefore, for x ∈ BAD (indeed
for all x), we have

∣∣∣Ẽ[f(G(m)
x )]

∣∣∣ ≤ (8n)m+1. Meanwhile, for x ̸∈ BAD, by Corollary 3.4,

∣∣∣Ẽ[f(G(m)
x )] − E[f ]

∣∣∣ ≤ wn · (4w2nα)m+1 = wn ·
(

1
wn

)m+1
<

ε

2 .

Therefore, overall,

∣∣∣Ẽ[f(G′)] − E[f ]
∣∣∣ =

∣∣∣∣∣∣
∑

x∈BAD
2−ℓ · (Ẽ[f(G(m)

x )] − E[f ]) +
∑

x ̸∈BAD
2−ℓ · (Ẽ[f(G(m)

x )] − E[f ])

∣∣∣∣∣∣
≤

∑
x∈BAD

2−ℓ
(∣∣∣Ẽ[f(G(m)

x )]
∣∣∣+ 1

)
+
∑

x ̸∈BAD
2−ℓ ·

∣∣∣Ẽ[f(G(m)
x )] − E[f ]

∣∣∣
≤ 2−ℓ · |BAD| · ((8n)m+1 + 1) + ε

2
≤ ε. ◁

4.3 Explicitness and Seed Length
We will instantiate Samp using the following explicit sampler.

▶ Theorem 4.3 ([8, Appendix B]). For every r ∈ N and every α, γ > 0, there exists an
(α, γ)-sampler Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r with ℓ = r + O(log(1/γ) + log(1/α)) and
q = O(log(1/α) + log log(1/γ)), such that given r, α, γ, x, and y, the value Samp(x, y) can
be computed in space O(r + log(1/α) + log(1/γ)).

Proof of Theorem 1.5. Taking Samp to be the sampler of Theorem 4.3, we get ℓ = O(r +
log(1/γ)) = O(r + log(wn/ε)) and q = O(log(wn) + log log(1/ε)). For a fixed x ∈ {0, 1}ℓ, as
mentioned in the proof of Claim 4.2, G

(m)
x has the form

∑K
i=1 ±Ai, where

K ≤ (8n)m+1 ≤ poly(n/ε),

and each Ai is a tensor product of at most 2m + 1 terms, each of which is either (Gx)d for
some value of d or else U1. Using the constructions of Definition 2.6, we can sample G

(m)
x by

a WPRG with seed length O(log K + mq), and we can sample G′ by a WPRG with seed
length

ℓ + O(log K + mq) = O

(
r + log(wn/ε) ·

(
1 + log log(1/ε)

log(wn)

))
= O(r + log(wn/ε)),
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where the last equality holds without loss of generality, because either ε > 2−n, in which
case log log(1/ε) < log(wn), or else ε ≤ 2−n, in which case we can achieve seed length
O(r + log(wn/ε)) by simply sampling a truly random n-bit string. Furthermore, as discussed
in Definition 2.6, our WPRG is (2K)-bounded,8 and we can assume without loss of generality
that ε < 1/n (since otherwise G itself would be a suitable WPRG), so our WPRG is indeed
poly(1/ε)-bounded.

Finally, pick G to be Nisan’s generator [19]. Then

r = O(log(wn/α) log n) = O(log(wn) log n),

so our WPRG has seed length O(log(wn) log n+log(1/ε)) as claimed. Explicitness is clear. ◀

We remark that because of the specific structure of Nisan’s generator [19], the sampler
is actually not necessary. Instead, we can let x be the description of the hash functions in
Nisan’s generator and let y be the input to the hash functions.

5 Directions for Further Research

As we mentioned in Section 1.4, getting a better WPRG for width-n length-n ROBPs requires
beating Nisan’s PRG in the standard constant-error regime. However, there are cases where
focusing on error dependence might still be fruitful:

Recall that Nisan and Zuckerman designed a PRG for width-w length-n ROBPs when n =
polylog w with optimal seed length O(log w) [21] but non-optimal error 2− log0.99 w. There
are known ε-HSGs for this setting with seed length O(log w) even when ε = 1/ poly(w)
[2, 14]; can we match that seed length by a WPRG? The WPRG construction presented
in this paper does not seem to work, because if G has seed length o(log w), then it
seems to have too much error for the local consistency amplification procedure G(m) to
work, whereas if G has seed length Ω(log w), then we cannot afford to sample multiple
independent seeds.
Currently, the best explicit PRGs for width-3 ROBPs and constant-width regular ROBPs
have seed length Õ(log n · log(1/ε)) [18, 11, 7]. In a similar spirit as Pyne and Vadhan’s
recent work on permutation ROBPs [22], can we design WPRGs for these models with
error 1/ poly(n) and seed length o(log2 n)?

We also wonder whether there are other applications of recent WPRG constructions. For
example, recall that Nisan showed BPL ⊆ DTISP(poly(n), log2 n) [20]. Can we somehow
use WPRGs to simulate BPL by a deterministic algorithm that simultaneously uses poly(n)
time and o(log2 n) space?
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A Derandomization Beyond Saks-Zhou

In this section, we show that randomized space-S decision algorithms can be simulated
deterministically in space O(S3/2/

√
log S) (Theorem 1.6). As outlined in Section 1.6.2, the

proof does not involve any significant new ideas, but rather amounts to combining several
previous works and choosing parameters. For that reason, we will refrain from fully describing
the Saks-Zhou method. Instead, we will focus on assisting readers who are already familiar
with Saks and Zhou’s work [23] (but who are not necessarily comfortable with WPRGs)
in verifying Theorem 1.6. Readers who are not familiar with Saks and Zhou’s work are
encouraged to read Chattopadhyay and Liao’s discussion of the Saks-Zhou method in the
context of WPRGs [8] or Saks and Zhou’s original paper [23].

Let G denote Nisan’s PRG [19]. Recall that Saks and Zhou [23] exploited the fact that
the seed of Nisan’s PRG can be split into two parts (x, y), where x = O(log w log n) and
y = O(log w); for a fixed ROBP f , if we pick x at random, then with high probability,
E[f ] ≈ 2−r ·

∑
y f(G(x, y)). This method of estimating E[f ] has a key technical feature,

which is that each time we read a bit of the input of f , we only need to be using O(log w)
bits of work space (not counting the string x, which we think of as being on a read-only
random tape). This feature is beneficial, because in the context of the Saks-Zhou algorithm
[23], the program f is computed recursively, so we would like to use as little space as possible
while the recursive computation is taking place. (See the work of Hoza and Umans for further
discussion [13].)

Armoni generalized Saks and Zhou’s methods by showing that any explicit PRG for ROBPs
implies a method of estimating E[f ] with the same key feature [3]. Later, Chattopadhyay
and Liao generalized further by showing that the same holds for any polynomially-bounded
explicit WPRG [8]. For clarity, we repeat the argument here (in a slightly different form). It
is convenient to generalize the definition of ROBPs to allow a large alphabet.

▶ Definition A.1 (ROBP over a large alphabet). A width-w length-n ROBP over the alphabet
Σ is defined as in Definition 1.1, except that each vertex in Vi−1 has |Σ| outgoing edges
leading to Vi, labeled with the symbols in Σ. The program computes a function f : Σn → {0, 1}
in the natural way.

▶ Lemma A.2 ([8]). Let n = n(w), K = K(w), r = r(w), a = a(w), and ε = ε(w) be
functions, each of which can be constructed in space O(r). Suppose that for every w ∈ N,
there is a K-bounded ε-WPRG (G, ρ) for width-w length-n ROBPs over the alphabet {0, 1}a

with seed length r that can be computed in space O(r). Then there is an algorithm for
estimating the expectation of a given width-w length-n ROBP f over the alphabet {0, 1}a

with the following properties.
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1. The algorithm uses r + O(log(Kw/ε)) random bits from a read-only two-way9 random
tape, and with probability 1 − ε/w2 it outputs a value that is within ±2ε of E[f ].

2. The algorithm uses O(r + a + log(Kwn/ε)) bits of work space. Furthermore, whenever
the algorithm reads a bit of the description of f , it first deletes all but O(a + log(Kwn/ε))
bits of its work space.

Proof. Let Samp : {0, 1}ℓ × {0, 1}q → {0, 1}r be the (ε/(2K), ε/w2)-sampler of Theorem 4.3.
To estimate E[f ], we pick x ∈ {0, 1}ℓ uniformly at random, and then we output

2−q ·
∑

y∈{0,1}q

ρ(Samp(x, y)) · f(G(Samp(x, y))).

To prove that this works, define g : {0, 1}r → [−K, K] by g(z) = ρ(z) · f(G(z)). The sampler
condition implies that with probability 1 − ε/w2 over the choice of x, we have∣∣∣∣∣∣E[g] − 2−q

∑
y∈{0,1}q

g(Samp(x, y))

∣∣∣∣∣∣ ≤ ε.

Meanwhile, the WPRG condition implies that |E[g] − E[f ]| ≤ ε. Thus, with probability
1 − ε/w2, our algorithm outputs E[f ] ± 2ε.

Now let us analyze the efficiency of the algorithm. The number of random bits we use
is clearly ℓ = r + O(log(Kw/ε)). The total space used is O(r) bits to compute G and
ρ, plus O(r log(Kw/ε)) bits to compute Samp, plus O(log(wn)) bits to keep track of our
simulation of f , plus O(q) = O(log(K/ε) + log log w) bits for summing over all y, which is
a total of O(r + a + log(Kwn/ε)) bits. Prior to reading a bit of the description of f , we
only need to be storing the O(log(wn)) bits that keep track of our simulation of f , plus the
O(q) = O(log(K/ε) + log log w) bits for summing over all y, plus a single a-bit symbol of
the string G(Samp(x, y)) (namely, the single symbol that we are currently feeding into our
simulation of f), which is a total of O(a + log(wnK/ε)) bits. ◀

Having established Lemma A.2, we can now compute the space complexity of the
derandomization obtained by plugging any efficient WPRG into the Saks-Zhou framework.

▶ Theorem A.3 ([23, 8]). Let n = n(w), K = K(w), and r = r(w) be monotone increasing
functions, each of which can be constructed in space O(r), with n ≤ w. Define ε = w−8 and
a = ⌈4 log w⌉. Suppose that for every w ∈ N, there exists a K-bounded ε-WPRG for width-
(w + 1) length-n ROBPs over the alphabet {0, 1}a with seed length r that can be computed in
space O(r). Then

BPL ⊆
⋃
c∈N

DSPACE
(

r(N c) + log(N · K(N c)) · log N

log(n(N c))

)
,

where N denotes the input length.

Proof outline. Suppose we are interested in computing the n-th power of a given substochas-
tic matrix M ∈ Rw×w, where each entry has a bits of precision. We can easily construct a
width-(w + 1) length-n ROBP f over the alphabet {0, 1}a such that for each i, j ∈ [w], if we

9 I.e., the algorithm is allowed to go back and re-read random bits as many times as it likes, unlike the
standard model of randomized space-bounded computation in which the random tape must be read a
single time from left to right.
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let ui be the i-th vertex in the first layer of f and we let vj be the j-th vertex in the final
layer of f , then E[fui→vj

] = (Mn)i,j . Using Lemma A.2, we can compute each such value
E[fui→vj

] to within ±2ε with failure probability ε/w2. In this way, we compute a matrix
P ∈ Rw×w such that ∥P − Mn∥max ≤ 2ε. We can reuse the same random bits for each
entry of the matrix, so our algorithm uses r + O(log(Kw/ε)) random bits from a read-only
two-way random tape and succeeds with probability 1 − ε. Furthermore, this algorithm uses
O(r + a + log(Kwn/ε)) bits of work space, and whenever it reads a bit of the description of
M , it first deletes all but O(a + log(Kwn/ε)) bits of its workspace.

Now, consider some randomized log-space algorithm that we wish to derandomize. There
is a constant c such that the acceptance probability of the BPL algorithm on an input of
length N is an entry in Mw, where w = N c and M ∈ {0, 1

2 , 1}w×w is an easily-computable
stochastic matrix. We have discussed a randomized algorithm for approximating Mn. The
technique of Saks and Zhou [23] implies [8] an algorithm for computing Mw. As a reminder,
the approach is to repeatedly take approximate n-th powers, reusing the same random bits
each time and randomly rounding each entry of the matrix to a bits of precision after each
iteration to resolve dependency issues. The number of iterations is log w

log n . The algorithm
can be implemented to have failure probability O(w3 · (2aε + 2−a)) and approximation error
O(w22−a), using

O

(
r + log(Kw/ε) + a · log w

log n

)
random bits and

O

(
r + (a + log(Kwn/ε)) · log w

log n

)
bits of space [8, Lemma 43]. By our choices ε = w−8 and a = ⌈4 log w⌉, the failure
probability is O(1/w), the approximation error is O(1/w2), the number of random bits
is O(r + log(Kw) + log2 w

log n ), and the space complexity is O(r + log(Kw) log w
log n ). Trying all

possibilities for the random tape completes the proof. ◀

Next, we identify the WPRG family that we will plug into Theorem A.3.

▶ Theorem A.4 ([3, 17, 10]). For every w ∈ N, there exists a K-bounded ε-WPRG for
width-(w + 1) length-n ROBPs over the alphabet {0, 1}⌈4 log w⌉ with seed length r that can be
computed in space O(r), where

n = exp
(⌈√

log w · log log w
⌉)

, ε = w−8,

r ≤ O

(
log3/2 w√
log log w

)
, K ≤ poly(w).

Proof. For any w, n, a, α, Armoni designed an α-PRG for width-(w + 1) length-n ROBPs
over the alphabet {0, 1}a [3]; with an optimization due to Kane, Nelson, and Woodruff [17],
this PRG has seed length

r = O

(
a + log(wn/α) log n

max{1, log log w − log log(n/α)}

)
and can be computed in space O(r). For n = exp

(⌈√
log w · log log w

⌉)
, α = 1/ poly(n), and

a = O(log w), this seed length becomes

r = O

(
log3/2 w√
log log w

)
.
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Now we apply an error reduction procedure that converts this moderate-error PRG into
a low-error WPRG. Specifically, we will use the reduction due to Cohen, Doron, Renard,
Sberlo, and Ta-Shma [10]. Given a PRG for width-w length-n ROBPs over the alphabet
{0, 1}a with error 1/(10n2) and seed length r, they show [10, Corollary 15] how to construct
a WPRG for width-w length-n ROBPs over the alphabet {0, 1}a with any desired error ε

and seed length r + O(log(w/ε) log logn(1/ε)). Furthermore, if the PRG can be computed in
space O(r), then the WPRG can be computed in space O(r + log logn(1/ε) · (log log(w/ε))2).
Cohen et al. did not explicitly mention it, but by inspection it is easy to see that their
WPRG is poly(1/ε)-bounded for the same reason that our main WPRG (Theorem 1.5) is
poly(1/ε)-bounded. Since ε = 1/ poly(w), the seed length is r + Õ(log w) = O(r), the space
complexity is O(r + poly(log log w)) = O(r), and the WPRG is poly(w)-bounded. ◀

▶ Corollary A.5. BPL ⊆ DSPACE
(

log3/2 N/
√

log log N
)

, where N denotes the input
length.

Proof. Plugging the WPRG of Theorem A.4 into Theorem A.3, we get a space bound of

O

(
log3/2(N c)√
log log(N c)

+ log(N · NO(c)) · log N√
log(N c) · log log(N c)

)
,

which simplifies to O
(

log3/2 N/
√

log log N
)

. ◀

Now we generalize Corollary A.5 to the case of BPSPACE(S). When S is space-
constructible, the generalization is a standard padding argument. We now show that
BPSPACE(S) is contained in DSPACE

(
S3/2/

√
log S

)
for any S(N) ≥ log N , whether

space-constructible or not.

Proof of Theorem 1.6. Observe that the proof of Corollary A.5 extends to promise problems.
In particular, for any constants 0 ≤ a < b ≤ 1, there is a deterministic algorithm Da,b such
that if f is a width-w length-w ROBP over the binary alphabet, then

E[f ] ≤ a =⇒ Da,b(f) = 0,

E[f ] ≥ b =⇒ Da,b(f) = 1,

and Da,b(f) runs in space O
(

log3/2 w/
√

log log w
)

.
Let A be a Turing machine witnessing membership of a language in BPSPACE(S).

For N ∈ N, y ∈ {0, 1}N , and s ∈ N, there exists a width-w length-w ROBP Ey,s, where
w = O(N · 2s), such that Ey,s(x) = 1 if and only if the computation A(y, x) ever touches
more than s cells of the work tape. Furthermore, for the same value of w, there exists a
width-w length-w ROBP fy,s such that if Ey,s(x) = 0, then fy,s(x) = A(y, x) ∈ {0, 1}. Given
y and s, these two ROBPs can be constructed deterministically in space O(s + log N).

On input y, our deterministic algorithm tries each s = 1, 2, 3, . . . until it finds the first s

such that D0,0.01(Ey,s) = 0. Then, our deterministic algorithm outputs D0.4,0.6(fy,s). This
works, because if D0,0.01(Ey,s) = 0, then E[Ey,s] < 0.01, so E[fy,s] is within ±0.01 of the
acceptance probability of A(y). Furthermore, our algorithm will find a suitable s satisfying
s ≤ S(N), because E[Ey,S(N)] = 0. Therefore, the space complexity of our algorithm is
at most O(log3/2 w/

√
log log w), where w = O(N · 2S(N)) = 2O(S(N)). This space bound is

O
(

S(N)3/2/
√

log S(N)
)

as desired. ◀
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B Local Consistency vs. Approximate Inverse Laplacian

Cohen et al. noted that their WPRG construction is reminiscent of local consistency errors
[10]. We now briefly elaborate on the connection, for the sake of readers who are familiar with
how prior work used preconditioned Richardson iteration to decrease error in space-bounded
derandomization [1, 10, 22].

Prior works [1, 10, 22] looked at the transition probability matrix W associated with
a width-w length-n ROBP f , considered as a directed graph on (n + 1) · w vertices. This
matrix W is an (n + 1)w × (n + 1)w block matrix of the form

W =



0 M1 0 · · · 0
0 0 M2 · · · 0
...

. . .
...

0 0 0
. . . Mn

0 0 0 · · · 0

 ,

where Mi ∈ {0, 1
2 , 1}w×w is the transition probability matrix for Vi−1 × Vi. Let L = I − W

(the Laplacian matrix). Then L is invertible with inverse

L−1 =



M0...0 M0...1 M0...2 · · · M0...n

0 M1...1 M1...2 · · · M1...n

...
. . .

...

0 0 0
. . . Mn−1...n

0 0 0 · · · Mn...n

 ,

where Mi...j = Mi ·Mi+1 · · · Mj , i.e., Mi...j is the stochastic matrix containing the probabilities
Un[u → v] for u ∈ Vi and v ∈ Vj . We are interested in obtaining an approximation L̂−1 to L,
say

L̂−1 =



M̂0...0 M̂0...1 M̂0...2 · · · M̂0...n

0 M̂1...1 M̂1...2 · · · M̂1...n

...
. . .

...

0 0 0
. . . M̂n−1...n

0 0 0 · · · M̂n...n


,

where each M̂i...j is a matrix of estimates for the probabilities Un[u → v] with u ∈ Vi and
v ∈ Vj . The approach taken by prior work [1, 10, 22] is to use preconditioned Richardson
iteration to convert a moderate-error approximation of L−1 into a low-error approximation
of L−1.

The crucial point is that in this analysis, the approximation quality is measured by
comparing L̂−1L to I rather than comparing L−1 and L̂−1 directly. The error matrix
E

def= I − L̂−1L is given by

E =



0 E0...1 E0...2 · · · E0...n

0 0 E1...2 · · · E1...n

...
. . .

...

0 0 0
. . . En−1...n

0 0 0 · · · 0

 ,
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where

Ei...j = M̂i...j−1Mj − M̂i...j .

Thus, E is precisely the matrix of local consistency errors. (This is also plain from one of
Pyne and Vadhan’s lemmas [22, Lemma 4.6].)
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