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Abstract
We consider the problem of finding an approximate solution to ℓ1 regression while only observing a
small number of labels. Given an n × d unlabeled data matrix X, we must choose a small set of
m ≪ n rows to observe the labels of, then output an estimate β̂ whose error on the original problem
is within a 1 + ε factor of optimal. We show that sampling from X according to its Lewis weights
and outputting the empirical minimizer succeeds with probability 1 − δ for m > O( 1

ε2 d log d
εδ

).
This is analogous to the performance of sampling according to leverage scores for ℓ2 regression,
but with exponentially better dependence on δ. We also give a corresponding lower bound of
Ω( d

ε2 + (d + 1
ε2 ) log 1

δ
).
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1 Introduction

The standard linear regression problem is, given a data matrix X ∈ Rn×d and corresponding
values y ∈ Rn, to find a vector β ∈ Rd minimizing ∥Xβ − y∥p. Least squares regression
(p = 2) is the most common, but least absolute deviation regression (p = 1) is sometimes
preferred for its robustness to outliers and heavy-tailed noise. In this paper we focus on ℓ1
regression:

β∗ = arg min
β∈Rd

∥Xβ − y∥1 (1)

But what happens if the unlabeled data X is cheap but the labels y are expensive? Can we
choose a small subset of indices, only observe the corresponding labels, and still recover a
good estimate β̂ of the true solution? We would like an algorithm that works with probability
1 − δ for any input (X, y); this necessitates that our choice of indices be randomized, so the
adversary cannot concentrate the noise on them. Formally we define the problem as follows:
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49:2 L1 Regression with Lewis Weights Subsampling

▶ Problem 1 (Active L1 regression). There is a known matrix X ∈ Rn×d and a fixed unknown
vector y. A learner interacts with the instance by querying rows indexed {ik}k∈[m] adaptively,
and is shown labels {yik

}k∈[m] corresponding to the rows queried. The learner must return β̂

such that with probability 1 − δ over the learner’s randomness,

∥Xβ̂ − y∥1 ≤ (1 + ε) min
β

∥Xβ − y∥1. (2)

Some rows of X may be more important than others. For example, if one row is orthogonal
to all the others, we need to query it to have any knowledge of the corresponding y; but if
many rows are in the same direction it should suffice to label a few of them to predict the
rest.

A natural approach to this problem is to attach some notion of “importance” p1, . . . , pn

to each row of X, then sample rows proportional to pi. We can represent this as a “sampling-
and-reweighting” sketch S ∈ Rm×n, where each row is 1

pi
ei with probability proportional to

pi. This reweighting is such that ES [∥Sv∥1] ∝ ∥v∥1 for any vector v. By querying m rows
we can observe Sy, and so can output the empirical risk minimizer (ERM)

β̂ := arg min ∥SXβ − Sy∥1. (3)

For fixed β, ES ∥SXβ − Sy∥1 ∝ ∥Xβ − y∥1. The hope is that, if the pi are chosen carefully,
the ERM β̂ will satisfy (2) with relatively few samples. Our main result is that this is true if
the pi are drawn according to the ℓ1 Lewis weights:

▶ Theorem 1 (Informal). Problem 1 can be solved with m = O( 1
ε2 d log d

εδ ) queries. For
constant δ = Θ(1), m = O

( 1
ε2 d log d

)
suffices.

Note that, while the model allows for adaptive queries, this algorithm is nonadaptive.
We next show that our sample complexity is near-optimal by demonstrating the following

lower bound on the number of queries needed by any algorithm to obtain an accurate estimate.
Whether the multiplicative factor of log d is necessary is an open question.

▶ Theorem 2 (Informal). Any algorithm satisfying Problem 1 must query Ω(d log 1
δ + d

ε2 +
1
ε2 log 1

δ ) rows on some instances (X, y).

For small δ, the upper bound is the product of d, 1
ε2 , and log(1/δ) while the lower bound

is the product of each pair.

1.1 Related Work
If all the labels are known

LAD regression cannot be solved in closed form. It can be written as a linear program, but
this is relatively slow to solve. One approach to speeding up LAD regression is “sketch-
and-solve,” which replaces (1) with (3), which has fewer constraints and so can be solved
faster. The key idea here is to acquire regression guarantees by ensuring that S is a subspace
embedding for the column space of [X y].

For a survey on techniques to do this, we direct the reader to [17],[13], [3]. In [17], the
emphasis is on oblivious sketches – distributions which do not require knowledge of [X y].
On the other hand, [13], [3] discuss sketches that depend on [X y]. Most relevant to us [9],
which shows that sampling-and-reweighting matrices S using Lewis weights of [X y] suffice;
we give a simple proof of this in Remark 4. The problem is that figuring out which labels are
important involves looking at all the labels.



A. Parulekar, A. Parulekar, and E. Price 49:3

Active ℓ2 regression

Here we return to our setting, where only a subset of the labels is available to us. A number
of works have studied this problem, including [6, 7, 8]. The ℓ2 version of the problem was
solved optimally in [2], where an algorithm was given using O( d

ε ) queries to find β̂ satisfying
E
[
∥Xβ̂ − y∥2

2

]
≤ (1 + ε)∥Xβ∗ − y∥2

2. Independent, identical sampling using leverage scores
achieves the same guarantee using O(d log d + d

ε ) queries. Note that these results for ℓ2 ERM
only work in expectation, while our results hold with high probability.

Subspace embedding for ℓ1 norms

Subspace embeddings for the ℓ1 norm have been studied in a long line of work including
[15], [16], [12], [5], and [4], the most recent of which describes an iterative algorithm to
approximate Lewis weights, which are the analogue of leverage scores for importance sampling
preserving ℓ1 norms. The [4] result shows that, for the same m = O( 1

ε2 d log d
εδ ) sample

complexity as given in Theorem 11, a sampler sketch S based on the Lewis weights of X will
have ∥SXβ∥1 ≈ε ∥Xβ∥1 for all β ∈ Rd.

Our approach

At a very high level the goal of this paper is to replace the ℓ2 leverage score analysis of [2]
(which looks at the sample complexity of ℓ2 regression in setting of this paper) with the ℓ1
Lewis weight analysis in [4] (which, among other results, demonstrates that i.i.d. importance
sampling with Lewis weights results in a subspace embedding). However, the differences
between ℓ1 and ℓ2 are significant enough that very little of the [2] proof approach remains.

Per [4], the Lewis weight sampling-and-embedding matrix S preserves ∥Xβ∥1 for all β.
The problem is that it doesn’t preserve ∥Xβ−y∥1: if y has outliers, we have no idea where they
are to sample them. In the ℓ2 setting, this difficulty is addressed using the closed-form solution
β∗ = X†y, and the fact that the residual vector Xβ∗ − y is orthogonal to the column space
of X. If S is a subspace embedding it will preserve ∥Xβ − Xβ∗∥ ≈ ∥S(Xβ − Xβ∗)∥, while
orthogonality of Xβ∗ −y and Xβ∗ ensures that ∥S(Xβ̃ −Xβ∗)∥ ≪ ∥S(Xβ̃ −y)∥ ≈ ∥Xβ̃ −y∥
(here the last approximation is not because of embeddings but rather Markov’s inequality).
In the ℓ1 setting, not only is β∗ not expressible in closed form, but there can be many
equally valid minimizers β∗ that are far from each other. In Appendix A we show how
this approach extends to the ℓ1 setting to give a simple proof of Theorem 1 for a constant
factor approximation (i.e., ε = O(1)); but the existence of multiple β∗ makes ε < 1 seem
unobtainable by this approach.

Instead, we massage the [2] subspace embedding proof into the appropriate form, as we
discuss in Section 3. While S doesn’t preserve the total error ∥Xβ − y∥1, it does preserve
relative error ∥Xβ − y∥1 − ∥Xβ∗ − y∥1; the effect of outliers is canceled out, so that this
concentrates similarly well to ∥Xβ − Xβ∗∥1.

Concurrent work

A very similar set of results appears concurrently and independently in [1]. Their main result
is identical to ours, with a similar proof. They also extend the result to 1 < p < 2, but with
a significantly weaker m = Õ(d2/ε2) bound. They do not have the Ω(d log 1

δ ) lower bound.

APPROX/RANDOM 2021
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2 Preliminaries: Subspace Embeddings and Importance Sampling

A key idea used in our analysis is that of a ℓ1 subspace embedding, which is a linear sketch
of a matrix that preserves ℓ1 norms within the column space of a matrix:

▶ Definition 3 (Subspace Embeddings). A subspace embedding for the column space of the
matrix X ∈ Rn×d is a matrix S such that for all β ∈ Rd,

∥SXβ∥ = (1 ± ε)∥Xβ∥

▶ Remark 4. Consider the simpler setting in which we had access to all of y, but we still
want to subsample rows to improve computational complexity. We can view the regression

loss ∥Xβ − y∥1 as the ℓ1 norm of the point [X y]
[

β

−1

]
in the column space of [X y]. Indeed,

suppose β∗ = arg min ∥Xβ − y∥1 as before and let β̂ = arg min ∥SXβ − Sy∥1. Then, β̂ solves
problem 1 because, for ε < 1

3 ,

∥Xβ̂ −y∥1 ≤ 1
1 − ε

∥SXβ̂ −Sy∥1 ≤ 1
1 − ε

∥SXβ∗ −Sy∥1 ≤ 1 + ε

1 − ε
∥Xβ∗ −y∥1 ≤ (1+4ε)∥Xβ∗ −y∥1.

One way to construct a subspace embedding is by sampling rows and rescaling them
appropriately:

▶ Definition 5 (Sampling and Reweighting with {pi}n
i=1). For any sequence {pi}n

i=1, let
N =

∑
i pi. Then, the sampling-and-reweighting distribution S ({pi}n

i=1) over the set of
matrices S ∈ RN×n is such that each row of S is independently the ith standard basis
vector with probability pi

N , scaled by 1
pi

. For any k ∈ [N ], let ik denote the index such that
Sk,ik

= 1
pik

.

When working in ℓ2, there is a natural choice for re-weighting: the leverage scores of the
rows [17].

▶ Definition 6 (Leverage Scores). The leverage score of the ith row of a matrix X, li(X) is
defined as x⊤

i (X⊤X)−1xi.

For ℓ1 subspace embeddings, the analogous weights are the ℓ1 Lewis weights, defined implicitly
as the unique weights {wi(X)}n

i=1 that satisfy wi(X) = li(WX) where W is a diagonal matrix
with ith diagonal entry 1√

wi(X)
. We will drop the explicit dependence on X whenever it is

clear from context.

▶ Definition 7 (Lewis Weights). The ℓ1 Lewis weights of a matrix X are the unique weights
{wi}n

i=1 that satisfy w2
i = x⊤

i (
∑n

j=1
1

wj
xjx⊤

j )−1xi for all i.

Lewis weights are defined in general for general ℓp norms, but we will only need the ℓ1 Lewis
weights. For basic properties of Lewis weights, we direct the reader to [4]. Using these
definitions, we now state the main consequence of using Lewis weights. This result comes
from a line of work on embeddings from subspaces of L1[0, 1] to ℓm

1 such as [15], but is
reproduced here similar to how it is presented in [4].

▶ Theorem 8 ([4] Theorem 2.3). Sampling at least O( d log d
ε2 ) rows according to the ℓ1 Lewis

weights {wi}n
i=1 of a matrix X ∈ Rn×d results in a subspace embedding for X with at least

some constant probability. If at least O( d log d
εδ

ε2 ) rows are sampled, then we have a subspace
embedding with probability at least 1 − δ.
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2.1 Properties of Lewis Weights
We will need some properties of Lewis weights, particularly of how they change when the
matrix X is modified.

▶ Lemma 9 ([4] Lemma 5.5). The ℓ1 Lewis weights of a matrix do not increase when rows
are added.

▶ Lemma 10. Let X ∈ Rn×d, and let X ′ ∈ Rkn×d be X stacked on itself k times, with each
row scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.

3 Proof Overview

▶ Theorem 11. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n], and let 0 < ε, δ < 1.
Then, for any N that is at least O

(
d
ε2 log d

εδ

)
, there is a sampling-and-reweighting dis-

tribution S({pi}n
i=1) satisfying

∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and
β̂ = arg min ∥SXβ − Sy∥1, we have

∥Xβ̂ − y∥1 ≤ (1 + ε) min
β

∥Xβ − y∥1

with probability 1 − δ. If δ = O(1) is some constant, then N at least O
( 1

ε2 d log d
)

rows
suffice.

Regression guarantees from column-space embeddings

As noted in Remark 4, it would suffice to show that ∥SXβ − Sy∥1 ≈ ∥Xβ − y∥1 for all β.
The problem is that this is impossible without knowing y: if one random entry of y is very
large, we would need to sample it to estimate ∥Xβ − y∥1 accurately. However, we don’t
actually need to estimate ∥Xβ − y∥1; we just need to be able to distinguish values of β for
which ∥Xβ − y∥1 is far from ∥Xβ∗ − y∥1 from values for which it is close. That is, it would
suffice to accurately

estimate ∥Xβ̂ − y∥1 − ∥Xβ∗ − y∥1 with ∥SXβ̂ − Sy∥1 − ∥SXβ∗ − Sy∥1 (4)

for every possible β. In the above example where y has a single large outlier coordinate,
sampling this coordinate or not will dramatically affect both terms, but will not affect the
difference very much. As such, our key lemma, Lemma 28, states that ℓ1 Lewis weight
sampling achieves (4) with high probability. In particular, using at least m ≥ O( d

ε2 log d
εδ )

rows we have

(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) < ε∥X(β∗ − β)∥1 (5)

for all β with probability at least 1 − δ. We do this by adapting the argument of [4] which
shows that S is a column-space embedding with high probability. We have summarized this
argument below.

Column-space embedding using Lewis weights ([4])

An important result in [4], which directly implies the high probability subspace embedding,
and which will be useful to us later is the following moment bound on deviations of ∥SXβ∥1.

APPROX/RANDOM 2021
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▶ Lemma 12 ([4] Lemma 7.4). If N is at least O
(

d
ε2 log d

εδ

)
, and S ∈ RN×n is drawn from the

sampling-and-reweighting distribution S({pi}N
i=1) with

∑
i pi = N and {pi}n

i=1 proportional
to Lewis weights {wi}n

i=1, then

E
S

[(
max

∥Xβ∥1=1
|∥SXβ∥1 − ∥Xβ∥1|

)l
]

≤ εlδ

The proof follows from this chain of inequalities:

E
S

[(
max

∥Xβ∥1=1
∥SXβ∥1 − ∥Xβ∥1

)l
]

(A)
≤ 2l E

σ,S

( max
∥Xβ∥1=1

∣∣∣∣∣∑
k

σk

|xT
ik

β|
pik

∣∣∣∣∣
)l


(B)
≤ 2l E

σ,S

( max
∥Xβ∥1=1

∑
k

σk

xT
ik

β

pik

)l


(C)
≤ εlδ

where the σk are independent Rademacher variables, which are ±1 with probability 1/2 each,
and pik

is proportional to the ℓ1 Lewis weight of row ik. (A) follows by symmetrizing the
objective F := max∥Xβ∥1=1 ∥SXβ∥1 − ∥Xβ∥1. (B) follows from a contraction lemma. (C) is
shown by constructing a related matrix with bounded Lewis weights and applying Lemma
32 from [15] reproduced below.

▶ Lemma 13. There exists constant C such that for any X ∈ Rn×d with all ℓ1 Lewis weights
less than C ε2

log( n
δ ) and l = log(2n/δ), we have

Eσ

( max
∥Xβ∥1=1

∣∣∣∣∣
n∑

i=1
σix

⊤
i β

∣∣∣∣∣
)l
 ≤ εlδ

2 (6)

Regression guarantees using Lewis weight sampling

In this work, we show the following chain of inequalities.

E
S

[(
max

∥Xβ∗−Xβ∥=1
|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)|

)l
]

(A)
≤ 2l E

S,σ

( max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l


(B)
≤ 22l+1 E

S,σ

( max
∥X(β∗−β)∥1=1

∣∣∣∣∣∑
k

σik

x⊤
ik

pik

(β∗ − β)

∣∣∣∣∣
)l
 (7)

(C)
≤ εlδ

Here, for (A), we symmetrize the left hand side of (5) in Lemma 29. For (B), we apply a
different contraction lemma, Lemma 30, that allows us to remove y from our expression, and
then end up with the same moment bound for (C). Step (C) is essentially an application of
Lemma 32 to SX, however, because we cannot immediately bound the Lewis weights of SX

to confirm the constraints of the Lemma, we instead construct another matrix X ′′ which
does not significantly alter the right hand side of inequality (7) while having bounded Lewis
weights. This is done in Lemmas 33 and 34.
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3.1 Lower Bounds
We will show that any algorithm must see Ω(d log 1

δ + 1
ε2 log 1

δ + d
ε2 ) labels to return β̂

satisfying ∥Xβ̂ − y∥1 ≤ (1 + ε)∥Xβ∗ − y∥1 with probability greater than 1 − δ.
For the lower bound proof it is convenient to consider a distributional version of the

problem:

▶ Problem 2 (Distributional active L1 regression). There is an unknown joint distribution P

over a finite set X × Y ⊂ Rd × R, with |Y| = 2. The learner is allowed to adaptively observe
N i.i.d. samples from P (·|X = x) for the learner’s choice of N values x ∈ X . The learner
must return β̂ satisfying

E(X,Y )∼P

[
|X⊤β̂ − Y |

]
≤ (1 + ε) inf

β
E(X,Y )∼P

[
|X⊤β − Y |

]
. (8)

with probability at least 1 − δ.

We begin with a lemma that shows that solving the original, Problem 1, for some n polynomial
in the parameters d, ε, δ is harder than solving the distributional version, Problem 2.

▶ Lemma 14. A randomized algorithm that solves Problem 1 for n = 2
ε2

(
log 2

δ + d log 3d
ε

)
with accuracy ε and failure probability δ can be used to solve any instance of Problem 2,
where X , Y, in the unit ℓ∞ ball, with accuracy 6ε and failure probability 2δ, for small ε.

Proof. Let n = 8
ε2

(
log 2

δ + d log 4d
ε

)
. Construct an instance of Problem 1 in which the rows

of feature matrix X and the corresponding label vector y are drawn i.i.d. from P . Let H be
the unit ℓ∞ ball. We have the following:

▷ Claim 15. For all β ∈ H, with probability at least 1 − δ,

(1 − ε)E(X,Y )∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y )∼P

[
|X⊤β − Y |

]
Let β◦ denote the minimizer infβ E(X,Y )∼P

[
|X⊤β − Y |

]
. Let β∗ denote the minimizer

of the matrix instance infβ ∥Xβ − y∥1, and let β̂ denote the output of the algorithm on the
instance generated. Then we have

(1 − ε)E(X,Y )∼P

[
|X⊤β̂ − Y |

]
≤ 1

n
∥Xβ̂ − y∥1

≤ (1 + ε) 1
n

∥Xβ∗ − y∥1 with probability 1 − δ

≤ (1 + ε) 1
n

∥Xβ◦ − y∥1

≤ (1 + ε)2 E(X,Y )∼P

[
|X⊤β◦ − Y |

]
So with probability 1 − 2δ,

E(X,Y )∼P

[
|X⊤β̂ − Y |

]
≤ (1 + 6ε)E(X,Y )∼P

[
|X⊤β◦ − Y |

]
. ◀

We then prove lower bounds on the accuracy for any algorithm on Problem 2. We prove
three theorems that allow us to show Theorem 26: Theorems 16, 20, and 23. To do this, we
make several Claims, which are proved in section 7.1.

In all our lower bounds, x is a uniform ei, and y ∈ {0, 1} while y is a Bernoulli random
variable. For Ω( d

ε2 ), we set P (y = 1 | x = ei) to 1
2 + ε uniformly at random independently

for each i; getting an ε-approximate solution requires getting most of the biases correct,

APPROX/RANDOM 2021
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which requires 1
ε2 samples from most of the coordinates ei. The Ω( 1

ε2 log 1
δ ) instance sets

P (y = 1 | x = ei) to 1
2 +ε with the same bias for each i; solving this is essentially distinguishing

a ε biased coin from a −ε-biased coin. Finally, for Ω(d log 1
δ ) we set P (y = 1 | x = ei) = 0

except for a random hidden i∗ with P (y = 1 | x = ei∗) = 3
4 . Solving this instance requires

finding i∗, but there’s a δ chance the first d log 1
δ queries are all zero.

▶ Theorem 16. For any d ≥ 2 and ε < 1
10 , there exist families X ∈ Rd, Y ∈ R of inputs and

labels respectively such that any algorithm which solves Problem 2 with δ < 1
4 requires at least

m = 3d
2000ε2 samples.

We take X to be the set of standard basis vectors, and the distribution over X to be
uniform. We will define a set B as being a subset of the unit hypercube {−1, 1}d such that
every element is sufficiently far from every other.

▷ Claim 17. There is a set B ⊂ H with |B| ≥ 20.2d such that for any two β1, β2 ∈ B, we
have |β1 − β2| > 0.2d

Proof. Here we just need an error correcting code with constant rate and constant relative
(Hamming) distance. The existence of such a code follows from the Gilbert-Varshamov bound
[10]. ◁

Fix some unknown β∗. We will have Y = ZX⊤β∗ where Z is an independent random variable
with probability 1

2 + ε of being 1, and 1
2 − ε of being −1. This completes our description of P .

We define l(β) to be the ℓ1 norm of the residuals for β, that is, l(β) = E(X,Y )∼P [
∣∣X⊤β − Y

∣∣].
We have the following properties of l(β).

▷ Claim 18. For D, B as chosen above, l(β∗) = 1 − 2ε.

▷ Claim 19. For D, B as chosen above, we have for all β ∈ B, l(β) − l(β∗) = 2ε
d ||β − β∗||1.

Proof of Theorem 16. Suppose some algorithm returns β̂ with l(β̂) < (1 + ε
5 )l(β∗) =⇒

||β∗ − β̂||1 < 0.1d with probability 3
4 . By Fano’s inequality,

H(β∗|β̂) < H

(
1
4

)
+ log |B| − 1

4 < 0.05d,

and we have a lower bound on the mutual information between the output of our algorithm
and the true parameter: I(β̂; β∗) = H(β∗) − H(β∗|β̂) ≥ 0.15d. For an upper bound on the
mutual information after seeing m samples, we use the data processing inequality.

I(β∗; β̂) ≤ I(β∗; (Yi)i∈[m]) ≤
m∑

i=1
I(β∗; Yi|(Yj)j∈[i−1])

=
m∑

i=1
H(Yi|(Yj)j∈[i−1]) − H(Yi|β∗, (Yj)j∈[i−1])

≤
m∑

i=1
1 − H(Yi|β∗, Ii)

≤ 4ε2m

Here we have used that

H(Yi|β∗, (Yj)j∈[i−1]) ≥ H(Yi|β∗, Ii, (Yj)j∈[i−1])
= H(Yi|β∗, Ii)
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and that the distribution of Yi conditioned on β∗, Ii is just an independent Bernoulli with
parameter 1

2 + ε and so
m∑

i=1
1 − H(Yi|β∗, Ii) ≤

m∑
i=1

[
1 +

(
1
2 + ε

)
log
(

1
2 + ε

)
+
(

1
2 − ε

)
log
(

1
2 − ε

)]
≤ 4ε2m

So 0.15d ≤ I(β∗; β̂) ≤ 4ε2m, and so we need m ≥ 3d
80ε2 . The result follows by replacing ε

with 5ε. ◀

We can use the same instance to give a high probability lower bound of Ω(log 1
δ /ε2).

▶ Theorem 20. For any d and ε < 1
10 , there exist sets X ∈ R, Y ∈ R of inputs and labels

respectively, and a distribution P on X × Y such that any algorithm which solves problem 2
requires at least m = 1

4ε2 log 1
δ samples.

Proof. Consider two instances, denoted by subscripts (1) and (2) with β∗
(1) = −1d and

β∗
(2) = 1d, where 1d ∈ Rd is the all-ones vector. Denote by P(i) the distribution over X , Y

for instance (i), and let lβ∗
(i)

(β) = E(X,Y )∼P(i) [
∣∣X⊤β − Y

∣∣] for i ∈ {1, 2}.

▷ Claim 21. For any β, max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε

From this claim together with Claim 18, we have for some i ∈ {1, 2}, lβ∗
(i)

(β) ≥ (1 +
2ε)lβ∗

(i)
(β∗

(i)), for all β.
Denote by β̂ the output of the algorithm. Denote by P(1) the distribution over outputs

by a algorithm interacting instance (1), and by P(2) the distribution over outputs by a
algorithm interacting instance (2). Denote by A the event that ℓβ∗

(1)
(β̂) − ℓβ∗

(1)
(β∗

(1)) ≥ 2ε.
Note that under Ac, we have ℓβ∗

(2)
(β̂) − ℓβ∗

(2)
(β∗

(2)) ≥ 2ε. Because the algorithm fails with
probability at most δ on any instance, we have 2δ ≥ P(1)(A) + P(2)(Ac). On the other hand,
P(1)(A)+P(2)(Ac) ≥ e−D(P(1)||P(2)). We can bound the KL-divergence of the two distributions
as an aggregate KL-divergence over the course of acquiring the samples.

▶ Theorem 22 (Lemma 15.1, [11]). If a learner interacts with two environments (1) and
(2) through a policy π(·|I1, Y1, I2, Y2, · · · , Yi−1) which dictates a distribution over actions Ii

conditioned on the past (I1, Y1, · · · , Yi−1), and sees label Yi distributed according to some
label distribution P(1),Ii

and P(2),Ii
, then the KL-divergence between the output of the learner

on instance (1) and (2), P(1) and P(2) is given by

D(P(1)||P(2)) =
d∑

k=1
E(1)

[
N∑

i=1
1{Ii = k} · D(P(1),Ii

||P(2),Ii
)
]

Now, P(1),k is a Bernoulli with parameter 1
2 + ε, and P(1),k is a Bernoulli with parameter

1
2 − ε, so D(P(1),k∥P(1),k) ≤ 16ε2, and so we have

d∑
k=1

E(1)

[
N∑

i=1
1{Ii = k} · D(P(1),Ii

||P(2),Ii
)
]

≤
d∑

k=1
E(1)

[
N∑

i=1
1{Ii = k} · 16ε2

]

= 16ε2 · E(1)

[
d∑

k=1

N∑
i=1

1{Ii = k}

]
= 16ε2m

Putting this together, we have δ ≥ e−16ε2m =⇒ m ≥ 1
16ε2 log 1

δ , and the result follows by
replacing ε with 1

2 ε. ◀
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▶ Theorem 23. For any d ≥ 2, there exist sets X ∈ Rd, Y ∈ R of inputs and labels, and a
distribution P on X × Y such that any algorithm which solves Problem 2, with ε = 1, requires
at least m = d

3 log 1
8δ samples.

Proof. All logarithms are base 4. Consider instances in which X = {e1, e2, · · · , ed} where
ei denotes the ith standard basis vector and the distribution over X is uniform. We take
Y = ZX⊤β∗ for some β∗, where Z is an independent Bernoulli random variable which
is 1 with probability 3

4 , and 0 otherwise. Consider d instances labelled with subscripts
(1), (2), · · · , (d), one in which each of the d standard basis is β∗, that is, β∗

(i) = ei. Denote by
βj the jth coordinate of β. For each instance, we have

▷ Claim 24. For all i ∈ [d], β ∈ Rd, we have ℓβ∗
(i)

(β) ≥ 1
4d with equality when β = β∗

(i)

We would like our algorithm to return an estimate β̂ which satisfies ℓβ∗(β̂) < 1
2d . We first

note that any choice of β only succeeds to be this close to the optimal on a single instance.

▷ Claim 25. Any β ∈ Rd can only satisfy ℓβ∗
(i)

(β̂) < 1
2d for one i ∈ [d].

So, we may as well enforce that the algorithm return one of e1, e2, · · · , ed, since any other
output can be mapped to one of these to improve the performance of the algorithm.

We will allow our algorithm to sample N = d
3 log 1

δ rows total. Let E be the event that
Y1, Y2, . . . YN are all zero. Given any algorithm A, let FA denote the set of rows it samples
fewer than log 1

δ times with probability at least 1
2 , in event E . Because the total number of

rows sampled is d
3 log 1

δ , there must be at least 2d
3 rows which are sampled fewer than 1

2 log 1
δ

times in expectation.
By Markov’s inequality, these rows are sampled fewer than log 1

δ times with probability
at least 1

2 , and are thus all in FA. Let BA denote the distribution over outputs β̂ of A in
event E . Let iA = arg minj∈FA

BA(j). Denote by GA the event that row iA is sampled fewer
than log 1

δ times; by construction we have P(GA) > 1
2 .

The subscripts are explicit because FA, BA, iA,P[GA] are properties of the algorithm and
are independent of the instance with which it interacts. Consider the performance of this
algorithm against the instance β∗

(iA).
Let Y(iA),j,k denote the label returned to the algorithm when it queries ej for the kth time.

Let T(iA) = min{t|Y(iA),iA,t = 1}. Denote by E(iA) the event that T(iA) > log 1
δ . Because

T(iA) is a geometric random variable, we have P[E(iA)] > δ.
Now condition on the event GA ∩ EiA , which is an event with probability 1

2 δ. Here our
algorithm samples iA fewer than TiA times, so it never sees a 1 and its output distribution
is BA. It returns i ∈ FA \ {iA} with probability at least 1 − BA(iA) ≥ 1 − 1

|FA| ≥
1 − 3

2d ≥ 1
4 . In summary, even after d

3 log 1
δ queries, no algorithm can return β̂ with

∥Xβ̂ − y∥ < (1 + ε)∥Xβ∗ − y∥ with probability greater than 1
8 δ. The result follows by

replacing δ by 8δ. ◀

Putting these together we have:

▶ Theorem 26. For any d ≥ 2, ϵ < 1
10 , δ < 1

4 , there exist sets X ∈ Rd, Y ∈ R of inputs and
labels, and a distribution P on X × Y such that any algorithm which solves Problem 2, with
ε = 1, requires at least m = Ω( d

ϵ2 + 1
ϵ2 log 1

δ + d log 1
δ ) samples.

▶ Corollary 27. Any algorithm that solves Problem 1 takes at least Ω(d log 1
δ + d

ε2 + 1
ε2 log 1

δ )
samples for some n = O( d log d

δ

ε ).

Proof. Each of the instances that demonstrate the lower bounds above, in Lemmas 16, 20,
and 23, take |X | = d, the results follows from Lemma 14. ◀
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4 Proof of Theorem 11

▶ Lemma 28. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n]. Then, for any N that is
at least O

(
d
ε2 log d

εδ

)
, there is a sampling-and-reweighting distribution S({pi}n

i=1) satisfying∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and β∗ = arg min ∥Xβ − y∥1, we have for
all β

(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) ≤ ε · ∥Xβ∗ − Xβ∥1 (9)

with probability at least 1 − δ. Further, for constant δ, m = O(d log d/ε2) rows suffice.

This lemma is proved for high probability in Section 4.1, and for constant probability in
the full version of this paper, [14]. Given this, we can prove the main theorem.

Proof of Theorem 11. Applying Lemma 28 to β̂ := arg min ∥SXβ − Sy∥1, we get(
∥SXβ∗ − Sy∥1 − ∥SXβ̂ − Sy∥1

)
≤
(

∥Xβ∗ − y∥1 − ∥Xβ̂ − y∥1

)
+ ε · ∥Xβ∗ − Xβ̂∥1

Since β̂ is the minimizer of ∥SXβ − Sy∥1, the left side is non-negative. So,

∥Xβ̂ − y∥1 ≤ ∥Xβ∗ − y∥1 + ε · ∥Xβ∗ − Xβ̂∥1

≤ ∥Xβ∗ − y∥1 + ε · (∥Xβ∗ − y∥1 + ∥Xβ̂ − y∥1)

Rearranging, and assuming ε < 1/2,

∥Xβ̂ − y∥1 ≤ 1 + ε

1 − ε
∥Xβ∗ − y∥1

≤ (1 + 4ε)∥Xβ∗ − y∥1

Using ε′ = ε/4 proves the theorem. ◀

4.1 Proof of Lemma 28
This argument is similar to that in Appendix B of [4]. In order to prove Lemma 28, by
Markov’s inequality, it is sufficient to show that for some l,

M := E
S

[(
max

∥Xβ∗−Xβ∥=1
|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)|

)l
]

≤ εlδ

To show this, we will symmetrize, then use a contraction lemma to cancel the y terms. Then,
with all the terms being within the column space of SX, we use the fact that S is a subspace
embedding with high probability. We present two different bounds, one used for the constant
probability and one for the high probability cases, but the following intermediate bound is
the same for the two:

▶ Lemma 29. Given a matrix X ∈ Rn×d, let S({pi}i∈[n]) be any sampling-and-reweighting
disribution, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik

= 1
pik

.
Let σk be independent Rademacher variables that are ±1 each with probability 0.5. Then,

M ≤ 2l E
S,σ

( max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (10)
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This is essentially standard symmetrization; the proof is in Appendix B. To simplify the
expression and eliminate the terms involving the labels, we then use a theorem from [12]:

▶ Lemma 30 ([12] Theorem 5). Let Φ : R+ → R+ be convex and increasing, and let
ϕk : R → R be contractions such that ϕk(0) = 0 for all k. Let F be a class of functions on
{1, 2, 3 . . . , n}, and ∥g(f)∥F = supf∈F |g(f)|. Then,

Eσ

[
Φ
(

1
2

∥∥∥∥∥∑
k

σkϕk(f(k))

∥∥∥∥∥
F

)]
≤ 3

2Eσ

[
Φ
(∥∥∥∥∥∑

k

σkf(k)

∥∥∥∥∥
F

)]

▶ Lemma 31. For any y ∈ Rn, we have

E
S,σ

( max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l


≤ 2l+1 E
S,σ

( max
∥Xβ∗−Xβ∥1=1

∣∣∣∣∣∑
k

σk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)∣∣∣∣∣
)l
 (11)

Proof. We take Φ(x) = xl, which is convex and increasing for l > 1, let F be the set of
functions fβ where fβ(k) = x⊤

ik
β∗−x⊤

ik
β

pik
and β satisfies ∥Xβ∗ − Xβ∥1 = 1, and let ϕk be

defined as

ϕk(z) =
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β∗ − zpik

− yik
|

pik

.

This satisfies

ϕk(fβ(k)) = ϕk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)
=

|x⊤
ik

β∗ − yik
|

pik

−
|x⊤

ik
β − yik

|
pik

.

This is a contraction, since

|ϕk(z1) − ϕk(z2)| =

∣∣∣∣∣ |x⊤
ik

β∗ − z2pik
− yik

|
pik

−
|x⊤

ik
β∗ − z1pik

− yik
|

pik

∣∣∣∣∣
≤ |z1pik

− z2pik
|

pik

≤ |z1 − z2|

Applying Lemma 30 with these parameters, we have

E
σ

(1
2 max

∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − trueyik

|
pik

)∣∣∣∣∣
)l


≤ 3
2 E

σ

( max
∥Xβ∗−Xβ∥1=1

∣∣∣∣∣∑
k

σk

(
x⊤

ik
β∗ − x⊤

ik
β

pik

)∣∣∣∣∣
)l


After taking the expectation with respect to S and multiplying both sides by 2l, this gives
the statement of the lemma. ◀

From here, we use two separate results to show the appropriate row counts for the constant
and high probability cases. The constant probability case is left for the full version of this
paper, [14].

For high probability row-counts, we use a lemma from [4]:
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▶ Lemma 32 (8.2, 8.3, 8.4 in [4]). There exists constant C such that for any X ∈ Rn×d with
all ℓ1 Lewis weights less than C ε2

log( n
δ ) and l = log(2n/δ), then

Eσ

( max
∥Xβ∥1=1

∣∣∣∣∣
n∑

i=1
σix

⊤
i β

∣∣∣∣∣
)l
 ≤ εlδ

2 (12)

We want a similar statement, but for arbitrary matrices, with no bounds placed on the Lewis
weights. To do this, we construct a new, related matrix using the following lemma, which is
proved in Appendix B:

▶ Lemma 33 (Similar to [4] Lemma B.1). Let X be any matrix, and let W be the matrix that
has the Lewis weights of X in the diagonal entries. Let N ≥ d

ε2 log d
εδ . There exist constants

C1, C2, C3 such that we can construct a matrix X ′ such that
X ′ has C1dN rows,
X ′⊤W ′−1X ′ ⪰ X⊤W −1X, (where W ′ is the matrix that has the Lewis weights of X ′ in
the diagonal entries),
∥X ′β∥1 ≤ C2∥Xβ∥1 for all β,
the Lewis weights of X ′ are bounded by C3

N .

▶ Lemma 34. Consider X ∈ Rn×d with ℓ1 Lewis weights wi. Let pi be some set of sampling
values such that N =

∑
i pi and, for some constants C, C1, C4,

pi ≥
log
(

N+C1Nd
δ

)
Cε2 wi

Then, if N ≥ C4
d
ε2 log d

εδ and if S ∼ S({pi}i∈[n]), then

E
S,σ

( max
∥Xβ∥1=1

∣∣∣∣∣
N∑

k=1
σk

x⊤
ik

β

pik

∣∣∣∣∣
)l
 ≤ εlδ

2 (13)

Proof of Lemma 34. Ideally the Lewis weights of SX would be bounded by C ε2

log N
δ

and we
could directly apply Lemma 32 to SX to obtain a bound on the moment. However, we do
not know this. Instead, we first construct X ′ using X as described in Lemma 33. We then
construct a new matrix X ′′ by stacking X ′ on top of SX. Define W ′′ to be the diagonal
matrix consisting of the ℓ1 Lewis weights of X ′′. Define, for convenience, R = N + C1Nd,
which is the number of rows X ′′ has.

We can bound the term on the left side of (13) by the same term, summing over the rows
of X ′′ instead. That is,

E
S,σ

( max
∥Xβ∥=1

∣∣∣∣∣
N∑

k=1
σk

x⊤
ik

β

pik

∣∣∣∣∣
)l
 ≤ E

S,σ

( max
∥Xβ∥=1

∣∣∣∣∣
R∑

i=1
σix

′′⊤
i β

∣∣∣∣∣
)l


Our goal is to apply Lemma 32 to the right side. To do this, we need to show the correct
bound on its Lewis weights, and then have the term be a maximum over ∥X ′′β∥1 = 1, rather
than ∥Xβ∥1 = 1.
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Bounding the Lewis weights of X′′. By Lemma 9, the ℓ1 Lewis weights of a matrix do
not increase when more rows are added. So, the rows in X ′′ that are from X ′ have Lewis
weights that are bounded above by C3

ε2

log( d
εδ ) . Further,

X ′′⊤W ′′−1X ′′ =
R∑

i=1

1
w′′

i

x′′
i (x′′

i )⊤

⪰
R−N∑
i=1

1
w′′

k

x′′
k(x′′

k)⊤ since
N∑

i=kC1d2+1

1
w′′

i

x′′
i (x′′

i )⊤ ⪰ 0

= X ′⊤W ′−1X ′ ⪰ X⊤W −1X.

So, any row yi = xi/pi in X ′′ that is from SX satisfies

w′′2
i = y⊤

i (X ′′⊤W ′′−1X ′′)−1yi ≤ y⊤
i (X⊤W −1X)−1yi = 1

p2
i

x⊤
i (X⊤W −1X)−1xi

≤

(
Cε2

log
(

R
δ

) 1
wi

)2

· w2
i =

(
Cε2

log
(

R
δ

))2

which means that all of the Lewis weights of X ′′ are less than the larger of C ε2

log( R
δ ) and

C3
ε2

log( d
εδ ) . Now, for small enough ε, δ, log R

δ ≤ C
C3

log d
εδ , we have the Lewis weight upper

bound for all rows of X ′′ is C ε2

log( R
δ )

Renormalizing to maximize over ∥X′′β∥1 = 1. If we define the following

F := max
∥Xβ∥1=1

|∥SXβ∥1 − ∥Xβ∥1|

then,

∥X ′′β∥1 = ∥SXβ∥1 + ∥X ′β∥1 ≤ (1 + C2 + F )∥Xβ∥1

So, we get(
max

∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

≤ (1 + C2 + F )l

(
max

∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

≤ 2l−1((1 + C2)l + F l)
(

max
∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l

Taking expectations of either side over just the Rademacher variables,

E
σ

( max
∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l
 ≤ 2l−1((1 + C2)l + F l)E

σ

( max
∥X′′β∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l


Applying Lemma 32 to X′′. Since X ′′ has R rows, and the correct Lewis weight bound,
we can simply apply Lemma 32 to the right side above

E
σ

( max
∥Xβ∥=1

∣∣∣∣∣
R∑

k=1
σkx′′⊤

k β

∣∣∣∣∣
)l
 ≤ 2l−1((1 + C2)l + F l))εlδ

2



A. Parulekar, A. Parulekar, and E. Price 49:15

Now, by Lemma 12, we know that ES [F l] ≤ εlδ. So, taking the expectation with respect to
the sampling matrices of either side of the above, we get, for small enough ε, δ,

E
S,σ


 max

∥Xβ∥=1

∣∣∣∣∣∣
kC1d2+N∑

k=1
σkx′′⊤

k β

∣∣∣∣∣∣
l
 ≤ 2l−1((1 + C2)l + εlδ)εlδ

2 ≤ 2l(1 + C2)l εlδ

2

So, solving the problem for ε′ = ε
2+2C2

gives the correct bound. ◀

Finally, we can show Lemma 28

Proof of Lemma 28. Take l = log(2n/δ), N = 5 (1+C1)C3
C

d
ε2 log d

εδ . Then, we apply Lemma
29, Lemma 31, and Lemma 34 to get

M ≤ 22lεlδ

which, solving the problem for ε/4, gives the correct bound. Then, applying Markov’s
inequality, we get that with probability δ,

max
∥Xβ∗−Xβ∥=1

|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)| ≤ ε

Finally, scaling up appropriately gives, in generality,

|(∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)| ≤ ε∥Xβ∗ − Xβ∥1 ◀
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A Constant-factor approximation

▶ Theorem 35. Let X ∈ Rn×d have ℓ1 Lewis weights {wi}i∈[n]. Then, for any N that is
at least O (d log d), there is a sampling-and-reweighting distribution S({pi}n

i=1) satisfying∑
i pi = N such that for all y, if S ∼ S({pi}n

i=1) and β̂ = arg min ∥SXβ − Sy∥1, we have

∥Xβ̂ − y∥1 ≤ 41 min
β

∥Xβ − y∥1

with probability 0.9.

Proof. Since we just want a constant factor approximation, we can take S to be the
distribution over constant probability Lewis weight ℓ1-subspace embeddings, so that ∥Xβ∥1 ≤
2∥SXβ∥1 with probability at least 0.9. We have

∥Xβ̂ − y∥1 ≤ ∥Xβ̂ − Xβ∗∥1 + ∥Xβ∗ − y∥1

≤ 2∥SXβ̂ − SXβ∗∥1 + ∥Xβ∗ − y∥1

≤ 2(∥SXβ̂ − Sy∥1 + ∥SXβ∗ − Sy∥1) + ∥Xβ∗ − y∥1

≤ 4(∥SXβ∗ − Sy∥1) + ∥Xβ∗ − y∥1

where in the last inequality, we have used the fact that β̂ is the minimizer of ∥SXβ − Sy∥1.
Now, by Markov’s inequality, with probability 0.9, ∥SXβ∗ − Sy∥1 ≤ 10∥Xβ∗ − y∥1. So, we
have with probability 0.81,

∥Xβ̂ − y∥1 ≤ 41∥Xβ∗ − y∥1

Since we only used a constant-factor subspace embedding, the row count would be O(d log d).
◀

B Proofs of Lemmas

▶ Lemma 10. Let X ∈ Rn×d, and let X ′ ∈ Rkn×d be X stacked on itself k times, with each
row scaled down by k. Then, each of the Lewis weights is reduced by a factor of k.
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https://doi.org/10.1214/aop/1176991418
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Proof. Let {wi}n
i=1 be the Lewis weights of X, and let {w′

i}kn
i=1 be the Lewis weights of X ′.

Let xi be the ith row of X, and similarly let x′
i be the ith row of X ′. Let the ordering of the

rows be such that x′
jn+i = 1

k xi for 0 ≤ j < k. Let W be the diagonal matrix where Wii = wi.
Since Lewis weights are defined circularly, we just need to check that the suggested weights
work, and by uniqueness, they will be correct.

We know that w2
i = x⊤

i (X⊤W −1X)−1xi. Therefore, if we take W ′ to be the diagonal
matrix of size kn × kn, and set the diagonal entries to be the Lewis weights of X divided by
k, repeated k times, then we have

X ′⊤W ′−1X ′ =
kn∑
i=1

1
w′

i

x′
ix

′⊤
i =

kn∑
i=1

k

wi
x′

ix
′⊤
i = k

n∑
i=1

k

wi
· 1

k2 xix
⊤
i

In the last expression above, we are only summing over the first set of rows in X ′, which are
the scaled rows of X, and then multiplying by k since they are repeated k times. Now,

k

n∑
i=1

k

wi
· 1

k2 xix
⊤
i =

n∑
i=1

1
wi

xix
⊤
i = X⊤W −1X

So, finally, for an arbitrary row x′
jn+i, which corresponds to row xi in the original matrix,

we get its Lewis weight:

w′2
jn+i = x′⊤

jn+i(X ′⊤W ′−1X ′)−1x′
jn+i = 1

k2 x⊤
i (X⊤W −1X)−1xi = w2

i

k2

which proves that our suggested Lewis weights are consistent. ◀

▶ Lemma 29. Given a matrix X ∈ Rn×d, let S({pi}i∈[n]) be any sampling-and-reweighting
disribution, and let ik be the row-indices chosen by this sampling matrix such that Sk,ik

= 1
pik

.
Let σk be independent Rademacher variables that are ±1 each with probability 0.5. Then,

M ≤ 2l E
S,σ

( max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (10)

Proof. We proceed by symmetrization. Since the matrix S scales the rows by the probability
they are picked with, the expectation of ∥SMβ∥1 is just ∥Mβ∥1, for any matrix M and
vector β. So, adding or subtracting the same term with a different sampling matrix S′,
(∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1)−(∥Xβ∗ − y∥1 − ∥Xβ − y∥1), is just adding a mean zero
term, and since taking the lth power of a maximum is convex, this can only increase the
expectation. That is,

E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| (∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1) |

)l
]

≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| ((∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) − (∥Xβ∗ − y∥1 − ∥Xβ − y∥1))

−
((

∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1
)

− (∥Xβ∗ − y∥1 − ∥Xβ − y∥1)
)

|
)l
]

So, we can bound M as

M ≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1
| (∥SXβ∗ − Sy∥1 − ∥SXβ − Sy∥1) −

(∥S′Xβ∗ − S′y∥1 − ∥S′Xβ − S′y∥1) |
)l
]
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Let ik be the indices chosen by S, and i′
k the indices chosen by S′. Rewriting this as a sum,

M ≤ E
S,S′

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)
−

∑
k

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

Now, since ik and i′
k are independent and identically distributed, randomly swapping

elements from either sum does not change the distribution. This amounts to adding a random
sign σk to the terms, where σk = ±1 independently with probability 1/2. So,

M ≤ E
S,S′,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)
−

∑
k

σk

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

≤ E
S,S′,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣+
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

i′
k
β∗ − yi′

k
|

pi′
k

−
|x⊤

i′
k
β − yi′

k
|

pi′
k

)∣∣∣∣)l
]

≤ 2l E
S,σ

[(
max

∥Xβ∗−Xβ∥=1

∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣)l
]

Where the final inequality follows from (a + b)l ≤ 2l−1(al + bl). Putting these together,

M ≤ 2l E
S,σ

( max
∥Xβ∗−Xβ∥=1

∣∣∣∣∣∑
k

σk

(
|x⊤

ik
β∗ − yik

|
pik

−
|x⊤

ik
β − yik

|
pik

)∣∣∣∣∣
)l
 (14)

◀

▶ Lemma 33 (Similar to [4] Lemma B.1). Let X be any matrix, and let W be the matrix that
has the Lewis weights of X in the diagonal entries. Let N ≥ d

ε2 log d
εδ . There exist constants

C1, C2, C3 such that we can construct a matrix X ′ such that
X ′ has C1dN rows,
X ′⊤W ′−1X ′ ⪰ X⊤W −1X, (where W ′ is the matrix that has the Lewis weights of X ′ in
the diagonal entries),
∥X ′β∥1 ≤ C2∥Xβ∥1 for all β,
the Lewis weights of X ′ are bounded by C3

N .

Proof. Given matrix X, we can use Lemma B.1 from [4] to construct a new matrix X1 that
satisfies

X1 has C1d2 rows,
X⊤

1 W −1
1 X1 ⪰ X⊤W −1X, (where W1 is the matrix that has the Lewis weights of X1 in

the diagonal entries),
∥X1β∥1 ≤ C2∥X1β∥1 for all β,
the Lewis weights of X1 are bounded by C3

d .
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So, we can take this matrix and stack it on itself k = N
d times, while scaling each row down

by the same k. This will be our matrix X ′. X ′ will then have k = C1Nd rows, which satisfies
the first bullet. Also, by Lemma 10, this shrinks the Lewis weights by a factor of k, which
changes the Lewis weight upper bound to C3

kd = C3
N which is what we need. Now, since we

are repeating rows k times, but each row is scaled down by k, we have ∥X1β∥1 = ∥X ′β∥1
for all β. Therefore, ∥X ′β∥1 ≤ C2∥Xβ∥1 for all β. Finally, as in the proof of Lemma 10,
we know that since we have duplicated the rows of X1 k times but scaled them down by k,
X⊤

1 W −1
1 X1 = X ′⊤W ′−1X ′, and so we are done. ◀

B.1 Proof of Claims 15, 18, 19, 24, and 25

▷ Claim 15. For all β ∈ H, with probability at least 1 − δ,

(1 − ε)E(X,Y )∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y )∼P

[
|X⊤β − Y |

]
Proof of Claim 15. By assumption, we know that X⊤β, Y ∈ [−1, 1], so, |X⊤β − Y | ∈ [0, 2].
So, for fixed β, by Hoeffding’s on the rows of Xβ − y, we have that if n ≥ 8

ε2 log 2
δ′ , then

with probability at least 1 − δ′,(
1 − ε

2

)
E(X,Y )∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤

(
1 + ε

2

)
E(X,Y )∼P

[
|X⊤β − Y |

]
(15)

Now, we construct a ε
2d -covering S of the unit ℓ∞ ball H, with fewer than

( 4d
ε

)d elements,
so that for any β, there is some βc ∈ S such that ∥β − βc∥∞ ≤ ε

2d . To do this, simply take
S = {β : βi = k ε

2d , k ∈ Z ∩ [−2d/ε, 2d/ε]}.
Note that X has rows on the hypercube. So, if we denote xi,j to be the entry of X in the

ith row and jth column, then xi,j ∈ {−1, 1}. Therefore, for any β,

∥Xβ∥1 =
n∑

i=1
|x⊤

i β| ≤
n∑

i=1

d∑
j=1

|xi,jβj | ≤
n∑

i=1

d∑
j=1

|βj | ≤ nd∥β∥∞

Therefore, we can apply Hoeffding’s, as in (15), with δ′ = δ
(

ε
4d

)d, and union bound over the
set S, to get that for any β ∈ S, with probability at least 1 − δ, (15) holds.

Then, for any β ∈ H, by the covering property, we can find some βc ∈ S such that

∥β − βc∥∞ ≤ ε

d
=⇒ ∥Xβ − Xβc∥1 ≤ nε. (16)

We have

∥Xβc − y∥1 − ∥Xβc − Xβ∥1 ≤ ∥Xβ − y∥1 ≤ ∥Xβ − Xβc∥1 + ∥Xβc − y∥1

So, combining (15) and (16), and dividing by n, we finally have that if n ≥
8
ε2

(
log 2

δ + d log 4d
ε

)
, then for all β ∈ H,

(1 − ε)E(X,Y )∼P

[
|X⊤β − Y |

]
≤ 1

n
∥Xβ − y∥1 ≤ (1 + ε)E(X,Y )∼P

[
|X⊤β − Y |

]
◁

▷ Claim 18. For D, B as chosen above, l(β∗) = 1 − 2ε.
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Proof of Claim 18. The ℓ1 error for the correct β is given by

E(X,Y )∼P

∣∣X⊤β∗ − Y
∣∣

= EX [EY ∼P (·|X)
∣∣|X⊤β∗ − Y |] by independence

= EX [(1
2 + ε)

∣∣X⊤β∗ − X⊤β∗| + (1
2 − ε)

∣∣X⊤β∗ + X⊤β∗∣∣]
= EX [(1 − 2ε)

∣∣X⊤β∗|] β∗ ∈ H
= 1 − 2ε ◁

▷ Claim 19. For D, B as chosen above, we have for all β ∈ B, l(β) − l(β∗) = 2ε
d ||β − β∗||1.

Proof of Claim 19.

E(X,Y )∼P

∣∣X⊤β − Y |
∣∣

= EX

[
EY ∼P (·|X)

∣∣X⊤β − Y |
∣∣]

= EX

[(
1
2 + ε

) ∣∣X⊤β − X⊤β∗∣∣+
(

1
2 − ε

)
|X⊤β + X⊤β∗∣∣]

= (1 − 2ε) + 2εEX [X⊤β − X⊤β∗]

= (1 − 2ε) + 2ε
1
d

||β − β∗||1

◁

▷ Claim 21. For any β, max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε

Proof of Claim 21.

l(β) + l(β) = 2 − 4ε + 2ε

d
∥β∗

(1) − β∥1 + 2ε

d
∥β∗

(2) − β∥1

≥ 2 − 4ε + 2ε

d
∥β∗

(2) − β∗
(1)∥1

= 2

=⇒ max{ℓβ∗
(1)

(β) − ℓβ∗
(1)

(β∗
(1)), ℓβ∗

(2)
(β) − ℓβ∗

(2)
(β∗

(2))} > 2ε, ∀β ∈ Rd

◁

▷ Claim 24. For all i ∈ [d], β ∈ Rd, we have ℓβ∗
(i)

(β) ≥ 1
4d with equality when β = β∗

(i)

Proof of Claim 24.

ℓβ∗
(i)

(β) = 1
d

∑
j ̸=i

|βj | +
1
2 + ε

d
|1 − βi| +

1
2 − ε

d
|βi|

≥
1
2 − ε

d
(|βi| + |1 − βi|) + 2ε

d
|1 − βi| ≥

1
2 − ε

d
◁

▷ Claim 25. Any β ∈ Rd can only satisfy ℓβ∗
(i)

(β̂) < 1
2d for one i ∈ [d].
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Proof of Claim 25. Indeed, suppose β was such that ℓβ∗
(I)

(β), ℓβ∗
(J)

(β) < 1
2d . Then we must

have

1
2d

≥ ℓβ∗
(I)

(β)

= 1
d

∑
j ̸=I

|βj | +
1
2 − ε

d
(|βI | + |1 − βi|) + 2ε

d
|1 − βI |

≥ 1
d

∑
j ̸=I

|βj | +
1
2 − ε

d
+ 2ε

d
|1 − βI |

⇐⇒ ε ≥
∑
j ̸=I

|βj | + 2ε|1 − βI |

≥
∑
j ̸=I

|βj | + 2ε − 2ε|βI |

⇐⇒ 2|βI | ≥ ∥β∥1 + 2ε

Similarly for J , so we would have ∥β∥ ≥ |βI | + |βJ | ≥ ∥β∥1 + 2ε. ◁
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