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Abstract
We analyze the Fourier growth, i.e. the L1 Fourier weight at level k (denoted L1,k), of various
well-studied classes of “structured” F2-polynomials. This study is motivated by applications in
pseudorandomness, in particular recent results and conjectures due to [9, 10, 8] which show that
upper bounds on Fourier growth (even at level k = 2) give unconditional pseudorandom generators.

Our main structural results on Fourier growth are as follows:
We show that any symmetric degree-d F2-polynomial p has L1,k(p) ≤ Pr[p = 1] · O(d)k. This
quadratically strengthens an earlier bound that was implicit in [33].
We show that any read-∆ degree-d F2-polynomial p has L1,k(p) ≤ Pr[p = 1] · (k∆d)O(k).
We establish a composition theorem which gives L1,k bounds on disjoint compositions of functions
that are closed under restrictions and admit L1,k bounds.

Finally, we apply the above structural results to obtain new unconditional pseudorandom
generators and new correlation bounds for various classes of F2-polynomials.
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1 Introduction

1.1 Background: L1 Fourier norms and Fourier growth
Over the past several decades, Fourier analysis of Boolean functions has emerged as a
fundamental tool of great utility across many different areas within theoretical computer
science and mathematics. Areas of application include (but are not limited to) combinatorics,
the theory of random graphs and statistical physics, social choice theory, Gaussian geometry
and the study of metric spaces, cryptography, learning theory, property testing, and many
branches of computational complexity such as hardness of approximation, circuit complexity,
and pseudorandomness. The excellent book of O’Donnell [29] provides a broad introduction.
In this paper we follow the notation of [29], and for a Boolean-valued function f on n Boolean
variables and S ⊆ [n], we write f̂(S) to denote the Fourier coefficient of f on S.

Given the wide range of different contexts within which the Fourier analysis of Boolean
functions has been pursued, it is not surprising that many different quantitative parameters of
Boolean functions have been analyzed in the literature. In this work we are chiefly interested
in the L1 Fourier norm at level k:

▶ Definition 1 (L1 Fourier norm at level k). The L1 Fourier norm of a function f : {−1, 1}n →
{0, 1} at level k is the quantity

L1,k(f) :=
∑

S⊆[n]:|S|=k

|f̂(S)|.

For a function class F , we write L1,k(F) to denote maxf∈F L1,k(f).

As we explain below, strong motivation for studying the L1 Fourier norm at level k (even
for specific small values of k such as k = 2) is given by exciting recent results in unconditional
pseudorandomness. More generally, the notion of Fourier growth is a convenient way of
capturing the L1 Fourier norm at level k for every k:

▶ Definition 2 (Fourier growth). A function class F ⊆ {f : {−1, 1}n → {0, 1}} has Fourier
growth L1(a, b) if there exist constants a and b such that L1,k(F) ≤ a · bk for every k.

The notion of Fourier growth was explicitly introduced by Reingold, Steinke, and Vadhan
in [33] for the purpose of constructing pseudorandom generators for space-bounded com-
putation (though we note that the Fourier growth of DNF formulas was already analyzed
in [26], motivated by applications in learning theory). In recent years there has been a
surge of research interest in understanding the Fourier growth of different types of functions
[38, 19, 11, 22, 17, 39, 36, 16]. One strand of motivation for this study has come from the
study of quantum computing; in particular, bounds on the Fourier growth of AC0 [38] were
used in the breakthrough result of Raz and Tal [31] which gave an oracle separation between
the classes BQP and PH. More recently, in order to achieve an optimal separation between
quantum and randomized query complexity, several researchers [39, 1, 36] have studied the
Fourier growth of decision trees, with the recent work of [36] obtaining optimal bounds.
Analyzing the Fourier growth of other classes of functions has also led to separations between
quantum and classical computation in other settings [16, 17, 18].

Our chief interest in the current paper arises from a different line of work which has
established powerful applications of Fourier growth bounds in pseudorandomness. We
describe the relevant background, which motivates a new conjecture that we propose on
Fourier growth, in the next subsection.
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1.2 Motivation for this work: Fourier growth, pseudorandomness,
F2-polynomials, and the CHLT conjecture

1.2.1 Pseudorandom generators from Fourier growth bounds
Constructing explicit, unconditional pseudorandom generators (PRGs) for various classes
of Boolean functions is an important goal in complexity theory. In the recent work [9],
Chattopadhyay, Hatami, Hosseini, and Lovett introduced a novel framework for the design
of such PRGs. Their approach provides an explicit pseudorandom generator for any class of
functions that is closed under restrictions and has bounded Fourier growth:

▶ Theorem 3 (PRGs from Fourier growth: Theorem 23 of [9]). Let F be a family of n-variable
Boolean functions that is closed under restrictions and has Fourier growth L1(a, b). Then there
is an explicit pseudorandom generator that ϵ-fools F with seed length O(b2 log(n/ϵ)(log log n+
log(a/ϵ))).

Building on Theorem 3, in [10] Chattopadhyay, Hatami, Lovett, and Tal showed that in
fact it suffices to have a bound just on L1,2(F) in order to obtain an efficient PRG for F :

▶ Theorem 4 (PRGs from L1 Fourier norm bounds at level k = 2: Theorem 2.1 of [10]).
Let F be a family of n-variable Boolean functions that is closed under restrictions and has
L1,2(F) ≤ t. Then there is an explicit pseudorandom generator that ϵ-fools F with seed
length O((t/ϵ)2+o(1) · polylog(n)).

Observe that while Theorem 4 requires a weaker structural result than Theorem 3 (a
bound only on L1,2(F) as opposed to L1,k(F) for all k ≥ 1), the resulting pseudorandom
generator is quantitatively weaker since it has seed length polynomial rather than logarithmic
in the error parameter 1/ϵ. Even more recently, in [8] Chattopadhyay, Gaitonde, Lee,
Lovett, and Shetty further developed this framework by interpolating between the two results
described above. They showed that a bound on L1,k

1 for any k ≥ 3 suffices to give a PRG,
with a seed length whose ϵ-dependence scales with k:

▶ Theorem 5 (PRGs from L1 Fourier norm bounds up to level k for any k: Theorem 4.3 of [8]).
Let F be a family of n-variable Boolean functions that is closed under restrictions and has
L1,k(F) ≤ bk for some k ≥ 3. Then there exists a pseudorandom generator that ϵ-fools F

with seed length O

(
b

2+ 4
k−2 ·k·polylog( n

ϵ )

ϵ
2

k−2

)
.

1.2.2 F2-polynomials and the CHLT conjecture
The works [9] and [10] highlighted the challenge of proving L1,k bounds for the class of
bounded-degree F2-polynomials as being of special interest. Let

Polyn,d := the class of all n-variate F2-polynomials of degree d.

It follows from Theorem 4 that even proving

L1,2(Polyn,polylog(n)) ≤ n0.49 (1)

1 In fact, they showed that a bound on the weaker quantity M1,k(f) := maxx∈{−1,1}n |
∑

|S|=k
f̂(S)xS |

suffices.

APPROX/RANDOM 2021
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would give nontrivial PRGs for F2-polynomials of polylog(n) degree, improving on [5, 24, 41].
By the classic connection (due to Razborov [32]) between such polynomials and the class
AC0[⊕] of constant-depth circuits with parity gates, this would also give nontrivial PRGs,
of seed length n1−c, for AC0[⊕]. This would be a breakthrough improvement on existing
results, which are poor either in terms of seed length [15] or in terms of explicitness [12].

The authors of [10] in fact conjectured the following bound, which is much stronger than
Equation (1):

▶ Conjecture 6 ([10]). For all d ≥ 1, it holds that L1,2(Polyn,d) = O(d2).

1.2.3 Extending the CHLT conjecture

Given Conjecture 6, and in light of Theorem 5, it is natural to speculate that an even stronger
result than Conjecture 6 might hold. We consider the following natural generalization of the
[10] conjecture, extending it from L1,2(Polyn,d) to L1,k(Polyn,d):

▶ Conjecture 7. For all d, k ≥ 1, it holds that L1,k(Polyn,d) = O(d)k.

The work [10] proved that L1,1(Polyn,d) ≤ 4d, and already in [9] it was shown that
L1,k(Polyn,d) ≤ (23d · k)k, but to the best of our knowledge no other results towards Conjec-
ture 6 or Conjecture 7 are known.

Given the apparent difficulty of resolving Conjecture 6 and Conjecture 7 in the general
forms stated above, it is natural to study L1,2 and L1,k bounds for specific subclasses of
degree-d F2-polynomials. This study is the subject of our main structural results, which we
describe in the next subsection.

1.3 Our results: Fourier bounds for structured F2-polynomials

Our main results show that L1,2 and L1,k bounds of the flavor of Conjecture 6 and Conjecture 7
indeed hold for several well-studied classes of F2-polynomials, specifically symmetric F2-
polynomials and read-∆ F2-polynomials. We additionally prove a composition theorem that
allows us to combine such polynomials (or, more generally, any polynomials that satisfy
certain L1,k bounds) in a natural way and obtain L1,k bounds on the resulting combined
polynomials.

Before describing our results in detail, we pause to briefly explain why (beyond the
fact that they are natural mathematical objects) such “highly structured” polynomials are
attractive targets of study given known results. It has been known for more than ten years [2,
Lemma 2] that for any degree d < (1 − ϵ)n, a random F2-polynomial of degree d (constructed
by independently including each monomial of degree at most d with probability 1/2) is
extremely unlikely to have bias larger than exp(−n/d). It follows that as long as d is not
too large, a random degree-d polynomial p is overwhelmingly likely to have L1,k(p) = on(1),
which is much smaller than dk. (To verify this, consider the polynomials pS obtained by
XORing p with the parity function

∑
i∈S xi. Note that the bias of pS is the Fourier coefficient

of (−1)p on S. Now apply [2, Lemma 2] to each polynomial pS , and sum the terms.)
Since the conjectures hold true for random polynomials, it is natural to investigate highly

structured polynomials.
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1.3.1 Symmetric F2-polynomials
A symmetric F2-polynomial over x1, . . . , xn is one whose output depends only on the
Hamming weight of its input x. Such a polynomial of degree d can be written in the form

p(x) :=
d∑

k=0
ck

∑
|S|=k,S⊆[n]

∏
i∈S

xi,

where c0, . . . , cd ∈ {0, 1}. While symmetric polynomials may seem like simple objects, their
study can sometimes lead to unexpected discoveries; for example, a symmetric, low-degree
F2-polynomial provided a counterexample to the “Inverse conjecture for the Gowers norm”
[25, 20].

We prove the following upper bound on the L1 Fourier norm at level k for any symmetric
polynomial:

▶ Theorem 8. Let p(x1, . . . , xn) be a symmetric F2-polynomial of degree d. Then L1,k(p) ≤
Pr[p = 1] · O(d)k for every k.

We note that if d = n and p is the AND function, then an easy computation shows that
L1,k(p) = Pr[p = 1] ·

(
d
k

)
. Moreover, in Appendix A we show that this implies that the upper

bounds conjectured in Conjecture 7 are best possible for any constant k. Theorem 8 verifies
the [10] conjecture (Conjecture 6), and even the generalized version Conjecture 7, for the
class of symmetric polynomials.

Theorem 8 provides a quadratic sharpening of an earlier bound that was implicit in [33]
(as well as providing the “correct” dependence on Pr[p = 1]). In [33] Reingold, Steinke and
Vadhan showed that any function f computed by an oblivious, read-once, regular branching
program of width w has L1,k(f) ≤ (2w2)k. It follows directly from a result of [3] (Lemma 15
below) that any symmetric F2-polynomial p of degree d can be computed by an oblivious,
read-once, regular branching program of width at most 2d, and hence the [33] result implies
that L1,k(p) ≤ 8kd2k.

1.3.2 Read-∆ F2-polynomials
For ∆ ≥ 1, a read-∆ F2-polynomial is one in which each input variable appears in at most
∆ monomials. The case ∆ = 1 corresponds to the class of read-once polynomials, which
are simply sums of monomials over disjoint sets of variables; for example, the polynomial
x1x2 +x3x4 is read-once whereas x1x2 +x1x4 is read-twice. Read-once polynomials have been
studied from the perspective of pseudorandomness [23, 27, 22, 14] as they capture several
difficulties in improving Nisan’s generators [28] for width-4 read-once branching programs.

We show that the L1,k Fourier norm of read-∆ polynomials is polynomial in d and ∆:

▶ Theorem 9. Let p(x1, . . . , xn) be a read-∆ polynomial of degree d. Then L1,k(p) ≤ Pr[p =
1] · O(k)k · (d∆)8k.

[22] showed that read-once polynomials satisfy an L1,k bound of O(d)k for every k, but
we are not aware of previous bounds on even the L1 Fourier norm at level k = 2 for read-∆
polynomials, even for ∆ = 2.

As any monomial with degree Ω(log n) vanishes under a random restriction with high
probability, we have the following corollary which applies to polynomials of any degree.

▶ Corollary 10. Let p(x1, . . . , xn) be a read-∆ polynomial. Then L1,k(p) ≤ O(k)9k ·
(∆ log n)8k.

APPROX/RANDOM 2021
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1.3.3 A composition theorem
The upper bounds of Theorem 8 and Theorem 9 both include a factor of Pr[p = 1]. (We
observe that negating p, i.e. adding 1 to it, does not change its L1,2 or L1,k and keeps p

symmetric (respectively, read-∆) if it was originally symmetric (respectively, read-∆), and
hence in the context of those theorems we can assume that this Pr[p = 1] factor is at most
1/2.) Level-k bounds that include this factor have appeared in earlier works for other classes
of functions [30, 4, 11, 39, 18], and have been used to obtain high-level bounds for other
classes of functions [11, 39, 18] and to extend level-k bounds to more general classes of
functions [22]. Having these Pr[p = 1] factors in Theorem 8 and Theorem 9 is important for
us in the context of our composition theorem, which we now describe. We begin by defining
the notion of a disjoint composition of functions:

▶ Definition 11. Let F be a class of functions from {−1, 1}m to {−1, 1} and let G be a class
of functions from {−1, 1}ℓ to {−1, 1}. Define the class H = F ◦ G of disjoint compositions
of F and G to be the class of all functions from {−1, 1}mℓ to {−1, 1} of the form

h(x1, . . . , xm) = f(g1(x1), . . . , gm(xm)),

where g1, . . . , gm ∈ G are defined on m disjoint sets of variables and f ∈ F .

As an example of this definition, the class of block-symmetric polynomials (i.e. polynomials
whose variables are divided into blocks and are symmetric within each block but not overall)
are a special case of disjoint compositions where G is taken to be the class of symmetric
polynomials. We remark that block-symmetric polynomials are known to correlate better
with parities than symmetric polynomials in certain settings [21].

We prove a composition theorem for upper-bounding the L1 Fourier norm at level k of
the disjoint composition of any classes of functions that are closed under restriction and
admit a L1,k bound of the form Pr[f = 1] · a · bk:

▶ Theorem 12. Let g1, . . . , gm ∈ G and let f ∈ F , where F is closed under restrictions.
Suppose that for every 1 ≤ k ≤ K, we have
1. L1,k(f) ≤ Pr[f = 1] · aout · bk

out for every f ∈ F , and
2. L1,k(g) ≤ Pr[g = 1] · ain · bk

in for every g ∈ G.
Then for every ±1-valued function h ∈ H = F ◦ G, we have that

L1,K(h) ≤ Pr[h = 1] · aout · (ainbinbout)K .

See the full version of this paper for a slightly sharper bound. We remark that Theorem 12
does not assume any F2-polynomial structure for the functions in F or G and thus may be
of broader utility.

1.4 Applications of our results
Our structural results imply new pseudorandom generators and correlation bounds.

1.4.1 Pseudorandom generators
Combining our Fourier bounds with the polarizing framework, we obtain new PRGs for
read-few polynomials. The following theorem follows from applying Theorem 5 with some
k = Θ(log n) and the L1,k bound in Corollary 10.



J. Błasiok, P. Ivanov, Y. Jin, C. H. Lee, R. A. Servedio, and E. Viola 53:7

▶ Theorem 13. There is an explicit pseudorandom generator that ϵ-fools read-∆ F2-
polynomials with seed length poly(∆, log n, log(1/ϵ)).

For constant ϵ, this improves on a PRG by Servedio and Tan [34], which has a seed length of
2O(

√
log(∆n)). (Note that read-∆ polynomials are also (∆n)-sparse.) We are not aware of

any previous PRG for read-2 polynomials with polylog(n) seed length.
Note that the OR function has L1 Fourier norm O(1). By expressing a DNF in the Fourier

expansion of OR in its terms, it is not hard to see that the same PRG also fools the class of
read-∆ DNFs (and read-∆ CNFs similarly) [35].

1.4.2 Correlation bounds
Exhibiting explicit Boolean functions that do not correlate with low-degree polynomials is a
fundamental challenge in complexity. Perhaps surprisingly, this challenge stands in the way
of progress on a striking variety of frontiers in complexity, including circuits, rigidity, and
multiparty communication complexity. For a survey of correlation bounds and discussions of
these connections we refer the reader to [40, 42, 44].

For polynomials of degree larger than log2 n, the state-of-the-art remains the lower bound
proved by Razborov and Smolensky in the 1980s’ [32, 37], showing that for any degree-d
polynomial p and an explicit function h (in fact, majority) we have:

Pr[p(x) = h(x)] ≤ 1/2 + O(d/
√

n).

Viola [43] recently showed that upper bounds on L1,k(F) imply correlation bounds
between F and an explicit function hk that is related to majority and is defined as

hk(x) := sgn
(∑

|S|=k

xS

)
.

In particular, proving Conjecture 6 or related conjectures implies new correlation bounds
beating Razborov–Smolensky. The formal statement of the connection is given by the
following theorem.

▶ Theorem 14 (Theorem 1 in [43]). For every k ∈ [n] and F ⊆ {f : {0, 1}n → {−1, 1}},
there is a distribution Dk on {0, 1}n such that for any f ∈ F ,

Pr
x∼Dk

[f(x) = hk(x)] ≤ 1
2 + ek

2
√(

n
k

)L1,k(F).

For example, if k = 2 and we assume that the answer to Conjecture 6 is positive, then
the right-hand side above becomes 1/2 + O(d2/n), which is a quadratic improvement over
the bound by Razborov and Smolensky.

Therefore, Theorems 8 and 9 imply correlation bounds between these polynomials and
an explicit function that are better than O(d/

√
n) given in [32, 37]. We note that via a

connection in [41], existing PRGs for these polynomials already imply strong correlation
bounds between these polynomials and the class of NP. Our results apply to more general
classes via the composition theorem, where it is not clear if previous techniques applied.
For a concrete example, consider the composition of a degree-(nα) symmetric polynomial
with degree-(nα) read-(nα) polynomials. Theorem 12 shows that such polynomial has
L1,2 ≤ nO(α). For a sufficiently small α = Ω(1), we again obtain correlation bounds
improving on Razborov–Smolensky.

APPROX/RANDOM 2021
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1.5 Related work
We close this introduction by discussing a recent work of Girish, Tal and Wu [18] on parity
decision trees that is related to our results.

Parity decision trees are a generalization of decision trees in which each node queries a
parity of some input bits rather than a single input bit. The class of depth-d parity decision
trees is a subclass of F2 degree-d polynomials, as such a parity decision tree can be expressed
as a sum of products of sums over F2, where each product corresponds to a path in the tree
(and hence gives rise to F2-monomials of degree at most d). The Fourier spectrum of parity
decision trees was first studied in [4], which obtained a level-1 bound of O(

√
d). This bound

was recently extended to higher levels in [18], showing that any depth-d parity decision tree
T over n variables has L1,k(T ) ≤ dk/2 · O(k log n)k.

2 Our techniques

We now briefly explain the approaches used to prove our results. We note that each of
these results is obtained using very different ingredients, and hence the results can be read
independently of each other.

2.1 Symmetric polynomials (Theorem 8, Section 4)
The starting point of our proof is a result from [3], which says that degree-d symmetric
F2-polynomials only depend on the Hamming weight of their input modulo m for some m

(a power of two) which is Θ(d). Given this, since p(x) takes the same value for all strings
x with the same weights ℓ mod m, to analyze L1,k(p) it suffices to analyze E[(−1)x1+···+xk ]
conditioned on x having Hamming weight exactly ℓ mod m.

We bound this conditional expectation by considering separately two cases depending on
whether or not k ≤ n/m2. For the case that k ≤ n/m2, we use a (slight sharpening of a)
result from [6], which gives a bound of m−ke−Ω(n/m2). In the other case, that k ≥ n/m2,
in Lemma 17 we prove a bound of O(km/n)k. This is established via a careful argument
that gives a new bound on the Kravchuk polynomial in certain ranges (see the full version
of the paper for more details), extending and sharpening similar bounds that were recently
established in [13] (the bounds of [13] would not suffice for our purposes).

In each of the above two cases, summing over all the
(

n
k

)
coefficients gives the desired

bound of O(m)k = O(d)k.

2.2 Read-∆ polynomials (Theorem 9, Section 5)
Writing f := (−1)p for an F2-polynomial p, we observe that the coefficient f̂(S) is simply
the bias of pS(x) := p(x) +

∑
i∈S xi. Our high-level approach is to decompose the read-few

polynomial pS into many disjoint components, then show that each component has small
bias. Since the components are disjoint, the product of these biases gives an upper bound on
the bias of pS .

In more detail, we first partition the variables according to the minimum degree ti of the
monomials containing each variable xi. Then we start decomposing pS by collecting all the
monomials in p containing xi to form the polynomial pi. We observe that the larger ti is,
the more likely pi is to vanish on a random input, and therefore the closer pi + xi is to being
unbiased. For most S, we can pick many such pi’s (i ∈ S) from p so that they are disjoint.
For the remaining polynomial r, because ∆ and d are small, we can further decompose r into
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many disjoint polynomials ri. Finally, our upper bound on |f̂(S)| will be the magnitude of
the product of the biases of the pi’s and ri’s. We note that our decomposition of p uses the
structure of S; and so the upper bound on f̂(S) depends on S (see Lemma 18). Summing
over each |f̂(S)| gives our upper bound.

2.3 Composition theorem (Theorem 12, Section 6)

As a warmup, let us first consider directly computing a degree-1 Fourier coefficient ĥ({(i, j)})
of the composition. Since the inner functions gi depend on disjoint variables, by writing the
outer function f in its Fourier expansion, it is not hard to see that

ĥ({(i, j)}) =
∑
S∋i

f̂(S)
∏

ℓ∈S\{i}

E[gℓ] · ĝi({j}).

When the gi’s are balanced, i.e. E[gi] = 0, we have f̂({(i, j)}) = f̂({i})ĝi({j}), and it follows
that L1,1(h) ≤ L1,1(F)L1,1(G). To handle the unbalanced case, we apply an idea from [9]
that lets us relate

∑
S∋i f̂(S)

∏
ℓ∈S\{i} E[gℓ] to the average of f̂R({i}), for some suitably

chosen random restriction R on f (see Claim 20). As F is closed under restrictions, we can
apply the L1,1(F) bound on fR, which in turns gives a bound on

∑
S∋i f̂(S)

∏
ℓ∈S\{i} E[gℓ]

in terms of L1,1(F) and E[gi].
Bounding L1,k(h) for k ≥ 2 is more complicated, as each ĥ(S) involves f̂(J) and ĝi(T )’s,

where the sets J and T have different sizes. We provide more details in Section 6.

3 Preliminaries

Notation. For a string x ∈ {0, 1}n we write |x| to denote its Hamming weight
∑n

i=1 xi.
We use Xw to denote {x : |x| = w}, the set of n-bit strings with Hamming weight w, and
Xℓ mod m =

⋃
w:w≡ℓ mod m Xw = {x : |x| ≡ ℓ mod m}.

We recall that for an n-variable Boolean function f , the level-k Fourier L1 norm of f is

L1,k(f) =
∑

S⊂[n]:|S|=k

|f̂(S)|.

We note that a function f and its negation have the same L1,k for k ≥ 1. Hence we can
often assume that Pr[f = 1] ≤ 1/2, or replace the occurrence of Pr[f = 1] in a bound by
min{Pr[f = 1], Pr[f = 0]} for a {0, 1}-valued function f (or by min{Pr[f = 1], Pr[f = −1]}
for a {−1, 1}-valued function). If f is a {−1, 1}-valued function then 1−|E[f ]|

2 is equal to
min{Pr[f = 1], Pr[f = −1]}, and we will often write 1−|E[f ]|

2 for convenience.
Unless otherwise indicated, we will use the letters p, q, r, etc. to denote F2-polynomials

(with inputs in {0, 1}n and outputs in {0, 1}) and the letters f, g, h, etc. to denote general
Boolean functions (where the inputs may be {0, 1}n or {−1, 1}n and the outputs may be
{0, 1} or {−1, 1} depending on convenience). We note that changing from {0, 1} outputs to
{−1, 1} outputs only changes L1,k by a factor of 2.

We use standard multilinear monomial notation as follows: given a vector β = (β1, . . . , βn)
and a subset T ⊆ [n], we write βT to denote

∏
j∈T βj .
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4 L1,k bounds for symmetric polynomials

In this section we prove Theorem 8, which gives an upper bound on L1,k(p) for any symmetric
F2-polynomial p of degree d, covering the entire range of parameters 1 ≤ k, d ≤ n.

4.1 Proof idea
As the polynomial p is symmetric, its Fourier coefficient p̂(S) only depends on |S|, the
size of S. Hence to bound L1,k it suffices to analyze the coefficient p̂({1, . . . , k}) =
Ex∼{0,1}n [p(x)(−1)x1+···+xk ].

Our proof uses a result from [3] (Lemma 15 below), which says that degree-d symmetric
F2-polynomials only depend on the Hamming weight of their input modulo m for some
m = O(d). Given this, since p(x) takes the same value for strings x with the same weights
ℓ mod m, we can in turn bound each E[(−1)x1+···+xk ] conditioned on x having Hamming
weight exactly ℓ mod m, i.e. x ∈ Xℓ mod m. We consider two cases depending on whether or
not k ≤ n/m2. If k ≤ n/m2, we can apply a (slight sharpening of a) result from [6], which
gives a bound of m−ke−Ω(n/m2). If k ≥ n/m2, in Lemma 17 we prove a bound of O(km/n)k.
In each case, summing over all the

(
n
k

)
coefficients gives the desired bound of O(m)k = O(d)k.

We now give some intuition for Lemma 17, which upper bounds the magnitude of the
ratio

E
x∼Xℓ mod m

[(−1)x1+···+xk ] =
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|
(2)

by O(km/n)k. Let us first consider k = 1 and m = Θ(
√

n). As most strings x have Hamming
weight within [n/2 − Θ(

√
n), n/2 + Θ(

√
n)], it is natural to think about the weight |x| in the

form of n/2 + mZ+ ℓ′. It is easy to see that the denominator is at least Ω(2n/
√

n), so we
focus on bounding the numerator. Consider the quantity

∑
x∈Xn/2+s

E[(−1)x1 ] for some s.
As we are summing over all strings of the same Hamming weight, we can instead consider∑

x∈Xn/2+s
Ei∼[n][(−1)xi ]. For any string of weight n/2 + s, it is easy to see that

E
i∼[n]

[(−1)xi ] = (1/2 − s/n) − (1/2 + s/n) = −2s/n. (3)

Therefore, in the k = 1 case we get that∣∣∣∣ E
x∼Xℓ mod m

[(−1)x1+···+xk ]
∣∣∣∣ ≤ 2

∑
c

(
n

n/2 + cm + ℓ′

)
|cm + ℓ′|

n
.

Using the fact that
(

n
n/2+cm+ℓ′

)
is exponentially decreasing in |c|, in the full version of the

paper we show that this is at most O(2n/n). So the ratio in (2) is at most O(1/
√

n), as
desired, when k = 1.

However, already for k = 2, a direct (but tedious) calculation shows that

E
i<j

[(−1)xi+xj ] = 4s2 − 2ns + n

n(n − 1) , (4)

which no longer decreases in s like in (3). Nevertheless, we observe that this is bounded by
O(1/n + (|s|/n)2), which is sufficient for bounding the ratio by O(1/n). Building on this,
for any k we obtain a bound of 2O(k)((k/n)k/2 + (|s|/n))k in the full version of the paper,
and by a more careful calculation we are able to obtain the desired bound of O(km/n)k on
Equation (2).
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4.2 Proof of Theorem 8
We now prove the theorem. We will use the following result from [3], which says that degree-d
symmetric F2-polynomials only depend on their input’s Hamming weight modulo O(d).

▶ Lemma 15 (Theorem 2.4 in [3], p = 2). Let p : {0, 1}n → {0, 1} be a symmetric F2-
polynomial of degree d, where m/2 ≤ d < m and m is a power of two. Then p(x) only
depends on |x| mod m.

We will also use two bounds on the biases of parities under the uniform distribution over
Xℓ mod m, one holds for k ≤ n/(2d)2 ≤ n/m2 (Claim 16) and the other for k ≥ n/(2d)2 ≥
n/(4m2) (Lemma 17). Claim 16 is essentially taken from [6]. However, the statement in [6]
has a slightly worse bound; so in the full version of the paper we explain the changes required
to give the bound of Claim 16. The proof of Lemma 17 involves bounding the magnitude of
Kravchuk polynomials. As it is somewhat technical we defer its proof to the full version of
the paper.

▷ Claim 16 (Lemma 10 in [6]). For every 1 ≤ k ≤ n/m2 and every integer ℓ,

2−n
∣∣∣ ∑
x∈Xℓ mod m

(−1)x1+···+xk

∣∣∣ ≤ m−(k+1)e−Ω(n/m2),

while for k = 0,∣∣∣2−n|Xℓ mod m| − 1/m
∣∣∣ ≤ m−1e−Ω(n/m2).

▶ Lemma 17. For k ≥ n/(4m2), we have(
n

k

)
· max

ℓ

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ O(m)k.

We now use Claim 16 and Lemma 17 to prove Theorem 8.

Proof of Theorem 8. As p is symmetric, all the level-k coefficients are the same, so it suffices
to give a bound on p̂({1, 2, . . . , k}). Let p̃ : {0, . . . , n} → {0, 1} be the function defined by
p̃(|x|) := p(x1, . . . , xn). By Lemma 15, we have p̃(ℓ) = p̃(ℓ mod m) for some d < m ≤ 2d

where m is a power of 2. Using the definition of p̂({1, . . . , k}), we have

|p̂({1, . . . , k})| =
∣∣∣∣ E
x∼{0,1}n

[
p(x)(−1)x1+···+xk

]∣∣∣∣
=

∣∣∣∣∣
m−1∑
ℓ=0

p̃(ℓ) |Xℓ mod m|
2n

·
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣
≤ E[p] · max

0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣,
where we use the shorthand E[p] = Ex∼{0,1}n [p(x)] in the last step.

When k ≤ n/(2d)2 ≤ n/m2, by Claim 16 (using the first bound for the numerator and
the second k = 0 bound for the denominator) we have

max
0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ m−(k+1)e−Ω(n/m2)

m−1(1 − e−Ω(n/m2))
≤ O(1) · m−ke−Ω(n/m2),
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where the last inequality holds because 1 ≤ k ≤ n/m2 and hence the (1 − e−Ω(n/m2)) factor
in the denominator of the left-hand side is Ω(1). Hence, summing over all the

(
n
k

)
level-k

coefficients, we get that

L1,k(p) ≤ E[p]·
(

n

k

)
·O(1)·m−ke−Ω(n/m2) ≤ E[p]·O(1)·mk

( ne

km2

)k

e−Ω(n/m2) ≤ E[p]·O(m)k,

where the last inequality is because for constant c, the function (x/k)ke−cx is maximized
when x = k/c, and is O(1)k.

When k ≥ n/(2d)2 ≥ n/(4m2), by Lemma 17 we have

L1,k(p) ≤ E[p] ·
(

n

k

)
max

0≤ℓ≤m−1

∣∣∣∣∣
∑

x∈Xℓ mod m
(−1)x1+···+xk

|Xℓ mod m|

∣∣∣∣∣ ≤ E[p] · O(m)k. ◀

5 L1,k bounds for read-∆ polynomials

In this section we prove our L1,k bounds for read-few polynomials, proving Theorem 9.

5.1 Proof idea
We first observe that for f = (−1)p, the Fourier coefficient f̂(S) is simply the bias of the
F2-polynomial pS(x) := p(x) +

∑
i∈S xi. Assuming that pS depends on all n variables, by a

simple greedy argument we can collect n/poly(∆, d) polynomials in pS so that each of them
depends on disjoint variables, and it is not hard to show that the product of the biases of
these polynomials upper bounds the bias of pS . From this is easy to see that any read-∆
degree-d polynomial has bias exp(2−dn/poly(∆, d)). However, this quantity is too large to
sum over

(
n
k

)
coefficients.

Our next idea (Lemma 18) is to give a more refined decomposition of the polynomial p

by inspecting the variables xi : i ∈ S more closely. Suppose the variables xi : i ∈ S are far
apart in their dependency graph (see the definition of Gp below), as must indeed be the case
for most of the

(
n
k

)
size-k sets S. Then we can collect all the monomials containing each xi

to form a polynomial pi, and these pi’s will depend on disjoint variables. Moreover, if every
monomial in pi has high degree (see the definition of Vt(p) below), then pi = 0 with high
probability and therefore pi + xi is almost unbiased. Therefore, we can first collect these pi

and xi from pS ; then, for the remaining m ≥ |S| · poly(∆, d) monomials in pS , as before we
collect m/poly(∆, d) polynomials ri so that they depend on disjoint variables, but this time
we collect these monomials using the variables in Vt(p), and give an upper bound in terms of
the size |Vt(p)|. Multiplying the biases of the pi + xi’s and the bias of r gives our refined
upper bound on f̂(S) in Lemma 18.

5.2 Proof of Theorem 9
We now proceed to the actual proof. We first define some notions that will be used throughout
our arguments. For a read-∆ degree-d polynomial p, we define Vt(p) : t ∈ [d] and Gp as
follows.

For every t ∈ [d], define

Vt(p) := {i ∈ [n] : the minimum degree of the monomials in p containing xi is t}.

Note that the sets V1(p), . . . , Vd(p) form a partition of the input variables p depends on.
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Define the undirected graph Gp on [n], where i, j ∈ [n] are adjacent if xi and xj both
appear in the same monomial in q. Note that Gp has degree at most ∆d. For S ⊆ [n], we
use N=d(S) to denote the indices that are at distance exactly i to S in Gp, and use N≤d(S)
to denote

⋃d
j=0 N=j(S).

We first state our key lemma, which gives a refined bound on each f̂(S) stronger than
the naive bound sketched in the first paragraph of the “Proof Idea” above, and use it to
prove Theorem 9. Due to lack of space, we defer its proof to the full version of the paper.

▶ Lemma 18 (Main lemma for read-∆ polynomials). Let p(x1, . . . , xn) be a read-∆ degree-d
polynomial. Let S ⊆ [n], |S| ≥ ℓ be a subset containing some ℓ indices i1, . . . , iℓ ∈ S whose
pairwise distances in Gp are at least 4, and let t1, . . . , tℓ ∈ [d] be such that each ij ∈ Vtj

(p).
Let f = (−1)p. Then

|f̂(S)| ≤ O(1)|S| · ∆ℓ
∏

j∈[ℓ]

(
2−tj exp

(
−

2−tj |Vtj
(p)|

ℓ · (∆d)4

))
.

Proof of Theorem 9. Using a reduction given in the proof of [7, Lemma 2.2], it suffices to
prove the same bound without the acceptance probability factor, i.e. to prove that for every
1 ≤ k ≤ n,

L1,k(p) ≤ O(k)k · (∆d)8k.

As [7] did not provide an explicit statement of the reduction, for completeness we provide a
self-contained statement and proof in Lemma 22 in Appendix A.

For every subset S ⊆ [n] of size k, there exists an ℓ ≤ k and i1, . . . , iℓ ∈ S such that their
pairwise distances in Gp are at least 4, each ij ∈ Vtj (p) for some tj ∈ [d], and each of the
remaining k − ℓ indices in S is within distance at most 3 to some ij .

Fix any i1, . . . , iℓ, and let us bound the number of subsets S ⊆ [n] of size k that can
contain i1, . . . , iℓ. Because |N≤3(j)| ≤ (∆d)3 + (∆d)2 + ∆d + 1 ≤ 4(∆d)3 for every j ∈ [n],
the remaining k − ℓ indices of S can appear in at most∑

j1+···+jℓ=k−ℓ

∏
b∈[ℓ]

(
4(∆d)3

jb

)
=
(

4ℓ(∆d)3

k − ℓ

)

≤ (4(∆d)3)k · ek−ℓ

(
ℓ

k − ℓ

)k−ℓ

≤ (e∆d)3k

different ways, where the equality uses the Vandermonde identity, the first inequality uses(
n
k

)
≤ (en/k)k, and the last one uses ( ℓ

k−ℓ )k−ℓ ≤ (1 + ℓ
k−ℓ )k−ℓ ≤ eℓ and 4e < e3. Therefore,

by Lemma 18,∑
S:|S|=k

|f̂(S)| ≤
k∑

ℓ=1

∑
t⊆[d]ℓ

[(∏
j∈[ℓ]

|Vtj
(p)|

)
· (e∆d)3k · O(1)k∆ℓ

∏
j′∈[ℓ]

(
2−t

j′ exp

(
−

2−t
j′ |Vt

j′ (p)|

ℓ(∆d)4

))]

≤ O(1)k · (∆d)3k

k∑
ℓ=1

∆ℓ
∑

t⊆[d]ℓ

∏
j∈[ℓ]

(
2−tj |Vtj

(p)| exp

(
−

2−tj |Vtj
(p)|

ℓ(∆d)4

))

≤ O(1)k · (∆d)3k

k∑
ℓ=1

∆ℓ · d
ℓ · (ℓ(∆d)4)ℓ

≤ O(k)k · (∆d)3k · (∆d)5k

= O(k)k · (∆d)8k
,

where the third inequality is because the function x 7→ xe−x/c is maximized when x = c.
This completes the proof. ◀
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6 L1,k bounds for disjoint compositions

In this section we give L1,k bounds on disjoint compositions of functions, proving Theorem 12.

6.1 Proof idea

Before proving Theorem 12, we briefly describe the main ideas of the proof. For a subset
J ⊆ [m], let ∂Jf denote the J-th derivative of f , which can be expressed as

∂Jf(x1, . . . , xm) :=
∑
T ⊇J

f̂(T )xT \J .

Note that f̂(J) = ∂Jf (⃗0).
Let us begin by considering the task of bounding L1,1(h) =

∑
(i,j)∈[m]×[ℓ]|ĥ{(i, j)}|. Let

β = (β1, . . . , βm), where βi := E[gi]. Using the Fourier expansion of f , we have

ĥ{(i, j)} =
∑

S⊆[m]

f̂(S) E
[∏

k∈S

gk(xk) · xi,j

]
.

If S ̸∋ i, then the expectation is zero, because
∏

k∈S gk(xk) and xi,j are independent and
E[xi,j ] = 0. So, we have

ĥ{(i, j)} =
∑
S∋i

f̂(S)βS\{i} · ĝi({j}) = ∂if(β) · ĝi({j}).

If the functions gi are balanced, i.e. E[gi] = 0 for all i, then we would have β = 0⃗, and

ĥ{(i, j)} = ∂if (⃗0) · ĝi({j}) = f̂({i})ĝi({j}).

So in this case we have

L1,1(h) =
∑

i∈[m],j∈[ℓ]

∣∣ĥ({(i, j)})
∣∣ =

∑
i∈[m]

∑
j∈[ℓ]

|f̂({i})ĝi({j})| =
∑

i∈[m]

|f̂({i})|
∑
j∈[ℓ]

|ĝi({j})|

and we can apply our bounds on L1,1(F) and L1,1(G) to
∑

i∈[m] f̂{i} and
∑

j∈[ℓ] ĝi{j}
respectively. Specializing to the case g1 = · · · = gm, we have

▷ Claim 19. Suppose g1 = g2 = · · · = gm =: g and E[g] = 0. Then L1,1(h) = L1,1(f)L1,1(g).

In general the gi’s may not all be the same and may not be balanced, and so it seems
unclear how we can apply our L1,1(F) bound on

∑
i∈[m] ∂if(β1, . . . , βm) when β ̸= 0⃗. To

deal with this, in Claim 20 below we apply a clever idea introduced in [9] that lets us
relate f(β) at a nonzero point β to the average of fRβ

(⃗0), where fRβ
is f with some of its

inputs fixed by a random restriction Rβ . As F is closed under restrictions, we have that
fRβ

∈ F and we can apply the L1,1(F) bound on
∑

i ∂ifRβ
(⃗0), which in turn gives a bound

on
∑

i∈[m] ∂if(β1, . . . , βm).
Bounding L1,K(h) for K ≥ 2 is more complicated, as now each ĥ(S) involves many f̂(J)

and ĝi(T )’s, where the sets J and T have different sizes. So one has to group the coefficients
carefully.
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6.2 Useful notation
For a set S ⊆ [m] × [ℓ], let S|f := {i ∈ [m] : (i, j) ∈ S for some j ∈ [ℓ]} be the “set of first
coordinates” that occur in S, and let S|i := {j ∈ [ℓ] : (i, j) ∈ S}. Note that if (i, j) ∈ S, then
i ∈ S|f and j ∈ S|i. Let β denote the vector (β1, . . . , βm), where βi := E[gi] for each i ∈ [m].
For a set J = {i1, . . . , i|J|} ⊆ [m] and f = f(y1, . . . , ym), we write ∂Jf to denote ∂|J|f

∂yi1 ···∂yi|J|
.

Since ∂JyT = 1(T ⊇ J)yT \J , by the multilinearity of f we have that

∂Jf(β) =
∑
T ⊇J

f̂(T )β T \J . (5)

6.3 The random restriction Rβ

Given β ∈ [−1, 1]m, let Rβ be the random restriction which is the randomized function from
{−1, 1}m to {−1, 1}m whose i-th coordinate is (independently) defined by

Rβ(y)i :=
{

sgn(βi) with probability |βi|
yi with probability 1 − |βi|.

Note that we have

E
Rβ ,y

[Rβ(y)i] = E
Rβ

[Rβ (⃗0)i] = βi.

Define fRβ
(y) to be the (randomized) function f(Rβ(y)). By the multilinearity of f and

independence of the Rβ(y)i we have

E
Rβ ,y

[fRβ
(y)] = E

Rβ

[fRβ
(⃗0)] = f(β).

The following claim relates the two derivatives ∂Sf(β) and ∂SfRβ
(⃗0) = f̂Rβ

(S).

▷ Claim 20.

∂Sf(β) =
∏
i∈S

1
1 − |βi|

· E
Rβ

[∂SfRβ
(⃗0)] =

∏
i∈S

1
1 − |βi|

· E
Rβ

[f̂Rβ
(S)].

Proof. Due to lack of space, we defer the proof to the full version of the paper. ◁

We can use Claim 20 to express each coefficient of h in terms of the coefficients of f and gi.

▶ Lemma 21. For S ⊆ [m]×[ℓ], we have ĥ(S) =
∏

i∈S|f
ĝi(S|i)·

∏
i∈S|f

1
1−|βi| ·ERβ

[f̂Rβ
(S|f )].

Proof. Due to lack of space, we defer the proof to the full version of the paper. ◀

6.4 Proof of Theorem 12
By Lemma 21, L1,K(h) is equal to

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| =
∑

S⊆[m]×[ℓ]:|S|=K

∣∣∣∣ ∏
i∈S|f

ĝi(S|i) ·
∏

i∈S|f

1
1 − |βi|

· E
Rβ

[f̂Rβ
(S|f )]

∣∣∣∣.
We enumerate all the subsets S ⊆ [m] × [ℓ] of size K in the following order: For every
|J | = k ∈ [K] out of the m blocks of ℓ coordinates, we enumerate all possible combinations
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of the (disjoint) nonempty subsets {Si : i ∈ J} in those k blocks whose sizes sum to K.
Rewriting the summation above in this order, we obtain

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| =
K∑

k=1

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∣∣∣∣∣∏
i∈J

ĝi(Si)
∏
i∈J

1
1 − |βi|

E
Rβ

[
f̂Rβ (J)

]∣∣∣∣∣
≤

K∑
k=1

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∏
i∈J

∣∣ĝi(Si)
∣∣∏

i∈J

1
1 − |βi|

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣.
(6)

Since L1,wi
(gi) ≤ 1−|βi|

2 · ain · bwi
in , for every {wi}i∈J such that

∑
i∈J wi = K, we have

∑
{Si}i∈J ⊆[ℓ]J :
∀i∈J:|Si|=wi

∏
i∈J

|ĝi(Si)| =
∏
i∈J

L1,wi
(gi) ≤

∏
i∈J

(1 − |βi|
2 ainbwi

in

)
= bK

in a
|J|
in

∏
i∈J

1 − |βi|
2 .

Plugging the above into (6), we get that

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| ≤ bK
in

K∑
k=1

ak
in

∑
J⊆[m]
|J|=k

∑
w⊆[ℓ]J∑
i∈J

wi=K

∏
i∈J

(
1 − |βi|

2 · 1
1 − |βi|

·
∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣)

= bK
in

K∑
k=1

(
ain

2

)k ∑
J⊆[m]
|J|=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣ ∑
w⊆[ℓ]J∑
i∈J

wi=K

1

≤ bK
in

K∑
k=1

(
ain

2

)k
(

K − 1
k − 1

) ∑
J⊆[m]
|J|=k

∣∣∣E
Rβ

[
f̂Rβ (J)

]∣∣∣, (7)

where the last inequality is because for every subset J ⊆ [m], the set {w ⊆ [ℓ]J :
∑

i∈J wi =
K} has size at most

(
K−1
|J|−1

)
. We now bound |ERβ

[f̂Rβ
(J)]|. Since for every restriction Rβ ,

we have fRβ
∈ F (by the assumption that F is closed under restrictions), it follows that

L1,k(fRβ
) ≤

1 − |Ey[fRβ
(y)]|

2 aoutb
k
out ≤

1 − Ey[fRβ
(y)]

2 aoutb
k
out.

So ∑
J⊆[m],|J|=k

∣∣∣E
Rβ

[
f̂Rβ

(J)
]∣∣∣ ≤ E

Rβ

[L1,k(fRβ
)]

≤
1 − ERβ ,y[fRβ

(y)]
2 aoutb

k
out

= 1 − E[h]
2 aoutb

k
out.
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Continuing from (7), we get

∑
S⊆[m]×[ℓ]:|S|=K

|ĥ(S)| ≤ 1 − E[h]
2 · bK

in ·
K∑

k=1

(ain
2

)k

·
(

K − 1
k − 1

)
· aoutb

k
out

= 1 − E[h]
2 · aout · bK

in · ainbout
2

(
1 + ainbout

2

)K−1

≤ 1 − E[h]
2 · aout · (ainbinbout)K .

where the last equality used the binomial theorem. Applying the same argument to −h lets
us replace 1−E[h]

2 with 1−|E[h]|
2 , concluding the proof of Theorem 12. ◀
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A Reduction to bound without acceptance probability

In this section, we show that given any L1,k Fourier norm bound on a class of functions that
is closed under XOR on disjoint variables, such a bound can be automatically “upgraded” to
a refined bound that depends on the acceptance probability:

▶ Lemma 22. Let F be a class of {−1, 1}-valued functions such that for every f ∈ F , the
XOR of disjoint copies of f (over disjoint sets of variables) also belongs to F . If L1,k(F) ≤ bk,
then for every f ∈ F it holds that L1,k(f) ≤ 2e · 1−|E[f ]|

2 · bk.

Proof. Suppose not, and let f ∈ F be such that L1,k(f) > 2e · 1−|E[f ]|
2 · bk. We first observe

that since L1,k(F) ≤ bk, it must be the case that 1 − |E[f ]| ≤ 1/e. Let α := 1−|E[f ]|
2 ∈ [0, 1

2e ]
so that |E[f ]| = 1−2α ≥ 1−1/e. Let f⊕t be the XOR of t disjoint copies of f on tn variables,
where the integer t is to be determined below. By our assumption, we have f⊕t ∈ F and
thus

L1,k(f⊕t) ≥
(

t

1

)
· L1,0(f)t−1 · L1,k(f) (by disjointness)

= t · (1 − 2α)t−1 · L1,k(f) (L1,0(f) = E[f ])
> t · (1 − 2α)t−1 · 2e · α · bk =: Λ(t).
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We note that if α = 0 then |E[f ]| = 1, so all the Fourier weight of f is on the constant
coefficient, and hence the claimed inequality holds trivially. So we subsequently assume that
0 < α ≤ 1

2e . Let t∗ := 1
− ln(1−2α) > 0. It is easy to verify that Λ(t) is increasing when t ≤ t∗,

and is decreasing when t ≥ t∗.
We choose t = ⌈t∗⌉. Since α ≤ 1

2e < e−1
2e ≈ 0.3161, we have t∗ > 1 and thus

L1,k(f⊕t) > Λ(⌈t∗⌉) ≥ Λ(t∗ + 1) =
(

1
− ln(1 − 2α) + 1

)
· (1 − 2α)

1
− ln(1−2α) · 2e · α · bk

=
(

2α

− ln(1 − 2α) + 2α

)
· bk ≥ bk,

where the last inequality holds for every α ∈ (0, e−1
2e ] and can be checked via elementary

calculations. This contradicts L1,k(F) ≤ bk, and the lemma is proved. ◀
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