
A New Notion of Commutativity for the
Algorithmic Lovász Local Lemma
David G. Harris #

University of Maryland, College Park, MD, USA

Fotis Iliopoulos #

Institute for Advanced Study, Princeton, NJ, USA

Vladimir Kolmogorov #

Institute of Science and Technology, Klosterneuburg, Austria

Abstract
The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used
to establish the existence of objects that satisfy certain properties. The breakthrough paper of
Moser & Tardos and follow-up works revealed that the LLL has intimate connections with a class of
stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as
a sufficient condition for this type of algorithms to converge fast.

Besides conditions for convergence, many other natural questions can be asked about algorithms;
for instance, “are they parallelizable?”, “how many solutions can they output?”, “what is the
expected “weight” of a solution?”. These questions and more have been answered for a class of
LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and
more general notion of commutativity (essentially matrix commutativity) which allows us to show a
number of new refined properties of LLL-inspired local search algorithms with significantly simpler
proofs.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Mathem-
atics of computing → Combinatorics

Keywords and phrases Lovász Local Lemma, Resampling, Moser-Tardos algorithm, latin transversal,
commutativity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.31

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2008.05569

Funding Fotis Iliopoulos: This material is based upon work directly supported by the IAS Fund for
Math and indirectly supported by the National Science Foundation Grant No. CCF-1900460. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
also supported by the National Science Foundation Grant No. CCF-1815328.
Vladimir Kolmogorov: Supported by the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no 616160.

1 Introduction

The Lovász Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can
be used to establish the existence of objects that satisfy certain properties [9]. At a high
level, it states that given a collection of bad events in a probability space µ, if each bad-event
is not too likely and, further, is independent of most other bad events, then the probability
of avoiding all of them is strictly positive.

© David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 31; pp. 31:1–31:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidgharris29@gmail.com
mailto:fotios@ias.edu
mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.31
https://arxiv.org/abs/2008.05569
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

In its simplest, “symmetric” form, it states that if each bad-event has probability at most
p and is dependent with at most d others, where epd ≤ 1, then with positive probability no
bad-events become true. In particular, a configuration avoiding all the bad-events exists.
Although the LLL applies to general probability spaces, most constructions in combinatorics
use a simpler setting we refer to as the variable version LLL. Here, the probability space µ is
a cartesian product with n independent variables, and each bad-event is determined by a
subset of the variables. Two bad-events may conflict if they depend on a common variable.

For example, consider a CNF formula with n variables where each clause has k literals
and each variable appears in at most L clauses. For each clause c we can define the bad
event Bc that c is violated in a chosen assignment of the variables. For a uniformly random
variable assignment, each bad-event has probability p = 2−k and affects at most d ≤ kL

others. So when L ≤ 2k

ek , the formula is satisfiable; crucially, this criterion does not depend
on the number of variables n.

A generalization known as the Lopsided LLL (LLLL) allows bad-events to be positively
correlated with others; this is as good as independence for the purposes of the LLL. Some
notable probability spaces satisfying the LLLL include the uniform distribution on permuta-
tions and the variable setting, where two bad-events B, B′ are dependent only if they disagree
on the value of a common variable.

In a seminal work, Moser & Tardos [25] presented a simple local search algorithm to
make the variable-version LLLL constructive. This algorithm can be described as follows:

Algorithm 1 The Moser-Tardos (MT) resampling algorithm.
1: Draw the state σ from distribution µ

2: while some bad-event is true on σ do
3: Select, arbitrarily, a bad-event B true on σ

4: Resample, according to distribution µ, all variables in σ affecting B

Moser & Tardos showed that if the symmetric LLL criterion (or more general asymmetric
criterion) is satisfied, then this algorithm quickly converges. Following this work, a large
effort has been devoted to making different variants of the LLL constructive. This research
has taken many directions, including further analysis of Algorithm 1 and its connection to
different LLL criteria [6, 22, 26].

One line of research has been to use variants of Algorithm 1 for general probability
spaces beyond the variable LLL. These include applications of the LLL to permutations and
matchings of the clique [1, 2, 17, 21, 19] as well as settings not directly connected to the LLL
itself [3, 7, 18]. At a high level of generality, we summarize this in the following framework.
There is a discrete state space Ω, with a collection F of subsets (which we call flaws) of Ω.
There is also some problem-specific randomized procedure called the resampling oracle Rf

for each flaw f ; it takes some random action to attempt to “fix” that flaw, resulting in a new
state σ′ ← Rf (σ). With these ingredients, we define the general local search algorithm as
follows:

Algorithm 2 The general local search algorithm.
1: Draw the state σ from some distribution µ

2: while some flaw holds on σ do
3: Select a flaw f of σ, according to some rule S.
4: Update σ ← Rf (σ).



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:3

We refer to Algorithm 2 throughout as the Search Algorithm. The most important
question about its behavior is whether it converges to a flawless object. But, there are other
important questions to ask; for instance, “is it parallelizable?”, “how many solutions can it
output?”, “what is the expected “weight” of a solution?”. These questions and more have been
answered for the Moser-Tardos algorithm in a long series of papers [6, 8, 11, 12, 15, 16, 22, 25].
As a prominent example, the result of Haeupler, Saha and Srinivasan [12], as well as follow-up
work of Harris and Srinivasan [14, 16], allows one to argue about the dynamics of Algorithm 1,
resulting in several new applications such as estimating the entropy of the output distribution,
partially avoiding bad events and dealing with super-polynomially many bad events.

There is one important difference between Algorithm 1 and Algorithm 2: the choice of
which flaw to resample, if multiple flaws are simultaneously true. The flaw selection rule
S in the Search Algorithm should select a flaw f ∋ σ at each time t; it may depend on the
prior states and may be randomized. The original MT algorithm allows nearly complete
freedom for this. For general resampling oracles, S is much more constrained; only a few
relatively rigid rules are known to guarantee convergence, such as selecting the flaw of least
index [19]. However, in [23], Kolmogorov identified a general property called commutativity
that allows a free choice for S. This free choice, seemingly a minor detail, turns out to play
a key role in extending the additional properties of the MT algorithm to the general Search
Algorithm. For instance, it leads to parallel algorithms [23] and to bounds on the output
distribution [20].

At a high level, our goal is to provide a more conceptual, algebraic explanation for the
commutativity properties of resampling oracles and their role in the Search Algorithm. We
do this by introducing a notion of commutativity, essentially matrix commutativity, that is
both more general and simpler than the definition in [23]. Most of our results had already
been shown, in slightly weaker forms, in prior works [23, 20, 14]. However, the proofs were
computationally heavy and narrowly targeted to certain probability spaces, with numerous
technical side conditions and restrictions.

Before we provide formal definitions, let us give some intuition. For each flaw f , consider
an |Ω| × |Ω| transition matrix Af . Each row of Af describes the probability distribution
obtained by resampling f at a given state σ. We call the resampling oracle commutative if
the transition matrices commute for any pair of flaws which are “independent” (in the LLL
sense). We show a number of results for such oracles:

1. We obtain bounds on the distribution of the state at the termination of the Search
Algorithm. These bounds are comparable to the LLL-distribution, i.e., the distribution
induced by conditioning on avoiding all bad events. Similar results, albeit with a number
of additional technical restrictions, had been shown in [20] for the original definition of
commutativity.

2. For some probability spaces, stronger and specialized distributional bounds are available,
beyond the “generic” LLL bounds [14]. Previously, these had been shown with ad-hoc
arguments specialized to each probability space. Our construction recovers most of these
results automatically.

3. We develop a generic parallel implementation of the Search Algorithm. This extends
results of [23, 15], with simpler and more general proofs.

4. In many settings, flaws are formed from smaller “atomic” events [15]. We show that,
if the atomic events satisfy the generalized commutativity definition, then so do the
larger “composed” events. This natural property did not seem to hold for the original
commutativity definition of [23].

APPROX/RANDOM 2021



31:4 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

1.1 Example application: latin transversals
As a motivating example, let us examine a classic combinatorial problem of latin transversals.
Consider an n× n array C, wherein each entry of C has a color. A latin transversal of C is
a permutation π over {1, . . . , n} such that all the colors C(i, πi) are distinct for i = 1, . . . , n.

The “lopsided” variant of the LLL was first developed by Erdős & Spencer [10] for this
problem. The underlying probability space is the uniform distribution on permutations. For
each pair of cells (x1, y1), (x2, y2) of the same color, there is a corresponding flaw defined by
πx1 = y1 ∧ πx2 = y2. They showed that if each color appears at most ∆ = n

4e times, then
the LLL criteria are satisfied and a transversal exists. The cluster-expansion criterion [5]
tightens this to ∆ = 27n

256 , which is the strongest bound currently known.
This construction has been a motivating example for much of the research on the

algorithmic LLL, particularly for “exotic” probability spaces (beyond the variable setting).
In particular, [17] showed that the Search Algorithm generates a latin transversal π under
the same conditions as the existential LLLL. One of the main applications in this paper is to
show that π has nice distributional properties. In particular, we show the following:

▶ Theorem 1. If each color appears at most 27
256 n times in the array, then the Search

Algorithm generates a latin transversal π where, for every pair (x, y), we have 0.53/n ≤
Pr(πx = y) ≤ 1.36/n.

The upper bound improves quantitatively over a similar bound of [14]; to the best of our
knowledge, no non-trivial lower bound of any kind could previously be shown. Intriguingly,
such bounds are not known to hold for the LLL-distribution itself.

To better situate Theorem 1, note that Alon, Spencer, & Tetali [4] showed that there is a
(minuscule) universal constant β > 0 with the following property. If each color appears at
most ∆ = βn times in the array and n is a power of two, then the array can be partitioned
into n independent transversals. In this case, if we randomly select one transversal from this
list, we would have Pr(πx = y) = 1/n. Theorem 1 can be regarded as a simplified fractional
analogue of their result, i.e. we fractionally decompose the given array into O(n) transversals,
such that Pr(πx = y) = Θ(1/n) for all pairs x, y. Furthermore, we achieve this guarantee
automatically, merely by running the Search Algorithm.

1.2 Overview of our approach
Although it will require significant definitions and technical development to state our results
formally, let us try to provide a high-level summary here. As a starting point, consider the
MT algorithm. Moser & Tardos [25] used a construction referred to as a witness tree for
the analysis: for each resampling of a bad-event B at a given time, there is a corresponding
witness tree which records an “explanation” of why B was true at that time. More properly,
it provides a history of all the prior resamplings which affected the variables involved in B.

The main technical lemma governing the behavior of the MT algorithm is the “Witness
Tree Lemma,” which states that the probability of producing a given witness tree is at most
the product of the probabilities of the corresponding events. The bounds on the algorithm
runtime, as well as parallel algorithms and distributional properties, then follow from a union
bound over witness trees.

Versions of this Witness Tree Lemma have been shown for some variants of the MT
algorithm [13, 18] Iliopoulos [20] further showed that it held for general spaces which satisfy
the commutativity property; this, in turn, leads to the nice algorithmic properties such as
parallel algorithms.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:5

Our main technical innovation is to generalize the Witness Tree Lemma. Instead of
keeping track of a scalar product of probabilities in a witness tree, we instead consider a
matrix product. We bound the probability of a given witness tree (or, more properly, a slight
generalization known as the witness DAG) in terms of the products of the transition matrices
of the corresponding flaws. Commutativity can thus be rephrased and simplified in terms of
matrix commutativity for the transition matrices.

At the end, we obtain the scalar form of the Witness Tree Lemma by projecting everything
to a one-dimensional space. For this, we take advantage of some methods of [3] for viewing
the evolution of the Search Algorithm in terms of spectral bounds.

2 Background and Basic Definitions

Throughout the paper we consider implementations of the Search Algorithm. For each
flaw f , state σ ∈ f , and state σ′ ∈ Ω, we define Af [σ, σ′] to be the probability that
applying the resampling oracle Rf to σ yields state σ′, i.e. Af [σ, σ′] = Pr(Rf (σ) = σ′). For
σ /∈ f , we define Af [σ, σ′] = 0. We sometimes write σ

f−→ σ′ to denote that the algorithm
resamples flaw f at σ and moves to σ′. Observe that, for any vector θ over Ω, there holds
||θ⊤Af ||1 =

∑
σ∈f θ[σ] ≤ ||θ⊤||1. Thus, the matrix Af is substochastic.

We define a trajectory T to be a finite or countably infinite sequence of the states and
flaws of the form (σ0, f1, σ1, f2, . . . , ), and len(T ) is its length (possibly len(T ) = ∞). We
define the shift of T to be (σ1, f2, σ2, f3, . . . , ). We define T̂ to be the sequence states and
flaws resampled during the Search Algorithm, i.e. σi is the state at time i and flaw fi ∈ σi is
the flaw resampled.

For our purposes, we use an undirected notion of dependence. Formally, we suppose
that we have fixed some symmetric relation ∼ on F , with the property that f ∼ f for all f

and for every distinct pair of flaws f ̸∼ g, we are guaranteed that resampling flaw f cannot
introduce g or vice-versa, i.e. Rf never maps a state Ω − g into g and likewise Rg never
maps a state from Ω− f into f . We define Γ(f) to be the set of flaws g with f ∼ g, and we
also define Γ(f) = Γ(f) \ {f}.

We say that a set I ⊆ F is stable if f ̸∼ g for all distinct pairs f, g ∈ I.
For an arbitrary event E ⊆ Ω, we define eE to be the indicator vector for E, i.e. eE [σ] = 1

if σ ∈ E and eEσ = 0 otherwise. For a state σ ∈ Ω, we write eσ as shorthand for e{σ}, i.e.
the basis vector which has a 1 in position σ and zero elsewhere.

For vectors or matrices u, v we write u ⪯ v if u[i] ≤ v[i] for all entries i. We write u ∝ v

if there is some scalar value c with u = cv.

Regenerating oracles. The Moser-Tardos algorithm and extensions to other probability
spaces can be viewed in terms of regenerating oracles [19], i.e. each resampling action Rf

should convert the distribution of µ conditioned on f into the unconditional distribution
µ. We provide more detail later in Section 4, but, we can summarize this crisply with our
matrix notation: the resampling oracle R is regenerating if µ is a left-eigenvector of each
matrix Af , with associated eigenvalue µ(f), i.e.

∀f µ⊤Af = µ(f) · µ⊤ (1)

2.1 The new commutativity definition
The original definition of commutativity given by Kolmogorov [23] required that for every
f ≁ g ∈ F , there is an injective mapping from state transitions σ1

f−→ σ2
g−→ σ3 to state

transitions σ1
g−→ σ′

2
f−→ σ3, so that Af [σ1, σ2]Ag[σ2, σ3] = Ag[σ1, σ′

2]Af [σ′
2, σ3].

APPROX/RANDOM 2021



31:6 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

This definition is cumbersome, as well as lacking important symmetry and invariance
properties. As one of the major contributions of this paper, we introduce a more natural
notion of algorithmic commutativity that is also more general than the notion of [23].

▶ Definition 2 (Transition matrix commutativity). We say that the resampling oracle is
transition matrix commutative with respect to dependence relation ∼ if Af Ag = AgAf , for
every f, g ∈ F such that f ≁ g.

▶ Observation 3. If the resampling oracle is commutative in the sense of [23], then it is
transition matrix commutative.

Proof. Consider f ̸∼ g and states σ, σ′. By symmetry, we need to show that Af Ag[σ, σ′] ≤
AgAf [σ, σ′]. Since f ̸∼ g, we can see that both the LHS and RHS are zero unless σ ∈ f ∩ g.

Let V denote the set of states σ′′ with Af [σ, σ′′]Ag[σ′′, σ′] > 0. By defini-
tion, there is an injective function F : V → Ω such that Af [σ, σ′′]Ag[σ′′, σ′] =
Ag[σ, F (σ′′)]Af [F (σ′′), σ′]. Therefore, we have (Af Ag)[σ, σ′] =

∑
σ′′∈V Af [σ, σ′′]Ag[σ′′, σ′] =∑

σ′′∈V Ag[σ, F (σ′′)]Af [F (σ′′), σ′].
Since F is injective, each term Ag[σ, τ ]Af [τ, σ′] is counted at most once in this sum with

τ = F (σ′′). So (Af Ag)[σ, σ′] ≤
∑

τ∈f Ag[σ, τ ]Af [τ, σ′] = (AgAf )[σ, σ′]. ◀

For brevity, we say commutative to mean transition matrix commutative throughout this
paper; by contrast, we refer to the previous notion as commutative in the sense of [23].

When this definition applies, we define AI to be the matrix
∏

f∈I Af for a stable set I;
note that this product is well-defined (without specifying ordering of I) since the matrices
Af all commute.

For the remainder of this paper, we assume that the resampling oracle R is
transition-matrix commutative unless explicitly stated otherwise.

3 Witness DAGs and matrix bounds

In this section, we study witness DAGs, a key graph structure developed in [11] for analyzing
the evolution of commutative resampling oracles. The main result of this section is Lemma 5,
which is a generalization of the Witness Tree Lemma described in the introduction. Notably,
while our result is more general, its proof is significantly simpler. At a high level, the
role of a witness DAG is to give an “explanation” of why a certain flaw appeared during
the execution of the algorithm. To bound the probability that flaw f appears during the
algorithm execution, we simply add up the probabilities of all the witness DAGs that explain
it.

Formally, we define a witness DAG (abbreviated wdag) to be a directed acyclic graph
G, where each vertex v ∈ G has a label L(v) from F , and such that for all pairs of vertices
v, w ∈ G, there is an edge between v and w (in either direction) if and only if L(v) ∼ L(w).
For a wdag G with sink nodes v1, . . . , vk, note that L(v1), . . . , L(vk) are all distinct and
{L(v1), . . . , L(vk)} is a stable set which we denote by sink(G). We say that a flaw f is
unrelated to a wdag G if there is no node v ∈ G with L(v) ∼ f .

We define H to be the collection of all wdags, and we define H(I) to be the collection
of all such wdags with sink(H) = I. With some abuse of notation, we also write H(f) as
shorthand for H({f}).

There is a key connection between wdags and the transition matrices. For any wdag H,
we define an associated |Ω| × |Ω| matrix AH inductively as follows. If H = ∅, then AH is
the identity matrix on Ω. Otherwise, we choose an arbitrary source node v of H and set
AH = AL(v)AH−v.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:7

▶ Proposition 4. The definition of AH does not depend on the chosen source node v.
Furthermore, there is an enumeration of the nodes of H as v1, . . . , vt such that AH =
AL(v1) · · ·AL(vt).

Proof. Let us show the first property by induction on |H|. When |H| = 0 this is vacuously
true. For induction case, suppose H has two source nodes v1, v2. We need to show that we
get the same value by recursing on v1 or v2, i.e AL(v1)AH−v1 = AL(v2)AH−v2 .

We can apply the induction hypothesis to H − v1 and H − v2, noting that v2 is a source
node of H−v1 and v1 is a source node of H−v2. We get AH−v1 = AL(v2)AH−v1−v2 , AH−v2 =
AL(v1)AH−v1−v2 . Thus, in order to show AL(v1)AH−v1 = AL(v2)AH−v2 , it suffices to show
that AL(v1)AL(v2) = AL(v2)AL(v1). Since v1, v2 are both source nodes, we have L(v1) ̸∼ L(v2).
Thus, this follows from commutativity.

For the second property, we have AH = AL(v1)AH−v1 for a source node v. Recursively
peeling away vertices gives AH = AL(v1)AL(v2) . . . AL(vt). ◀

As a warm-up, we first show how to use wdags to bound the number of resamplings
performed in commutative algorithms. This will allow us to show bounds on the expected
runtime of the Search Algorithm as well as allowing parallel implementations. The main
point here is to demonstrate how the new commutativity definition helps with the crucial
task of bounding the probability of appearance of a given wdag.

As in the original proof of Moser & Tardos [25], we will estimate the expected number of
times each flaw f ∈ F is resampled. Consider an execution of the Search Algorithm with
trajectory T . For each time t ≤ len(T ), we generate a corresponding wdag GT

t which provides
the history of the tth resampling. Initially, we set GT

t to consist of a singleton node labeled
ft. Then, for s = t− 1, . . . , 1, there are two cases:
1. if wdag GT

t has any node with label g where g ∼ fs, then we add a vertex labeled fs,
with a sink node to all nodes w such that L(w) ∼ fs;

2. Otherwise, if GT
t is unrelated to fs, then we do not modify Gt.

We define GT
[s,t] to be the partial wdag formed only by considering times t, . . . , s; then

GT
t = GT

[1,t] and GT
[t,t] is a singleton node labeled ft and GT

[s,t] is formed by copying GT
[s+1,t]

and adding, or not, a node labeled fs. We say that a wdag H appears if H is isomorphic to
Gt for any value t; with a slight abuse of notation, we write this is simply as Gt = H.

To calculate the expected running time of the Search Algorithm, we sum the wdag
appearance probabilities. One of the main ingredients in the original proof of Moser &
Tardos is that any wdag G appears with probability at most

∏
v∈G µ(L(v)), i.e., the product

of probabilities of the flaws that label its vertices. Their proof depends on properties of the
variable setting and does not extend to other probability spaces.

Our key message is that commutativity allows us to bound the probability of a wdag
appearing by considering the product of transition matrices for flaws that label its vertices.
Specifically, we show the following. (Recall that µ denotes the initial state distribution.)

▶ Lemma 5. For any wdag H, the probability that H appears is at most µ⊤AH 1⃗.

Proof. We first show that if the Search Algorithm runs for at most tmax steps starting with
state σ, where tmax is an arbitrary integer, then H appears with probability at most e⊤

σ AH 1⃗.

We prove this claim by induction on tmax. If tmax = 0, or σ is flawless, the claim can be
easily seen to be hold vacuously.

So suppose that tmax ≥ 1 and S selects a flaw g to resample in σ, and define EH to be
the event that H appears when running the search algorithm A. By conditioning on the
random seed used by the flaw choice strategy S (if any), we may assume that the search
strategy S is deterministic.

APPROX/RANDOM 2021



31:8 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

We can now view the evolution of A as a two-part process: we first resample g, reaching
state σ′ with probability Ag[σ, σ′]. We then execute a new search algorithm A′ starting
at state σ′, wherein the flaw selection rule S′ on history (σ′, σ2, . . . , σt) is the same as the
choice of S on history (σ, σ′, σ2, . . . , σt). Let us denote by G′

s the wdags produced for this
new search algorithm A′.

Suppose that H appears, so that Gs = H for some value s ≤ tmax. In this case, we claim
that one of the two conditions must hold: (i) H has a unique source node v labeled g and
G′

s−1 = H − v; or (ii) g is unrelated to H and G′
s−1 = H. For, suppose that H has another

node w with L(w) ∼ L(v); in this case, when forming the wdag Gs, the rule would be to add
a new node labeled g, which is perforce a source node.

In case (i), then in order for event EH to occur on the original search algorithm A, we
must also have EH−v hold on A′ within t− 1 timesteps. By induction hypothesis, this has
probability at most e⊤

σ′AH−v 1⃗ for a fixed σ′. Summing over σ′ gives a total probability of∑
σ′ Ag[σ, σ′]e⊤

σ′AH−v 1⃗ = e⊤
σ AgAH−v 1⃗ = e⊤

σ AH 1⃗ as required.
In case (ii), then in order for event EH to occur for A, we must also have EH occur for A′

within t − 1 timesteps. By induction hypothesis, this has probability at most e⊤
σ′AH 1⃗ for

a fixed σ′. Summing over σ′ gives a total probability of
∑

σ′ Ag[σ, σ′]e⊤
σ′AH 1⃗ = e⊤

σ AgAH 1⃗.

Since Ag commutes with AH , this is at most e⊤
σ AHAg 1⃗. Since Ag is substochastic, this in

turn is at most e⊤
σ AH 1⃗, which completes the induction.

By countable additivity, we can compute the probability that H ever appears from starting
state σ, as Pr

(∨∞
t=1 GT̂

t = H
)

= limtmax→∞ Pr
(∨tmax

t=1 GT̂
t = H

)
≤ limtmax→∞ e⊤

σ AH 1⃗ =
e⊤

σ AH 1⃗.

Finally, integrating over τ , gives
∑

τ µ[τ ]e⊤
τ AH 1⃗ = µ⊤AH 1⃗. ◀

This can be used to show a generalization of the key Witness Tree Lemma of Moser &
Tardos:

▶ Corollary 6. Suppose the resampling oracle is regenerating. Then, for a given wdag H, the
probability that H appears is at most

∏
v∈H µ(L(v)).

Proof. Let f1, . . . , ft be the labels of the vertices in H, ordered from source nodes to sink
nodes. We can write AH = Af1 · · ·Aft

. Since µ is a left-eigenvector of every transition matrix
(see Eq. (1)), we have µ⊤AH 1⃗ = µ⊤Af1 · · ·Aft

1⃗ = µ(f1) · · ·µ(ft)µ⊤1⃗ = µ(f1) · · ·µ(ft). ◀

As we have already discussed, this gives the following important corollary:

▶ Corollary 7. The expected number of steps of the Search Algorithm is at most∑
f∈F

H∈H(f)
µ⊤AH 1⃗.

For example, if the resampling oracle is regenerating, then, the expected number of
steps of the algorithm is at most

∑
f∈F

∑
H∈H(f)

∏
v∈H µ(L(v)), i.e. the usual Witness Tree

Lemma.
We emphasize that we are not aware of any direct proof of Corollary 6; it seems necessary

to first show the matrix bound of Lemma 5, and then project down to scalars. As we show in
Appendix A, under some natural conditions the matrix commutativity property is necessary
to obtain Lemma 5.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:9

4 Estimating weights of wdags

The statement of Lemma 5 in terms of matrix products is very general and powerful, but
difficult for calculations. To use it effectively, we need to bound the sums of the form∑

H∈H

µ⊤AH 1⃗

There are two, quite distinct, issues that arise in this calculation. First, for a given
fixed wdag H, we need to estimate µ⊤AH 1⃗; second, we need to bound the sum of these
quantities over H. The second issue is well-studied and is at the heart of the probabilistic
and algorithmic conditions for the LLL. The first issue is not as familiar. Following [3], we
can bound the matrix product by using a heuristic based on spectral bounds of the matrices
Af . Let us define a quantity called the charge γf for each flaw f as follows.

γf = max
τ∈Ω

∑
σ∈f

µ(σ)
µ(τ) Af [σ, τ ] (2)

The following result of [21] illustrates the connection between this measure and the
Lopsided Lovász Local Lemma (LLLL):

▶ Theorem 8 ([21]). For each set S ⊆ F − Γ(f), there holds µ
(
f |

⋂
g∈S g

)
≤ γf .

Moreover, as shown in [2], the charge γf captures the compatibility between resampling
oracle for f and the measure µ. A resampling oracle R with γf = µ(f) for all f , is called a
regenerating oracle [19], as it perfectly removes the conditional of the resampled flaw. (This
is equivalent to satisfying Eq. (1).)

For a wdag H, let us define the scalar value w(H) =
∏

v∈H γL(v). We get the following
estimate for µ⊤AH 1⃗ in terms of w(H):

▶ Theorem 9. For any event E ⊆ Ω we have µ⊤AHeE ≤ µ(E) · w(H). In particular, with
E = Ω, we have µ⊤AH 1⃗ ≤ w(H).

Proof. From definition of γf , it can be observed that µ⊤Af ⪯ γf µ⊤ for any f . In particular,
µ⊤Af · θ ≤ γf θ for any vector θ. Now, by Proposition 4, we can write AH = Af1 . . . Aft

where f1, . . . , ft are the labels of the nodes of H. We thus have:

µ⊤AHeE = µ⊤Af1 . . . AfteE ≤ µ⊤γf1Af2 . . . Aft ≤ · · · ≤ γf1 . . . γftµ
⊤eE = w(H)µ(E) ◀

In light of Theorem 9, we define for any stable set I the key quantity Ψ(I) =∑
H∈H(I) w(H). We also define Ψ(f) = Ψ({f}) for brevity.

▶ Corollary 10.
1. Any given wdag H appears with probability at most w(H).
2. The expected number of resamplings of any flaw f is at most Ψ(f).
3. The expected runtime of the Search Algorithm is at most

∑
f Ψ(f).

We summarize a few well-known bounds on these quantities.

▶ Proposition 11.
1. (Symmetric criterion) Suppose that γf ≤ p and |Γ(f)| ≤ d for parameters p, d with

epd ≤ 1. Then Ψ(f) ≤ eγf ≤ ep for all f .
2. (Asymmetric criterion) Suppose there is some function x : F → [0, 1) with the property

that γf ≤ x(f)
∏

g∈Γ(f)(1− x(g)) for all f . Then Ψ(f) ≤ x(f)
1−x(f) for all f .

APPROX/RANDOM 2021



31:10 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

3. (Cluster-expansion criterion) Suppose there is some function η : F → [0,∞) with the
property that η(f) ≥ γf ·

∑
I⊆Γ(f)
I stable

∏
g∈I η(g) for all f . Then Ψ(f) ≤ η(f) for all f .

A related quantity is Ψ(I) =
∑

J⊆I Ψ(J). A useful and standard formula (see e.g., [19,
Claim 59]) is that for any set I we have Ψ(I) ≤

∏
f∈I Ψ(f) and Ψ(I) ≤

∏
f∈I(1 + Ψ(f)). We

also write ΨF , ΨF to indicate the role of the flaw set F , if it is relevant.
As an illustration, consider latin transversals. Here, we have a flaw f for each pair of

cells (x1, y1), (x2, y2) of the same color, i.e. πx1 = y1 ∧ πx2 = y2. We denote this by flaw
[(x1, y1), (x2, y2)]. We define the dependency graph by setting f ∼ f ′ if and only if f and
f ′ are mutually incompatible, i.e. f = [(x1, y1), (x2, y2)], f ′ = [(x′

1, y′
1), (x′

2, y′
2)] where either

x1 = x′
1, y1 ̸= y′

1 or x1 ̸= x′
1, y1 = y′

1. We will examine this construction in more detail later
in Section 6.

▶ Proposition 12. Suppose that each color appears at most ∆ = 27
256 n times in the array.

Then the expected number of steps of the Search Algorithm is O(n). Furthermore, Ψ(f) ≤ 256
81n2

for each f .

Proof. We apply the cluster-expansion criterion with η(f) = 256
81n2 for each flaw f . Consider

a flaw f corresponding to cells (x1, y1), (x2, y2), and a stable set I of neighbors of f .. There
can be one or zero elements g of I of the form [(x1, y′

1), (x′
2, y′

2)]. There are n choices for
x1; given that pair (x1, y′

1) is determined, there are at most ∆ − 1 other cells with the
same color. Each such g has η(g) = 256

81n2 . Similar arguments apply to elements in I of
the form [(x′

1, y1), (x′
2, y′

2)] etc. Overall, the sum over stable neighbor sets I is at most
(1 + n(∆− 1) 256

81n2 )4.
So we need to show that

256
81n2 ≥

1
n2 · (1 + n(∆− 1) 256

81n2 )4

and simple calculations show that this holds for n ≥ 2. (The case n = 1 holds trivially).
Also, the total number of flaws is at most n2(∆ − 1)/2 = O(n3). Thus, the expected

number of steps is at most |F| · 256
81n2 ≤ O(n). ◀

5 Parallel algorithms

Moser & Tardos [25] described a simple parallel version of their resampling algorithm. A
variety of parallel resampling algorithms have also been developed for other probability
spaces [17, 13]. One main benefit of the commutativity property is that it enables much
more general parallel implementations of the Search Algorithm. As a starting point, [23]
discussed a generic framework for parallelization which we summarize as follows:

Algorithm 3 Generic parallel resampling framework.
1: Draw state σ from distribution µ

2: while some flaw holds on σ do
3: Set V ̸= ∅ to be the set of flaws currently holding on σ

4: while V ̸= ∅ do
5: Select, arbitrarily, a flaw f ∈ V .
6: Update σ ← Rσ(σ).
7: Remove from V all flaws g such (i) σ /∈ g; or (ii) f ∼ g



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:11

Each iteration of the main loop (lines 2 – 7) is called a round. We emphasize this is a
sequential algorithm, which can be viewed as a version of the Search Algorithm with an
unusual flaw-selection choice. Most known parallel local search algorithms, including the
original parallel algorithm of Moser & Tardos, fall into this framework. One main result of
[23] is that, when the resampling oracle is commutative (in the sense of [23]), then the total
number of rounds in Algorithm 3 is polylogarithmic with high probability.

Harris [15] further showed a general method for simulating each round in parallel, for
resampling oracles which satisfy a property called obliviousness (see Section 7 for a formal
definition). These two results combine to give an overall RNC search algorithm. We will
now extend these results to our commutative resampling oracles, via bounding the weights
of certain classes of wdags.

We define Vk to be the set of flaws V in round k, and we define the stable set Ik to be
the set of flaws which are actually resampled at round k (i.e. a flaw f selected at some
iteration of line 5). Let bk =

∑
i<k |Ii| be the total number of resamplings made before

round k; thus b1 = 0, and when “serialize” Algorithm 3 and view it as an instance of the
Search Algorithm, the resamplings in round k of Algorithm 3 correspond to the resamplings
at iterations bk + 1, . . . , bk+1 of the Search Algorithm.

▶ Proposition 13. For all f ∈ Vk there exists g ∈ Ik−1 with f ∼ g.

▶ Proposition 14. Consider running Algorithm 3 obtaining trajectory T̂ . Then, for each t

in the range bk + 1, . . . , bk the wdag GT̂
t has depth precisely k.

The proof of Propositions 13 and 14 are nearly identical to results for the variable LLLL
shown in [15]; we omit then here.

▶ Proposition 15. For any f ∈ F and index k ≥ 1, we have Pr(f ∈ Vk) ≤∑
H∈H(f)

depth(H)=k

µ⊤AH 1⃗.

Proof. As we have discussed, Algorithm 3 can be viewed as an instantiation of the Search
Algorithm with a flaw selection rule S. For a fixed f , let us define a new flaw selection rule
Sf as follows: it agrees with S up to round k; it then selects f to resample at round k if
it is true. The behavior for S and Sf is identical up through the first bk−1 resamplings.
Furthermore, Algorithm 3 has f ∈ Vk if and only if the Search Algorithm selects f for
resampling at iteration bk + 1.

Consider the resulting wdag GT̂
t ; by Proposition 14 it has depth k. Furthermore, it has a

sink node labeled f . Thus, if f ∈ Vk, then there is some H ∈ H(f) with depth(H) = k which
appears. To bound the probability of f ∈ Vk, we take a union bound over all such H and
apply Lemma 5. ◀

The usual strategy to bound the sum over wdags H with depth(H) ≥ t is to use an
“inflated” weight function defined as wϵ(H) = w(H)(1 + ϵ)|H|, and corresponding sum
Wϵ =

∑
H∈H wϵ(H) for some ϵ > 0. Using standard calculations as well as the bounds of

Propositions 13,14, 15, one can show the following results:

▶ Proposition 16. With probability at least 1− δ, Algorithm 3 terminates in O( log(1/δ+ϵWϵ)
ϵ )

rounds and has
∑

k |Vk| ≤ O(Wϵ/δ). Furthermore, if the resampling oracle is regenerating
and satisfies the computational requirements given in [15] for input length n, then with
probability 1 − 1/ poly(n) the algorithm of [15] terminates in O( log4(n+ϵWϵ)

ϵ ) time on an
EREW PRAM.

APPROX/RANDOM 2021



31:12 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Bounding Wϵ is very similar to bounding
∑

H w(H) = W0, except with a small “slack”
in the charges. For example, using standard estimates (see [11, 23, 3]) we get the following
bounds:

▶ Proposition 17.
1. Suppose that the resampling oracle is regenerating and that the vector of probabilities

p(1+ϵ) still satisfies the LLLL criterion. Then Wϵ/2 ≤ O(m/ϵ). In particular, Algorithm 3
terminates after O( log(m/δ)

ϵ ) rounds with probability 1− δ.
2. Suppose that γf ≤ p and |Γ(f)| ≤ d such that epd(1 + ϵ) ≤ 1. Then Wϵ/2 ≤ O(m/ϵ).

Algorithm 3 terminates after O( log(m/δ)
ϵ ) rounds with probability at least 1− δ.

6 Distributional properties

The most important consequence of commutativity is that it leads to good bounds on the
distribution of objects generated by the Search Algorithm. Consider an event E in Ω, and
define P (E) to be the probability that E holds in the output of the Search Algorithm. Also
define N(E) to be the expected number of times t such that E is caused to be true at time
t; this includes both the original sampling at time t = 0, or if resampling flaw f at time t

moved the state from E to E. Clearly, there holds P (E) ≤ N(E). We also write PF (E) and
NF (E) to emphasize the dependence on flaw set F .

To obtain the tightest bounds on N(E), and thereby P (E), we will use a more refined
construction of wdags. For this we need several definitions.

We say that a stable set I ⊆ F is orderable for E if there is an enumeration I = {g1, . . . , gr}
such that

∀i = 1, . . . , r Agi
Agi+1 . . . Agr

eE ̸⪯ Agi+1 . . . Agr
eE (3)

We define O(E) to be the collection of stable sets orderable for E. Also, we define Γ̃(E) to
be the set of flaws f ∈ F which can cause E to occur, i.e. f maps some state σ′ /∈ E to
σ ∈ E.

▶ Observation 18. If I ∈ O(E), then I ⊆ Γ̃(E).

With this notation, our main distributional bound will be to show that

N(E) ≤ µ(E)
∑

I∈O(E)

Ψ(I)

For a flaw f and wdag H, we say that f is dominated by a wdag H for E if Af AH 1⃗ ⪯ AH 1⃗.
Consider a trajectory T = (σ0, f1, . . . , ). For each time t where E holds (including possibly
t = 0), we will generate a corresponding wdag JT

t , however, the rule for adding nodes is
slightly more restrictive. See Algorithm 4 for the precise construction.

Algorithm 4 Forming JT
t .

1: Initialize JT
t = ∅

2: for s = t, . . . , 1 do
3: if fs is not dominated by JT

t or if JT
t has a source node labeled fs then

4: Add to JT
t a node vs labeled fs, with an edge from vs to each vj such that fj ∼ fs

We write JT
[s,t] for the wdag JT

t after iteration s, so that JT
[s,t] is derived from JT

[s+1,t] by
adding (or not) a vertex labeled fs. We have JT

t = JT
[1,t] and JT

[t+1,t] = ∅. Also, if E is not
true at time t, we define JT

t = ⊥. We define H′ to be the collection of all wdags that can be
produced in this process.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:13

▶ Proposition 19. Consider a wdag G ∈ H′. If JT
t = G for a trajectory T with t ≥ 1 and

f1 resampled at time 1, then the wdag G′ = JT ′

t−1 for the shifted trajectory T ′ is uniquely
determined according to the following rule:

If G contains a unique source node v labeled f1, then G′ = G− v

Otherwise, G′ = G and f1 is dominated by GT
t

Proof. Since t ≥ 1, Algorithm 4 obtains JT
t by possibly adding a node v1 labeled f1 to

JT ′

t−1. If Algorithm 4 adds node v1 to G′, then f1 is the label of a source node v of JT
t = G,

and G′ = JT
t − v. If Algorithm 4 does not add such node, then JT

t = G′. By the rule for
adding nodes, it must be that G′ does not have a source node labeled f1, and also f1 must be
dominated by JT ′

t−1. Since G′ = JT
t , these imply that f1 is dominated by JT

t = G as well. ◀

Our main result for this construction will be the following:

▶ Lemma 20. For any wdag H ∈ H′, there holds Pr(
∨∞

t=0 Jt = H) ≤ µ⊤AHeE

Proof. Define EH,tmax to be the event that J T̂
t = H holds for some t ≤ tmax during execution

of the Search Algorithm A. By a limiting arugment, it suffices to show that Pr(EH,tmax) ≤
µ⊤AHeE for any integer tmax ≥ 1. We will prove by induction on tmax that, if we start
at any state σ, then Pr(EH,tmax) ≤ e⊤

σ AHeE ; the Lemma then follows by integrating over
starting state σ.

If tmax = 0 or σ is flawless, then EH,tmax is impossible and the desired bound. So suppose
that tmax ≥ 1, and that S selects a flaw g to resample in σ. We can now view the evolution
of A as a two-part process: we first resample g, reaching state σ′ with probability Ag[σ, σ′].
We then execute a new search algorithm A′ starting at state σ′, wherein the flaw selection
rule S′ on history (σ′, σ2, . . . , σr) is the same as the choice of S on history (σ, σ′, σ2, . . . , σr).

Suppose now that EH,tmax holds for A, i.e. J T̂
t = H for some t ≤ tmax. Note that the

actual trajectory T̂ ′ for A′ is given by T̂ ′ which is the shift of T̂ . Thus, by Proposition 19,
one of the two conditions must hold: (i) either H has a unique source node v labeled g and
J T̂ ′

t−1 = H − v; or (ii) H has no such node and J T̂ ′

t−1 = H and g is dominated by H.
In the first case, there must also hold EH−v,tmax−1 for A′. By induction hypothesis, this

has probability at most e⊤
σ′AHeE conditional on a fixed σ′. Summing over σ′, we get a total

probability of
∑

σ′ Ag[σ, σ′]e⊤
σ′AH−veE = e⊤

σ AgAH−veE = e⊤
σ AHeE .

In the second case, there must also hold EH,tmax−1 for A′. By induction hypothesis, this
has probability at most e⊤

σ′AHeE conditional on a fixed σ′. Summing over σ′, we get a total
probability of

∑
σ′ Ag[σ, σ′]e⊤

σ′AHeE = e⊤
σ AgAHeE . Since g is dominated by H for E, this

is at most e⊤
σ AHeE , again completing the induction. ◀

▶ Proposition 21. Suppose that event E is true at times s and t with s < t, but false at
some intermediate time. Then JT

s ̸= JT
t .

Proof. We prove this by induction on s. For the base case s = 0, we have JT
s = ∅. Suppose

for contradiction that JT
t = ∅ as well. Since E is false at an intermediate time but true at

time t, it must become true due to resampling some g at time t′ < t. Clearly also JT
[t′+1,t] = ∅.

Since g makes E be true where it was false, we have g ∈ Γ̃(E). As a result, g is not dominated
for the empty wdag. So the rule for forming JT

t would add a node to JT
[t′,t], contradicting

that JT
t = ∅.

For the induction step, suppose s > 0 and JT
t = JT

s . Let T ′ be the shift of T . By
Proposition 19, both JT ′

s−1 and JT ′

t−1 are updated in the same manner depending on the flaw
f1. Thus, JT ′

s−1 = JT ′

t−1. But this contradicts the induction hypothesis. ◀

APPROX/RANDOM 2021



31:14 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Proposition 22. N(E) ≤
∑

H∈H′ µ⊤AHeE.

Proof. By Proposition 21, for each time t that E switches from false to true, the corresponding
wdag JT

t must be distinct. Thus, the total number of times that E becomes true is at most∑
H∈H′ [[

∨
t≥0 J t̂

t = H]]. Now take expectations and apply Lemma 20. ◀

▶ Proposition 23. For a wdag H ∈ H′, there holds sink(H) ∈ O(E).

Proof. Let us fix some value t where E holds; for s = 1, . . . , t let Hs = JT
[s,t] and Is = sink(Hs),

and so that H1 = H. We claim by induction on s that each wdag Hs has the stated property.
The base case is s = t; this holds since It = ∅ ∈ O(E).

Now consider some s < t, where Hs is formed from Hs+1 by possibly adding a new
node labeled g. The induction step is obvious if Is = Is+1. Thus, we may assume that g is
unrelated to Hs+1 (else it would not form a new sink node.) So the only relevant case is if g

is not dominated by wdag GT
[s,t].

By induction hypothesis, Is+1 ∈ O(E). Then it can be enumerated as Is+1 = {g1, . . . , gr}
to satisfy Eq. (3). Suppose, for contradiction, that Is /∈ O(E). If we enumerate
Is = {g, g1, . . . , gr}, then there would hold θ⊤AgAg1 . . . Agr eE ≤ θ⊤Ag1 . . . Agr eE for all
distributions θ over the states.

Letting V denote the sink nodes of Hs+1, we have AHs+1 = AHs+1−V AV . Then, for any
state σ, we have e⊤

σ AgAHs+1eE = e⊤
σ AgAHs+1−V AV eE = eσAHs+1−V AgAg1 . . . Agr

eE , where
in the last inequality we use the facts that g is unrelated to Hs+1 and that AV = Ag1 . . . Agr

.
By our bound with θ = e⊤

σ AHs+1−V , we see that this is at most eσAHs+1−V Ag1 . . . Agr
eE =

eσAHs+1eE . Hence g is dominated by Gs+1 and we would not add the new node to Hs, a
contradiction. ◀

We now get our desired distributional bounds:

▶ Corollary 24. N(E) ≤ µ(E)
∑

I∈O(E) Ψ(I).

Proof. We have shown N(E) ≤
∑

H∈H′ µ⊤AHeE . Since each H ∈ H′ has sink(H) ∈
O(E), this is at most

∑
I∈O(E)

∑
H∈H(I) µ⊤AHeE . By Theorem 9, this is at most∑

I∈O(E),H∈H(I) w(H)µ(E) = µ(E)
∑

I∈O(E) Ψ(I). ◀

▶ Corollary 25. P (E) ≤ µ(E)
∑

I∈O(E) ΨG(I) where G = {f ∈ F : f ̸⊆ E}.

Proof. Consider the first time that E becomes true, if any. Then, only flaws in G can be
resampled up to that point; if some other flaw with f ⊆ E was resampled, then necessarily
E was true earlier. Up to this time, the behavior of the Search Algorithm is identical to
if had restricted to the flaw set G. So P (E) ≤ NG(E); by Corollary 24 this is at most∑

I∈O(E) ΨG(I). ◀

Since any set I ∈ O(E) is also a subset of Γ̃(E), we have the following crisp corollary:

▶ Corollary 26. P (E) ≤ µ(E)Ψ(Γ̃(E)).

We note that Iliopoulos [20] had previously shown a bound similar to Corollary 26, but it
had three additional technical restrictions: (i) it only worked for commutative resampling
oracles in the sense of [23]; (ii) it additionally required the construction of a commutative
resampling oracle for the event E itself; and (iii) if the resampling oracle is not regenerating,
it gives a strictly worse bound.

The following result shows how to apply these bounds with common LLL criteria.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:15

▶ Proposition 27. Under the criteria of Proposition 11, we have the following estimates for
P (E):
1. If the symmetric criterion holds, then P (E) ≤ µ(E) · ee|Γ̃(E)|p.
2. If function x satisfies the asymmetric criterion, then P (E) ≤ µ(E) ·

∏
f∈Γ̃(E)

1
1−x(f) .

3. If function η satisfies the cluster-expansion criterion, then P (E) ≤ µ(E) ·∑
I∈O(E)

∏
g∈I η(g).

One weakness of distributional bounds such as Corollary 26 is that the definition of Γ̃(E)
is binary: either flaw f cannot possibly cause E, or every occurrence of f must be tracked
to determine if it caused E. The next results allow us to take account of flaws which can
“partially” cause E.

For flaw f and event E, let us define

κ(f, E) = max
σ∈f∩E

e⊤
σ Af eE

e⊤
σ Af eE∪f

Note that κ(f, E) = 0 for f /∈ Γ̃(E), and κ(f, E) ≤ 1 always. Thus, κ(f, E) is a weighted
measure of the extent to which f causes E. Also note that usually e⊤

σ Af ef is small, and the
denominator in the definition of κ(f, E) is close to one.

▶ Theorem 28. P (E) ≤ µ(E) +
∑

f∈G κ(f, E) ·minF ⊇E NG(F ∩ f) where G = {f : f ̸⊆ E}.

Proof. See Appendix B. ◀

We remark that to obtain Theorem 28, we needed to bound N(F ∩f); bounds on P (F ∩f)
alone would not have been enough. This explains why we analyzed the more general quantity.
By applying Theorem 28 to the event E, we can obtain a lower bound on the probability of
E:

▶ Corollary 29. P (E) ≥ µ(E)−
∑

f∈G κ(f, E)·minF ⊆E NG(f−E) where G = {f : f∩E ̸= ∅}.

For example, consider the permutation setting, where the probability space Ω is the
uniform distribution on permutations on n letters, and each flaw has the form g1 ∩ · · · ∩ gk,
where each gi is an atomic event of the form πxi = yi. We then get the following distributional
result:

▶ Theorem 30 ([14]). In the permutation setting, consider an event E = g1 ∩ · · · ∩ gk where
each gi is an atomic event. We have N(E) ≤ (n−k)!

n!
∏k

i=1

(
1 +

∑
f∈F :f∼gi

Ψ(f)
)

.

As another example, consider the setting where the underlying probability space Ω is
the uniform distribution on perfect matchings on the clique Kn, and each flaw has the form
g1 ∩ · · · ∩ gk, where each gi is an atomic event of the form {xi, yi} ⊆ M . We then get the
following distributional result:

▶ Theorem 31. In the settings of perfect matchings of the clique, consider an event E =
g1 ∩ · · · ∩ gk where each gi is an atomic event. We have N(E) ≤ (n−2k−1)!!

(n−1)!!
∏k

i=1

(
1 +∑

f∈F :f∼gi
Ψ(f)

)
.

The work [14] showed (what is essentially) Theorem 30 using a complicated and ad-hoc
analysis based on a variant of witness trees, while Theorem 31 is new. The proofs are deferred
to Appendix C.

Using these bounds, we can show the following estimates on individual entries of π:

APPROX/RANDOM 2021



31:16 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Theorem 32. If each color appears at most ∆ = 27
256 n times in the array, then the Search

Algorithm generates a latin transversal where, for each cell x, y, there holds

17
32n
≤ P (πx = y) ≤ 173

128n

Proof. Define the event E that πx = y. For the upper bound, Theorem 28 (with F = Ω) gives
P (πx = y) ≤ µ(E) +

∑
f∈F NF (f)κ(f, E). Now, consider some flaw f = [(x1, y1), (x2, y2)] ∈

F . The flaw f must involve cell (x, y′) or (x′, y), else η(f, E, Ω) = 0. For a flaw that does so,
we can see that there is a probability of at most 1/(n−1) that the resampling causes E, since
there is at most one possible choice that can cause πx = y. Thus η(f, E, Ω) ≤ 1/(n−1)

1−1/n(n−1) .
By Theorem 30, we have NF (f) ≤ (n−2)!

n!
(
1 +

∑
f ′∈G:f ′∼gi

Ψ(f ′)
)

where g1, g2 are the two
atoms in f . Since Ψ(f ′) ≤ γ = 256

81n2 , and there are at most 2n(∆− 1) choices for f ′, this is
overall at most 1

n(n−1) (1 + 2n(∆− 1)γ).
Since either x1 = x or y1 = y, there are 2n(∆− 1) choices for f . Summing over these, we

get

P (E) ≤ 1
n

+ 2n(∆− 1) · 1
n(n− 1)

(
1 + 2n(∆− 1)γ

)
· 1/(n− 1)

1− 1/n(n− 1) ≤
173

128n

For the lower bound, we use Corollary 29. Letting G denote the flaws which do not
involve cells (x, y′) for y′ ≠ y, or (x′, y) for x′ ̸= x and setting F = E, we have P (E) ≥
µ(E) −

∑
f∈F N(E ∩ f)κ(f, E). Now, consider some such flaw f = [(x1, y1), (x2, y2)]. If

(x1, y2) = (x, y), then in this case, f ∩E = f and so Theorem 30 implies that NG(f ∩E) ≤
1

n(n−1) (1 + (∆− 1)γ)(1 + 2n(∆− 1)γ). (We emphasize that, because we are restricting to
G, there are no neighbors which involve cells (x, y′) etc.) Otherwise, if (x, y) is distinct
from (x1, y1), (x2, y2), then f ∩ E = [(x1, y1), (x2, y2), (x, y)] and Theorem 30 implies that
NG(f ∩ E) ≤ 1

n(n−1)(n−2) (1 + (∆− 1)γ)(1 + 2n(∆− 1)γ)2.
There are at most (∆− 1) flaws in the first category, and each trivially has κ(f, E) ≤ 1.

There are at most n2(∆− 1)/2 flaws in the second category; each such flaw f has κ(f, E) ≤
2/n

1−1/n(n−1) , since there are two choices for the cell to swap and in each case there is at most
one way to get πx = y in a swap.

Putting all terms together, and with some algebraic simplifications, we get P (E) ≥
17

32n . ◀

An analogous result can be shown for perfect matchings of the clique; we omit the
proof here.

▶ Theorem 33. Consider an edge-coloring C of the clique Kn, for n an even integer, such
that each color appears on at most ∆ = 27

256 n edges. Then the Search Algorithm generates a
perfect matching M such that C(e) ̸= C(e′) for all distinct edges e, e′ of M . Moreover, for
each edge e, the probability there holds 17

32(n−1) ≤ P (e ∈M) ≤ 173
128(n−1) .

7 Compositional properties for resampling oracles

The flaws and their resampling oracles are often built out of a collection of simpler, “atomic”
events. For example, in the permutation LLL setting, these would be events of the form
πx = y. In [15], Harris described a generic construction when the atomic events satisfy an
additional property referred to as obliviousness. Let us now review this construction, and
how it works with commutativity.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:17

Consider a set A of events, along with a resampling oracle R and a dependency relation ∼.
It is allowed, but not required, to have f ∼ f for f ∈ A. For the compositional construction,
we must define explicitly how the resampling oracle Rf uses the random seed. Specifically,
to resample σ′ ← Rf (σ), we first draw a random seed r from some probability space Rf ,
and then set σ′ = F (σ, r) for some deterministic function F . For brevity, we write this as
σ′ = rσ.

We refer to the elements of A as atoms. These should be thought of as “pre-flaws”, that
is, they have the structural algebraic properties of a resampling oracle, but do not necessarily
satisfy any convergence condition such as the LLLL. We have the following key definition:

▶ Definition 34 (Oblivious resampling oracle [15]). The resampling oracle R is called oblivious
if for every pair f, g ∈ A with f ̸∼ g and for each r ∈ Rf , one of the following two properties
holds:

For all σ ∈ f ∩ g we have rσ ∈ g

For all σ ∈ f ∩ g we have rσ ̸∈ g

We assume throughout this section that R is oblivious. For each f ∈ A and
g1, . . . , gs ∈ A with gi ̸∼ f , we define Rf ;g1,...,gs

to be the set of values r ∈ Rf such that
rσ ∈ g1 ∩ · · · ∩ gt. With some abuse of notation, we also use Rf ;g1,...,gs to refer to the
probability distribution of drawing r from Rf , conditioned on having r in the set Rf ;g1,...,gs

.
Note that in light of Definition 34 this is well-defined irrespective of σ.

For a stable set C ⊆ A, we define ⟨C⟩ to be the intersection of the events in C,
i.e., ⟨C⟩ =

⋂
f∈C f . From A, one can construct an enlarged set of events A = {⟨C⟩ |

C a stable subset of A}. We define the relation ∼ on A by setting ⟨C⟩ ∼ ⟨C ′⟩ iff either
(i) C = C ′ or (ii) there exist f ∈ C, f ′ ∈ C ′ with f ∼ f ′. We also define a corresponding
resampling oracle R on A which will satisfy all its required structural properties. The intent
is to choose the flaw set F to be some arbitrary subset of A.; as before, A does not necessarily
satisfy any LLLL convergence criterion.

To determine R, consider some g = ⟨C⟩ for a stable set C, with some arbitrary enumeration
C = {f1, . . . , ft}. We define Rg to be the probability distribution on tuples r = (r1, . . . , rt)
wherein each ri is drawn independently from Rfi;fi+1,...,fs , and we set rσ = rt . . . r1σ.

▶ Theorem 35 ([15]). Suppose that R is an oblivious resampling oracle for A, which is
not necessarily commutative. Then: R with dependency relation ∼ provides an oblivious
resampling oracle for A. If R is regenerating on A, then the resampling oracle on A is also
regenerating.

It would seem reasonable that if A is commutative, then A would be as well. Unfortu-
nately, we do not know how to show this for the commutativity definition of [23]. For our
commutativity definition, this is easy to show; in addition, A will inherit a number of other
nice properties. This is a good illustration of how the new definition of commutativity is
easier to work with, beyond its advantage of greater generality.

▶ Proposition 36. Suppose that A is oblivious but not necessarily commutative. For a flaw
g = ⟨C⟩, suppose that we have fixed an enumeration C = {f1, . . . , ft} to define Rg. Then
Ag ∝ Af1 . . . Aft

.

Proof. By definition of Rg, we have Ag[σ, σ′] = Pr(rt . . . r1σ = σ′), where each ri is drawn
independently from Rfi;fi+1,...,ft

. Let us define R′
i = Rfi;fi+1,...,ft

and σi = ri . . . r1σ for
i = 0, . . . , t (where σ0 = σ). By enumerating over possible values for σ1, . . . , σt, we get
Ag[σ, σ′] =

∑
σ1,...,σt

σt=σ′

∏t
i=1 Prri∼R′

i
(riσi−1 = σi).

APPROX/RANDOM 2021



31:18 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

Note that if σi /∈ fj for some j > i, then the term Prri∼R′
i
(riσi−1 = σi) must be zero,

since ri ∈ R′
i ⊆ Rfi;fj

. So we may restrict the sum to terms with σi ∈ fi+1 ∩ · · · ∩ ft for
all i = 0, . . . , t. For each such term, we have Prri∼R′

i
(riσi−1 = σi) = Prri∼Ri

(riσi−1=σi)
Prri∼Ri

(ri∈R′
i
) =

Afi
[σi−1,σ]

Prri∼Ri
(ri∈R′

i
) . So:

Ag[σ, σ′] =
∑

σ1,...,σt

σt=σ′

Af1 [σ0, σ1] . . . , Aft
[σt−1, σt]∏t

i=1 Prri∼Ri(ri ∈ R′
i)

=

∑
σ1,...,σt

σt=σ′
Af1 [σ0, σ1] . . . , Aft

[σt−1, σt]∏t
i=1 Prri∼Ri(ri ∈ R′

i)

= (cAf1 . . . Aft)[σ, σ′] ◀

▶ Proposition 37. If A is commutative, then the transition matrix Ag for a flaw g = ⟨C⟩
does not depend on the chosen enumeration C = {f1, . . . , ft}.

Proof. By Proposition 36, we have Ag = cA′
g for A′

g = Af1 . . . Aft
. Since the matrices Afi

all commute, A′
g does not depend on the enumeration of C. Furthermore, the constant c can

be determined from A′
g by choosing an arbitrary state σ ∈ g and setting c = 1∑

σ′ A′
g[σ,σ′]

. ◀

▶ Theorem 38. If the resampling oracle is commutative on A, then it is also commutative
on A.

Proof. Let g = ⟨C⟩ and g′ = ⟨C ′⟩ for stable sets C, C ′ such that g ̸∼ g′. So f ̸∼ f ′ for all
f ∈ C and f ′ ∈ C ′. By Proposition 36 we have

AgAg′ = cgcg′

( ∏
f∈C

Af

∏
f ′∈C′

Af ′

)
, Ag′Ag = cg′cg

( ∏
f ′∈C′

Af ′

∏
f∈C

Af

)
for scalar constants cg, cg′ . All these matrices Af , Af ′ commute, so both quantities are
equal. ◀

Another useful property for such resampling oracles is idempotence. We say that A is
idempotent if A2

f ∝ Af for all f ∈ A. Most of the known commutative resampling oracles,
resampling oracles have this property, including the variable LLLL and the permutation LLL.

▶ Proposition 39. If the resampling oracle is commutative and idempotent on A, then it is
also idempotent on A. Furthermore, for any stable set I = {⟨C1⟩, . . . , ⟨Ck⟩} of A and stable
set J = C1 ∪ · · · ∪ Ck of A, there holds AI ∝ AJ .

Proof. First, let f = ⟨C⟩ for stable set C = {g1, . . . , gk}. Proposition 36 gives A2
f ∝

(Ag1 · · ·Agk
)2. Since the matrices Agi

commute with each other, this gives A2
f ∝ A2

g1
· · ·A2

gk
.

Since A is idempotent, this is proportional to Ag1 · · ·Agk
, which again by Proposition 36 is

proportional to Af .
For the second result, Proposition 36 gives AI ∝

∏k
i=1

∏
g∈Ci

Ag =
∏

g∈J A
ng
g where

ng ≥ 1 is the number of copies of g appearing in C1, . . . , Ck. Since A is idempotent, each
term A

ng
g is proportional to Ag. Hence we have AI ∝

∏
g∈J Ag = AJ . ◀

References
1 Dimitris Achlioptas and Fotis Iliopoulos. Random walks that find perfect objects and the

Lovász local lemma. Journal of the ACM, 63(3):Article #22, 2016. doi:10.1145/2818352.

https://doi.org/10.1145/2818352


D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:19

2 Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov. A local lemma for focused
stochastic algorithms. SIAM Journal on Computing, 48(5):1583–1602, 2019. doi:10.1137/
16M109332X.

3 Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair. Beyond the Lovász local lemma:
Point to set correlations and their algorithmic applications. In Proc. 60th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 725–744, 2019.

4 Noga Alon, Joel Spencer, and Prasad Tetali. Covering with latin transversals. Discrete applied
mathematics, 57(1):1–10, 1995.

5 Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. An improve-
ment of the Lovász local lemma via cluster expansion. Combinatorics, Probability & Computing,
20(5):709–719, 2011. doi:10.1017/S0963548311000253.

6 Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. Deterministic algorithms
for the Lovász local lemma. SIAM Journal on Computing, 42(6):2132–2155, 2013. doi:
10.1137/100799642.

7 Antares Chen, David G. Harris, and Aravind Srinivasan. Partial resampling to approximate
covering integer programs. Random Structures & Algorithms, pages 69–93, 2021.

8 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the Lovász local
lemma and graph coloring. Distributed Computing, 30(4):261–280, 2017.

9 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vol. II, pages 609–627. Colloq. Math. Soc. János Bolyai, Vol. 10. 1975.

10 Paul Erdös and Joel Spencer. Lopsided Lovász local lemma and latin transversals. Discrete
Applied Mathematics, 30(2-3):151–154, 1991. doi:10.1016/0166-218X(91)90040-4.

11 Bernhard Haeupler and David G. Harris. Parallel algorithms and concentration bounds for
the Lovász local lemma via witness DAGs. ACM Transactions on Algorithms, 13(4):Article
#25, 2017.

12 Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. New constructive aspects of the
Lovász local lemma. Journal of the ACM, 58(6):Article #28, 2011. doi:10.1145/2049697.
2049702.

13 David G. Harris. Lopsidependency in the Moser-Tardos framework: Beyond the lopsided
Lovász local lemma. ACM Transactions on Algorithms, 13(1):Article #17, 2016. doi:
10.1145/3015762.

14 David G. Harris. New bounds for the Moser-Tardos distribution. Random Structures &
Algorithms, 57(1):97–131, 2020.

15 David G. Harris. Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász
Local Lemma. ACM Transactions on Algorithms, 17(1):Article #1, 2021.

16 David G. Harris and Aravind Srinivasan. Algorithmic and enumerative aspects of the Moser-
Tardos distribution. ACM Transactions on Algorithms, 13(3):Article #33, 2017.

17 David G. Harris and Aravind Srinivasan. A constructive Lovász Local Lemma for permutations.
Theory of Computing, 13(1):Article #17, 2017.

18 David G. Harris and Aravind Srinivasan. The Moser–Tardos framework with partial resampling.
Journal of the ACM, 66(5):Article #36, 2019.

19 Nicholas J. A. Harvey and Jan Vondrák. An algorithmic proof of the Lovász local lemma via
resampling oracles. SIAM Journal on Computing, 49(2):394–428, 2020.

20 Fotis Iliopoulos. Commutative algorithms approximate the LLL-distribution. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2018.

21 Fotis Iliopoulos and Alistair Sinclair. Efficiently list-edge coloring multigraphs asymptotically
optimally. In Proc. 14th annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2319–2336, 2020.

22 Kashyap Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In Proc. 43rd annual
ACM Symposium on Theory of Computing (STOC), pages 235–244, 2011.

APPROX/RANDOM 2021

https://doi.org/10.1137/16M109332X
https://doi.org/10.1137/16M109332X
https://doi.org/10.1017/S0963548311000253
https://doi.org/10.1137/100799642
https://doi.org/10.1137/100799642
https://doi.org/10.1016/0166-218X(91)90040-4
https://doi.org/10.1145/2049697.2049702
https://doi.org/10.1145/2049697.2049702
https://doi.org/10.1145/3015762
https://doi.org/10.1145/3015762


31:20 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

23 Vladimir Kolmogorov. Commutativity in the algorithmic Lovász local lemma. SIAM Journal
on Computing, 47(6):2029–2056, 2018.

24 László Lovász. Submodular functions and convexity. In Mathematical Programming: the State
of the Art, pages 235–257. Springer, 1983.

25 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
Journal of the ACM, 57(2):Article #11, 2010. doi:10.1145/1667053.1667060.

26 Wesley Pegden. An extension of the Moser-Tardos algorithmic local lemma. SIAM Journal
on Discrete Mathematics, 28(2):911–917, 2014. doi:10.1137/110828290.

A Necessity of transition matrix commutativity for Lemma 5

Consider a set of events B∗ with a dependency relation ∼. We say that B∗ is complete if for
each σ ∈ Ω there exists a flaw hσ = {σ} ∈ B∗, and with hσ ∼ g for all g ∈ B∗. Note that
this definition is satisfied if B∗ is generated by atomic events corresponding to permutations,
perfect matchings of hypergraphs, or spanning trees.

We show now that if transition matrix commutativity fails in a complete set of events,
even for a single pair of flaws, then some wdags may appear with probability arbitrarily
higher than their weight. It can be checked that preconditions of the lemma (and thus its
conclusion) apply to some existing resampling oracles, such as the oracle for spanning trees
from [19] and the oracle for perfect matchings of complete s-uniform hypergraphs (for s ≥ 3)
from [15].

▶ Theorem 40. Suppose that B∗ is complete, regenerating, and contains a pair f, g ∈ B∗

with f ≁ g and Af Ag ̸= AgAf . Then for any C > 0 there exists a set of flaws B ⊆ B∗ with
|B| = 3, wdag H with a single sink and a flaw resampling strategy S such that the probability
that H appears in the execution of the algorithm is at least C · w(H) = C ·

∏
v∈H µ(L(v)).

Proof. Consider states σ, τ with Af Ag[σ, τ ] ̸= AgAf [σ, τ ]. Denote x = Af Ageτ and y =
AgAf eτ , and assume w.l.o.g. that x[σ] < y[σ]. Note that µ⊤Af Ag = µ⊤AgAf = γf γg · µ⊤

since the oracles are regenerating, and therefore µ⊤x = µ⊤y = γf γg · µ[τ ] = γf γgγh.
Consider the following strategy S given a current state σ1: (i) if σ1 ̸= σ then prioritize

flaws f, g, h at steps 1,2,3 respectively; (ii) if σ1 = σ then prioritize flaws g, f, h at steps
1,2,3 respectively. We say that the run succeeds if the sequence of addressed flaws is (f, g, h)
in the first case and (g, f, h) in the second case. Clearly, the probability of success equals
e⊤

σ1
Af Ageτ = e⊤

σ1
x in the first case and e⊤

σ1
AgAf eτ = e⊤

σ1
y in the second case. If σ1 is

distributed according to µ then the probability of success is

p = µ[σ] · e⊤
σ y +

∑
σ1∈Ω−{σ}

µ[σ1] · e⊤
σ1

x = µ[σ] · (e⊤
σ y − e⊤

σ x) +
∑

σ1∈Ω
µ[σ1] · e⊤

σ1
x

= µ⊤x + µ[σ] · (y[σ]− x[σ]) > γf γgγh

Furthermore, if the run succeeds then the last state is distributed according to µ (since step
3 resamples h at state τ , and the oracles are regenerating).

Now consider the trajectory which repeats the sequence f, g, h for n times, and the
corresponding wdag H = GT

3n which has a single sink node labeled h. Let Sn be the strategy
S repeated cyclically. From the previous paragraph, the probability that the run starting
with some distribution µ produces H is given by cµ · pn−1, where cµ depends only on the
initial distribution. Note that w(H) = (γf γgγh)n. Choosing n sufficiently large now gives
the claim. ◀

https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/110828290


D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:21

B Proof of Theorem 28

First, there is a probability of µ(E) that E is true at time 0. To bound the probability the
E becomes true later, let us say that a pair (f, t) is good if (i) E is false at time t; (ii) f is
reampled at time t; and (iii) either this is the first resampling of f , or if the most recent
resampling of f had occured at time t′ < t, then f had been false at some intermediate time
between t′ + 1 and t. If (f, t) is good, we say it is finalized at time s ≥ t if (i) f is resampled
at time s; (ii) E has been false at all times prior to s; and (iii) f is true at times t, . . . , s.

We claim that if E becomes true, then there is some pair (f, t) which is good and is
finalized at some time s ≥ t. For, suppose that E first becomes true at time s ≥ 1 and that
f is resampled at time s. Going backward in time, look for the earliest time t such that
the same flaw f is resampled at time t and that f remained true between t and s (possibly
t = s). Then (f, t) is good and is finalized at time s.

Now let us fix good pair (f, t). For each s ≥ t, let Es be the event that (f, t) is finalized
by some s′ ≥ s. We claim that Pr(Es) ≤ κ(f, E); furthermore, this probability bound holds
conditional on the full state of the system at times up to s.

By a limiting argument, it suffices to show this bound if we restrict to s ≤ smax for
arbitrary integer smax. For fixed smax, we show it by induction backward on s. The claim
follows immediately from induction if f is not being resampled at time s or if s = smax. If
E is true at time s, then Es is impossible (since (f, t) would have needed to be finalized at
some earlier time s′ < s). Likewise, if there was an intervening time between t and s where
f was false, then Es is impossible.

So, suppose we resample f at time s while E is false and f has remained true for times
t, . . . , s. Let τ ∈ f ∩E be the state at time s. There are three things that can happen when
resampling f :

E becomes true. This has probability e⊤
τ Af eE . In this case, event Es may have occurred.

E remains false, and f becomes false. This has probability e⊤
τ Af eE∩f . In this case, event

Es is impossible.
E becomes false, and f remains true. This has probability e⊤

τ Af eE∩f . In this case,
in order to Es to occur, it must be that Es+1 holds after resampling f . By induction
hypothesis, this has probability at most κ(f, E).

Overall, we have Pr(Es) ≤ e⊤
τ Af eE · 1 + e⊤

τ Af eE∩f · κ(f, E). This is at most
κ(f, E)eτ Af eE∪f + e⊤

τ Af eE∩f · κ(f, E) ≤ κ(f, E). This concludes the induction.
Now consider any good pair (f, t). Because of the claim, we know that that the probability

that (f, t) is finalized (by any time s ≥ t) is at most κ(f, E), conditional on all other state at
time t. Since this is a necessary condition for E to become true, the overall probability that
E becomes true is at most E[Lf ] · κ(f, E), where L is the number of good pairs (f, t). Note
that, between any good pairs (f, t) and (f, t′) for t′ > t, the event F ∩ f is false at least once,
where F is an arbitrary event with F ⊇ E. However, at times t and t′, the event F ∩ f is
true. Thus, F ∩ f is caused to become true at least Lf times, and so by Proposition 22, we
have E[Lf ] ≤ NG(F ∩ f).

C Proof of Theorem 30 and Theorem 31

We begin by considering the setting where Ω is the uniform distribution on the permutations
π on [n]. The set A is defined as follows: for each pair (x, y) ∈ [n]× [n], there is atom πx = y,
which we denote by [x, y]. The resampling oracle here, for such an event, is to update the
state π ← (y z)π, where z is uniformly drawn from [n]. (Here and throughout the section,
(y z) denotes the permutation which swaps y and z.) We have [x, y] ∼ [x′, y′] if exactly one

APPROX/RANDOM 2021



31:22 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

of the following holds: (i) x = x′ or (ii) y = y′. Equivalently, this holds iff [x, y] ∩ [x′, y′] = ∅.
See [15] for further details, including a proof that the resampling oracle is commutative and
oblivious.

We begin with a basic observation on how atoms of A interact with events in A.

▶ Proposition 41. Let f = [x, y] be an atom and let E = ⟨C⟩ where C is a stable set of A.
Then Af eE ∝ eE′ , where E′ = ⟨C ′⟩ and stable set C ′ is obtained from C as follows:

If C contains exactly two atoms f1, f2 which are neighbors of f , i.e. f1 = [x, y1] and
f2 = [x2, y], then C ′ = C − {f1, f2} ∪ {[x, y], [x2, y1]}.
If C contains exactly one atom f1 which is a neighbor of f , then C ′ = C − f1 ∪ {f}.
Otherwise, if C contains no neighbors of f , then C ′ = C ∪ {f}.

Proof. Consider state π, and suppose we resample f to obtain π′ = (y z)π. If π /∈ f , then
e⊤

π Af eE = 0 = e⊤
π eE′ . Similarly, for each f ′ ∈ C which is not a neighbor of f , we must have

π ∈ f ′ as otherwise e⊤
π Af eE = 0 = e⊤

π eE′ . In these cases, we also automatically have π′ ∈ f ′

for all such f ′. Thus, we suppose that π ∈ f and also π ∈ f ′ for all f ′ ∈ C − Γ(f). We
consider the following cases in turn:

If C contains two atoms f1, f2, then we claim that π′ ∈ E precisely when z = y1 and
πx2 = y. For, in order to have π′ ∈ f1, we must have π′x = y1. Since πx = y, this
implies that (y z)y = y1, i.e. z = y1. Thus, π′ = (y y1)π. To satisfy f2, we must have
y = π′x2 = (y y1)πx2, i.e. πx2 = y. In this case, we see that e⊤

π Af eE = 1/n for all π and
also e⊤

π eE′ = 1.
Suppose that C contains a neighbor f1 = [x, y1]. In this case, we have π′ ∈ f1 precisely
if y1 = z. Similarly, suppose that C contains a neighbor f2 = [x2, y]. In this case, we
have π′ ∈ f2 precisely if z = πx2. Thus, we have e⊤

π Af eE = 1/n for all such π and also
e⊤

π eE′ = 1.
If C has no neighbors of f , then π′ is in E iff z /∈ {y1, . . . , yk} where C =
{[x1, y1], . . . , [xk, yk]}. Thus e⊤

π Af eE = n−k
n and e⊤

π eE′ = 1 ◀

To understand more complex, multi-atom interactions, let us fix event E = ⟨C⟩ for a
stable set C. For a stable set I ⊆ A, we can form an associated bipartite graph GI , as follows:
the left vertices correspond to C (we call these C-nodes), and the right vertices correspond
to I (we call these I-nodes). It has an edge between f and f ′ iff f ∼ f ′. Observe that since
C and I are stable, the graph GI has degree at most two – each node [x, y] can have one
neighbor of the form [x′, y] and another neighbor of the form [x, y′]. So, GI decomposes into
paths and cycles.

We define τ(I) to be the size of a maximum matching in GI . We also define the active
conditions for I, denoted Active(I) ⊆ A, as follows. First, for each f ∈ I, we also place f

into Active(I). Second, consider some maximal path of GI starting and ending at C-nodes
(which we call a C-path). The path can be written (in one of its two orientations) as

[x1, y1], [x1, y2], [x2, y2], . . . , [xk, yk−1], [xk, yk].

In this case, we also put [xk, y1] into Active(I). (It is possible that k = 1, in which case
[x1, y1] is an isolated C-node.)

For brevity, we define α(I) to be the event ⟨Active(I)⟩ in A. The active conditions
determine the vector AIeE , and also have a number of nice combinatorial properties.

▶ Proposition 42. Let I be a stable set of A. Then the following properties hold:
1. AIeE ∝ eα(I).
2. |Active(I)| = |C|+ |I| − τ(I).
3. Any f ∈ I with τ(I) = τ(I − f) has Active(I) = Active(I − f) ∪ {f}.



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:23

Proof.
1. We show this by induction on I. The base case I = 0 is clear, since then Active(I) = C.

For the induction step, consider f ∈ I. We have AIeE = Af AI−f eE ; by induction
hypothesis, this is proportional to Af e⟨U⟩ where U = Active(I − f). By Proposition 41,
this in turn is proportional to e⟨U ′⟩, where U ′ is formed according to the specific given
rules. We thus need to show that U ′ = Active(I). There are three cases.
If U has no neighbors of f , then U ′ = U ∪ {f}. Furthermore, GI has no changes in its
C-paths compared to GI−f , so Active(I) = Active(I − f) ∪ {f} = U ′.
Next suppose U has one neighbor f ′ = [x′, y′] of f . Since I is a stable set, it must
have f ′ /∈ I, i.e. GI−f contains a C-path with endpoints x′, y′. This C-path now
terminates in a degree-one I-node [x, y] in GI , and hence it is removed from GI . So
Active(I) = Active(I − f)− f ′ ∪ {f} = U ′.
Finally, If U has two neighbors f1 = [x, y1], f2 = [x2, y], then again since I is a stable set
these must correspond to C-paths in GI−f . Thus, there are two C-paths with endpoints
x, y1 and x2, y respectively. Now in GI , there is a new degree-two I-node [x, y]. This
merges the two C-paths into a single new C-path with endpoints x2, y1. Thus again
Active(I) = Active(I − f)− {f1, f2} ∪ {f, [x2, y1]} = U ′.

2. Consider some connected component of GI ; it is a path or cycle with i distinct I-nodes
and c distinct C-nodes, where c ∈ {i − 1, i, i + 1}. If c = i − 1, then it has maximum
matching size t = i − 1 else it has maximum matching size t = i. If c = i + 1, then it
has one additional active condition corresponding to the C-path on its nodes, and thus
has a = i + 1 active conditions; else it has a = i active conditions. In all cases, it can
be checked that a = c + i − t. The claimed formula is obtained by summing over all
components.

3. By part (2), we have τ(I) = τ(I − f) precisely if |Active(I)| = |Active(I − f)|+ 1, i.e.
GI has the same number of C-paths as GI−f . We claim in this case that GI has the
same C-paths as GI−f as well, which will show the claim.
For, if not, then GI would need to gain, and lose, some C-paths compared to GI . The
new I-node [x, y] would need to participate in a new C-path. This can only occur if GI−f

has two C-paths with endpoints [x, y′] and [x′, y]. But in this case, these two existing
C-paths get destroyed in GI , and thus in fact GI has strictly fewer C-paths compared to
GI−f . ◀

▶ Proposition 43. Let I = {f1, . . . , fk} be a stable set in A, where fi = ⟨Fi⟩ for each i.
Consider the stable sets J ′ = F1 ∪ · · · ∪ Fk−1 and J = J ′ ∪ Fk of A. If τ(J ′) = τ(J), then fk

is dominated by I − fk in A.

Proof. Let I ′ = {f1, . . . , fk−1}. t is easily seen that the permutation LLL setting is idemp-
totent. Thus, by Proposition 39, we have AI′ ∝ AJ′ . Combined with Proposition 42(1), this
implies that there is some scalar value p ≥ 0 such that AI′eE = peα(J′). We want to show
that

e⊤
π AIeE ≤ e⊤

π AI′eE (4)

for any state π.
By Proposition 39, we have AI ∝ AJ . Thus, the LHS of Eq. (4) is zero if π /∈ α(J), in

which case the inequality clearly holds. So suppose that π ∈ α(J). By Proposition 42(3),
we have Active(J ′) ⊆ Active(J) since τ(J ′) = τ(J). In this case, also π ∈ α(J ′) so the RHS
of Eq. (4) is equal to p. The LHS can be factored as e⊤

π AIeE =
∑

σ Af [π, σ] · e⊤
σ AI′eE =∑

σ∈α(J′) Af [π, σ]p. Since matrix Af is substochastic, this is at most p. This establishes the
desired inequality. ◀

APPROX/RANDOM 2021



31:24 A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

▶ Proposition 44. For any I ∈ O(E), there is an injective function ϕI : I → C with
g ∼ ϕI(g) for all g ∈ I.

Proof. By definition, I can be ordered as I = {f1, . . . , fk}, where fi = ⟨Fi⟩ and such that
each fi is not dominated by {f1, . . . , fi−1}. Let us define Ji = F1 ∪ · · · ∪ Fi for each i. By
Proposition 43, we must have τ(Ji) > τ(Ji−1) for each i. Thus, for each i, there is some
gi ∈ Fi− Ji−1 and some F ′

i ⊆ Fi−{gi} with τ(Ji−1 ∪F ′
i ∪ {gi}) > τ(Ji−1 ∪F ′

i ). It is known
(see, e.g. [24, Example 1.4]) that τ is a submodular set function. Hence, we have

1 = τ(Ji−1 ∪ F ′
i ∪ {gi})− τ(Ji−1 ∪ F ′

i ) ≤ τ({g1, . . . , gi−1} ∪ {gi})− τ({g1, . . . , gi−1})

since {g1, . . . , gi−1} ⊆ Ji−1.
This implies that τ({g1, . . . , gk}) = k and G{g1,...,gk} has a matching M of size k. We

define the function ϕ by setting ϕ(fi) = ci where gi is matched to ci in M . ◀

We can now obtain Theorem 30.

Proof of Theorem 30. Clearly µ(E) = (n−k)!
n! . To enumerate a set I ∈ O(E), by Proposi-

tion 44, we choose, for each g ∈ C, either zero or one preimages f = ϕ−1
I (g) in I. If we write

Ig for the set of preimages of g, then |Ig| ≤ 1 for all g and I =
⋃

g∈C Ig. Overall, this shows
that ∑

I∈O(E)

Ψ(I) ≤
∑

Ig1 ,...,Igk

Ψ(Ig1 ∪ · · · ∪ Igk
) ≤

∑
Ig1 ,...,Igk

Ψ(Ig1) · · ·Ψ(Igk
)

where the last inequality follows from log-subadditivity of Ψ. This can be written as∏k
i=1

∑
Igi

Ψ(Igi
). The case of Igi

= ∅ contributes 1, and the case of Igi
= {f} contributes

Ψ(f). ◀

We next consider the setting where Ω is the set of perfect matchings M on the clique
on vertex set [n], where n is an even integer. The set A is defined as follows: for each
pair (x, y) ∈ [n] × [n] with x ̸= y, there is an atomic event that M ⊇ {x, y}. We denote
this event by [x, y]; note that [x, y] = [y, x], which is different from the permutation setting.
The resampling oracle, for such an event with x < y, is to update the state by drawing z

uniformly from [n]− x and setting M ← (y z)M . Here, we are using the natural left-group
action of permutations on matchings, i.e. σM = {{σx′, σy′} | {x′, y′} ∈M}.

We have [x, y] ∼ [x′, y′] if |{x, y}∩{x′, y′}| = 1. Equivalently, this holds iff [x, y]∩[x′, y′] =
∅. See [15] for further details, including a proof that this resampling oracle is commutative
and oblivious.

As before, we begin with a basic observation on how atoms of A interact with events in
A.

▶ Proposition 45. Let f = [x, y] be an atom and let E = ⟨C⟩ where C is a stable set of A.
Then Af eE ∝ eE′ , where E′ = ⟨C ′⟩ and stable set C ′ is obtained from C as follows:

If C contains exactly two atoms f1, f2 which are neighbors of f , i.e. f1 = [x, y1] and
f2 = [x2, y], then C ′ = C − {f1, f2} ∪ {[x, y], [x2, y1]}.
If C contains exactly one atom f1 which is a neighbor of f , then C ′ = C − f1 ∪ {f}.
Otherwise, if C contains no neighbors of f , then C ′ = C ∪ {f}.

Proof. Consider state M ∈ f , and suppose we resample f to M ′ = (y z)M where z is drawn
from [n]−x. For each f ′ ∈ C which is not a neighbor of f , we must have M ∈ f ′ as otherwise
e⊤

M Af eE = 0 = e⊤
M eE′ . In these cases, we also automatically have M ′ ∈ f ′ for all such f ′.

Thus, we suppose that M ∈ f and also M ∈ f ′ for all f ′ ∈ C − Γ(f). We consider the
following cases:



D. G. Harris, F. Iliopoulos, and V. Kolmogorov 31:25

Suppose that C contains two atoms f1, f2. Then we claim that M ′ ∈ E precisely
when z = y1 and {x2, y} ∈ M . First, we have {x, y1} ∈ M ′ with M ′ = (y z)M iff
z = y1. Thus, M ′ = (y y1)M . To satisfy f2, we must have {x2, y1} ∈ M . In this case,
e⊤

M Af eE = 1/(n− 1) and also e⊤
M eE′ = 1.

Suppose that C contains a neighbor f1 = [x, y1]. In this case, we have M ′ ∈ f1 precisely
if y1 = z. Thus, we have e⊤

M Af eE = 1/(n− 1) and also e⊤
M eE′ = 1.

Suppose C has no neighbors of f . Let C = {[x1, x2], . . . , [x2k−1, x2k]}; we have M ∈ E′

precisely if z /∈ {x1, . . . , x2k}. Since z ̸= x, we thus have e⊤
M Af eE = n−2k+1

n−1 . We also
have e⊤

M eE′ = 1. ◀

To understand multi-atom interactions, let us fix event E = ⟨C⟩ for a stable set C.
For a stable set I ⊆ A, we can form an associated bipartite graph GI , whose left vertices
correspond to C and whose right vertices correspond to I. It has an edge between f and f ′

iff f ∼ f ′. Observe that since C and I are stable, the graph GI has degree at most two –
each node [x, y] can have one neighbor of the form [x′, y] and another neighbor of the form
[x, y′]. So, GI decomposes into paths and cycles.

We define τ(I) to be the size of a maximum matching in GI . We also define Active(I) ⊆
A as follows. First, for each f ∈ I, we also place f into Active(I). Second, consider
some maximal path of GI starting and ending at C-nodes; the path can be written as
[x1, x2], [x2, x3], . . . , [xk−1, xk] for even k. In this case, we also put [x1, xk] into Active(I).

▶ Proposition 46. Let I be a stable set of A. Then the following properties hold:
1. AIeE ∝ eα(I) where α(I) = ⟨Active(I)⟩.
2. |Active(I)| = |C|+ |I| − τ(I).
3. Any f ∈ I with τ(I) = τ(I − f) has Active(I) = Active(I − f) ∪ {f}.

We omit the the proof of Proposition 44, as well as the remainder of the proof of
Theorem 31, as they are precisely analogous to the proof of Theorem 30.

APPROX/RANDOM 2021


	1 Introduction
	1.1 Example application: latin transversals
	1.2 Overview of our approach

	2 Background and Basic Definitions
	2.1 The new commutativity definition

	3 Witness DAGs and matrix bounds
	4 Estimating weights of wdags
	5 Parallel algorithms
	6 Distributional properties
	7 Compositional properties for resampling oracles
	A Necessity of transition matrix commutativity for Lemma 5
	B Proof of Theorem 28
	C Proof of Theorem 30 and Theorem 31

