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Abstract
The graph isomorphism distance between two graphs Gu and Gk is the fraction of entries in the
adjacency matrix that has to be changed to make Gu isomorphic to Gk. We study the problem of
estimating, up to a constant additive factor, the graph isomorphism distance between two graphs
in the query model. In other words, if Gk is a known graph and Gu is an unknown graph whose
adjacency matrix has to be accessed by querying the entries, what is the query complexity for testing
whether the graph isomorphism distance between Gu and Gk is less than γ1 or more than γ2, where
γ1 and γ2 are two constants with 0 ≤ γ1 < γ2 ≤ 1. It is also called the tolerant property testing of
graph isomorphism in the dense graph model. The non-tolerant version (where γ1 is 0) has been
studied by Fischer and Matsliah (SICOMP’08).

In this paper, we prove a (interesting) connection between tolerant graph isomorphism testing
and tolerant testing of the well studied Earth Mover’s Distance (EMD). We prove that deciding
tolerant graph isomorphism is equivalent to deciding tolerant EMD testing between multi-sets in
the query setting. Moreover, the reductions between tolerant graph isomorphism and tolerant
EMD testing (in query setting) can also be extended directly to work in the two party Alice-Bob
communication model (where Alice and Bob have one graph each and they want to solve tolerant
graph isomorphism problem by communicating bits), and possibly in other sublinear models as well.

Testing tolerant EMD between two probability distributions is equivalent to testing EMD between
two multi-sets, where the multiplicity of each element is taken appropriately, and we sample elements
from the unknown multi-set with replacement. In this paper, our (main) contribution is to introduce
the problem of (tolerant) EMD testing between multi-sets (over Hamming cube) when we get samples
from the unknown multi-set without replacement and to show that this variant of tolerant testing of
EMD is as hard as tolerant testing of graph isomorphism between two graphs. Thus, while testing of
equivalence between distributions is at the heart of the non-tolerant testing of graph isomorphism,
we are showing that the estimation of the EMD over a Hamming cube (when we are allowed to
sample without replacement) is at the heart of tolerant graph isomorphism. We believe that the
introduction of the problem of testing EMD between multi-sets (when we get samples without
replacement) opens an entirely new direction in the world of testing properties of distributions.
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34:2 Graph Isomorphism and EMD

1 Introduction

Graph isomorphism (GI) has been one of the most celebrated problems in computer science.
Roughly speaking, the graph isomorphism problem asks whether two graphs are structure-
preserving. Namely, given two graphs Gu and Gk, graph isomorphism of Gu and Gk is a
bijection ψ : V (Gu) → V (Gk) such that for all pair of vertices u, v ∈ V (Gu), the edges
{u, v} ∈ E(Gu) if and only if {ψ(u), ψ(v)} ∈ E(Gk) 1. One central open problem in
complexity theory is whether the graph isomorphism problem can be solved in polynomial
time. Recently in a breakthrough result, Babai [5] proved that the graph isomorphism
problem could be decided in quasi-polynomial time.

For a central problem like the graph isomorphism, naturally, one would like to understand
its (and related problems) computational complexity for various models of computation.
While most of the focus has been on the standard time complexity in the RAM model for
various classes of graphs (and hyper-graphs), other complexity measures like space complexity,
parameterized complexity, and query complexity have also been studied over the past few
decades (see the Dagstuhl Report [7] and PhD thesis of Sun [24]).

A natural extension of the GI problem is to estimate the “graph isomorphism distance”
between two graphs. In other words, given two graphs Gu and Gk, what fraction of edges
are necessary to add or delete to make the graphs isomorphic.

▶ Definition 1.1. Let Gu = (Vu, Eu) and Gk = (Vk, Ek) be two graphs with |Vu| = |Vk| = n.
Given a bijection ϕ : Vu → Vk, the distance between the graphs Gu and Gk with respect to
the bijection ϕ is

dϕ(Gu, Gk) := |{(u, v) : Exactly one among (u, v) ∈ Eu or (ϕ(u), ϕ(v)) ∈ Ek holds}| .

The Graph Isomorphism Distance (or GI-distance in short) between graphs Gu and Gk

is defined as min
ϕ:Vu→Vk

dϕ(Gu, Gk)/n2, and is denoted by δGI(Gu, Gk) (we will use d(Gu, Gk)

to mean n2δGI(Gu, Gk)).

The problem of computing GI-distance between two graphs is known to be #P -hard [18].
The next natural question is:

What is the complexity for approximating (either by a constant additive or multiplicative
factor) the graph isomorphism distance between two graphs?

In [18], it was also proven that the problem of computing GI-distance between two
graphs is APX-hard. So, approximating δGI(Gu, Gk) up to a constant multiplicative factor is
NP -hard. In this paper, we study this problem of approximating (up to a constant additive
factor) the GI-distance between two graphs in the query model and two party communication
complexity model.

1.1 Property Testing of Graph Isomorphism
Formally speaking, the main problem is: given two graphs Gu and Gk and an approximation
parameter ζ ∈ (0, 1), the goal is to output an estimate α such that

δGI(Gu, Gk) − ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

1 In a graph G, V (G) and E(G) denote the sets of vertices and edges in G, respectively.
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In the query model, the problem is equivalent (up to a constant factor) to the tolerant
property testing of graph isomorphism in the dense graph model (introduced in the work of
Parnas, Ron and Rubinfeld [21]). For 0 ≤ γ < 1, two graphs Gu and Gk, with n vertices, are
called γ-close or γ-far to isomorphic2 if d(Gu, Gk) ≤ γn2 or d(Gu, Gk) ≥ γn2, respectively.
In (γ1, γ2)-tolerant GI testing, we are given two graphs Gu and Gk, and two parameters
0 ≤ γ1 < γ2 ≤ 1, with the guarantee that either the graphs are γ1-close or γ2-far. One of the
graphs (usually denoted as Gu) is accessed by querying the entries of its adjacency matrix.
In contrast, the other graph (usually denoted as Gk

3) is known to the query algorithm,
and no cost for accessing the entries of the adjacency matrix of Gk is incurred. The query
complexity is the number of queries (to the adjacency matrix of Gu) that are required for
testing, (with correctness probability at least 2/3 4), whether Gu and Gk are γ1-close or
γ2-far. The query algorithm is assumed to have unbounded computational power.

The non-tolerant property testing version of the graph isomorphism problem (that is,
when γ1 = 0) was first studied by Fischer and Matsliah [13] and subsequently, Babai
and Chakraborty [6] studied the non-tolerant property testing version of the hypergraph
isomorphism problem. Recently, the non-tolerant testing of GI has been considered in various
other models (like Goldreich [15] studied the problem for the bounded degree graph model of
property testing and Levi and Medina [17] considered the problem in the distributed setting).
However, the tolerant version of the problem remains elusive and it is surprising that the
tolerant version of a fundamental problem like graph isomorphism (in query model) is not
addressed in the literature, though the non-tolerant version of GI testing problem has been
resolved more than a decade ago in [13] (when one graph is unknown). On a different note,
there are also studies of non-tolerant version of graph isomorphism testing in the literature
when both the graphs are unknown [13, 19]. We will not discuss much about that case as
the main focus of this paper is different.

Before proceeding further, we want to note that there is a simple algorithm with query
complexity Õ(n) for tolerant testing of graph isomorphism (when one of the graphs is known
in advance). Basically, one goes over all possible n! bijections ϕ : Vu → Vk and estimates the
distance between Gu and Gk with respect to the permutation. The samples may be reused5,
and hence we have the following observation.

▶ Observation 1.2. Given a known graph Gk and an unknown graph Gu and any approxim-
ation parameter ζ ∈ (0, 1), there is a query algorithm that makes Õ (n) queries and outputs
a number α such that, with probability at least 2/3, the following holds:

δGI(Gu, Gk) − ζ ≤ α ≤ δGI(Gu, Gk) + ζ.

But obtaining a lower bound matching (at least up to a polylog factor) the upper bound of
Observation 1.2 is not at all obvious. This paper’s main contribution is to show an equivalence
between tolerant testing of graph isomorphism and tolerant EMD testing between multi-sets
(in the query setting).

2 As a shorthand, rather than saying γ-close or γ-far to isomorphic, we will just say γ-close or γ-far
respectively.

3 Gu and Gk denote the unknown and known graphs, respectively.
4 The correctness probability can be made any 1 − δ by incurring a multiplicative factor of O(log 1

δ ) in
the query complexity.

5 If the samples are Θ(log(n!)), then the error probability can be bounded using the union bound.

APPROX/RANDOM 2021
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Like many other property testing problems, the core difficulty in the testing of GI is
understanding certain properties of distributions. In the case of the non-tolerant version of
GI, it has been shown in [13] that the core problem is testing the variation distance between
two distributions. Their upper bound result can be restated as: if there is a property testing
algorithm, with query complexity q(n) for testing equivalence between two distributions,
on support size n 6, then GI can be tested using Õ(q(n)) queries, where the tilde hides a
polylogarithmic factor of n (number of vertices). And since the query complexity for testing
identity of distributions (from [8], [20], [1], [26]) is known to be O(

√
n

ϵ2 ), the query complexity
for non tolerant GI-testing is Õ(

√
n).

In the lower bound proof of [13], there is no direct reduction of the graph isomorphism
problem to the variation distance problem. But it is important to note that lower bound
proofs for both of these problems use the tightness of the birthday paradox. So, in some
sense, one can say that the heart of the non-tolerant testing of GI is in testing variation
distance between two distributions.

1.2 Earth Mover’s Distance (EMD)
Let H = {0, 1}n be a Hamming cube of dimension n, and p, q be two probability distributions
on H. The Earth Mover’s Distance between p and q is denoted by EMD(p, q) and defined
as the optimum solution to the following linear program:

Minimize
∑

i,j∈H

fijdH(i, j) Subject to
∑
j∈H

fij = p(i) ∀i ∈ H, and
∑
i∈H

fij = q(j) ∀j ∈ H.

A standard way to think of sampling from any probability distribution is to consider
it as a multi-set of elements with appropriate multiplicities, and samples are drawn with
replacement from that multi-set. While estimating EMD between two multi-sets, although
the most natural way to access the unknown multi-set is sampling with replacement, we
introduce the problem of tolerant EMD testing over multi-sets with the access of samples
without replacement.

▶ Definition 1.3 (EMD over multi-sets while sampling with and without replace-
ment). Let S1 and S2 denote two multi-sets, over n-dimensional Hamming cube H = {0, 1}n

such that |S1| = |S2| = n. Consider the two distributions p1 and p2 over the Hamming cube
H that are naturally defined by the sets S1 and S2 where for all x ∈ H probability of x in p1
(and p2) is the number of occurrences of x in S1 (and S2) divided by n. We then define the
EMD between the multi-sets S1 and S2 as

EMD(S1, S1) ≜ n · EMD(p1, p2).

The problem of estimating the EMD over multi-sets while sampling with (or without)
replacement means designing an algorithm, that given any two constants β1, β2 such that
0 ≤ β1 < β2 ≤ 1, a known multi-set Sk and access to the unknown multi-set Su by sampling
with (or without) replacement, decides whether EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥
β2n

2 with probability at least 2/3. Note that estimating the EMD over multi-sets while
sampling with replacement is exactly same as estimating EMD between the distributions pu

and pk with samples drawn according to pu.

6 Testing identity between two distributions means to test if the unknown distribution (from where the
samples are drawn) is identical to the known distribution or if the variation distance between them
more than ϵ.
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We will denote by QWREMD(n, β1, β2) (and QWoREMD(n, β1, β2)) the number of
samples with (or without) replacement required to decide the above from the unknown
multi-set Su. For ease of presentation, we will write QWoREMD(n) (QWREMD(n))
instead of QWoREMD(n, β1, β2) (QWREMD(n, β1, β2)) when the proximity parameters
are clear from the context.

Earth Mover’s Distance (EMD) is a fundamental metric over the space of distributions
supported on a fixed metric space. Estimating EMD between two distributions, up to a
multiplicative factor, has been extensively studied in mathematics and computer science. It
is closely related to the embedding of the EMD metric into a ℓ1 metric. Even the problem
of estimation of EMD between distributions up to an additive factor has been well studied,
for reference see [12], [23]. The hardness of estimating EMD between distributions depends
heavily on the structure of the domain on which the distributions are supported. In [12],
the authors have proved a lower bound of Ω((∆/ϵ)d) on the query complexity for estimating
(up to an additive error of ϵ) EMD between two distributions supported on the real cube
[0,∆]d. At the same time, it is not hard to see that if the support has certain structures,
estimating EMD may be easy. In this paper, we focus on the estimation of EMD between
two distribution when the metric space is the Hamming cube.

As noted earlier, sample access to a probability distribution is precisely the same as
uniform sampling from a multi-set with replacement. Thus, from the results of Valiant
and Valiant [25], it can be shown that the sample complexity for estimating the EMD
between two distribution over the Hamming cube of dimension n is Ω(n/ logn). In other
words, QWREMD(n) = Ω(n/ logn), and this is tight ignoring polynomial factor in logn
(See Theorem B.10 of Appendix B). But what about QWoREMD(n)? To the best of our
knowledge, the sample complexity measure when the distributions are accessed by sampling a
multi-set without replacement has never been studied before (for testing/estimating distances
between distributions/multi-sets). However, it is interesting to note that, sampling without
replacement model has been considered before in a different context by Raskhodnikova, Ron,
Shpilka and Smith [22] for proving a lower bound of distinct elements problem. Also, recently
Goldreich [15] considered a similar sampling without replacement model while studying the
non-tolerant graph isomorphism in the bounded degree model.

Coming back to our context, it can be proven that: if QWoREMD(n) = o(
√
n), then

QWREMD(n) = o(
√
n) (See Proposition B.7 of Appendix B). As QWREMD(n) = Ω( n

log n ),
we have a lower bound of Ω(

√
n) on QWoREMD(n). To the best of our knowledge, there

is no known better lower bound than Ω(
√
n) for QWoREMD(n), although a lower bound

of Ω( n
log n ) exists for QWREMD(n) (using observation in [12]). We verified that the proof

of [27] also goes through for QWoREMD(n) as well (See Theorem 1.5). We now present
the following conjecture:

▶ Conjecture 1. There exist two constants β1 and β2 with 0 < β1 < β2 < 1 such that in
order to decide whether EMD(Sk, Su) ≤ β1n

2 or EMD(Sk, Su) ≥ β2n
2, with probability at

least 2/3, Ω
(

n
poly(log n)

)
samples without replacement from the unknown multi-set Su are

necessary.

One of our main contributions in this paper is introducing this complexity measure of
QWoREMD(n) as well as the above conjecture. In the rest of the paper, we focus on
exploring the connection between QWoREMD(n) and the query complexity of tolerant
GI-testing. For a formal discussion on EMD over Hamming cube, please refer to Appendix B.

APPROX/RANDOM 2021



34:6 Graph Isomorphism and EMD

1.3 Our Results
Our main result of this paper is that we prove estimating GI-distance is as hard as tolerant
EMD testing over multi-sets with the access of samples without replacement over the
unknown multi-set Su, ignoring polynomial factors of logn.

▶ Theorem 1.4 (Main Result). Let Gk and Gu denote the known and the unknown graphs
on n vertices, respectively, and QGI(Gu, Gk) denotes the number of adjacency queries to
Gu, required by the best algorithm that takes two constants γ1, γ2 with 0 ≤ γ1 < γ2 ≤ 1 and
decides whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥ γ2n
2 with probability at least 2/3. Then

QGI(Gu, Gk) = Θ̃
(
QWoREMD(n)

)
where Θ̃(·) hides polynomial factors in 1

γ2−γ1
and logn.

1.3.1 Implication of Theorem 1.4 to Query Complexity of Tolerant GI
It is interesting to note that our lower bound proof is via a pure reduction from tolerant
graph isomorphism to tolerant testing of EMD of multi-sets over the Hamming cube using
samples without replacement. Thus our reductions also hold for other computational models
such as the communication complexity model. Regarding the lower bound on the sample
complexity of tolerant EMD testing of multi-sets (in the with replacement model), using
observation in [12], we note that the tolerant EMD testing is as hard as tolerant testing of
variation distance. In [27], they gave a lower bound of Ω(n1−o(1)) on the sample complexity
for tolerant ℓ1 testing. Although the proof of [27] uses samples with replacement (when we
think of a distribution as a multi-set), it can be verified that the proof also works for samples
without replacement.

▶ Theorem 1.5 (Follows from [27]). For any constants 0 < α < β < 1, distinguishing between
distribution pairs with statistical distance less than α from those with distance greater than β

requires n1−o(1) samples without replacement.

From Theorem 1.5, a similar lower bound follows for tolerant EMD testing of multi-sets
without replacement. Thus, from Theorem 1.4, we have the following corollary:

▶ Corollary 1.6. Let Gk and Gu be the known and unknown graphs on n vertices, respectively.
For any constants 0 < γ1 < γ2 < 1, distinguishing between isomorphism distance of
d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 requires n1−o(1) queries to the adjacency matrix

of Gu. On the other hand, for any constants 0 < γ1 < γ2 < 1, distinguishing between
isomorphism distance of d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 can be done in Õ(n)

queries.

The lower bound of [27] was later improved to Ω( n
log n ) in [25]. However, the arguments

of [25] are much more delicate and it is not completely clear to us whether their result of
Ω( n

log n ) can be carried over to the without replacement setting, even if we allow a loss of
polylogarithmic factor. So, we propose the following conjecture:

▶ Conjecture 2. Let Gk and Gu be the known and unknown graphs on n vertices, respectively.
For any constants 0 < γ1 < γ2 < 1, distinguishing between isomorphism distance of
d(Gu, Gk) ≤ γ1n

2 with d(Gu, Gk) ≥ γ2n
2 requires Ω( n

log n ) queries to the adjacency matrix
of Gu.
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Note that Conjecture 1 and Conjecture 2 are equivalent. Besides, the difference between
sampling with and without replacement is much more subtle. Freedman [14] has shown
the difference when we sample elements with replacement from a set and that without
replacement from the same set. However, when the number of samples is o(

√
n), the

distribution of answers to the queries when samples are drawn with replacement is very
close (in ℓ1 distance) to the distribution of answers to the queries when samples are drawn
without replacement. Thus, following Proposition B.7 along with Theorem 1.4, we can get
an alternative proof of the following lower bound proved by Fischer and Matsliah [13].

▶ Corollary 1.7 (Fischer and Matsliah [13]). There exists a constant ζ ∈ (0, 1) such that
any query algorithm that decides, with probability at least 2/3, if a known graph Gk and an
unknown graph Gu is isomorphic or γ-far from isomorphic, with γ ≤ ζ, must make Ω(

√
n)

queries.

1.3.2 Implication of Theorem 1.4 to Communication Complexity of
Tolerant GI

One of the central models of computation (particularly in the context of theoretical computer
science) is the 2-player communication game introduced by Yao [28] in 1979. Communication
complexity is one of the most studied complexity measures and has wide-ranging applications
in many different areas of computer science. But surprisingly, as far as we know, the
communication complexity problem of GI (where Alice has graph Ga and Bob has graph Gb,
and they want to decide if Ga and Gb are isomorphic) has never been studied. One of the
main reasons may be that, in the communication setup, the standard GI problem reduces to
the string equality checking problem, and hence GI in the (randomized) communication setup
is not that interesting anymore, since the randomized communication complexity, trivially,
becomes O(1) (see the full version for the proof).

But when it comes to tolerant GI testing, the communication version is not at all obvious.
So, if Alice and Bob are given two graphs Ga and Gb respectively, what is the (randomized)
communication complexity for checking if d(Ga, Gb) ≤ γ1n

2 or d(Ga, Gb) ≥ γ2n
2? While

we don’t have a complete answer to this question yet, the following theorem holds from
Theorem 1.2:

▶ Theorem 1.8 (Informally stated). If Alice and Bob are given two graphs Ga and Gb with n
vertices respectively and the (randomized) communication complexity for checking if the graphs
are γ1-close or γ2-far is c(n, γ1, γ2) then the following holds: There exists an absolute constant
C such that if Alice and Bob are given two n-grained distributions 7 over the Cn-dimension
Hamming cube, then the (randomized) communication complexity of checking if the Earth
Mover’s Distance between the distributions is at most β1n or at least β2n is Θ̃ (c(n, γ′

1, γ
′
2)),

where γ′
1 and γ′

2 are constants that depend only on β1 and β2, and Θ̃ (·) hides multiplicative
factor of poly (logn).

Theorem 1.8 says that the communication complexity of solving tolerant graph isomorph-
ism and tolerant EMD testing are essentially the same, ignoring the polylog factor. Note
that in the case of the communication setting, the distinction between with replacement
and without replacement is not present. Also, it is important to point out that the lower
bounds on tolerant EMD in the sampling model ([27] and [25]) does not give a lower bound

7 The probability of each element in the sample space is an integer multiple of 1
n .

APPROX/RANDOM 2021



34:8 Graph Isomorphism and EMD

in the communication setting. Though the tolerant graph isomorphism problem has not been
addressed at all in the literature of communication complexity, EMD (for different metric
spaces) has been considered in communication, streaming, and sketching models [16, 3, 2, 4].
However, the EMD problem that we have considered in this paper is different from those
considered in the literature, and we believe that it will be of independent interest.

We also observe that the deterministic communication complexity of graph isomorphism
is Ω(n2) even for the non-tolerant setting.

▶ Theorem 1.9. Deterministic communication complexity of non-tolerant version of Graph
Isomorphism testing (hence the tolerant version) is Θ(n2).

The proof of the above theorem is present in the full version of the paper [10].

Organization of the paper. In Section 2, we discuss the proof techniques of our main
results. We prove the lower bound part (tolerant graph isomorphism is as hard as tolerant
EMD testing) and upper bound part (tolerant EMD testing is as hard as tolerant graph
isomorphism) of Theorem 1.4 in Sections 3 and 4 respectively. We finally conclude in Section
5. For space constraint, we could not add all possible proofs. Please see [10] for the full
version of the paper.

Notations. All graphs considered here are undirected, unweighted, and have no self-loops
or parallel edges. For a graph G(V,E), V (G) and E(G) will denote the vertex set and the
edge set of G, respectively. Since we are considering undirected graphs, we write an edge
(u, v) ∈ E(G) as {u, v}. The Hamming distance between two points x and y in a Hamming
cube {0, 1}k will be denoted by dH(x, y).

2 Discussion on our proof of Theorem 1.4

2.1 Reduction from tolerant EMD testing to tolerant graph
isomorphism testing (Lower bound part of Theorem 1.4)

In this reduction, we crucially use the fact that the multi-sets are composed of elements from
the Hamming cube. The reduction is based upon an involved gadget construction. In fact,
we prove the lower bound for a slightly more powerful query model rather than the standard
adjacency matrix query model. The most interesting part of our lower bound proof is that
thanks to our reduction, we get to observe the importance of the model of accessing the
multi-set without replacement in the context of EMD testing.

Now, we discuss the overview of our reduction. Let Sk and Su denote the known and the
unknown multi-sets, over a Hamming cube {0, 1}d (of dimension d) with d = Θ(n), having n
elements each. To start with, let us assume that we know both Sk and Su. We will construct
two graphs Gk and Gu on d+ n vertices as follows:

The vertex set of Gk (and Gu) are partitioned into two sets Ak and Bk (and Au and Bu)
with |Ak| = |Au| = n and |Bk| = |Bu| = d.
The graph induced by Ak is a clique, and similarly the graph induced by Au is a clique.
The graphs induced by Bk and Bu are copies of a special graph with certain nice
properties which enable our reduction to work. The existence of such a graph is proved
(in Lemma 3.3) using a probabilistic argument.
Finally, for the cross edges between Ak and Bk (and Au and Bu), we have: there is an
edge between the i-th vertex of Ak (or Au) and the j-th vertex of Bk (or Bu) if and only
if the j-th coordinate of the i-th element of Sk (or Su) is 1.
Finally, a random permutation π is applied to the vertices of Gu.
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The permutation π is not known to the GI-tester. Note that we can construct Gk explicitly
as Sk is known. However, that is not the same with Gu as Su is unknown. But since we know
the permutation π, any query to the adjacency matrix of the graph Gu can be answered by a
single query to one bit of Su. But unfortunately we don’t have query access to Su, and only
have sample access to Su. To deal with this problem, it is easier to consider a slightly more
powerful query. Say, the GI-tester wants to query the (i, j)-th bit of the graph Gu. Of course,
if both i and j are in Au or both are in Bu, we can answer without even sampling from Su.
But if i is in Au and j is in Bu, then what we intend to do is to give the whole neighborhood
of i in Bu as the answer to the query. This would be like neighbourhood query in a bipartite
graph. But the question remains: how do we intend to answer the query by sampling. The
key observation here is that since the GI-tester does not know the permutation π that was
applied to the vertices in Gu, to its eye, all the vertices that have not been touched so far
look same. So, every time it queries for (i, j), where i ∈ Au and j ∈ Bu, either of the two
cases can happen:

Either, previously a query of the form (i, j1) was asked where j1 is also in Bu, but in that
case, it must have already got the answer of (i, j) as we must have given all the neighbors
of i in Bu. So in that case, we can give back the same answer without sampling.

Or, previously i did not participate in any query of the form (i, j1) where j1 is in Bu. In
this case, to the GI-tester’s eye, i is just a new vertex from Au. We can then sample
without replacement from Su and whatever sample of the multi-set we have, we can
assume that it is the element i and answer accordingly. Note that this is the exact place
where sampling without replacement is crucial.

To complete our proof, we need to prove how the GI-distance between Gk and Gu is
connected to the EMD between Sk and Su. Consider the set Φ of all Special bijections
from V (Gk) to V (Gu) that maps Ak into Au and Bk into Bu such that the i-th vertex of
Bk is mapped to the i-th vertex of Bu. Observe that dΦ(Gk, Gu) = 2 ·EMD(Sk, Su), where
dΦ(Gk, Gu) = min

ϕ∈Φ
dϕ(Gk, Gu) (See [10], Lemma 3.5 for a formal proof). The factor 2 is

because of the way we define dϕ(Gk, Gu) (See Definition 1.1). This implies that tolerant
isomorphism testing between Gk and Gu is at least as hard as tolerant EMD testing between
Sk and Su if we restrict the bijection from V (Gk) to V (Gu) to be a Special bijection. The
reduction works for all possible bijections, because of the careful choice of the subgraph of
Gk (and Gu) induced by Bk (and Bu), thus ensuring d(Gk, Gu) is close to dΦ(Gk, Gu) (See
[10] Lemma 3.6 for a formal proof).

One might compare our proof technique to the lower bound proof of (non-tolerant) testing
of GI from [13]. In [13], Ω (

√
n) lower bound was proved directly (using Yao’s lemma) by

constructing two distributions of YES instances and NO instances - the construction of the
YES and NO instances were inspired from the tightness of the birthday paradox, which was
also the core idea behind the lower bound proof of the equivalence testing of two probability
distributions. But, there was no direct reduction from GI testing to equivalence testing of
two probability distributions. But in our lower bound proof, we establish a direct reduction
to estimating EMD of multi-sets on the Hamming cube with access to samples without
replacement. This can be of much importance, mainly while considering other models of
computation, like in the communication model. From our reduction, we can obtain an
alternative proof of Ω(

√
n) lower bound for the (non-tolerant) GI testing via the Ω(

√
n)

lower bound of the equivalence testing of distributions, as pointed out in Corollary 1.7.
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2.2 Reduction from tolerant graph isomorphism to tolerant EMD
testing (Upper bound part of Theorem 1.4)

Given a known graph Gk and query access to an unknown graph Gu (both on n vertices),
we present an algorithm for tolerant testing of graph isomorphism between Gk and Gu by
using a tolerant EMD tester (for distributions over H) as a blackbox. Note that this will
prove the upper bound part of Theorem 1.4.

Algorithm for tolerant graph isomorphism using algorithm for tolerant EMD
testing as a black box:

Our testing algorithm is inspired by the algorithm of Fischer and Matsliah [13] for
non-tolerant GI testing. But our algorithm significantly differs from that of Fischer-Matsliah
in some crucial points. As we explain the high level picture of our algorithm, we will point
out some of the crucial differences.

We split our algorithm into three phases. In Phase 1, we first choose a O
(

1
γ2−γ1

)
size

collection of random subset of vertices, i.e, coresets Cu from the unknown graph Gu where
each Cu ∈ Cu is of size O(logn). Thereafter we find all embeddings of Cu inside the known
graph Gk. Let the embeddings be η1, η2, . . . , ηJ where Ci

k = ηi(Cu). Now each Cu (as well
as each Ci

k) defines a label distribution of the vertices of Gu (as well as Gk). Let us denote
the set of labels as XCu

(and YCi
k
). Now we test if the EMD between XCu

and YCi
k

is close
or far for each i ∈ [J ] (See Claim 4.2). We keep only those (Cu, ηi) for Phase 2 such that
EMD(XCu

, YCi
k
) ≤

(
γ1 + γ2−γ1

2000
)
n |Cu|.

Although Phase 1 of our algorithm is similar to the algorithm of [13], there is a striking
difference. Since the authors of [13] were testing the non-tolerant version of graph isomorphism,
they were testing the identity of the label distributions of XCu

and YCi
k
. However, since we

are solving the tolerant version of the problem, we need to allow some error among the label
distributions. We need to pass only those placements of Cu that under good bijections do not
produce much error and testing of tolerant EMD fits exactly for this purpose. It is worth
noting that Fischer-Matsliah uses an equivalence tester in their algorithm to identify the
placements that do not produce “any” error. But, the proof of correctness of the algorithm
would not go through even if we use the tolerant testing of the equivalence of distributions.
The use of EMD in this phase is crucial for the proof of correctness of our algorithm to hold.

In Phase 2, we choose O
(

log2 n
(γ2−γ1)3

)
many vertices from the unknown graph Gu randomly

and call it W . We further find the labels of all the vertices of W under Cu-labelling by
querying the corresponding entries of Gu for each Cu that has passed Phase 1. Then we try
to match the vertices of W to the set of all possible labels {l1, l2, . . . , lt} of the vertices of
Gk under Ci

k-labelling where Ci
k = ηi(Cu), for those ηi that have passed Phase 1. Ideally, we

would like to find a mapping ψ : W → {l1, l2, . . . , lt} such that the total distance between
the labels of the matched vertices is not too large. If no such ψ is possible, we reject the
current embedding and try some other embedding that has passed Phase 1.

In Phase 3, we construct a random partial bijection ϕ̂ : W → V (Gk) that maps the
vertices of W to the vertices of Gk while preserving the labels according to ψ. We achieve this
by mapping each w ∈ W to one vertex of Gk randomly that has same label as determined
by ψ. Finally, we randomly pair the vertices of W and find the fraction of edge mismatches
between the paired up vertices of W and ϕ̂(W ). If this fraction is at most 5γ1 + 3

5 (γ2 − γ1),
we accept and say that Gu and Gk are γ1-close. If there is no such embedding of any Cu ∈ Cu

that achieves this, we report that Gu and Gk are γ2-far.
The proofs of completeness and soundness follow kind of similar route as Fischer-Matsliah’s

proof but the arguments are way more complicated. Many things that were trivial or obvious
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in the non-tolerant setting become major hurdles in the tolerant setting, and we overcome
them with significantly difficult technical arguments. The proofs are present in the full
version of the paper [10].

3 Tolerant graph isomorphism is as hard as tolerant EMD testing

In this section, we prove that it is necessary to perform Ω
(
QWoREMD(n)

)
many queries

to the adjacency matrix of Gu to solve (γ1, γ2)-tolerant GI testing of Gk and Gu.

▶ Theorem 3.1 (Restatement of the lower bound part of Theorem 1.4). Let Gk be the known
and Gu be the unknown graph on n vertices, where n ∈ N is sufficiently large. There exists a
constant ϵISO ∈ (0, 1) such that for any given constants γ1, γ2 with 0 < γ1 < γ2 < ϵISO, any
algorithm that decides whether the graphs are γ1-close or γ2-far, requires QWoREMD(n)
adjacency queries to the unknown graph Gu where QWoREMD is as defined in Definition 1.3.

In Section 2.1, we have discussed an overview of of our idea to prove the above theorem.
To prove Theorem 3.1, we show a reduction from tolerant GI testing to tolerant EMD testing
over multi-sets when we have samples without replacement from the unknown multi-set.

▶ Lemma 3.2. Suppose there is a constant ϵ0 ∈
(
0, 1

2
)

such that for all constants γ1, γ2
with 0 < γ1 < γ2 < ϵ0 and any constant T ∈ N, the following holds: There exists a (γ1, γ2)-
tolerant tester for GI that, given a known graph Gk and an unknown graph Gu with |V (Gu)| =
|V (Gk)| = (T + 1)n, can distinguish whether d(Gu, Gk) ≤ γ1Tn

2 or d(Gu, Gk) ≥ γ2Tn
2 by

performing Q adjacency queries to Gu.
Then, for any constants β1 and β2 with 0 < β1 < β2 <

ϵ0
2 , the following holds where

κ = β2−β1
8 and Tκ = ⌈ 30

κ(2−κ) ⌉. There is a tolerant tester for EMD such that, given a known
and an unknown multi-set Sk and Su respectively, of the Hamming cube {0, 1}Tκn with |Sk| =
|Su| = n, can distinguish whether EMD(Sk, Su) ≤ β1Tκn

2 or EMD(Sk, Su) ≥ β2Tκn
2 with

Q many samples without replacement from Su.

▶ Remark 1. Observe that Lemma 3.2 talks about tolerant EMD testing between multi-sets
with n elements over a Hamming cube of dimension Tκn. But Theorem 3.1 states the lower
bound of QWoREMD(n), that is, of tolerant EMD testing of multi-sets with n elements
over a Hamming cube of dimension n. However, the query complexity of EMD testing
increases with the dimension of the Hamming cube (See Proposition B.9). So, we will be
done with the proof of Theorem 3.1 by proving Lemma 3.2.

3.1 Tolerant GI to Tolerant EMD testing: Proof of Lemma 3.2
To define the necessary reduction for the proof of Lemma 3.2, we need to show the existence
of a graph Gp satisfying some unique properties.

▶ Lemma 3.3. Let κ ∈ (0, 1) and s ≥ 3 be given constants. Then for Cκ,s = ⌈ 6s
κ(2−κ) ⌉ and

sufficiently large n ∈ N 8, there exists a graph Gp with Cκ,sn many vertices such that the
following conditions hold.

(i) The degree of each vertex in Gp is at least ((1 − κ)Cκ,s + 1)n− 1.
(ii) The cardinality of symmetric difference between the sets of neighbors of any two (distinct)

vertices in Gp is at least sn− 2.

8 The lower bound of n is a constant that depends on κ and s.
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The proof of Lemma 3.3 uses probabilistic method (See [10] for the proof). Let
ALG(γ1, γ2, T ) be the algorithm that takes γ1 and γ2 with 0 < γ1 < γ2 < ϵ0 as input
and decides whether d(Gk, Gu) ≤ γ1Tn

2 or d(Gk, Gu) ≥ γ2Tn
2, where |V (Gk)| = |V (Gu)| =

(T + 1)n. Now we show that for any two constants β1 and β2 with 0 < β1 < β2 < ϵ0
2 ,

κ = β2−β1
8 and Tκ = ⌈ 6s

κ(2−κ) ⌉, there exists an algorithm A(β1, β2, κ, Tκ) that can test
whether two multi-sets Sk and Su over the Tκn-dimensional Hamming cube have EMD less
than Tκβ1n

2 or more than Tκβ2n
2 with Q many queries to the multi-set Su. To be specific,

algorithm A(β1, β2, κ, Tκ) for EMD testing will use algorithm ALG(γ1, γ2, T ) for (γ1, γ2)-
tolerant GI such that γ1 = 2β1, γ2 = 2β2 − 2κ and T = Tκ. Note that, as 0 < β1 < β2 <

ϵ0
2

and κ = β2−β1
8 , 0 < γ1 < γ2 < ϵ0 holds. The details of the reduction, that is, algorithm A is

described below. Because of space constraint, we are not presenting the proof of correctness
of the reduction in this extended abstract. Please refer to our full version [10].

Description of the reduction

Input: A known multi-set Sk = {k1, . . . , kn} over HTκn = {0, 1}Tκn and query access to an
unknown multi-set Su = {u1, . . . , un} over HTκn.

Goal: To decide whether EMD(Sk, Su) ≤ Tκβ1n
2 or EMD(Sk, Su) ≥ Tκβ2n

2.
Construction of Gk and Gu from Sk and Su: Let us first construct the graph Gk from

Sk. Gk has (Tκ + 1)n vertices partitioned into two parts Ak = {a1, . . . , an} and Bk =
{b1, . . . , bTκn}. Now the edges of Gk are described as follows:
Gk[Ak] is a clique with n vertices.
Gk[Bk] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3 with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.
For the cross edges between the vertices in Ak and Bk, we add the edge (ai, bj) to
E(Gk) if and only if the j-th coordinate of ki is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that the graph Gk constructed above is unique for a given multi-set Sk. The graph
Gu with the vertex sets Au = {a′

1, . . . , a
′
n} and Bu = {b′

1, . . . , b
′
Tκn} is constructed from the

multi-set Su in a similar fashion, but at the end, the vertices of Au are permuted using a
random permutation. So,

Gu[Au] is a clique with n vertices.
Gu[Bu] is a copy of the graph Gp(Vp, Ep) on Tκn vertices as stated in Lemma 3.3, with
parameters s = 5, κ = β2−β1

8 and Tκ = Cκ,5.
Let us first pick a random permutation π on [n]. For the cross edges between the vertices
in Au and Bu, we add the edge (a′

π(i), bj) to E(Gu) if and only if the j-th coordinate of
ui is 1 for all i ∈ [n] and j ∈ [Tκn].

Note that our final objective is to prove a lower bound on the query complexity for
tolerant testing of GI, that is, when we have an adjacency query access to Gu. We will
instead show that the lower bound holds even if we have the following query access, named
as Au-neighborhood-query: the tester can choose a vertex a′

i ∈ Au and in one go obtain the
information about the entire neighborhood of a′

i in Bu.
Observe that the only part of Gu that is not known to the tester is the cross edges

between Au and Bu. So, in this case, the Au-neighborhood query is way more stronger than
the standard queries to Gu, and a lower bound for the Au-neighborhood query would imply
a lower bound on adjacency query.
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Simulating Queries to Gu by samples drawn from Su without replacement
Following the above discussion, we will only have to show how to simulate Au-neighborhood
queries using samples drawn from Su without replacement. So, we can assume that the
queries are of the form: what are the neighbors of a′

i in Bu? And since in each query the
entire neighborhood of a′

i is obtained, the tester would pick different a′
i for every query. Note

that in Gu, by construction, the vertices of Au were permuted using a random permutation.
So, from the point of view of the tester, the a′

i are just randomly drawn from Au minus the
set of a′

i already queried. In other word, the a′
i are just randomly drawn from Au without

replacement. Now because of the way the edges between Au and Bu are constructed, the
neighborhood of a random a′

i drawn from Au without replacement is same as obtaining
random samples from Su without replacement. It is also important to note that because of
the randomness, the queries made by the tester are actually non-adaptive.

Description of algorithm A for testing EMD(Sk, Su)
Run ALG on Gk and Gu with parameters γ1 = 2β1 and γ2 = 2β2 − 2κ. If ALG reports
d(Gk, Gu) ≤ Tκγ1n

2, output that EMD(Sk, Su) ≤ Tκβ1n
2. Similarly, if ALG reports that

d(Gk, Gu) ≥ Tκγ2n
2, then output EMD(Sk, Su) ≥ Tκβ2n

2.

4 Tolerant EMD testing is as hard as tolerant graph isomorphism
testing

In this section, we prove the following theorem, that discusses about algorithm for tolerant
graph isomorphism testing with a blackbox access to tolerant EMD testing over multi-sets.

▶ Theorem 4.1 (Restatement of the upper bound part of Theorem 1.4). Let Gk and Gu be the
known and unknown graphs, respectively. There exists an algorithm that takes parameters γ1
and γ2 as input such that 0 ≤ γ1 < γ2 ≤ 1, performs Õ

(
QWoREMD(n)

)
many queries to

the adjacency matrix of Gu for appropriate β1 and β2 depending on γ1 and γ2, and decides
whether d(Gu, Gk) ≤ γ1n

2 or d(Gu, Gk) ≥ γ2n
2, with probability at least 2/3. Here Õ(·)

hides a polynomial factor in 1
β2−β1

and logn.

▶ Remark 2. The theorem stated above works for any γ1, γ2 such that 0 ≤ γ1 < γ2 ≤ 1.
However, for simplicity of representation, we have assumed γ2 ≥ 11γ1.

▶ Remark 3. Note that Theorem 4.1 can also be stated in terms of QWREMD(n) as
QWoREMD(n) ≤ QWREMD(n) as we can simulate samples with replacement when we
have query access to samples without replacement (See Proposition B.5).

Our algorithm for tolerant GI testing, as stated in Theorem 4.1, uses a special kind of
tolerant EMD tester over multi-sets: we know t many multi-sets, one multi-set is unknown
and two parameters ϵ1 and ϵ2 are given; the objective is to test tolerant EMD of each known
multi-set with the unknown one. The following theorem gives us the special EMD tester.

▶ Theorem 4.2. Let H = {0, 1}n be a n-dimensional Hamming cube. Let {Si
k : i ∈ [t]}∪{Su}

denote the multi-sets with n elements from H where {Si
k : i ∈ [t]} denote the set of t many

known multi-sets and Su denotes the unknown multi-set. There exists an algorithm AlG-
EMD that takes two proximity parameters ϵ1, ϵ2 with 0 ≤ ϵ1 < ϵ2 ≤ 1 and a δ ∈ (0, 1) as
input and decides whether EMD(Su, S

i
k) ≤ ϵ1n

2 or EMD(Su, S
i
k) ≥ ϵ2n

2, with probability
at least 1 − δ, for each i ∈ [t]. Moreover, AlG-EMD uses QWoREMD(n) · O

(
log t

δ

)
many

samples without replacement from Su.
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The above theorem follows from the definition of QWoREMD(n) (See Definition 1.3)
along with union bound and standard argument for amplifying the success probability.

▶ Remark 4. The algorithm of Theorem 4.1, to be discussed in Section 4.1, formulates
a tolerant EMD instance of multi-sets having n elements in H = {0, 1}d, where d =
O (logn/(γ2 − γ1)). But ALG-EMD is an algorithm for tolerant EMD testing between two
multi-sets having n elements in {0, 1}n. This is not a problem as the query complexity of
EMD is an increasing function in dimension (See Proposition B.9 in Appendix B). Moreover,
the algorithm in Section 4.1 calls ALG-EMD with parameters ϵ1 = (γ1 + γ2−γ1

2000 ), ϵ2 = γ2/5,
t = 2O(log2 n/(γ2−γ1)) and δ is a suitable constant depending upon γ1 and γ2, where γ1 and
γ2 are parameters as stated in Theorem 4.1. So, each call to ALG-EMD, in our context,
makes Õ

(
QWoREMD(n)

)
many queries.

4.1 Algorithm for tolerant graph isomorphism testing
For our algorithm, we need the following definitions of label and embedding.

▶ Definition 4.3. (Label of a vertex) Given a graph G and C ⊂ V (G) = {c1, . . . c|C|}, the
C-labelling of V (G) is a function LC : V (G) → {0, 1}|C| such that the i-th entry of LC(v)
is 1 if and only if v is a neighbor of ci ∈ C. Also, LC(v) is referred as the label of v under
C-labelling of V (G).

▶ Definition 4.4. (Embedding of a Vertex Set into another Vertex Set) Let Gu and Gk be
two graphs. Consider A ⊆ V (Gu) and B ⊆ V (Gk) such that |A| ≤ |B|. An injective mapping
η from A to B is referred as an embedding of A into B.

Now we present our query algorithm TolerantGI(Gu, Gk, γ1, γ2) that comprises three
phases. The technical overview of the algorithm is already presented in Section 2.2

Formal Description of TolerantGI(Gu, Gk, γ1, γ2):
The three phases of our algorithm are as follows:

4.1.1 Phase 1
The first phase of our algorithm consists of the following three steps.
Step 1 First we sample a collection Cu of O (logn) sized random subsets of V (Gu) with

|Cu| = O( 1
γ2−γ1

). We perform Step 2 and Step 3 for each Cu ∈ Cu.
Step 2 We determine all possible embeddings, that is, η1, . . . , ηJ , of Cu into V (Gk), where

J =
(

n
O(log n)

)
≤ 2O(log2 n). For each i ∈ [J ], let Ci

k be the set of images of Cu under the
i-th embedding of Cu into V (Gk), that is, Ci

k = ηi(Cu). For all i ∈ [J ], we construct the
multi-set YCi

k
that contains Ci

k-labellings of all the vertices of Gk.
Step 3 Now for each vertex v ∈ V (Gu), there is a Cu-labelling of v. Let XCu

be the
multi-set of Cu-labellings of all the vertices in V (Gu). However, XCu is unknown to
the algorithm. We call ALG-EMD (as stated in Theorem 4.2) by setting parameters
as described in Remark 4 to decide whether EMD(XCu , YCi

k
) ≤ (γ1 + γ2−γ1

2000 )n |Cu| or
EMD(XCu

, YCi
k
) ≥ γ2n |Cu| /5, for each i ∈ [J ]. Let us pair up Cu’s and their accepted

embeddings into Gk and call the set Γ, that is,

Γ =
{

(Cu, ηi) | ALG-EMD decides EMD(XCu
, YCi

k
) ≤ (γ1 + γ2 − γ1

2000 )n |Cu|
}
.
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4.1.2 Phase 2
In the second phase, the algorithm performs the following two steps.
Step 1 We sample a subset W of O(log2 n/(γ2 − γ1)3) vertices randomly from Gu.
Step 2 For each (Cu, ηi) ∈ Γ that has passed Phase 1, we perform the following steps:

(i) We find the Ci
k = ηi(Cu)-labelling of the vertices of Gk. Let l1, . . . , lt be the labels of

the vertices where t = 2|Ci
k| and Vj ⊆ V (Gk) be the set of vertices with label lj .

(ii) We define a matrix M of size |W | × 2|Ci
k| where each row represents the label of a

vertex w ∈ W and each column represents one of the possible Ci
k-labelling of V (Gk) 9.

The (i, j)-th entry of M is defined as: Mij = dH(LCu
(wi), lj).

(iii) We choose a function ψ : W → {l1, . . . lt} randomly satisfying∑
w∈W

dH(LCu(w), ψ(w)) ≤ 2γ2

5 |Cu| |W | and |{w : ψ(w) = lj}| ≤ |Vj | ∀ j ∈ [t]. (1)

Let ΓW be the set of tuples such that

ΓW = {(Cu, ηi, ψ) : (Cu, ηi) ∈ Γ and ψ satisfies Equation (1)} .

4.1.3 Phase 3
The third phase of our algorithm comprises the following four steps.
Step 1 We randomly pair up the vertices of W . Let {(a1, b1), . . . , (ap, bp)} be the pairs of

the vertices, where p = O(log2 n/(γ2 − γ1)3). We now determine which (ai, bi) pairs form
edges in Gu by querying the corresponding entries of the adjacency matrix of Gu.

Step 2 For each (Cu, ηi, ψ) ∈ ΓW that has passed Phase 2, we perform Step 3 and Step 4
as follows.

Step 3 We choose an embedding ϕ̂ : W → V (Gk) randomly, satisfying ϕ̂(w) ∈ Vj if and only
if ψ(w) = lj and modulo permutation of the vertices in Vj for all j ∈ [t]. In other words,
we map each w ∈ W to a vertex in Gk randomly having ψ(w) = lj as its Ci

k-labelling in
Gk.

Step 4 We find the fraction ζ(Cu, ηi, ψ, ϕ̂) =
∣∣{(ai, bi) : 1(ai,bi) = 1}

∣∣ /p, where 1(ai,bi) = 1
if exactly one among (ai, bi) ∈ E(Gu) and (ϕ̂(ai), ϕ̂(bi)) ∈ E(Gk) holds.
If ζ(Cu, ηi, ψ, ϕ̂) ≤ 5γ1 + 3

5 (γ2 − γ1), then HALT and REPORT that Gu and Gk are
γ1-close.

While executing Step 3 and Step 4 for each tuple in ΓW , if we did not HALT, then we
HALT now and REPORT that Gu and Gk are γ2-far.

5 Conclusion

In this paper, we proved that the query complexity of tolerant GI testing between a known
graph Gk and an unknown graph Gu is the same as (up to polylogarithmic factor) tolerant
testing of EMD between a known multi-set Sk and an unknown multi-set Su when we have

9 Let Cu =
{

x1, . . . , xO(log n/(γ2−γ1))
}

. Note that for each wi ∈ W , LCu
(wi) ∈ {0, 1}O(log n/(γ2−γ1))

such that the j-th coordinate is 1 if and only if wi is a neighbour of xj , where i ∈
[
O(log2 n/(γ2 − γ1)3)

]
and j ∈ [O (log n/(γ2 − γ1))]. Similarly, lj ∈ {0, 1}O(log n/(γ2−γ1)) such that the i-th coordinate of lj is
1 if and only if η(xi) is a neighbour of v ∈ Vj , where j ∈

[
2|Ci

k|
]
.
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samples without replacement from Su. In Lemma B.10, we have shown that the sample
complexity of testing of EMD between a known multi-set Sk and an unknown multi-set
Su when we have samples with replacement from Su is Ω(n/ logn). Thus the natural open
question is

What is the query complexity of tolerant EMD testing when we have samples without
replacement from the unknown multi-set?

As mentioned before, it is interesting to note that our lower bound proof is via a pure
reduction from tolerant graph isomorphism to tolerant testing of EMD of multi-sets over
the Hamming cube using samples without replacement. Using our lower bound technique
(and Proposition B.7), we can get an alternative proof of Fischer and Matsliah’s lower bound
result for testing non-tolerant graph isomorphism [13]. Our upper bound proof is also a pure
reduction from tolerant testing of EMD of multi-sets over the Hamming cube to tolerant
graph isomorphism problem. Thus our reductions also hold for other computational models
such as the communication complexity model. So, in the communication model (that is, when
Alice and Bob have graphs Ga and Gb respectively and they want to estimate the GI-distance
between them), the amount of bits of communication is same (up to a polylogarithmic
factors) to the problem of estimating the EMD between two distributions over Hamming
cube, where Alice and Bob have access to one distribution each. The question we would like
to pose is:

What is the randomized communication complexity of testing tolerant
graph isomorphism problem?

Fischer and Matsliah [13] studied the non-tolerant version of the graph isomorphism
problem in two scenarios: (i) one graph is known and the other graph is unknown, (ii) both
the graphs are unknown. They resolved the query complexity of (i), whereas Onak and
Sun [19] resolved (ii). With this paper, we initiate the study of tolerant graph isomorphism
problem in the query and communication world. So, another natural open question to look
for is:

What is the query complexity of tolerant graph isomorphism
when both the graphs are unknown?

References
1 Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for

properties of distributions. arXiv preprint arXiv:1507.05952, 2015.
2 Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient sketches for

earth-mover distance, with applications. In 2009 50th Annual IEEE Symposium on Foundations
of Computer Science, pages 324–330. IEEE, 2009.

3 Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In SODA, volume 8, pages 343–352, 2008.

4 Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and embedding are
equivalent for norms. SIAM Journal on Computing, 47(3):890–916, 2018.

5 László Babai. Graph Isomorphism in Quasipolynomial Time. In Proceedings of the 48th
Annual ACM symposium on Theory of Computing, STOC, pages 684–697, 2016.

6 Laszlo Babai and Sourav Chakraborty. Property Testing of Equivalence under a Permutation
Group Action. ACM Transactions on Computation Theory (ToCT), 2010.



S. Chakraborty, A. Ghosh, G. Mishra, and S. Sen 34:17

7 László Babai, Anuj Dawar, Pascal Schweitzer, and Jacobo Torán. The Graph Isomorphism
Problem (Dagstuhl Seminar 15511). Dagstuhl Reports, 5(12):1–17, 2015. doi:10.4230/DagRep.
5.12.1.

8 Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing Random Variables for Independence and Identity. In Proceedings 42nd IEEE
Symposium on Foundations of Computer Science, FOCS, pages 442–451, 2001.

9 Clément L Canonne. A survey on distribution testing: Your data is big. but is it blue? Theory
of Computing, pages 1–100, 2020.

10 Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Sayantan Sen. Interplay between
graph isomorphism and earth mover’s distance in the query and communication worlds. In
Electron. Colloquium Comput. Complex., volume 27, page 135, 2020.

11 Luc Devroye and Gábor Lugosi. Combinatorial methods in density estimation. Springer Science
& Business Media, 2012.

12 Khanh Do Ba, Huy L Nguyen, Huy N Nguyen, and Ronitt Rubinfeld. Sublinear time algorithms
for earth mover’s distance. Theory of Computing Systems, 48(2):428–442, 2011.

13 Eldar Fischer and Arie Matsliah. Testing Graph Isomorphism. SIAM Journal on Computing,
38(1):207–225, 2008.

14 David Freedman. A remark on the difference between sampling with and without replacement.
Journal of the American Statistical Association, 72(359):681–681, 1977.

15 Oded Goldreich. Testing isomorphism in the bounded-degree graph model. Electron. Colloquium
Comput. Complex., 26:102, 2019. URL: https://eccc.weizmann.ac.il/report/2019/102.

16 Subhash Khot and Assaf Naor. Nonembeddability theorems via fourier analysis. Mathematische
Annalen, 334(4):821–852, 2006.

17 Reut Levi and Moti Medina. Distributed testing of graph isomorphism in the congest model.
arXiv preprint arXiv:2003.00468, 2020.

18 Chih-Long Lin. Hardness of Approximating Graph Transformation Problem. In Proceedings
of the 5th International Symposium on Algorithms and Computation, ISAAC,, pages 74–82,
1994.

19 Krzysztof Onak and Xiaorui Sun. The Query Complexity of Graph Isomorphism: Bypassing
Distribution Testing Lower Bounds. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 165–171, 2018.

20 Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete
data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.

21 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

22 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

23 Shashank Singh and Barnabás Póczos. Minimax distribution estimation in wasserstein distance.
arXiv preprint arXiv:1802.08855, 2018.

24 Xiaorui Sun. On the Isomorphism Testing of Graphs. PhD thesis, Columbia University, 2016.
25 Gregory Valiant and Paul Valiant. The Power of Linear Estimators. In Proceedings of the

52nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, pages 403–412,
2011.

26 Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. SIAM Journal on Computing, 46(1):429–455, 2017.

27 Paul Valiant. Testing Symmetric Properties of Distributions. SIAM Journal on Computing,
40(6):1927–1968, 2011.

28 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium on

APPROX/RANDOM 2021

https://doi.org/10.4230/DagRep.5.12.1
https://doi.org/10.4230/DagRep.5.12.1
https://eccc.weizmann.ac.il/report/2019/102


34:18 Graph Isomorphism and EMD

Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213. ACM,
1979. doi:10.1145/800135.804414.

A Preliminaries

All graphs considered here are undirected, unweighted and have no self-loops or parallel
edges. For a graph G(V,E), V (G) and E(G) will denote the vertex set and the edge set of
G, respectively. Since we are considering undirected graphs, we write an edge (u, v) ∈ E(G)
as {u, v}. The Hamming distance between two points x and y in a Hamming cube {0, 1}k

will be denoted by dH(x, y).

A.1 Notion of distance between two graphs

First let us define the notion of Decider of a vertex and then the notion of distance
between two graphs, using decider of vertices, that is conceptually same as that of Graph
Isomorphism Distance defined in Definition 1.1.

▶ Definition A.1. (Decider of a vertex) Given two graphs Gk and Gu and a bijection
ϕ : V (Gu) → V (Gk), Decider of a vertex x ∈ V (Gu) with respect to ϕ is defined as the set
of vertices of Gu that create the edge difference in x and ϕ(x)’s neighbourhood in Gu and
Gk, respectively. Formally,

Deciderϕ(x) := {y ∈ V (Gu) : one of the edges {x, y} and {ϕ(x), ϕ(y)} is not present}

▶ Definition A.2. (Distance between two graphs) Let Gu and Gk be two graphs and
ϕ : V (Gu) → V (Gk) be a bijection from the vertex set of Gu to that of Gk. The distance
between Gu and Gk under ϕ is defined as the sum of the sizes of the deciders of all the
vertices in Gu, that is,

dϕ(Gu, Gk) :=
∑

x∈V (Gu)

|Deciderϕ(x)| .

The distance between two graphs Gu and Gk is the minimum distance under all possible
bijections ϕ from V (Gu) to V (Gk), that is, d(Gu, Gk) := min

ϕ
dϕ(Gu, Gk).

▶ Remark 5. Recall the definition of δGI(Gu, Gk), Graph Isomorphism Distance between
Gu and Gk, that is given in Definition 1.1. Observe that d(Gu, Gk) = 2

(
n
2
)
δGI(Gu, Gk).

Though, d(Gu, Gk) and δGI(Gu, Gk) represent the same thing, conceptually, we will do our
calculations by using d(Gu, Gk) for simplicity of presentation.

Next we define the concept of closeness between two graphs.

▶ Definition A.3. (Close and far) For γ ∈ [0, 1), two graphs Gu and Gk with n vertices
are γ-close to isomorphic if d(Gu, Gk) ≤ γn2. Otherwise, we say Gu and Gk are γ-far from
being isomorphic. 10

10 By abuse of notation, we will say Gu and Gk are γ-far when d(Gu, Gk) ≥ γn2.

https://doi.org/10.1145/800135.804414
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A.2 Property Testing of Distribution Properties
Understanding different properties of probability distributions have been an active area of
research in property testing (For reference, see [9]). The authors studied these problems
assuming random sample access from the unknown distributions. Considering the relation
between the distributions and their corresponding representative multi-sets, we can say that
all these results hold for multi-sets along with access over sampling with replacement.

Although it seems that the change of query model from sample with replacement to sample
without replacement does not make much difference, following the work of Freedman [14],
we know that the variation distance between probability distributions when accessed via
samples with and without replacement, becomes arbitrary close to 1/2 when the number
of samples is Ω(

√
n). Because of this reason, many techniques developed for sampling with

replacement for various problems no longer work anymore. Most importantly, proving any
lower bound better than Ω(

√
n) is often nontrivial.

B Earth Mover’s Distance (EMD) over Hamming Cube

In this section, we study some properties of Earth Mover’s distance (EMD) over probability
distributions and multi-sets, which are crucial in the context of both our lower and upper
bound. Before proceeding to the discussion on EMD, let us first recall the definition of ℓ1
distance between two distributions.

▶ Definition B.1 (ℓ1 distance between two distributions). Let p and q be two probability
distributions over [n]. The ℓ1 distance between p and q is defined as

dl1(p, q) =
n∑

i=1
|p(i) − q(i)|

▶ Definition B.2 (EMD between two probability distributions). Let H = {0, 1}d be a Hamming
cube of dimension d, and p, q be two probability distributions on H. The EMD between p

and q is denoted by EMD(p, q) and defined as the optimum solution to the following linear
program:

Minimize
∑

x,y∈H

fxydH(x, y)

Subject to
∑
y∈H

fxy = p(x) ∀x ∈ H, and
∑
x∈H

fxy = q(y) ∀y ∈ H.

Now we define EMD between two multi-sets.

▶ Definition B.3 (EMD between two multi-sets). Let S1, S2 be two multi-sets on a Hamming
cube H = {0, 1}d of dimension d with |S1| = |S2|. The EMD between S1 and S2 is denoted
by EMD(S1, S2) and defined as EMD(S1, S2) = min

ϕ:S1→S2

∑
x∈S1

dH(x, ϕ(x)) where ϕ is a

bijection from S1 to S2.

Note that an unknown distribution p is accessed by taking samples from p. However, a
multi-set is accessed as follows:

▶ Definition B.4 (Query accesses to multi-sets). A multi-set S of n elements is accessed in
one of the following ways:
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Sample Access with replacement: Each element of S is reported uniformly at random
independent of all previous queries.

Sample Access without replacement: Let us assume we make Q queries to S, where Q ≤ n.
The answer to the first query, say s1, is an element from S chosen uniformly at random.
For any 2 ≤ i ≤ Q, the answer of the i-th query is an element chosen uniformly at random
from S \ {s1, . . . , si−1}. Here sj , 1 ≤ j ≤ Q, denotes the answer to the j-th query.

Although sampling with replacement is more natural query model, we need sampling without
replacement for our lower bound proof. We now note that we can simulate samples with
replacement when we have samples without replacement.

▶ Proposition B.5 (Simulating samples with replacement from samples without replacement).
Given Q many samples without replacement from an unknown multi-set Su with n elements,
we can simulate Q many samples with replacement from Su where Q ≤ n.

For a formal proof of the above proposition, see [10]. The following observation connects
the EMD between two probability distributions with that of between two multi-sets.

▶ Observation B.6. Let p, q be two K-grained probability distributions 11 on a n dimensional
Hamming cubeH = {0, 1}n. Then p and q induces two multi-sets S1 and S2 onH, respectively,
as follows. S1 (S2) is the multi-set containing x ∈ H with multiplicity p(x)K (q(x)K) for
each x ∈ H. Moreover, EMD(p, q) = EMD(S1,S2)

K .

See [10] for a formal proof.

▶ Remark 6. Note that sample access from a probability distribution is exactly same as
uniform sampling from a multi-set with replacement.

▶ Proposition B.7. Let D be the set of all multi-sets of size n over a universe [m]; let Sk

and Su in D denote the known and unknown multi-sets over [n]; and Prop : D × D → {0, 1}
be a boolean function. Then the following holds:

If there exists an algorithm that determines Prop by Q many samples without replace-
ment from Su with probability at least 2/3, then there exists an algorithm that determines
Prop by min{Q,

√
min{n,m}} many samples with replacement from Su with probability at

least 2/3 − o(1).

This follows from the fact that when Q = o(
√
n) and DW R (DW oR) be the probability

distribution over all the subsets having Q elements from [n] with (without) replacement,
the ℓ1 distance between DW R and DW oR is o(1).

▶ Definition B.8 (EMD over multi-sets while sampling with and without replacement). Let
Sk and Su denote the known and the unknown multi-sets, respectively, over n-dimensional
Hamming cube H = {0, 1}n such that |Su| = |Sk| = n. Consider the two distributions pu

and pk over the Hamming cube H that are naturally defined by the sets Su and Sk where
for all x ∈ H probability of x in pu (and pk) is the number of occurrences of x in Su (and
Sk) divided by n. We then define the EMD between the multi-sets Su and Sk as

EMD(Su, Sk) ≜ n · EMD(pu, pk).

The problem of estimating the EMD over multi-sets while sampling with (or without)
replacement means designing an algorithm, that given any two constants β1, β2 such that
0 ≤ β1 < β2 ≤ 1, and access to the unknown set Su by sampling with (or without)

11 The probability of each element in the sample space is an integer multiple of 1
K .
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replacement decides whether EMD(Sk, Su) ≤ β1n
2 or EMD(Sk, Su) ≥ β2n

2 with probability
at least 2/3.

Note that estimating the EMD over multi-sets while sampling with replacement is exactly
same as estimating EMD between the distributions pu and pk with samples drawn according
to pu.

Let QWREMD(n, d, β1, β2) (and QWoREMD(n, d, β1, β2)) denote the number of
samples with ( and without) replacement required to decide the above from the unknown
multi-set Su. For ease of presentation, we write QWoREMD(n, d) (QWREMD(n, d))
instead of QWoREMD(n, d) (QWREMD(n, β1, β2)) when the proximity parameters are
clear from the context.

▶ Proposition B.9 (Query complexity of EMD increases with number of points as well as
dimension). Let n, n1, n2, d, d1, d2 ∈ N be such that d1 ≤ d2 and n1 ≤ n2. Then

(i) QWREMD(n1, d) ≤ QWREMD(n2, d);
(ii) QWoREMD(n1, d) ≤ QWoREMD(n2, d);
(iii) QWREMD(n, d1) ≤ QWREMD(n, d2); and
(iv) QWoREMD(n, d1) ≤ QWoREMD(n, d2).

▶ Remark 7. For d = n (as considered in Definition 1.3), QWoREMD(n, d) (and
QWREMD(n, d)) are denoted as QWoREMD(n) (and QWREMD(n)).

Now let us state the lower bound of QWREMD(n).

▶ Theorem B.10. QWREMD(n) = Ω( n
log n ).

Thus following Proposition B.7, we have

▶ Theorem B.11. QWoREMD(n) = Ω(
√
n).

Note that an upper bound of QWoREMD(n) = Õ(n) is trivial. In the rest of the section,
we focus on proving Theorem B.10 that states the lower bound on QWREMD(n). We also
provide an upper bound for QWREMD(n) at Lemma B.16 that shows that Õ(n) many
samples with replacement from Su to estimate QWREMD(n). Note that by Remark 6, it
is enough to show the following lemma that states the lower bound for tolerant EMD testing
between two distributions.

▶ Lemma B.12. Let S be a subset of a Hamming cube H = {0, 1}n such that the minimum
distance between any pair of points in S is at least n

2 . Also, let p and q be two known
and unknown distributions, respectively, supported over a subset of S. Then there exists a
constant ϵEMD such that the following holds. Given two constants β1, β2 with 0 < β1 <

β2 < ϵEMD(c), Ω
(

n
log n

)
samples from the distribution q are necessary in order to decide

whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n. More over, ϵEMD = 1−ϵℓ1
4 , where ϵℓ1 is

the constant that is mentioned in Theorem B.14.

To prove the above lower bound, let us first consider the following lower bound for tolerant
ℓ1 testing between two probability distributions.

▶ Theorem B.13 (Valiant and Valiant [25]). Let p and q be two known and unknown probability
distributions respectively over [n]. There is an absolute constant ϵ such that in order to decide
whether ∥p − q∥1 ≤ ϵ or ∥p − q∥1 ≥ 1 − ϵ, Ω( n

log n ) samples, from the distribution q, are
necessary. 12

12 Note that this is rephrasing of the result proved in [25]. For reference, see Chapter 5 of the survey by
Canonne [9].
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Now, we restate the above result for our purpose.

▶ Theorem B.14. Let p and q be two known and unknown probability distributions, having
support size n, over a Hamming cube H = {0, 1}n. There is an absolute constant ϵℓ1 such
that in order to decide whether ∥p− q∥1 ≤ α1 or ∥p− q∥1 ≥ α2 with 0 < α1 < α2 ≤ 1 − ϵℓ1 ,
Ω( n

log n ) samples, from the distribution q, are necessary.

As noted earlier, we will prove Theorem B.10 by using Lemma B.14. However, The-
orem B.10 is regarding EMD between two distributions whereas Lemma B.14 is regarding ℓ1
distance between two distributions. The following observation (from [12]) gives a connection
between EMD between two distributions with the ℓ1 distance between them, which will be
required in lower bound proof.

▶ Proposition B.15 ( [12]). Let (M,D) be a finite metric space and p and q be two probability
distributions on M . Minimum distance between any two points of M is ∆min and diameter
of M is ∆max. Then the following condition holds:

∥p− q∥1∆min

2 ≤ EMD(p, q) ≤ ∥p− q∥1∆max

2 .

Note that the above proposition gives interesting result when ∆max
∆min

is bounded by a constant.
Note that S ⊂ {0, 1}n satisfies ∆max

∆min
≤ 2.

Proof of Lemma B.12. In S ⊂ H = {0, 1}n, the pairwise Hamming distance between any
two elements in S is at least n

2 , to have ∆max
∆min

≤ 2 in our context. It is well known that
|S| = Ω(n). We will show that if there exists an algorithm A that decides EMD(p, q) ≤ β1n

or EMD(p, q) ≥ β2n by using t samples from q, then there exists an algorithm P that
decides whether ∥p− q∥1 ≤ α1 or ∥p− q∥1 ≥ α2 by using t samples from q, where α1 = 2β1
and α2 = 4β2. Note that we have 0 < β1 < β2 <

1−ϵℓ1
4 . So, 0 < α1 < α2 < 1 − ϵℓ1 , which

satisfies the requirement of Theorem B.14.

Algorithm P:

(1) First run algorithm A.
(2) If the output of algorithm A is EMD(p, q) ≤ β1n, algorithm P returns ∥p− q∥1 ≤ α1.
(3) If the output of algorithm A is EMD(p, q) ≥ β2n, algorithm P returns ∥p− q∥1 ≥ α2.

To complete the proof, we only need to show that P gives desired output with probability
at least 2/3. The result then follows from Theorem B.14.

Let us first consider the case ∥p− q∥1 ≤ α1. Then by Observation B.15, we can say that
EMD(p, q) ≤ α1n

2 = β1n. Therefore algorithm A will output that EMD(p, q) ≤ β1n. This
implies that the algorithm P will output ∥p− q∥1 ≤ α1.

Now, let us consider the case ∥p − q∥1 ≥ α2. Using the fact that any pair elements in
S ⊂ H is at least n

2 along with Observation B.15, we get EMD(p, q) ≥ α2n
4 = β2n. This

implies P will output ∥p− q∥1 ≥ α2. ◀

Till now, we were discussing the proof of Lemma B.12 that states QWREMD(n) =
Ω( n

log n ). The lower bound is almost tight, up to a polynomial factor of logn. The upper
bound is stated in the following observation.

▶ Observation B.16. QWREMD(n) = Õ(n), where Õ(·) hides a polynomial factor in
1

β2−β1
and logn.
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Instead of proving the above observation, we prove the following lemma that states the upper
bound of tolerant EMD testing between two distributions when we know one distribution
and have sample access to the unknown distribution. By Remark 6, we will be done with
the proof of Observation B.16.

▶ Lemma B.17. Let H = {0, 1}n be a n-dimensional Hamming cube, and let p and q denote
two known and unknown n-grained distribution over H. There exists an algorithm that
takes two parameters β1, β2 with 0 ≤ β1 < β2 ≤ 1 and a δ ∈ (0, 1) as input and decides
whether EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n with probability at least 1−δ. Moreover, the
algorithm AlG-EMD queries for Õ(n) many samples from q, where Õ(·) hides a polynomial
factor in 1

β2−β1
and logn.

Proof. Let ϵ be a constant less than (β2 − β1). We construct a probability distribution q′

such that the ℓ1 distance between q and q′ will be at most ϵ, that is,
∑

i∈[L]
|q(i) − q′(i)| ≤ ϵ.

Note that such a q′ can be constructed with probability at least 1 − δ by querying for
Õ (n) many samples of q which follows from [11]. Then, we find EMD(p, q′). Observe that
|EMD(p, q) − EMD(p, q′)| ≤ ϵn

2 . This is because

|EMD(p, q) − EMD(p, q′)| ≤ |EMD(p, q′) + EMD(q′, q) − EMD(p, q′)|
≤ EMD(q, q′)

≤ ϵd

2 (By Proposition B.15)

As EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n, by the above observation, we will get
either EMD(p, q′) ≤

(
β1 + ϵ

2
)
n or EMD(p, q′) ≥

(
β1 + ϵ

2
)
n, respectively. By our choice

of ϵ < β2 − β1, we can decide EMD(p, q) ≤ β1n or EMD(p, q) ≥ β2n from the value of
EMD(p, q′). ◀
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