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Abstract
Decision making is an integral part of wayfinding and people progressively use navigation systems to
facilitate this task. The primary decision, which is also the main source of navigation error, is about
the turning activity, i.e., to decide either to turn left or right or continue straight forward. The
fundamental step to deal with this error, before applying any preventive approaches, e.g., providing
more information, or any compensatory solutions, e.g., pre-calculating alternative routes, could be
to predict and recognize the potential turning activity. This paper aims to address this step by
predicting the turning decision of pedestrian wayfinders, before the actual action takes place, using
primarily gaze-based features. Applying Machine Learning methods, the results of the presented
experiment demonstrate an overall accuracy of 91% within three seconds before arriving at a decision
point. Beyond the application perspective, our findings also shed light on the cognitive processes of
decision making as reflected by the wayfinder’s gaze behaviour: incorporating environmental and
user-related factors to the model, results in a noticeable change with respect to the importance of
visual search features in turn activity recognition.

2012 ACM Subject Classification Computing methodologies → Activity recognition and under-
standing; Computing methodologies → Supervised learning by classification
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1 Introduction

While decision making has seen considerable research interest in various fields beyond
GIScience and LBS (see e.g., [45, 38, 17]), in our domain, up until now, very few attempts
have been made to understand the behavioural correlates of decision making in human
wayfinding (see Section 2). This is in contrast to the fact that understanding these decision
making processes, which in wayfinding are primarily about turning activity, shows scientific
and application perspectives: It can deepen the understanding of the cognitive aspects related
to spatial decision-making and provide the grounds for engineering cognitively adequate
wayfinding assistance systems, e.g., by monitoring user behaviour and detecting potentially
wrong activities before they are actually performed.

The current work takes a step into this direction: we provide evidence that the decision
making processes in terms of turning activity are reflected by gaze behaviour and the processes
are, moreover, also highly affected by user-related and environmental factors. To this end, we
report on an in-situ pedestrian wayfinding study (N = 52) involving high precision GNSS and
mobile eye tracking, and perform a turn-activity behaviour classification based on a series
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of machine learning (ML) experiments, before the actual action of taking a turn. As there
exists a vast body of literature which studies how basic eye-movement events reflect cognitive
processes, we deliberately trained the classifiers based on a commonly-used set of gaze
features. In addition to that, we also selected familiarity (measured as a self-report binary
feature indicating whether the wayfinder is familiar or unfamiliar with the environment) as a
simple example of a user feature, and number and spatial arrangement of street branches
at each junction (see Section 2 for a reason) as indicators of environmental complexity. We
provide evidence that wayfinders’ gaze behavior (and, hence, their cognitive processes) are
highly influenced by these factors while reaching a decision situation.

2 Related Work

Gaze has raised particular interest in research on cognitive load and wayfinding assistance
alike. Given the aforementioned research goals, we review apt prior evidence relating to,
first, gaze behaviour, cognitive load and (spatial) decision making. Second, we touch on
wayfinding studies which look into gaze behaviour during this spatial activity. Third, prior
work on using machine learning methods for activity classification based on eye tracking data
is reviewed in order to gain an insight which classification techniques have shown promising
results.

2.1 Gaze Analysis in Decision Making and Beyond
Since Yarbus’ seminal work [55] in the 1960s, studying gaze behaviour and understanding
how it reflects cognitive processes has drawn significant attention by researchers (see e.g., [22]
for an early example, revealing that different cognitive tasks yield specific fixation patterns).
In particular, the examination of eye movements in decision making and its underlying
models has seen a long-lasting research interest (see [35] for an overview). So far, however, it
remains undecided whether gaze behaviour triggers or reflects an actual choice which has
been made before, and choices according to decision theory are frequently not well reflected
in gaze behaviour (see [46, p. 117] for both claims). Having said this, existing literature
points towards the fact that gaze bias is a good indicator for the decision to be made: A
bias in gaze behavior can be observed approximately the last five seconds before we make
a choice [17] and this effect is commonly referred to as the Gaze Cascade Effect [45]. The
impact of this effect has also been studied for spatial decision making: Wiener and colleagues
[53], e.g., used an eye-tracking experiment investigating the relation of gaze behavior, spatial
decision making and route learning strategies, and demonstrated the importance of visual
decision making in wayfinding performance. In another study, Wiener and colleagues [54]
report on four studies, in which eye tracking was used to understand spatial decision making
during wayfinding. Their results suggest that gaze and fixations depend on both, the task
(either route learning or spatial exploration) and the environmental features.

Beyond the exploitation of fixations and saccades, however, scholars have also used pupil
dilation and spontaneous eye blink rate (see [10]) as higher frequency eye tracking devices
have become increasingly widespread. Numerous studies have, thereby, linked pupillometry
to cognitive effort since Hess and Polt (see [20] according to [33]) found the link between
higher-order cognitive processes and pupil features. Since we use a mobile eye-tracking device
in our in-situ wayfinding study, we will not use any pupil-based features in our turn-activity
classification task due to the frequency of 200Hz. Indeed, we will focus on a subset of
fixation- and saccade-related features suggested in the literature in order to gain an insight
whether real-time classification may come into range. Similarly, we have deliberately chosen
not to exploit the gaze bias due to the sensory complexity this would have yielded.
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2.2 Studying Gaze in Research on Wayfinding

Gaze has seen increased interest in recent years (see [26, p. 2–9] for an overview) with respect
to both, research on wayfinding and gaze-based wayfinding assistance systems (see [14] for
a dissertation spanning both aspects). Scholars have, thereby, studied gaze in wayfinding
with respect to both, real-world (including indoor) and VR environments. Schnitzler and
colleagues [43], for example, studied three different wayfinding aids (signage, paper or digital
map) for indoor environments. By segmenting the route into 28 segments, they found, e.g.,
evidence for an increased visual attention at crucial decision points along a route, i.e., those
which are important for floor changes. Comparing gaze behaviour during a real-world and
VR wayfinding studies, Dong and colleagues [8] recently provide evidence for both, differences
and commonalities of gaze behaviour between both conditions during a map reading task.
For example, while the real-world condition yielded higher fixation times on the map, more
fixation time was spent on self-localization in the first-person view in VR; both conditions,
however, show similar fixation frequencies. In [52] differences in gaze behaviour based on a
real-world wayfinding study are reported. Participants learned part of a route by incidental
learning, whereas the remaining part was learned intentionally. Regardless of the learning
mode, the visual salience of landmarks was a good predictor for fixation time. Intentional
and incidental learning, however, show difference with respect to the structural salience of
landmarks (longer fixations in case of intentional learning). [50] studies how gaze behaviour
reflects subjective risk perception in bicycle riders by considering fixation duration, sight
vector length and gaze angle. The results revealed a positive correlation of familiarity with
the environment and cycling experience and fixation duration, gaze angle and sight vectors.
Very recently, Liu and colleagues [30] study the impact of an important environmental feature,
namely the regularity of road patterns, on the duration of fixations in general, mean duration,
the duration of the first fixation and the fixation count. Depending on the task (shortest
route selection or relative direction of destination), participants’ gaze was more impacted
by the (ir)regularity of the road pattern across tasks than by signs or other visual stimuli
attached to buildings, a finding which is in line with the notion of an increase in wayfinding
decision situations (see [16]).

2.3 Machine Learning for Gaze Data

Having a look at which machine learning techniques have been used to conduct classification
tasks based on eye tracking, the use of Support Vector Machines (SVMs) is prevalent across
different eye tracking technologies and usage scenarios. Using electrooculography to monitor
eye movements, Bulling and colleagues [4], e.g., trained an SVM classifier based on a very
small sample of participants (N = 8) and achieved reasonable results regarding both, precision
and recall, for an activity classification task including five everyday tasks. Similar findings for
the classification of everyday tasks were reported by [44] combining gaze and motion features.
Using 229 saccadic and fixation-related features, Kiefer and colleagues [25] provide evidence
that six different activities which are commonly performed on maps (e.g., comparing the
size of polygons when comparing e.g., lakes, or following a line representing a road) can be
distinguished using a SVM classifier (achieved accuracy 78%). Liao and colleagues [29] use a
Random Forest classifier and compare its performance to six different classifiers for classifying
tasks according to Downs and Stea [9, pp. 125–135], based on a dataset collected during a
real-world study. They use saccadic- and fixation-related features and find an accuracy of
67% when using a time window of 17 seconds.

GISc ience 2021
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Based on this evidence we conclude, first, to use features which are hand-crafted from eye
movements like all of the aforementioned studies do and deliberately choose not to use deep
learning methods. Second, regarding the reports on SVM and Random Forest algorithms in
earlier studies, as well as our own pilot-test findings (see Section 4.2), we base our machine
learning experiments on tree-based techniques. Using these approaches is also in line with
other machine learning literature which suggests that algorithms which split the feature space
are considered among the best models when it comes to small-to-medium sized structured or
tabular data [48].

3 Data Collection, Pre-processing and Feature Extraction

Based on our goal of turning activity recognition, this section provides information on data
collection and all data pre-processing steps, including the extraction of gaze features. We start
with a short description of the human-subject in-situ study as we use a dataset which was
collected in order to address several research problems, next to the turn activity recognition.
We, then, move on to explain the synchronization of the different sensory data used. Finally,
we provide details on the segmentation of the gaze data and the extraction of saccade- and
fixation-related features.

3.1 Data Collection
The data used in this paper is part of a larger data collection effort 1 addressing human spatial
behavior in real-world wayfinding scenarios2. This goal renders it also a valuable source
for answering other questions regarding decision-making in navigation. The data collection,
which took place in 2020, required participants to walk two routes (length ranging from 0.9km

to 1.3km), one of which was located in an area they were familiar3 with, whereas they were
unfamiliar with the other. They had to find their way by means of auditory, landmark-based4,
turn-by-turn route instructions, which were provided to them on demand and as many times
as they requested. We tracked participant’s behaviour using a mobile eye-tracking device
(PupilLabs Invisible) recording gaze positions at 200Hz and a high precision GNSS receiver
(PPM 10-xx38) tracking their position in time. In total, N = 52 people (27 female and 25
males, M(age) = 26 years, SD(age) = 8.3) participated in the outdoor experiments resulting
in N = 104 trials out of which N = 86 were contained for further processing5.

3.2 Data Pre-processing
To obtain the gaze-related data at each decision-point, several steps had to be taken. First,
junctions had to be matched to the GPS tracks obtained in order to be able to align eye-
tracking and GPS data. Subsequently, the point in time when a junction can be perceived as
junction had to be approximated.

1 This experiment has been described for the first time in [19] and here we only present the parts we used
in our analysis.

2 The data used in this paper, will be made available at https://geo.geoinfo.tuwien.ac.at/resources/
(DOI: 10.5281/zenodo.4298703).

3 During an online study participants indicated areas and places therein, with which they are familiar
and provided a route connecting two of these places.

4 Points of Interest were used as landmarks and chosen according to the algorithm described in [40].
5 Trials had to be excluded, for example due to equipment malfunction or non-cooperative participant

behaviour.

https://geo.geoinfo.tuwien.ac.at/resources/
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3.2.1 Matching Junctions to GPS Tracks
In order to match junctions to GPS trajectories, we make extensive use of VGI data
(OpenStreetMap) in a multistep procedure:
Step 1: Retrieve intersections We retrieve all intersections of type car and pedestrian or

pedestrian only within a distance of 30m from the GPS track using the Intersections
Framework [11].

Step 2: Filter intersections To avoid having unreasonably short segments, we exclude any
pedestrian intersections in proximity of 50m to road intersections. Furthermore, due
to the fact that many auxiliary path segments which are not meaningful for real-world
wayfinding task (e.g., ways in parks would be obstructed by barriers) exist in OSM data,
two raters individually checked each of the junctions using a web map. Subsequently,
they agreed on a set of rules for exclusion and checked each of the candidate-intersections
during a pair review session, ultimately eliminating 695 intersections.

Step 3: Labeling Based on the route instruction, we assign to each of the intersections one
of the classes turn left (TL), turn right (TR) or non-turn (NT).

Step 4: GPS track recovery Low quality GPS tracks, which were inevitable due to the
urban environment, were retraced using a polyline onto which the GPS trajectory was
normally projected. This projection is applied to refine the GPS points coordinates and,
at the same time, preserve the timestamps of the original points.

Step 5: Match intersections to GPS track We matched each of the intersections along a
route to their corresponding GPS point (see Figure 1) by drawing a ray oriented according
to the ways meeting in the given intersection, and intersecting it with the GPS trace.

Taken together, the procedure described above enabled us to identify the GPS point of
our trajectory representing the junction and, consequently, also the corresponding timestamp
at which this junction point was reached. We exploited this timestamp for segmenting the
eye tracking data for our turning activity recognition experiment.

Figure 1 Identification of GPS points corresponding to an intersection A: Extract adjacent nodes
to which the intersection node is connected by way entities B: Determine the normal vector n⃗ (green)
and construct vectors v⃗i, which represent the direction between each adjacent node 1,2,3 and the
intersection. C: Construct rays passing through the adjacent nodes and the intersection. We choose
the ray with the smallest angle σi between vectors n⃗ and v⃗i (in this example ray from node 2) and
intersect it with the GPS track to determine the GPS position.

3.2.2 Eye Tracking Data Segmentation
Since we wanted to monitor gaze behaviour during decision making in real-world wayfinding,
we need to identify the point in time (again based on the GPS track) at which participants
were able to perceive a decision situation as such. This can only be the case where participants
have a line of sight to further wayfinding options, i.e., a junction is not perceived as a point
by wayfinders but as a larger area where different elements of the street network meet.

GISc ience 2021
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Figure 2 Extracting intersection boundary in order to have the closest point to decision-situation
in reality, which is essential for eye tracking data segmentation.

Figure 2, illustrates the process for those cases in which buildings were located at a
junction6: We select building footprints within a distance of 20m to the intersection point
for both sides of the current route segment (Figure 2 A). We, then, select the three vertices
of each building polygon which are closest to the intersection point and connect each of these
with the selected vertices on the opposite side of the street (the set of orange lines in Figure 2
B). Finally, we find the intersection boundary by choosing those lines from the set of orange
lines which are oriented as perpendicular as possible to the given route segment (Figure 2
C). Having extracted the intersection boundaries at each junction, the closest GPS point
was selected and its corresponding timestamp was derived. This point in time was found in
the raw gaze-position data and flagged as the beginning of the intersection area, i.e., the
point in time at which a decision would have been made already.

3.3 Feature Extraction
Inspired by prior evidence (see Section 2), we extracted 28 fixation-/saccade-related features
(see Table 1). Since a 200Hz gaze-recording frequency does not allow for velocity-based
feature extractions, we used the IDT [42] as a commonly-used dispersion-based algorithm to
detect fixations (gaze-dispersion threshold: 0.02 deg; time threshold: 100 ms) [15, 14]. All
saccades were calculated based on this set of fixations. We extracted all of these features for
two to ten seconds (referred to as window from now on) before a participant would reach
the intersection area (see above). We, thereby, aim to cover the decision process as Brunye
and colleagues provide evidence in [3] that ‘[w]hile intersections may prompt a decision, and
elicit overt behavior that reflects a decision, the process of arriving at a spatial decision often
occurs before arriving in [sic] the intersection.’

Inspired by the work on wayfinding decision situations [16], we decided to include two
environmental features: namely the number of ways an intersection comprises and the
skewness of these street segments. Both of these features were obtained using the Intersection
Framework [11] and can, hence, be easily obtained on a global scale. In addition to that,
we included familiarity with the environment traversed as a binary variable because prior
evidence strongly suggests that familiarity has an impact on both spatial behaviour (see e.g.,
[50, 18, 37, 13]) and visual search behaviour (see e.g., [23, 51]). Having taken all steps for
data preparation, we ended up having nine tabular datasets of dimension 804 ∗ 32.

6 If no buildings were located at a junction, we found the boundary of the intersection by using a threshold
of 3.75seconds from the projected junction point. This resembles 5m based on the assumption of an
average walking speed of 4.5km/h [27].
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Table 1 Gaze-based features extracted for turn-activity classification. For each row, the rightmost
column indicates the final number of features we gained by applying the statistical measures,
presented in the first column, on the gaze features represented in the second column. For instance,
the first row of saccade-based features, encodes eight features, namely, mean/min/max/var of both,
saccade amplitude and saccade duration.

Fixation-based Features
mean, min, max, var duration, dispersion, dispersion X, dispersion Y 16

frequency - 1
Saccade-based Features

mean, min, max, var amplitude, duration 8
skewness amplitude 1
frequency - 1

g-l ratio (the ratio between long and short saccades) amplitude 1

4 Machine Learning Experiments

4.1 Data Preprocessing

Prior to model training, all categorical features should be converted to numerical values, and
the sample distribution across all turn-activity classes should be balanced. In order to resolve
the imbalanced class issue in our dataset (“NT” class containing 636 samples, had almost
four times more samples than both “TL”, containing 91 samples, and “TR”, containing 77
samples), we used Synthetic Minority Over-sampling Technique (SMOTE) for oversampling
[5]. By default, SMOTE oversamples all classes to achieve equal sample sizes based on the
largest sample size. Therefore, we ended up having 636 samples per class which sums up to
1908 samples in total.

4.2 Machine Learning Experiments

As mentioned above (see Section 3.1), we set our sights on classifying wayfinders’ turning
activity, mainly by using their gaze behavior, and to do so we extracted some basic gaze-based
features and prepared the data for the classification task.

During pilot testing three different models were utilized, namely, SVM-RBF, CART and
Random Forest. As described in Section 2, Support Vector Machine (SVM) classifiers have
been particularly popular for gaze data classification tasks. Therefore, this algorithm was
implemented first for the classification task (test accuracy: 0.58 ±.05). The Decision Tree
(test accuracy: .61 ±.06) creates a system of rules to roughly split the feature space into
several regions. Following the advantage of tree structures, the Random Forest algorithm
(test accuracy: .77 ±.06) was next deployed to capture the insight of several Decision Trees in
order to divide the feature space more precisely. The Random Forest algorithm yielded better
test accuracy which supports the assumption that tree-based structures are more suitable
for modeling the data at hand (see e.g., [48, 34, 28]). Additionally, as tree-based ensemble
algorithms are reported to have multiple advantages over normal tree-based structures,
including the handling of multi-collinearity in features (see e.g., [7]), we next deployed a
Gradient Boosted Trees algorithm. All these classifiers were compared in the pilot testing
based on achieved accuracies and their potential power to model the provided input data:
Gradient Boosted Trees showed the most promising results. We, therefore, chose this class of
ML algorithm to base our results on and will provide further details about this algorithm,
only.

GISc ience 2021
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4.3 XGBoost Classifier
Gradient boosting is a very powerful technique for building predictive models [6]. The main
idea behind this algorithm stems from the so-called “Hypothesis Boosting Problem” which
states that several poor hypotheses (so called weak learners) can be converted into a very
good hypothesis [24]. Compared to Random Forest classification, Gradient Boosted Trees
have a lot of model capacity so they can model very complex relationships and decision
boundaries. While there are various implementations of Gradient Boosted Trees available,
we used XGBoost due to its scalability and high efficiency [6]. The Boosting method in
XGBoost combines weak learners (i.e., trees) sequentially so that each new tree corrects the
error of the previous one. We used Python 3.8 for our implementation and made use of
different packages including xgboost 1.3.3 and scikit-learn 0.24.1.

Splitting the data into 70% and 30% (train, validation) and using 20-fold validation, we
performed a randomized search to tune hyper parameters. The hyper parameters performing
best were: colsample-bylevel = 0.7, colsample-bytree: 0.8, learning-rate: 0.2, max-depth: 15,
min-child-weight: 0.5, n-estimators: 800, reg-lambda: 1.0 and subsample: 0.5. Using the
trained model, we classified the data and plotted the mlogloss and merror to check for signs
of overfitting (cross entropy was used as the loss function). In addition to that, in order to
avoid training and validation sessions with samples from the same user we deployed a “leave
one out” method, in which all samples from one participant were left out and only used for
validation. The results of our XGBoost classifier are presented in Section 5.

As mentioned above, the basic idea behind boosting algorithms is to build a weak model,
making conclusions about the various feature importance and parameters, and then using
those conclusions to build a new, stronger model trying to reduce the misclassification error.
The most important part which allows us to come closer to an interpretation of the results
is the so-called feature importance. In order to preserve both the global impact of features
on the model and the individualized impact of features on a single prediction, we used the
Tree SHapley Additive exPlanations (SHAP) method to calculate feature importance as
it provides consistent results through handling collinearity of features automatically [31].
The interpretation of results using these features importance, is presented and discussed in
Section 6.

5 Results

This section provides the results of our machine learning experiments for turning activity
classification. We distinguish three classes, namely non-turn (NT), turn left (TL) and turn
right (TR). We run our experiments based on four different sets of features: Gaze-based
(G) features, Gaze-based + Familiarity (GF) features, Gaze-based + Environmental (GE)
features, and Gaze-based + Environmental + Familiarity (GEF) features. As explained in
Section 3.2.2, we considered these sets of features in different time windows (i.e., from two to
ten second) before the actual action of turning.

The overall results in terms of Test Accuracy for two- to ten-seconds windows are presented
in Figure 3A. Additionally, Figure 3B, presents the confusion matrix for the three-seconds
window and its corresponding evaluation metrics including accuracy, precision, recall, and
F1-score per class. The false positive/negative rate within turn classes (turn-left/-right) are
lower than between non-turn and each of the turn classes. This observation indicates that
the model has a better performance distinguishing turn left and right, than differentiating
non-turn from turn classes. Figures 3C.1 and C.2, represent, as an example, the logloss error
for training and test based on the GEF-dataset for all time intervals. The results show two
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Figure 3 This figure contains, A: Test accuracy of XGBoost classifier for four categories of
features: Gaze features (TAcc-G), Gaze and Familiarity features (TAcc-GF), Gaze and Environmental
features (TAcc-GE), and Gaze and Familiarity and Environmental features (TAcc-GEF); as shown
in the figure adding more factors to incorporate user and environmental aspects boosts the model
performance; B: Confusion matrix calculated for three-seconds window, and evaluation metrics
including Accuracy, Precision, Recall and F1-Score per class; this indicates that the model has a
better performance distinguishing left and right turns compared to non-turns from turns. C.1 and
C.2: Log loss plots for XGBoost classifier, respectively for Train and Test subsets, illustrating the
model behavior during the training and test sessions.

important patterns: 1) the accuracy increases as the distance to the decision point decreases;
2) adding environmental and familiarity features considerably enhances model accuracy. In
order to gain a deeper understanding of the results, Table 2 provides details regarding Train
(TrAcc) and Test accuracies (TAcc) and the kappa coefficient for all time intervals and all
combination of features. The results indicate that using XGBoost, the highest accuracy of
91.4% in turn-activity classification was achieved for the three-seconds window. Therefore,
our analysis of feature importance focuses on this timeframe. Figure 4 presents the SHAP
importance plots for the features in A showing the gaze features only, and B showing all
three categories of features. These plots indicate that binary familiarity of participants and
the skewness of the street segments at an intersection are very important for the accuracy
of our classification results. A deeper understanding of the differences in importance for
different feature classes can be gained from Figure 5, which shows the SHAP importance
ranks (see Figure 4) for features per group of features. To visually distinguish features

GISc ience 2021
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from each other, we use a combination of background colors and outline patterns: Saccadic
features are depicted in yellow, fixation-related features are given in green, environmental
features are shown in pink and blue denotes the familiarity feature. Count-based features are
shown using a dashed outline, whereas a dotted outline marks all duration-based features
and a solid outline highlights all dispersion/length-based features. This figure shows a clear
pattern: Adding user-related and environmental features increases the overall number of
saccadic features.

Table 2 Turn activity classification results for two- to ten-seconds window (W), and the four
feature sets: “Gaze” features (G), “Gaze + Familiarity” features (G+F), “Gaze + Environmental”
features (G+E), “Gaze + Familiarity + Environmental” features (G+F+E).

W G G+F G+E G+F+E
TrAcc TAcc Kappa TrAcc TAcc Kappa TrAcc TAcc Kappa TrAcc TAcc Kappa

2 .842 .860 .748 .868 .891 .825 .881 .898 .772 .883 .907 .835
3 .872 .848 .812 .857 .869 .783 .890 .884 .741 .891 .914 .896
4 .853 .851 .744 .857 .867 .786 .872 .870 .788 .883 .873 .777
5 .838 .842 .772 .861 .893 .824 .876 .873 .784 .868 .890 .786
6 .827 .853 .789 .876 .876 .822 .898 .858 .756 .883 .873 .799
7 .823 .857 .802 .895 .868 .803 .851 .866 .830 .919 .883 .775
8 .815 .826 .774 .866 .861 .814 .838 .872 .782 .869 .870 .817
9 .850 .833 .735 .895 .845 .760 .842 .845 .705 .879 .867 .785
10 .847 .802 .730 .847 .841 .769 .847 .846 .716 .859 .852 .814

Figure 4 SHAP importance plot for three-seconds window, derived from model, A: using only
gaze-based features, and B: using all features. (Due to space restrictions, only the plot for these two
feature sets are presented.)

6 Discussion

The results presented in Section 5, primarily, indicate that turning activity in real-world
navigation scenarios using gaze-movement data and a combination of user/environmental-
related features can be predicted reasonably well. It is outlined in Figure 3B, that adding
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Figure 5 Introducing familiarity and environmental features has a major impact on the feature
importance patterns: Saccadic features which, according to the literature, reflect visual search
behavior (see e.g., [36, 47]), become more dominant by encoding more information about the
environment and user experience into the model.

familiarity feature increases the model accuracy, on average across all window sizes, from 83%
(obtained by applying only gaze features) to 86%. Likewise, by adding environmental features
to gaze data, we can see the same 3% rise in model performance from 83% (on average for
all time intervals) to 86%. More importantly, adding both, user and environmental features,
on top of gaze-based features boost the model performance to almost 87% on average and
best performance of 91%. Taken together, these results, in general are in line with the
decision-situation model proposed by Giannopoulos and colleagues [16], which state that the
complexity of a wayfinding decision situation depends on user-related and environmental
features, alike. The results also reiterate the findings by Brunye and colleagues [3] in two
respects: Our results also suggest that the decision pattern for turning at intersections is
deeply influenced by environmental elements and experience with the environment. Second,
we provide evidence that the decision making in wayfinding occurs before wayfinders arrive
at an intersection as, across feature sets, the highest accuracy was achieved for two to three
seconds before this point in time. These findings provide the ground for discussion from both,
theoretical and application aspects, and the following subsections are devoted to present
them in more detail.

6.1 Findings on Application Level

Turning activity is one of the most important decisions made during wayfinding as almost
all navigation errors occur at decision situations [1]. As a consequence, a large body of
literature exists, which tries to propose solutions to either minimize the number of navigation
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errors a wayfinder makes (e.g. [41]), or to minimize the impact of these errors by, for
example, precalculating all possible routes close to the shortest path from the upcoming
junctions [1]. A system which is capable to detect potential navigation errors would be able
to pro-actively draw the wayfinders attention to this potential error and, thereby, help to
avoid a wrong decision. Moreover, it has been long on debate that one of the potential
drawbacks of wayfinding assistance systems, is their negative impact on humans spatial
cognition and abilities (in long term) by constantly distracting users attention from the
environment (see e.g. [2],[29], [39]). This detrimental effect is caused by either the need of
constant visual interaction with the system, or by providing a more than necessary amount
of information to the user. It has been suggested that gaze-based interactions in general can
help limiting this distraction [15]. While researchers have sought for solutions to reduce the
number of wayfinding instructions for years (e.g., [12]), our results allow for a personalized
wayfinding assistance by monitoring gaze behavior for turning activity recognition and
providing corrective instructions only if needed [32]. As an example, in case a wayfinder is
supposed to continue straight ahead but shows a tendency to take a turn, the system can
provide her/him with a corrective instruction; otherwise there is no need to distract the
wayfinder by repeating the same instruction).

6.2 Findings on Theoretical Level
The findings of this paper in terms of the role of each feature in visual search behavior during
wayfinding decision situations, can deepen our understanding of decision making in real-world
wayfinding. Considering only gaze-based features (see left column of Figure 5), we observe
two patterns: First, in total 15 out of 17 most important features are fixation-related. One
potential explanation, which is in line with the fact that fixation-related features convey signs
of attention and information processing [22], is that this dominance reflects the importance
of attention at decision point. Prior evidence (see [3, 53]), suggests already that deciding to
take a turn is a dynamic decision making process consisting of stimulus processing and action
preparation which requires an attention shift. The second pattern we observe from Figure 5,
relates to the equal number and importance of duration-based and dispersion-based features
(note that the number of dispersion-related features are three times more than duration-based
features and the same ratio holds here): Two fixation duration based features are among
the 50% most important features, which is in line with the known positive correlation of
fixation duration with cognitive processing and scene perception [21]. Inline with current
evidence (see e.g., [22, 49]), these two patterns suggest that using only gaze information, the
turn-activity decision is more reflected by features which are representative for cognitive
processing and scene perception. Adding familiarity with the environment as a user-related
feature (second left column of Figure 5), boosts the performance of the model and, at the
same time, increases the number of saccadic features to six. Simultaneously, the importance
of duration-based features (both fixation and saccade-related) slightly decreases. Saccadic
features in general represent visual search activity rather than attention or concentration,
and more specifically saccade amplitude, is known to reflect search task difficulty [36] and
presence of high-frequency visual information [47]. This result can, hence, be interpreted
as changing the importance of visual search in predicting a turn-activity decision. This
would be in line with the fact that fixation behavior is particularly biased by familiarity or
level of expertise [50]. Adding familiarity renders itself most important; moreover, it also
redirects the model’s attention towards saccadic features. This finding, though, leaves much
room for further research: Arguably, familiarity somehow encapsulates most of the fixation
behavior in itself, and lets the model seek for meaningful patterns in saccadic features. This
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observation requires further assessment of familiarity in order to unfold the differences in
gaze behavior of familiar vs unfamiliar wayfinders. Similar to adding user-related features,
an increase in presence of visual search related features (i.e., saccadic features), occurs also
when adding environmental factors (third left column of Figure 5). We used skewness of
street segments and the number of branches an intersection has, as proxy for the difficulty
of the decision situation in terms of urban configuration. Due to the collinearity of both
features, only skeweness is retained by the SHAP procedure. This may be an indicator for
the fact that skewness is a better (i.e., more precise than the number of branches) proxy
for the difficulty of the decision situation, with respect to environmental configuration. The
most important pattern was revealed when we added both familiarity and environmental
features (right column of Figure 5). As is shown in Figure 5, familiarity remains the most
important feature, which can be explained by the fact that gaze-behavior is heavily biased
by user-related factors, and particularly the level of expertise of which familiarity with the
environment is an instance of. In addition to that, a slight increase in number and importance
of saccadic features, and moreover, a sharp drop in importance for duration-based features
arises. This observation may indicate that environmental and user-related features encode
important aspects of the decision situation and, thereby, redirect the model’s focus more to
visual search behavior.

7 Conclusion and Future Work

In this paper we provide evidence that it is possible to classify the turning activity of
wayfinders based on a combination of gaze-data, wayfinder familiarity (measured as a binary
variable) and two environmental factors regarding the morphology of an intersection. To this
end, we used data collected during an in-situ wayfinding experiment and compared different
time windows and different classification algorithms. The highest accuracy was found for an
XGBoost classifier, which achieved 91% overall accuracy in turn-activity classification for a
window size of three seconds. We discussed our findings from two main perspectives: First,
we shed light on the applicational prospects with respect to wayfinding assistance systems
capable to detect potential navigation errors; second, we explored which gaze features are
most important and provided explanations based on the existing literature. Taken together,
these results raise further research questions. While we have deliberately used a basic set of
gaze features combined with a single user-related and two basic environmental features, it
would be interesting to see whether more sophisticated features (e.g., incorporating different
levels of familiarity) convey even more information regarding the decision making process.
Besides, according to our findings, adding user-related and environmental factors to gaze
features, alters the pattern of fixation-related and saccadic features, in terms of the number
and importance of each gaze-event category. It is, therefore, worthwhile to disentangle the
relationship between these gaze features and the familiarity/environmental factors. Another
interesting pattern which needs deeper exploration, relates to count-based fixation and
saccadic features. So far, these have been used mostly as an indication of semantic importance
and search-task difficulty [21]. Therefore, a future study can introduce semantic information
of areas of interest (AOI) to the model, and observe why count-based features retain their
importance in the model. Eventually, the differences in false positive/negative rates between
different classes observed in the confusion matrix, may suggest missing environmental or user
characteristics in the model. Therefore, a future study may for instance, incorporate head/
body movements to the model to see if this behavioral source of information can lead to
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better classification results. In addition to that, our findings open up several other questions
regarding the general research direction of this paper:
1. When is the actual onset of the decision process for turn-activity, does this point in time

vary for different phases of wayfinding (as proposed by [9]), and is this point in time
stable as travel time/distance covered increases?

2. Why are some of the features more effective with respect to predicting particular classes
of turn-activity? For instance, why is familiarity more effective on predicting non-turn
activity as suggested by Figure 4?

3. Does the so-called cascade effect also hold for turn-activity recognition based on gaze-
behaviour in real-world navigation?
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