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Abstract
Geomasks assure the protection of individuals in a discrete spatial point data set by aggregating,
transferring or altering original points. This study develops an alternative approach, referred to as
Adaptive Voronoi Masking (AVM), which is based on the concepts of Adaptive Aerial Elimination
(AAE) and Voronoi Masking (VM). It considers the underlying population density by establishing
areas of K-anonymity in which Voronoi polygons are created. Contrary to other geomasks, AVM
considers the underlying topography and displaces data points to street intersections thus decreasing
the risk of false-identification since residences are not endowed with a data point.

The geomasking effects of AVM are examined by various spatial analytical results and are
compared with the outputs of AAE, VM, and Donut Masking (DM). VM attains the best efficiency
for the mean centres whereas DM does for the median centres. Regarding the Nearest Neighbour
Hierarchical Cluster Analysis and Ripley’s K-function, DM demonstrates the strongest performance
since its cluster ellipsoids and clustering distance are the most similar to those of the original data.
The extend of the original data is preserved the most by VM, while AVM retains the topology of
the point pattern. Overall, AVM was ranked as 2nd in terms of data utility (i) and also outperforms
all methods regarding the risk of false re-identification (ii) because no data point is moved to a
residence. Furthermore, AVM maintains the Spatial K-anonymity (iii) which is also done by AAE
and partly by DM. Based on the performance combination of these factors, AVM is an advantageous
technique to mask geodata.
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1 Introduction

1.1 Background
The advances of GIS and the interest in spatial analysis have led to an increase of thematic
maps in research and online platforms visualizing point data. However, several studies in
health geography, reproductive and sexual health did not anonymize or aggregate data;
instead, the original data were used [4, 14, 17]. Publishing an individual’s location either in

1 Corresponding author

© Fiona Polzin and Ourania Kounadi;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Geographic Information Science (GIScience 2021) – Part II.
Editors: Krzysztof Janowicz and Judith A. Verstegen; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:polzinfiona@gmail.com
mailto:ourania.kounadi@univie.ac.at
https://geographie.univie.ac.at/arbeitsgruppen/digital-geography/
https://orcid.org/0000-0002-5998-7343
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.1
https://github.com/okounadi/Geoprivacy
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Adaptive Voronoi Masking (AVM)

paper or digital form - knowingly or unknowingly - increases the risk of re-identification by
and violates individual privacy. How simple the re-identification of individuals is, was already
demonstrated by Brownstein et al. [4]: By applying the reverse-identification method, 7% of
the spatially coded addresses were accurately identified while all 550 of the plotted address
points were disclosed within 14 m of the right address. Furthermore, Kounadi and Leitner
[17] exposed that within an eight-year duration, almost 70,000 home addresses had been
disclosed in academic research.

The consequences of disclosure are vast; an individual being identified as an HIV-patient
- correctly or wrongly - can affect him or her by discrimination or social stigmatization [27].
Identifications may cause harassment [9], unwanted advertisement or humiliation [26, 25].
Kounadi and Leitner [19] criticize that general rules on privacy do not include details of the
spatial re-identification risk notwithstanding the fact that relevant research and reports on
geodata exist [12, 20]. Consequently, confidential spatial data sets do not only have to be
preserved but also need to comply with present-day restrictions and regulations on the right
to privacy [19]. However, Ajayakumar et al. [1] criticized that geomasks are still unavailable
for many institutions due to the lack of expertise in geospatial proficiency although the
awareness of the power of mapping has grown particularly in health organizations and clinics
which have become spatially literate lately. The authors stress that geomasks need to become
more of a real-world requirement.

1.2 Problem statement
Some geomasks displace the points a specific distance aside from its original location (e.g.,
local random rotation by Leitner and Curtis [22] and Voronoi masking (VM) by Seidl et al.
[29], while others aggregate points (e.g., spatial and point aggregation by Armstrong et al.
[3]). Other geomasks consider the underlying population density adapting the displacement
error such as the Donut Geomasking (DM) [15] and the Adaptive Areal Elimination (AAE)
[19]. By considering the population density, the “masker” is able to determine a level of
K-anonymity in which each record (i.e. person) within a masked data set cannot be identified
from at least K-1 records [24]. Regarding geodata, K-anonymity assures that every location
such as household, address or an individual’s location cannot be differentiated from minimum
K-1 locations. This means, that spatial K-anonymity (SKA) describes the probability of
identifying a location that can be linked to an individual by reverse geocoding. This is
needed to evaluate the degree of privacy and when measuring the degree of displacement.

A possible solution to prevent re-engineering of original locations could be points’ ag-
gregation. However, when doing so, the ability to distinguish spatial relations or clusters
and deriving persuasive information is decreased [30, 3, 21]. Obviously, the data becomes
less useful for research purposes [30, 13]. Contrary to aggregation, geomasks that modify
the locations are preferred for analytical purposes. Nevertheless, the transferred points
can be moved to a position which has real observations [23] or where they cannot exist [7],
resulting in false identification [29]. False identification represents the incorrect linking of a
household or person to a data point. Contrary to that, correct identification is the correct
linkage of a household or person to a data point [29]. The consequences of identification can
result in negative effects impeding an individual’s social prominence [13]. Besides, it can
unintentionally involve individuals, who were not part of the research [7]. Such limitations
influence both the disclosure risk and a successful investigation of spatial patterns.

Generally, there is neither a recommended nor approved geomask technique [30, 13] and
each method has disadvantages and advantages. Zandbergen [30] suggests counterbalancing
data utility and confidentiality protection. Also, not a lot of geomasks consider the underlying
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topography except for the Street aggregation at intersection or at midpoint [22] or the Location
Swapping method [31]. Yet these that do consider the underlying topography do not offer a
predefined level of SKA. It is evident that existing techniques must be improved to overcome
such shortcomings and also become widely accessible.

1.3 Study scope and design
Our alternative approach, referred to as Adaptive Voronoi Masking (AVM), is based on the
concepts of AAE and VM. AVM shall protect the individual’s privacy based on SKA while
also decreasing the false re-identification risk. We evaluate known geomasks, namely the VM,
the AAE, and the DM, and compare them with the proposed AVM in terms of three key
aspects: a) SKA, b) false re-identification, and c) data utility.

In the next section (Methodology) we explain the two geomasks that AVM is based on
(VM and AAE) and then describe the functionality of AVM. Next, we present the exploratory
spatial data analysis (ESDA) methods that are used to compare and evaluate the original data
points with the outcome of the geomasks (i.e. masked data points). Last, we introduce the
study area, the software, and data used. In section 3 (Results), we report the ESDA results
and finally discuss and conclude our findings in section 4 (Conclusion). Apart from the AVM,
DM, and AAE, we also evaluate the DM geomask. DM was chosen as a comparative geomask
since it is a popular technique and it has a small effect on the geographical characteristics of
the original point pattern as highlighted in academic literature [15, 30, 2]. The algorithm for
this method was retrieved online2.

2 Methodology

2.1 Adaptive Areal Elimination (AAE)
AAE assures privacy by moving the original locations within uncertainty areas. The so-called
uncertainty areas describe an area, where the masked points are displaced in, e.g. torus or
circle [19]. For instance, DM moves the original data within an uncertainty area selected
from a uniform distribution [15] while the population-density-based Gaussian spatial blurring
dislocates points within a circle based on a normal distribution [5]. However, these geomasks
assume that population is homogeneously distributed - which is not the case in most instances.
This assumption can result in masked data points with a lower actual K-anonymity than the
estimated K-anonymity [2]. Hence, AAE is aiming to ensure K-anonymity even when the
geomasking method and its parameters are known. K-anonymity can be measured precisely
when uncertainty areas do not overlap and when it is applied at a lower or equal level of the
available resolution [19].

To execute the AAE algorithm, two data sets are needed: a) a point file and b) a spatial
data set that either includes an attribute with discrete information (e.g., as administrative
units containing an attribute field with the total households in each unit) or represents
discrete information (e.g., point data representing households). This attribute is called
RoRi (risk of re-identification). Generally, risk of re-identification can contain information
such as addresses, households, or population. A disclosure value for this field predefined to
describe the minimum K-anonymity which is used to obscure confidential information. In
the next step, the process of merging polygons starts: depending on the disclosure value,

2 https://mserre.sph.unc.edu/BMElab_web/donutGeomask/donutGeomask.htm (Last accessed on Janu-
ary 22th, 2021)
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every polygon containing a lower risk of re-identification value than the disclosure value, is
merged with its neighbouring polygon or polygons until each polygon has values that are
either greater than or equivalent with the disclosure value to create the K-anonymized areas.
Next, original data are aggregated to the centroids of the merged polygons or randomly
displaced within the merged polygons. Random displacement can be performed by a random
perturbation to the coordinates of each data point by a random distance and at a random
direction (equation 1).

Xm = Xo + D ∗ cosine(Θ)
Y m = Y o + D ∗ sine(Θ) (1)

where, Xo,Yo are the original coordinates of a point, Xm,Ym are the resulting masked
coordinates, D is a random value within a predefined range, and Θ is a random angle.

In the AAE each masked point shall lie within its k-anonymized polygon. Thus, the displaced
masked point/s has to be conditioned on the boundaries of each polygon. In this study, we
implement the random displacement that yielded better performance results in the study by
Kounadi and Leitner (2016). When studying the outputs of AAE more closely, some masked
data are moved further distances than necessary. This can be explained by the process of
merging polygons that selects the neighbour with the longest boundary, which may result in
K-anonymized areas that are larger than needed to ensure SKA.

2.2 Voronoi Masking (VM)
VM creates Voronoi polygons around the original data points are displaced to the closest
segment (edge) of its corresponding polygon [29, 13]. The theoretical basis of creating Voronoi
polygons starts with the triangulation of the original points into an irregular network that
meets the Delaunay criterion (i.e. no point is inside the circumcircle of any triangle). Then,
the perpendicular bisectors for each triangle edge are generated. These are the edges of the
Voronoi polygons while the locations of the bisector’s intersections determine the vertices.
Every point within each polygon is closer to the original point of its creation than to other
original points.

Advantages of VM is that points in neighbouring polygons are displaced to the same
position, enhancing their K-anonymity and that a higher point density results in smaller
distances between the original data and masked data thus giving a pattern that is similar to
the original one [29, 13]. For a small scale area or an area with a minimum of two households,
VM dislocates the original data a lesser distance than compared to other geomasks that
do not consider the underlying settlement patterns. VM is an efficient approach regarding
the preservation of the spatial point pattern as it has been proved by Seidl et al. [29] who
implemented various methods to evaluate its performance. Finally, Seidl et al. [29] praise
that in case of applying a data set that is including all residences within the area of interest,
no displaced point will be located on an actual residence and thus false identification of
residences is not possible. Points are typically located in the centre of a parcel or at the street
segment. VM will definitely move points away from these locations. However, this process
does not guarantee that segments of Voronoi polygons will not cross residential parcels and
therefore VM cannot decrease the risk of false identification in this regard.

When applying VM in areas with scattered residences some data points will be dislocated
at large distances, which affect spatial patterns. Also, a smaller amount of masked data
will be depicted on the map than the original data due to the overlapping of points at the
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displaced locations. Although this assures a higher K-anonymity, the map viewer may not
be aware that some points represent at least two addresses, increasing the risk of spatially
analysing or perceiving the output differently. Last, although K-anonymity is increased,
compared to other geomasks, a predefined level of SKA cannot be guaranteed.

2.3 Adaptive Voronoi Masking (AVM)
AVM extracts the asset of considering the underlying population density by joining polygons
as AAE does and displaces the original data based on the concept of VM. In respect thereof,
the original data are moved to the closest segment of their corresponding Voronoi polygon
which lies within their merged AAE-polygon. In case a Voronoi segment lies outside its
dissolved polygon, the point is transferred to the boundary of the merged polygon and not to
the edge of the Voronoi polygon. Through that, AVM intends to circumvent the predicament
of moving points to a polygon containing a different population threshold thus preserving
the predefined SKA. Further, the underlying topography is considered by moving points
to the closest street intersection that has a higher amount of surrounding buildings than
if moved to the nearest segment. Through that, AVM avoids shifting the points directly
to another residence causing false re-identification but it also prevents the displacement to
invalid locations such as water bodies or forests.

To execute AVM, the following data sets are required: a) a point file (as needed in VM
and AAE), b) a polygon file including risk of re-identification information (as required in
AAE), and c) a line file depicting the street network. Firstly, the data is pre-processed as
done for AAE. Subsequently, a disclosure threshold for the risk of re-identification field is
selected and polygons with a smaller value than the chosen disclosure value are merged
with its adjacent polygon until all polygons receive a value that is greater or equal to the
set disclosure value. Here, the general spatial rule is applied defining that every polygon is
combined with the bordering polygon that has the longest shared border [19].

Secondly, every data point that is lying within a polygon with at least two data points is
transferred by the concept of the VM technique. It is guaranteed that the data points are
replaced to the closest segment of their corresponding Voronoi polygon within their dissolved
polygon. Thirdly, the polygons containing only one data point randomly transfer the data
point within their merged polygon. Afterwards, all newly displaced points are shifted to the
closest street intersection inside their K-anonymized polygon. Figure 1 shows the outputs of
the steps using as an example the city centre of Dresden, Germany.

2.4 ESDA for evaluating geomasking performance
ESDA identifies and characterizes locations, shapes, and magnitudes of statistically substantial
patterns within an area of interest [10]. Studies on geoprivacy implemented ESDA methods
on original data and masked data to investigate and compare the performance of geomasks.
Armstrong et al. [3] scrutinized the effect of geomasks by exploring pair-wise relations, event-
geography relations, anisotropies, and trends. Seidl et al. [29] applied the kernel density
estimation, global Moran’s I, distance to K-nearest neighbour, the cross K-function - also
known as Ripley’s K-function, and the nearest neighbour hierarchical cluster analysis. Kwan
et al. [21] also applied the Ripley’s K-function, the kernel density estimation, and examined
the visualisation of the point pattern. Leitner and Curtis [22] analysed the visualisation of
the point pattern as well. Several approaches exist to analyse the efficiency of geomasks.
Here, we use four methods that were already used in previous studies and are described in
the next subsections.

GISc ience 2021
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Figure 1 A visualisation of the AVM outputs in the city centre of Dresden.

2.4.1 Visualisation of point pattern
This technique is used to a) scrutinize the extent of the original data and compare it with
that of the masked data and b) to investigate whether the masked data are displaced on other
residencies increasing the risk of false re-identification or are transferred to void locations
such as forests or lakes.
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2.4.2 Central tendency

The mean and median centres of the original data and the masked data are compared through
their distance’s divergence. This has been applied by Seidl et al. [29] and Gupta and Rao
[13].

2.4.3 Ripley’s K function

Ripley’s K-function identifies whether the masked points are clustered, dispersed, or randomly
distributed and whether the point distribution between original data and masked data
remains linked or not. In the case of linked point distribution, the geomasks perform spatially
dependent on the original data. Ripley’s K-function conflates spatial dependence regarding
point feature scattering or aggregation over a variety of distances [8], which returns a more
detailed output than other ESDA pattern detection techniques. By analysing the spatial
patterns over several lengths as well as spatial scales, the point patterns alter. Thus, it
can reflect how the scattering or aggregating of points centroids shifts when the size of the
neighbourhood varies.

2.4.4 Nearest neighbour hierarchical cluster analysis

In most previous studies, the impact of geomasks on original hot spots has been probed.
This is important since clustering detection plays a vital role in spatial analysis. For instance,
by detecting hot spots, high concentrations of crime incidents can be explored and predicted
for future scenarios [6]. Nearest neighbour hierarchical cluster analysis allows examining and
comparing the clustering pattern of the original data with the pattern of the masked data
regarding amount of clusters, size, orientation, density.

3 Experiments’ settings

3.1 Study area

The choice of the study area is based on the availability of processed and free data. Moreover,
area data sets must allow different levels of spatial granularity and population density.
The chosen area is the Free State of Saxony in Eastern Germany. Saxony has 13 districts
containing more than 4 million inhabitants3, of which more than 563,000 were registered in
the state capital Dresden. Yet, the highest population and population density are found in
the city of Leipzig with a total of 587,857 people and 1,974 inhabitants per km2. Contrary to
that, the district Nordsachsen has only 97 inhabitants per km2 - the lowest in Saxony. Hence,
the State of Saxony is an explicit choice to investigate the performance of geomasks because
it has highly populated as well as rural areas. The geomasks are applied on the State of
Saxony, the city of Leipzig because it has the most inhabitants and the highest population
density, and the district of Zwickau. Zwickau was chosen because when calculating the
average inhabitants (ca. 313,685) and population density (ca. 493/km2) per district in
Saxony, Zwickau has the closest values (inhabitants: 317,531; population density: 334/km2).

3 https://www.statistik.sachsen.de/(Last accessed on January 22th, 2021)
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3.2 Data
For the polygon file, a line shapefile representing the street network in Saxony was derived
online4, and used to create streets blocks. It was aimed to develop blocks which are not too
coarse but also not too small. Since the original road network file also included several street
classes such as “footway”, “path”, or “cycleway”, all street duplicates, as well as all street
classes except for “primary”, “secondary”, and “tertiary”, were deleted off the shapefile to
generalize the road network. Thus, an enormous amount of small blocks is avoided resulting
in shorter processing times of the geomasks. Also, only single-line road features in place
of matched pairs of divided road lanes were maintained. Small and open configurations of
roads were removed. Next, polygon features were created from the remaining polylines. Any
polygons outside the study area were removed.

The same street network dataset was also used for intersection displacement step of AVM.
However, in this case, it was more detailed containing also the “residential class”. Thus, a
smaller but yet meaningful displacement of the data points can be achieved. More street
classes such as “footway” or “cycleway” were not included to prevent false re-identification.

Also, additional attributes were included. First, risk of re-identification information needs
to be added within the polygons. Hence, a point data set with addresses in Saxony from 2018
was chosen and can be downloaded directly from ESRI5. Originally, the point data set consists
of 947,164 data points. The points were counted per polygon as the risk of re-identification
information. Second, two “sensitive” data sets were created as random subsets from the
addresses in Saxony consisting of 2,000, and 200 points for each and thus mimicking different
population densities to examine the performance of AVM at different situations. These data
sets simulate potential confidential or private discrete data. Third, attributes such as “id”
(unique identifier) and “area” (size of a polygon) were added as they are necessary for the
algorithms. Finally, the polygons were clipped based on the boundaries of the three study
areas. The boundaries were obtained from the Federal Agency for Cartography and Geodesy6.
The clipped study areas do not completely correspond in size with the original district of
Zwickau, City of Leipzig, or the Free State of Saxony. This is due to the removal of smaller
streets creating somehow different sizes and shapes of the study areas. In the case of referring
to a specific study area with a certain number of points, the data sample is named study
area + number of points (i.e., Saxony 200). Figure 2 shows the resulting area data sets.

3.3 Software
We used ArcGIS Pro 2.5 by the international GIS-software developer ESRI and CrimeStat 3.3.
by Levine & Associates (2020). ArcGIS Pro is used for data exploration, visualisation, for
running the AAE and DM algorithms, and for the creation of the AVM and VM algorithms.
Hereby, the embedded ArcPy Python package was used. The ESDA evaluation methods,
with the exception of nearest neighbour hierarchical cluster analysis, were operated in ArcGIS
Pro. Nearest neighbour hierarchical cluster analysis was performed in CrimeStat 3.3 (i.e. a
program of spatial statistics for exploring locations of crime incidents). CrimeStat can be
downloaded for free online7.

4 https://download.geofabrik.de/europe/germany/sachsen.html(Last accessed on January 22th,
2021)

5 https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::
adressen-sachsen (Last accessed on January 22th, 2021)

6 https://www.bkg.bund.de/DE/Home/home.html (Last accessed on January 22th, 2021)
7 https://www.icpsr.umich.edu/CrimeStat/(Last accessed on January 22th, 2021)

https://download.geofabrik.de/europe/germany/sachsen.html
https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::adressen-sachsen
https://opendata-esri-de.opendata.arcgis.com/datasets/esri-de-content::adressen-sachsen
https://www.bkg.bund.de/DE/Home/home.html
https://www.icpsr.umich.edu/CrimeStat/
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Figure 2 The six area data sets that are used in the study.

4 Results

AVM, AAE, and DM were applied with a SKA level of 50 addresses. VM is not an adaptive
geomask and thus a SKA level cannot be predefined and guaranteed. The four ESDA methods
are applied to the original data as well as on the masked data to examine the effects of the
geomasks on the original data. [18] and detect dissimilarities of spatial information loss and
the preservation of original data granularity [28]. In the ideal case, the spatial analysis of
the AVM masked data will be equal to that of the original data.

4.1 Visualisation
Figure 3 shows the extent of the original data for Leipzig 2000. AAE preserves the spatial
extent of the original data the least. For Leipzig 2000, 53 points were dislocated outside
of the original extent. DM performs more successfully than AAE with only five points not
being located within the extent of the original data. The new technique AVM retains the
spatial extent more effectively than AAE and DM. For Leipzig 2000 all points were within
the extent while in the other area data sets only one to three points were located outside the
extent. VM is outperforming the other geomasks regarding the preservation of the original
extent. Only one data set (Leipzig 200) has one data point outside the original extent. We
created the same maps for each area data set but since the observations are similar other
maps are not presented. By ranking the performance of the geomasks, we can see that VM
preserves the extend of original data the most (1st), followed by AVM (2nd), then DM (3rd),
and last is AAE (4th).

Regarding the preservation of the point pattern, it is perceivable that AAE seems to
abandon the pattern the most: Particularly Figure 4b shows that the strongly visible
floodplain forest, which intersects the city of Leipzig from northwest to southwest, is not
kept by AAE. Unlike that, AVM, DM, and VM maintain this meandering space in most
regard while AAE blurs this region completely. Figure 4a is illustrating a park in the city
centre of Leipzig. All original data originate on buildings. Every geomask except for AVM
displaced data points to either buildings or an uninhabited area as here, the park. Only one

GISc ience 2021
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(a) ODP. (b) AAE.

(c) AVM. (d) DM. (e) VM.

Figure 3 The bounding box shows the extent of the original data in Leipzig, while inner points
are the masked data.

(a) The city centre. (b) VM transferred on a lake.

(c) The floodplain forest. (d) A rural area.

Figure 4 The results of the geomasks (masked data) compared to the original data in various
locations.
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VM point had been transferred to a street. Contrary to that, AVM moved all data points
to a street intersection. Figure 4b is depicting an area with family homes, a central park,
and a lake with a displaced VM data point. Another DM data point had been moved on a
house. Figure 4c portrays the floodplain forest in Leipzig. It is noticeable that many points
transferred by AAE are laying within this natural habitat which is invalid for a displacement
location. Finally, the last Figure 4d show rural areas within Saxony with a low point density.
As in the previous examples, AVM points remain on street intersections decreasing the risk
of false identification. Again, AAE, DM, and VM moved data points to uninhabited areas,
i.e. a forest or grassland. In this analysis, AVM is ranked as 1st in not translating points to
illogical locations or false residencies, while all other geomasks follow.

4.2 Central tendency
The displacement distance between the masked and original mean and median centres are
shown in table 1. Regarding the mean centres, VM and DM outperform AAE and AVM
in most obfuscation settings. DM has the smallest displacement distances for Leipzig 200
(12.71m), Zwickau 200 (4.53m), Zwickau 2000 (3.97m), and Saxony 200 (98.91m). VM has
the smallest displacement distances for Leipzig 2000 (1.18m) and Saxony 2000 (9.61 m). The
AAE encompasses the furthest displacement distances for all data sets, while AVM performs
better yet worse than DM and VM.

Regarding the median centres, VM surpasses the other geomasks. It has a displacement
distance of 1.23m to the original median centre of Leipzig 2000, 42.33m to the one of Zwickau
200, and 13.93m to the one of Saxony 2000. DM presents the lowest displacement distances
for Leipzig 200 (1.63m) and Saxony 200 (90.82m), while AVM has the smallest displacement
for Zwickau 2000 (1.61m). Again, AAE has much greater displacement distances than the
other three geomasks (except for Saxony 200).

Finally, it can be seen that the lower the point density, the stronger the variation of
the geomasks’ results. For instance, the 200 data points in Saxony represent the strongest
variations and the highest displacement distances between the masked and original mean
and median centres. Contrary to that, Leipzig 2000 has the highest population density and
demonstrates the smallest displacement distances and lowest variations between the mean
and median centres of the masked data and original data. The geomasks’ performance was
ranked for each area data set and then the mode of the rank was derived. For the mean
displaced distance, DM yields the closest value to the original data mean (1st), followed by
VM (2nd), then AVM (3rd), and last is AAE (4th). For the median displaced distance VM
yields the closest value to the original data median (1st), followed by DM (2nd), then AVM
(3rd), and last is AAE (4th).

4.3 Ripley’s K-function
We calculated the expK-values and obsK-values of the original data and masked data of
every five bands. The dissimilarity here is calculated as the clustering distance divergence of
the masked data from the original data and it is shown in Table 2. For all area data sets and
bands, the original data and masked data attain higher obsK-values than the expK-value
indicating a strong clustering pattern. A second observation is that dissimilarities are more
distinct in smaller bands than in larger bands. The third observation is that VM and AVM
create a more clustered pattern than the original (shown by mostly negative divergence
values), while AAE and DM tend to create a less clustered pattern than the original (indicated
by mostly positive values).

GISc ience 2021
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Table 1 Displacement distances (in meters) from the mean/ median centre of the original data
to the mean/ median centres of the masked data. The lowest displacement distance per data set is
depicted in bold. The method that scores most times the best is DM, followed by VM.

Area
data set

AVM VM AAE DM
Mean Median Mean Median Mean Median Mean Median

Leipzig 200 28,86 28,11 12,72 40,3 129,72 158,17 12,71 1,63
Leipzig 2000 3,57 5,51 1,18 1,23 44,24 31,58 3,02 3,12
Zwickau 200 85,71 55,22 23,48 42,33 177,18 562,56 4,53 100,68
Zwickau 2000 10,11 1,61 6,14 3,39 39,46 241,07 3,97 8,27
Saxony 200 616,41 1528,4 182,45 231,68 766,97 1357,64 98,91 90,82
Saxony 2000 27,46 65,52 9,61 13,93 39,83 66,85 14,39 29,08

Table 2 Ripley’s K results on the divergence of the clustering distance (in meters) of the masked
data from the original data, from 99 simulations for each area data set and in three bands. The
smallest divergence is marked in bold. DM yielded the smallest values most times.

Area data-set Leipzig 200 Leipzig 2000 Zwickau 200
Geomask
/bands 1-5 6-10 11-15 1-5 6-10 11-15 1-5 6-10 11-15

AVM -847 -230 64 -361 -61 -47 -1650 -750 -342
VM -1857 -1519 -680 -351 451 -39 -3279 -2296 -1775
AAE 1113 664 695 543 858 977 1271 2226 2593
DM 525 77 32 183 132 116 371 443 272
Area data-set Zwickau 2000 Saxony 200 Saxony 2000
Geomask
/bands 1-5 6-10 11-15 1-5 6-10 11-15 1-5 6-10 11-15

AVM -466 -198 -134 -454 642 1529 -197 127 136
VM 9 22 -43 -13443 -10122 -6429 -2138 -1091 -538
AAE 1413 1495 1854 2722 -276 301 1835 1383 1090
DM 753 410 379 -251 202 399 375 53 34

DM has the most similar obsK-values for Leipzig 200 (all bands), Saxony 200 (bands one
to ten), Saxony 2000 (bands six to fifteen), and Zwickau 200 (all bands). AVM scores the
most alike obsK-values for Leipzig 2000 (bands six to ten) and Saxony 2000 (bands one to
five). VM displays a stronger point accumulation than the original data for data sets with a
low point density (Leipzig 200, Zwickau 200, and Saxony 200) and demonstrates the most
dissimilar obsK-values than the original data which can be elucidated by the technique’s
character to alter the point pattern in scattered areas due to greater displacement distances
of the established Voronoi polygon. However, VM reaches very similar obsK-values to those
of the original data for Leipzig 2000 (bands eleven to fifteen), and Zwickau 2000 (all bands).
Again, AAE fares the weakest results.

We derived the geomasks’ ranks for each area data set/ band and then the mode rank.
DM is ranked 1st, followed by AVM (2nd), then VM (3rd), and last is again AAE (4th).

4.4 Nearest neighbour hierarchical cluster analysis

Table 3 shows the number of clusters, the mean points per cluster, and mean cluster density
per m2 for each original data and masked data and in each area dataset. For Leipzig 200,
the original data produced six clusters, with a mean of 7.33 points per cluster. Regarding
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the number of clusters, AAE, AVM, and DM are the nearest to the original data value with
seven clusters. AVM has the closest mean points per cluster at 7.50 and the most similar
cluster density. For Leipzig 2000, VM has the closest number of clusters as the original
data (VM: 139; original data: 136). Regarding the mean points, original data contains 7.73
points and DM reaches the nearest measure at 7.83. Also, DM has the most alike density at
0.0000979 m2 (original data: 0.0001144 m2).

About Zwickau 200, the original data yielded eight clusters, mean points at 7.75, and a
density of 0.0000055 per m2. Regarding the first metric, DM has the same value. Regarding
mean points, VM outperforms the other geomasks at 7.82, whilst DM shows the nearest
value for the cluster density at 0.0000060 per m2. For Zwickau 2000, the original data yielded
110 clusters, mean points of 8.70, and a density of 0.0000655 per m2. VM has 111 clusters
followed by AVM with 112 outperforming the other geomasks. The closest mean point value
was obtained by DM at 8.66 as well as for the mean cluster density at 0.0000598 per m2.

In Saxony 200, four clusters were generated by the original data with mean points at 6.5
and a mean cluster density of zero. DM succeeded the same values as original data whereas
VM indicates the most different values. For Saxony 2000, the original data demonstrates 66
clusters, mean points at 7.86, and a mean cluster density at 0.0000042 per m2. Regarding
the first parameter, AVM outperforms the other methods at 63 clusters. Concerning the
second parameter, DM reaches the closest mean points at 7.80. Finally, the most alike cluster
density was obtained by AVM at 0.0000044 per m2. AAE fares the worst with regard to the
number of clusters and the mean cluster density while VM demonstrates the least efficiency
for mean points.

Last, we derived the geomasks’ ranks for each area data set/ metric and then the mode
rank based on the divergence value (the closer to the original data value the higher is the
rank). For both the mean points per cluster and mean cluster density, DM is ranked 1st,
followed by AVM (2nd), then VM (3rd), and last is AAE (4th). For the cluster density, both
DM and AVM are ranked as 1st, followed by AAE (2nd), then VM (3rd).

4.5 Evaluation and comparison of geomasks
In the ESDA results subsections, we stated the ranking of each geomask. The final ranks
are shown in table 4 to indicate the performance regarding data utility. AVM is ranked first
for not displacing points to illogical locations or other residencies while VM is ranked first
for retaining the extend of the original data. Hence, both geomasks are ranked as first for
the visualization ESDA method because there are only these two metrics. The same applies
to the central tendency (two metrics: mean and median), while for the nearest neighbour
hierarchical cluster analysis we calculated the mode of the three metrics. DM is clearly the
geomask that retains the pattern of the masked data the closest to the original one, while
AAE distorts the pattern the most. Our proposed AVM method performs also very well and
it is ranked as second regarding data utility.

Apart from data utility, this paper discussed the importance of preserving a level of
SKA for the derived masked data. Unfortunately, trying to anonymize data sufficiently will
eventually decrease their data utility. Also, displacing points to other domiciles should be
avoided to prevent false re-identification. Hence, the optimal masking solution is to find
the golden mean between these three aspects. These aspects are summarized in table 5,
and compared across the geomasks. As stated before, the only method that prevents false
re-identification is AVM. DM offers the best data utility, however, it only partially preserves
a certain level of SKA because it assumes that the underlying population is homogeneously
distributed. Both AVM and AAE retain a certain level of SKA while VM performs the
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worst considering all three aspects. By comparison, AVM is the optimal solution because it
prevents false re-identification, offers a certain level of SKA, and is ranked second in terms
of data utility.

Table 3 Nearest neighbour hierarchical cluster analysis results for each geomask and area data
set. The specific metrics are the number of clusters (number), mean points per cluster (points), and
mean cluster density (density). Values closer to the original data values are marked in bold. DM
has the closest values followed by the AVM.

Geomasks
/Metric

Area data set
Leipzig
200

Leipzig
2000

Zwickau
200

Zwickau
2000

Saxony
200

Saxony
2000

Original data
Number 6 136 8 110 4 66
Points 7 .33 7 .73 7 .75 8 .7 6 .5 7 .86
Density 0 .000013 0 .0001144 0 .0000055 0 .0000655 0 0 .0000042

AVM
Number 7 140 9 112 5 63
Points 7 .5 8 .08 7 .44 8 .98 6 .4 7 .68
Density 0 .0000113 0 .0008718 0 .0000177 0 .0004652 0 0.0000044

VM
Number 9 139 11 111 6 71
Points 6 .67 8 .02 7 .82 8 .94 6 .7 8 .07
Density 0 .0000221 0 .0001964 0 .0000077 0 .00010002 0 .0000002 0 .0000055

AAE
Number 7 57 5 44 3 36
Points 6 .43 7 .02 6 .6 8 .25 7 7 .58
Density 0 .0000169 0 .0000835 0 .0000028 0 .0000511 0 0 .000003

DM
Number 7 109 8 89 4 61
Points 6 .86 7 .83 7 .63 8 .66 6 .5 7 .8
Density 0 .0000207 0 .0000979 0 .000006 0 .0000598 0 0 .0000037

Table 4 Ranking of geomasking techniques based on their performance on four ESDA methods
(visualisation of point pattern, central tendency, Ripley’s K-function, and nearest neighbour hier-
archical cluster analysis). DM retains the masked data pattern the most similar to the original data,
followed by AVM.

Evaluation Method Geomask (rank)
AVM VM AAE DM

Visualization 1st 1st 4th 3rd
Central tendency 3rd 1st 4th 1st
Ripley’s K-function 2nd 3rd 4th 1st
Nearest neighbour hierarchical cluster analysis 2nd 3rd 4th 1st
Mode Rank 2nd 3rd 4th 1st

Table 5 Evaluation of geomasking techniques based on the ability to: a) prevent the risk of false
re-identification, b) to ensure spatial K-anonymity, and c) to preserve original point pattern (data
utility ranking). AVM offers the best combination of these three aspects (marked in bold).

Geomasks False re-identification Spatial K-anonymity Data Utility
AAE yes yes 4th
AVM no yes 2nd
DM yes partly 1st
VM yes no 3rd
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5 Conclusion

This study presented a new geographical masking method. AVM (i) considers the underlying
population density by defining a level of K-anonymity, as AAE does, (ii) displaces a part
of the original data based on the concept of VM, and (iii) by considering the underlying
geography transfers points to the closest street intersection. Thus, it decreases the risk of
false re-identification immensely and does not relocate data points to illogical positions.

The statistical analyses evidenced that AVM did not perform as well as DM regarding
data utility, yet it was ranked as second among the four examined geomasks. Adding to
that, it preserves the SKA accurately (AAE does this as well) and is the only method that
does not dislocate points to illogical locations and minimizes the risk of false re-identification.
However, it can be argued that a map viewer will view fewer data points (due to the street
intersection aggregation) influencing the spatial perception of a phenomenon. Contrary
to that, DM and VM, as well as AAE, can transfer data points to other residences or
parcels increasing the risk of false re-identification. Based on three key factors (spatial
K-anonymity, false re-identification, and data utility), it can be concluded that AVM is the
most encouraging method in terms of the preservation of data utility and decreasing the risk
of false re-identification to protect the individual’s privacy.

Still, our method is not free of constraints (just like any geomasking method). For
example, it might be a better approach to visualize a protected version of the distribution
of a point pattern, but it will be less accurate in detecting local patterns compared to DM.
Even more, it is a technique that can be successfully applied to confidential spatial data
points but not to other geodata types. Location-enabled technologies capture geodata that
are more complex and have to be treated/protected by different methods and privacy metrics
[16, 20]. For instance, social media data capture, among other attributes, the spatiotemporal
stamps of a user, which could be further processed to infer more than one type of spatial
information (e.g., home or work locations). The evaluation of a method’s efficiency regarding
protection for this type of geodata should involve other measures and possibly be diversified
by types of spatial information [11].

For the quality or information loss of masked data we applied four ESDA methods. Still,
more methods can be implemented such as the global Moran’s I for spatial autocorrelation
or distance to K-nearest neighbour, as well as Local Indicators of Spatial Association. In
addition, it is of great interest to examine the performance of AVM on national data sets.
Furthermore, it is recommended to juxtapose AVM with more geomasks that were not applied
here to gather more knowledge about the new approach.

Researchers and the public are becoming more aware of the privacy risks related to
geodata. However, privacy guidelines as established by Kounadi and Resch [20] as well
as the existence of geomasks have to become more well-known to researchers, institutions,
companies, or the public sector. A first step to reach this goal is to make geomasks accessible
and reproducible. During this research, it was discovered that only the geomask DM is
retrievable online for free. This is confounding considering the fact that many researchers
stress to mask confidential discrete spatial data. Our method is available for free via the
Github repository “Geoprivacy”8. A further step is to employ geomasks for open-source
software. Through that, companies, researchers, and institutions can share their data and
findings with the public without jeopardizing individual privacy.

8 https://github.com/okounadi/Geoprivacy

GISc ience 2021

https://github.com/okounadi/Geoprivacy


1:16 Adaptive Voronoi Masking (AVM)

References
1 Jayakrishnan Ajayakumar, Andrew J Curtis, and Jacqueline Curtis. Addressing the data

guardian and geospatial scientist collaborator dilemma: how to share health records for spatial
analysis while maintaining patient confidentiality. International Journal of Health Geographics,
18(1):1–12, 2019.

2 William B Allshouse, Molly K Fitch, Kristen H Hampton, Dionne C Gesink, Irene A Doherty,
Peter A Leone, Marc L Serre, and William C Miller. Geomasking sensitive health data and
privacy protection: an evaluation using an e911 database. Geocarto international, 25(6):443–
452, 2010.

3 Marc P Armstrong, Gerard Rushton, and Dale L Zimmerman. Geographically masking health
data to preserve confidentiality. Statistics in medicine, 18(5):497–525, 1999.

4 John S Brownstein, Christopher A Cassa, and Kenneth D Mandl. No place to hide—reverse
identification of patients from published maps. New England Journal of Medicine, 355(16):1741–
1742, 2006.

5 Christopher A Cassa, Shaun J Grannis, J Marc Overhage, and Kenneth D Mandl. A context-
sensitive approach to anonymizing spatial surveillance data: impact on outbreak detection.
Journal of the American Medical Informatics Association, 13(2):160–165, 2006.

6 Spencer Chainey, Lisa Tompson, and Sebastian Uhlig. The utility of hotspot mapping for
predicting spatial patterns of crime. Security journal, 21(1-2):4–28, 2008.

7 National Research Council et al. Putting people on the map: Protecting confidentiality with
linked social-spatial data. National Academies Press, 2007.

8 Philip M Dixon. R ipley’s k function. Wiley StatsRef: Statistics Reference Online, 2014.
9 Matt Duckham and Lars Kulik. Location privacy and location-aware computing. Dynamic &

mobile GIS: investigating change in space and time, 3:35–51, 2006.
10 Weijung J Fu, Peikun K Jiang, Guomo M Zhou, and Keli L Zhao. Using moran’s i and gis to

study the spatial pattern of forest litter carbon density in a subtropical region of southeastern
china. Biogeosciences, 11(8):2401, 2014.

11 Song Gao, Jinmeng Rao, Xinyi Liu, Yuhao Kang, Qunying Huang, and Joseph App. Exploring
the effectiveness of geomasking techniques for protecting the geoprivacy of twitter users.
Journal of Spatial Information Science, 2019(19):105–129, 2019.

12 Christopher Graham. Anonymisation: managing data protection risk code of practice. In-
formation Commissioner’s Office, 2012.

13 Ruchika Gupta and Udai Pratap Rao. Preserving location privacy using three layer rdv
masking in geocoded published discrete point data. World Wide Web, 23(1):175–206, 2020.

14 Danielle F Haley, Stephen A Matthews, Hannah LF Cooper, Regine Haardörfer, Adaora A
Adimora, Gina M Wingood, and Michael R Kramer. Confidentiality considerations for use of
social-spatial data on the social determinants of health: Sexual and reproductive health case
study. Social Science & Medicine, 166:49–56, 2016.

15 Kristen H Hampton, Molly K Fitch, William B Allshouse, Irene A Doherty, Dionne C Gesink,
Peter A Leone, Marc L Serre, and William C Miller. Mapping health data: improved privacy
protection with donut method geomasking. American journal of epidemiology, 172(9):1062–
1069, 2010.

16 Carsten Keßler and Grant McKenzie. A geoprivacy manifesto. Transactions in GIS, 22(1):3–19,
2018.

17 Ourania Kounadi and Michael Leitner. Why does geoprivacy matter? the scientific publication
of confidential data presented on maps. Journal of Empirical Research on Human Research
Ethics, 9(4):34–45, 2014.

18 Ourania Kounadi and Michael Leitner. Spatial information divergence: Using global and
local indices to compare geographical masks applied to crime data. Transactions in GIS,
19(5):737–757, 2015.



F. Polzin and O. Kounadi 1:17

19 Ourania Kounadi and Michael Leitner. Adaptive areal elimination (aae): A transparent way of
disclosing protected spatial datasets. Computers, Environment and Urban Systems, 57:59–67,
2016.

20 Ourania Kounadi and Bernd Resch. A geoprivacy by design guideline for research campaigns
that use participatory sensing data. Journal of Empirical Research on Human Research Ethics,
13(3):203–222, 2018.

21 Mei-Po Kwan, Irene Casas, and Ben Schmitz. Protection of geoprivacy and accuracy of spatial
information: How effective are geographical masks? Cartographica: The International Journal
for Geographic Information and Geovisualization, 39(2):15–28, 2004.

22 Michael Leitner and Andrew Curtis. Cartographic guidelines for geographically masking the
locations of confidential point data. Cartographic Perspectives, (49):22–39, 2004.

23 Gerard Rushton, Marc P Armstrong, Josephine Gittler, Barry R Greene, Claire E Pavlik,
Michele M West, and Dale L Zimmerman. Geocoding health data: the use of geographic codes
in cancer prevention and control, research and practice. CRC Press, 2007.

24 Pierangela Samarati. Protecting respondents identities in microdata release. IEEE transactions
on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

25 Bill Schilit, Jason Hong, and Marco Gruteser. Wireless location privacy protection. Computer,
36(12):135–137, 2003.

26 Klaus Schwab, Alan Marcus, JO Oyola, William Hoffman, and Michele Luzi. Personal data:
The emergence of a new asset class. In An Initiative of the World Economic Forum, 2011.

27 Dara E Seidl, Piotr Jankowski, and Keith C Clarke. Privacy and false identification risk in
geomasking techniques. Geographical Analysis, 50(3):280–297, 2018.

28 Dara E Seidl, Piotr Jankowski, and Atsushi Nara. An empirical test of household identification
risk in geomasked maps. Cartography and Geographic Information Science, 46(6):475–488,
2019.

29 Dara E Seidl, Gernot Paulus, Piotr Jankowski, and Melanie Regenfelder. Spatial obfuscation
methods for privacy protection of household-level data. Applied Geography, 63:253–263, 2015.

30 Paul A Zandbergen. Ensuring confidentiality of geocoded health data: assessing geographic
masking strategies for individual-level data. Advances in medicine, 2014, 2014.

31 Su Zhang, Scott M Freundschuh, Kate Lenzer, and Paul A Zandbergen. The location swapping
method for geomasking. Cartography and Geographic Information Science, 44(1):22–34, 2017.

GISc ience 2021


	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Study scope and design

	2 Methodology
	2.1 Adaptive Areal Elimination (AAE)
	2.2 Voronoi Masking (VM)
	2.3 Adaptive Voronoi Masking (AVM)
	2.4 ESDA for evaluating geomasking performance
	2.4.1 Visualisation of point pattern
	2.4.2 Central tendency
	2.4.3 Ripley's K function
	2.4.4 Nearest neighbour hierarchical cluster analysis


	3 Experiments' settings
	3.1 Study area
	3.2 Data
	3.3 Software

	4 Results
	4.1 Visualisation
	4.2 Central tendency
	4.3 Ripley's K-function
	4.4 Nearest neighbour hierarchical cluster analysis
	4.5 Evaluation and comparison of geomasks

	5 Conclusion

