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Abstract
Motivated by the derandomization of space-bounded computation, there has been a long line
of work on constructing pseudorandom generators (PRGs) against various forms of read-once
branching programs (ROBPs), with a goal of improving the O(log2 n) seed length of Nisan’s classic
construction [33] to the optimal O(log n).

In this work, we construct an explicit PRG with seed length Õ(log n) for constant-width ROBPs
that are monotone, meaning that the states at each time step can be ordered so that edges with the
same labels never cross each other. Equivalently, for each fixed input, the transition functions are a
monotone function of the state. This result is complementary to a line of work that gave PRGs with
seed length O(log n) for (ordered) permutation ROBPs of constant width [7, 26, 12, 37], since the
monotonicity constraint can be seen as the “opposite” of the permutation constraint.

Our PRG also works for monotone ROBPs that can read the input bits in any order, which
are strictly more powerful than read-once AC0. Our PRG achieves better parameters (in terms of
the dependence on the depth of the circuit) than the best previous pseudorandom generator for
read-once AC0, due to Doron, Hatami, and Hoza [13].

Our pseudorandom generator construction follows Ajtai and Wigderson’s approach of iterated
pseudorandom restrictions [1, 18]. We give a randomness-efficient width-reduction process which
proves that the branching program simplifies to an O(log n)-junta after only O(log log n) independent
applications of the Forbes–Kelley pseudorandom restrictions [16].

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Circuit complexity

Keywords and phrases Branching programs, pseudorandom generators, constant depth circuits

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2021.58

Category RANDOM

Funding Dean Doron: Supported by NSF award CCF-1763311 and Simons Foundation investigators
award 689988.
Raghu Meka: Supported by NSF Career award CCF-1553605 and NSF award CCF-2007682.
Omer Reingold: Supported by Supported by NSF award CCF-1763311 and Simons Foundation
investigators award 689988.
Salil Vadhan: Supported by NSF grant CCF-1763299 and a Simons Investigator Award.

Acknowledgements We are grateful to Kristoffer Hansen for pointing us to [3] and explaining how
their results imply Theorem 3.

© Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2021).
Editors: Mary Wootters and Laura Sanità; Article No. 58; pp. 58:1–58:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ddoron@stanford.edu
https://cs.stanford.edu/~ddoron/
mailto:raghum@cs.ucla.edu
https://raghumeka.github.io/
mailto:reingold@stanford.edu
https://omereingold.wordpress.com/
mailto:atal@berkeley.edu
http://www.avishaytal.org/
mailto:salil_vadhan@harvard.edu
https://salil.seas.harvard.edu/
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.58
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


58:2 PRGs for Read-Once Monotone Branching Programs

1 Introduction

Branching programs are a fundamental model in computational complexity, capturing both
space-bounded computation and circuit classes. In this paper, we study a restricted class
of branching programs we call monotone, giving a new pseudorandom generator for their
read-once version.

1.1 Monotone Branching Programs

First we recall the standard definition of a layered branching program:

▶ Definition 1. For w, n, s ∈ N, a (layered) branching program (BP) B on n variables, with
length s and width w, or an [n, s, w] BP, is specified by a start state v0 ∈ [w], a set of accept
states Vacc ⊆ [w], a sequence of variable indices i1, . . . , is ∈ [n], and sequence of transition
functions Ej : {0, 1} × [w] → [w] for j = 1, . . . , s.

A branching program B as above naturally defines a function B : {0, 1}n → {0, 1}: Start
at the starting state v0, and then for j = 1, . . . , s, read the input bit xij

and then transition to
state vj = Ej(xij , vj−1), The branching program accepts (B(x) = 1) if vn ∈ Vacc and rejects
(B(x) = 0) otherwise.

B is a read-once branching program, or an [n, w] ROBP, if s = n and i1, . . . , is is a
permutation of [n]. If this is the identity permutation (i.e. the variables are read in order),
then we say B is an ordered branching program.

A layered branching program B has an associated directed graph. The vertex set has
s+1 layers of w vertices each. For each j = 1, . . . , s, layer j is labelled with an input variable,
namely xij

, and there are two edges, labelled 0 and 1, going from each vertex v in layer j to
vertices layer j + 1, namely Ej(0, v) and Ej(1, v).

We now introduce the model of monotone programs that we consider.

▶ Definition 2 (monotone branching program (MBP)). We say a BP B is monotone if for
every j ∈ [s] and σ ∈ {0, 1}, the j-th transition function with input bit restricted to σ, denoted
Eσ

j ≜ Ej(σ, ·) : [w] → [w], is a monotone function according to the standard ordering of [w],
i.e. if v ≥ v′, then Eσ

j (v) ≥ Eσ
j (v′).

That is, put differently, if we draw the layered graph as an w × (s + 1) grid, then whenever
we consider the edges associated with a fixed input x, there are no edges crossing. We will
refer to BPs that are both monotone and read once as read-once MBPs.

It is important to note that this definition only requires monotonicity with respect to the
state of the branching program; MBPs can easily compute functions that are non-monotone
as a function of their input (as we will see below). We remark that the definition of read-
once MBPs as defined here is different from the notion of locally monotone studied in [10].
Importantly, the latter property is not preserved under restrictions and hence is less nice
structurally. The read-once definition also coincides with the notion of monotone ROBPs as
defined in [31], if we require all reject states to precede the accepting ones in the last layer.1
However, the formulation above is more convenient for us.

1 In fact, for the sake of constructing PRGs, we can remove this requirement by replacing ε with ε/w.



D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:3

1.2 Monotone Branching Programs and AC0

Recall Barrington’s celebrated theorem that constant-width branching programs are equivalent
in power to NC1 circuits [2]. However, when we restrict to monotone branching programs,
then they become equivalent in power to the much weaker AC0 circuits. Our model of
monotone branching programs is closely related to the models of planar branching programs
studied in [3, 4] and the following can be deduced from their results:2

▶ Theorem 3 (corollary of [4]). A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if
and only if it is computable by a constant-width MBP of polynomial length.

In this paper, our focus is on read-once MBPs. We prove that these are strictly stronger
than read-once AC0:

▶ Proposition 4.
1. If a sequence of functions fn : {0, 1}n → {0, 1} is in read-once AC0, then it can be

computed by constant-width read-once MBP. Moreover, if fn can be computed in depth w

read-once AC0, then it can be computed by width w + 1 read-once MBPs.
2. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a width 3

read-once MBP, but not computable by any read-once De Morgan formula (regardless of
depth).
Item 1 is proven in the same way as the easier direction of Theorem 3, noting that if we

start with a read-once AC0 circuit, we end up with a read-once MBP. Item 2 is proven by
showing that simple functions, like checking whether the input contains at least two ones
cannot be computed by a read-once De Morgan formula, but can be computed be width
three MBPs. We give the proof for Item 2 in Section 4.

Thus, constant-width read-once MBPs form an intermediate class between read-once AC0

and AC0.3

1.3 Pseudorandom Generators for Read-Once Branching Programs
A longstanding quest in complexity theory is to understand the power of randomness in
relation to space complexity. A central challenge in this direction is to construct pseudorandom
generators for read-once branching programs.

In this work we study the question of designing explicit PRGs for small-width ROBPs.

▶ Definition 5. Given a class of functions F : {0, 1}n → {0, 1}, a function G : {0, 1}r →
{0, 1}n is a PRG for F with error ε if for any f ∈ F , we have∣∣∣∣ Pr

y∈u{0,1}r
[f(G(y)) = 1] − Pr

x∈u{0,1}n
[f(x) = 1]

∣∣∣∣ ≤ ε.

We call r the seed length of the generator and the generator is explicit if its output can
be computed in polynomial time (in n). We often say G ε-fools F .

2 In an earlier version of our paper [15], we claimed Theorem 3 as a new contribution. Kristoffer Hansen
then explained to us how the result follows from [3]. More precisely, there are simple gadget reductions
to show that a constant-width monotone branching program according to our definition can be simulated
by a planar branching program according to the definition of [3]. Thus the result of [3] establishing the
equivalence of the latter with AC0 implies the “if” direction of Theorem 3. The “only if” direction is
much easier, and amounts to observing that the standard simulation of AC0 by constant-width branching
programs yields a monotone program. For completeness, we provide a direct and self-contained proof of
both directions of Theorem 3 in Appendix A.

3 Both inclusions are strict, since there are functions in AC0 that cannot be computed by circuits of size
smaller than n4, and the proof of Theorem 3 shows that any constant-width read-once MBP can be
simulated by an AC0 circuit of size O(n3).

APPROX/RANDOM 2021
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Designing pseudorandom generators against ordered ROBPs has received a lot of attention
and is intimately connected to the question of understanding the power of randomness vs.
space. It has also found a number of applications beyond derandomizing space. ([29, 35, 21,
24, 25, 19] are just few examples.)

The best known PRGs for ordered ROBPs to date are those of Nisan [33] and Impagliazzo–
Nisan–Wigderson [23] which give seed length O(log2 n) when w = nO(1) and ε = 1/nO(1).
However, even for width four and constant error their construction requiring seed length
O(log2 n) is still the best. Improving on this seed length, even for constant width, has been
a longstanding barrier. We do have better PRGs for various special classes of ROBPs that
are independently interesting:

Braverman, Rao, Raz, and Yehudayoff [7] construct PRGs with Õ(log n) seed length
for constant-width ordered regular branching programs and ε = 1/ poly(log n). Regular
branching programs are a special class of ROBPs where we require the structural condition
that each vertex has the same in-degree in the underlying layered graph.
Starting with the work of Koucký, Nimbhorkar, and Pudlák [26], several works [12, 37, 22]
have achieved a seed length of O(log n) (with no log log n factors) for the further restricted
model of ordered permutation branching programs. In these, we require that at each layer
j, and for each symbol σ, the transition function Eσ

i is a permutation of [w].
Meka, Reingold, and Tal [30] construct PRGs with Õ(log n) seed length for width
three ordered ROBPs and ε = 1/ poly(log n), as well as for unordered ones with ε =
1/ poly(log log n).
[16] gave a PRG that is significantly different from that of [33, 23] and achieves seed
length O(log3 n) for polynomial width and Õ(log2 n) for constant-width ROBPs (again,
even unordered).

1.4 Our Main Result
We give an explicit PRG with seed length Õ(log(n/ε)) for read-once MBPs.

▶ Theorem 6 (see Section 3.2). For any positive integers n, w ≤ n, and ε ∈ (0, 1/2), there
is an explicit PRG that ε-fools [n, w] read-once MBPs (even unordered ones) with seed length
O
(
w2 log(n/ε) · (log log(n/ε))2) .

We believe that fooling read-once MBPs is an important (and clearly necessary) step
toward breaking the O(log2 n)-barrier for constant-width ROBPs. The class of (ordered)
branching programs that we understand best from the perspective of pseudorandomness is that
of permutation branching programs, thanks to the aforementioned works of [7, 26, 12, 37, 22],
all of which obtain their results by showing that the Impagliazzo–Nisan–Wigderson [23]
pseudorandom generator can be analyzed better for such programs. Monotone BPs can be
seen as the extreme opposite of permutation BPs: the only monotone function E : [w] → [w]
that is also a permutation is the identity. Thus the only layers a monotone BP can share with
a permutation BP are redundant (can be eliminated from the branching program without
changing its functionality). Furthermore, in stark contrast to the case of ordered permutation
branching programs, it is known that instantiations of the classical constructions of [33, 23]
with Õ(log n) seed length provably do not work against ordered MBPs of width 3 [8].

Technically, our arguments build on the paradigm of using random restrictions for fooling
ROBPs as studied in the works of [18, 34, 38, 11, 20, 28, 10, 16, 30, 27, 13, 14]. This gives
more evidence that this approach can perhaps lead to Õ(log n) seed length for constant-width
ROBPs. Our analysis introduces the idea of exploiting width reduction combined with
alphabet reduction that could be useful for the general problem.
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By Proposition 4, the PRG of Theorem 6 is also a PRG for read-once De Morgan formulas.
For read-once AC0, corresponding to width w = O(1), it achieves a better dependence on
the width w than the previous generator for read-once AC0, which has a seed of length
log(n/ε) · O(w log log(n/ε))2w+2 for depth-w formulas [13] (our dependence on w is w2). For
read-once formulas of arbitrary depth, the best PRG prior to our work was the PRG of Forbes
and Kelley [16], which has seed length O(log(n/ε) log2 n). Thus, the PRG of Theorem 6
attains better seed length for read-once formulas that have depth up to w = o

(
log n

log log(n/ε)

)
.

We note that constructing PRGs that are not sensitive to the ordering of the bits in which
the input is read is a natural question. First, fooling read-once AC0, for example, is inherently
an unordered task. But also, PRGs for ROBPs that follows the “classical” and successful
seed recycling approach due to Nisan (e.g., [33, 23, 26, 7, 6]) heavily depends on the ordering
of the bits. In fact, Tzur [39] proved that Nisan’s PRG can in fact be distinguished from
uniform by an unordered constant width branching program (see also [5]). Thus, the hope is
that PRGs that are not sensitive to the ordering will help make progress on the problem of
fooling ordered ROBPs with seed length o(log2 n).

1.5 Techniques
We proceed by giving an overview of the construction of our PRG and of the techniques we
use.

1.5.1 The Iterated Restrictions Approach
We construct our PRG using the iterated pseudorandom restrictions approach, pioneered
by Ajtai and Wigderson [1] and further developed by Gopalan et al. [18]. That is, we
pseudorandomly assign values to a pseudorandomly chosen subset of the variables, and
then repeat the process until we assigned values to all variables. Intuitively, designing a
pseudorandom restriction for some function f is easier than fooling f outright, because
designing a pseudorandom restriction amounts to fooling a “smoothed out” version of f [18],
or equivalently, designing a PRG that would fool f after some noise was added [20]. Previous
works that used this approach include PRGs for unordered ROBPs [34, 10, 16], PRGs for
width-3 ROBPs [18, 38, 30], PRGs for bounded-depth read-once formulas [18, 11, 13, 14],
and PRGs for arbitrary-order product tests [20, 28, 27].

Following the iterated restrictions approach, we need our pseudorandom distribution
X over restrictions to satisfy two key properties. The first property is that the restriction
should approximately preserve the expectation of the function. i.e., in expectation over
X, the restricted function f |X should have approximately the same bias as f itself, i.e.
EX [EU [f |X(U)]] ≈ EU [f(U)], where U denotes the uniform distribution on the appropriate
number of bits. This feature ensures that after sampling the restriction X, our remaining
task is simply to fool f |X . The second property is the simplification property. That is, we
want that the restricted function, for a typical restriction, should be in a sense simpler than
f itself. Clearly, simplifying f would make it easier to fool.

To achieve the first property of preserving the expectation, we follow Forbes and Kelley
[16], who constructed a simple pseudorandom distribution over restrictions that approximately
preserves the expectation of any constant-width ROBP. In the Forbes–Kelley distribution, we
determine which coordinates stay alive in an almost k-wise independent manner, and sample
the fixed coordinates using a small-bias space. This distribution, per a single restriction, can
be sampled using Õ(log(n/ε)) uniform bits. Next, we proceed to discuss how to achieve the
simplification property.

APPROX/RANDOM 2021
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1.5.2 Iterative Width Reduction
In our setting, we design our restrictions in a way that fits nicely with the [16] distribution.
Thus, the remaining challenge is indeed to ensure that such restrictions simplify constant
width monotone ROBPs. In [16], the measure of complexity was simply the number of
remaining unset variables. That is, Forbes and Kelley argued that after applying O(log n)
independent pseudorandom restrictions, with high probability, all variables are set, and hence
there is nothing left to fool. Such an analysis gives seed length of Õ(log(n/ε) · log n), and
recent works used more sophisticated measures of complexity to show that for more restricted
classes of bounded width ROBPs, one can reach a function which is simple enough after
only O(log log n) independent pseudorandom restrictions [18, 30, 13, 14]. In this work, we
continue this line of research, and show that after O(log log n) iterations, roughly speaking,
the width of the ROBP decreases by 1.

Since the construction and analysis of PRG will not depend on the ordering of the input
bits, for simplicity we will describe it here assuming that the monotone ROBP B is ordered
(to avoid the indexing ij of input variables). Before getting to the construction, we highlight
the key concept of colliding layers in a branching program, which was also paramount in
[8, 36, 38, 10, 30]. We say that a BP layer i is a collision one, if there exist two edges with
the same label σ that are mapped to the same vertex, i.e. Eσ

i is not a permutation. We say
a collision is realized if a restriction fixes xi to σ, and thus effectively introduces a layer with
smaller width. The property of monotone BPs we use is that every non-identity layer is a
collision one, and crucially, that this property is preserved under restrictions.

Another technical, yet powerful, component of our analysis is treating a branching program
with edges labeled 0 and 1, i.e., over the alphabet {0, 1}, as a branching program over a
much larger alphabet. Expressing the branching program over a larger alphabet preserves
monotonicity and allows us to reduce the width of the BP in some cases. In fact, we will
treat both the width and the alphabet size as progress measures.

Towards describing our iterative simplifying process, express our ROBP B, over {0, 1},
as a branching program over Σ = {0, 1}ℓ in the straightforward way, where ℓ will start out
as O(log(n/ε)) and eventually will be reduced to O(log log(n/ε)). Each “layer” is now a
function from Σ × [w] to [w]. Initially, moving to a larger alphabet only makes our task more
difficult, but the generality will be useful as we induct on the width below (i.e. even if we
start out with a width w program with alphabet {0, 1}, the argument below will force us to
handle width w − 1 programs having alphabet {0, 1}O(log(n/ε)).

We iteratively apply the following two observations.
1. Realizing a collision. After a suitable pseudorandom restriction X1, in every sequence

of exp(O(ℓ)) · log(n/ε) = exp(O(ℓ)) collision layers, we will have a collision in one of these
layers. As each layer in a read-once MBP is either an identity layer or a collision layer,
and this remains true also after transitioning to a larger alphabet, we can deduce that
after X1 every Cℓ consecutive nontrivial layers contains a layer of width at most w − 1,
for a sufficiently large constant C.

2. Alphabet reduction. After a suitable pseudorandom restriction X2, up to a few
“unruly” layers, we can shrink the alphabet size of B so that all layers are effectively over
{0, 1}ℓ/2. Specifically, we can assume that in every sequence of Cℓ consecutive layers of
alphabet size B, all but O(log(n/ε)) of them will have their alphabet size reduced to
{0, 1}ℓ/2.

Both X1 and X2 will consist of almost k-wise independent distributions on {0, 1, ⋆} where ⋆

represents the bits not assigned by the restriction and we take X1 to have ⋆-probability 1/2
and X2 to have a smaller, yet still constant, ⋆-probability.
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Equipped with the above two observations, aiming at reducing the width of B, we apply,
independently, the above X1 and X2 for t = O(log log(n/ε)) iterations. After the first
application of X1, we can write B as B = B1 ◦ . . . ◦ Br, each Bi is of length at most Cℓ over
an ℓ-bit alphabet, starting and ending in a layer of width w − 1. Then the first application of
X2 will reduce the alphabet of each of the Bi-s to consist of ℓ/2 bits, except for O(log(n/ε))
unruly layers within each Bi. The second application of X1 will now create collisions every
Cℓ/2 non-unruly layers, refining the program further into B = B′

1 ◦ · · · B′
r′ , where each B′

i

is of length at most Cℓ/2 over an ℓ/2-bit alphabet (except for O(log(n/ε)) unruly layers),
starting and ending with a layer of width w − 1. The second of application of X2 will then
reduce the alphabet size of each B′

i to at most ℓ/4 except for O(log(n/ε)) additional unruly
layers within each B′

i. In general, each iteration reduces the distance between consecutive
layers of width w −1 and reduces the alphabet size, except for increasing the number of unruly
layers by O(log(n/ε)) within each interval. Finally after t = O(log log(n/ε)) iterations, we
will have an alphabet where each symbol consists of ℓ∗ = O(log log(n/ε)) bits, so the distance
between width w − 1 layers is at most Cℓ∗ = poly(log(n/ε)). Even including the unruly
layers, we can now view our as a width w − 1 read-once MBP over Σ′ = {0, 1}poly(log(n/ε)).

Before we can repeat the above process and reduce the width from w −1 to w −2, etc., we
need to reduce Σ′ back to Σ = {0, 1}O(log(n/ε)). We can achieve this by an additional alphabet
reduction using an almost k-wise independent distribution with ⋆-probability 1/ poly log(n/ε)
suffices.

Recall that due to [16], we can set the above restrictions to preserve the expectation of
our original B, up to a small error. Hence, with seed of length Õ(log(n/ε)) we can both
preserve the expectation and reduce the width by 1. Applying this w − 1 times, with high
probability our program will be very simple – a function depending on only O(log(n/ε)) bits
(i.e. a junta), which is fooled by an almost O(log(n/ε))-wise independent distribution.

All in all, our construction consists of commonly used primitives for PRGs: pseudorandom
restrictions in which both the choice of live variables and the the choice of fixed coordinates
are sampled from an almost k-wise independent distributions, with varying parameters. The
analysis of iterative width reduction via resorting to larger alphabets is new, and we believe
can be of use for designing PRGs for other models of computation. Naturally, there are some
additional subtleties in the analysis and the choice of parameters, which we leave to the
complete analysis in Section 3.

2 Preliminaries

We denote by Un the uniform distribution over {0, 1}n. Suppose C is a class of functions
in {0, 1}n → R and G is a distribution over {0, 1}n. We say that G ε-fools C if for every
f ∈ C it holds that |E[f(G)] − E[f(Un)]| ≤ ε. Recall that a PRG ε-fooling C is a function
G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand, we often write E[f ] to
denote E[f(Un)], and omit the subscript n when the number of input bits is clear from
context.

2.1 Branching Programs
We extend the definition of branching programs from Definition 1 to large alphabets. We
do so by grouping together at most ℓ consecutive bits in a single edge-layer of the program.
The main advantage in such a transformation is that we can potentially express a width
w program over {0, 1} as a width w′ < w program over {0, 1}ℓ. This will be crucial in our
analysis.

APPROX/RANDOM 2021
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We say that a read-once branching program (ROBP) B is a [n, w′]ℓ ROBP if B can be
written as a directed layered graph with m + 1 layers (for some m ≤ n) denoted V1, . . . , Vm+1.
Each Vi consists of at most w′ many vertices. Furthermore, there exists a partition of [n] to
disjoint subsets S1, . . . , Sm ⊆ [n] of size at most ℓ each, and between every consecutive layers
of vertices Vi and Vi+1 there exists a set of directed edges such that any vertex in Vi has 2|Si|

edges going towards Vi+1. We can treat the the i-th layer of edges as a transition function
Ei : {0, 1}Si × [w′] → [w′] between Vi and Vi+1. Namely, for each σ ∈ {0, 1}Si we have the
function Eσ

i ≜ Ei(σ, ·) : [w] → [w] that is defined in the natural way by following the edges
labeled σ from Vi to Vi+1. Such a program naturally describes a read-once computation on
x ∈ {0, 1}n, where in the i-th step we follow the edge marked with xSi

∈ {0, 1}Si from a
vertex in Vi to a vertex in Vi+1. We often denote ℓ as the alphabet length of B and 2ℓ as the
alphabet size of B.

We say that an [n, w′]ℓ ROBP is monotone if for every i ∈ [m], its i-th layer Ei satisfies the
following. For any σ ∈ {0, 1}Si and distinct x1, x2 ∈ [w′], x1 ≥ x2 implies Eσ

i (x1) ≥ Eσ
i (x2).

We say Ei is an identity layer if for any σ ∈ {0, 1}Si it holds that Eσ
i is the identity function.

We say that Ei is a collision layer if there exists σ ∈ {0, 1}Si such that Eσ
i contains a

collision, i.e., there exist distinct x1, x2 ∈ [w′] such that Eσ
i (x1) = Eσ

i (x2). We will make use
of the following key observation.

▷ Claim 7. In a read-once MBP, every layer is either an identity layer or a collision layer.

As noted above, our techniques will also hold for the unordered setting, so we may assume
that the bits of x are permuted by some permutation π ∈ Sn, i.e., the i-th layer of the
program follow the edge marked by xπ(i). Since we are in the unordered setting we can
assume without loss of generality that there are no identity layers in the program, by skipping
these layers.

Observe that if an (unordered) [n, w] ROBP B over {0, 1} has m + 1 of its n + 1 vertex-
layers with width at most w′ and of distance at most ℓ apart, then we can write B as a
[n, w′]ℓ ROBP B′. Furthermore, if B is monotone so is B′.

2.2 k-Wise and δ-Biased Distributions
We say that a random variable Y ∼ {0, 1}n is δ-biased if it δ-fools all parity functions.
Namely, if for any nonempty I ⊆ [n] it holds that∣∣∣∣∣Pr

[⊕
i∈I

Yi = 1
]

− 1
2

∣∣∣∣∣ ≤ δ.

There are explicit constructions of δ-biased distributions over {0, 1}n that can be sampled
efficiently with O(log n + log 1

δ ) truly random bits [32].

▶ Lemma 8 (Vazirani’s XOR Lemma, See e.g., [17, Section 1]). Let Y ∼ {0, 1}n be a δ-biased
distribution, and let S ⊆ [n]. Then,

∣∣YS − U|S|
∣∣ ≤ 2|S|/2 · δ.

For p ∈ [0, 1], we denote by Bernoulli(p)⊗n the distribution over {0, 1}n where the
bits are i.i.d. and each bit has expectation p. We say that Z ∼ {0, 1}n is γ-almost k-
wise independent with marginals p if for every set I ⊆ [n] satisfying |I| ≤ k it holds that∣∣ZI − Bernoulli(p)⊗|I|

∣∣ ≤ γ. We can sample such distributions efficiently.

▷ Claim 9 (see, e.g., in [14]). For any positive integers n, k, C, and any γ > 0, there is
an explicit γ-almost k-wise independent distribution with marginals p = 2−C that can be
sampled efficiently with O(Ck + log 1

γ + log log n) truly random bits.
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Moreover, we have good tail bounds for almost k-wise distribution.

▶ Lemma 10 (following [9, 38]). Let X1, . . . , Xn be γ-almost k-wise independent random
variables over {0, 1} with marginals q, and let α > 0. Then, for an even k ≤ qn,

Pr
[∣∣∣∣∣ ∑

i∈[n]

Xi − qn

∣∣∣∣∣ ≥ αqn

]
≤
(

16k

α2qn

)k/2
+ 2kγ

(
1

αq

)k

.

▶ Corollary 11. Let X ′
1, . . . , X ′

n be γ-almost k-wise independent random variables over {0, 1}
with marginals ≥ q. Then, for an even k ≤ qn,

Pr
[ ∑

i∈[n]

X ′
i = 0

]
≤
(

16k

qn

)k/2
+ 2kγ

(
1
q

)k

.

Proof. Take Xi = X ′
i ∧ Yi where Yi is a coin toss with Pr[Yi = 1] = q/E[X ′

i]. We have that
E[Xi] = q, and that X1, . . . , Xn are γ-almost k-wise independent with marginals q. Applying
Lemma 10 with α = 1 implies that

Pr
[ ∑

i∈[n]

Xi = 0
]

≤
(

16k

qn

)k/2
+ 2kγ

(
1
q

)k

.

The proof is complete since Pr
[∑

i∈[n] X ′
i = 0

]
≤ Pr

[∑
i∈[n] Xi = 0

]
. ◀

2.3 Restrictions and Pseudorandom Restrictions
A restriction is a string x ∈ {0, 1, ⋆}n. Intuitively, xi = ⋆ means the i-th coordinate has not
been set by the restriction. A restriction x can be specified by two strings y, z ∈ {0, 1}n where
z determines the ⋆ locations and y determines the assigned values in the non-⋆ locations.
Namely, we define Res : {0, 1}n × {0, 1}n → {0, 1, ⋆} by

Res(y, z)i =
{

⋆ zi = 1,

yi zi = 0.

We define a composition operation on restrictions, by

(x ◦ x′)i =
{

xi xi ̸= ⋆,

x′
i otherwise.

For a function f on {0, 1}n, the restricted function f |x on {0, 1}n is defined by f |x(x′) =
f(x ◦ x′).

We will repeatedly use the following fact.

▷ Claim 12. Let B be a read-once MBP of length n, and let x ∈ {0, 1, ⋆}n be any restriction.
Then, B|x is a read-once MBP.

Given a function f : {0, 1}n → R and a distribution X ∼ {0, 1, ⋆}n, we say that X

preserves the expectation of f with error ε if |E [f |X(U)] − E[f ]| ≤ ε.

Forbes and Kelley showed that pseudorandom restrictions preserve the expectation of
constant-width ROBPs. We give a “with high probability” version of their result, proved
in [14].

APPROX/RANDOM 2021
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▶ Lemma 13 ([16], restated). There exists a constant c ≥ 1 such that the following holds for
any positive integers n, w, and η > 0. Let Z be a γ-almost k-wise independent distribution
over {0, 1}n, where k ≥ c log nw

η and γ ≤ 2−k. Let Y be a δ-biased distribution over {0, 1}n,
where log 1

δ ≥ cwk log log n. Then, for any [n, w, {0, 1}] BP B it holds that with probability
at least 1 − η over z ∼ Z,∣∣∣∣ EY,U

[
B|Res(Y,z)(U)

]
− E[B]

∣∣∣∣ ≤ η.

For X ∼ {0, 1, ⋆}n and a positive integer t, we denote by X◦t the distribution over
{0, 1, ⋆}n obtained by drawing independent samples x(1), . . . , x(t) ∼ X and composing them,
namely x = x(1) ◦ . . . ◦ x(t). We record two easy claims.

▷ Claim 14. Let F ⊆ {0, 1}n → R be some function class which is closed under restrictions.
Then, if X preserves the expectation of every f ∈ F with error ε, then X◦t preserves the
expectation of every f ∈ F with error t · ε.

▷ Claim 15. Let X = Res(Y, Z) where Y ∼ {0, 1}n and Z is γ-almost k-wise independent
with marginals p. Then, for any positive integer t, the distribution of the ⋆ positions in X◦t

is (tγ)-almost k-wise independent with marginals pt.

Finally, we turn to define the notion of realizing a collision, in which a restriction “hits”
a symbol in a collision layer that indeed causes a collision.

▶ Definition 16 (realizing a collision). Let B be an [n, w]ℓ ROBP and let Ei : {0, 1}Si × [w] →
[w] be a collision layer in B for some i ∈ [n]. We say a string (y, z) ∈ {0, 1}n×{0, 1}n realizes
a collision in Ei if for any symbol σ ∈ {0, 1}Si consistent with the restriction Res(y, z) (i.e.,
σj = yj for all j ∈ Si with zj = 0) we have that Eσ

i contains a collision (i.e. Eσ
i (v) = Eσ

i (v′)
for two distinct states v, v′). We say (y, z) realizes a collision in B if it realizes a collision in
some layer Ei.

We will always use the special case where a collision is realized by zSi
= 0|Si| and E

ySi
i

having a collision.

3 PRGs for Constant-Width Read-Once MBPs

We set forth two auxiliary lemmas that will serve as the building blocks for our iterative
argument.

The first claim states that in a read-once MBP with enough colliding layers from [w]
to [w], each depending on at most ℓ bits, it is likely that one of the layers will realize a
collision under a pseudorandom restriction. The second claim will help us implement alphabet
reduction as outlined in the introduction.

▶ Lemma 17 (realizing a collision). Let ℓ ∈ N and m ≥ 16ℓ. For i = 1, . . . , m, let
Ei : {0, 1}Si × [w] → [w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most ℓ. Sup-
pose that each Ei is a collision layer. Let Y, Z ∼ {0, 1}n be γ-almost k-wise independent
distributions, for ℓ ≤ k ≤ 2ℓ/16. Then,

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ 1 − 2−k/2 − γ · 8k.

Proof. For j ∈ [m] let Ej be the event that zSi
= 0|Si| and ySi

= σi, where σi is an arbitrary
choice of a string for which Eσi

i collides. Observe that when Ej occurs, (Y, Z) realizes a
collision in Ej . Thus, it suffices to lower bound the probability that some of the Ej occurs.
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The key observation is that the events E1, . . . , Em are 2γ-almost k/ℓ-wise independent
with marginals ≥ 4−ℓ. Indeed, for any test that depends on k/ℓ of the events E1, . . . , Em,
the test can be written as a function of k bits from Y and k bits from Z, and since any k

bits from Y are γ-almost uniform and any k bits of Z are γ-almost uniform, we get that the
test is fooled by the distribution with error at most 2γ. Since on the uniform distribution
zSi = 0|Si| and ySi = σi has probability 4−|Si| ≥ 4−ℓ, we get that E1, . . . , Em are 2γ-almost
k/ℓ-wise independent with marginals ≥ 4−ℓ.

By Corollary 11,

Pr

 m∑
j=1

1Ej
= 0

 ≤
(

16k/ℓ

4−ℓ16ℓ

)k/2ℓ

+ 4(k/ℓ)γ
(

1
4−ℓ

)k/ℓ

≤ (2ℓ/4ℓ)k/2ℓ + γ · 2ℓ · (4ℓ)k/ℓ ≤ 2−k/2 + γ · 8k.

Thus, we get

Pr
Z,Y

[∃i : (Y, Z) realizes a collision in Ei] ≥ Pr
[ m∑

j=1
1Ej

> 0
]

≥ 1 − 2−k/2 + γ · 8k. ◀

▶ Lemma 18 (alphabet reduction). For every constant C > 1 there exists a constant
p ∈ (0, 1) such that the following holds. Let ℓ ∈ N and m ≤ Cℓ. For i = 1, . . . , m, let
Ei : {0, 1}Si × [w] → [w] where S1, . . . , Sm ⊆ [n] are disjoint sets of size at most ℓ. Let
Z ∼ {0, 1}n be a γ-almost k-wise independent distribution with marginals p, for k ≥ ℓ. For
j = 1, . . . , m let Bj be the indicator that ZSj

has more than ℓ/2 ones. Then,

Pr

 m∑
j=1

Bj ≥ k
ℓ

 ≤ Ck · γ + 2−k

Proof. Fix a set T ⊆ [m] of size t = k
ℓ . For j ∈ T , let Bj(z) be the indicator random variable

that is 1 if and only if zSj has more than ℓ
2 ones. We bound PrZ [∀j ∈ T : Bj(Z) = 1]. Note

that this event depends only on k bits of Z and thus

Pr
Z

[∀j ∈ T , Bj(Z) = 1] ≤ Pr
U

[∀j ∈ T : Bj(U) = 1] + γ.

To bound the probability of ∀j ∈ T , Bj(U) we note that each Bj happens with probability at
most

(
ℓ

ℓ/2
)
pℓ/2 ≤ 2ℓpℓ/2 and that k/ℓ of these events happen simultaneously with probability

at most (2ℓpℓ/2)k/ℓ = 2kpk/2.
Taking the union-bound over all subsets, we get the probability there exists T ⊆ [m] of

size t for which Bj = 1 for every j ∈ T is at most(
Cℓ

t

)(
γ + 2kpk/2

)
≤ Cℓt ·

(
γ + 2kpk/2

)
= Ck · γ + 2−k,

for p = 1
16C2 . ◀

3.1 Width Reduction
▶ Lemma 19. Let B be an [n, w]ℓ read-once MBP, and let ε > 0. Let k = max(ℓ, 4 log(2n/ε))
and γ = 32−k. Set t = log(ℓ/ log(16k)). Also, for every j ∈ [t],

Let Y j
1 ∼ {0, 1}n and Zj

1 ∼ {0, 1}ℓn be γ-almost k-wise independent distribution;
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Let Y j
2 ∼ {0, 1}n be any distribution; and,

Let Zj
2 ∼ {0, 1}n be a γ-almost k-wise independent distribution with marginal probability

p as obtained from Lemma 18 for the constant C = 16.
For every j ∈ [t] we denote the j-th restriction as

Xj = Xj,1 ◦ Xj,2 = Res(Y j
1 , Zj

1) ◦ Res(Y j
2 , Zj

2),

and we set the pseudorandom restriction X = X1 ◦ . . . ◦ Xt.
Then, with probability at least 1 − ε over x ∼ X, B|x can be written as an [n, w − 1]ℓ′

read-once MBP for ℓ′ = O(k9).

Proof. Consider ℓ0 = ℓ, ℓ1 = ℓ/2, . . . , ℓt = ℓ/2t. Note that for all i we have ℓi ≤ k ≤ 2ℓi/16.
Denote Σ(0) = Σ and ℓ0 = ℓ. Consider the pseudorandom restriction X1,1, denoting
A1 = B|X1,1 . By Lemma 17, followed by a union bound, we get that with probability at least

1 − n ·
(

2−k/2 + γ · 8k
)

≥ 1 − ε/2n,

every 16ℓ0 consecutive layers of A1 contains a layer of vertices of width w − 1. 4 In the
following, we condition on the event mentioned in the previous sentence. After the restriction
we identify all layers of width w − 1 and decompose the program to a concatenation of
subprograms starting and ending with width at most w − 1. That is, we can write A1 as
A1

1 ◦ . . . ◦ A1
r, where A1

i has initial and final width at most w − 1, and length at most 16ℓ0

over alphabet Σ(0) = {0, 1}ℓ0 .
Next, consider the application of X1,2 on A1 = A1

1 ◦ . . . ◦ A1
r. By Lemma 18 and a union

bound, with probability at least

1 − n(16kγ + 2−k) ≥ 1 − ε/2n,

we can reduce the alphabet in each A1
i |X1,2 to Σ(1) = {0, 1}ℓ0/2, except for k/ℓ0 ≤ k “unruly”

wide layers whose alphabet is a subset of {0, 1}ℓ0 . To sum up, after the first restriction, with
probability at least 1 − ε/n, B1 = B|X1 can be written as a read-once MBP B̃1

1 ◦ . . . B̃1
r ,

such that for every subprogram B̃1
i : (i) starts and ends with width w − 1 (ii) has at most

16ℓ0 good layers with alphabet length ≤ ℓ1, and (iii) has up to k unruly layers with alphabet
length ≤ ℓ0.

We show by induction on j that, with probability at least 1 − εj/n, after the j-th
restriction Bj = B|X1◦···◦Xj can be written as B̃1

1 ◦ . . . B̃1
rj

, such that for every subprogram
B̃1

i :
Starts and ends with width w − 1,
Has at most 16ℓj−1 good layers with alphabet length ≤ ℓj , and,
Has up to jk unruly layers with alphabet length ≤ ℓ0.

Assume this to be the case for some j < t, we show how to prove it to be the case
for j + 1. We denote by Aj+1 = Bj |Xj+1,1 . By Lemma 17, with probability at least
1 − n · (2−k + γ · 8k) ≥ 1 − ε/2n, every 16ℓj consecutive good layers of Bj+1 realizes a collision
in Aj+1. We write Aj+1 as

Aj+1
1 ◦ . . . Aj+1

rj+1
,

4 Observe that if 16ℓ0 > n we may not apply Lemma 17. However, then the statement that “every 16ℓ0

consecutive layers of A1 contains a layer of vertices of width w − 1” is always true.
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where each subprogram Aj+1
i : (i) starts and ends with width w − 1, (ii) has at most 16ℓj

good layers with alphabet length ≤ ℓj , and (iii) has up to jk unruly layers with alphabet
length ≤ ℓ0. To see Item (iii) note that the partition to subprograms is a refinement of the
previous partition and thus cannot increase the maximal number of “unruly” layers in a
subprogram.

Applying Xj+1,2, by Lemma 18, with probability at least 1 − n(16kγ + 2−k) ≥ 1 − ε/2n,
in each subprogram Aj+1

i we can reduce the alphabet to Σj+1 = {0, 1}ℓj+1 except for at most
the previous jk unruly layers and potentially k new unruly layers.

Overall, with probability at least 1 − tε/n ≥ 1 − ε, the branching program Bt can be
written as Bt = Bt

1 ◦ . . . Bt
rt

, where Bt
i starts and ends with width w − 1, has at most 16ℓt−1

good layers and at most kt unruly layers. Thus, each Bt
i is a function of at most

16ℓt−1 · ℓt + kt · ℓ0 ≤ k · 162(4+log(k)) + k3 = O(k9)

bits. We can merge all bits participating in Bt
i to a single symbol in Σ′ = {0, 1}ℓ′ where

ℓ′ = O(k9). We can thus write Bt as an [n, w − 1]ℓ′ read-once MBP. ◀

As a second step, we reduce the alphabet size from poly(log(n/ε)) down to O(log(n/ε)).

▶ Lemma 20. Let ε > 0, k = 4 log(n/ε), γ = 1/(16ℓ)k. Let B be an [n, w]ℓ read-once MBP.
Let Z be a γ-almost k-wise independent distribution over {0, 1}n with marginals p2 = 1/2ℓ;
Let Y be any distribution over {0, 1}n. Let X = Res(Y, Z).

Then, with probability at least 1−ε over x ∼ X, B|x can be written as an [n, w]k read-once
MBP.

Proof. Let z ∼ Z. As in Lemma 18, for each layer j let Bj be the indicator random variable
that is 1 if and only if zj has more than k ones. By the union bound,

Pr
Z

[Bj = 1] ≤
(

ℓ

k

)
· (pk

2 + γ) ≤ ℓkpk
2 + ℓk · γ ≤ 2 · 2−k.

Union bounding over all layers, the probability that we failed to reduce the alphabet size to
2k in any of the layers is at most 1 − 2n2−k ≥ 1 − ε. ◀

3.2 Putting It Together
Our process will apply a sequence of w − 1 restrictions sampled using Lemma 13, reducing
the program width one at a time, with high probability, while preserving the acceptance
probability.

Let c be a large enough constant. Set k = c log(nw/ε) and t = log(k). Set γ = 1/(ck9)k

and δ = min{γ/2k, 2−cwk log log n}. Set C = 16, p1 = 1
16C2 and p2 = 1

ck9 .
For i ∈ [w − 2] and for j ∈ [t]:
Let Xi,j,1 = Res(Y i,j,1, Zi,j,1) be a restriction from Lemma 13 with parameters k, γ

and δ as above. We have that Y i,j,1 is a δ-biased distribution, which is also a γ-almost
k-wise independent distribution (due to Lemma 8). We have that Zi,j,1 is γ-almost k-wise
independent (with marginals 1/2).
Let Xi,j,2 = Res(Y i,j,2, Zi,j,2) be a composition of log(1/p1) = O(1) restrictions from
Lemma 13 with parameters k, γ and δ as above. We have that Y i,j,1 is a δ-biased
distribution, which is also a γ-almost k-wise independent distribution. By Claim 15 we
have that Zi,j,2 is log(1/p1)γ-almost k-wise independent with marginals p1.
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Let X̃i = Res(Ỹ i, Z̃i) be a composition of log(1/p2) = O(log log(nw/ε)) restrictions
from Lemma 13 with parameters k, γ and δ as above. By Claim 15 we have that Z̃i is
log(1/p2)γ-almost k-wise independent with marginals p2.

We define Xi,j = (Xi,j,1 ◦ Xi,j,2) and Xi = (Xi,1 ◦ Xi,2 ◦ · · · ◦ Xi,t) ◦ X̃i. And finally,
X = X1 ◦ X2 ◦ · · · ◦ Xw−1. Let S ∼ {0, 1}n be a ε-almost k-wise independent distribution.
Our PRG G is given by

G = X ◦ S.

Let s = s(n, w, ε) be the seed length required to sample from G. Following the seed
lengths of the above primitives in Section 2, we can give the following bound.

▷ Claim 21. It holds that s = O
(
w2 log(n/ε) · (log log(n/ε))2) .

▷ Claim 22. G fools width-w read-once MBPs of length n with error at most 4εn.

Proof. Let B be an [n, w]1 read-once MBP, which can also be written as an [n, w]k read-
once MBP by grouping every k-consecutive layers. Note that this transformation preserves
monotonicity. Since our restriction is picked as a m = O(t · w + w log k) ≤ n compositions
of restrictions that each maintain the acceptance probability of the ROBP up to error ε

(Lemma 13), we see that∣∣∣∣ EX,U
[B|X(U)] − E

U
[B(U)]

∣∣∣∣ ≤ ε · n.

It remains to show that EX,U [B|X(U)] ≈ EX,S [B|X(S)]. For that we show that with high
probability B|X can be expressed as a [n, 1]k read-once MBP. Let E = E

(
X
)

be the union
of the following bad events:

There exists an i ∈ [w − 1] such that (Xi,1 ◦ Xi,2 ◦ · · · ◦ Xi,t) fails to reduce the width, in
the sense of Lemma 19.
There exists an i ∈ [w − 1] such that X̃i fails to reduce the alphabet size from O(k9) to
k, in the sense of Lemma 20.

By Lemmas 19 and 20, Pr[E] ≤ 2wε. Note that in the case that E does not occur, we have
that B|X is a [n, 1]k ROBP or in other words that it is a junta that depends on at most k

bits. In such a case, B|X will be ε-fooled by S. Overall we have∣∣∣∣ EX,U
[B|X(U)] − E

X,S
[B|X(S)]

∣∣∣∣ ≤ Pr[E] + Pr[Ē] ·
∣∣∣E
X

[
E
U

[B|X(U)] − E
S

[B|X(S)] | Ē
]∣∣∣

≤ 2wε + ε.

Combining both estimates we see that∣∣∣E
G

[B(G)] − E
U

[B(U)]
∣∣∣ ≤ ε · (n + 2w + 1) ≤ 4εn. ◁

▶ Theorem 23. Let n ∈ N, ε′ > 0 and w ≤ n. There exists a generator G that fools
width-w read-once MBPs of length n, with error at most ε′ and seed-length O(w2 · log(n/ε′) ·
(log log(n/ε′))2).

Proof. Apply Claim 22 and Claim 21 with ε = ε′/4n. ◀
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4 Relation to Read-Once AC0

In this section we study the relation between constant-width read-once MBPs and read-once
AC0:

▶ Proposition 4.
1. If a sequence of functions fn : {0, 1}n → {0, 1} is in read-once AC0, then it can be

computed by constant-width read-once MBP. Moreover, if fn can be computed in depth w

read-once AC0, then it can be computed by width w + 1 read-once MBPs.
2. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a width 3

read-once MBP, but not computable by any read-once De Morgan formula (regardless of
depth).
First, we establish Item 1 of Proposition 4 by observing that the known implication, that

read-once AC0 formulas can be computed by constant-width ROBPs, yields a monotone
ROBP.

▶ Lemma 24. Let f : {0, 1}n → {0, 1} be a function computable by a read-once, depth-w
AC0 formula. Then, f can also be computed by an [n, w + 1] read-once MBP.

Proof. We prove the claim by induction on the depth w, and further prove that the ’accept’
states in our read-once MBP are above the ’reject’ states (that is, if s is an accept state
and s′ is a reject state than s ≥ s′). For w = 1, f computes either the disjunction or the
conjunction of at most s literals. This can clearly be done by an [n, s, 2] read-once MBP, if
we set state 2 to be an accept state (and so state 1 is a reject one).

Next, fix some f computable by a formula F : {0, 1}n → {0, 1} of depth w > 1 and size
s, and assume that its top gate is an AND gate (the other case is similar). We denote the
subformulas feeding into the top gate as F1, . . . , Fm, and these are on disjoint variables
because the formula is read-once. By the induction’s hypothesis, each subformula Fi is
computable by a width w read-once MBP over its variables with the accept states being on
top.

To construct B that computes F , we can concatenate the Bi-s and add another “sudden
reject” level at level s = 1.5 The starting vertex of B is the starting vertex of B1. Whenever
a computation of some Bi, for some i < m, reaches its final layer, we rewire the edges in
that layer to either the sudden reject level, if Bi did not reach an accepting vertex, or to the
starting vertex of Bi+1. The accept vertices of B are the accept vertices of Bm. Note that
this transformation preserves the ordering between accepts and reject states, since Bm does.

The fact that B computes f readily follows, and B is read-once because the Bi-s are on
disjoint variables. To argue that monotonicity is preserved, simply observe that the rewiring
preserves the order: In the AND case, accept vertices are rewired to the next starting vertex,
which is indeed above the sudden reject level, to which all reject vertices are rewired. The
OR case is similar. ◀

We now prove Item 2 of Proposition 4, giving a family of functions computable by
read-once MBPs but not by read-once formulas. Our proof also gives a new characterization
of read-once formulas.

5 In a sudden reject level, each vertex transitions to the same level with both its edges, and the last vertex
in that level is a reject vertex. When the top gate is an OR gate, we would replace the sudden reject
level with a sudden accept level at at s = w + 1, and make the last vertex of the sudden accept level an
accepting vertex.
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▶ Lemma 25. For every n ≥ 3, there exists a function f : {0, 1}n → {0, 1} computable by a
width 3 read-once MBP, but not computable by any read-once De Morgan formula (regardless
of depth).

Proof. We first give a property of functions computable by read-once formulas. Given
g : {0, 1}m → {0, 1} and b ∈ {0, 1}, let Wb(g) ∈ {0, . . . , m} denote the size of the smallest set
of coordinates I ⊆ [m] for which there exists a z ∈ {0, 1}|I| such that for every x ∈ {0, 1}m

it holds that xI = z implies g(x) = b.

▶ Lemma 26. Let g : {0, 1}n → {0, 1} be a function computable by a read-once De Morgan
formula. Then, W0(g) · W1(g) ≤ n.

Roughly speaking, this lemma says that for a function computable by a read-once formula, we
can either find a short witness for it being 0, or a short witness for it being 1. In particular,
it cannot be highly resilient.

Proof. We prove the lemma by induction on the formula’s depth d. For d = 1, g is either an
AND of literals or an OR of literals. For the AND function, W0(AND) = 1 and W1(AND) = n.
For the OR function, W0(OR) = n and W1(OR) = 1. Thus, indeed, W0(g) · W1(g) ≤ n.

Assume our lemma holds for formulas of depth d ≥ 1, and let g be some formula of depth
d + 1, say with an AND top gate, so g = AND(f1, . . . , fk), each fi : {0, 1}ni → {0, 1} is a
depth-d formula. In this case, W0(g) = minj∈[k] W0(fj) and W1(g) =

∑
i∈[k] W1(fi). By our

induction’s hypothesis, we get that

W0(g) · W1(g) =
(

min
j∈[k]

W0(fj)
)

·
∑
i∈[k]

W1(fi) ≤
∑
i∈[k]

W0(fi) · W1(fi) ≤
∑
i∈[k]

ni = n.

The case of an OR top gate is analogous. ◀

Now, our function f : {0, 1}n → {0, 1} will simply be the Thrn
2 function, that returns 1 if and

only if the Hamming weight of the input string x ∈ {0, 1}n is at least 2. There, W1(f) = 2
and W0(f) = n − 1, so it is not computable by read-once formulas, however f is computable
by a simple width-3 read-once MBP. ◀

We note that we can also construct balanced functions f separating read-once MBPs
from read-once De Morgan formulas. In particular, f = ANDm ◦ Thrw

2 for m = O(2w/w)
(which resembles the Tribes function) has this property. More generally, one can consider,
say, Thr2, as a “gadget” to construct richer families of read-once MBPs not computable by
read-once formulas.
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A Monotone Branching Programs and AC0 Circuits

In this section we give a self-contained proof of the equivalence between constant width
MBPs and AC0 circuits, proving Theorem 3:

▶ Theorem 3 (corollary of [4]). A sequence of functions fn : {0, 1}n → {0, 1} is in AC0 if
and only if it is computable by a constant-width MBP of polynomial length.

https://doi.org/10.1145/1993636.1993672
http://eccc.hpi-web.de/report/2012/083/


D. Doron, R. Meka, O. Reingold, A. Tal, and S. Vadhan 58:19

First we note that the “if” direction follows from Lemma 24.

▶ Lemma 27. Let f : {0, 1}n → {0, 1} be a function computable by a (read-many) AC0

formula of depth w and size s. Then, f can also be computed by an [n, s, w + 1] MBP.

(Here take the size of an AC0 formula to be the number of leaves.)

Proof. Let F (x1, . . . , xn) be depth-w AC0 formula of size s. Then by putting distinct
variables on the leaves of F we obtain a read-once AC0 formula G(y1, . . . , ys) on s variables
such that F (x1, . . . , xn) = G(σ1xi1 , . . . , σsxis

) where i1, . . . , is ∈ [n] and σ1, . . . , σs ∈ {±1}
(referring to whether or not the variable is negated at each leaf). By Lemma 24, there is a
read-once MBP B(y1, . . . , ys) of width w + 1 computing G. Then, B(σ1xi1 , . . . , σsxis

) is a
(read-many) MBP of width w + 1 and length s computing F . ◀

The result naturally extends to AC0 circuits, due to the standard transformation expressing
a size s depth w AC0 circuit as a size sw depth w AC0 formula.

▶ Corollary 28. Let f : {0, 1}n → {0, 1} be a function computable by a depth-w AC0 circuit
of size s. Then, f can also be computed by an [n, sw, w + 1] MBP.

Next, we give the other direction of Theorem 3. Similarly to the other direction, we start
by showing that read-once MBPs can the simulated by (read-many) AC0:

▶ Lemma 29. Let f : {0, 1}n → {0, 1} be a function computable by a read-once MBP of
width w. Then, f can also be computed by a circuit of depth O(w) and size O(w4n3).

Proof. We prove this lemma by induction on the width. For w = 1 the claim is trivial. Fix
some w > 1 and let B be an [n, w] read-once MBP. We define two BPs, Bu and Bℓ, each of
width w − 1, as follows.

For Bu, we remove the first level of vertices (that is, removing state number 1 in each
layer) and reroute edges that go into state 1 to state 2. Formally, each transition
U b

i : {2, . . . , w} → {2, . . . , w} of Bu is defined by U b
i (x) = max

{
Eb

i (x), 2
}

, for Eb
i : [w] →

[w] being the corresponding transition of B.
Similarly, for Bℓ, we remove the last level of vertices: Each transition Lb

i : [w−1] → [w−1]
of Bℓ is defined by Lb

i (x) = min
{

Eb
i (x), w − 1

}
.

Notice that these transformations preserve monotonicity. Roughly speaking, our goal is to
first argue that at each transition, B acts the same as either Bu or Bℓ, depending on whether
B last reached the state 1 or the state w. Then, we show that we can efficiently detect, given
any layer j and an input x, if indeed B(x) passed through the state 1 or through the state w

before reaching the layer j.
Let s0 be the starting vertex of B, and denote u0 = max {s0, 2} and ℓ0 = min {s0, w − 1}.

Given some input x ∈ {0, 1}n, we consider the computation path of all three BPs on x.
Towards this end, denote by s1, . . . , sn ∈ [w] the states that x traverses in B, u1, . . . , un ∈
{2, . . . , w} the states that x traverses in Bu and ℓ1, . . . , ℓn ∈ [w−1] the states that x traverses
in Bℓ. First, observe that:

▷ Claim 30. For every i ∈ [n], ui ≥ si ≥ ℓi.

The above claim readily follows by induction on i, using the monotonicity property. Next,
we argue:

▷ Claim 31. For every i ∈ [n], let j ≤ i be the largest integer such that sj ∈ {1, w}, if it
exists. Thus, if sj = w then ui = si and if sj = 1 then ℓi = si.

APPROX/RANDOM 2021
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Proof. Fix some i ∈ [n] and assume that j ≤ i is the largest integer such that sj ∈ {1, w},
say sj = 1. By Claim 30, we must also have ℓj = 1. Then by induction, we also have ℓj′ = sj′

for all j′ = j, j + 1, . . . , i, because the only way in which the transition in Bℓ and B can differ
is if sj′ = w, which by assumption does not occur in this interval. ◁

Hence, for each layer i, we know that either si = ui or si = ℓi, and we know which is the
case by looking at the last place the original path reached either 1 or w.

By our induction’s hypothesis, for every i ∈ [n] and s ∈ {2, . . . , w} there exists a circuit
Cu

i,s : {0, 1}n → {0, 1} such that Cu
i,s(x) = 1 if and only if Bu reached the state s after

reading x1, . . . , xi. Similarly, there exists a circuit Cℓ
i,s that detects whether Bℓ reached

s ∈ [w − 1] in the i-th layer upon traversing with x. Using these circuits, for each s ∈ [w], we
will construct a circuit Cs(x) that determined whether sn = s.

The construction goes as follows. The circuit will determine the last j where there was a
“switch” between the two cases of Claim 31, i.e., the smallest j ∈ [n] such that sj ∈ {1, w}
and for every k ≥ j it holds that sk ∈ {2, . . . , w − 1} ∪ {sj}. Observe that if sj = 1 then
sj−1 = uj−1, so E

xj

j (uj−1) = 1. Afterward, we keep following Bℓ, i.e., sk = ℓk and so
E

xk+1
k+1 (ℓk) ̸= w for all k ≥ j. The converse also holds. Namely, E

xj

j (uj−1) = 1 implies that
sj = ℓj = 1 (since ℓj−1 ≤ uj−1 and the program is monotone) and E

xk+1
k+1 (ℓk) ̸= w for all

k ≥ j implies that indeed sk+1 = ℓk+1. Thus, the predicate

PL(x) =

 ∨
j∈[n]

((
E

xj

j (uj−1) = 1
)

∧
∧
k≥j

(
E

xk+1
k+1 (ℓk) ̸= w

)) ∨

(
u1 ̸= w ∧

∧
k≥1

E
xk
k (ℓk) ̸= w

)

evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = 1, or sj

never equals w (and hence sn = ℓn). Following the same reasoning,

PU (x) =

 ∨
j∈[n]

((
E

xj

j (ℓj−1) = w
)

∧
∧
k≥j

(
E

xk+1
k+1 (uk) ̸= 1

)) ∨

(
ℓ1 ̸= 1

∧
k≥1

E
xk
k (uk) ̸= 1

)

evaluates to 1 if and only if the largest integer j ≤ n such that sj ∈ {1, w} has sj = w, or
sj never equals 1 (and hence sn = un).

We now wish to compute PL : {0, 1}n → {0, 1} by a shallow circuit. Determining uj−1
can be done by querying Cu

j−1,s(x) for each s ∈ {2, . . . , w}. Similarly, determining ℓk can be
done by querying Cℓ

k,s(x) for each s ∈ [w−1]. The functions Eb
j and Eb

k+1, for each b ∈ {0, 1},
are determined solely by B and can be hardwired. Letting size(w − 1) and depth(w − 1) be
the size and depth upper bound for the circuits guaranteed to us by the hypothesis, we can
bound size(PL) by 2nw · size(w − 1) + O(wn2) and depth(PL) by depth(w − 1) + O(1). The
same bounds for PU : {0, 1}n → {0, 1} also hold.

Equipped with circuits CL and CU computing PL and PU respectively, we are ready
to compute B. Indeed, all that is left is to determine whether sn = ℓn or sn = un

and invoke the relevant circuit from the previous level. This incurs additional constant
depth and O(wn) size. Overall, the size and depth of C satisfies the recurrence relations
size(w) = O(nw)·size(w−1)+O(wn2) and depth(w) = depth(w−1)+O(1). As size(1) = O(n)
and depth(1) = O(1), this gives us depth O(w) and size wO(w) · nw.

We can improve the size of the circuit by a dynamic programming approach. For
1 ≤ a ≤ b ≤ w, let B[a,b] be the ROBP in which we keep only the levels a, . . . , b and rewire
edges accordingly. Namely, we replace each Eσ

i (x) with max {a, min {b, Eσ
i (x)}}. Observe

that for when a < b, (B[a,b])ℓ = B[a,b−1] and (B[a,b])u = B[a+1,b].
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For every 1 ≤ a ≤ b ≤ w and s ∈ {a, . . . , b}, let Xa,b,s
i be the indicator which is 1 if and

only if upon reading the first i bits of x, the program B[a,b] reached the state s. Note that
there are at most w3 · n such indicators overall.

Fix some integer ∆ ∈ {0, . . . , w − 1}. We can compute the values

I∆ =
{

Xa,a+∆,s
i : a ∈ [w − ∆], s ∈ [a, a + ∆], i ∈ [n]

}
in the following manner. For ∆ = 0, all indicators are true. For ∆ ≥ 1, assume we already
computed the values

I∆−1 =
{

Xa,a+∆−1,s
i : a ∈ [w − (∆ − 1)], s ∈ [a, a + ∆ − 1], i ∈ [n]

}
.

Thus, to compute a single indicator from I∆ given I∆−1, we can use the above recurrence
relations, as each ℓi and ui correspond to some indicator from I∆−1. This takes O(wn2) size
and O(1) depth. Computing the entire I∆ thus takes O(w3n3) size and O(1) depth. Overall,
computing ◀

Similarly to the proof of Lemma 27, we can handle the read-many case by noting that
a read-many MBP of length s can be obtained from a read-once MBP on s variables by a
variable substitution. This gives us the “only if” direction of Theorem 3:

▶ Corollary 32. Let f : {0, 1}n → {0, 1} be a function computable by an [n, s, w] MBP for
s ≥ n. Then, f can also be computed by a circuit of depth O(w) and size O(w4s3).
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