
Visible Rank and Codes with Locality
Omar Alrabiah #

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA

Venkatesan Guruswami #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We propose a framework to study the effect of local recovery requirements of codeword symbols
on the dimension of linear codes, based on a combinatorial proxy that we call visible rank. The
locality constraints of a linear code are stipulated by a matrix 𝐻 of ★’s and 0’s (which we call a
“stencil”), whose rows correspond to the local parity checks (with the ★’s indicating the support of
the check). The visible rank of 𝐻 is the largest 𝑟 for which there is a 𝑟 × 𝑟 submatrix in 𝐻 with a
unique generalized diagonal of ★’s. The visible rank yields a field-independent combinatorial lower
bound on the rank of 𝐻 and thus the co-dimension of the code.

We point out connections of the visible rank to other notions in the literature such as unique
restricted graph matchings, matroids, spanoids, and min-rank. In particular, we prove a rank-nullity
type theorem relating visible rank to the rank of an associated construct called symmetric spanoid,
which was introduced by Dvir, Gopi, Gu, and Wigderson [5]. Using this connection and a construction
of appropriate stencils, we answer a question posed in [5] and demonstrate that symmetric spanoid
rank cannot improve the currently best known 𝑂(𝑛(𝑞−2)/(𝑞−1)) upper bound on the dimension of
𝑞-query locally correctable codes (LCCs) of length 𝑛. This also pins down the efficacy of visible
rank as a proxy for the dimension of LCCs.

We also study the 𝑡-Disjoint Repair Group Property (𝑡-DRGP) of codes where each codeword
symbol must belong to 𝑡 disjoint check equations. It is known that linear codes with 2-DRGP must
have co-dimension Ω(

√
𝑛) (which is matched by a simple product code construction). We show that

there are stencils corresponding to 2-DRGP with visible rank as small as 𝑂(log 𝑛). However, we show
the second tensor of any 2-DRGP stencil has visible rank Ω(𝑛), thus recovering the Ω(

√
𝑛) lower

bound for 2-DRGP. For 𝑞-LCC, however, the 𝑘’th tensor power for 𝑘 ⩽ 𝑛𝑜(1) is unable to improve
the 𝑂(𝑛(𝑞−2)/(𝑞−1)) upper bound on the dimension of 𝑞-LCCs by a polynomial factor.Inspired by
this and as a notion of intrinsic interest, we define the notion of visible capacity of a stencil as the
limiting visible rank of high tensor powers, analogous to Shannon capacity, and pose the question
whether there can be large gaps between visible capacity and algebraic rank.
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1 Introduction

The notion of locality in error-correcting codes refers to the concept of recovering codeword
symbols as a function of a small number of other codeword symbols. Local decoding
requirements of various kinds have received a lot of attention in coding theory, due to both
their theoretical and practical interest. For instance, 𝑞-query locally correctable codes (LCCs)
aim to recover any codeword symbol as a function of 𝑞 other codeword symbols in a manner

© Omar Alrabiah and Venkatesan Guruswami;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 57; pp. 57:1–57:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oalrabia@andrew.cmu.edu
mailto:venkatg@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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robust to a constant fraction of errors. On the other hand, locally recoverable codes (LRCs),
in their simplest incarnation, require each codeword symbol to be a function of some ℓ other
codeword symbols, allowing local recovery from any single erasure.1

LCCs have been extensively studied in theoretical computer science, and have connections
beyond coding theory to topics such as probabilistically checkable proofs and private inform-
ation retrieval. We refer the reader to [31] and the introduction of [13] for excellent surveys
on LCCs and their connections. LRCs were motivated by the need to balance global fault
tolerance with extremely efficient repair of a small number of failed storage nodes in modern
large-scale distributed storage systems [12]. They have led to intriguing new theoretical
questions, and have also had significant practical impact with adoption in large scale systems
such as Microsoft Azur [17] and Hadoop [25].

Let us define the above notions formally, in a convenient form that sets up this work. We
will restrict attention to linear codes in this work, i.e., subspaces 𝐶 of F𝑛𝑞 for some finite field
F𝑞 . In this case, the 𝑖’th symbol 𝑐𝑖 of every codeword 𝑐 = (𝑐1 , . . . , 𝑐𝑛) ∈ 𝐶 can be recovered
as a function of the symbols 𝑐 𝑗 , for indices 𝑗 in a (minimal) subset 𝑅𝑖 ⊂ [𝑛] \ {𝑖}, iff 𝑐𝑖 and
{𝑐 𝑗 | 𝑗 ∈ 𝑅𝑖} satisfy a linear check equation, or in other words, there is a dual codeword whose
support equals {𝑖} ∪ 𝑅𝑖 . The set 𝑅𝑖 is called a repair group for the 𝑖’th codeword symbol
(other terminology used in the literature includes regenerating sets and recovery sets).

The 𝑞-LCC property, for a fixed number of queries 𝑞 and growing 𝑛, corresponds to
having Ω(𝑛) disjoint groups of size ⩽ 𝑞 for each position 𝑖 ∈ [𝑛], or equivalently Ω(𝑛) dual
codewords of Hamming weight at most (𝑞 + 1) whose support includes 𝑖 and are otherwise
disjoint. The ℓ -LRC corresponds to having a dual codeword of Hamming weight at most
(ℓ + 1) whose support includes 𝑖, for each 𝑖 ∈ [𝑛]. A property that interpolates between
these extremes of a single repair group and Ω(𝑛) disjoint repair groups is the Disjoint Repair
Group Property (𝑡-DRGP) where we require 𝑡 disjoint repair groups for each position 𝑖 ∈ [𝑛]
(equivalently 𝑡 dual codewords whose support includes 𝑖 but are otherwise disjoint).

There is an exponentially large gap between upper and lower bounds on the trade-off
between code dimension and code length for 𝑞-LCCs. The best known code constructions
have dimension only 𝑂((log 𝑛)𝑞−1) (achieved by generalized Reed-Muller codes or certain
lifted codes [14]), whereas the best known upper bound on the dimension of 𝑞-LCCs is much
larger and equals 𝑂(𝑛(𝑞−2)/(𝑞−1)) [19, 29, 18]2. Narrowing this huge gap has remained open
for over two decades.

In contrast the best possible dimension of a ℓ -LRC is easily determined to be ⌊ ℓ𝑛
ℓ+1 ⌋.3

However, for 𝑡-DRGP, there are again some intriguing mysteries. For 2-DRGP, we have tight
bounds – the minimum possible redundancy (co-dimension) equals

√
2𝑛 ± Θ(1). The lower

bound is established via very elegant proofs based on the polynomial method [30] or rank
arguments [24]. However, for fixed 𝑡 > 2, we do not know better lower bounds, and the best
known constructions have co-dimension ≈ 𝑡

√
𝑛 [6]. There are better constructions known

for some values of 𝑡 = 𝑛Θ(1) [8, 20]. A lower bound on the co-dimension of 𝑐(𝑡)
√
𝑛 for some

function 𝑐(𝑡) that grows with 𝑡 seems likely, but has been elusive despite various attempts,
and so far for any fixed 𝑡, the bound for 𝑡 = 2 is the best known.

1 There is also a distance requirement on LRCs to provide more global error/erasure resilience.
2 The 𝑂(·) and Ω̃(·) are used to suppress factors poly-logarithmic in 𝑛.
3 In this case, a more interesting trade-off is a Singleton-type bound that also factors in the distance of

the code [12].
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This work was motivated in part by these major gaps in our knowledge concerning 𝑞-LCCs
and 𝑡-DRGPs. Our investigation follows a new perspective based on visible rank (to be
defined soon), which is a combinatorial proxy for (linear-algebraic) rank that we believe
is of broader interest. This is similar in spirit to a thought-provoking recent work [5] that
introduced a combinatorial abstraction of spanning structures called spanoids4 to shed light
on the limitations of current techniques to prove better upper bounds on the dimension of
𝑞-LCCs. They noted that current techniques to bound LCC dimension apply more generally
to the associated spanoids, which they showed could have rank as large as Ω̃(𝑛(𝑞−2)/(𝑞−1)).
Therefore to improve the LCC bound one needs techniques that are more specific than
spanoids and better tailored to the LCC setting. One such possibility mentioned in [5] is
to restrict attention to symmetric spanoids, which have a natural symmetry property that
linear LCCs imply.

Our visible rank notion turns out to be intimately related to symmetric spanoids via a
rank-nullity type theorem (Theorem 14). While technically simple in hindsight, it offers a
powerful viewpoint on symmetric spanoids which in particular resolves a question posed in [5]
– we show that symmetric spanoids are also too coarse a technique to beat the 𝑂(𝑛(𝑞−2)/(𝑞−1))
upper bound on 𝑞-LCC dimension.

1.1 Stencils and visible rank

With the above backdrop, we now proceed to describe the setup we use to study these
questions, based on the rank of certain matrix templates which we call “stencils.” We can
represent the support structure of the check equations (i.e., dual codewords) governing a
locality property by an 𝑛-column matrix of 0’s and ★’s. For each check equation involving
the 𝑖’th symbol and a repair group 𝑅𝑖 ⊂ [𝑛] \ {𝑖}, we place a row in the stencil with ★’s
precisely at 𝑅𝑖 ∪ {𝑖} (i.e., with ★’s at the support of the associated dual codeword). For the
ℓ -LRC property for instance, an associated stencil would be an 𝑛 × 𝑛 matrix with ★’s on the
diagonal and ℓ other ★’s in each row. For 𝑞-LCC, we would have a 𝛿𝑛2 × 𝑛 matrix whose
rows are split into 𝑛 groups with the rows in the 𝑖’th group having a ★ in the 𝑖’th column
and 𝑞 other ★’s in disjoint columns.

The smallest co-dimension of linear codes over a field F with certain locality property is,
by design, the minimum rank rkF(𝐻) of the associated stencil 𝐻 when the ★’s are replaced
by arbitrary nonzero entries from F. In this work, our goal is to understand this quantity via
field oblivious methods based only on the combinatorial structure of the stencil of ★’s.

The tool we put forth for this purpose is the visible rank of 𝐻, denoted vrk(𝐻) and
defined to be the largest 𝑟 for which there is a 𝑟 × 𝑟 submatrix of 𝐻 that has exactly
one general diagonal whose entries are all ★’s. By the Leibniz formula, the determinant
of such a submatrix is nonzero for any substitution of nonzero entries for the ★’s. Thus
rkF(𝐻) ⩾ vrk(𝐻) for every field F.

Our goal in this work is to understand the interrelationship between visible rank and
the co-dimension of linear codes under various locality requirements. This can shed further
light on the bottleneck in known techniques to study trade-offs between locality and code
dimension, and optimistically could also lead to better constructions.

4 We defer a precise description of spanoids, along with their strong connection to visible rank, to
Section 2.4.

APPROX/RANDOM 2021
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1.2 Visible rank and Locality
For ℓ -LRCs, a simple greedy argument shows that its associated parity-check stencil 𝐻

satisfies vrk(𝐻) ⩾ 𝑛/(ℓ + 1). Thus visible rank captures the optimal trade-off between code
dimension and locality ℓ .

For 𝑞-LCCs with 𝑞 ⩾ 3, an argument similar to (in fact a bit simpler than and implied
by) the one for spanoids in [5] shows that the stencil corresponding to 𝑞-LCCs has visible
rank at least 𝑛 −𝑂(𝑛(𝑞−2)/(𝑞−1)), showing an upper bound of 𝑂(𝑛(𝑞−2)/(𝑞−1)) on the dimension
of 𝑞-LCCs. We show that visible rank suffers the same bottleneck as spanoids in terms of
bounding the dimension of 𝑞-LCCs.

▶ Theorem 1. For 𝑞 ⩾ 3, there exist 𝑛-column stencils 𝐻 with ★’s structure compatible with
𝑞-LCCs for which vrk(𝐻) ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)).

Through the precise connection we establish between between visible rank and symmetric
spanoids, this shows the same limitation for symmetric spanoids, thus answering a question
posed in [5].

For the 𝑡-DRGP property, we focus on the 𝑡 = 2 case, with the goal of finding a
combinatorial substitute for the currently known Ω(

√
𝑛) lower bounds on co-dimension [30, 8]

which are algebraic. Unfortunately, we show that visible rank, in its basic form, is too weak
in this context.

▶ Theorem 2. There exist 2𝑛 × 𝑛 stencils 𝐻 with ★’s structure compatible with 2-DRGP for
which vrk(𝐻) ⩽ 𝑂(log 𝑛).

1.3 Visible rank and tensor powers
In view of Theorem 2, we investigate avenues to get better bounds out of the visible rank
approach. Specifically, we study the visible rank of tensor powers of the matrix. It turns out
that the visible rank is super-multiplicative: vrk(𝐻 ⊗ 𝐻) ⩾ vrk(𝐻)2, while on the other hand
algebraic rank is sub-multiplicative, so higher tensor powers could yield better lower bounds
on the rank. Indeed, we are able to show precisely this for 2-DRGP:

▶ Theorem 3. For every 2𝑛 × 𝑛 stencil 𝐻 with ★’s structure compatible with 2-DRGP, we
have vrk(𝐻 ⊗ 𝐻) ⩾ Ω(𝑛), and thus rkF(𝐻) ⩾ Ω(

√
𝑛) for every field F.

On the other hand, for 𝑞-LCCs with 𝑞 ⩾ 3, we show that higher tensor powers suffer the
same bottleneck as Theorem 1.

▶ Theorem 4. For 𝑞 ⩾ 3, there exist 𝑛-column stencils 𝐻 with ★’s structure compatible with
𝑞-LCCs for which vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))/𝑘 for any integer 𝑘. In particular even
for 𝑘 = 𝑛𝑜(1), we get no polynomial improvements to the current upper bounds on dimension
of 𝑞-LCCs.

1.4 Visible capacity
Given the super-multiplicativity of visible rank under tensor powers, and drawing inspiration
from the Shannon capacity of graphs, we put forth the notion of visual capacity of a matrix
𝐻 of 0’s and ★’s, defined as Υ(𝐻) := sup𝑘 vrk(𝐻⊗𝑘)1/𝑘 . The visual capacity is also a field
oblivious lower bound on algebraic rank rkF(𝐻) for any field F. It is not known whether there
are stencils that exhibit a gap between visible capacity and its minimum possible rkF(𝐻)
over all fields F.
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The proofs of our results are technically simple, once the framework is set up. Our
contributions are more on the conceptual side, via the introduction and initial systematic
study of visible rank and its diverse connections. Our inquiry also raises interesting questions
and directions for future work, some of which are outlined in Section 7, including the
relationship between visible capacity and algebraic rank.

1.5 Connections and related work
Studying the interplay between the combinatorial structure of a matrix and its rank is a
natural quest that arises in several contexts. See Chapter 3 of [26] for a survey of works on
lower bounding the algebraic rank. For works specific to codes with locality, the work of [3]
analyzed the combinatorial properties of design matrices over the reals to improve bounds on
LCCs over the real numbers, although the methods used are particular to the field of reals
and do not carry over to any field.

Visible rank in particular turns out to have a diverse array of connections, some of which
we briefly discuss here. The connection to spanoids, that we already mentioned, is described
in more detail in Section 2.4.

Uniquely restricted matchings. Given a stencil 𝐻 ∈ {0,★}𝑚×𝑛 , there is a canonical bipartite
graph 𝐺 between the rows and columns of 𝐻, where a row connects to a column if and
only if their shared entry has a star. Visual rank has a nice graph-theoretic formulation: it
turns out (see Section 2.3) that a submatrix of 𝐻 has a unique general diagonal of ★’s iff
the corresponding induced subgraph has a unique perfect matching. Such induced bipartite
graphs are known in the literature as Uniquely Restricted Matchings (URMs) and have been
extensively studied [11, 9, 16, 22, 27, 7] They were first introduced in [11], wherein they
proved that computing the maximum URM of a bipartite graph is NP-complete. It was later
shown in [22] that 𝑛1/3−𝑜(1) approximations of the maximum URM is also NP-hard unless
NP = ZPP and additionally that the problem of finding the maximum URM is APX-complete.

Matroids. One can encode any matroid into a stencil. Recall that a circuit of a matroid is
a minimal dependent set – that is, a dependent set whose proper subsets are all independent
(the terminology reflects the fact that in a graphic matroid, the circuits are cycles of the
graph).Given a matroid ℳ on universe [𝑛] and a set 𝒞 = {𝐶1 , . . . , 𝐶𝑚} of circuits of ℳ,
we consider a 𝑚 × 𝑛 stencil 𝐻 where the entry at (𝑖 , 𝑗) is a ★ if and only if 𝑗 ∈ 𝐶𝑖 . For this
matrix, one can show that a collection of visibly independent columns (see Section 2.2 for
the definition of visible independence) is an independent set in the dual matroid. Therefore,
we have rk(ℳ) + vrk(𝐻) ⩽ 𝑛 – this also follows from our rank-nullity theorem for symmetric
spanoids as one can associate a symmetric spanoid with any matroid (the collection of sets
in Definition 13 will just be the circuits of the matroid).

Min-rank. The minimum possible rank of a square 0-★ stencil over assignments to the ★’s
from some field has been well studied in combinatorics.5 For example, we have Haemers’
classic bound on independent set of a graph and its applications to Shannon capacity [15].

5 There is a slight difference in the minrank setup, in that the ★’s can take any value including 0, except
the ★’s on the diagonal which must take nonzero values.

APPROX/RANDOM 2021
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Note that in this case we are using a linear-algebraic tool to understand a combinatorial
quantity, whereas visible rank goes the other way, serving as a combinatorial proxy for a
linear-algebraic quantity. Recent interest in minrank has included their characterization of
the most efficient linear index codes [2]. The minrank of stencils corresponding to 𝑛-vertex
random Erdös-Rényi graphs was recently shown to be Θ(𝑛/log 𝑛) over any field that is
polynomially bounded [10].

Matrix Rigidity. Given a square matrix 𝐴 ∈ F𝑛×𝑛 and a natural number 𝑟 ⩽ 𝑛, the rigidity
of 𝐴 is the minimal number of entries that one can perturb in 𝐴 so that it rank becomes at
most 𝑟. Matrix rigidity was introduced in the seminal work [28] and since then had expansive
research on constructing explicit rigid matrices. See [23] for a recent survey on matrix rigidity
and related connections. The visible rank provides a combinatorial guarantee on the rank
of a matrix, and that conjures up the possibility of constructing explicit rigid matrices by
finding explicit stencils whose visible rank is robust to small amounts of corruptions of its
entries.

Incidence Theorems. Given an 𝑚 × 𝑛 matrix 𝐴 over the field F with rank 𝑟, one can
decompose 𝐴 = 𝑀𝑁 where 𝑀 and 𝑁 are 𝑚 × 𝑟 and 𝑟 × 𝑛 matrices. If we consider the rows
of 𝑀 as hyperplanes over the projective plane PF𝑟−1 of dimension (𝑟 − 1) and the columns of
𝑁 as points in PF𝑟−1, then the stencil of 𝐴 defines a point-hyperplane incidence over PF𝑟−1.
In particular, when 𝑟 = 3, the stencil of 𝐴 defines a point-line incidence over the field F.
Thus studying the combinatorial properties of a stencil whose F-rank (see Definition 6) is at
most 3 is equivalent to studying the combinatorics of point-line incidences over the field F.
For more on incidence theorems, see [4] for an excellent survey in the area.

Communication complexity. The visible rank provides a connection between deterministic
and nondetereministic communication complexity [21]. For a communication problem
𝑓 : 𝑋 × 𝑌 → {0, 1}, define the stencil 𝐻 𝑓 ∈ {0,★}𝑋×𝑌 by 𝐻 𝑓 (𝑥, 𝑦) = ★ if 𝑓 (𝑥, 𝑦) = 0 and
𝑀 𝑓 (𝑥, 𝑦) = 0 if 𝑓 (𝑥, 𝑦) = 1. Then it is known that 𝐷( 𝑓 ) ⩽ (log2 vrk(𝐻 𝑓 )) · (𝑁( 𝑓 ) + 1)
where 𝐷( 𝑓 ) and 𝑁( 𝑓 ) are respectively the deterministic and nondeterministic communication
complexity of 𝑓 [21, Thm 3.5].

1.6 Organization

We begin in Section 2 by formally introducing the notations and terminology for stencils, and
establishing some simple but very useful combinatorial facts about visible rank. We use these
to show that there are 𝑞-LCC stencils for 𝑞 ⩾ 3 with visible rank at most 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))
(Section 3), and the existence of a 2-DRGP stencil with visible rank of at most 𝑂(log 𝑛)
(Section 4). In Section 5, we introduce a tensor product operation on stencils and prove
various properties about them. In Section 6, we utilize tensor powers to show that the rank
of a 2-DRGP over any field F is at least

√
𝑛, which asymptotically matches the current best

lower bounds on 𝑡-DRGP codes. We also show that for 𝑞-LCC stencils, the tensor powers
at the 𝑘’th level for 𝑘 ⩽ polylog(𝑛) do not yield better lower bounds on the rank than the
ones obtained from the visible rank. Finally, in Section 7, we discuss further directions and
questions inspired by this work.
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2 Stencils and their visible rank

In this section, we will be formally setting up the model of stencils and all the associated
definitions and notations. We denote [𝑛] to be the set {1, 2, . . . , 𝑛}. For any matrix
𝐻 ∈ {0,★}𝑚×𝑛 , we denote it as a stencil. For an 𝑚 × 𝑛 stencil 𝐻, we denote its entry in the
𝑖’th row and 𝑗’th column by 𝐻[𝑖 , 𝑗]. Any restriction to the specific sub-collection of the rows
and columns of 𝐻 is said to be a sub-stencil of 𝐻. For given sets 𝐴 and 𝐵, a stencil 𝐻 is
said to be an 𝐴 × 𝐵 if it is an |𝐴| × |𝐵| stencil along with an associated indexing of the rows
by 𝐴 and the columns by 𝐵. Given a square stencil 𝑀 ∈ {0,★}𝑛×𝑛 , a general diagonal of 𝑀,
is a collection of entries {𝑀[1,𝜋(1)], . . . , 𝑀[𝑛,𝜋(𝑛)]} where 𝜋 is a permutation on [𝑛]. We
say that a general diagonal is a star diagonal if all its 𝑛 entries are ★’s.

2.1 Algebraic witnesses of stencils

Instantiating a code with the locality properties stipulated by a stencil amounts to filling its
★’s with field entries, or realizing an algebraic witness as defined below.

▶ Definition 5 (Algebraic witness). For field F and stencil 𝐻 ∈ {0,★}𝑚×𝑛, a matrix 𝑊 ∈ F𝑚×𝑛

is said to be an F-witness of 𝐻 if it satisfies the property that 𝑊[𝑖 , 𝑗] ≠ 0 if and only if
𝐻[𝑖 , 𝑗] = ★. More generally, any F-witness of 𝐻 is said to be an algebraic witness of 𝐻.

We stress that every ★ in the stencil 𝐻 must be replaced by a nonzero entry from F and
cannot be zero. Of the possible algebraic witnesses for 𝐻, we will be primarily focused in
this paper on the algebraic witnesses that attain the smallest feasible rank, which leads us to
the following definition.

▶ Definition 6 (Rank). Given an 𝑚 × 𝑛 stencil 𝐻, the F-rank of 𝐻 is the smallest natural
number 𝑟 such that there exists a field F and an F-witness 𝑊 ∈ F𝑚×𝑛 whose rank is equal to
𝑟. We denote the value 𝑟 by rkF(𝐻).

2.2 Visible Rank

In this section, we introduce our notion of the visible rank of a stencil. The main motivation
of introducing the visible is to be able to determine the most optimal lower bound on the
rank of a matrix with only the knowledge of knowing the support of a matrix and nothing
else about the values of that support.

Consider a square matrix 𝐴 ∈ F𝑛×𝑛 , and suppose we are interested in determining if it is
full rank. A natural approach would be to inspect its determinant. From the Leibniz formula,
we know that det(𝐴) = ∑

𝜋∈𝑆𝑛
∏𝑛

𝑖=1 (−1)sgn(𝜋)𝐴𝑖 ,𝜋(𝑖), where 𝑆𝑛 denotes the symmetric group
of order 𝑛 and sgn(𝜋) denotes the sign of a permutation 𝜋. From Leibniz formula, notice
that det(𝐴) is a linear combination of the nonzero general diagonals of 𝐴. If our hope is
to obtain det(𝐴) ≠ 0 without any knowledge of the values of the support of 𝐴, one way to
guarantee it is to say that 𝐴 has exactly one nonzero general diagonal. In such a case, we
can guarantee that det(𝐴) ≠ 0. As when 𝐴 has more than one general diagonal, there is no
guarantee if det(𝐴) ≠ 0 without inspecting the values of the support of 𝐴.

From the previous discussion, it seems natural to define the notion of a rank on stencils
as follows.
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▶ Definition 7 (Visibly Full Rank). For a square stencil 𝑀 ∈ {0,★}𝑛×𝑛, we say that 𝑀 is
visibly full rank if 𝑀 has exactly one star diagonal. That is, a general diagonal whose entries
are all ★’s.

Of course, in most cases, when we are given a matrix 𝐴 ∈ F𝑚×𝑛 , we would be interested
in determining its rank. One way to define the rank of the matrix 𝐴 is to say that rank(𝐴) is
the size of the largest square submatrix in 𝐴 that is full-rank. From this viewpoint, it seems
clear to define the rank of a stencil in a similar fashion.

▶ Definition 8 (Visible Rank). For a stencil 𝐻 ∈ {0,★}𝑚×𝑛, the visible rank of 𝐻, denoted
vrk(𝐻), is the largest square sub-stencil in 𝐻 that is visibly full rank.

We also say that a set of 𝑘 columns in 𝐻 is visibly independent if there exists a 𝑘 × 𝑘

sub-stencil within these 𝑘 columns that is visibly full rank. Of course, not all full-rank square
matrices 𝐴 ∈ F𝑛×𝑛 necessarily have exactly one nonzero general diagonal, but all squares
that have exactly one nonzero general diagonal are necessarily full-rank. Thus if we are
interested in determining rank(𝐴) by finding the size of the largest square submatrix in 𝐴

that is full-rank, we can instead search for the largest square submatrix in 𝐴 that has exactly
one nonzero general diagonal. Since that square submatrix has rank at most the rank of 𝐴,
this leads us to the following proposition.

▶ Proposition 9. Given a field F and stencil 𝐻 ∈ {0,★}𝑚×𝑛, we have rkF(𝐻) ⩾ vrk(𝐻).

2.3 Combinatorial properties of visible rank
In this subsection, we will be proving some properties about visible rank. In particular, we
will show that any visibly independent stencil 𝑀 is permutationally equivalent to an upper
triangular stencil, and from this observation, we will be able to upper bound the visible
rank by the largest rectangle of zeros in the stencil, which will be our main tool in our
constructions of 𝑞-LCC and 𝑡-DRGP stencils. We also show an upper bound on the rank of
a stencil by the maximum number of zeros in each row.

Given two stencils 𝐻1 , 𝐻2 ∈ {0,★}𝑚×𝑛 , we say that 𝐻1 is permutationally equivalent to 𝐻2
if there are permutations 𝜋 : [𝑚] → [𝑚] and 𝜎 : [𝑛] → [𝑛] such that 𝐻1[𝑖 , 𝑗] = 𝐻2[𝜋(𝑖), 𝜎(𝑗)]
for all 𝑖 ∈ [𝑚] and 𝑗 ∈ [𝑛]. For such 𝐻1 and 𝐻2, we introduce the notation 𝐻2 = (𝐻1)𝜋,𝜎 to
say that 𝐻2 is obtained from 𝐻1 by permuting the rows with the permutation 𝜋 and the
columns by the permutation 𝜎 (We remark that row permutations commute with column
permutations).

▶ Lemma 10. Let 𝑀 ∈ {0,★}𝑛×𝑛 be visibly full rank. Then there exists permutations 𝜋

and 𝜎 on [𝑛] such that 𝑁 B 𝑀𝜋,𝜎 is an upper triangular stencil. That is, 𝑁[𝑖 , 𝑖] = ★ and
𝑁[𝑖 , 𝑗] = 0 for all 𝑖 , 𝑗 ∈ [𝑛] with 𝑖 > 𝑗.

Proof. First, we claim that for any visibly full rank stencil 𝑀 ∈ {0,★}𝑛×𝑛 , there exists a row
in 𝑀 with exactly one star. Indeed, assume (for the sake of a contradiction) that such a row
doesn’t exist. Since no row can be all zeros in 𝑀, then each row has at least two ★’s. Index
the rows of 𝑀 by 𝑅 = {𝑟1 , . . . , 𝑟𝑛} and the columns by 𝐶 = {𝑐1 , . . . , 𝑐𝑛}. Let 𝐺 = (𝑅, 𝐶, 𝑆)
be a bipartite graph on the rows and columns of 𝑀 with edges 𝑆, where 𝑆 is the set of ★’s
in 𝑀. Because 𝑀 is visibly independent, 𝐺 has a unique perfect matching. Moreover, by
our initial assumption, 𝑑𝐺(𝑣) ⩾ 2 for all 𝑣 ∈ 𝑅. Thus if we color the edges of the unique
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matching of 𝐺 red and all remaining edges of 𝐺 blue, then by the fact that 𝑑𝐺(𝑣) ⩾ 2 for
all 𝑣 ∈ 𝑅, we can find an alternating cycle 𝐶 with red edges 𝑅𝐶 and blue edges 𝐵𝐶 . Since
𝑅𝐶 and 𝐵𝐶 match the same vertex sets, then replacing the edges in 𝑅𝐶 with those of 𝐵𝐶 in
the unique matching will produce another matching, but that’s a contradiction as 𝐺 has a
unique perfect matching. This proves our claim.

Next, we proceed by induction on 𝑛. The base case 𝑛 = 1 is immediate to see. As for
the induction step, we know by the previous claim that there exists some row in 𝑀 with
exactly one ★. Thus we can find a permutationally equivalent matrix 𝑀′ of 𝑀 with the 𝑛’th
row having exactly one ★ at the 𝑛’th column. Because 𝑀 is visibly independent, then so
is 𝑀′. Moreover, any general diagonal in 𝑀′ must contain 𝑀[𝑛, 𝑛]. This means that the
(𝑛 − 1) × (𝑛 − 1) minor 𝑀′

0, which is obtained by deleting row 𝑛 and column 𝑛 of 𝑀′, is
visibly independent. By our induction hypothesis, we can permute the rows and columns of
𝑀′

0 to make it upper triangular, and thus we conclude that 𝑀’s rows and columns can be
permuted to make it upper triangular. ◀

Thus we can characterize all visibly full rank matrices, and that help us obtain the
following upper bound on the visible rank.

▶ Lemma 11. Given an 𝑚 × 𝑛 stencil 𝐻, if there are natural numbers 𝑎, 𝑏 such that 𝐻 has
no 𝑎 × 𝑏 sub-stencil of zeros, then we have vrk(𝐻) < 𝑎 + 𝑏.

Proof. Assume (for the sake of a contradiction) that 𝐻 has a (𝑎+𝑏)×(𝑎+𝑏) square sub-stencil
𝐻0 that is visibly independent. By Lemma 10, we know that 𝐻0 is permutationally equivalent
to an (𝑎 + 𝑏) × (𝑎 + 𝑏) upper triangle. Since such triangle has a 𝑎 × 𝑏 sub-stencil of zeros, we
arrive to a contradiction. ◀

We also provide an upper bound on the rank of a stencil by the maximum number of
zeros in each rows.

▶ Proposition 12. For any 𝑚 × 𝑛 stencil 𝐻. If each row of 𝐻 has at most 𝑑 zeros, then we
have that rkF(𝐻) ⩽ 𝑑 + 1 for all fields F such that |F| ⩾ 𝑛.

Proof. Pick a field |F| ⩾ 𝑛. Label the columns of 𝐻 by pairwise distinct entries 𝑎1 , . . . , 𝑎𝑛 ∈ F.
For row 𝑖, let the columns that are zero along row 𝑖 be 𝑍𝑖 ⊆ {𝑎1 , . . . , 𝑎𝑛}. Consider the
polynomial 𝑝𝑖(𝑥) B

∏
𝑎∈𝑍𝑖

(𝑥 − 𝑎). Notice that 𝑝𝑖 evaluates to zero on 𝑍𝑖 . On everywhere
else, it evaluates to a nonzero value. Thus the matrix 𝐸 ∈ F𝑚×𝑛 defined by 𝐸𝑖 𝑗 = 𝑝𝑖(𝑎 𝑗) is an
F-witness of 𝐻. Moreover, since |𝑍𝑖 | ⩽ 𝑑 for each 𝑖 ∈ [𝑚], then we know that the monomials
{1, 𝑥, . . . , 𝑥𝑑} span the polynomials {𝑝1 , . . . , 𝑝𝑚}. This shows that rank(𝐸) ⩽ 𝑑 + 1 and thus
rkF(𝐻) ⩽ 𝑑 + 1. ◀

We remark that the bound |𝐹 | ⩾ 𝑛 is crucial for Propsition 12. Consider the stencil
𝐷 ∈ {0,★}𝑛×𝑛 that has ★’s everywhere except on the diagonal. Such a stencil has a visible
rank of 2, but one can show that its rank over F2 is at least 𝑛 − 1.

2.4 A Rank-Nullity Type Theorem Between Stencils and Symmetric
Spanoids

In this subsection, we formally setup spanoids and prove a rank-nullity type theorem between
symmetric spanoids and stencils.
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A spanoid 𝒮 is a collection of inference rules in the form of pairs (𝑆, 𝑖), which are written
in the form 𝑆 → 𝑖, where 𝑆 ⊆ [𝑛] and 𝑖 ∈ [𝑛]. The objective in spanoids is to determine the
size of the smallest subset 𝐵 ⊆ [𝑛] such that one can use the inference rules of 𝒮 to obtain all
of [𝑛]. Spanoids were introduced in [5] as an abstraction of LCCs, wherein they proved that
the spanoid analog of 𝑞-LCCs satisfy the upper bound 𝑂(𝑛(𝑞−2)/(𝑞−1)) on the rank. Moreover,
they also showed that there are 𝑞-LCC spanoids for which their rank is Ω̃(𝑛(𝑞−2)/(𝑞−1)).

Let us setup the definitions needed for spanoids. A derivation in 𝒮 of 𝑖 ∈ [𝑛] from a set
𝑇 ⊆ [𝑛] is a sequence of sets 𝑇0 = 𝑇, 𝑇1 , . . . , 𝑇𝑟 satisfying 𝑇𝑗 = 𝑇𝑗−1 ∪ {𝑖 𝑗} for some 𝑖 𝑗 ∈ [𝑛],
𝑗 ∈ [𝑟], and with 𝑖𝑟 = 𝑖. Further, for every 𝑗 ∈ [𝑟], there is a rule (𝑆 𝑗−1 , 𝑖 𝑗) in 𝒮 for some
𝑆 𝑗−1 ⊆ 𝑇𝑗−1. The span of a set 𝑇 ⊆ [𝑛], denoted span𝒮(𝑇), is the set of all 𝑖 ∈ [𝑛] for which
there is a derivation of 𝑖 from 𝑇. The rank of a spanoid, denoted rank(𝒮), is the size of the
smallest set 𝑇 ⊆ [𝑛] such that span𝒮(𝑇) = [𝑛]. Finally, we define symmetric spanoids below.

▶ Definition 13 (Symmetric Spanoids). A spanoid 𝒮 over [𝑛] is a symmetric spanoid if
there are a collection of sets {𝑆1 , . . . , 𝑆𝑚} so that the inference rules of 𝒮 are of the form
𝑆 𝑗 \ {𝑖} → {𝑖} for any 𝑖 ∈ 𝑆 𝑗 and 𝑗 ∈ [𝑚].

Now we may proceed to prove our theorem that relates the rank of symmetric spanoids
with the visible rank of an associated stencil.

▶ Theorem 14. For any symmetric spanoid 𝒮 over [𝑛] with 𝑚 sets, there exists a canonical
stencil 𝐻 of size 𝑚 × 𝑛 such that for any collection of columns 𝐶 ⊆ [𝑛] in 𝐻, they are visibly
independent if and only if span𝒮([𝑛] \ 𝐶) = [𝑛]. Moreover, we have vrk(𝐻) + rank(𝒮) = 𝑛.

Proof. Define 𝐻[𝑖 , 𝑗] = ★ if 𝑗 ∈ 𝑆𝑖 and zero otherwise. We claim that such 𝐻 satisfies the
conditions. Indeed, suppose that the columns 𝐶 = {𝑐1 , . . . , 𝑐𝑘} are visibly independent. Then
that means there are rows 𝑟1 , . . . , 𝑟𝑘 so that the 𝑘× 𝑘 sub-stencil formed by these columns and
rows is visibly full rank. Denote this matrix as 𝐻𝐶 . By Lemma 10, we can find permutations
𝜋, 𝜎 over [𝑘] such that the matrix 𝐻′

𝐶
B 𝐻𝜋,𝜎 is upper triangular. In terms of spanoids, that

means 𝑐𝜎(𝑖) ∈ 𝑆𝑟𝜋(𝑖) and 𝑆𝑟𝜋(𝑖) ⊆ [𝑛] \ {𝑐𝜎(1) , . . . , 𝑐𝜎(𝑖−1)} for all 𝑖 ∈ [𝑘]. We can rewrite the last
set containment as 𝑆𝑟𝜋(𝑖) ⊆ ([𝑛] \ 𝐶) ∪ {𝑐𝜎(𝑖) , . . . , 𝑐𝜎(𝑘)}. Thus we apply the inference rules
𝑆𝑟𝜋(𝑘) \ 𝑐𝜎(𝑘) → 𝑐𝜎(𝑘) , 𝑆𝑟𝜋(𝑘−1) \ 𝑐𝜎(𝑘−1) → 𝑐𝜎(𝑘−1) , . . . , 𝑆𝑟𝜋(1) \ 𝑐𝜎(𝑘) → 𝑐𝜎(1) in that order with the
set [𝑛] \ 𝐶, to deduce that the set [𝑛] \ 𝐶 spans the set [𝑛] in 𝒮. Thus span𝒮([𝑛] \ 𝐶) = [𝑛].

Now, suppose that span𝒮([𝑛]\𝐶) = [𝑛]. Then that means that we can find sets 𝑆𝑖1 , . . . , 𝑆𝑖𝑘

and a permutation 𝜎 over [𝑘] such that 𝑐𝜎(𝑗) ∈ 𝑆𝑖 𝑗 and we can apply the inference rules
𝑆𝑖1 \ {𝑐𝜎(1)} → 𝑐𝜎(1) , . . . , 𝑆𝑖𝑘 \ {𝑐𝜎(𝑘)} → 𝑐𝜎(𝑘) in that order. That implies then that 𝑆𝑖 𝑗 ⊆
([𝑛] \ 𝐶) ∪ {𝑐𝜎(1) , . . . , 𝑐𝜎(𝑗)}. In terms of the stencil 𝐻, that means 𝐻[𝑖 𝑗 , 𝜎(𝑗)] = ★ and
𝐻[𝑖ℓ , 𝜎(𝑗)] = 0 for ℓ < 𝑗. Thus the 𝑘 × 𝑘 sub-stencil 𝐻′ that is restricted to the columns
𝑐𝜎(1) , . . . , 𝑐𝜎(𝑘) and rows 𝑖1 , . . . , 𝑖𝑘 in that order forms a lower triangular stencil, which is
permutationally equivalent to an upper triangular stencil. Thus we deduce that the set of
columns 𝐶 is visibly independent.

Now, for any set 𝑆 ⊆ [𝑛] such that span𝒮(𝑆) = [𝑛], we know that [𝑛] \ 𝑆 is visibly
independent in 𝐻. Thus 𝑛− |𝑆 | ⩽ vrk(𝐻). Since this holds for any such set 𝑆, then we deduce
that rank(𝒮) + vrk(𝐻) ⩾ 𝑛. On the other hand, for any collection of columns 𝐶 in 𝐻 that
is visibly independent, we know that span𝒮([𝑛] \ 𝐶) = [𝑛]. This implies 𝑛 − |𝐶 | ⩾ rank(𝒮).
Since this holds for any visibly independent set of columns 𝐶 in 𝐻, then we find that
𝑛 ⩾ rank(𝒮) + vrk(𝐻). Hence rank(𝒮) + vrk(𝐻) = 𝑛. ◀
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3 Constructing 𝒒-LCC Stencils

In this section, we define 𝑞-LCC stencils and construct 𝑞-LCC stencils whose visible rank
achieves the known lower bounds up to polylog factors.

▶ Definition 15 (𝑞-LCC Stencils). For 𝛿 > 0, a 𝛿𝑛2 × 𝑛 stencil 𝐻 whose rows are labelled by
[𝑛] × [𝛿𝑛] is said to be a 𝑞-LCC stencil if 𝐻[(𝑖 , 𝑗), 𝑖] = ★ for all (𝑖 , 𝑗) ∈ [𝑛] × [𝛿𝑛]. Moreover,
for every 𝑘 ∈ [𝑛] \ {𝑖}, the collection of entries {𝑀[(𝑖 , 1), 𝑘], . . . , 𝑀[(𝑖 , 𝑡), 𝑘]} has at most
one star, and the number of ★’s in each row of 𝐻 is at most 𝑞 + 1.

Now we proceed to prove our main theorem for this section.

▶ Theorem 16. For 𝑞 ⩾ 3, there exists a 𝑞-LCC stencil 𝑀 for which vrk(𝑀) ⩽ 𝑛 −
Ω̃

(
𝑛(𝑞−2)/(𝑞−1)

)
.

Proof. For (𝑖 , 𝑗) ∈ [𝑛] × [𝛿𝑛]. Define 𝑟 𝑖
𝑗
B {𝑘 ∈ [𝑛] : 𝐻[(𝑖 , 𝑗), 𝑘] = ★} to be the support

of row (𝑖 , 𝑗), and let 𝐺𝑖 B {𝑟 𝑖
𝑗

: 𝑗 ∈ [𝛿𝑛]} be the 𝛿𝑛 groups for column 𝑖. We shall
show that by picking the groups 𝐺𝑖 uniformly at random, the visible rank will at most be
𝑛 − 𝑛(𝑞−2)/(𝑞−1)/log 𝑛 with high probability.

Consider natural numbers 𝑠 > 𝑘 where 𝑠 = 𝑛
𝑞−2
𝑞−1 and 𝑘 = 𝑠/log 𝑛 = 𝑛

𝑞−2
𝑞−1 /log 𝑛. Let 𝐸𝑠,𝑘

be the event that there aren’t any (𝑠 − 𝑘) × (𝑛 − 𝑠) sub-stencils in 𝐻 that are all zeros. We
shall show that 𝐸𝑠,𝑘 occurs with high probability, which will yield an upper bound of 𝑛 − 𝑘

on the visible rank via Lemma 11. We will use an equivalent form of the event 𝐸𝑠,𝑘 , which
is the event that there are no 𝑠 − 𝑘 rows in 𝐻 whose union of supports is at most 𝑠. Now,
consider a collection of columns 𝐶 of size 𝑠 and a collection of 𝑠 − 𝑘 rows 𝑅, where 𝑅 and 𝐶

denote the collection of their supports. Enumerate 𝑅 ∩ 𝐺𝑖 = {𝑟 𝑖1 , . . . , 𝑟 𝑖𝑎𝑖 }. By the chain rule,
the definition of 𝐺𝑖 , and the independence of the 𝐺𝑖 ’s, we find that

Pr

[∧
𝑟∈𝑅

𝑟 ⊆ 𝐶

]
=

𝑛∏
𝑖=1

Pr

[ ∧
𝑟∈𝑅∩𝐺𝑖

𝑟 ⊆ 𝐶

]
=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

Pr
[
𝑟 𝑖𝑗 ⊆ 𝐶

���� 𝑟 𝑖𝑘 ⊆ 𝐶 for 𝑘 ∈ [𝑗 − 1]
]

=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

Pr
[
𝑟 𝑖𝑗 \ {𝑖} ⊆ 𝐶 \ {𝑟 𝑖1 , . . . , 𝑟 𝑖𝑗−1}

���� 𝑟 𝑖𝑘 ⊆ 𝐶 for 𝑘 ∈ [𝑗 − 1]
]

=

𝑛∏
𝑖=1

𝑎𝑖∏
𝑗=1

(𝑠−(𝑗−1)𝑞−1
𝑞

)(𝑛−(𝑗−1)𝑞−1
𝑞

) ⩽ ( (𝑠−1
𝑞

)(𝑛−1
𝑞

) ) 𝑠−𝑘 ⩽ ( 𝑠
𝑛

) 𝑞(𝑠−𝑘)
Therefore, from the definition of 𝐸𝑠,𝑘 , by applying a Union Bound over all possible collections
of columns 𝐶 of size 𝑠 and 𝑠 − 𝑘 collections of rows 𝑅 and use the bound

(𝑎
𝑏

)
⩽

(
𝑒𝑎
𝑏

)𝑏 , we
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deduce that

Pr [𝐸𝑠,𝑘] ⩽
(
𝑛

𝑠

) (
𝛿𝑛𝑠
𝑠 − 𝑘

) ( 𝑠
𝑛

) 𝑞(𝑠−𝑘)
⩽

( 𝑒𝑛
𝑠

) 𝑠 (
𝑒𝛿𝑛𝑠
𝑠 − 𝑘

) 𝑠−𝑘 ( 𝑠
𝑛

) 𝑞(𝑠−𝑘)
=

( 𝑒𝑛
𝑠

) 𝑘 ©­­«
𝑒2𝛿𝑠𝑞−1(

1 − 𝑘
𝑠

)
𝑛𝑞−2

ª®®¬
𝑠−𝑘

=

(
𝑒𝑛1/(𝑞−1)

) 𝑘 ©­­«
𝑒2𝛿(

1 − 1
log 𝑛

) ª®®¬
𝑛

𝑞−2
𝑞−1

(
1− 1

log 𝑛

)

Thus for small enough 𝛿 < 𝑒−2, the quantity above becomes exp
(
−Ω(𝑛(𝑞−2)/(𝑞−1))

)
. Thus we

can find a 𝑞-LCC stencil 𝑀 such that no 𝑠− 𝑘 rows whose support is entirely contained within
𝑠 columns. That is equivalent to saying that there is no (𝑠 − 𝑘) × (𝑛 − 𝑠) sub-stencil that is all
zeros. By Lemma 11, we therefore conclude that vrk(𝑀) < 𝑛 − 𝑘 = 𝑛 −Ω

(
𝑛

𝑞−2
𝑞−1 /log 𝑛

)
. ◀

4 𝒕-DRGP Stencils

We now define the stencils that capture the requirement of each codeword symbol having 𝑡

disjoint recovery groups.

▶ Definition 17 (𝑡-DRGP Stencils). A 𝑡𝑛 × 𝑛 stencil 𝐻 whose rows are labelled by [𝑛] × [𝑡]
is said to be a 𝑡-DRGP stencil if 𝐻[(𝑖 , 𝑗), 𝑖] = ★ for all (𝑖 , 𝑗) ∈ [𝑛] × [𝑡]. Moreover, for every
𝑘 ∈ [𝑛] \ {𝑖}, the collection of entries {𝑀[(𝑖 , 1), 𝑘], . . . , 𝑀[(𝑖 , 𝑡), 𝑘]} has at most one star.

Now we proceed to prove our main theorem for this section.

▶ Theorem 18. For any fixed natural number 𝑡 ⩾ 2, there exists a 𝑡-DRGP stencil 𝐻

satisfying vrk(𝐻) ⩽ 𝑂(𝑡2 log 𝑛).

Proof. Consider a random 𝑡-DRGP stencil 𝐻 as follows: define the set of entries 𝑆𝑖 , 𝑗 B

{(𝑖 , 𝑠), 𝑗) | 𝑠 ∈ [𝑡]}. Set for each 𝑖 ≠ 𝑗 ∈ [𝑛], set all of the entries 𝑆𝑖 ,𝑖 to be ★’s, and uniformly
sample an entry from 𝑆𝑖 , 𝑗 to be a ★ while everything else in 𝑆𝑖 , 𝑗 is set to be zero.

We will show that vrk(𝐻) ⩽ 𝑐1 log 𝑛 occurs with high probability. Indeed, fix 𝑘 ∈ N.
Given any square sub-stencil 𝐻0 of 𝐻 of size 𝑘, we have by Lemma 10 that if 𝐻0 is visibly
independent, then we must have at least

(𝑘
2
)

zeros. Let this set of entries be 𝑍 ⊆ ([𝑛]×[𝑡])×[𝑛].
Since 𝑍 must all be zeros, then we deduce that 𝑍 ⊆ ∪𝑖≠𝑗𝑆𝑖 , 𝑗 . Since each 𝑆𝑖 , 𝑗 has size 𝑡, then
𝑍 has at least

(𝑘
2
)
/𝑡 entries, each of which belongs to an 𝑆𝑖 , 𝑗 that is different than the other.

Let That is, for each 𝑖 ≠ 𝑗 ∈ [𝑛] such that 𝑍 ∩ 𝑆𝑖 , 𝑗 ≠ ∅, arbitrarily pick an entry 𝑒 ∈ 𝑍 ∩ 𝑆𝑖 , 𝑗 ,
and let 𝑇 be those set of entries. Then we know that 𝑇 ⩾

(𝑘
2
)
/𝑡. Moreover, the events that

the entries in 𝑇 are zero are all independent, with each having a chance of at most 1 − 1/𝑡 of
being zero. Thus the chance that 𝑍 is all-zeros is at most (1 − 1/𝑡)(𝑘2)/𝑡 . By a Union Bound
over all possible such 𝑍’s, which is enumerated over all (𝑘!)2 different permutations of the
rows and columns, we deduce that

Pr [𝐻0 is visibly independent] ⩽ (𝑘!)2
(
1 − 1

𝑡

) (𝑘2)
𝑡

⩽

(
𝑘2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
.
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And by applying another Union Bound over all such 𝐻0, we find that

Pr [vrk(𝐻) ⩾ 𝑘] ⩽
(
𝑡𝑛

𝑘

) (
𝑛

𝑘

) (
𝑘2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
⩽

(
𝑘2𝑡𝑛2

(
1 − 1

𝑡

) 𝑘−1
2𝑡

) 𝑘
.

Picking 𝑘 = 6𝑡2 ln 𝑛 + 1 makes the right hand side less than 1 for large enough 𝑛. ◀

5 Tensor Products

In this section, we will be introducing a tensor product operation on stencils and explore its
properties. Given the natural tensor product 𝐴 ⊗ 𝐵 for matrices 𝐴 and 𝐵, notice that the
support of 𝐴 ⊗ 𝐵 is determined completely by the support of the matrices 𝐴 and 𝐵. As a
consequence of this observation, we will be able to define the stencil of 𝐴 ⊗ 𝐵 based solely on
the stencils of 𝐴 and 𝐵. This leads us to our definition of a tensor product over stencils.

▶ Definition 19 (Tensor product). Given an 𝐴1 × 𝐵1 stencil 𝐻1 and an 𝐴2 × 𝐵2 stencil 𝐻2,
let 𝐻1 ⊗ 𝐻2 be a (𝐴1 × 𝐴2) × (𝐵1 × 𝐵2) stencil such that

(𝐻1 ⊗ 𝐻2)[(𝑎1 , 𝑎2), (𝑏1 , 𝑏2)] =
{
★ if 𝐻1[𝑎1 , 𝑏1] and 𝐻2[𝑎2 , 𝑏2] both equal ★,
0 if at least one of 𝐻1[𝑎1 , 𝑏1] and 𝐻2[𝑎2 , 𝑏2] equals 0.

We remark that our tensor product follows similar properties as the natural tensor product
for matrices, such as associativity and non-commutativity.

5.1 Algebraic witnesses of tensor products
In this subsection, we will be proving that any algebraic witnesses of the stencils 𝐻1 and
𝐻2 is also an algebraic witness of 𝐻1 ⊗ 𝐻2. This will therefore show us that the F-rank is a
sub-multiplicative function with respect to the tensor product.

▶ Proposition 20. Let 𝑀 and 𝑁 be matrices over a field F who are F-witnesses to stencils
𝐻1 , 𝐻2, respectively. Then 𝑀 ⊗ 𝑁 is an F-witness of 𝐻1 ⊗ 𝐻2.

Proof. For every entry in 𝐻1 ⊗𝐻2, we know that (𝐻1 ⊗𝐻2)[(𝑖1 , 𝑖2), (𝑗1 , 𝑗2)] is a ★ if and only
if 𝐻1[𝑖1 , 𝑗1] and 𝐻2[𝑖2 , 𝑗2] are both ★’s. This holds if and only if 𝑀𝑖1 𝑗1 and 𝑁𝑖2 𝑗2 are both
nonzero. Because (𝑀 ⊗ 𝑁)(𝑖1 ,𝑖2),(𝑗1 , 𝑗2) = 𝑀𝑖1 𝑗1𝑁𝑖2 𝑗2 , then the entry (𝑀 ⊗ 𝑁)(𝑖1 , 𝑖2), (𝑗1 , 𝑗2) is
nonzero if and only if 𝑀𝑖1 𝑗1 and 𝑁𝑖2 𝑗2 are both nonzero. Thus 𝑀 ⊗ 𝑁 is an F-witness of
𝐻1 ⊗ 𝐻2. ◀

By applying Proposition 20 on the F-witnesses of 𝐻1 and 𝐻2 with the smallest ranks, we
deduce the following corollary.

▶ Corollary 21. For a field F, we have the inequality rkF(𝐻1)rkF(𝐻2) ⩾ rkF(𝐻1 ⊗ 𝐻2)

5.2 Visible rank and tensor products
In this subsection, we will show that the tensor product of two visibly full rank stencils is
also visibly full rank. This will therefore show us that the visible rank is super-multiplicative
with respect to the tensor product. We will also show an upper bound on the visible rank of
the tensor product with respect to the visible rank of one of the stencils.
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▶ Proposition 22. Given visibly independent matrices 𝐴 and 𝐵 of size 𝑛, their tensor 𝐴 ⊗ 𝐵

is also visibly independent.

Proof. By Lemma 10, we know that there are permutations 𝜋𝐴 , 𝜎𝐴 ,𝜋𝐵 , 𝜎𝐵 on [𝑛] such that
the stencils 𝐴0 = (𝐴)𝜋𝐴 ,𝜎𝐴 and 𝐵0 = (𝐵)𝜋𝐵 ,𝜎𝐵 are both upper triangular stencils. Moreover,
we see that 𝐴0 ⊗ 𝐵0 = (𝐴 ⊗ 𝐵)(𝜋𝐴 ,𝜋𝐵),(𝜎𝐴 ,𝜎𝐵). Therefore, it suffices for us to show that 𝐴0 ⊗ 𝐵0
is an upper triangular stencil.

Consider the lexicographical ordering on [𝑛] × [𝑛]. When (𝑖1 , 𝑖2) > (𝑗1 , 𝑗2), then we
know that one of the inequalities 𝑖1 > 𝑗1 and 𝑖2 > 𝑗2 must hold, which means one of
𝐴0[𝑖1 , 𝑗1] or 𝐵0[𝑖2 , 𝑗2] must be a zero. This proves that (𝐴0 ⊗ 𝐵0)[(𝑖1 , 𝑖2), (𝑗1 , 𝑗2)] = 0
whenever (𝑖1 , 𝑖2) > (𝑗1 , 𝑗2). As for when (𝑖1 , 𝑖2) = (𝑗1 , 𝑗2), then we immediately know that
(𝐴0 ⊗ 𝐵0)[(𝑖1 , 𝑖2), (𝑖1 , 𝑖2)] = ★ as 𝐴0[𝑖1 , 𝑖1] = 𝐵0[𝑖2 , 𝑖2] = ★. Hence 𝐴0 ⊗ 𝐵0 is an upper
triangular stencil with respect to the lexicographical ordering. ◀

Given stencils 𝐻1 and 𝐻2, we know by Proposition 22 that the tensor product of any of
their visibly full rank sub-stencils will also be visibly full rank in 𝐻1 ⊗ 𝐻2. This yields us the
following corollary.

▶ Corollary 23. For stencils 𝐻1 and 𝐻2, We have the inequality vrk(𝐻1 ⊗ 𝐻2) ⩾
vrk(𝐻1)vrk(𝐻2).

Lastly, we end this subsection with an upper bound on the visible rank of 𝐻1 ⊗ 𝐻2.

▶ Proposition 24. For stencils 𝐻1 and 𝐻2 of sizes 𝑚1 × 𝑛1 and 𝑚2 × 𝑛2, respectively, We
have the inequality vrk(𝐻1 ⊗ 𝐻2) ⩽ vrk(𝐻1)𝑛2.

Proof. Consider a visibly full rank substencil 𝑀 in 𝐻1 ⊗ 𝐻2 of size 𝑘 × 𝑘. By Lemma 10,
we can find a 𝑘 × 𝑘 permutationally equivalent matrix 𝑀′ of 𝑀. Let the columns and
rows of 𝑀′ be indexed as (𝑎1 , 𝑏1), . . . , (𝑎𝑘 , 𝑏𝑘) and (𝑐1 , 𝑑1), . . . , (𝑐𝑘 , 𝑑𝑘). Define 𝑏𝑚𝑎𝑥 to
be the most frequent column of 𝐻2 in {𝑏1 , . . . , 𝑏𝑘}. Let 𝐼 B {𝑖1 , . . . , 𝑖𝑠} be the indices
such that 𝑏𝑖 𝑗 = 𝑏𝑚𝑎𝑥 . We know that 𝑠 ⩾ 𝑘/𝑛2 by definition of 𝑏𝑚𝑎𝑥 . Moreover, the
substencil 𝑀0 of 𝑀′ attained by taking the rows and columns with index in 𝐼 is upper
triangular. Since 𝑀′[(𝑐𝑖 𝑗 , 𝑑𝑖 𝑗 ), (𝑎𝑖 𝑗 , 𝑏𝑚𝑎𝑥)] = ★, then 𝐻2[𝑑𝑖 𝑗 , 𝑏𝑚𝑎𝑥] = ★ for all 𝑗 ∈ [𝑠]. Because
𝑀0 is upper triangular, then if we consider the 𝑠 × 𝑠 substencil 𝑁1 in 𝐻1 with columns
and rows {𝑎𝑖1 , . . . , 𝑎𝑖𝑠 } and {𝑐𝑖1 , . . . , 𝑐𝑖𝑠 }, we deduce that 𝑁1 is upper triangular. Thus
vrk(𝐻1) ⩾ vrk(𝑁1) = 𝑠 ⩾ 𝑘/𝑛2. Hence 𝑛2vrk(𝐻1) ⩾ 𝑘 for any visibly full rank 𝑘 × 𝑘

substencil 𝑀 in 𝐻1 ⊗ 𝐻2. ◀

5.3 Visible rank of the tensor powers

Naturally, one would be interested in tensoring a stencil 𝐻 with itself several times and
examine such a stencil.

▶ Definition 25 (Tensor power). Given an 𝑚 × 𝑛 stencil 𝐻, the 𝑘’th tensor of 𝐻 is the
𝑚𝑘 × 𝑛𝑘 stencil 𝐻⊗𝑘 defined as 𝐻⊗𝑘 B 𝐻 ⊗ 𝐻 ⊗ . . . ⊗ 𝐻︸               ︷︷               ︸

𝑘 times

.

By combining all the results from the previous subsections, we obtain the following corollary.
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▶ Corollary 26. For a natural number 𝑘 and an 𝑚 × 𝑛 stencil 𝐻, we have the inequality

rkF(𝐻) ⩾ rkF(𝐻⊗𝑘)1/𝑘 ⩾ vrk(𝐻⊗𝑘)1/𝑘 ⩾ vrk(𝐻)

Moreover, we also have the inequality vrk(𝐻⊗𝑘) ⩽ 𝑛𝑘−1vrk(𝐻).

From the previous corollary, we can see that by consider the visible rank of the higher
tensor powers of a stencil 𝐻, one might hope to attain better lower bounds on the F-rank.
Naturally, one would define the highest possible bound achieved through this vein.

▶ Definition 27 (Visible Capacity). The visible capacity of a stencil 𝐻, denoted as Υ(𝐻), is
defined as Υ(𝐻) B sup𝑘 vrk(𝐻⊗𝑘)1/𝑘.

By Corollary 26, we deduce that rkF(𝐻) ⩾ Υ(𝐻) over any field F. It is not known to us if
there are stencils for which there is a gap between its visible capacity and all its F-ranks. We
leave the discussion of this point to Question 1 in Section 7.

6 Tensor Powers of Stencils for 2-DRGP Codes and 𝒒-LCCs

In this section, we will be considering the tensor product in the previous section and use it
to analyze the visible rank of the tensor powers of 2-DRGP and 𝑞-LCC stencils to see if they
might yield better lower bounds on the rank via Corollary 26.

6.1 2-DRGP stencils
In this subsection, we prove that the second tensor power of an arbitrary 2-DRGP stencil
has a large visible rank.

▶ Theorem 28. For any 2-DRGP stencil 𝐻, we have vrk(𝐻 ⊗ 𝐻) ⩾ 𝑛.

Proof. We cite [24, 30] for the proof of this part. We will follow the notations given in [30]
closely. While both proofs show that rkF(𝐻) ⩾

√
2𝑛 − 𝑂(1), we will prove that rkF(𝐻) ⩾

√
𝑛

by showing that vrk(𝐻 ⊗ 𝐻) ⩾ 𝑛 and then applying Corollary 26. We rewrite their proofs in
terms of tensor powers.

Consider the 𝑛 × 𝑛 sub-stencil 𝐷 in 𝐻 ⊗ 𝐻 whose columns are (1, 1), . . . , (𝑛, 𝑛) and
whose rows are ((1, 1), (1, 2)), . . . , ((𝑛, 1), (𝑛, 2)). We claim that 𝐷 has ★’s along the diagonal
and zero everywhere else, which implies that it is visibly full rank. Indeed, the entry
𝐷[((𝑖 , 1), (𝑖 , 2)), (𝑗 , 𝑗)] equals ★ if and only if both 𝐻[(𝑖 , 1), 𝑗] and 𝐻[(𝑖 , 2), 𝑗] are ★’s. Since
𝐻 is a 2-DRGP stencil, this happens precisely when 𝑖 = 𝑗. Thus 𝐷 is a diagonal stencil. ◀

Thus by Corollary 26, we obtain a lower bound rkF(𝐻) ⩾
√
𝑛 for any field F. On the

other hand, the best known lower bounds yield rkF(𝐻) ⩾
√

2𝑛 − 𝑂(1), and so one might
be interested in achieving this lower bound through the viewpoint of tensor products. In
order to improve the lower bound that we have, we first have to translate our proof into
linear-algebraic terms.

Given a field F, suppose that we have an F-witness 𝐴 of the 2-DRGP stencil 𝐻 whose
rank is 𝑟. Decompose 𝐴 = 𝑀𝑁 where 𝑀 is an 2𝑛 × 𝑟 matrix and 𝑁 is an 𝑟 × 𝑛 matrix.
Denote the 𝑖’th column of 𝑁 by 𝑤𝑖 Then the proof of Theorem 28 is equivalent to saying
that the tensors {𝑤𝑖 ⊗ 𝑤𝑖}𝑛𝑖=1 are linearly independent. Since they live in a space F𝑟 ⊗ F𝑟 ,
then we obtain the inequality 𝑟2 ⩾ 𝑛, which gives us the same lower bound as we obtained
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in Theorem 28. Now, if one is more careful about the vector space, one can notice that the
tensors {𝑤𝑖 ⊗ 𝑤𝑖}𝑛𝑖=1 belong to the space of symmetric tensors, which has a dimension of(𝑟+1

2
)
. Thus we obtain the inequality

(𝑟+1
2

)
⩾ 𝑛, which gives us 𝑟 ⩾

√
2𝑛 − 𝑂(1).

6.2 𝒒-LCC stencils
In this subsection, we will show that the visible ranks of the 𝑘’th tensor power of a 𝑞-
LCC stencil would not improve the current bound of 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)) in Theorem 16 for
𝑘 ⩽ polylog(𝑛). More generally, we will show that the visible rank of small tensor powers
could are not significantly bigger than the visible rank for the regime of high-rate stencils.

▶ Proposition 29. Let 𝐻 be an 𝑚 × 𝑛 stencil whose visible rank is at most 𝑛 − 𝑠. For any
fixed natural number 𝑘, we have vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − 𝑠

𝑘
.

Proof. By Corollary 26 and the inequality (1 − 𝑥)1/𝑘 ⩽ 1 − 𝑥
𝑘

for 𝑥 ⩾ 0, we have that

vrk(𝐻⊗𝑘)1/𝑘 ⩽
(
𝑛𝑘−1vrk(𝐻)

)1/𝑘
⩽

(
𝑛𝑘−1(𝑛 − 𝑠)

)1/𝑘
= 𝑛

(
1 − 𝑠

𝑛

)1/𝑘
⩽ 𝑛

(
1 − 𝑠

𝑘𝑛

)
= 𝑛− 𝑠

𝑘
.◀

From Proposition 29, we notice that looking at the visible rank of the 𝑛𝑜(1) level tensor
powers of a 𝑞-LCC stencil would not improve the current bounds on 𝑞-LCCS by a polynomial
factor. We state it more formally in the following corollary.

▶ Corollary 30. Let 𝐻 be a 𝑞-LCC stencil whose visible rank is at most 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1)).
For any natural number 𝑘, we have vrk(𝐻⊗𝑘)1/𝑘 ⩽ 𝑛 − Ω̃(𝑛(𝑞−2)/(𝑞−1))/𝑘.

7 Further Directions and Discussion

Stencils provide an initial framework toward combinatorial methods for effectively lower
bounding the rank of a matrix. However, we have seen the limitations of the visible rank
with 2-DRGP stencils as well as small tensor powers of 𝑞-LCC stencils. We leave the reader
with questions that remain open about the current framework and possibilities of imposing
further restrictions on the model to obtain sharper lower bounds on the rank.

1. While we may have shown that the 𝑘’th tensor power of a 𝑞-LCC does not yield better
lower bounds for 𝑘 ⩽ 𝑛𝑜(1), this does not rule out the possibility that the visible capacity
might yield better lower bounds. In fact, we do not know if there are any stencils for
which the visible capacity does not match the lowest possible rank for the stencil. In
other words, does there exist a stencil 𝐻 such that rkF(𝐻) > Υ(𝐻) for every field F?.

2. Random 2-DRGP patterns have shown an exponential gap between the visible ranks
of the first and second tensor powers, but one might be curious to see an exponential
separation between the visible ranks of the (𝑡 − 1)’th and 𝑡’th tensor powers. Formally
speaking, for every natural number 𝑡 greater than 1, does there exist a 𝑚 × 𝑛 stencil
𝐻 and a constant 𝑐 > 0 such that vrk(𝐻⊗𝑖) = 𝑂(log𝑐𝑖 𝑛) for 𝑖 = 1, 2, . . . , 𝑡 − 1 while
vrk(𝐻⊗𝑡) = Ω(𝑛)? Such a phenomena holds with Shannon capacity [1].

3. In this paper, we shown a polynomial gap between rkF(𝐻) and vrk(𝐻) by proving that
there are 2-DRGP stencils 𝐻 with vrk(𝐻) = 𝑂(log 𝑛) and rkF(𝐻) = Ω(

√
𝑛). On the other

hand, can there also be a similar polynomial gap with the quantities 𝑛 − rkF(𝐻) and
𝑛 − vrk(𝐻)? From Proposition 29, we have seen that the visible ranks of the 𝑘’th tensor



O. Alrabiah and V. Guruswami 57:17

power for 𝑘 ⩽ 𝑛𝑜(1) would not suffice to show this polynomial gap. Nonetheless, it still
leaves the possibility of using the visible capacity to showing this polynomial gap, but we
do not know of any methods that can lower bound the visible capacity other than the
visible ranks of finite tensor powers. Note that this question is the symmetric spanoid
version of Question 2 posed in [5].
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