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Abstract
In this work, we show, for the well-studied problem of learning parity under noise, where a learner
tries to learn x = (x1, . . . , xn) ∈ {0, 1}n from a stream of random linear equations over F2 that are
correct with probability 1

2 + ε and flipped with probability 1
2 − ε (0 < ε < 1

2 ), that any learning
algorithm requires either a memory of size Ω(n2/ε) or an exponential number of samples.

In fact, we study memory-sample lower bounds for a large class of learning problems, as
characterized by [8], when the samples are noisy. A matrix M : A × X → {−1, 1} corresponds to the
following learning problem with error parameter ε: an unknown element x ∈ X is chosen uniformly
at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i,
ai ∈ A is chosen uniformly at random and bi = M(ai, x) with probability 1/2 +ε and bi = −M(ai, x)
with probability 1/2 − ε (0 < ε < 1

2 ). Assume that k, ℓ, r are such that any submatrix of M of at
least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias of at most 2−r. We show that any
learning algorithm for the learning problem corresponding to M , with error parameter ε, requires
either a memory of size at least Ω

(
k·ℓ
ε

)
, or at least 2Ω(r) samples. The result holds even if the

learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that
for a large class of learning problems, same as those in [8], any learning algorithm requires either a
memory of size at least Ω

( (log |X|)·(log |A|)
ε

)
or an exponential number of noisy samples.

Our proof is based on adapting the arguments in [21, 8] to the noisy case.
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1 Introduction

In this work, we study the number of samples needed for learning under noise and memory
constraints. The study of the resources needed for learning, under memory constraints
was initiated by Shamir [22] and Steinhardt, Valiant and Wager [24], and has been studied
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in the streaming setting. In addition to being a natural question in learning theory and
complexity theory, lower bounds in this model also have direct applications to bounded storage
cryptography [20, 26, 16, 25, 11, 13, 6, 12]. [24] conjectured that any algorithm for learning
parities of size n (that is, learning x ∈ {0, 1}n from a stream of random linear equations
in F2) requires either a memory of size Ω(n2) or an exponential number of samples. This
conjecture was proven in [20] and in follow up works, this was generalized to learning sparse
parities in [16] and more general learning problems in [21, 17, 19, 8, 2, 5, 18, 23, 9, 4, 10].

In this work, we extend this line of work to noisy Boolean function learning problems. In
particular, we consider the well-studied problem of learning parity under noise (LPN). In
this problem, a learner wants to learn x ∈ {0, 1}n from independent and uniformly random
linear equations in F2 where the right hand sides are obtained by independently flipping
the evaluation of an unknown parity function with probability 1

2 − ε. Learning Parity with
Noise (LPN) is a central problem in Learning and Coding Theory (often referred to as
decoding random linear codes) and has been extensively studied. Even without memory
constraints, coming up with algorithms for the problem has proven to be challenging and the
current state-of-the-art for solving the problem is still the celebrated work of Blum, Kalai
and Wasserman [3] that runs in time 2O(n/ log2(n)). Over time, the hardness of LPN (and
its generalization to non-binary finite fields) has been used as a starting point in several
hardness results [14, 7] and constructing cryptographic primitives [1]. On the other hand,
lower-bounds for the problem are known only in restricted models such as Statistical Query
Learning1 [15].

Learning under noise is at least as hard as learning without noise and thus, memory-
sample lower bounds for parity learning [20] holds for learning parity under noise too. It is
natural to ask – can we get better space lower bounds for learning parities under noise? In
this work, we are able to strengthen the memory lower bound to Ω(n2/ε) for parity learning
with noise.

Our results actually extend to a broad class of learning problems under noise. As in [21]
and follow up works, we represent a learning problem using a matrix. Let X, A be two finite
sets (where X represents the concept-class that we are trying to learn and A represents the
set of possible samples). Let M : A × X → {−1, 1} be a matrix. The matrix M represents
the following learning problem with error parameter ε (0 < ε < 1

2 ): An unknown element
x ∈ X was chosen uniformly at random. A learner tries to learn x from a stream of samples,
(a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai, x)
with probability 1

2 + ε.

1.1 Our Results
We use extractor-based characterization of the matrix M to prove our lower bounds, as done
in [8]. Our main result can be stated as follows (Corollary 19): Assume that k, ℓ, r are such
that any submatrix of M of at least 2−k · |A| rows and at least 2−ℓ · |X| columns, has a bias
of at most 2−r. Then, any learning algorithm for the learning problem corresponding to M

with error parameter ε requires either a memory of size at least Ω (k · ℓ/ε), or at least 2Ω(r)

samples. Thus, we get an extra factor of 1
ε in the space lower bound for all the bounds on

learning problems that [8] imply, some of which are as follows (see [8] for details on why the
corresponding matrices satisfy the extractor-based property):

1 The SQ model does not seem to distinguish between noisy and noiseless variants of parity learning and
yields the same lower bound in both cases.
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1. Parities with noise: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n, from (a stream
of) random linear equations over F2 which are correct with probability 1

2 + ε and flipped
with probability 1

2 − ε. Any learning algorithm requires either a memory of size Ω(n2/ε)
or an exponential number of samples.

2. Sparse parities with noise: A learner tries to learn x = (x1, . . . , xn) ∈ {0, 1}n of
sparsity ℓ, from (a stream of) random linear equations over F2 which are correct with
probability 1

2 + ε and flipped with probability 1
2 − ε. Any learning algorithm requires:

a. Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ/ε) or 2Ω(ℓ) samples.
b. Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99/ε) or ℓΩ(ℓ) samples.

3. Learning from noisy sparse linear equations: A learner tries to learn x =
(x1, . . . , xn) ∈ {0, 1}n, from (a stream of) random sparse linear equations, of sparsity ℓ,
over F2, which are correct with probability 1

2 + ε and flipped with probability 1
2 − ε. Any

learning algorithm requires:
a. Assuming ℓ ≤ n/2: either a memory of size Ω(n · ℓ/ε) or 2Ω(ℓ) samples.
b. Assuming ℓ ≤ n0.9: either a memory of size Ω(n · ℓ0.99/ε) or ℓΩ(ℓ) samples.

4. Learning from noisy low-degree equations: A learner tries to learn x =
(x1, . . . , xn) ∈ {0, 1}n, from (a stream of) random multilinear polynomial equations
of degree at most d, over F2, which are correct with probability 1

2 + ε and flipped with
probability 1

2 − ε. We prove that if d ≤ 0.99 · n, any learning algorithm requires either a
memory of size Ω

((
n

≤d

)
n

d·ε

)
or 2Ω(n/d) samples (where

(
n

≤d

)
=

(
n
0
)

+
(

n
1
)

+ . . . +
(

n
d

)
).

5. Low-degree polynomials with noise: A learner tries to learn an n′-variate multilinear
polynomial p of degree at most d over F2, from (a stream of) random evaluations of p

over Fn′

2 , which are correct with probability 1
2 + ε and flipped with probability 1

2 − ε.
We prove that if d ≤ 0.99 · n′, any learning algorithm requires either a memory of size
Ω

((
n′

≤d

)
· n′

d·ε

)
or 2Ω(n′/d) samples.

1.2 Techniques
Our proof follows the proof of [21, 8] very closely and builds on that proof. We extend
the extractor-based result of [8] to the noisy case and a straightforward adaptation to its
proof gives the stronger lower bound for the noisy case (which reflects on the strength of
the current techniques). The main contribution of this paper is not a technical one but
establishing stronger space lower bounds for a well-studied problem of learning parity with
noise, using the current techniques.

1.3 Discussion and Open Problem
Let’s look at a space upper bound for the problem of learning parity with noise, that is,
a learner tries to learn x ∈ {0, 1}n from a stream of samples of the form (a, b), where
a ∈ {0, 1}n is chosen uniformly at random and b = a ·x with probability 1

2 +ε and b = 1−a ·x
with probability 1

2 − ε (here, a · x represents the inner product of a and x in F2, that is,
a · x =

∑
i aixi mod 2).

Upper Bound
Consider the following algorithm A: Store the first m = O(n/ε2) samples. Check for every
x′ ∈ {0, 1}n, if for at least

( 1
2 + ε

2
)

fraction of the samples (a1, b1), . . . , (am, bm), ai · x′ agrees
with bi. Output the first x′ that satisfies the check. In expectation, ai · x would agree with
bi for

( 1
2 + ε

)
fraction of the samples, and otherwise for x′ ̸= x, in expectation, ai · x′ would

APPROX/RANDOM 2021
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agree with bi for half the samples. Therefore, for large enough m, using Chernoff bound and
a union bound, with high probability (1 − o(1)) over the m samples, x′ satisfies the check if
and only if x′ = x, and A outputs the correct answer under such an event. A uses O(n/ε2)
samples and O(n2/ε2) bits of space.

In this paper, we prove that any algorithm that learns parity with noise from a stream of
samples (as defined above) requires Ω(n2/ε) bits of space or exponential number of samples.
Improving the lower bound to match the upper bound (or vice versa) is a fascinating open
problem and we conjecture that the upper bound is tight. As each sample gives at most
O(ε2) bits of information about x, we can at least show that a learning algorithm requires
O(n/ε2) samples to learn x (which corresponds to using O(n2/ε2) bits of space if each sample
is stored).

▶ Conjecture 1. Any learner that tries to learn x ∈ {0, 1}n from a stream of samples of the
form (a, b), where a ∈ {0, 1}n is chosen uniformly at random and b = a · x with probability
1
2 + ε and b = 1 − a · x with probability 1

2 − ε, requires either Ω(n2/ε2) bits of memory or
2Ω(n) samples.

The proof of the conjecture, if true, would lead to new technical insights (beyond extractor-
based techniques) into proving time-space (or memory-sample) lower bounds for learning
problems.

1.4 Outline of the Paper
In Section 2, we establish certain notations and definitions, which are borrowed from [21, 8].
We give a proof overview in Section 3 and prove the main theorem in Section 4.

2 Preliminaries

Denote by UX : X → R+ the uniform distribution over X. Denote by log the logarithm
to base 2. For a random variable Z and an event E, we denote by PZ the distribution of
the random variables Z, and we denote by PZ|E the distribution of the random variable Z

conditioned on the event E.

Viewing a Learning Problem, with error 1
2 − ε, as a Matrix

Let X, A be two finite sets of size larger than 1. Let n = log2 |X| and n′ = log2 |A|.
Let M : A × X → {−1, 1} be a matrix. The matrix M corresponds to the following

learning problem with error parameter ε (0 < ε < 1
2 ). There is an unknown element

x ∈ X that was chosen uniformly at random. A learner tries to learn x from samples (a, b),
where a ∈ A is chosen uniformly at random, and b = M(a, x) with probability 1

2 + ε and
b = −M(a, x) with probability 1

2 − ε. That is, the learning algorithm is given a stream of
samples, (a1, b1), (a2, b2) . . ., where each at is uniformly distributed, and bt = M(at, x) with
probability 1

2 + ε and b = −M(at, x) with probability 1
2 − ε.

Norms and Inner Products
Let p ≥ 1. For a function f : X → R, denote by ∥f∥p the ℓp norm of f , with respect to the
uniform distribution over X, that is:

∥f∥p =
(

E
x∈RX

[|f(x)|p]
)1/p

.
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For two functions f, g : X → R, define their inner product with respect to the uniform
distribution over X as

⟨f, g⟩ = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the
function corresponding to the a-th row of M . Note that for a function f : X → R, we have
⟨Ma, f⟩ = (M ·f)a

|X| . Here, M · f represents the matrix multiplication of M with f .

L2-Extractors and L∞-Extractors
▶ Definition 2 (L2-Extractor). Let X, A be two finite sets. A matrix M : A × X → {−1, 1}
is a (k, ℓ)-L2-Extractor with error 2−r, if for every non-negative f : X → R with ∥f∥2

∥f∥1
≤ 2ℓ

there are at most 2−k · |A| rows a in A with

|⟨Ma, f⟩|
∥f∥1

≥ 2−r .

Let Ω be a finite set. We denote a distribution over Ω as a function f : Ω → R+ such
that

∑
x∈Ω f(x) = 1. We say that a distribution f : Ω → R+ has min-entropy k if for all

x ∈ Ω, we have f(x) ≤ 2−k.

▶ Definition 3 (L∞−Extractor). Let X, A be two finite sets. A matrix M : A × X → {−1, 1}
is a (k, ℓ ∼ r)-L∞-Extractor if for every distribution px : X → R+ with min-entropy at least
(log(|X|) − ℓ) and every distribution pa : A → R+ with min-entropy at least (log(|A|) − k),∣∣∣∣ ∑

a′∈A

∑
x′∈X

pa(a′) · px(x′) · M(a′, x′)
∣∣∣∣ ≤ 2−r.

Branching Program for a Learning Problem
In the following definition, we model the learner for the learning problem that corresponds
to the matrix M , by a branching program, as done by previous papers starting with [20].

▶ Definition 4. Branching Program for a Learning Problem: A branching program of
length m and width d, for learning, is a directed (multi) graph with vertices arranged in m + 1
layers containing at most d vertices each. In the first layer, that we think of as layer 0, there
is only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf. All vertices
in the last layer are leaves (but there may be additional leaves). Every non-leaf vertex in
the program has 2|A| outgoing edges, labeled by elements (a, b) ∈ A × {−1, 1}, with exactly
one edge labeled by each such (a, b), and all these edges going into vertices in the next layer.
Each leaf v in the program is labeled by an element x̃(v) ∈ X, that we think of as the output
of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A × {−1, 1} that are given as
input, define a computation-path in the branching program, by starting from the start vertex
and following at step t the edge labeled by (at, bt), until reaching a leaf. The program outputs
the label x̃(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that
x̃ = x, where x̃ is the element that the program outputs, and the probability is over
x, a1, . . . , am, b1, . . . , bm (where x is uniformly distributed over X and a1, . . . , am are uni-
formly distributed over A, and for every t, bt = M(at, x) with probability 1

2 +ε and −M(at, x)
with probability 1

2 − ε).

APPROX/RANDOM 2021



60:6 Memory-Sample Lower Bounds for Learning Parity with Noise

A learning algorithm, using m samples and a memory of s bits, can be modeled as a branching
program2 of length m and width 2O(s). Thus, we will focus on proving width-length tradeoffs
for any branching program that learns an extractor-based learning problem with noise, and
such tradeoffs would translate into memory-sample tradeoffs for the learning algorithms.

3 Overview of the Proof

The proof adapts the extractor-based time-space lower bound of [8] to the noisy case, which
in turn built on [21] that gave a general technique for proving memory-samples lower bounds.
We recall the arguments in [21, 8] for convenience.

Assume that M is a (k′, ℓ′)-L2-extractor with error 2−r′ , and let r = min{k′, ℓ′, r′}. Let
B be a branching program for the noisy learning problem that corresponds to the matrix
M . We want to prove that B has at least 2Ω(r) length or requires at least 2Ω( k′ℓ′

ε ) width
(that is, any learning algorithm solving the learning problem corresponding to the matrix M

with error parameter ε, requires either Ω( k′ℓ′

ε ) memory or exponential number of samples).
Assume for a contradiction that B is of length m = 2cr and width d = 2c k′ℓ′

ε , where c > 0 is
a small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching
a leaf if certain “bad” events occur. Nevertheless, we show that the probability that T
stops before reaching a leaf is negligible, so we can think of T as almost identical to the
computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote by
Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am, b1, . . . , bm),
and we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned on the
event Ev. Similarly, for an edge e of the branching program B, let Ee be the event that T
traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee

.
A vertex v of B is called significant if∥∥Px|v

∥∥
2 > 2ℓ′

· 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v,
a non-negligible amount of information is known about x. In order to guess x with a
non-negligible success probability, T must reach a significant vertex. Lemma 6 shows that
the probability that T reaches any significant vertex is negligible, and thus the main result
follows.

To prove Lemma 6, we show that for every fixed significant vertex s, the probability that
T reaches s is at most 2−Ω(k′ℓ′/ε) (which is smaller than one over the number of vertices
in B). Hence, we can use a union bound to prove the lemma.

The proof that the probability that T reaches s is extremely small is the main part of
the proof. To that end, we use the following functions to measure the progress made by the
branching program towards reaching s.

2 The lower bound holds for randomized learning algorithms because a branching program is a non-uniform
model of computation, and we can fix a good randomization for the computation without affecting the
width.



S. Garg, P. K. Kothari, P. Liu, and R. Raz 60:7

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of
edges e from layer-(i − 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k′/2ε,

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k′/2ε.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.
We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to

calculate that Z0 = 2− 2nk′
2ε , it follows that Zi is close to 2− 2nk′

2ε , for every i. On the other
hand, if s is in layer-i then Zi is at least Pr(s) · ⟨Px|s,Px|s⟩ k′

2ε . Thus, Pr(s) · ⟨Px|s,Px|s⟩ k′
2ε

cannot be much larger than 2−2n k′
2ε . Since s is significant, ⟨Px|s,Px|s⟩ k′

2ε > 2(2ℓ′−2n) k′
2ε and

hence Pr(s) is at most 2−Ω( k′ℓ′
ε ).

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps: Claim 17
shows by a simple convexity argument that Zi ≤ Z ′

i. The hard part, that is done in Claim 15
and Claim 16, is to prove that Z ′

i may only be negligibly larger than Zi−1.
For this proof, we define for every vertex v, the set of edges Γout(v) that are going out

of v, such that Pr(e) > 0. Claim 15 shows that for every vertex v,∑
e∈Γout(v)

Pr(e) · ⟨Px|e,Px|s⟩k′/2ε

may only be negligibly higher than

Pr(v) · ⟨Px|v,Px|s⟩k′/2ε.

For the proof of Claim 15, which is the hardest proof in the paper, we follow [21, 8]
and consider the function Px|v · Px|s. We first show how to bound

∥∥Px|v · Px|s
∥∥

2. We then
consider two cases: If

∥∥Px|v · Px|s
∥∥

1 is negligible, then ⟨Px|v,Px|s⟩k′/2ε is negligible and
doesn’t contribute much, and we show that for every e ∈ Γout(v), ⟨Px|e,Px|s⟩k′/2ε is also
negligible and doesn’t contribute much. If

∥∥Px|v · Px|s
∥∥

1 is non-negligible, we use the bound
on

∥∥Px|v · Px|s
∥∥

2 and the assumption that M is a (k′, ℓ′)-L2-extractor to show that for almost
all edges e ∈ Γout(v), we have that ⟨Px|e,Px|s⟩k′/2ε is very close to ⟨Px|v,Px|s⟩k′/2ε. Only
an exponentially small (2−k′) fraction of edges are “bad” and give a significantly larger
⟨Px|e,Px|s⟩k′/2ε. In the noiseless case, any “bad” edge can increase ⟨Px|v,Px|s⟩ by a factor
of 2 in the worst case, and hence [8] raised ⟨Px|v,Px|s⟩ and ⟨Px|e,Px|s⟩ to the power of k′,
as it is the largest power for which the contribution of the “bad” edges is still small (as
their fraction is 2−k′). But in the noisy case, any “bad” edge can increase ⟨Px|v,Px|s⟩ by a
factor of at most (1 + 2ε) in the worst case, and thus, we can afford to raise ⟨Px|v,Px|s⟩ and
⟨Px|e,Px|s⟩ to the power of k′/2ε. This is where our proof differs from that of [8].

This outline oversimplifies many details. To make the argument work, we force T to stop
at significant vertices and whenever Px|v(x) is large, that is, at significant values, as done
in previous papers. And we force T to stop before traversing some edges, that are so “bad”
that their contribution to Z ′

i is huge and they cannot be ignored. We show that the total
probability that T stops before reaching a leaf is negligible.

APPROX/RANDOM 2021



60:8 Memory-Sample Lower Bounds for Learning Parity with Noise

4 Main Result

▶ Theorem 5. Let 1
100 < c < ln 2

3 . Fix γ to be such that 3c
ln 2 < γ2 < 1. Let X, A be two finite

sets. Let n = log2 |X|. Let M : A × X → {−1, 1} be a matrix which is a (k′, ℓ′)-L2-extractor
with error 2−r′ , for sufficiently large3 k′, ℓ′ and r′, where ℓ′ ≤ n. Let

r := min
{

r′

2 , (1−γ)k′

2 , (1−γ)ℓ′

2 − 1
}

. (1)

Let B be a branching program, of length at most 2r and width at most 2c·k′·ℓ′/ε, for the
learning problem that corresponds to the matrix M with error parameter ε. Then, the success
probability of B is at most O(2−r).

Proof. We recall the proof in [8, 21] and adapt it to the noisy case. Let

k := γ ln 2
2ε

k′ and ℓ := γℓ′/3. (2)

Our proof differs from [8] starting with Claim 10, which allows us to set k to a larger value
of γ ln 2

2ε k′ instead of γ(ln 2)k′ as set in [8]. Note that by the assumption that k′, ℓ′ and r′

are sufficiently large, we get that k, ℓ and r are also sufficiently large. Since ℓ′ ≤ n, we have
ℓ + r ≤ γℓ′

3 + (1−γ)ℓ′

2 < ℓ′

2 ≤ n
2 . Thus,

r < n/2 − ℓ. (3)

Let B be a branching program of length m = 2r and width4 d = 2c·k′·ℓ′/ε for the learning
problem that corresponds to the matrix M with error parameter ε. We will show that the
success probability of B is at most O(2−r).

4.1 The Truncated-Path and Additional Definitions and Notation
We will define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Formally, we define T , together with several
other definitions and notations, by induction on the layers of the branching program B.

Assume that we already defined the truncated-path T , until it reaches layer-i of B.
For a vertex v in layer-i of B, let Ev be the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am, b1, . . . , bm), and we denote by Px|v = Px|Ev

the distribution of the random
variable x conditioned on the event Ev.

There will be three cases in which the truncated-path T stops on a non-leaf v:
1. If v is a, so called, significant vertex, where the ℓ2 norm of Px|v is non-negligible.

(Intuitively, this means that conditioned on the event that T reaches v, a non-negligible
amount of information is known about x).

2. If Px|v(x) is non-negligible. (Intuitively, this means that conditioned on the event that T
reaches v, the correct element x could have been guessed with a non-negligible probability).

3. If (M · Px|v)(ai+1) is non-negligible. (Intuitively, this means that T is about to traverse
a “bad” edge, which is traversed with a non-negligibly higher or lower probability than
probability of traversal under uniform distribution on x).

Next, we describe these three cases more formally.

3 By “sufficiently large” we mean that k′, ℓ′, r′ are larger than some constant that depends on γ.
4 width lower bound is vacuous for ε < 2−r/2 as regardless of the width, Ω(n/ε2) > 2r samples are needed

to learn.
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Significant Vertices
We say that a vertex v in layer-i of B is significant if∥∥Px|v

∥∥
2 > 2ℓ · 2−n.

Significant Values
Even if v is not significant, Px|v may have relatively large values. For a vertex v in layer-i
of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 22ℓ+2r · 2−n.

Bad Edges
For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)

∣∣ ≥ 2−r′
.

The Truncated-Path T
We define T by induction on the layers of the branching program B. Assume that we already
defined T until it reaches a vertex v in layer-i of B. The path T stops on v if (at least) one
of the following occurs:
1. v is significant.
2. x ∈ Sig(v).
3. ai+1 ∈ Bad(v).
4. v is a leaf.
Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the
computational-path).

4.2 Proof of Theorem 5
Since T follows the computation-path of B, except that it sometimes stops before reaching a
leaf, the success probability of B is bounded (from above) by the probability that T stops
before reaching a leaf, plus the probability that T reaches a leaf v and x̃(v) = x.

The main lemma needed for the proof of Theorem 5 is Lemma 6 that shows that the
probability that T reaches a significant vertex is at most O(2−r).

▶ Lemma 6. The probability that T reaches a significant vertex is at most O(2−r).

Lemma 6 is proved in Section 4.3. We will now show how the proof of Theorem 5 follows
from that lemma.

Lemma 6 shows that the probability that T stops on a non-leaf vertex, because of the
first reason (i.e., that the vertex is significant), is small. The next two claims imply that the
probabilities that T stops on a non-leaf vertex, because of the second and third reasons, are
also small. We defer the proofs to Appendix A (proved as in [8]).

▷ Claim 7. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2r.

APPROX/RANDOM 2021
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▷ Claim 8. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−2r.

We can now use Lemma 6, Claim 7 and Claim 8 to prove that the probability that T
stops before reaching a leaf is at most O(2−r). Lemma 6 shows that the probability that T
reaches a significant vertex and hence stops because of the first reason, is at most O(2−r).
Assuming that T doesn’t reach any significant vertex (in which case it would have stopped
because of the first reason), Claim 7 shows that in each step, the probability that T stops
because of the second reason, is at most 2−2r. Taking a union bound over the m = 2r steps,
the total probability that T stops because of the second reason, is at most 2−r. In the
same way, assuming that T doesn’t reach any significant vertex (in which case it would have
stopped because of the first reason), Claim 8 shows that in each step, the probability that T
stops because of the third reason, is at most 2−2r. Again, taking a union bound over the 2r

steps, the total probability that T stops because of the third reason, is at most 2−r. Thus,
the total probability that T stops (for any reason) before reaching a leaf is at most O(2−r).

Recall that if T doesn’t stop before reaching a leaf, it just follows the computation-path
of B. Recall also that by Lemma 6, the probability that T reaches a significant leaf is at most
O(2−r). Thus, to bound (from above) the success probability of B by O(2−r), it remains to
bound the probability that T reaches a non-significant leaf v and x̃(v) = x. Claim 9 shows
that for any non-significant leaf v, conditioned on the event that T reaches v, the probability
for x̃(v) = x is at most 2−r, which completes the proof of Theorem 5.

▷ Claim 9. If v is a non-significant leaf of B then

Pr[x̃(v) = x | Ev] ≤ 2−r.

Refer to Appendix A for the proof (proved as in [8]). This completes the proof of
Theorem 5. ◀

4.3 Proof of Lemma 6
Proof. We need to prove that the probability that T reaches any significant vertex is at
most O(2−r). Let s be a significant vertex of B. We will bound from above the probability
that T reaches s, and then use a union bound over all significant vertices of B. Interestingly,
the upper bound on the width of B is used only in the union bound.

The Distributions Px|v and Px|e

Recall that for a vertex v of B, we denote by Ev the event that T reaches the vertex v. For
simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability is
over x, a1, . . . , am, b1, ..., bm), and we denote by Px|v = Px|Ev

the distribution of the random
variable x conditioned on the event Ev.

Similarly, for an edge e of the branching program B, let Ee be the event that T traverses
the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over x, a1, . . . , am, b1, ..., bm),
and Px|e = Px|Ee

.

▷ Claim 10. For any edge e = (v, u) of B, labeled by (a, b), such that Pr(e) > 0, for any
x′ ∈ X,

Px|e(x′) =


0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b
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where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r.

Proof. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Also, since Pr(e) > 0, we know that a ̸∈ Bad(v) (as otherwise T never traverses e

and hence Pr(e) = 0).
If T reaches v, it traverses the edge e if and only if: x ̸∈ Sig(v) (as otherwise T stops

on v) and ai+1 = a, bi+1 = b. Therefore, by Bayes’ rule, for any x′ ∈ X,

Px|e(x′) =


0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ ̸∈Sig(v) ∧ M(a,x′)=b}

Px|v(x′)(1 + 2ε)

+
∑

{x′ : x′ ̸∈Sig(v) ∧ M(a,x′ )̸=b}

Px|v(x′)(1 − 2ε)

= (1 + 2ε) · Pr
x

[(x ̸∈ Sig(v)) ∧ (M(a, x) = b) | Ev]

+ (1 − 2ε) · Pr
x

[(x ̸∈ Sig(v)) ∧ (M(a, x) ̸= b) | Ev].

Since v is not significant, by Claim 7,

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−2r.

Since a ̸∈ Bad(v),∣∣∣Pr
x

[M(a, x) = 1 | Ev] − Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣ ≤ 2−r′

,

and hence for every b′ ∈ {−1, 1},

Pr
x

[M(a, x) = b′ | Ev] ≥ 1
2 − 2−r′

.

Hence, by the union bound,

ce ≥ (1 + 2ε) · ( 1
2 − 2−r′

− 2−2r) + (1 − 2ε) · ( 1
2 − 2−r′

− 2−2r) ≥ 1 − 4 · 2−2r

(where the last inequality follows since r ≤ r′/2, by Equation (1)). ◁

Bounding the Norm of Px|s

We will show that
∥∥Px|s

∥∥
2 cannot be too large. Towards this, we will first prove that for

every edge e of B that is traversed by T with probability larger than zero,
∥∥Px|e

∥∥
2 cannot

be too large. We defer the proofs of the following claims to Appendix A (proved as in [8]).

▷ Claim 11. For any edge e of B, such that Pr(e) > 0,∥∥Px|e
∥∥

2 ≤ 4 · 2ℓ · 2−n.

▷ Claim 12.∥∥Px|s
∥∥

2 ≤ 4 · 2ℓ · 2−n.

APPROX/RANDOM 2021
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Similarity to a Target Distribution
Recall that for two functions f, g : X → R+, we defined

⟨f, g⟩ = E
z∈RX

[f(z) · g(z)].

We think of ⟨f, g⟩ as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

▷ Claim 13.

⟨Px|s,Px|s⟩ > 22ℓ · 2−2n.

Proof. Since s is significant,

⟨Px|s,Px|s⟩ =
∥∥Px|s

∥∥2
2 > 22ℓ · 2−2n. ◁

▷ Claim 14.

⟨UX ,Px|s⟩ = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

⟨UX ,Px|s⟩ = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n. ◁

Measuring the Progress
For i ∈ {0, . . . , m}, let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. For
i ∈ {1, . . . , m}, let Γi be the set of edges e from layer-(i − 1) of B to layer-i of B, such that
Pr(e) > 0. Recall that k = γ ln 2

2ε k′ (Equation (2)).
For i ∈ {0, . . . , m}, let

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k.

For i ∈ {1, . . . , m}, let

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k.

We think of Zi, Z ′
i as measuring the progress made by the branching program, towards

reaching a state with distribution similar to Px|s.
For a vertex v of B, let Γout(v) be the set of all edges e of B, that are going out of v,

such that Pr(e) > 0. Note that∑
e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v).
The next four claims show that the progress made by the branching program is slow.
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▷ Claim 15. For every vertex v of B, such that Pr(v) > 0,∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k ≤ ⟨Px|v,Px|s⟩k ·

(
1 + 2−r

)k +
(
2−2n+2)k

.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty
and thus the left hand side is equal to zero and the right hand side is positive, so the claim
follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R+ as follows. For any x′ ∈ X,

P (x′) =
{

0 if x′ ∈ Sig(v)
Px|v(x′) if x′ ̸∈ Sig(v)

Note that by the definition of Sig(v), for any x′ ∈ X,

P (x′) ≤ 22ℓ+2r · 2−n. (4)

Define f : X → R+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 12 and Equation (4),

∥f∥2 ≤ 22ℓ+2r · 2−n ·
∥∥Px|s

∥∥
2 ≤ 22ℓ+2r · 2−n · 4 · 2ℓ · 2−n = 23ℓ+2r+2 · 2−2n. (5)

By Claim 10, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =


0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r.

Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) = f(x′) · (1 + 2ε · b · M(a, x′)) · c−1
e

and hence, we have

⟨Px|e,Px|s⟩ = E
x′∈RX

[Px|e(x′) · Px|s(x′)] = E
x′∈RX

[f(x′) · (1 + 2ε · b · M(a, x′)) · c−1
e ]

= (∥f∥1 + 2ε · b · ⟨Ma, f⟩) · (ce)−1

< (∥f∥1 + 2ε|⟨Ma, f⟩|) ·
(
1 + 2−2r+3)

(6)

(where the last inequality holds by the bound that we have on ce, because we assume that
k′, ℓ′, r′ and thus r are sufficiently large).

We will now consider two cases:

Case I: ∥f∥1 < 2−2n. In this case, we bound |⟨Ma, f⟩| ≤ ∥f∥1 (since f is non-negative
and the entries of M are in {−1, 1}) and (1 + 2−2r+3) < 2 (since we assume that k′, ℓ′, r′

and thus r are sufficiently large) and obtain for any edge e ∈ Γout(v),

⟨Px|e,Px|s⟩ < 4 · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v) ≤ 1, Claim 15 follows, as the left hand side of the claim is smaller

than the second term on the right hand side.

APPROX/RANDOM 2021
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Case II: ∥f∥1 ≥ 2−2n. For every a ∈ A, define

t(a) = |⟨Ma, f⟩|
∥f∥1

.

By Equation (6),

⟨Px|e,Px|s⟩k < ∥f∥k
1 · (1 + 2ε · t(a))k ·

(
1 + 2−2r+3)k

. (7)

Note that by the definitions of P and f ,

∥f∥1 = E
x′∈RX

[f(x′)] = ⟨P,Px|s⟩ ≤ ⟨Px|v,Px|s⟩.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),
and at most one edge e(a,−1) ∈ Γout(v), labeled by (a, −1), and we have

Pr(e(a,1))
Pr(v) + Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (7),∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k < ⟨Px|v,Px|s⟩k · E

a∈RA

[
(1 + 2ε · t(a))k

]
·
(
1 + 2−2r+3)k

. (8)

It remains to bound

E
a∈RA

[
(1 + 2ε · t(a))k

]
, (9)

using the properties of the matrix M and the bounds on the ℓ2 versus ℓ1 norms of f .
By Equation (5), the assumption that ∥f∥1 ≥ 2−2n, Equation (1) and Equation (2), we

get

∥f∥2
∥f∥1

≤ 23ℓ+2r+2 ≤ 2ℓ′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| rows a ∈ A

with t(a) = |⟨Ma,f⟩|
∥f∥1

≥ 2−r′ . We bound the expectation in Equation (9), by splitting the
expectation into two sums

E
a∈RA

[
(1 + 2ε · t(a))k

]
= 1

|A| ·
∑

a : t(a)≤2−r′

(1 + 2ε · t(a))k + 1
|A| ·

∑
a : t(a)>2−r′

(1 + 2ε · t(a))k
.

(10)

We bound the first sum in Equation (10) by (1 + 2ε · 2−r′)k. As for the second sum in
Equation (10), we know that it is a sum of at most 2−k′ · |A| elements, and since for every
a ∈ A, we have t(a) ≤ 1, we have

1
|A| ·

∑
a : t(a)>2−r′

(1 + 2ε · t(a))k ≤ 2−k′
· (1 + 2ε)k ≤ 2−k′

e2εk ≤ 2−2r

(where in the last inequality we used Equations (1) and (2)). Overall, using Equation (1)
again, we get

E
a∈RA

[
(1 + 2ε · t(a))k

]
≤ (1 + 2ε · 2−r′

)k + 2−2r ≤ (1 + 2−2r)k+1. (11)
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Substituting Equation (11) into Equation (8), we obtain∑
e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k < ⟨Px|v,Px|s⟩k ·

(
1 + 2−2r

)k+1 ·
(
1 + 2−2r+3)k

< ⟨Px|v,Px|s⟩k ·
(
1 + 2−r

)k

(where the last inequality uses the assumption that r is sufficiently large). This completes
the proof of Claim 15. ◁

The following three claims use Claim 15 to quantify the progress over the layers and we
defer the proofs to Appendix A (proved as in [8]).

▷ Claim 16. For every i ∈ {1, . . . , m},

Z ′
i ≤ Zi−1 ·

(
1 + 2−r

)k +
(
2−2n+2)k

.

▷ Claim 17. For every i ∈ {1, . . . , m},

Zi ≤ Z ′
i.

▷ Claim 18. For every i ∈ {1, . . . , m},

Zi ≤ 24k+2r · 2−2k·n.

Proof of Lemma 6
We can now complete the proof of Lemma 6. Assume that s is in layer-i of B. By Claim 13,

Zi ≥ Pr(s) · ⟨Px|s,Px|s⟩k > Pr(s) ·
(
22ℓ · 2−2n

)k = Pr(s) · 22ℓ·k · 2−2k·n.

On the other hand, by Claim 18,

Zi ≤ 24k+2r · 2−2k·n.

Thus, using Equation (1) and Equation (2), we get

Pr(s) ≤ 24k+2r · 2−2ℓ·k ≤ 2 2k′
ε · 2− γ2 ln 2

3ε (k′ℓ′).

Recall that we assumed that the width of B is at most 2ck′ℓ′/ε for some constant c < ln 2/3,
and that the length of B is at most 2r. Recall that we fixed γ such that γ2(ln 2)/3 > c.
Taking a union bound over at most 2r · 2ck′ℓ′/ε ≤ 2k′ · 2ck′ℓ′/ε significant vertices of B, we
conclude that the probability that T reaches any significant vertex is at most 2−Ω(k′ℓ′/ε).
Since we assume that k′ and ℓ′ are sufficiently large, 2−Ω(k′ℓ′/ε) is certainly at most 2−k′ ,
which is at most 2−r. ◀

▶ Corollary 19. Let X, A be two finite sets. Let M : A × X → {−1, 1} be a matrix. Assume
that k, ℓ, r ∈ N are large enough and such that any submatrix of M of at least 2−k · |A| rows
and at least 2−ℓ · |X| columns, has a bias of at most 2−r.

Then, any learning algorithm for the learning problem corresponding to M with error
parameter ε, requires either a memory of size at least Ω

(
k·ℓ
ε

)
, or at least 2Ω(r) samples. The

result holds even if the learner has an exponentially small success probability (of 2−Ω(r)).

Corollary follows from the equivalence between L2-Extractors and L∞-Extractors (up to
constant factors) observed in [8].
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A Omitted Proofs from Section 4

Proof of Claim 7. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=

∑
x′∈X

[
Px|v(x′)2]

= 2n · E
x′∈RX

[
Px|v(x′)2]

≤ 22ℓ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 22r · 22ℓ · 2−n

]
≤ 2−2r.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev

]
= Pr

x

[(
Px|v(x) > 22r · 22ℓ · 2−n

) ∣∣ Ev

]
≤ 2−2r. ◀

Proof of Claim 8. Since v is not significant,
∥∥Px|v

∥∥
2 ≤ 2ℓ · 2−n. Since Px|v is a distribution,∥∥Px|v

∥∥
1 = 2−n. Thus,∥∥Px|v

∥∥
2∥∥Px|v

∥∥
1

≤ 2ℓ ≤ 2ℓ′
.

Since M is a (k′, ℓ′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| elements α ∈ A

with∣∣⟨Mα,Px|v⟩
∣∣ ≥ 2−r′

·
∥∥Px|v

∥∥
1 = 2−r′

· 2−n

The claim follows since ai+1 is uniformly distributed over A and since k′ ≥ 2r (Equation (1)).
◀

Proof of Claim 9. Since v is not significant,

E
x′∈RX

[
Px|v(x′)2]

≤ 22ℓ · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | Ev] = Px|v(x′) ≤ 2ℓ · 2−n/2 ≤ 2−r

since r ≤ n/2 − ℓ (Equation (3)). In particular, Pr[x̃(v) = x | Ev] ≤ 2−r. ◀
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Proof of Claim 11. Let e = (v, u) be an edge of B, labeled by (a, b), and such that Pr(e) > 0.
Since Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Thus,∥∥Px|v

∥∥
2 ≤ 2ℓ · 2−n.

By Claim 10, for any x′ ∈ X,

Px|e(x′) =


0 if x′ ∈ Sig(v)

Px|v(x′)(1 + 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) = b

Px|v(x′)(1 − 2ε) · c−1
e if x′ ̸∈ Sig(v) and M(a, x′) ̸= b

where ce is a normalization factor that satisfies,

ce ≥ 1 − 4 · 2−2r > 1
2 .

(where the last inequality holds because we assume that k′, ℓ′, r′ and thus r are sufficiently
large.) Thus,

∥∥Px|e
∥∥

2 ≤ c−1
e · (1 + 2ε)

∥∥Px|v
∥∥

2 ≤ 4 · 2ℓ · 2−n. ◀

Proof of Claim 12. Let Γin(s) be the set of all edges e of B, that are going into s, such that
Pr(e) > 0. Note that∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x′)2.

Summing over x′ ∈ X, we obtain,∥∥Px|s
∥∥2

2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e
∥∥2

2 .

By Claim 11, for any e ∈ Γin(s),∥∥Px|e
∥∥2

2 ≤
(
4 · 2ℓ · 2−n

)2
.

Hence,
∥∥Px|s

∥∥2
2 ≤

(
4 · 2ℓ · 2−n

)2
. ◀

Proof of Claim 16. By Claim 15,

Z ′
i =

∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k =
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k

≤
∑

v∈Li−1

Pr(v) ·
(

⟨Px|v,Px|s⟩k ·
(
1 + 2−r

)k +
(
2−2n+2)k

)
= Zi−1 ·

(
1 + 2−r

)k +
∑

v∈Li−1

Pr(v) ·
(
2−2n+2)k

≤ Zi−1 ·
(
1 + 2−r

)k +
(
2−2n+2)k

◀
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Proof of Claim 17. For any v ∈ Li, let Γin(v) be the set of all edges e ∈ Γi, that are going
into v. Note that∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ Li and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x′),

and hence

⟨Px|v,Px|s⟩ =
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩.

Thus, by Jensen’s inequality,

⟨Px|v,Px|s⟩k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k.

Summing over all v ∈ Li, we get

Zi =
∑
v∈Li

Pr(v) · ⟨Px|v,Px|s⟩k

≤
∑
v∈Li

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · ⟨Px|e,Px|s⟩k

=
∑
e∈Γi

Pr(e) · ⟨Px|e,Px|s⟩k

= Z ′
i. ◀

Proof of Claim 18. By Claim 14, Z0 = (2−2n)k. By Claim 16 and Claim 17, for every
i ∈ {1, . . . , m},

Zi ≤ Zi−1 ·
(
1 + 2−r

)k +
(
2−2n+2)k

.

Hence, for every i ∈ {1, . . . , m},

Zi ≤
(
2−2n+2)k · (m + 1) ·

(
1 + 2−r

)km
.

Since m = 2r,

Zi ≤ 2−2k·n · 22k · (2r + 1) · ek ≤ 2−2k·n · 24k+2r. ◀
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