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—— Abstract

Current techniques for simplification focus on reducing complexity while maintaining the geometric
similarity to the input. For isolines that jointly describe a scalar field, however, we postulate
that geometric similarity of each isoline separately is not sufficient. Rather, we need to maintain
the harmony between these isolines to make them visually relate and describe the structures of
the underlying terrain. Based on principles of manual cartography, we propose an algorithm for
simplifying isolines while considering harmony explicitly. Our preliminary visual and quantitative
results suggest that our algorithm is effective.
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1 Introduction

Isolines are among the most common and effective cartographic techniques for visualizing
scalar field-type data, such as terrain, precipitation, air pressure or, more abstractly, travel
times. Isolines as a visualization method share and mirror an aspect of fields themselves: only
the multitude of isolines signifies the phenomenon and the objects that it comprises. A single
spot height is insufficient to understand the lay of the land, and equally insufficient is the
individual isoline. It follows naturally, that the visual and the geometric relationships between
individual, pairs, and groups of isolines are essential to their cartographic effectiveness.

Geographic data need to be represented at different scales for specific tasks. The processes
that transform the visualization of geographic datasets due to scale-changes are subsumed
under the term generalization. Our approach aims to partially capture interdependencies in
the form of “harmony” of isolines while generalizing them. Visual harmony as a concept alludes
to neighboring isolines behaving in a similar manner where such behavior is warranted. In
cartographic practice, questions of harmony used to be addressed by the human cartographer.
Nowadays isolines are usually generated automatically by interpolation processes from scalar
fields, with the most common example being Digital Terrain Models (DTM) [32]. As most
progress in automated generalization has been made for topographic maps, research in
automatization of isolines so far has concentrated on the generalization of terrains, with
systems of contour lines being one of the major outputs [16].
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There are two main advantages to generalizing isolines instead of resampling a scalar-
field (usually a DTM) and then interpolate fresh isolines: (1) the ability to directly keep
relations intact within a multi-resolution database, and (2) the avoidance of visual jumps
and resampling artifacts. Consider, for example, a river which must always run through
the deepest part of a valley and as such must be tied to the isolines. When resampling a
DTM and generalizing the drainage polylines independently, the generalized rivers might
run over the slopes of the freshly derived contour line system [25]. Hence, until a few years
ago, many national mapping agencies either kept their manually generalized isolines for their
existing scale ranges and did not automatically derive them for production of topographic
maps, or employed sophisticated techniques to tie freshly generated contour lines to pertinent
database objects and/or the DTM (such as the GAEL-model for Object-Field Relation
Preservation [9]). Such conflation methods are not applicable to most other scalar fields due
to lack of ancillary data. They have also been out of reach for most GIS users, although
some open-source plugins for DTM-based tasks have been released recently [25, 30].

Results and organization. In this paper we propose an algorithm to simplify a whole system
of vector isolines while considering harmony explicitly. In Section 1.1 below, we present
a framework which allows us to consider harmony as an element of cartographic merit of
systems of contour lines. We describe our harmonious simplification algorithm in Section 2
and present experimental results in Section 3. Our examples focus on contour lines, but we
note that our algorithm works with any isoline vector input.

Our method allows us to apply and refine many heretofore neglected design rules (such
as those related to harmony) for isoline systems. It also naturally supports animated morphs
between scales without loss of connections. Last but not least, since our algorithm is targeted
towards vector data, it allows us to apply locally adaptive generalization.

1.1 Harmony

While the word harmony has a wide range of meanings, we are concerned only with harmony
in relation to isolines. On first sight, the harmonious visual interaction between isolines
looks like a lofty or imprecise concept. However, the notion that a pleasing and informative
repetition that goes beyond mere parallelism is a crucial design goal, permeates the literature.
In Swiss cartographic debates of the early 20th century, harmony was explicitly named as an
intermediary design goal, which directly influenced academic and production mountain and
terrain cartography [27]. To move from the qualitative and aesthetic concept of harmony to
actionable requirements, we derive the pertinent design rules from cartographic examples
and cartographic literature. From those design rules, we move on to measurable qualities.
The basic idea of our approach of conceptualizing harmony is a modification of the process
used by Reimer [24] for deriving and modeling harmony for chorematic diagrams. Reimer
follows Goldman [13] and observes that the general merit of a map can be operationalized by
linking objective, measurable qualities to aesthetic qualities of varying abstractness. This is
done hierarchically: the general merit of a map is a function of its accuracy, expressiveness,
and beauty, with originality an optional addition that may well be zero, and is indeed
zero in our case. The first three are the first tier aesthetic qualities. To each of them,
Reimer [24] links a number of second tier aesthetic qualities: more precise, but still not
directly measurable. The third hierarchical tier then links measurable qualities to the second
tier. While the first and second tier are capturing evaluative concepts which apply to every
cartographic expression, the third tier is specific to a type of map or map element. That is,
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Figure 1 Hierarchical structure of the cartographic merit for isolines, measurable properties in
Tier 3. Imhof [18] provides either values or examples for all blue properties, the cartographic literature

provides further guidance for green properties. There are no established values for red properties.

We define harmony as a combination of four Tier 3 properties: contour interval, generalization,
curve adaptation, and parallelism.

the measurable qualities as formalized in the third tier apply to a specific map type, which
are isolines in our case (see Fig. 1). Once we have formalized the third tier for isolines, we
can define harmony as a combination of third tier elements.

Tier 3: measurable qualities for isolines. For the case of contour lines, the accepted
master both on aesthetic as well as scientific design rules is Eduard Imhof [18]. The three
basic overarching dimensions of Imhof’s conceptualization of a good contour line system
arguably match directly to Goldman’s top tier: “Auswertbarkeit” corresponds to accuracy,
“Lesbarkeit” corresponds to expressiveness, and “Empfinden” corresponds to beauty. Imhof
operationalizes these dimensions into concrete global qualities, namely:

G1 Scale-appropriate terrain data.

G2 Contour interval matching the target scale and depicted terrain.
a Round numbers for easy counting preferred.
b Area between isolines shall be neither too big nor too small.
¢ Harmony between all elements of the system.

G3 Easy readability, including generalization, where needed.

As we are interested in generalizing isolines and assuming a stable G1 and G2 setting, we are
especially interested in his comments on G2c and G3. Below we summarize Imhof’s design
rules for small-scale contour line generalization [18]:

R1 For each small area of terrain, design the whole line system together.

R2 Smooth over small jagged parts in a single line if it is not reflected in neighboring lines.

R3 Neighboring contours should never touch. Exceptions for alpine regions (cliffs, karren).

R4 Shapes should reflect reality; sometimes with pointy and jagged parts, sometimes gentle
curves, but neither to the exclusion of the other.

R5 Use ancillary data like terrain crests or breaks of slope when drawing the contour lines.

R6 If a small form cuts across several contours, it should be treated as a whole. Either
retain and draw it everywhere or remove it.

R7.1 Retain prominent, convex, terrain features which are much more visible in-situ than
hollow forms.

R7.2 Emphasize important hollow forms, widening them for legibility if necessary.

R8 Minimize geometry changes when following the other rules.
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For R3 Imhof specifically highlights that the whole line system must be brought under control
and carefully adjusted, not just the overlapping pairs. This is a recurring theme with Imhof’s
design rules which also appears in label placement. We populated Tier 3 with the measurable
properties discussed by Imhof, either in the form of rules or in the form of examples. We
added statistical verity as well as marginal information.

Imhof does not necessarily provide evaluation functions or even parts thereof together
with his rules. An example would be G3b, namely the ratio of area to line, which must be
somehow balanced, but no further information is provided. In Figure 1 we highlighted those
Tier 3 properties in blue for which Imhof gives sufficient guidance. We further highlighted
those properties in green for which sufficient guidance can be found in the cartographic
literature. There remain three properties for which Imhof presents rules, but not sufficient
guidance, namely curve adaption, parallelism, and area to line ratio.

We are now ready to define harmony of isolines: a melange of elements of poignancy
and shapeliness. Following the hierarchy, harmony is potentially measurable by evaluation
functions for generalization solutions, curve adoption and parallelism.

1.2 Related work

A very good overview until 2014 of automated terrain generalization, of which contour line
generation is a subset, can be found in [16]. Since then, recent work was done, for example,
on isobath generalization [15, 28], continuous generalization via morphing [10], improving
conflation of raster DTMs with contour lines [25, 30] and generation of supplementary contour
lines [26]. These examples highlight a growing interest into automated sea-chart production,
online mapping and continued support for NMA-demand via ancillary data-driven processes
based on DTMs for multiple resolution databases. Isobaths are often considered a special
case, due to the peculiar needs for safety constraints [15] as well as being not entirely treated
as representations of a continuous scalar field but rather discrete maritime objects. Although
direct generalization of isobaths from other isobaths in the vector realm is more common
than in current dry-land cartography, they are thus not too much concerned with how the
individual line shapes interact. Current morphing approaches such as [10] use a vertex
matching between origin and target scale and then interpolate on that matching, with few
regards to cartographic design rules.

Moreover, most proposed techniques for the simplification of isolines (e.g., [10, 20]) focus
on individual isolines without explicitly considering the relationship between adjacent isolines.
Recently, van Goethem et al. [11] proposed a technique for simultaneous simplification of
isolines with a focus on parallelism. They strengthen the paralellism between adjacent isolines
while simplifying the input. However, the relative positions of the vertices on adjacent isolines
is not explicitly taken into account, thereby addressing but one facet of harmony.

In recent years several automated simplification approaches have been proposed that
allow the introduction of new vertex locations to more closely approximate the original
input at lower complexity simplifications. The potential new vertex positions are usually
limited, for example using criteria such as maintaining local topology [7, 12], interpolation
between scales [10], or using an underlying grid [23]. An alternative criterion that is often
used is area preservation (e.g., [6, 12, 19, 22, 29, 31]). Area preservation mandates that the
area covered by the simplified feature is exactly equal to the area covered by the original
feature. Area preservation ensures that features can not arbitrarily increase or decrease in
size during the simplification process and can be used to significantly reduce the search space
for new vertex positions. These criteria are often combined together with a standard step
to introduce new vertices. One of the more prominent techniques used for this is the edge
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collapse (e.g, [19, 31]). In an edge collapse a sequence of three consecutive edges is replaced by
two new edges, implicitly “collapsing” the middle edge to a vertex. Our proposed technique
follows these principles of area-preserving edge collapses, but performs such operations in
parallel, so as to promote harmony.

Computing an optimal simplification under the criteria of area preservation is a hard
computational problem. Bose et al. [4] showed that even when solely considering an z-
monotone path computing a simplification of k£ links that is area preserving is NP-hard.
Loffler and Meulemans [21] showed that even when the resulting area-preserving simplification
is restricted to only having (horizontal and vertical) edges on an orthogonal grid the problem
is NP-hard. Similar results appear when considering simplification in a network. Estkowski
and Mitchell [8] have shown that minimizing the number of (degree-2) vertices in a network
subject to a given error bound while preventing intersections is NP-hard to approximate to
within a factor n%_‘s, 6 > 0. The results discussed above underpin the necessity for efficacious
heuristics, such as our proposed method, for computing (harmonious) simplifications.

2 Harmonious simplification algorithm

We present a simple, efficient algorithm to compute the harmonious simplification of a
sequence of polygonal lines. We assume the polylines represent a consistent part of the
terrain (a common snippet of isolines). We note that our techniques readily apply to polygons
as well, and can be generalized to more complex arrangements of isolines. The exact steps of
such generalization are out of scope for this paper and will be addressed in future work.

Our algorithm consists of two main phases: (1) preprocess the polylines to identify
so-called slope ladders; (2) repeatedly collapse slope ladders to reduce complexity while
maintaining harmony. Our initial input is a sequence of polylines P = (P4, ..., P;) where each
P, = (vp1,...Vnn,) is a polygonal line defined by nj, vertices in the plane. Each polyline
represents an isoline and they are ordered by the height they represent, thus consecutive
isolines are also consecutive in the order. We assume that all polylines are given in a
consistent orientation; it is straight-forward to ensure this assumption is always met. Because
the polylines represent isolines, they do not intersect each other nor self-intersect.

2.1 Preprocessing: deriving slope ladders

To maintain harmony during simplification we first need to detect the harmony that is present
in the input. We determine a matching between the vertices of every consecutive pair of
isolines and then combine these into slope ladders stretching multiple isolines.

Matching. The matching between the isolines describes how the adjacent isolines are related
to each other, particularly which pairs of vertices are considered “nearby”, and thus implicitly
describes the terrain represented by the isolines. Such a matching could also be derived from
slope information if available. However, lacking such information,several algorithms exist
that can compute such a matching based on the geometry of the isolines alone. In this paper
we focus on such geometric algorithms, and particularly consider Dynamic Time Warping
(DTW) [3] and the (discrete) Fréchet distance [2]. In this paper, we use Fréchet distance to
refer to the discrete variant, rather than the continuous variant.

We require that a matching between polylines P, and Pj,+1 maps every vertex of P, to
at least one vertex of P41 and each vertex of P11 to at least one vertex of P}, such that
the matching is monotone. That is, if vertex vy ; is matched to vj41,; then every vertex
Up,i, with ¢ > ¢, can only be matched to vertices vj,41 ;- where j° > j, and similarly every
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(a) (b) ()

Figure 2 (a) The polyline matching should be monotone. (b) The DTW matching (left) minimizes
the number of matched pairs instead of preserving locality (right). (¢) Matchings with the same
Fréchet distance; the left matching is locally correct.

vertex vp41,57, with j” > j must be matched to vertices vy, ;+, where ¢/ > 4. Intuitively this
gives rise to a sequence of matchings that have a consistent order along both polylines (see
Fig. 2(a)). Both DTW and the Fréchet distance adhere to these requirements.

As we assume the terrain to be locally consistent with the isolines, matched vertices should
generally be nearby. While both the DTW and the Fréchet distance capture this locality to
some degree, both are not completely satisfactory. Particularly the DTW minimizes the sum
of distances between all matched vertices. Therefore the DTW tends to prefer fewer pairs
even if the pairs of vertices are not close together (see Fig. 2(b)). In contrast the Fréchet
distance focuses purely on the mazimum distance between any pair of matched vertices (the
bottleneck). However, no further distinction is made between all matching that minimize the
bottleneck (see Fig. 2(c)). This may lead to matchings that may not necessarily describe
similarity well [5]. To overcome this issue, Buchin et al. introduced locally correct Fréchet
matchings (LCFM) [5]. These matchings recursively enforce the bottleneck, ensuring the
lowest distances between matched pairs are achieved for all pairs. Such a locally correct
(discrete) Fréchet matching can be computed in the same time as the Fréchet distance.

We observe, however, that using the Euclidean distance for the matching may still lead
to counterintuitive results as the matching line is exterior to the area bounded by the two
isolines (see Fig. 3). To prevent such counterintuitive matchings, we use the geodesic distance
in the bounded area instead. We abbreviate the matchings as ELCFM and GLCFM to
distinguish the Euclidean and Geodesic variants, and again use only the discrete variants.

Slope ladders. We combine the pairwise matchings between consecutive polylines to obtain

a slope skeleton of the hillside described by the isolines. The slope skeleton relates the
underlying geometry across all isolines (R1). For each edge of a polyline we distinguish
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Figure 3 Locally correct Figure 4 (a) Two examples of slope ladders in this skeleton,
Fréchet matchings using the Eu-  one of complexity 2 and one of complexity 5. (b) The rungs of
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the geodesic distance (right). vertices.
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two cases. Either both endpoints of the edge are mapped to the same vertex on the
adjacent polyline (creating a triangle) or they map to two consecutive vertices (creating a
quadrilateral).

We maximally join all quadrilaterals and triangles that share a polyline edge into what we
call a slope ladder: a sequence of quadrilaterals, possibly capped with triangles (see Fig. 4(a)).
A slope ladder can intuitively be thought of as describing a sloped face of the hillside. The
polyline edges in a slope ladder we refer to as the rungs of the ladder (see Fig. 4(b)). Each
rung is associated with four vertices (s, t,u,v): the endpoints of the previous edge, the rung,
and the next edge of the polyline. The complexity of a slope ladder is its number of rungs.

The slope skeleton naturally, uniquely, and fully decomposes into slope ladders: every
polyline edge is a rung in precisely one slope ladder. We can straightforwardly compute the
slope ladders by starting a new slope ladder from an edge which is not assigned to a slope
ladder yet, and using the matching with adjacent polylines to find new edges of the ladder,
until the matching matches both endpoints to the same vertex.

2.2 lterative reduction: a single collapse

We simplify the polylines while ensuring that matched vertices are either maintained or
removed as a whole (R6). This explicitly enforces harmony as we simplify the isolines. We
do so by iteratively collapsing slope ladders. To further strengthen harmony we place new
vertices such that they form a more visually striking cross-isoline feature. Particularly we
ensure that newly placed vertices are collinear.

Area-preserving collapses. To collapse a slope ladder, we replace each of its rungs by a
single vertex. Counsider a rung tu with associated vertices (s, t, u, v) of polyline Pj,. A collapse
removes ¢ and u from P}, and inserts in their place a single new vertex p (see Fig. 5(a,c)).
The new vertex may be placed freely and need not be restricted to the input vertices. In
line with other algorithms, we require area preservation for each isoline, such that the area
between two isolines remains the same. Let A be the signed area of the region enclosed by
the segment sv and the segments between vertices s to v in reverse order (see Fig 5(a)).
This is the area that would be lost (respectively gained) between the adjacent isolines. We
place the new vertex p such that an equivalent area is gained (respectively lost). As spv
forms a triangle and sv is a fixed base, the height of the triangle with respect to this base is
h = %. Thus the placement of p is limited to a line parallel to the segment sv at height
h (see Fig 5(b)). We refer to it as the area-equivalence line for rung tu: any p on this line
ensures exact area preservation (see Fig. 5(c)).

(a) (b) (c)

Figure 5 (a) Area contributed by the original rung and its adjacent edges. (b) The area-
equivalence line. (c) Any position of the area-equivalence line creates a triangle that contributes the
same area as before. (Suboptimal position selected for visualization purposes.)
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H

(a) : (b) ()

Figure 6 (a) Harmony line H for a slope ladder. (b) Span (dark red dashed) of a single rung on
the area-equivalence line. (c¢) The new position (blue boxes) is the intersection of H and L (/L')
snapped to the nearest point on the span. (Arbitrary harmony line for visualization purposes.)

Harmonious candidate positions. To promote harmony we simultaneously select the
position of the new vertices for all rungs (R1, R6). If there is only one rung in the ladder
then we simply use the area-equivalence line and sample it to find the optimal location. In
the following we assume there are at least two rungs. We have two criteria for the placement
of the new vertices: (1) the position should reflect the underlying geometry well; (2) the
positions of the new vertices should be harmonious. We enforce the second criterion by
requiring that all new points are collinear. Given this constraint we then optimize for the
first criterion (R4, R8).

As we require the vertices to be collinear, the only freedom left is to fix the line on which
the new vertices will be placed. This line should ideally be perpendicular to the isolines
themselves, to ensure good alignment of the incident edges for the new vertices. To this
end we construct an initial harmony line H through the midpoints of the first and last rung
in the slope ladder (see Fig. 6(a)). We assume the initial harmony line H intersects the
area-equivalence line of each rung; if it does not, we do not allow collapsing this slope ladder.

The placement of the harmony line directly defines the placement of all vertices. Consider
a single rung. Let (s, t,u,v) be the consecutive four vertices along the associated isoline that
are the endpoints of the rung, the previous edge and next edge. Let L be the area-equivalence
line belonging to the rung. The span of rung tu with respect to L is the maximum interval
on L spanned by a pair of vertices from (s, t,u,v) (see Fig. 6(b)). If the intersection of H
with L lies inside the span of the rung, then the position p at which the new vertex will be
placed is the intersection of H and L, otherwise p is the closest endpoint of the span to the
intersection of H and L (see Fig. 6(c)).

Directly using the initial harmony line is too restrictive. To improve flexibility we allow
the harmony line to be offset (perpendicular to its orientation) to find an optimal placement
of the new vertices. For each offset of H we compute the new vertex locations and how
well they approximate the original isolines. As a measure of the induced error per rung we
use the directed Hausdorff distance from the newly inserted two edges to the represented
section of the original polyline . That is, we measure the longest distance from a point along
the new geometry to the original polyline. This is equivalent to computing the minimum
epsilon-band around the represented section that contains the new edges. The total error
induced by an offset of the harmony line is the maximum error over all rungs.

We sample offsets at regular distances, limiting the maximal offset in either direction to
the extremal offset where at least one new vertex lies inside the span of the respective rung.
We select the offset of the harmony line that minimizes the induced error.

Maintaining a matching. To compute the directed Hausdorff distance to the original
polyline, we need a matching of the current geometry and the original polyline. Initially, this
matching is the identity. We update the matching iteratively during the algorithm per rung
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of the collapsed ladder. Let (s,t,u,v) denote the four vertices associated with rung tu; let
u denote the current matching. Moreover, let max p(w) be the last vertex on the matched
geometry that is matched to w. Similarly min p(w) is the first vertex matched to w. As tu is
replaced by a new point p, the main concern is to re-assign the vertices in p(t) and p(u) to s,
p, or v such that the entire matching remains monotone. We compute the ELCFM between
the new geometry (s,p,v) and the original polyline from max p(s) to min p(v). This “local”
ELCFM is used to update the matching p. We use the Euclidean variant as the geometries
may intersect and hence geodesic distances are unsuitable.

2.3 Iterative reduction: overall algorithm

Our algorithm iteratively collapses slope ladders as detailed above. We now describe the
remaining high-level algorithmic details: selecting the slope ladder to collapse, criteria for
stopping, and how to efficiently avoid intersections.

Selecting a collapse. We greedily select the collapse that causes the least visual change as
measured by the (average) symmetric difference (or areal displacement) between the current
geometry and the geometry after collapse; this is similar to existing iterative approaches, e.g,
[6, 19]. As ladders with higher complexity naturally incur more (total) symmetric difference
but also reduce the complexity (number of vertices/edges) more, we divide the total symmetric
difference by the number of rungs ¢, to obtain the average symmetric difference per rung.

Note that our method for selecting the collapse geometry ensures that the result remains
close to the input geometry, while our selection strategy ensures little visual change with
respect to the current geometry. The advantage of the latter as a high-level strategy is that
the sequence of simplifications changes as little as possible from step to step, thus improving
the “stability” of the results. Simplifications of almost the same complexity will have similar
layouts. Notably this is not guaranteed by the Hausdorff distance in the collapse computation
as it compares only to the original polylines.

Stopping criteria. There are various options that may be used as a stopping criterion for
the algorithm. We could (1) perform operations until the collapse cost exceeds a certain
threshold, (2) disallow collapses that cause too large a Hausdorff distance, or (3) stop when
the total number of vertices is at most a given parameter z > 2k. Following the techniques of
[7], we observe that we can easily keep track of the performed operations in a data structure
to efficiently reconstruct all intermediate results.

Avoiding intersections. To avoid introducing intersections between isolines or within the
same isoline (R8), we perform only collapses that do not create intersections. We follow the
algorithm described by [6] and maintain “blocking numbers”: this number stores the number
of edges that are intersected by the new geometry if the collapse was performed. Thus, we
perform only collapses with blocking number zero. The main idea is that, after initializing
these, collapses change only few edges and only these changing edges need to be considered to
update the blocking numbers. This is more efficient than testing intersections from scratch.

Running-time analysis. We assume that there are k polylines of n;, vertices each, with
n= 22:1 np, the total number of vertices. Our algorithm runs in O(n?logn) time, using
O(n) space. We first compute slope ladders with the GLCFM in O(n?logn) time using
the data structure of Guibas and Hershberger [14] and the algorithm by Buchin et al. [5].

8:9
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We then initialize all collapses in O(n?) using the approach of Alt et al. [1] to compute the
Hausdorff distance. Finally, we iteratively collapse the best slope ladder and update any
affected ladders in total O(n?logn) time.

3 Results and discussion

We implemented our algorithm! and tested it with various isolines. We first qualitatively
compare the results on different sets of isolines through a visual exploration of the properties.
We then quantitatively measure how well harmony is maintained using our method of
collapsing slope ladders compared to simplifying each isoline separately.

We showcase and measure results for eight different inputs. The first are two digitized
textbook examples, namely two sets of isolines used by Imhof to illustrate isoline generalization
practices [18, page 155]; we denote these by IMS (slope) and IMH (hilltop). AH1 is a digitized
set of contour lines for the whole of Antarctica at 500m contour intervals. The other five are
snippets from the DEM of Antarctica [17], deriving isolines at a 150m contour interval using
QGIS v.3.16; we denote these snippets by AS1 through AS3 (slopes) and AH2 through AH3
(hilltops). All inputs are illustrated in Fig. 7. The algorithm discussed considers polygonal
lines, hence for our experiments we open any closed isoline. Though out of scope, the concepts
can readily be extended to closed isolines and in future work this restriction will be lifted.

IMS AS1

AS2

o

ii

IMH AH1

Figure 7 Inputs used in this paper: four slopes (top) and four hilltops (bottom). Complexities
range from 442 (AS1) to 2071 (AS3). Red lines indicate where hilltops were opened into polylines.

3.1 Qualitative discussion

Examples by Imhof. We start our visual investigation with IMH; see Fig. 8. We directly
observe that the effect of harmonization is minor when the detail-level is high. Due to the
large number of vertices in the simplification, the harmony is readily present as there are
sufficient vertices to always have nearby vertices on the adjacent isoline. Isoline detail is the
primary factor. However, when we reduce the complexity further, the underlying patterns in
the isolines become emphasized through harmony. As vertices are placed at similar locations

! https://github.com/tue-alga/harmonious-simplification (v0.1)
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AN

Figure 8 (left) IMH with 664 vertices. (middle left) Simplification at 348 vertices does not
visually benefit much from harmony. (mlddle right) Simplification at 150 vertices, with harmony
emphasizing the underlying patterns. (right) Example simplification as given by Imhof (from [18]).

whenever isolines trace similar boundaries, higher-level structures visually start to form a
coherent whole strengthening the relationship between adjacent isolines. The effect is visible
for both IMH and IMS (see also Fig. 13) giving credit to the suitability of the approach.

Visual complexity. When considering more tight-packed slope lines, the benefits of harmony
are even more apparent. In Fig. 9 we compare two simplifications of AS3 with approximately
the same number of vertices. One of the simplifications is computed with our algorithm,
the other uses the same simplification steps but collapses edges independently during the
process. We observe that enforcing harmony captures the strong similarity between the
isolines. Consequently, similar sections are also highly similar in the simplification in contrast
to the independently simplified isolines. This coherence (1) strongly reinforces the underlying
patterns, (2) leads to a lower visual complexity as isolines can implicitly be grouped, and
(3) emphasizes the object represented by the group of isolines in contrast to the isolines
themselves. The lack of harmony in the alternative result hinders the visual perception of
the isolines as representing a single object as the visual clutter hides underlying patterns.

Figure 9 (left) AS3 with 2071 vertices. (middle) Simplification with 246. (right) Simplification
with 247 edges using our approach but collapsing a single edge at a time.

Limitations. Our algorithm sometimes makes minor mistakes that are undesirable (Fig. 10).

Particularly, the individual simplification may be suboptimal compared to a potential
individual simplification as the error margin could trivially be lowered by shifting single
vertices (Fig. 10(a/c)), or insignificant edges are maintained even though they do not
contribute to the overall simplification (Fig. 10(b)). We believe these may most likely be
traced back to the following issues. By strictly enforcing area-preservation it is possible that
a vertex is placed to compensate for a region being cut off through simplification (a). The
problem can be exaggerated due to the stringent requirement that all newly placed vertices
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Figure 10 (left) area-preservation requirements may lead to poor vertex placement (IMS - 98
vertices), (middle) minor edges despite a high level of simplification (AS2 - 123 vertices), (right)
forcing vertices to be one a single-line can cause unnecessary errors (AS1 - 50 vertices).

need to be on a single line (c). This may also affect the (im)possibility to simplify certain
sections in union without a high error margin for one of the isolines, potentially leading to
unnecessary minor edges (b).

In future work, we plan to investigate more flexible treatment of slope ladders to overcome
these issues. Overall we believe the method shows great potential as witnessed by its ability
to suitably simplify many different isoline structures (see Fig. 11).

Figure 11 Harmonious simplifications of (left) AH1 with 150 vertices, (middle) AS2 with 250
vertices, (right) AS1 with 70 vertices.

3.2 Quantitative analysis

The aim of our algorithm is to maintain harmony as a visual cue that the isolines describe a
single underlying object. In this section we check whether our algorithm is also measurably
successful at maintaining harmony. We compare the results of our algorithm to a modified
version in which each edge is treated “independently”. We perform the exact same collapsing
procedure, but do so for only one edge at a time. We refer to this modified version as the
isolated algorithm, contrasting our proposed harmonious algorithm.

Figure 12 (left) The harmony measure for a matched pair (u,v) is the sum of the angles indicated
in purple (a(u) + a(v)). Note that the direction of the normal is irrelevant for the score. (middle) A
“perfect” pair, scoring zero. (right) A “worst” pair, scoring 180 degrees.
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Measuring harmony. To support a quantitative comparison, we must quantify the harmony

of a set of isolines. We use a simple measure that captures one of the facets of harmony.

Particularly, we compute the GLCFM between each subsequent pair of isolines and then
measure the harmony for each matched pair. Intuitively, a pair of vertices (u,v) is matched
harmoniously if the segment uv is locally orthogonal to the isolines. Thus, we estimate a
normal n(u) at vertex u and a normal n(v) at v. We then measure the minimal angle a(u)

(respectively «(v)) between the line spanned by wv and n(u) (respectively n(v)) (see Fig. 12).

The sum of a(u) and «(v) is the measured harmony for this pair. This score ranges from
zero (“perfect” harmony) to 180 degrees (“worst” harmony).

Our straight harmony line enables good harmony across multiple isolines: these vertices
are expected to be matched in the eventual GLCFM and a vertex’s normal can be close to
the matching lines to both its neighbors only if these lines have similar orientation.

Measuring similarity. Typical approaches to simplification quantify the quality of the
resulting simplification by its (geometric) similarity to the input. We may hence generally use
geometric similarity as a measure of quality; for our evaluation we use the continuous Fréchet
distance between a computed simplified isoline and its original geometry for this purpose.
We normalize this distance between instances using the diagonal of the bounding box of the
input. We use the continuous version, as the strongly differing complexities between the two
polygonal lines causes the discrete version to not measure shape similarity very well.

Setup. We track how harmony develops throughout both algorithms as complexity decreases.
We first run our harmonious algorithm until it is stuck, saving intermediate results when the
complexity first reaches or drops below one of a given sequence of desired complexities?. An
example sequence obtained in this manner is shown in Fig. 13. Since a collapse may reduce
the total complexity by the complexity of the ladder, the resulting maps do not necessarily
have the exact desired complexities. We then run the isolated algorithm, using the same
procedure but as desired complexities, those actually achieved by the harmonious algorithm.
We measure the harmony and similarity as both algorithms progress, that is, in their
sequence of maps. We plot the average and maximum harmony over all matched pairs and
average and maximum similarity over all isolines as a function of complexity (Fig. 14).

2 500, 400, 350, 300, 250, 200, 175, 150, 125, 100, 90, 80, 70, 60, 50, 45, 40, 35, 30, 25, 20
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Figure 13 Results of IMS using our harmonious algorithm; numbers indicate complexity.
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Figure 14 Average (circles) and maximum (squares) harmony and similarity as the algorithms
simplify the input; lower values are better. Blue: harmonious algorithm; orange: isolated algorithm.
Note that the horizontal axis is not linear. The maximum similarity (0.27) for the result of our
harmonious algorithm on AH3 with 81 vertices has been cropped.

Observations. First, we observe that the harmonious algorithm tends to perform better for
harmony than the isolated method, but the similarity distance is typically slightly worse.
This stands to reason as a collapse may sacrifice similarity to improve harmony. However,
the effect on similarity is rather minor, until we reach the lower levels of complexity.

Second, the average and maximum Fréchet distance behave very similarly and tend to
not differ much until the algorithm reaches the lowest complexities. This suggests that the
geometric distortion our algorithm causes remains evenly spread between the isolines.

Third, we observe that for the isolated algorithm the average harmony tends to deteriorate.
For the harmonious algorithm the harmony tends to stay roughly constant, though some of
the slopes do show a bit of a deterioration as well (AS1-AS2 mostly).
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Fourth, we observe that the isolated algorithm often is stuck earlier, never reaching the
number of vertices that the harmonious algorithm can reach; this is the case for AS2—-AS3,
AH1-AS3. This may seem somewhat counterintuitive: staying closer to the original geometry
should generally help avoid intersections. There are two possible explanations here: (1) by
collapsing entire slope ladders, we may still perform a collapse, even if collapsing any of the
rungs in isolation would cause intersections; (2) by incorporating harmony, there is a better
relation between the isolines and thus performing a collapse (even if in isolation) is less likely
to cause intersections. We believe the first explanation is most likely the strongest effect
here, but the second explanation may warrant further investigation in future work.

4 Conclusion and future work

We have presented an algorithm for simplifying isolines harmoniously, i.e., acknowledging
that they describe a single object and that structures of this object should be reflected clearly
in the result. Our evaluation shows the efficacy of our method, but also marks some current
limitations to be overcome in future work. In addition to these, we observe that simplifying
larger features (more than a single slope or hilltop) requires more investigation. For example,
if a hill has two hilltops, we may need to match the isoline that encompasses both partially
to one hilltop and partially to the other. In similar spirit, even between two isolines, large
flat areas should possibly be omitted in the matching as maintaining harmony over a large
distance is counter to the underlying principle; again, some form of partial matching may be
useful here. As object identification in isoline systems is quite advanced and computationally
efficient via contour trees and similar Reeb-graph-like structures, the starting and end-point
problems for partial matchings within our method remain future work.
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