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Abstract
The emergence of passively and continuously recorded movement data offers new opportunities to
study the long-term change of individual travel behaviour from data-driven perspectives. This study
proposes a clustering-based framework to identify travel behaviour patterns and detect potential
change periods on the individual level. First, we extract important trips that depict individual
characteristic movement. Then, considering trip mode, trip distance, and trip duration as travel
behaviour dimensions, we measure the similarities of trips and group them into clusters using
hierarchical clustering. The trip clusters represent dimensions of travel behaviours, and the change of
their relative proportions over time reflect the development of travel preferences. We use two different
methods to detect changes in travel behaviour patterns: the Herfindahl-Hirschman index-based
method and the sliding window-based method. The framework is tested using data from a large-scale
longitudinal GPS tracking data study in which participants had access to a Mobility-as-a-Service
(MaaS) offer. The methods successfully identify significant travel behaviour changes for users.
Moreover, we analyse the impact of the MaaS offer on individual travel behaviours with the obtained
change information. The proposed framework for behaviour change detection provides valuable
insights for travel demand management and evaluating people’s reactions to sustainable mobility
options.
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1 Introduction

Individual mobility is currently primarily based on the private car. Owning a car is associated
with a high level of comfort and flexibility [39], as it is always available and can reach most
places while offering a safe and personal space. However, conventional car dependence is
inherently unsustainable as internal combustion engine cars are a major emitter of greenhouse
gases [34]. Therefore, a successful transition towards a sustainable transportation system
must find ways to reduce individual car ownership and support individuals in engaging
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4:2 Travel Behaviour Change Detection

in a more sustainable mobility lifestyle [42]. One of the main strategies to reduce private
car ownership is Mobility-as-a-Service (MaaS), a concept where multiple shared modes are
integrated with public transport to facilitate intermodal travel [31]. Despite the popularity of
MaaS as a concept, there is currently only limited empirical evidence on how exactly MaaS
will influence travel behaviour [16]. To evaluate the impact of MaaS, it will be necessary
to collect substantial behavioural data and detect whether and to what extent individuals
change their behaviour when exposed to a MaaS.

Travel behaviour refers to the decision-making process of individuals moving across space
and making use of the transport facilities [12, 23]. Each individual has a set of preferred
travel behaviours, collectively forming a travel pattern that is stable over the short term and
evolves over the long term [9]. To correctly evaluate MaaS as an instrument for behaviour
change, it is necessary to detect the long-term evolution of individuals’ travel behaviour
patterns. Apart from the evaluation of MaaS, detecting behaviour change on an aggregated
level helps transportation planners to manage travel demand, understand the impact of
transportation policies (e.g., congestion pricing, road space rationing), and evaluate people’s
reactions to new transportation infrastructures [27]. At the individual service level, detecting
changes in travel patterns allows personalized location based services to adapt to individual
travel behaviour change [17], monitor mobile phone intrusions [36], and detect hidden drivers
for usage-based insurance pricing [8].

Motivated by the broad applications, many researchers have focused on travel behaviour
change over the recent years [15, 20]. Studies on individual travel behaviour change mainly
employed travel panel data and analysed the causes and directions of the behaviour change.
For example, Lin et al. [24] investigated the role of social network and social environment in
the relationship between residential relocation and travel behaviour change. In their study,
travel behaviours are represented by trip frequency, travel time, and modal split. A study by
Jain et al. [18] analysed the process of travel behaviour change associated with the adoption
of a car-sharing service, in which the travel behaviours are represented by the amount of
travel and mode choices. Overall, limited studies have focused on the detection and changing
speed of the new behaviours using panel data, partially since those discrete-time panel data
were not suitable for observing a dynamic process [22]. In the era of ubiquitous computing,
billions of personal devices connect us to the web and enable the generation of data sets that
reflect large-scale human digital traces. Compared to actively obtained travel survey data,
these data sets passively and continuously record the whereabouts of individuals over time,
offering new opportunities for data-driven approaches to study individual travel behaviour
change.

Analysing travel behaviour and detecting its change is challenging because continuous
individual movement traces are noisy, and travel patterns are latent in the movement data.
To partially mitigate this issue, previous studies most often use aggregated indexes (e.g.,
total travel time per day) for describing travel behaviours [20]. Although this processing
method can extract the essential travel behaviour, an aggregation level needs to be predefined,
and some fine-grained details might be omitted during the aggregation process. Therefore,
this study uses the amount of travel (trip duration and distance) and mode of transport
as features to describe travel behaviours and employ clustering methods to identify travel
behaviours directly at the trip level.

We develop a clustering-based framework that utilises passively tracked data to detect
changes in individual travel behaviour patterns. Two change detection methods are proposed
and analysed using a real-world, large-scale GPS tracking data set that evaluates the effect of
introducing a MaaS offer to the study participants. The remainder of the paper is organised
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as follows. Section 2 reviews related work on individual travel behaviour change detection.
Section 3 presents the clustering-based change detection framework developed in our study.
Section 4 describes our case study data and pre-processing steps. Section 5 explains the
case study results. Section 6 summarises the main contributions of our study and highlights
future research directions.

2 Related work

Research on individual travel behaviour change has primarily focused on short-term changes,
often called anomalies, outliers, or intrapersonal variability. A generic technique used to
detect this type of change when the change is not known a priori is to model the dominant
pattern from the data as a standard pattern and identify observations that deviate from
this pattern as potential anomalies [7]. Many methods have been developed to model the
dominant pattern and detect short-term travel behaviour changes, such as clustering-based
methods, frequency pattern mining methods, and generative models. An example of using
a cluster-based method is given in [41]. The authors used a hierarchical clustering method
to identify normal clusters of trajectories and detect anomalous taxi routing patterns that
lie outside these clusters for inferring taxi fraud or traffic incidents. As a complementary
example, a study by Sun et al. [36] utilized a frequent pattern mining technique and
modelled the mobility sequence of an individual as a mobility trie. The frequent transition
pattern between places is generated based on this mobility trie, and a less frequent travel
sequence is considered abnormal. An example of using generative models is shown in [37],
where a generative two-dimensional Latent Dirichlet Allocation model was developed to
capture routine patterns of individuals and predict future movements. Trajectories with low
predictability are considered abnormal and are used to indicate potential changes in travel
behaviour patterns.

In contrast to a large number of studies in short-term pattern change detection, less
attention has been given to detecting long-term, persistent pattern changes of individual
travel behaviours. This long-term pattern change is also called structural pattern change,
change point detection, or concept drift in time series analysis and has been studied in fields
such as statistics [25, 35], econometrics [4], and sequential pattern mining [40]. However,
those methods have not been well utilized in analysing the evolution of individual travel
patterns.

Recently, a few studies explored the long-term travel pattern change of individuals.
Zhao et al. [44, p. 74] defined this type of change as “abrupt, substantial, and persistent
changes in the underlying patterns of travel behavior”. To detect this pattern change, they
used a Bayesian approach to model the probability of a pattern change at any given time.
The study examined the changes in three dimensions of travel behaviour: travel frequency,
spatial dimension, and temporal dimension. Although the method is shown to be robust to
noisy observations of travel behaviours, it assumes that travel incidences are independently
generated from an underlying distribution in each dimension, thus missing the temporal
dependency among one dimension and the correlation between different dimensions. To
account for the pattern change reflected in other dimensions of travel behaviours, Jonietz
and Bucher [20] considered multiple daily and weekly aggregated mobility features, including
travel duration, distance, speed, CO2 emission, and frequently visited places. The detection
of pattern change is based on whether each feature value deviates from the historical average
value by a certain threshold. The framework could signal anomalies in each feature dimension
but failed to consider travel behaviour as a whole. By contrast, the clustering method used
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in our study considers the correlations between different dimensions of travel behaviours
(i.e., transport mode, distance, and duration) and separates them into clusters that represent
different latent travel behaviour patterns.

3 Method

We aim to identify personal mobility preferences and detect possible travel behaviour changes
over a long time scale [33]. This proposed framework consists of three main steps: (1) Using
the individual conducted trips and visited locations, we define the activity set containing
preferred locations and extract important trips that depict individual characteristic movement.
(2) These trips are analysed to infer personal travel behaviours based on similarity measures
and a clustering algorithm. (3) We then detect changes in the travel behaviours using the
Herfindahl-Hirschman Index (HHI) and sliding window-based change detection methods.
The flowchart of this framework is shown in Figure 1.

Figure 1 The flowchart of the framework. We extract important trips based on the activity set,
identify individual travel behaviours and detect changes over time via a clustering framework.

3.1 Important trip extraction
Individual travel sequences are dynamic and complex [19] and often exhibit substantial
variability regardless of changes in the travel pattern [44]. Therefore, the extraction of
characteristic movements could benefit the travel pattern identification. From an activity-
based analysis point-of-view, trips are seen as an induced demand for out-of-home activities,
and trip and activity should be combined during analysis [33]. A recent study measured
the location importance by its activity duration and proposed a concept of activity set,
containing the most important locations in one’s daily life [2]. Following up on this idea, we
identify trips that arrive at one of the locations in the activity set, noted as important trips
that reflect individuals’ major travel patterns.

The activity set ASi(t) = {l1, l2, ...lk, ..., lC} is defined as the set of all locations lk that
the individual i visited at least twice and spent on average more than 10 minutes/week during
a given time window ∆t preceding time t [2]. C ∈ N is the cardinality of the activity set
and called capacity. The activity time criterion ensures that only long-stayed locations are
included in the activity set, and the time window ∆t controls the strength of this criterion.
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We further define the important trip set ITi(t) of the individual i in week t as all trips that
arrive at any location within the activity set. We set the time window ∆t = 5 weeks in this
study, following an empirical study that reported that the destination-choice preferences of
an individual stabilizes after five to ten weeks [33].

3.2 Trip similarity measurement and clustering algorithm
The trips included in any important trip set ITi(t) are considered to contain information
regarding the individuals’ main travel behaviours. They are then fed into a clustering-based
framework for identifying groups of trips with similar travel choices. We focus on high-level
semantic information attached to each trip and consider trip mode, trip distance and trip
duration as features. These are essential dimensions reflecting individual travel behaviour
and have been employed in various travel behaviour change studies [24, 30].

The travel mode information of trips is represented as a sequence since each trip is a
combination of triplegs with a single travel mode. This property makes the travel mode
comparison a sequence similarity measurement problem. Nevertheless, we are more interested
in what mode exists in a trip than the order of modes for analysing travel behaviour. Therefore,
we regard travel mode sequences as sets and measure their Jaccard distance. For example,
given two mode sequences, we reconstruct them into set A = {modeA1, modeA2, ..., modeAi}
and set B = {modeB1, modeB2, ..., modeBj}, respectively. The Jaccard distance dJ (A, B) is
then represented as:

dJ(A, B) = 1 − J(A, B) = 1 − |A ∩ B|
|A ∪ B|

where J(A, B) is the Jaccard similarity coefficient, defined as taking the ratio of the intersec-
tion over the union of the sets A and B. Thus, the pairwise distance matrix of trip modes
Dmode is constructed by calculating the Jaccard distance between each pair of trips.

Trip distance and trip duration are two features characterising the amount of travel. We
measure the distance and duration similarity of trips with the Euclidean distance and obtain
two pairwise similarity measurement matrices Ddist and Ddur.

The selected semantic features are combined into the final similarity matrix Dall:

Dall = ω1Dmode + ω2Ddist + ω3Ddur

where ω1, ω2, and ω3 are the corresponding weights that control the importance of Dmode,
Ddist and Ddur, respectively. The weight values can be defined equally for each of the
dimensions (i.e., ω1 = ω2 = ω3 = 1

3 ), but they can also be set differently when certain
dimensions need to be strengthened. To ensure consistent distance scales, each distance
matrix is min-max normalized to be in the range from 0 to 1.

We perform clustering on the similarity matrix to identify the group of trips with similar
travel behaviour. This is achieved using hierarchical clustering that produces a hierarchy of
clusters using agglomerative (bottom-up) or divisive (top-down) algorithms [21]. The linkage
standard that defines how the distance is measured between two clusters is the key design
choice for hierarchical clustering. Previous work reported that complete linkage is suitable for
determining a relatively compact cluster [41, 1]. For complete linkage, the distance D(X, Y )
between clusters X and Y is defined as:

D(X, Y ) = max
x∈X,y∈Y

d(x, y)
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where d(x, y) is the distance between element x ∈ X and y ∈ Y . To quantitatively evaluate
the clustering label assignments and select the optimum cluster number, we adopt the
silhouette coefficient as an internal measure of validation, which measures both the degree of
cohesion within a class and the degree of dispersion between classes [32].

In this study, we adopt the complete linkage method and choose the cluster number
with the highest average silhouette coefficient [43]. The outcome of this section is a class
label assignment for each trip that groups similar trips to identify individuals’ typical travel
behaviour.

3.3 Travel behaviour change detection
The travel share of trip classes can show mobility choices and imply travel behaviour changes
when compared across time. We denote the time series as Xi = [xi(1), xi(2), ..., xi(t)] where
xi(t) represents the trip class shares for important trips ITi(t) at time step t. Our aim
is, therefore, to detect possible changes of xi(t) over the whole study period. We propose
two such change detection methods: the HHI-based method and the sliding window-based
method.

The HHI was first proposed in economics as a measure for market concentration and is
currently widely used for measuring individuals’ mode or activity choice variability [38, 14].
In the context of this study, HHI is adopted as a measure for the choice variability of trip
classes. The HHI of trip class variability hi(t) for individual i at time t is given as:

hi(t) =
N∑

n=1
sn(t)2

where N is the number of different trip classes, and sn(t) represents the trip shares of the
nth class conducted at time t. A higher hi(t) value indicates that travel is concentrated on a
few dominant trip classes, and a lower value suggests the different travel behaviours are more
evenly selected by the individual i. We obtain hi(t) for each timestep t and the original time
series Xi is represented as a time series of HHI Hi = [hi(1), hi(2), ..., hi(t)]. As a change in
Hi indicates a change in the preferences towards each trip class, we regard it as a change in
individuals’ travel behaviour.

To detect changes in Hi, we adopted a robust peak detection algorithm developed for time
series data [5, 20]. The algorithm detects peaks in a time series when the values lie beyond a
number of standard deviations from a moving average. It takes three input parameters: lag
that controls the size of the moving window; threshold, denoted by λ, that determines the
number of standard deviations (i.e., z-score); and influence that controls how much influence
new data points will have on the moving average and standard deviation. At each time
step t, a moving average µt and standard deviation σt are calculated using data within the
moving window. A data point is considered a peak if its value v > µt + λ ∗ σt or a valley if
its value v < µt − λ ∗ σt.

The sliding window-based method processes data in a sequential fashion. Considering
the time series Xi, to determine whether a change occurs from time step tstart to tend, we
measure the travel share difference of trip classes between these two time steps and compare
it against a predefined threshold τ . Operationally, we consider any trip class proportion
change larger than 30% (i.e., τ = 0.3) as a change in travel behaviour, in order to set a
restrictive definition of change [15]. For a given time step ti, the algorithm measures the
class share difference between ti and any time step tn, n ∈ [1, i) preceding it. tstart = tn

is found if the difference is the largest of all possible n’s and also larger than τ . We then



Y. Hong, Y. Xin, H. Martin, D. Bucher, and M. Raubal 4:7

find tend = tm by maximizing the difference between tstart and any time step tm, m ∈ (i, t]
succeeding ti. To prevent the generated change window from being too large, we impose that
the share difference between tstart and tend should be monotonically decreasing or increasing.
Moreover, the algorithm ensures that no overlapping change periods for each individual are
detected.

The outcome of this section is the change detection result for each individual. The
HHI-based method outputs the peak detection results where sudden changes in trip class
variability are recorded, whereas the sliding window-based method detects the starting and
ending time steps where changes have occurred.

4 Case study

We adopt mobility data from a large-scale pilot study that evaluates the effect of a MaaS
offer. The pilot study, conducted by the Swiss Federal Railways (SBB), is named SBB Green
Class1 [26, 6] (denoted as SBB GC in what follows) and involves 138 Switzerland-based
participants. Although the participants were primarily selected based on their geographic
location, the participation preconditions led to a bias towards the middle- and upper-class
people with high mobility demand. The participants were mostly working full-time and aged
47.3 ± 7.6 according to the socio-demographic survey.

From November 2016 to January 2018, the participants were provided with a battery
electric vehicle, a general public transport travel card for unlimited travel on public transport
in Switzerland, as well as access to several car- and bike-sharing programs. As part of
the pilot study, the participants were asked to install a GPS-tracking application on their
smartphones that records their daily movement. The application uses a MOTIONTAG2

back-end and segments the tracking data. It creates a tripleg when a person is moving
continuously with the same mode of transport and a staypoint when a participant remains
stationary. Study participants were required to annotate their tracking data in the application.
Staypoints were annotated with a high-level purpose (home, work, errand, leisure, wait,
and unknown) and triplegs with the used mode of transport (car, e-car, train, bus, tram,
bicycle, e-bike, walk, airplane, boat, and coach). Figure 2 maps the recorded triplegs with
user-labeled transport mode. Although we only plot the triplegs within Switzerland, SBB
GC contains user movements all across the world - the occasionally conducted cross-border
and inter-continental trips are also recorded.

The triplegs and staypoints provided by the GPS-tracking application are further ag-
gregated into trips and locations according to the movement data model [3, 13]. We regard
a staypoint as an activity if it has an important purpose (everything except for wait and
unknown) or if its duration is longer than 25 minutes [26]. Trips are then constructed as
the sequence of all triplegs between two consecutive activities. Moreover, locations are
defined as important places visited more than once. Due to GPS recording error, multiple
visits to the same location might create staypoints with different coordinate referencing. To
tackle this problem, we use the DBSCAN method to create locations as spatially aggregated
staypoints for each user. DBSCAN uses a set of neighborhood characterization parameters ϵ

and min_samples to depict the tightness of the sample distribution [20]. ϵ = 50 (m) [2] and
min_samples = 1 is selected in this study, meaning that staypoints in the proximity of 50m
of each other will be merged into a single location, and no staypoints will be discarded in
this process.

1 https://bit.ly/3d0k2qD
2 https://motion-tag.com/
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Figure 2 The recorded triplegs with different travel modes within Switzerland in the SBB GC
data set.

We calculate the temporal tracking coverage of each user, defined as the proportion of
time the user’s whereabouts are recorded in the data. To ensure high temporal tracking
coverage, we only include users who are tracked for more than 300 days and whose tracking
coverage is consistently higher than 60% during their tracking period. After user filtering,
193,637 staypoints and 344,740 triplegs from 93 individuals remained, aggregated into 46,489
locations and 181,479 trips. These pre-processing steps are implemented using the trackintel3

library.
We analyse the user’s moving behaviour at the trip level. Each trip’s distance and

duration is measured as an aggregation of its containing triplegs. Also, multiple travel modes
could exist within one trip, referred to as intermodal trips [28, 29]. In fact, in the SBB GC
study, 29.4% of all trips contain more than one travel mode. Walk is commonly considered a
transition between other travel modes and we do not consider these trips as intermodal. As
a direct result of the provided MaaS offer, mode combinations of train with car and e-car are
most frequently found.

5 Results

5.1 Delineating travel behaviours
Important trips that contain an individual’s travel behaviour information are first obtained.
We find that the number of important trips for each individual is stable across time; that is,
individuals conduct the same number of trips to their preferred locations, despite the time of
observation (detailed empirical evidence shown in Appendix A). This property makes the
important trip set ideal in the study of individual travel behaviour.

3 https://github.com/mie-lab/trackintel

https://github.com/mie-lab/trackintel
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The similarity measure and clustering pipeline accepts trips that belong to any important
trip set, measures their semantic similarities and outputs class labels for these trips. Since
we are interested in analysing travel mode change after introducing the MaaS offer and hope
to interpret the change, we set the weight parameter ω1 = 0.50 and ω2 = ω3 = 0.25 in the
similarity measurement. Figure 3 shows the results of the clustering label assignment of a
sample user. As each trip class represents a typical travel behaviour, the proportion of travel
in each trip class delineates the user travel preferences across time (Figure 3(A)). The details
and separations of the travel behaviours can be visualized in each of their dimensions using
distance-duration scatters (Figure 3(B)) and travel mode frequency (Figure 3(C)).

Figure 3 Travel preference identification result for a sample user. (A) The trip proportion
evolution for different trip clusters. The x-axis is the ending time of a 5-week sliding window. (B)
The distance and duration scatter plot showing each cluster’s distribution on a log-log scale. (C)
The average frequency of travel mode within each trip cluster.

For this particular user, we observe a preference in using train and car (Class 8) and train
and e-car (Class 16) mode combinations for long-distance and -duration trips. Moreover, car
(Class 7) and e-car (Class 1) modes are mainly used for shorter trips, with indistinguishable
duration and distance distributions. Considering the temporal dimension, we report a sharp
increase in the trip proportion travelled in Class 1 and 16 at the beginning of the study period
(Figure 3(A)), which is most probably due to the introduction of the MaaS offer leading the
user to switch from car to e-car. Compared to frequency-based statistics, our clustering-based
framework groups trips according to the similarity definition, which considers multiple trip
semantic dimensions simultaneously. In short, with the information provided in Figure 3, we
can delineate the individual’s mobility preferences and their evolution over time.

5.2 Travel behaviour change detection
With the proposed HHI-based and sliding window-based method, we detect change points
or regions where the user has changed the travel behaviour. Figure 4 shows the change
detection result for the same user as Figure 3. The sliding window-based method detects

GISc ience 2021
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regions where a trip proportion change larger than the threshold τ occurs (Figure 4A). The
algorithm successfully detects the travel behaviour change at the beginning of the study
period. The length of the change window represents the speed of a certain change; here,
the change took seven weeks. By comparing the lengths of the change windows, we can
quantitatively evaluate the speed of travel behaviour change.

The HHI index of the trip class shares and the moving average and upper/lower bound
obtained from the peak detection algorithm are shown in Figure 4B. We set the input
parameter lag = 5 to detect sudden changes, threshold = 3 to only include extreme changing
points, and influence = 1 considering a change is usually substantial and persistent. The
corresponding signal detection result is shown in Figure 4C. These signals capture changes
in the HHI index that correspond to sudden changes in the trip class shares and individual
travel behaviour. The detected signals mostly correspond to the peaks and valleys from the
most dominant trip class, which also has the most considerable influence on the HHI index.
However, the algorithm cannot detect signals at the beginning of the time series since the
initialization of the moving time window is needed.

Figure 4 The change detection results for a sample user. (A) Sliding window-based change
detection. Change periods are shown in light green areas. (B) The HHI index evolution and
corresponding moving mean and upper/lower bound of thresholds. (C) The peak signal detection
result with peak (1) and valley (-1) signals reflect sudden changes in the HHI time series.

To validate our change detection result, we report user groups with different behaviour
changes when applying the methods to individuals in the SBB GC data set. This is shown
by the sliding window-based change detection result for selected users in Figure 5. In total,
92.5% of the users (86 out of 93 individuals) are observed to have started to change their
travel behaviour within the first five weeks, most likely due to the MaaS offer introduction
that promotes users to switch from regular cars to e-cars. However, the speed of this change
varies for users, ranging from 4 to 13 weeks. With a median changing speed of 7 weeks and a
standard deviation of 2.3 weeks, substantial user heterogeneity is observed in response to
the same triggering event (compare Figure 5A and B as an example). This result shows
that the speed of adapting to a new travel behaviour triggered by introducing new mobility
options is relatively slow and heavily influenced by personal factors. As a comparison, home
location change usually causes a more rapid shift in travel behaviour; an example of this is
shown in Figure 5C. The individual switched back and forth between two home locations,
leading to abrupt and periodic changes in the two most dominant trip classes. Also, a small
number of users have no change periods detected (Figure 5D) because the trip class shares
are relatively stable over the study period. From another perspective, the magnitude of the
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travel behaviour change is not large enough to be detected by the proposed algorithm. This
suggests that the extent of the travel behaviour change triggered by MaaS introduction also
varies across individuals.

Figure 5 Sliding window-based change detection result for different user types. Change periods
are shown in the light green area. (A) A user who changed the travel behaviour relatively fast; (B)
a user who took more time to adjust to the new travel behaviour; (C) a user who has periodic travel
behaviour; and (D) a user whose travel behaviour change is not large enough to be detected by the
algorithm.

6 Discussion and Conclusion

This study presents a clustering-based framework to detect travel behaviour changes from
individual mobility traces. Specifically, we extract trips that arrive at important locations
in individuals’ daily mobility and consider trip mode, distance, and duration as features
describing travel behaviour. These features are then fed into a trip similarity measure and
clustering pipeline that generalizes individual movements into travel behaviours. Furthermore,
we propose methods to detect possible changes in the travel behaviour time series. The
proposed pipeline is successfully applied to a real-world GPS tracking data set collected
through a pilot study in which a MaaS offer is introduced at the beginning of the tracking
period.

In particular, we propose the HHI-based method and the sliding window-based method
for detecting travel behaviour changes over long time series. The HHI based method analyses
the variability of travel behaviour choices and detects a change if the variability significantly
deviates from its previous trend. The sliding window-based method monitors the preference
towards each travel behaviour and signals a change if any behaviour shows a large change in
its travel share. Combined with a labelled data set, we can also attribute potential causes
and analyse the detected changes. With the change duration information obtained from
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the sliding window-based method, we analyse the effect of the MaaS offer on the travel
behaviours in our case study. We find that these induced behaviour changes are heavily
user-dependent. Moreover, compared to changes triggered by relocation, changes caused by
additional mobility options usually occur slower in time.

The proposed change detection method is data-driven and identifies change periods
from the statistical distribution of travel behaviour. We believe that this framework is
generalisable to tracking datasets within other contexts, with flexibility given from the design
choice parameters (e.g., the weights in the similarity measurement). We see several future
directions based on the results of this study. First, the proposed change detection pipeline
can be applied online to streaming data; however, we lack the information of whether the
clustering algorithm is sensitive enough to detect newly occurred travel behaviours. This
needs to be tested in an online setup. Second, a sensitivity analysis on the choice of the weight
parameter for each semantic feature is beneficial if the proposed pipeline is to be employed in
other applications. Third, previous research has reported that residential neighbourhood has
an important impact on people’s travel behaviour [10, 11]. Combining the mobility traces of
SBB GC participants with land-use information could help validate the behaviour change
detection results with other studies. Last, the user-dependent influence of MaaS suggests
that an analysis on the relationship between individual factors and travel behaviour change
is needed to understand the effect of MaaS offers on personal travel behaviour.

References
1 Laura Alessandretti, Ulf Aslak, and Sune Lehmann. The scales of human mobility. Nature,

587(7834):402–407, 2020. doi:10.1038/s41586-020-2909-1.
2 Laura Alessandretti, Piotr Sapiezynski, Vedran Sekara, Sune Lehmann, and Andrea Baronchelli.

Evidence for a conserved quantity in human mobility. Nature Human Behaviour, 2(7):485–491,
2018. doi:10.1038/s41562-018-0364-x.

3 Kay W Axhausen. Definition Of Movement and Activity For Transport Modelling. In
Handbook of Transport Modelling, volume 1, pages 329–343. Elsevier, 2007. doi:10.1108/
9780857245670-016.

4 Jushan Bai and Pierre Perron. Computation and analysis of multiple structural change models.
Journal of Applied Econometrics, 18(1):1–22, 2003. doi:10.1002/jae.659.

5 J.P.G. van Brakel. Robust peak detection algorithm (using z-scores), 2019. URL:
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-
timeseries-data.

6 Dominik Bucher, Henry Martin, Jannik Hamper, Atefeh Jaleh, Henrik Becker, Pengxiang
Zhao, and Martin Raubal. Exploring Factors that Influence Individuals’ Choice Between
Internal Combustion Engine Cars and Electric Vehicles. AGILE: GIScience Series, 1:1–23,
2020. doi:10.5194/agile-giss-1-2-2020.

7 Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):1–58, 2009. doi:10.1145/1541880.1541882.

8 Jie Chen, ZhongCheng Wu, and Jun Zhang. Driver identification based on hidden feature
extraction by using adaptive nonnegativity-constrained autoencoder. Applied Soft Computing,
74:1–9, 2019. doi:10.1016/j.asoc.2018.09.030.

9 MC De Haas, CE Scheepers, LWJ Harms, and M Kroesen. Travel pattern transitions: Applying
latent transition analysis within the mobility biographies framework. Transportation Research
Part A: Policy and Practice, 107:140–151, 2018. doi:10.1016/j.tra.2017.11.007.

10 Jonas De Vos, Dick Ettema, and Frank Witlox. Changing travel behaviour and attitudes
following a residential relocation. Journal of Transport Geography, 73:131–147, 2018. doi:
10.1016/j.jtrangeo.2018.10.013.

https://doi.org/10.1038/s41586-020-2909-1
https://doi.org/10.1038/s41562-018-0364-x
https://doi.org/10.1108/9780857245670-016
https://doi.org/10.1108/9780857245670-016
https://doi.org/10.1002/jae.659
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data
https://doi.org/10.5194/agile-giss-1-2-2020
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.asoc.2018.09.030
https://doi.org/10.1016/j.tra.2017.11.007
https://doi.org/10.1016/j.jtrangeo.2018.10.013
https://doi.org/10.1016/j.jtrangeo.2018.10.013


Y. Hong, Y. Xin, H. Martin, D. Bucher, and M. Raubal 4:13

11 Jonas De Vos and Frank Witlox. Transportation policy as spatial planning tool; reducing
urban sprawl by increasing travel costs and clustering infrastructure and public transportation.
Journal of Transport Geography, 33:117–125, 2013. doi:10.1016/j.jtrangeo.2013.09.014.

12 Anne Durand, Lucas Harms, Sascha Hoogendoorn-Lanser, and Toon Zijlstra. Mobility-as-
a-Service and changes in travel preferences and travel behaviour: a literature review. KiM
Netherlands Institute for Transport Policy Analysis, 2018. doi:10.13140/RG.2.2.32813.
33760.

13 Ramaswamy Hariharan and Kentaro Toyama. Project Lachesis: Parsing and Modeling Location
Histories. In Geographic Information Science, pages 106–124. Springer Berlin Heidelberg, 2004.
doi:10.1007/978-3-540-30231-5_8.

14 Eva Heinen and Kiron Chatterjee. The same mode again? An exploration of mode choice
variability in Great Britain using the National Travel Survey. Transportation Research Part
A: Policy and Practice, 78:266–282, 2015. doi:10.1016/j.tra.2015.05.015.

15 Eva Heinen and David Ogilvie. Variability in baseline travel behaviour as a predictor of
changes in commuting by active travel, car and public transport: a natural experimental study.
Journal of transport & health, 3(1):77–85, 2016. doi:10.1016/j.jth.2015.11.002.

16 David A Hensher, Corinne Mulley, Chinh Ho, Yale Wong, Göran Smith, and John D Nelson.
Understanding Mobility as a Service (MaaS): Past, Present and Future. Elsevier, 2020.
doi:10.1016/C2019-0-00508-0.

17 Haosheng Huang, Georg Gartner, Jukka M Krisp, Martin Raubal, and Nico Van de Weghe.
Location based services: ongoing evolution and research agenda. Journal of Location Based
Services, 12(2):63–93, 2018. doi:10.1080/17489725.2018.1508763.

18 Taru Jain, Marilyn Johnson, and Geoffrey Rose. Exploring the process of travel behaviour
change and mobility trajectories associated with car share adoption. Travel Behaviour and
Society, 18:117–131, 2020. doi:10.1016/j.tbs.2019.10.006.

19 Olle Järv, Rein Ahas, and Frank Witlox. Understanding monthly variability in human activity
spaces: A twelve-month study using mobile phone call detail records. Transportation Research
Part C: Emerging Technologies, 38:122–135, 2014. doi:10.1016/j.trc.2013.11.003.

20 David Jonietz and Dominik Bucher. Continuous Trajectory Pattern Mining for Mobility
Behaviour Change Detection. In Progress in Location Based Services 2018, pages 211–230.
Springer International Publishing, 2018. doi:10.1007/978-3-319-71470-7_11.

21 Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis, volume 344. John Wiley & Sons, 2009. doi:10.1002/9780470316801.

22 Ryuichi Kitamura, Toshiyuki Yamamoto, and Satoshi Fujii. The effectiveness of panels in
detecting changes in discrete travel behavior. Transportation Research Part B: Methodological,
37(2):191–206, 2003. doi:10.1016/S0965-8564(01)00036-2.

23 Meng Li, Mingqiao Zou, and Huiping Li. Urban Travel Behavior Study Based on Data Fusion
Model. In Data-Driven Solutions to Transportation Problems, pages 111–135. Elsevier, 2019.
doi:10.1016/B978-0-12-817026-7.00005-9.

24 Tao Lin, Donggen Wang, and Meng Zhou. Residential relocation and changes in travel
behavior: what is the role of social context change? Transportation Research Part A: Policy
and Practice, 111:360–374, 2018. doi:10.1016/j.tra.2018.03.015.

25 Robert Lund, Xiaolan L Wang, Qi Qi Lu, Jaxk Reeves, Colin Gallagher, and Yang Feng.
Changepoint Detection in Periodic and Autocorrelated Time Series. Journal of Climate,
20(20):5178–5190, 2007. doi:10.1175/JCLI4291.1.

26 Henry Martin, Henrik Becker, Dominik Bucher, David Jonietz, Martin Raubal, and Kay W
Axhausen. Begleitstudie SBB Green Class - Abschlussbericht. Working Paper No. 1439, Insti-
tute for Transport Planning and Systems, ETH Zürich, 2019. doi:10.3929/ethz-b-000353337.

27 Famke JM Mölenberg, Jenna Panter, Alex Burdorf, and Frank J van Lenthe. A systematic
review of the effect of infrastructural interventions to promote cycling: strengthening causal
inference from observational data. International Journal of Behavioral Nutrition and Physical
Activity, 16(1):1–31, 2019. doi:10.1186/s12966-019-0850-1.

GISc ience 2021

https://doi.org/10.1016/j.jtrangeo.2013.09.014
https://doi.org/10.13140/RG.2.2.32813.33760
https://doi.org/10.13140/RG.2.2.32813.33760
https://doi.org/10.1007/978-3-540-30231-5_8
https://doi.org/10.1016/j.tra.2015.05.015
https://doi.org/10.1016/j.jth.2015.11.002
https://doi.org/10.1016/C2019-0-00508-0
https://doi.org/10.1080/17489725.2018.1508763
https://doi.org/10.1016/j.tbs.2019.10.006
https://doi.org/10.1016/j.trc.2013.11.003
https://doi.org/10.1007/978-3-319-71470-7_11
https://doi.org/10.1002/9780470316801
https://doi.org/10.1016/S0965-8564(01)00036-2
https://doi.org/10.1016/B978-0-12-817026-7.00005-9
https://doi.org/10.1016/j.tra.2018.03.015
https://doi.org/10.1175/JCLI4291.1
https://doi.org/10.3929/ethz-b-000353337
https://doi.org/10.1186/s12966-019-0850-1


4:14 Travel Behaviour Change Detection

28 Claudia Nobis. Multimodality: Facets and Causes of Sustainable Mobility Behavior. Trans-
portation Research Record, 2010(1):35–44, 2007. doi:10.3141/2010-05.

29 Rebekka Oostendorp and Laura Gebhardt. Combining means of transport as a users’ strategy
to optimize traveling in an urban context: empirical results on intermodal travel behavior
from a survey in Berlin. Journal of Transport Geography, 71:72–83, 2018. doi:10.1016/j.
jtrangeo.2018.07.006.

30 Jan Prillwitz, Sylvia Harms, and Martin Lanzendorf. Interactions between Residential Reloca-
tions, Life Course Events, and Daily Commute Distances. Transportation Research Record,
2021(1):64–69, 2007. doi:10.3141/2021-08.

31 Daniel J Reck, David A Hensher, and Chinh Q Ho. MaaS bundle design. Transportation
Research Part A: Policy and Practice, 141:485–501, 2020. doi:10.1016/j.tra.2020.09.021.

32 Peter J Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987. doi:
10.1016/0377-0427(87)90125-7.

33 Stefan Schönfelder and Kay W Axhausen. Urban Rhythms and Travel Behaviour: Spatial
and Temporal Phenomena of Daily Travel. Ashgate Publishing, Ltd., 2010. doi:10.4324/
9781315548715.

34 Liridona Sopjani, Jenny Janhager Stier, Mia Hesselgren, and Sofia Ritzén. Shared mobility
services versus private car: Implications of changes in everyday life. Journal of Cleaner
Production, 259:120845, 2020. doi:10.1016/j.jclepro.2020.120845.

35 Erla Sturludottir, Helga Gunnlaugsdottir, Olafur K Nielsen, and Gunnar Stefansson. Detection
of a changepoint, a mean-shift accompanied with a trend change, in short time-series with
autocorrelation. Communications in Statistics - Simulation and Computation, 46(7):5808–5818,
2017. doi:10.1080/03610918.2014.1002849.

36 Bo Sun, Fei Yu, Kui Wu, and Victor CM Leung. Mobility-based anomaly detection in cellular
mobile networks. In Proceedings of the 3rd ACM workshop on Wireless security, pages 61–69,
2004. doi:10.1145/1023646.1023658.

37 Lijun Sun, Xinyu Chen, Zhaocheng He, and Luis F Miranda-Moreno. Routine Pattern Discovery
and Anomaly Detection in Individual Travel Behavior. Networks and Spatial Economics, 2021.
doi:10.1007/s11067-021-09542-9.

38 Yusak O Susilo and Kay W Axhausen. Repetitions in individual daily activity–travel–location
patterns: a study using the Herfindahl–Hirschman Index. Transportation, 41(5):995–1011,
2014. doi:10.1007/s11116-014-9519-4.

39 Danique Ton, Lara-Britt Zomer, Florian Schneider, Sascha Hoogendoorn-Lanser, Dorine
Duives, Oded Cats, and Serge Hoogendoorn. Latent classes of daily mobility patterns: the
relationship with attitudes towards modes. Transportation, 47(4):1843–1866, 2020. doi:
10.1007/s11116-019-09975-9.

40 Chieh-Yuan Tsai and Yu-Chen Shieh. A change detection method for sequential patterns.
Decision Support Systems, 46(2):501–511, 2009. doi:10.1016/j.dss.2008.09.003.

41 Yulong Wang, Kun Qin, Yixiang Chen, and Pengxiang Zhao. Detecting Anomalous Trajectories
and Behavior Patterns Using Hierarchical Clustering from Taxi GPS Data. ISPRS International
Journal of Geo-Information, 7(1):25, 2018. doi:10.3390/ijgi7010025.

42 Paul Weiser, Simon Scheider, Dominik Bucher, Peter Kiefer, and Martin Raubal. Towards
sustainable mobility behavior: research challenges for location-aware information and commu-
nication technology. GeoInformatica, 20(2):213–239, 2016. doi:10.1007/s10707-015-0242-x.

43 Yao Yao, Ye Hong, Daiqiang Wu, Yatao Zhang, and Qingfeng Guan. Estimating the effects
of “community opening” policy on alleviating traffic congestion in large Chinese cities by
integrating ant colony optimization and complex network analyses. Computers, Environment
and Urban Systems, 70:163–174, 2018. doi:10.1016/j.compenvurbsys.2018.03.005.

44 Zhan Zhao, Haris N Koutsopoulos, and Jinhua Zhao. Detecting pattern changes in individual
travel behavior: A Bayesian approach. Transportation Research Part B: Methodological,
112:73–88, 2018. doi:10.1016/j.trb.2018.03.017.

https://doi.org/10.3141/2010-05
https://doi.org/10.1016/j.jtrangeo.2018.07.006
https://doi.org/10.1016/j.jtrangeo.2018.07.006
https://doi.org/10.3141/2021-08
https://doi.org/10.1016/j.tra.2020.09.021
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.4324/9781315548715
https://doi.org/10.4324/9781315548715
https://doi.org/10.1016/j.jclepro.2020.120845
https://doi.org/10.1080/03610918.2014.1002849
https://doi.org/10.1145/1023646.1023658
https://doi.org/10.1007/s11067-021-09542-9
https://doi.org/10.1007/s11116-014-9519-4
https://doi.org/10.1007/s11116-019-09975-9
https://doi.org/10.1007/s11116-019-09975-9
https://doi.org/10.1016/j.dss.2008.09.003
https://doi.org/10.3390/ijgi7010025
https://doi.org/10.1007/s10707-015-0242-x
https://doi.org/10.1016/j.compenvurbsys.2018.03.005
https://doi.org/10.1016/j.trb.2018.03.017


Y. Hong, Y. Xin, H. Martin, D. Bucher, and M. Raubal 4:15

A Stability of important trips

For each individual, we form the activity set at different time steps t and extract the important
trip set ITi(t) containing trips that arrive at any location included in the activity set. The
size of the important trip set represents the number of trips to familiar locations, which we
denote as trip capacity Ti. We are interested in the relation between Ti and t: if Ti does not
depend on the time of observation (i.e., irrespective of t), Ti is a conserved quantity over
time; otherwise, Ti is not stable and might be influenced by individual factors and seasonality
effects [19].

We first report that on a collective level, the average trip capacity T does not depend on
time t. This is shown using a linear fit of the form T = a + b · t, and through testing the
hypothesis H0 : b = 0 under independent 2-samples t-tests. Using a time window size of 5
weeks, the angular coefficient b = −0.001 ± 0.007 is not significantly different from 0, and
the hypothesis H0 : b = 0 cannot be rejected (p-value: 0.86 > 0.05). This stability is tested
using the different choices of time window size ∆t, as reported in Table 1. For each choice of
∆t, we find no evidence for rejecting the hypothesis that the average trip capacity does not
change in time.

At the individual level, we look at the net gain Gi(t) of the important trip set ITi(t).
The net gain Gi(t) = Ai(t) − Ri(t) is defined as the difference between the number of
trips that are respectively added Ai(t) and removed Ri(t) at time t. We find that for each
individual, the average net gain across time ⟨Gi⟩ is closer as its standard deviation σGi to
0, i.e., |⟨Gi⟩| /σGi

< 1, indicating that ⟨Gi⟩ is not significantly different than 0. Therefore,
for the SBB GC population, the trip capacity is stable at the individual level. This result
suggests that individuals always conduct the same amount of travel to their important
activity locations. Moreover, this stability is measured as roughly 23 important trips per
week for a typical user in the SBB GC data set, despite the choice of the window size ∆t

(Table 1).

Table 1 Hypotheses testing for trip capacity with different window sizes. For every window size
t, the null hypothesis H0 : b = 0 cannot be rejected (p-value > 0.05).

Window size ∆t Intercept a Slope b Standard error p-value p-value>0.05

4 23.14 -0.002 0.007 0.78 True
5 23.13 -0.001 0.007 0.86 True
6 23.16 -0.002 0.007 0.81 True
8 23.24 -0.007 0.007 0.33 True
10 23.17 -0.009 0.007 0.23 True
15 22.92 -0.011 0.008 0.16 True
20 22.62 -0.012 0.009 0.20 True
30 22.09 -0.006 0.014 0.66 True
40 21.58 0.015 0.025 0.56 True
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