
Coordinated Schematization for
Visualizing Mobility Patterns on Networks
Bram Custers #

Eindhoven University of Technology, The Netherlands

Wouter Meulemans #

Eindhoven University of Technology, The Netherlands

Bettina Speckmann #

Eindhoven University of Technology, The Netherlands

Kevin Verbeek #

Eindhoven University of Technology, The Netherlands

Abstract
GPS trajectories of vehicles moving on a road network are a valuable source of traffic information.
However, the sheer volume of available data makes it challenging to identify and visualize salient
patterns. Meaningful visual summaries of trajectory collections require that both the trajectories
and the underlying network are aggregated and simplified in a coherent manner. In this paper we
propose a coordinated fully-automated pipeline for computing a schematic overview of mobility
patterns from a collection of trajectories on a street network. Our pipeline utilizes well-known
building blocks from GIS, automated cartography, and trajectory analysis: map matching, road
selection, schematization, movement patterns, and metro-map style rendering. We showcase the
results of our pipeline on two real-world trajectory collections around The Hague and Beijing.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Trajectories, Visualization, Schematization

Digital Object Identifier 10.4230/LIPIcs.GIScience.2021.II.7

Supplementary Material Software (Source code): https://github.com/tue-alga/Coordinated
Schematization; archived at swh:1:dir:a04dfee52bf07c76d37ac692bc17450feec728df

Funding Bram Custers: Supported by HERE Technologies and the Dutch Research Council (NWO);
628.011.005.

Acknowledgements We would like to thank HERE Technologies for providing the HR dataset.

1 Introduction

GPS tracks from moving vehicles are an important source of information for traffic analysis
and urban planning. Their general ubiquity allows decision makers to understand the usage
of transportation networks and urban spaces. However, the sheer volume of the data makes
it challenging to render trajectory collections in a meaningful way as to show the general,
overarching patterns. Simply plotting all trajectories results in the infamous “spaghetti
heaps”. Heat maps [15, 19] and other aggregation techniques such as Voronoi aggregation [1]
are helpful to “untangle” traffic locally, but they generally fail to capture structural patterns,
such as important longer routes.

Summarizing trajectory collections visually, such that salient patterns emerge, inherently
requires a form of aggregation or simplification of the data. That is, the level of detail
and information shown should be scale-appropriate and avoid a cognitive overload, while
still being able to provide insight into the overall mobility. There are various techniques
to cluster trajectories and compute a representative for visualization [6, 16], or to simplify

© Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Geographic Information Science (GIScience 2021) – Part II.
Editors: Krzysztof Janowicz and Judith A. Verstegen; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.a.custers@tue.nl
https://orcid.org/0000-0001-9342-319X
mailto:w.meulemans@tue.nl
https://orcid.org/0000-0002-4978-3400
mailto:b.speckmann@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:k.a.b.verbeek@tue.nl
https://orcid.org/0000-0003-3052-4844
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.7
https://github.com/tue-alga/CoordinatedSchematization
https://github.com/tue-alga/CoordinatedSchematization
https://archive.softwareheritage.org/swh:1:dir:a04dfee52bf07c76d37ac692bc17450feec728df;origin=https://github.com/tue-alga/CoordinatedSchematization;visit=swh:1:snp:5d3d555b3a2ed939becacb168a2f42180183f06c;anchor=swh:1:rev:9ffc292c946498d56f7938a86628adba534a9085
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Coordinated Schematization for Visualizing Mobility Patterns on Networks

trajectories [12]. However, these techniques typically focus on trajectories in a general 2D
space, whereas our focus lies on trajectory data on transportation networks, specifically
vehicles on a road network. As such, the problem changes in nature, as selecting representative
routes and performing simplification needs to be “network-aware”. Stronger still, to reduce
the visual complexity of the eventual visualization, not only the trajectories need to be
simplified, but also the underlying street network. To arrive at meaningful results which show
traffic patterns in the correct context, the simplification and aggregation of the trajectory
collection and of the network have to go hand-in-hand: they need to be coordinated.

Contribution and organization. We propose a coordinated fully-automated pipeline for
computing a schematic overview of mobility patterns. Our pipeline consists of five steps,
each utilizing well-known building blocks from GIS, automated cartography and trajectory
analysis: map matching, road selection, schematization, movement patterns, and metro-map
style rendering. We present our overall pipeline and its rationale in Section 2; the subsequent
sections describe each step in more detail. Each of these sections also describes how we
implemented the corresponding step in our proof-of-concept. For illustration we use a real-
world dataset of vehicle trajectories around The Hague in the Netherlands. In Section 8 we
discuss the results of our pipeline using a second real-world data set around Beijing. We
close with a general discussion of our pipeline and future work in Section 9.

Related work. We focus here on related work pertaining to the visualization of large volumes
of trajectories and discuss related work for each step of the pipeline in the respective section.
Most research in this area aims to provide an overview of space usage, without showing
or using the temporal component of trajectories; see the two extensive surveys by Chen et
al. [10] and Andrienko et al. [3]. The notable exception are space-time cubes [13, 22], though
they do not scale well to large numbers of trajectories without some form of aggregation.

To identify larger patterns, one can focus on visualizing the origin-destination data only,
that is, focus only on the endpoints of the trajectories, possibly with some form of spatial
aggregation. There are various techniques to visualize such information, e.g., [24, 31, 34].
Visualizing OD-data shows patterns beyond local traffic, but typically does not show any
information on the actual routes. As such it does not support understanding mobility from
the viewpoint of traveling through a network. Indeed, these techniques are typically applied
in situations where the exact trajectories or routes are not available or not of interest.

2 The pipeline

Our input is a set T of trajectories, and a network G. Our goal is a schematized representation
of G together with the most salient mobility patterns in T . Before we can describe our
pipeline in more detail, we first give the necessary definitions.

Definitions. A trajectory is a sequence of measurements T = ⟨(x1, y1, t1), . . . , (xn, yn, tk)⟩
with a position (xi, yi) ∈ R2 at each timestamp ti ∈ R. We restrict our attention to the
spatial domain and hence we ignore the temporal component beyond providing an ordering
of the measurements. Thus, for the purpose of this paper, a trajectory T is a (directed)
polygonal line with vertices (xi, yi).

A (road) network is a directed graph G = (V, E) where each vertex has a location in R2.
Edges have an associated geometry connected to their endpoints; initially, this is typically
the unique line segment, but during our pipeline, this geometry can change. We further
assume that each road has an associated road type, which is ordinal (e.g., “highway”).



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:3

We assume that the network is plane, that is, the edges do not cross except at common
endpoints. This condition is not generally satisfied by actual road networks, but we can
introduce extra vertices on these intersections to planarize the network. By marking these
extra vertices, we can perform algorithms both on the planarized and original network. We
further use |G| to denote the complexity of the network, measured as its number of edges,
though note that this assumption implies that |G| = |E| = O(|V |).

We use route to refer to a (directed) path in the network. For example, map-matching
a trajectory results in its route: the path in the network that was traversed by the vehicle
captured by the (noisy) trajectory. We refer to such a path as the route of the trajectory.

A route does not have to correspond to a single or entire trajectory. Specifically, we say
that a route is supported by a trajectory T if it is is a subpath of the route of T . We use
bundle to indicate a route that is supported by multiple trajectories, using the support of
a bundle to indicate the number of supporting trajectories. Bundles should aim to capture
mobility patterns; precise criteria to form meaningful bundles are discussed in Section 6.

The pipeline. Our goal is to compute a schematic representation of G with salient bundles
that are “supported by” T . To achieve this, our pipeline consists of five steps, briefly sketched
below. See Fig. 1 for an example of the results of these steps. In the subsequent sections we
discuss each in more detail. Important in our treatment of the network and the trajectory
information is to coordinate changes: specifically, changes in the network should be translated
to changes in the trajectory information.
Step 1: Map-match We aim to visualize mobility patterns via bundles, frequent routes in

the data. However, trajectories are not the same as routes, and thus cannot support
a bundle. As such, we first map-match the trajectories to the network. The minimal
input to this step is a single trajectory and the network, such that each trajectory can be
processed individually. Map-matching computes the route associated with this trajectory.
The result of this step is a set R of routes, rather than trajectories. In our implementation,
the trajectories are not used further. This step enables our pipeline to coordinate changes
in the network and the routes.

Step 2: Select roads A typical road network is very detailed, much beyond the level of
detail that we need to visualize the general mobility patterns and well-supported bundles.
The minimal input to this step is the road network and the set of routes derived in Step 1.
Note that we could, in principle, base selection purely on the network, and adapt the
routes as necessary. However, we also choose to include all parts of the network which are
frequented heavily by the routes. The result is a subset of the network and a mapping of
the original routes to this selected network.

Step 3: Schematize To reinforce the summarizing nature of the eventual visualization, we
reduce the visual complexity of the selected network via schematization. The input is
the selected network and the mapping of the routes. The output is a strongly simplified
version of this network. The mapping of the routes is maintained (coordinated) during
this process. Optionally, the edges of this schematic network may be annotated with
information about the length of the edge for the purpose of bundling.

Step 4: Bundle In our schematic representation, we find well-supported bundles. The input
is thus the schematic network and the mapping of routes to this schematic representation.
The output is a set of bundles that are well supported.

Step 5: Render We now have all ingredients for our visualization: the schematic network
as well as salient mobility patterns (bundles). The result is the eventual visualization
which shows these two pieces of information effectively.

GISc ience 2021



7:4 Coordinated Schematization for Visualizing Mobility Patterns on Networks

Input Step 1: Map-match Step 2: Select roads
T

ra
je

ct
or

ie
s

N
et

w
or

k

Step 3: Schematize Step 4 + 5: Bundle & Render

T
ra

je
ct

or
ie

s
N

et
w

or
k

Figure 1 Our pipeline for coordinated schematization on the The Hague dataset. The input
trajectories are shown as a density map. For the map-matched routes, we use a orange to red scale
to convey low to high traffic volume per edge. We compute the bundles in Step 4 with Smin = 500,
Lmin = 10000m, p = 0.5 and shrunk edge lengths, see Section 6 for more details on these parameters.

3 Step 1: Map-match trajectories to the network

Desiderata. To eventually visualize common routes in the network, we must ensure that our
trajectory information is mapped to the network, that is, that each trajectory is translated
into a route. This problem is generally known as map matching.



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:5

Related work. Map-matching is a broadly studied topic in GIS; see [8] for a recent survey.
As discussed there, the different approaches are categorized by their matching model. For
our purpose, we consider a map-matching approach using the similarity model, since this
requires less parameters. But in principle, any approach will work in our pipeline.

Our implementation. We use the map-matching algorithm described by Alt et al. [2], which
runs in O(|G||T | log |G||T | log |G|) time on a network G and trajectory T . The algorithm
ensures that the route found has minimal Fréchet distance to the trajectory and thus that it
is geometrically close. Our motivation for doing so is to remain as close as possible to the
information of the trajectory. That is, to the information “visible” if we were to simply draw
all trajectories. This algorithm is able to handle noise relatively well, but in case of very
sparsely sampled trajectory data, it may struggle to find the most natural route.

4 Step 2: Select roads

Desiderata. We aim to select the roads for two somewhat distinct purposes. First, we want
to select the roads where there is considerable traffic, to facilitate well-supported bundles.
This purpose is thus inherently data-driven. But second, we want to select major roads
to provide a frame of reference for the viewer as to how the mobility patterns are situated
in space. It stands to reason that often, major roads also carry a large part of the traffic.
However, this is not necessarily the case.

Related work. Selection is an important part of road network generalization algorithms.
The goal is to select the most important parts of the network, such that the remainder can be
discarded in the simplification process. Different approaches exist to determine what features
of the road-network are “salient”. Examples of these approaches are using the mesh density [9],
using user defined weights [14] and using areas of faces combined with semantic labels [20].
Different from the previous are approaches that focus on “strokes” through the network: lines
of good continuation, that is, lines with small local curvature [21]. During generalization,
these strokes are considered atomic units and are selected based on their relative importance.
This importance is often determined via network centrality measures [29, 33].

More recently, approaches focus on using traffic data to inform the selection process [23, 35].
Yu et al. propose an approach that is based on strokes, but during the selection process
considers traffic flow from one stroke to the other, increasing the likelihood that strokes that
give good traffic flow continuation are selected together. Van de Kerkhof et al. [23] follow a
different approach, where the selection process is formulated as a covering problem, and the
trajectories need to be covered by the selection of the road-network.

Figure 2 Selection by road type (left) and by traffic (middle), combination of both (right).

GISc ience 2021



7:6 Coordinated Schematization for Visualizing Mobility Patterns on Networks

Our implementation. We use the approach by van de Kerkhof et al. [23] which seeks to
select a subgraph G′ of the network with bounded length, such that the number of routes
that are completely within this subgraph is maximized. Though the authors prove that this
problem is NP-hard, they also describe a heuristic that runs in O(|T |2 log |T | + |T ||G|) time;
we use this heuristic in our implementation (see Fig. 2 (middle)). After selecting G′, we add
any edges that were not selected yet and have a large enough road type. If the resulting
selected network is not connected, we optionally select the largest connected component;
none of the later steps require the network to be connected (see Fig. 2 (left) and (right)).

5 Step 3: Schematize the network

Desiderata. Even after selection, the network tends to contain more detail than necessary
to provide a meaningful overview of mobility patterns: different lanes, cloverleaves, etc.
Instead, we should get a high-level overview that communicates the main connectivity in
the network, and as such create space to visualize mobility patterns (bundles). That is, we
should collapse (aggregate) and simplify such local details. We do so beyond the need of
target scale, instead focusing on functional detail: that is, we schematize the network. The
network should remain spatially informative: roughly similar to the overall input geometry.

Related work. In automated cartography, the process of schematization is used to render
aesthetically pleasing networks or polygonal domains that are decluttered enough to convey
important information on the schematic [17]. Compared to generalization, schematization
commonly reduces the input to such an extent that it is not necessarily realistic anymore,
albeit retaining important features to recognize the original. Note that in general, the input
to these algorithms is a detailed map of the road-network, whereas we input a selection of
the map based on data, thus making it a data-driven schematization.

One approach is to limit the type of the geometry in the output, thus naturally reducing
detail. Here it is common to fix the allowed number of orientations of lines in the network [7,
30], particularly in the context of metro maps. Alternatively one can fix the geometric
primitives that can be used, for instance circular arcs [25] or Bézier curves [26].

To retain recognizability, schematization typically limits the spatial distortion between
input and output by fixing vertex locations [7] or minimizing the distance between input and
output edges, for instance via the Fréchet distance [25]. In addition, it is common to maintain
the topology of the input, which plays a key role in recognition of the output. We note that
for our approach, we want to retain the topology of the network at a certain scale, thus small
topological features should be removed prior to applying a topology-preserving schematization
approach. An alternative would be to consider continuous scale generalizations [27, 28] and
applying schematization at the desired scale. An important aspect is then to be able to
retain a mapping from the edges in the selected network to the schematization.

Our implementation. We first drastically simplify and collapse the selected network G′,
after which we apply the arc schematization algorithm by van Dijk et al. [25] for its aesthetic
and clean representation, resulting in a schematic road-network G.

Our implementation applies the sequence of operations described below. We use simple
steps in an incremental fashion to facilitate coordination and maintain a mapping between
the edges of the selected network and the schematic network. Our simple operations can
result in fairly coarse approximations. However, since our target is a highly abstracted final
map, the coarseness of the earlier operations is not an issue.



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:7

e0 e1

e′

α

Figure 3 (left) Replacing shallow turns; (middle) network before; (right) network after.

Collapse dead ends We first remove short paths in the network that do not increase the
overall connectivity. Starting at a degree-1 vertex, we move along degree-2 vertices only
to trace a visual “dead end” until we find a vertex that does not have degree 2. We
compare its geometric length to a predefined parameter lmax, and collapse the path to
this last vertex if its length falls below this threshold. We use lmax = 100m initially, and
lmax = 1000m after the face-collapse operation. For coordination, we reroute any route
along the collapsed edges to the endpoint that remains.

Replace shallow turns A detailed input network frequently contains small bends. The final
schematization would remove such detail, but we perform this step early to simplify
the merge and collapse operations to follow. For every degree-2 vertex, we consider the
smallest angle between its incident edges. If this angle exceeds some predefined limit β,
we replace the vertex and its two incident edges with a single edge; see Fig. 3. We use
β = 150◦ before and β = 140◦ after the face-collapse step. For coordination, we reroute
any route on one or both of the replaced edges e0 and e1 to the new edge e′.

Merging vertices Junctions in the road-network are too detailed for our schematic; ideally
we represent them by a single vertex. To this end, we fix a radius r within which we merge
vertices. For a vertex v, the merge operation for v merges all vertices within distance
r of v (including v itself) to a single new vertex, placed at the centroid of the merged
vertices (see Fig. 4). We iteratively merge vertices, prioritized by the number of vertices
within radius r. We use r = 0.01D with D the length of the diagonal of the bounding
box of the network. After merging faces, we use a larger radius of r = 0.03D.
For coordination, edges inside the merge radius are mapped to the new vertex (e.g., red
edges to vr in figure). Edges between different new vertices or between a new vertex and
an unmerged vertex are consolidated to new edges (purple and blue in figure).

vr vb

r

Figure 4 (left) Merging vertices; (middle) network before; (right) network after.

GISc ience 2021



7:8 Coordinated Schematization for Visualizing Mobility Patterns on Networks

ev

e′0

e′1
v

Figure 5 (left) vertex-edge merging; (middle) network before; (right) network after.

Figure 6 (left) Face collapse; (middle) network before; (right) network after.

Merging vertices with edges A vertex can be close to an edge, even though it is not close
to its endpoints. In such cases, we merge vertices into nearby edges that are not incident
to the vertex itself. We use the distance r as specified earlier, and try to collapse a vertex
v to the closest non-incident edge e that is within distance r, where we demand that v

lies in the slab spanned by e (see Fig. 5). For coordination, any route using the former
edge e is now using the two (possibly new) edges e′

0 and e′
1 from v to the endpoints of e.

Face collapse We now consider the faces of the network and collapse them onto a single
geometry, if they are “small”. Specifically, we collapse faces with an area of at most
amax = 0.01A, where A is the area of the bounding box of the network.
To collapse a small face F , we first collapse all interior degree-2 paths, independent of
length. We then compute the minimal oriented bounding box of F , select its major axis,
and cut F along this axis. In case of a non-convex face, we select the longest internal
intersection between F and the axis (see Fig. 6). The cut introduces two cycles; we break
both cycles by removing an edge or a path of degree-2 vertices from each; we can do so
while maintaining the distances to the cut along the cycle for all higher-degree vertices.
For coordination, we reroute any route that used the removed edges via the cut.

Cleanup After face merging, we repeat all earlier operations once more to clean up the
geometry and prepare for computing the final schematization.

Arc schematization For our final schematization, we chose the arc schematization algorithm
by van Dijk et al. [25]. This algorithm produces a low complexity schematization using
(circular) arcs, while maintaining the topology of network. To encourage the use of
straight lines over very shallow arcs, we increase the relative importance of straight lines
by reducing the Fréchet distance for straight lines by a factor 0.3. Because this algorithm
only removes vertices, coordination is straightforward, similar to replacing shallow turns.

Time complexity. The simplification operators run in roughly quadratic time with a
straightforward implementation. The arc schematization algorithm dominates the operations
to simplify the network. Thus, the time complexity is O(n2h log n), where h is the number



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:9

of vertices with degree higher than three in the input simplification and n the number of
vertices, which is greatly reduced from the input at this point. Coordinating the changes
between the road network and a trajectory T takes roughly O(|G||T |).

6 Step 4: Detect bundles

Desiderata. We aim to detect bundles that are well-supported by the routes to provide
insight into the overall mobility patterns. As such, we identify two desired properties of
a bundle. First, it has to be supported by many routes. Specifically, we do not want a
bundle representing a single trajectory (potentially an outlier), but rather the common
behavior. Second, a bundle should be long in terms of (geometric) length. We aim to show
mobility patterns that describe how vehicles move through the space. A long bundle is
more descriptive of behavior than a short one; in the extreme case, a short bundle (even or
especially if it is supported by many routes) may consist of one single edge (road segment),
which does not help to communicate patterns beyond the existence of considerable local
traffic. That is, we want to find long bundles that are supported by many routes.

As we aim to visualize not one but multiple bundles simultaneously, we further use three
criteria to assess a set of bundles. First, we restrict our attention to maximal bundles only.
That is, we consider only bundles to which we cannot add another route for its support, but
specifically also not increase its length without having to reduce its support. Second, we
generally want to see patterns of mobility that are spatially diverse: we prefer having bundles
through different parts of the network, if the trajectories allow them. That is, we would like
to avoid overlap between bundles as overlap communicates the same (local) behavior.

Third, a bundle fully contained within another may not provide much extra insight into
mobility beyond showing a higher support for the contained route. We call a set of bundles
containment-free if no bundle is a subroute of another. Note that containment-free bundles
are not necessarily overlap-free and thus this is different from spatial diversity. Overlap-free
bundles are containment-free, but we do not interpret spatial diversity as strict overlap-free.

In a containment-free set of maximal bundles each route may still support multiple
bundles. If these are disjoint bundles, then we accept this as a bundle. However, as we are to
eventually visualize the bundles, it may be misleading if well-supported bundles that share
an edge are only well-supported because they share many trajectories. Thus, we choose to
count the support for bundles in a disjoint manner: that is, routes through the overlap of
bundles can be counted to support only one of these. We refer to this as the disjoint support.

Finally, note that we consider the network bidirectional, in the sense that each edge is
present twice, once for each direction of travel. The considerations above should consider the
direction of travel. That is, a bundle is directed and can, for example, only be supported
by routes in the same direction. Two bundles that use the same set of edges, but travel in
opposite direction, would hence be considered overlap-free.

Related work. Our bundling is closely related to finding groups of trajectories and finding
representatives of trajectories, so-called centers. In the context of spatio-temporal data,
grouping structures are used to find common patterns of mobility [5]. The groups that are
constructed essentially are trajectories that move close together for a sufficient amount of
time and with enough members in the group. Since we work with map-matched trajectories,
we consider routes close when they share edges in the network, and we require bundles to
have at least some minimum length.

Note that finding a group does not directly result in finding a representation for the
behavior of the group. To represent the behavior of groups, a common approach is to cluster
trajectories according to some metric, resulting in centers describing common behaviour for

GISc ience 2021



7:10 Coordinated Schematization for Visualizing Mobility Patterns on Networks

the trajectories that are close to these centers under the used metric. This has been applied
to the spatial component under different metrics and algorithmic approaches [6, 16, 18];
see [36] for a more comprehensive overview.

Since we work with map-matched routes, finding the bundles is similar to finding common
substrings over a finite alphabet, where the alphabet is the set of edges and the routes form
strings over this alphabet. Finding k-common substrings [4] is particularly related, since it
demands a minimum number of matches k, similar to our high support requirement.

Our implementation. We search for a spatially diverse set of up to k bundles, where each
bundle is a maximal bundle with a minimum length Lmin and minimum disjoint support
Smin. We construct this set by incrementally adding the “most informative” bundle.

To quantify this, we define the importance of a bundle in a way that allows a trade-off
between length, disjoint support and spatial diversity. Specifically, the importance I(B) of a
bundle B is defined as I(B) = Lp|S|1−p for p ∈ [0, 1], where L is the length of the bundle
and S is the (disjoint) set of supporting routes. The rationale behind this is that, in the
case of p = 0 or p = 1 we simply prioritize by total support or bundle length, respectively.
However, if we set p = 0.5, then we prioritize the bundles by the total length of the route-set
in its support. This allows a trade-off between length and disjoint support.

We define the length of a bundle B as
∑

e∈B ℓ(e) for some function ℓ. With ℓ(e) = |e|
(the Euclidean length) we promote long bundles directly. As we use disjoint support, there is
already some preference for spatially diverse bundles, but we observe that this still leads to
very similar bundles. To promote spatial diversity further, we may alter ℓ. Specifically, we
also allow for using ℓ(e) = |e|/(1 + b(e)) where b(e) is the number of selected bundles already
using edge e. That is, conceptually, we “shrink” edges that have been used by other bundles.
We thus refer to this setting as shrunk edge lengths.

We compute the most important bundle B by using a simple backtracking procedure.
We then add B to our bundle set and remove its support from the complete set of routes.
We repeat this process until k bundles have been found. If no bundle of sufficient length and
support is found but we do not have k bundles yet, we halve Smin and repeat. We halve Smin
at most twice, creating three classes of bundles (“thick”, “medium” and “thin” bundles).

Intuitively, focusing on bundle length (higher values of p) is suitable for finding longer
bundles that may have less support; useful to investigate longer mobility patterns. Reducing
p focuses more on support and thus on patterns that are very frequent. In Fig. 7 (rendered
according to our final step) we vary p and observe that reducing p (i.e., increasing importance
of support) leads to less spatially diverse routes, but increases the bundle classes.

Figure 7 Ten bundles for different importance schemes: p = 1 (left), p = 0.5 (middle) and p = 0
(right). We used Smin = 500 and Lmin = 6000m, with shrunk edge lengths.



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:11

Figure 8 Ten bundles for different approaches to spatial diversity: Euclidean edge lengths (left),
shrunk edge lengths (right). We used Smin = 500 and Lmin = 6000m and p = 0.5.

Changing the edge lengths may encourage diversity, but may result in bundles of lower
classes, as routes through existing bundles are “shorter” and thus less important. In Fig. 8
we compare the result using both our settings. Euclidean edge lengths show mostly similar
routes, but we observe that shrunk edge lengths increase the spatial diversity. It does not
avoid overlap, but it does reduce containment slightly (from 5 to 2 contained pairs).

Computing one bundle takes O(|T ||G|) time, where G is the schematized network. This
time includes the necessary changes to the information for computing the next bundle, so
computing k bundles takes O(k|T ||G|) time.

7 Step 5: Render schematic network with bundles

Desiderata. We now aim to jointly render the bundles and the schematic network, such that
the bundles are clearly conveyed. For this, the bundles should be easily identified. Common
practice is to use colors to identify the separate bundles, and in addition separate them
visually. However, the bundles need to be rendered such that it is also easy to determine from
what parts of the network they originate. Thus, rendering them in close spatial proximity to
the associated edges would also be beneficial to the readability of the schematic. In addition,
it should be possible to identify the (approximate) support for a bundle.

Related work. Rendering bundles in a network is similar to rendering the lines of a metro
network, which is a well studied topic [32]. Common problems involve ordering lines on a
common connection to avoid crossings and ensure good continuation at stations.

The offset rendering used in our implementation may want to avoid offsetting edges of
a bundle with different distances, thus encouraging good continuation. If we allow gaps
between bundles at an edge but disallow differences in offset within a single bundle, the
problem is essentially to assign a layer to each bundle, minimizing the number of layers, such
that two overlapping bundles use different layers. Even if the network would be a single
cycle, this problem is NP-hard [11]; minimizing change is hence NP-hard as well.

(a) (b)

Figure 9 (a) A local self-intersection caused by offsetting and its resolution. (b) Local deviation
from the direction of travel of the bundle and its resolution.

GISc ience 2021



7:12 Coordinated Schematization for Visualizing Mobility Patterns on Networks

Our implementation. Our main approach is to render each bundle as a a curve that is
slightly offset from the network, such that they do not coincide with the network, nor each
other. We visualize the direction of a bundle by offsetting its curves to a particular side of
the network edges. As our example datasets are both in areas where cars drive on the right
side of the road, we hence locally offset to the right. This scheme allows for identifying the
direction of a bundle, without relying on other visual cues such as arrow heads.

We lay out the bundles one at the time along the network. Each edge in the bundle gives
an arc that is offset from the edge by a distance d(b + 1) for some constant d > 0, where b is
the number bundles already placed at that edge. The bundle is now a sequence of arcs that
do not quite connect correctly yet. We initially reconnect the arcs using straight segments.
If this causes the curve to locally self-intersect (Fig. 9(a)) or cause small corners (Fig. 9(b)),
directed opposite to the actual bundle direction, we simplify these artifacts as to achieve
a simple curve that is always (roughly) directed in the direction of travel of the bundle.
This operation takes O(l log l) time, where l is the total complexity of the rendered bundles.
Finally, we slightly smooth the connecting segments by reducing the arcs by a small distance
and using the old endpoints as control points for a Bézier curve instead. We render the
resulting curves using colors of the “10-class Paired” qualitative scheme from ColorBrewer
(https://colorbrewer2.org/), and use a line thickness based on bundle class. By using
classes instead of support, it is primarily aimed at separating main from secondary patterns.

8 Results

We implemented our proposed pipeline in C++, using MoveTK (https://movetk.win.tue.
nl/) for trajectory processing and CGAL (https://cgal.org/) for geometric operations.

The HR dataset has been used to illustrate and discuss our pipeline throughout the
paper. It covers the area of The Hague, the Netherlands. The network is obtained from
OpenStreetMap (https://www.openstreetmap.org/) and has 60 277 vertices and 66 895
edges. In step 2, we use “primary” as the minimum road level for selection (https://wiki.
openstreetmap.org/wiki/Key:highway). The GPS trajectories were provided by HERE
Technologies (https://www.here.com/). As we are looking for patterns in mobility, we used
only trajectories with a length of at least 10 000m that fall within the bounding box of the
network. Trajectories partially within the bounding box were split and each part was treated
as a separate trajectory. This left us with 3 795 trajectories as input.

The BJ dataset covers the metropolitan area of Beijing, China. The network is also
obtained from OpenStreetMap and has 77 691 vertices and 132 167 edges. In step 2, we again
use “primary” as the minimum road level for selection. The GPS trajectories originate from
the open Geolife trajectory dataset by Microsoft [37], constrained to this region. We apply
the same filtering step as for HR; this left us with 7 520 trajectories as input. The result of
our pipeline is shown in Fig. 10. The Geolife dataset mainly contains trajectories obtained
from taxi-drivers. We can clearly see in the heat-map of the dataset that there is a high
concentration in the top-left, and in our schematic we see that relatively small, loop-like
routes, capture a lot of the traffic in that region. Moreover, we see that most bundles occur
in pairs, that is, two roughly identical bundles but in opposite directions. Our schematic
map generally captures the outer ringroad, but struggles somewhat to capture the grid-like
structure of the inner city. This is because the arc-based nature of our schematization
algorithm is somewhat opposite to such structures. Future work may investigate hybrid
approaches to schematizing such mixed networks of ring roads and non-grid-like structures
with arcs, but grid-like structures with parallel segments.

https://colorbrewer2.org/
https://movetk.win.tue.nl/
https://movetk.win.tue.nl/
https://cgal.org/
https://www.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/Key:highway
https://wiki.openstreetmap.org/wiki/Key:highway
https://www.here.com/


B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:13

Input Step 1: Map-match Step 2: Select roads

T
ra

je
ct

or
ie

s
N

et
w

or
k

Step 3: Schematize Step 4 + 5: Bundle & Render

T
ra

je
ct

or
ie

s
N

et
w

or
k

Figure 10 Our pipeline on the BJ data. The input trajectories are shown as a density map. For
the map-matched routes, we use a orange to red scale to convey low to high traffic volume per edge.
We compute the bundles in Step 4 with Smin = 150, Lmin = 8000m, p = 0 and shrunk edge lengths.

GISc ience 2021



7:14 Coordinated Schematization for Visualizing Mobility Patterns on Networks

9 Discussion and future work

We propose a coordinated pipeline to create abstract visual summaries of mobility patterns
in trajectory data. Our proof-of-concept implementation shows that the pipeline is feasible
and can fully automatically compute such schematic maps. The advantage of a pipelined
approach is that we may improve upon steps individually to improve the eventual result.
Below, we reflect on our choices in the pipeline design, and discuss future work.

Step order. We could in principle also map-match (step 1) after selection (step 2). However,
this would not allow for a data-driven approach for selection. Moreover, this forces all traffic
to the selected roads, which may hide information on traffic that does not follow the selected
(major) roads. For HR, the data-driven selection seems to not have made a large impact on
the selected network; for BJ more extensive parts of the network were added because of the
data-driven selection. We leave to future work to investigate whether inversion of these steps
is able to provide meaningful visualizations.

Similarly, we may wonder whether we would want to detect bundles (step 4) before
schematization (step 3). As schematization reduces the network complexity, it is more
efficient to do afterwards. It may distort distances, but we can keep track of the original
distances if desired – note that aggregation in step 3 does not make each route in the
schematic network map to precisely one route in the original network. Another reason
supporting our choice for the given order is that schematization may further aggregate dense
areas of the network. By bundling afterwards, the support for such bundles grows since they
are effectively representing more traffic that generally traverses the dense area in roughly the
same way. We believe that our choice helps in promoting spatial diversity, as dense areas
with low traffic per road may reduce to a single road with higher traffic. In light of our very
spatially uneven datasets, this seems desirable. However, we leave the full exploration of the
impact of this choice as future work.

Augmenting the schematic map. We split the map-matched trajectories according to
whether or not the route is on the selected network. This leaves us with parts of the
trajectories that go through unselected parts of the network and are thus dropped from the
schematic map. We intend to explore ways of visualizing these dropped subroutes to provide
information on the traffic not part of the selected network. On a computational level, an
approach we see for this is to track these subroutes relative to the faces of an embedding of
the network. This, however, demands that we meticulously keep track of what happens to
these faces during the simplification stages. But it also requires visual design: what do we
want to show of these dropped routes, and how does that combine with the shown bundles?

While our mapping between simplifications is discrete in nature, an interesting direction
of research would be to extend this to continuous mappings, where routes are also allowed
to start in the middle of edges. An appropriate map-matcher should also be selected, since
the Fréchet map-matching approach maps only to full edges, though we expect the overall
impact of allowing continuous routes here to be minor, as it is performed on the original,
detailed network. The primary question is how we can alter the schematization step to allow
for high-quality continuous mapping through aggregation and simplification of the network.

Using the schematic map. In our proposed pipeline, we do not incorporate the time
component of the input trajectories explicitly. Given that the schematic shows strongly
aggregated data in a concise way, we can easily use our approach to show small-multiples for
different time frames in the data set. This leaves open the question what the best selection
method of the road-network is in this case, which we defer to future work.



B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 7:15

Our method hides any of the effects of sampling and noise in the data, as well as the
deformation and aggregation that occurs in our pipeline, which may be unintuitive to end
users. Though the schematic appearance aims to implicitly convey such information, it may
be communicated more explicitly with additional uncertainty visualization, albeit at the cost
of added visual complexity.

The final schematization is strongly influenced by the selected parameters in steps of our
pipeline. We scale parameters by a typical size (e.g. bounding box diagonal or area) to be
able to assign parameters independent of scale. Nevertheless, visualizing the impact of the
parameters on the end result could help users pick appropriate values for their use cases.

References
1 N. Adrienko and G. Adrienko. Spatial generalization and aggregation of massive movement

data. IEEE TVCG, 17(2):205–219, 2010. doi:10.1109/TVCG.2010.44.
2 H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms,

49(2):262–283, 2003. doi:10.1016/S0196-6774(03)00085-3.
3 G. Andrienko, N. Andrienko, W. Chen, R. Maciejewski, and Y. Zhao. Visual Analytics

of Mobility and Transportation: State of the Art and Further Research Directions. IEEE
Transactions on Intelligent Transportation Systems, 18(8):2232–2249, 2017. doi:10.1109/
TITS.2017.2683539.

4 M. Arnold and E. Ohlebusch. Linear time algorithms for generalizations of the longest common
substring problem. Algorithmica, 60(4):806–818, 2011. doi:10.1007/s00453-009-9369-1.

5 K. Buchin, M. Buchin, M. van Kreveld, B. Speckmann, and F. Staals. Trajectory grouping
structure. In WADS, pages 219–230, 2013. doi:10.1007/978-3-642-40104-6_19.

6 K. Buchin, A. Driemel, J. Gudmundsson, M. Horton, I. Kostitsyna, M. Löffler, and M. Struijs.
Approximating (k, l)-center clustering for curves. In Proc. SODA, pages 2922–2938, 2019.
doi:10.1137/1.9781611975482.181.

7 S. Cabello, M. de Berg, and M. van Kreveld. Schematization of networks. Computational
Geometry, 30(3):223–238, 2005. doi:10.1016/j.comgeo.2004.11.002.

8 P. Chao, Y. Xu, W. Hua, and X. Zhou. A survey on map-matching algorithms. In ADC, pages
121–133, 2020. doi:10.1007/978-3-030-39469-1_10.

9 J. Chen, Y. Hu, Z. Li, R. Zhao, and L. Meng. Selective omission of road features based
on mesh density for automatic map generalization. IJGIS, 23(8):1013–1032, 2009. doi:
10.1080/13658810802070730.

10 W. Chen, F. Guo, and F.-Y. Wang. A survey of traffic data visualization. IEEE Transactions on
Intelligent Transportation Systems, 16(6):2970–2984, 2015. doi:10.1109/TITS.2015.2436897.

11 M. Garey, D. Johnson, G. Miller, and C. Papadimitriou. The complexity of coloring circular
arcs and chords. SIAM Journal on Algebraic Discrete Methods, 1(2):216–227, 1980. doi:
10.1137/0601025.

12 H. Imai and M. Iri. Computational-geometric methods for polygonal approximations of a
curve. Computer Vision, Graphics, and Image Processing, 36(1):31–41, 1986. doi:10.1016/
S0734-189X(86)80027-5.

13 M.-J. Kraak. The Space-Time cube revisited from a Geovisualization perspective. In Proc.
ICC, pages 1988–1996, 2003.

14 L. Kulik, M. Duckham, and M. Egenhofer. Ontology-driven map generalization. Journal of
Visual Languages & Computing, 16(3):245–267, 2005. doi:10.1016/j.jvlc.2005.02.001.

15 O. Lampe and H. Hauser. Interactive visualization of streaming data with kernel density
estimation. In Proc. IEEE PacificVis, pages 171–178, 2011. doi:10.1109/PACIFICVIS.2011.
5742387.

16 J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group framework.
In Proc. 2007 ACM SIGMOD, pages 593–604, 2007. doi:10.1145/1247480.1247546.

17 W. Meulemans. Similarity Measures and Algorithms for Cartographic Schematization. PhD
thesis, TU Eindhoven, 2014. doi:10.6100/ir777493.

GISc ience 2021

https://doi.org/10.1109/TVCG.2010.44
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1109/TITS.2017.2683539
https://doi.org/10.1109/TITS.2017.2683539
https://doi.org/10.1007/s00453-009-9369-1
https://doi.org/10.1007/978-3-642-40104-6_19
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1016/j.comgeo.2004.11.002
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1080/13658810802070730
https://doi.org/10.1080/13658810802070730
https://doi.org/10.1109/TITS.2015.2436897
https://doi.org/10.1137/0601025
https://doi.org/10.1137/0601025
https://doi.org/10.1016/S0734-189X(86)80027-5
https://doi.org/10.1016/S0734-189X(86)80027-5
https://doi.org/10.1016/j.jvlc.2005.02.001
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.6100/ir777493


7:16 Coordinated Schematization for Visualizing Mobility Patterns on Networks

18 A. Nath and E. Taylor. k-Median clustering under discrete Fréchet and Hausdorff distances,
2020. arXiv:2004.00722.

19 R. Scheepens, N. Willems, H. van de Wetering, and J. van Wijk. Interactive visualization of
multivariate trajectory data with density maps. In IEEE PacificVis, pages 147–154, 2011.
doi:10.1109/PACIFICVIS.2011.5742384.

20 R. Šuba, M. Meijers, and P. van Oosterom. Continuous road network generalization throughout
all scales. ISPRS Journal of Geo-Information, 5(8):145, 2016. doi:10.3390/ijgi5080145.

21 R. Thomson. The ’stroke’ concept in geographic network generalization and analysis. In Progress
in Spatial Data Handling, pages 681–697. Springer, 2006. doi:10.1007/3-540-35589-8_43.

22 C. Tominski, H. Schumann, G. Andrienko, and N. Andrienko. Stacking-based visualization of
trajectory attribute data. IEEE TVCG, 18(12):2565–2574, 2012. doi:10.1109/TVCG.2012.265.

23 M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Löffler, and T. Ophelders. Route-
preserving road network generalization. In Proc. ACM SIGSPATIAL, pages 381–384, 2020.
doi:10.1145/3397536.3422234.

24 S. van den Elzen and J. van Wijk. Multivariate network exploration and presentation: From
detail to overview via selections and aggregations. IEEE TVCG, 20(12):2310–2319, 2014.
doi:10.1109/TVCG.2014.2346441.

25 T. van Dijk, A. van Goethem, J.-H. Haunert, W. Meulemans, and B. Speckmann. Map schemati-
zation with circular arcs. In GIScience, pages 1–17, 2014. doi:10.1007/978-3-319-11593-1_1.

26 A. van Goethem, W. Meulemans, A. Reimer, H. Haverkort, and B. Speckmann. Topologically
safe curved schematisation. The Cartographic Journal, 50(3):276–285, 2013. doi:10.1179/
1743277413Y.0000000066.

27 M. van Kreveld. Smooth generalization for continuous zooming. In IGU, pages 2180–2185,
2001. URL: https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/
file/f13042.pdf.

28 P. van Oosterom. Variable-scale topological data structures suitable for progressive data
transfer: The GAP-face tree and GAP-edge forest. Cartography and Geographic Information
Science, 32(4):331–346, 2005. doi:10.1559/152304005775194782.

29 R. Weiss and R. Weibel. Road network selection for small-scale maps using an improved
centrality-based algorithm. Journal of Spatial Information Science, 2014(9):71–99, 2014.
doi:10.5311/JOSIS.2014.9.166.

30 A. Wolff. Drawing subway maps: A survey. Informatik-Forschung und Entwicklung, 22(1):23–44,
2007. doi:10.1007/s00450-007-0036-y.

31 J. Wood, J. Dykes, and A. Slingsby. Visualisation of Origins, Destinations and
Flows with OD maps. The Cartographic Journal, 47(2):117–129, 2010. doi:10.1179/
000870410X12658023467367.

32 H.-Y. Wu, B. Niedermann, S. Takahashi, and M. Nöllenburg. A survey on computing schematic
network maps: The challenge to interactivity. In Proc. Schematic Mapping Workshop, 2019.
URL: https://www.cg.tuwien.ac.at/research/publications/2019/wu-2019-smw/.

33 B. Yang, X. Luan, and Q. Li. Generating hierarchical strokes from urban street networks
based on spatial pattern recognition. IJGIS, 25(12):2025–2050, 2011. doi:10.1080/13658816.
2011.570270.

34 Y. Yang, T. Dwyer, S. Goodwin, and K. Marriott. Many-to-many geographically-embedded
flow visualisation: An evaluation. IEEE TVCG, 23(1):411–420, 2016. doi:10.1109/TVCG.
2016.2598885.

35 W. Yu, Y. Zhang, T. Ai, Q. Guan, Z. Chen, and H. Li. Road network generalization considering
traffic flow patterns. IJGIS, 34(1):119–149, 2020. doi:10.1080/13658816.2019.1650936.

36 G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang. A review of moving object trajectory
clustering algorithms. Artificial Intelligence Review, 47(1):123–144, 2017. doi:10.1007/
s10462-016-9477-7.

37 Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences
from GPS trajectories. In Proc. WWW, pages 791–800, 2009. doi:10.1145/1526709.1526816.

http://arxiv.org/abs/2004.00722
https://doi.org/10.1109/PACIFICVIS.2011.5742384
https://doi.org/10.3390/ijgi5080145
https://doi.org/10.1007/3-540-35589-8_43
https://doi.org/10.1109/TVCG.2012.265
https://doi.org/10.1145/3397536.3422234
https://doi.org/10.1109/TVCG.2014.2346441
https://doi.org/10.1007/978-3-319-11593-1_1
https://doi.org/10.1179/1743277413Y.0000000066
https://doi.org/10.1179/1743277413Y.0000000066
https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/file/f13042.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/file/f13042.pdf
https://doi.org/10.1559/152304005775194782
https://doi.org/10.5311/JOSIS.2014.9.166
https://doi.org/10.1007/s00450-007-0036-y
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1179/000870410X12658023467367
https://www.cg.tuwien.ac.at/research/publications/2019/wu-2019-smw/
https://doi.org/10.1080/13658816.2011.570270
https://doi.org/10.1080/13658816.2011.570270
https://doi.org/10.1109/TVCG.2016.2598885
https://doi.org/10.1109/TVCG.2016.2598885
https://doi.org/10.1080/13658816.2019.1650936
https://doi.org/10.1007/s10462-016-9477-7
https://doi.org/10.1007/s10462-016-9477-7
https://doi.org/10.1145/1526709.1526816

	1 Introduction
	2 The pipeline
	3 Step 1: Map-match trajectories to the network
	4 Step 2: Select roads
	5 Step 3: Schematize the network
	6 Step 4: Detect bundles
	7 Step 5: Render schematic network with bundles
	8 Results
	9 Discussion and future work

