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Abstract
The Forrelation problem, first introduced by Aaronson [1] and Aaronson and Ambainis [2], is a well
studied computational problem in the context of separating quantum and classical computational
models. Variants of this problem were used to give tight separations between quantum and classical
query complexity [2]; the first separation between poly-logarithmic quantum query complexity and
bounded-depth circuits of super-polynomial size, a result that also implied an oracle separation of the
classes BQP and PH [15]; and improved separations between quantum and classical communication
complexity [12]. In all these separations, the lower bound for the classical model only holds when
the advantage of the protocol (over a random guess) is more than ≈ 1/

√
N , that is, the success

probability is larger than ≈ 1/2 + 1/
√

N . This is unavoidable as ≈ 1/
√

N is the correlation between
two coordinates of an input that is sampled from the Forrelation distribution, and hence there are
simple classical protocols that achieve advantage ≈ 1/

√
N , in all these models.

To achieve separations when the classical protocol has smaller advantage, we study in this work
the xor of k independent copies of (a variant of) the Forrelation function (where k ≪ N). We
prove a very general result that shows that any family of Boolean functions that is closed under
restrictions, whose Fourier mass at level 2k is bounded by αk (that is, the sum of the absolute values
of all Fourier coefficients at level 2k is bounded by αk), cannot compute the xor of k independent
copies of the Forrelation function with advantage better than O

(
αk

Nk/2

)
. This is a strengthening of

a result of [8], that gave a similar statement for k = 1, using the technique of [15]. We give several
applications of our result. In particular, we obtain the following separations:

Quantum versus Classical Communication Complexity. We give the first example of a
partial Boolean function that can be computed by a simultaneous-message quantum protocol with
communication complexity polylog(N) (where Alice and Bob also share polylog(N) EPR pairs), and
such that, any classical randomized protocol of communication complexity at most õ(N1/4), with
any number of rounds, has quasipolynomially small advantage over a random guess. Previously,
only separations where the classical protocol has polynomially small advantage were known between
these models [10, 12].

Quantum Query Complexity versus Bounded Depth Circuits. We give the first example of a
partial Boolean function that has a quantum query algorithm with query complexity polylog(N), and
such that, any constant-depth circuit of quasipolynomial size has quasipolynomially small advantage
over a random guess. Previously, only separations where the constant-depth circuit has polynomially
small advantage were known [15].
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1 Introduction

Several recent works used Fourier analysis to prove lower bounds for computing (variants of)
the Forrelation (partial) function of [1, 2], in various models of computation and communic-
ation [15, 8, 12]. These works show that for many computational models, when analyzing
the success probability of computing the Forrelation function, it’s sufficient to bound the
contribution of Fourier coefficients at level 2, ignoring all other Fourier coefficients [15, 8].
This holds for any computational model that is closed under restrictions and is proved by
analyzing the Forrelation distribution as a distribution resulting from a certain random walk,
rather than analyzing it directly.

While this is a powerful technique, it could only be used to bound computations of the
Forrelation function with advantage (over a random guess) larger than ≈ 1/

√
N , that is,

computations with success probability larger than ≈ 1/2 + 1/
√

N . Roughly speaking, this
is because the bound on the Fourier coefficients at level 2 of the Forrelation function is
≈ O

(
1/

√
N

)
. We note that while ruling out protocols with advantage larger than 1/

√
N is

satisfactory in many cases, an advantage of 1/
√

N is often viewed as non-negligible and it is
often desirable to rule out protocols with negligible (sub-polynomially small) advantage as
well.

In this work, we study the xor of k independent copies of the Forrelation function of [15]
(where k < o(N1/50)). We show that for many computational models, when analyzing the
success probability of computing the xor of k independent copies of the Forrelation function,
it’s sufficient to bound the contribution of Fourier coefficients at level 2k, ignoring all other
Fourier coefficients. Our proof builds on the techniques of [15], and followup works [8, 12],
by analyzing a “product” of k random walks, one for each of the independent copies of
the Forrelation function. This can be viewed as a random walk with a k-dimensional time
variable.

Consequently, we obtain a very general lower bound that shows that any family of Boolean
functions that is closed under restrictions, whose Fourier mass at level 2k is bounded by
αk (that is, for every function in the family, the sum of the absolute values of all Fourier
coefficients at level 2k is bounded by αk), cannot compute the xor of k independent copies
of the Forrelation function with advantage better than O

(
αk

Nk/2

)
, that is, with success

probability larger than 1
2 + O

(
αk

Nk/2

)
. This is a strengthening of a result of [8], that gave a

similar statement for k = 1, using the technique of [15]. While bounding the advantage of
protocols for the xor of k independent copies of a problem is often non-trivial, our result
gives a very general way to do that for the special case of Forrelation.
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We note that the requirement that the family of Boolean functions is closed under
restrictions is satisfied by essentially all non-uniform computational models. The requirement
of having a good bound on the Fourier mass at level 2k is satisfied by several central and
well-studied computational models (see for example [7] for a recent discussion). In particular,
we focus in this work on three such models: communication complexity, query complexity
(decision trees) and bounded-depth circuits. We note that our result is valid for any k < N c,
for some constant c > 0, and hence it can be used to prove lower bounds for circuits/protocols
with exponentially small advantage, in all these models. However, for the applications of
separating quantum and classical computational models, we take k to be poly-logarithmic in
N , so that we have quantum protocols of poly-logarithmic cost. We use our main theorem
to give several separations between quantum and classical computational models.

1.1 Communication Complexity
Quantum versus classical separations in communication complexity have been studied for
more than two decades in numerous works. We briefly summarize the history of quantum
advantage in communication complexity of partial functions, that is most relevant for us:
First, Buhrman, Cleve and Wigderson proved an exponential separation between zero-error
simultaneous-message quantum communication complexity (without entanglement) and
classical deterministic communication complexity [4]. For the bounded-error model, Raz
showed an exponential separation between two-way quantum communication complexity
and two-way randomized communication complexity [14]. Gavinsky et al (building on Bar-
Yossef et al [3]) gave an exponential separation between one-way quantum communication
complexity and one-way randomized communication complexity [11]. Klartag and Regev gave
an exponential separation between one-way quantum communication complexity and two-way
randomized communication complexity [16]. The state of the art separation, by Gavinsky,
gave an exponential separation between simultaneous-message quantum communication
complexity (with entanglement) and two-way randomized communication complexity [10].
An alternative proof for Gavinsky’s result was recently given by [12], as a followup to [15, 8],
and had the additional desired property that in the quantum protocol, the time complexity
of all the players is poly-logarithmic.

Our Result
In all these works, the lower bounds for classical communication complexity only hold when
the advantage of the protocol (over a random guess) is more than ≈ 1/

√
N , that is, the

success probability is larger than ≈ 1/2 + 1/
√

N .
In this work, we give a partial Boolean function that can be computed by a simultaneous-

message quantum protocol with communication complexity polylog(N) (where Alice and
Bob also share polylog(N) EPR pairs), and such that, any classical randomized protocol of
communication complexity at most õ(N1/4), with any number of rounds, has quasipolynomi-
ally small advantage over a random guess. This qualitatively matches the results of [10, 12]
and has the additional desired property that the lower bound for the classical communication
protocol holds for quasipolynomially small advantage, rather than polynomially small ad-
vantage. Moreover, as in [12], the quantum protocol in our upper bound has the additional
property of being efficiently implementable, in the sense that it can be described by quantum
circuits of size polylog(N), with oracle access to the inputs.

To prove this result we use the xor of k independent copies of the Forrelation function,
lifted to communication complexity using xor as the gadget [13], as in [12]. The quantum
upper bound is simple. For the classical lower bound, we use ideas from [12] to bound the

APPROX/RANDOM 2021



52:4 Lower Bounds for XOR of Forrelations

level-2k Fourier mass. This, along with our main theorem implies the desired separation.
Our bounds for the level-2k Fourier mass may be interesting in their own right and are
proved in Section 7.

Related Work
We note that an exponential separation between two-way quantum communication com-
plexity and two-way randomized communication complexity, with quasipolynomially small
advantage, can be proved by a combination of several previous results, as follows:

Start with an existing separation between quantum and classical query complexity, such
as the one of [2]. Use Drucker’s xor lemma for randomized decision tree [9] to get a
separation between quantum and classical query complexity, where the classical protocol has
quasipolynomially small advantage. Finally, use the recent lifting theorem of [5] to lift the
result to communication complexity. To the best of our knowledge, this separation was not
previously observed.

It follows from these works that there exists a function computable in the quantum
two-way model in communication complexity polylog(N), for which randomized protocols
of cost õ(

√
N) have at most quasipolynomially small advantage. While the lower bound is

for cost õ(
√

N) protocols, which is quantitatively stronger than our lower bound for cost
õ(N1/4) protocols, the quantum upper bound in this result seems to require two rounds of
communication, while our function is computable in the simultaneous model when Alice and
Bob share entanglement.

1.2 Bounded Depth Circuits
Separations of quantum query complexity and bounded-depth classical circuit complexity
have been studied in the context of oracle separations of the classes BQP and PH. An
example of a partial Boolean function (Forrelation) that has a quantum query algorithm with
query complexity polylog(N), and such that, any constant-depth circuit of quasipolynomial
size has polynomially small advantage over a random guess, was given in [15]. This result
implied an oracle separation of the classes BQP and PH.

Here, we give the first example of a partial Boolean function (xor of k copies of Forrelation)
that has a quantum query algorithm with query complexity polylog(N), and such that, any
constant-depth circuit of quasipolynomial size has quasipolynomially small advantage
over a random guess.

For the proof, we use our main theorem, together with Tal’s bounds on the level-2k

Fourier mass of bounded-depth circuits [17].

1.3 Decision Trees
The query complexity model (also known as black box model or decision-tree complexity)
has played a central role in the study of quantum computational complexity. Quantum
advantages in query complexity (decision trees) have been demonstrated for partial functions
in various settings and numerous works. For example, Aaronson and Ambainis [2] showed
that the Forrelation problem can be solved by one quantum query, while its randomized
query complexity is Ω(

√
N/ log N).

For classical randomized query complexity, there is a known xor lemma, proved by
Drucker [9]. In particular, Theorem 1.3 of [9], along with the result of [2] gives a partial
function (xor of polylog(N) copies of Forrelation) that can be computed by a quantum
query algorithm with polylog(N) queries, while every classical randomized algorithm that
makes õ(N1/2) queries, has quasipolynomially small advantage.



U. Girish, R. Raz, and W. Zhan 52:5

Our main theorem implies a different proof for this result, using Tal’s recent bounds on
the level-2k Fourier mass of decision trees [18].

1.4 The Main Theorem
Our functions are obtained by taking an xor of several copies of a variant of the Forrelation
problem, as defined in [15].

Let N = 2n for sufficiently large n ∈ N. Let k ∈ N be a parameter. We assume that
k = o(N1/50). Let ϵ = 1

60k2 ln N be a parameter.
Let HN denote the N × N normalized Hadamard matrix whose entries are either − 1√

N

or 1√
N

. Let

forr(z) := 1
N

⟨z2, HN z1⟩

denote the Forrelation of a vector z = (z1, z2), where z1, z2 ∈ RN . The Forrelation
Decision Problem is the partial Boolean function F : {−1, 1}2N → {−1, 1} defined at
z ∈ {−1, 1}2N by

F (z) :=


−1 if forr(z) ≥ ϵ/2
1 if forr(z) ≤ ϵ/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the
xor of k independent copies of F . More precisely, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=
k∏

j=1
F (zj).

For our separation results, we take the function F (k), where k = ⌈log2 N⌉. For our
communication complexity separation we take the lift of F (k) with xor as the gadget. The
quantum upper bounds in all these separation results are quite simple. Moreover, all the
quantum algorithms in our upper bounds have the additional advantage of being efficiently
implementable, in the sense that they can be described by quantum circuits of size polylog(N),
with oracle access to the inputs.

Our main contribution is the classical lower bound. Towards this, our main theorem
provides an upper bound on the maximum correlation of F (k) with any family of Boolean
functions, in terms of the maximum level-2k Fourier mass of a function in the family.

▶ Main Theorem (Informal). There exist two distributions, σ
(k)
0 and σ

(k)
1 , on the no

and yes instances of F (k), respectively, with the following property. Let H be a family of
Boolean functions, each of which maps {−1, 1}2kN into [−1, 1]. Assume that H is closed
under restrictions. For H ∈ H, let L2k(H) :=

∑
|S|=2k |Ĥ(S)|. Let α ∈ R be such that

αk := sup
H∈H

(L2k(H), 1). Then, for every H ∈ H,∣∣∣∣∣ E
z∼σ

(k)
0

[H(z)] − E
z∼σ

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
αk

Nk/2

)
Our main theorem implies that functions in H cannot correlate with F (k) by more than

1
2 + O

(
αk

Nk/2

)
. For the applications, we instantiate H with the class of functions computed

by classical protocols of small cost.

APPROX/RANDOM 2021
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1.5 Overview of Proof of the Main Theorem for k = 2

Our proof builds on the techniques of [15], and followup works [8, 12], which, in turn, used a
key idea from [7]. We will now give an overview of the proof of the Main Theorem for the
special case k = 2, where one can already see most of the key ideas.

We start by recalling the hard distributions for k = 1, as in [15]. The distribution U
on no instances of F is the uniform distribution U2N on {−1, 1}2N . It can be shown that a
bit string drawn uniformly at random almost always has low Forrelation. The distribution
G on yes instances of F is the Gaussian distribution with mean 0 and covariance matrix

ϵ

[
IN HN

HN IN

]
. It can be shown that a vector drawn from this distribution almost always

has high Forrelation (at least ϵ/2). Although G is not a distribution over {−1, 1}2N , this
can be fixed (by probabilistically rounding the values) and we ignore this issue in the proof
overview.

Our hard distributions for k ≥ 2 are obtained by naturally lifting these distributions.
The distribution µ0 on no instances of F (2) is 1

2 (U × U + G × G). The distribution
µ1 on yes instances is 1

2 (U × G + G × U). It can be shown that these distributions indeed
have almost all their mass on the yes and no instances of F (2), respectively.

Throughout this proof, we identify functions in H with their unique multilinear extensions.
Using this identification, it follows that for all H ∈ H and z0 ∈ R4N , we have Ez∼U [H(z0 +
(z, 0))] = Ez∼U [H(z0 + (0, z))] = Ez∼U2 [H(z0 + z)] = H(z0).

Bounding the Advantage of H in Distinguishing p · µ0 and p · µ1, for
Small p

As in [15, 8], in order to show that functions in H can’t distinguish between µ0 and µ1, we
first show that they can’t distinguish between p · µ0 and p · µ1, for small p. We show that for
every H ∈ H, and p ≤ 1

2N ,

∣∣∣∣ E
z∼p·µ0

[H(z)] − E
z∼p·µ1

[H(z)]
∣∣∣∣ ≜ 1

2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z1, z2) − H(z1, 0) − H(0, z2) + H(0, 0)]

∣∣∣∣∣∣
≤ p4 · O

(
L4(H)

N

)
+ O(p6N1.5)

This claim is analogous to Claim 20 from [8]. For sufficiently small p, the second term in the
R.H.S. of the inequality is negligible, compared to the first term. To prove this inequality, we
use the Fourier expansion of H in the L.H.S. and bound the difference between the moments
of p · µ0 and p · µ1. We show that p · µ0 and p · µ1 agree on moments of degree less than 4, so
these moments don’t contribute to the difference. We then show that the contribution of the
moments of degree 4 is L4(H) · O

(
p4

N

)
and the contribution of moments of higher degrees is

O(p6N1.5).
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Bounding the Advantage of H(z0 + z) in Distinguishing p · µ0 and p · µ1,
for Small p

Next, as in [15, 8], we show a similar statement for the function H(z0 + z) of z, where z0 is
not too large. We show that for every H ∈ H, and every z0 ∈ [−1/2, 1/2]2kN and p ≤ 1

2N ,

1
2

∣∣∣∣∣∣ E
z1∼p·G
z2∼p·G

[H(z0 + (z1, z2)) − H(z0 + (z1, 0)) − H(z0 + (0, z2)) + H(z0)]

∣∣∣∣∣∣
≤ p4 · O

(
L4(H)

N

)
+ O(p6N1.5) (1)

The proof of this inequality is similar to the proof of Claim 19 of [8], using key ideas from [7],
and relies on the multilinearity of functions in H and the closure of H under restrictions.

A Random Walk with Two-Dimensional Time Variable
This is the main place where our proof differs from the one of [15] and followup works [8, 12].
In all these works the Forrelation distribution was ultimately analyzed as the distribution
obtained by a certain random walk. Here, we consider a product of two random walks, which
can also be viewed as a random walk with two-dimensional time variable.

Let T = 16N4 and p = 1√
T

. Let z
(1)
1 , z

(1)
2 , . . . , z

(T )
1 , z

(T )
2 ∼ p · G be independent samples.

Let t = (t1, t2) for t1, t2 ∈ {0, . . . , T}. Let z≤(t) :=
(∑t1

i=1 z
(i)
1 ,

∑t2
i=1 z

(i)
2

)
. Note that z≤(t) is

distributed according to (p
√

t1 ·G)× (p
√

t2 ·G). In particular, z≤(T,T ) is distributed according
to G × G. This implies that

(∗) := E
z∼µ0

[H(z)] − E
z∼µ1

[H(z)] ≜ 1
2E

[
H(z≤(T,T )) − H(z≤(T,0)) − H(z≤(0,T )) + H(0, 0)

]
We now rewrite (∗) as follows.

(∗) = 1
2

∑
t1∈[T ]
t2∈[T ]

E
[
H(z≤(t1,t2)) − H(z≤(t1−1,t2)) − H(z≤(t1,t2−1)) + H(z≤(t1−1,t2−1))

]
(2)

The last equation follows by a two-dimensional telescopic cancellation, as depicted in Figure 1.
This turns out to be a powerful observation. Note that for every fixed t = (t1, t2), the random
variable z≤(t)−z≤(t−(1,1)) ≜ (z(t1)

1 , z
(t2)
2 ) is distributed according to p·G2, by construction. We

can thus apply Inequality(1), setting z0 = z≤(t−(1,1)). This, along with the Triangle-Inequality
implies that

|(∗)| ≤ 1
2

∑
t1∈[T ]
t2∈[T ]

∣∣∣E [
H(z≤(t1,t2)) − H(z≤(t1−1,t2)) − H(z≤(t1,t2−1)) + H(z≤(t1−1,t2−1))

]∣∣∣
≤ 1

2
∑

t1∈[T ]
t2∈[T ]

(
p4 · O

(
L4(H)

N

)
+ O

(
p6N1.5))

by Inequality (1)

= O

(
L4(H)

N

)
+ o

(
1
N

)
since T = 16N4 = 1

p2

This completes the proof overview for k = 2, albeit with many details left out.
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Figure 1 Consider the (T + 1) × (T + 1) grid whose vertices are indexed by v ∈ ({0} ∪ [T ])2.
Each vertex v is labelled by H(z≤(v)). Each rectangle has a sign on its vertices as defined in Figure
1 and the label of a rectangle is the sum of signed labels of its vertices. The sum of labels of all 1 × 1
rectangles equals the label of the larger T × T rectangle. This is exactly the content of Equation (2).

1.6 Organization of the Paper
In the appendix, we present a formal description of our main results. The proofs can be
found in the full version of the paper.

1.7 Related Work
Independently of our result, [6] demonstrated PRGs with polylogarithmic dependence on
seed length, for a large class of boolean functions. Their result builds on the framework
of [7, 8, 15] and constructs improved PRGs by leveraging level-k Fourier bounds.
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A Formal Description of the Main Results

Notation

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We typically use N to refer to 2n. For
a set S ⊆ [n], let S̄ := [n] \ S denote the complement of S. For sets S ⊆ [n], T ⊆ [m], we
typically use S × T := {(s, t) : s ∈ S, t ∈ T} denote the set product of S and T . Sometimes,
we use the notation (S, T ). Note that the map (i, j) → m(i − 1) + j is a bijection between
[n] × [m] and [nm]. Using this identification, S × T is a subset of [nm]. We identify subsets
S ⊆ [n] with their {0, 1} indicator vector, that is, the vector S ∈ {0, 1}n such that for each
j ∈ [n], Sj = 1 if and only if j ∈ S.

Let v ∈ Rn. For i ∈ [n], we refer to the i-th coordinate of v by vi or v(i). For x, y ∈ Rn,
let x · y ∈ Rn be the pointwise product between x and y. This is the vector whose i-th
coordinate is xiyi, for every i ∈ [n]. Let ⟨x, y⟩ denote the real inner product between x and y.
For x, y ∈ {0, 1}n, let ⟨x, y⟩2 :=

∑n
i=1 xiyi mod 2 denote the mod 2 inner product between

x and y. We use In to denote the n × n identity matrix. We use 0 to denote the zero vector
in arbitrary dimensions.

Distributions

For a probability distribution D, let x ∼ D denote a random variable x sampled according to
D. For distributions D1 and D2, we use D1 × D2 to denote the product distribution defined
by sampling (x, y) where x ∼ D1 and y ∼ D2 are sampled independently. For n ∈ N and a
distribution D, let Dn denote the product of n distributions, each of which is D. Let µ ∈ Rn

be a vector and Σ ∈ Rn×n be a positive semi-definite matrix. We use N (µ, Σ) to refer to the
n-dimensional Gaussian distribution with mean µ and covariance matrix Σ. Let Un denote
the uniform distribution on {−1, 1}n. For a distribution D over Rn and a ∈ Rn, let a + D

refer to the distribution obtained by sampling z ∼ D and returning z + a. For P ∈ Rn and a
distribution D over Rn, let P · D denote the distribution obtained by sampling x ∼ D and
returning P · x. For p ∈ R, we use p · D to denote the distribution obtained by sampling
x ∼ D and returning px. For I ⊆ [n], let D̂(I) := E

z∼D

[∏
i∈I zi

]
refer to the I-th moment

of D.
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Fourier Analysis

We refer to {−1, 1}n as the Boolean hypercube in n dimensions. Let F := {f : {−1, 1}n → R}
denote the real vector space of all Boolean functions on n variables. There is an inner product
on this space as follows. For f, g ∈ F , let ⟨f, g⟩ := Ex∼Un

[f(x)g(x)]. For every S ⊆ [n], there
is a character function χS : {−1, 1}n → {−1, 1} defined at x ∈ {−1, 1}n by χS(x) :=

∏
i∈S xi.

The set of character functions {χS}S⊆[n] forms an orthonormal basis for F . For f ∈ F
and S ⊆ [n], let f̂(S) := ⟨f, χS⟩ denote the S-th Fourier coefficient of f . Note that for all
f ∈ F , we have f =

∑
S⊆[n] f̂(S)χS . For f ∈ F , the multilinear extension of f is the unique

multilinear polynomial f̃ : Rn → R which agrees with f on {−1, 1}n. For every S ⊆ [n],
the multilinear extension of χS is the monomial

∏
i∈S xi. This implies that the multilinear

extension of f ∈ F is
∑

S⊆[n] f̂(S)
∏

i∈S xi. Henceforth, we identify Boolean functions with
their multilinear extensions. With this identification, it can be shown that functions in F
which map {−1, 1}n into [−1, 1] also map [−1, 1]n into [−1, 1]. For f, g ∈ F , let f ∗ g ∈ F
be defined at z ∈ {−1, 1}n by (f ∗ g)(z) := Ex∼Un [f(x)g(x · z)]. It can be shown that for all
S ⊆ [n], we have f̂ ∗ g(S) = f̂(S)ĝ(S).

Level-k Fourier Mass

For f ∈ F and k ∈ {0, . . . , n}, let Lk(f) :=
∑

|S|=k |f̂(S)| denote the level-k Fourier mass of
f . For a family H ⊆ F of Boolean functions, let Lk(H) := supH∈H Lk(H).

A.1 The Forrelation Problem

Let k, N ∈ N be parameters, where N = 2n for some n ∈ N. We assume that k = o(N1/50).
Fix a parameter ϵ = 1

60k2 ln N . Let U refer to U2N .

Hadamard Matrix

The Hadamard matrix HN of size N is an N × N matrix. The rows and columns are indexed
by strings a and b respectively where a, b ∈ {0, 1}n and the (a, b)-th entry of HN is defined
to be 1√

N
(−1)⟨a,b⟩2 . Equivalently,

HN (a, b) :=
{

−1√
N

if
∑n

i=1 aibi ≡ 1 mod 2
+1√

N
if

∑n
i=1 aibi ≡ 0 mod 2

The Forrelation Function

The Forrelation Function forr : R2N → R is defined as follows. Let z ∈ R2N and x, y ∈ RN

be such that z = (x, y). Then,

forr(z) := 1
N

⟨x, HN y⟩

The ⊕k Forrelation Decision Problem

▶ Definition 1 (The ⊕k Forrelation Decision Problem). The Forrelation Decision Problem is
the partial Boolean function F : {−1, 1}2N → {−1, 1} defined as follows. For z ∈ {−1, 1}2N ,
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let

F (z) :=


−1 if forr(z) ≥ ϵ/2
1 if forr(z) ≤ ϵ/4
undefined otherwise

The ⊕k Forrelation Decision Problem F (k) : {−1, 1}2kN → {−1, 1} is defined as the xor of
k independent copies of F . To be precise, for every z1, . . . , zk ∈ {−1, 1}2N , let

F (k)(z1, . . . , zk) :=
k∏

j=1
F (zj)

The Gaussian Forrelation Distribution G

▶ Definition 2. Let G denote the Gaussian distribution over R2N defined by the following
process.
1. Sample x1, . . . , xN ∼ N (0, ϵ) independently.
2. Let x = (x1, . . . , xN ) and y = HN x.
3. Output (x, y).

The distribution G can be equivalently expressed as N
(

0, ϵ

[
IN HN

HN IN

])
.

A.2 Hard Distributions over R2kN

Let P, Q be two probability distributions on the domain D := R2N . Let S ⊆ [k]. We
define PSQS̄ to be the distribution on Dk defined by sampling x = (x1, . . . , xk) where
x1, . . . , xk ∈ D are sampled as follows.

For each j ∈ [k], independently sample
{

xj ∼ P if j ∈ S

xj ∼ Q if j ∈ S̄

▶ Definition 3. Let G be the distribution in Definition 2 and U = U2N . Define a pair of
distributions µ

(k)
0 , µ

(k)
1 on R2kN as follows.

µ
(k)
0 := 1

2k−1

∑
S⊆[k]

|S| is even

GSU S̄ and µ
(k)
1 := 1

2k−1

∑
S⊆[k]

|S| is odd

GSU S̄

A.3 Rounding Distributions to the Boolean Hypercube
Let trnc : R → [−1, 1] denote the truncation function, whose action on a ∈ R is given by

trnc(a) =
{

sign(a) if a /∈ [−1, 1]
a otherwise

For l ∈ R, we also use trnc : Rl → [−1, 1]l to refer to the function that applies the above
truncation function coordinate-wise.

▶ Definition 4. Let µ be any distribution on RM . We define the rounded distribution µ̃ on
{−1, 1}M as follows.
1. Sample z ∼ µ.
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2. For each coordinate i ∈ [M ], independently, let z′
i = 1 with probability 1+trnc(zi)

2 and
z′

i = −1 with probability 1−trnc(zi)
2 .

3. Output z′ = (z′
1, . . . , z′

M ).
Let z0 ∈ RM and µ be the distribution whose support is {z0}. We use z̃0 to refer to µ̃.

A.4 The Forrelation Distribution
Let k ∈ N. Let µ̃

(k)
0 and µ̃

(k)
1 (respectively G̃) be distributions over {−1, 1}2kN (respectively

{−1, 1}2N ) generated from rounding µ
(k)
1 and µ

(k)
0 (respectively G) according to Definition 4.

Observe that we may alternatively define µ̃
(k)
0 and µ̃

(k)
1 as follows.

▶ Definition 5. Let G be as in Definition 2 and U = U2N . Let

µ̃
(k)
0 := 1

2k−1

∑
S⊆[k]

|S| is even

G̃SU S̄ and µ̃
(k)
1 := 1

2k−1

∑
S⊆[k]

|S| is odd

G̃SU S̄

We refer to µ̃
(1)
1 ≜ G̃ as the Forrelation Distribution.

We show that the distributions µ̃
(k)
1 and µ̃

(k)
0 put considerable mass on the yes and no

instances of F (k), respectively, where F (k) is the ⊕k Forrelation Decision Problem as in
Definition 1.

▶ Lemma 6. Let µ̃
(k)
0 and µ̃

(k)
1 be distributions as in Definition 5 and F (k) be the ⊕k

Forrelation Decision Problem as in Definition 1. Then,

P
z∼µ̃

(k)
0

[F (k)(z) = 1] ≥ 1 − O

(
k

N6k2

)
and P

z∼µ̃
(k)
1

[F (k)(z) = −1] ≥ 1 − O

(
k

N6k2

)

A.5 Closure under Restrictions
▶ Definition 7. Let a ∈ {−1, 1, 0}M . Let ρa : RM → RM be a restriction defined as follows.
For v ∈ RM , let ρa(v) ∈ RM be such that for all j ∈ [M ],

(ρa(v))(j) :=
{

v(j) if a(j) = 0
a(j) otherwise

For a function F : {−1, 1}M → R, the restricted function F ◦ ρv : {−1, 1}M → R is defined
at z ∈ {−1, 1}M by (F ◦ ρv)(z) := F (ρv(z)).

We say that a family H of Boolean functions in M variables is closed under restrictions
if for all restrictions v ∈ {−1, 1, 0}M and H ∈ H, the restricted function H ◦ ρv is in H.

B The Main Result

Let N ∈ N be a parameter describing the input size. We will assume that N is a sufficiently
large power of 2. Let k ∈ N. We assume that k = o(N1/50). Let ϵ = 1

60k2 ln N be the
parameter defining G as before.

▶ Theorem 8. Let H be a family of Boolean functions on 2kN variables, each of which maps
{−1, 1}2kN into [−1, 1]. Assume that H is closed under restrictions. Let µ̃

(k)
0 , µ̃

(k)
1 be the

distributions over {−1, 1}2kN as in Definition 5. Then, for every H ∈ H,∣∣∣∣∣ E
z∼µ̃

(k)
0

[H(z)] − E
z∼µ̃

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
L2k(H)
Nk/2

)
+ o

(
1

Nk/2

)
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▶ Definition 9. Let µ̃
(k)
0 , µ̃

(k)
1 be as in Definition 5. Let σ

(k)
0 (respectively σ

(k)
1 ) be obtained

by conditioning µ̃
(k)
0 on being a no (respectively yes) instance of F (k).

▶ Corollary 10. Under the same hypothesis as Theorem 8, for every H ∈ H∣∣∣∣∣ E
z∼σ

(k)
0

[H(z)] − E
z∼σ

(k)
1

[H(z)]

∣∣∣∣∣ ≤ O

(
L2k(H)
Nk/2

)
+ o

(
1

Nk/2

)

B.1 Applications to Quantum versus Classical Separations

Query Complexity Separations

▶ Lemma 11. Let D : {−1, 1}2kN → {−1, 1} be a deterministic decision tree of depth d ≥ 1.
Then,∣∣∣∣∣ E

z∼σ
(k)
0

[D(z)] − E
z∼σ

(k)
1

[D(z)]

∣∣∣∣∣ ≤
(

O (d log(kN))
N1/2

)k

▶ Theorem 12. F (k) can be computed in the bounded-error quantum query model with
O(k5 log2 N log k) queries. However, every randomized decision tree of depth õ(

√
N) has a

worst-case success probability of at most 1
2 + exp(−Ω(k)).

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 12 gives us an explicit family of partial
functions that are computable by quantum query algorithms of cost Õ(log5c+2 N), however
every randomized query algorithm of cost õ(N 1

2 ) has at most 1
2Ω(logc N) advantage over random

guessing.

Communication Complexity Separations

▶ Definition 13 (The ⊕k Forrelation Communication Problem F (k) ◦ xor). Alice is given x

and Bob is given y where x, y ∈ {−1, 1}2kN . Let F (k) be as in Definition 1. Their goal is to
compute the partial function F (k)(x · y).

▶ Lemma 14. Let C : {−1, 1}2kN × {−1, 1}2kN → {−1, 1} be any deterministic protocol of
communication complexity c. Then,∣∣∣∣∣∣∣ E

x∼U2kN

z∼σ
(k)
0

[C(x, x · z)] − E
x∼U2kN

z∼σ
(k)
1

[C(x, x · z)]

∣∣∣∣∣∣∣ ≤ O

(
(c + 8k)2k

Nk/2

)

▶ Theorem 15. F (k)◦xor can be solved in the quantum simultaneous with entanglement model
with O(k5 log3 N log k) bits of communication, when Alice and Bob share O(k5 log3 N log k)
EPR pairs. However, any randomized protocol of cost õ(N1/4) has a worst-case success
probability of at most 1

2 + exp(−Ω(k)).

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 15 gives us an explicit family of partial
functions that are computable by quantum simultaneous protocols of cost Õ(log5c+3 N) when
Alice and Bob share Õ(log5c+3 N) EPR pairs, however every interactive randomized protocol
of cost õ(N 1

4 ) has at most 1
2Ω(logc N) advantage over random guessing.
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Circuit Complexity Separations

▶ Lemma 16. Let C : {−1, 1}2kN → {−1, 1} be an AC0 circuit of depth d ≥ 1 and size s.
Then,

∣∣∣∣∣ E
z∼σ

(k)
0

[C(z)] − E
z∼σ

(k)
1

[C(z)]

∣∣∣∣∣ ≤

O
(

log2d−2(s)
)

N1/2

k

▶ Theorem 17. The distributions σ
(k)
1 and σ

(k)
0 can be distinguished by a bounded-error

quantum query protocol with O(k5 log2 N log k) queries with 2/3 advantage. However, every
constant depth circuit of size o

(
exp

(
N

1
4(d−1)

))
can distinguish these distributions with at

most exp(−Ω(k)) advantage.

Setting k = ⌈logc N⌉ for c ∈ N in Theorem 17 gives us an explicit family of distributions
that are distinguishable by cost Õ(log5c+2 N) quantum query algorithms, however every
constant depth circuit of quasipolynomial size can distinguish them with at most 1

2Ω(logc N)

advantage.
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