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Abstract
Many text documents in the biological domain contain references to the toponym of specific
phenomena (e.g. species sightings) in natural language form “In <LOCATION> Garwood Valley
summer activity was 0.2% for <SPECIES> Umbilicaria aprina and 1.7% for <SPECIES> Caloplaca
sp. ...”

While methods have been developed to extract place names from documents, and attention has
been given to the interpretation of spatial prepositions, the ability to connect toponym mentions in
text with the phenomena to which they refer (in this case species) has been given limited attention,
but would be of considerable benefit for the task of mapping specific phenomena mentioned in text
documents.

As part of work to create a pipeline to automate georeferencing of species within legacy documents,
this paper proposes a method to: (1) recognise species and toponyms within text and (2) match
each species mention to the relevant toponym mention. Our methods find significant promise in a
bespoke rules- and dictionary-based approach to recognise species within text (F1 scores up to 0.87
including partial matches) but less success, as yet, recognising toponyms using multiple gazetteers
combined with an off the shelf natural language processing tool (F1 up to 0.62).

Most importantly, we offer a contribution to the relatively nascent area of matching toponym
references to the object they locate (in our case species), including cases in which the toponym and
species are in different sentences. We use tree-based models to achieve precision as high as 0.88 or
an F1 score up to 0.68 depending on the downsampling rate. Initial results out perform previous
research on detecting entity relationships that may cross sentence boundaries within biomedical text,
and differ from previous work in specifically addressing species mapping.
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1 Introduction

A significant amount of biodiversity knowledge is locked up in textual descriptions within
documents, often in free text form, without coordinates with which to georeference. Many
research papers in the biological domain refer to specific species and their location, and the
development of methods to extract species-toponym pairs can enable biodiversity mapping,
with a range of related societal and economic benefits.
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However, textual relations can be complex with one-to-many relationships between entities
and relationships occurring sometimes across sentence boundaries, and even some distance
from each other. To illustrate, Example 1 is a snippet from a journal article [29] containing
four relationships between four different species mentions (one just as a broader genus term
and the other two in abbreviated G. species form) to the same toponym one, two or three
sentences away.

▶ Example 1. “There are also examples of growth forms that make use of the increasing
precipitation at <LOCATION> Livingston Island. Most obvious is the very extensive growth
of the <SPECIES> Usnea lichens whose fruticose form allows them to benefit from both rain,
snow and fog (Rundel 1978). Within the mosses, <SPECIES> A. gainii and <SPECIES>
H. crispulum are able to achieve high activities by growing as clumps on the rock surface
and storing water from precipitation, and <SPECIES> A. gainii is much warmer than other
species because of its darker colour.”

A significant body of work has addressed the task of extracting toponym references from
documents using named-entity recognition [2, 22], and then disambiguating the mentioned
place names to identify the coordinates of the named place, requiring resolution of duplicate
place names, place name abbreviations or complex place name sequences [5, 21]. Similarly,
efforts have been made to develop automated methods to identify biological species in text
[3, 17]. However, little attention has been given to the task of matching specific species
mentions to their toponym references, and thus georeferencing (identifying the coordinate
location) for specific species mentioned in text documents. Without this step, while we can
map toponyms mentioned in a document (as for example in [25] and [1]), we cannot map
specific items mentioned in text. In the case of biological text documents, this means that
we cannot map species distribution or conduct spatial analysis using data “locked away” in
text documents.

The task of georeferencing specific phenomena in text has been addressed in some
other domains, including disaster management for event georeferencing [13], and significant
attention has been given to extracting spatial relations and the reference and located objects
to which they refer [18]. However, the former relies on multiple mentions of the same
event, using clustering to converge on its probable toponym, and the latter relies on spatial
prepositions to connect located and reference objects. A range of work in the relation
extraction field of NLP is also relevant, but until recently the focus has been on relationships
that occur within the same sentence [7, 33]. Recent studies that also look for relations that
may cross sentence boundaries [28, 8] do not include toponym or species and may have limited
transferability, or identify relations that express location in a non-geographic context [19].

There remains a gap in solving the difficult problem of associating species mentions with
locations for georeferencing. We address this gap by proposing a method that has three
steps:– a) extracting species mentions in text; b) extracting and disambiguating toponym
mentions in text and c) predicting which, if any, pairs of those species and toponyms represent
an actual <species> ‘present in’ or ‘found at’ <location> relationship. To perform the latter
step, we use a machine learning classifier, in which we classify all species-toponym pairs in
the document to identify those that are correct matches. We test and evaluate a range of
features for our classifier on a corpus of seven documents (44037 tokens) from the Antarctic
domain, including a mixture of journal papers, theses and supplementary material, written
by authors from around the world.

Preliminary results using tree-based classifiers achieved precision of up to 0.88. This
compares favourably to studies within the biomededical field where precision scores have
varied from 0.39 to 0.65 [27, 8, 32, 19]. Furthermore, our bespoke rules- and dictionary-based
approach for extraction of species achieved an F1 score of 0.87 including partial matches.
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The contributions of our work are two-fold. Firstly, we apply machine learning to solve
the difficult and unaddressed problem of associating species mentions with locations for
georeferencing. Relation extraction in natural language is regarded as a hard problem
generally, and little progress has been made on solving it for the fundamental GIScience task
of georeferencing the detailed content of documents, with [1, p.1] pointing out that “Research
on this problem is still in its infancy”. Generic methods for relation extraction have not been
applied to the particular problem of matching species and locations, and cannot handle text
where the subject and object of the relation are widely separated, and that involve complex
co-references. Furthermore, text that describes location differs from generic language in a
number of ways, making the challenge more difficult. Specifically:
1. The ultimate goal of this work is to georeference species mentions, and thus location

mentions identified by NER must be tied to specific locations using gazetteers. However,
many locations identified by NER are not found in gazetteers, and thus the texts
contain many items that look like location references but are actually ‘red herrings’ (not
georeferencable), imposing additional demands on standard relation classifiers.

2. The role of toponyms as universal labels for locations presents different language uses,
including common but unusual abbreviations (e.g. MDV for McMurdo Dry Valleys), as
well as more standard forms (e.g. Mt for Mount).

3. The role of toponyms as a reference frame results in common repetition of place names
(or even only once at the beginning of the paper), interspersed with other place names,
and the need to disentangle the correct place name references for multiple mentions of
different species is especially challenging.

Our second contribution is the method of application of machine-learning to the problem.
Our contribution is in the binary classification model using pairwise matches (e.g. in contrast
to dependency driven approaches), and the selection of features.

This paper is structured as follows: Section 2 reviews relevant literature, Section 3 outlines
our methodology, Section 4 presents results, which are then discussed in Section 5, before
conclusions are summarised in section 6.

2 Related Work

2.1 Recognising Species and Toponyms as Named Entities
The task of detecting location mentions in text is addressed by standard named entity
recognition (NER) methods of popular modern natural language processing (NLP) Python
packages such as Natural Language Toolkit (NLTK)1 and spaCy2. Recent evaluation of six
NER tools on Twitter content indicates precision in the low 90s, with F1 values in the 70s (as
recall figures are typically not as high as precision) [16], with slightly lower values in a review
on text documents [10]. Following NER, place names must also be resolved to identify the
coordinates of the places to which they refer (known as toponym resolution or disambiguation),
a task that is challenging due to duplicate place names, unusual abbreviations and spelling
variations. Methods for resolving toponyms have included selecting the place with the highest
population on the basis that it is more likely to be the one referred to due to size; associated
place names mentioned in surrounding text; feature types and language models [4, 15].

1 http://www.nltk.org
2 https://spacy.io
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In contrast to location, the task of species detection is not specifically addressed in
standard NER tools. The linguistic structure of taxonomic names does however, allow for
the development of automated methods to find these names within natural language text
[17]. Linnaean rules for taxonomic names of organisms dictate genus names precede species
(and any sub species) name with the former capitalised and all names in either Latin or
Greek [17, 23]. Where abbreviated in text, the species name is preceded by the capitalised
first letter of the genus and then a period.

Others in the biodiversity domain have tackled the species detection challenge with
a mixture of approaches based on matching terms in a dictionary of known entities, [9,
20, 24], isolating taxonomic-looking strings not otherwise in a English lexicon [17, 24], or
machine learning approaches like Naïve Bayes [3] or ensemble classifiers that include neural
networks [24].

All those methods mentioned above focus on finding scientific names apart from [9] which
also finds some common names with their method.

Rule and pattern-based methods can recognise new scientific names in text [17] but can
generate false positives for non-scientific text that appears to be in a Linnaean format [24].
Words found in both scientific names and vernacular text cause problems for dictionary
and machine learning approaches alike, while machine learning is sensitive to text encoding
algorithms [24].

Some dictionary approaches [20] can find new name combinations from existing terms
but all are limited by how comprehensive and up-to-date the dictionaries are at time of
use, something especially noteworthy in the biodiversity field where thousands of species are
discovered or reclassified each year [3, 17, 24].

Recall and precision figures higher than 0.8 and up to 0.97 have been shown to be possible
when testing these methods on biodiversity datasets with Quaesitor[24], TaxonFinder[20],
and NetiNeti[3] generally performing best in tests [24] conducted.

Despite the collective and respective informativeness of their approaches, none of the
options reviewed were suitable for our pipeline for one or more reasons, including the following:

They were not available as an easy-to-access Python package.
They returned a single instance of a species mention instead of every mention along with
position in the document.
They separately annotated species and genus for combined terms.
While available via an online interface or API, they were not appropriate to process entire
documents of text, let alone a large collection, due to limits on the amount of text that
could be parsed in each use (and while references to DOIs would remove the need to
upload entire documents in some cases, a focus of our wider project is processing large
batches of legacy documents, some of which do not have DOIs).

2.2 Georeferencing Phenomena in Text
The problem of georeferencing of text has been addressed in other domains. Methods for
georeferencing documents by identifying their geographic location have been reviewed by [25],
but these methods identify a toponym for the entire document, rather than toponyms for
specific items mentioned in the document text. Methods have been developed for extracting
place mentions in a document addressing a particular topic, assuming that they describe
locations relating to the topic. For example, [1] identifies locations of orchards and cancer
cases by extracting place names from specific portions of documents (e.g. the methods
section), [6] similarly map locations connected to specific historical events across a document,
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and [2] apply a similar approach for biological specimens. However, while this approach
identifies locations of phenomena, these works do not distinguish between different types of
phenomena mentioned in the text, as is our goal.

In the disaster management field, methods to georeference specific events have involved
the collection of multiple documents (e.g. news reports) describing a single disaster event,
and have clustered locations mentioned in connection with the event to georeference it [13].
However, this approach relies on multiple documents addressing a specific event, rather than
individual mentions of a phenomena in a single document, as we address here.

Another significant body of work has focused on extracting place names and more complex
place references of biological specimen collections, but this work addresses place references
within databases, in which the species that is being located is already known and stored
in another database attribute [11, 12, 14], unlike our challenge in which the link between
species and location must be identified.

2.3 Identifying Relationships

In the Natural Language Processing (NLP) literature, the task of relation extraction is aimed
at detecting semantic dependencies between items mentioned in text [26]. A number of
relation extraction methods have been developed and increasingly methods have been designed
to look for relationships that may extend beyond the sentence boundary [8, 28, 31, 32, 19],
since as much as 28-30 per cent of relations in certain corpora are inter-sentential [30, 32],
and our corpora contains many examples of complex inter-sentence relations between species
and locations, such as that shown in Example 1.

While these methods have been applied before on genetics pathways text using graph
Long Short Term Memory (LSTM) [27] and on biochemical text using Bi-affine Relation
Attention Networks [32], they have had low success rates, or performed erratically depending
on type of entity pair [31]. Other work has addressed only a limited the range of text,
concentrating on specific biomedical entity types [27, 28, 32] or using a limited number of
adjacent sentences [28]. Recent promising work from [8] looks at a large and varied dataset
but one that does not identify species among its named entities. The most comparable work
looks at linking bacterial species to habitats (e.g. locations within the human body) within
biomedical text [19]. Their method has some commonalities with ours in that they consider
syntactic features like the presence of verbs and prepositions, but it does not focus on specific
toponyms that can be georeferenced, which is the ultimate goal of this study. Furthermore,
while they show significant improvement over baselines, the success metrics achieved are
relatively low, demonstrating the challenging nature of the problem.

3 Method

3.1 Consolidated and Compartmentalised Approaches

The ultimate aim of this project is to lay some of the groundwork for a complete and
automated pipeline to extract and process text from legacy documents, identify mentions of
species and toponyms within those documents and distinguish which pairs of species-toponym
describe an actual geospatial relationship in which a species was found at a particular location.
Figure 1 shows the consolidated end-to-end process, but in this paper, we focus on entity
recognition and relationship modelling.

GISc ience 2021
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Figure 1 Consolidated pipeline process.

3.2 Entity Recognition
Whilst different natural language processing packages were considered, SpaCy was chosen over
Python’s Natural Language Toolkit (NLTK) for this work, due to its adaptability, especially
the option to train new classes for entity recognition via transfer learning which may be
useful in future development of this pipeline. To ensure the entity recognition processes were
working on clean streams of text, manually pre-cleaned versions of text were copied from
PDF formats avoiding images, tables and reference lists to leave only body text, titles and
section headings.

3.2.1 Species Extraction
Our corpus was entirely within the Antarctic geographic area, and we employed Manaaki
Whenua’s3 list of Antarctic species to assist with species extraction. The list contains
over 2100 known Antarctic animals and organisms with full taxonomic names (including
kingdom, phylum, class, order, family, genus and species components). For this initial
study, we restricted our focus to scientific rather than common names. This restriction, and
particularly the Linnean structure of those taxonomic names led us to adopt a rules-based
approach to extraction of species mentions.

Working on the basis that a name would appear in text in the form of Genus species, G.
species or possibly just Genus, the full list of taxonomic names was reduced and separated
into two Python lists of unique genus and species terms of 744 and 1489 terms respectively
which were then used as separate look-up lists to match tokens, bigrams or trigrams to full
or abbreviated forms of species names in the list, even when the n-gram is in a combination
of genus and species terms not previously found together in the original list. The algorithm
also identifies mentions of genus only as well as instances where a genus is followed by a
term not originally found in the species list but is found elsewhere in the document in the
abbreviated G. species form.

3.2.2 Toponym Recognition and Disambiguation
In contrast to species, as location is a standard entity in the NER tools of NLP packages
including SpaCy’s, our approach for these entities built upon these available tools.

Using SpaCy’s largest English model we applied the NER tool to tokenised documents to
identify potential toponyms. These were then checked in a range of gazetteers, with particular
emphasis on New Zealand and Antarctic gazetteers (due to the area of interest origin of
research) to filter out misidentified toponyms and to pave the way for a genuine toponym
resolution process in the future which would link confirmed toponyms to coordinates and
thus enable species to be georeferenced.

3 https://www.landcareresearch.co.nz

https://www.landcareresearch.co.nz
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The gazetteers used were the New Zealand Gazetteer maintained by Land Information
New Zealand4, the Scientific Committee on Antarctic Research (SCAR) gazetteer5 and the
GeoNames gazetteer6. These contained approximately 45,000, 26,000 and 1,500,000 unique
place names respectively.

A subset of the New Zealand Gazetteer relating only to toponyms in the New Zealand
administered area of Antarctica (approx 5100 toponyms) was created as was a New Zealand-
specific subset of the SCAR gazetteer (approx 3,500 toponyms). Similarly, subsets of the
GeoNames collection relating to Antarctica (approx 18,000) or New Zealand (approx 45,000)
respectively were extracted to create a total of seven gazetteers.

Toponym candidates beginning with “The” had this article removed before searching
and toponyms beginning with “Mt.’ or “Mt’ were standardised as “Mount” to aid with
matching. Some one-word place names in the broader GeoNames gazetteer that are also
common English words or (e.g. Inner, Upper, Fig) or problematic for this process as a single
word (South, North, Mount) were filtered from that gazetteer.

Each toponym was checked against each of the seven gazetteers for exact matches taking
special note of toponyms specifically matched in an Antarctic and/or New Zealand gazetteer.
All exact matches are put forward to the next stage. Additionally, toponyms not found in
either Antarctica or New Zealand gazetteers (including some that were exact matches but
only in the vast GeoNames gazetteer, e.g. “Portugal”) are checked for close or partial matches
in the more focused New Zealand and Antarctic gazetteers. This is to ensure misspellings,
OCR errors, mis-tokenisation or natural variations do not lead to an Antarctic and New
Zealand toponym being a) missed, or b) incorrectly linked to a different part of the world (e.g.
“Victoria Land” v “Victoria”) as this makes the future step of disambiguation more difficult.
We excluded the non-filtered GeoNames list (1.5 million place names) for close matches to
focus on matching names to the geographic areas of interest (namely Antarctica and New
Zealand) and limit false positives generated during the close and partial matching process.

The close-matching process uses Python’s native difflib module7 to find the best matching
entry in each of the six smaller gazetteers if the best match scores over an arbitrarily-set
threshold 0.9 using difflib’s get_close_matches function.

The partial-matching process looks for the biggest sub string within a potential toponym
that can be exactly matched in a gazetteer. For example, the five-token candidate “Ross
Sea Region of Antarctica” will be broken into two four-token strings (“Ross Sea Region of”
and “Sea Region of Antarctica”), three three-token strings (e.g. “Ross Sea Region” and two
others) before the algorithm matches “Ross Sea” in a gazetteer once the candidate is broken
into two-token sub-strings.

Toponyms confirmed through an exact, close or partial match would then be passed
through to the relationship-prediction stage of the pipeline.

3.3 Modelling

3.3.1 Conceptualisation of the classification task
The main contribution of the paper is in the method for linking specific species and toponym
mentions to each other, given that documents can contain many of each, and related species
and toponyms may be spread some distance from each other in the document (see Example 1).

4 https://gazetteer.linz.govt.nz
5 https://data.aad.gov.au/aadc/gaz/scar/
6 www.geonames.org
7 https://www.landcareresearch.co.nz
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Furthermore, while every relationship is binary – linking exactly one species instance to
one toponym instance in the text – any species or toponyms instance could belong to
many relationships. In Example 2: the species instance Umbilicaria aprina Nyl. is in two
relationships. One with the toponym instance Dry Valleys and another with Botany Bay.

▶ Example 2. Annual activity (% of total time) ranged from 0.2% (Umbilicaria aprina Nyl.)
in the Dry Valleys (Raggio et al. 2016) through 4.6% for the same species at Botany Bay.

We thus formulate the problem on the basis that each toponym mention in the document
is potentially related to every species mention in the same document and vice versa. For
example, a document with 100 species mentions and 100 toponym mentions has 10,000
possible actual relationships. We implement this by creating a matrix of all possible species-
toponym pairs, and the task is then to identify the actual relationships among the sea of
candidates, for which we use a binary classifier.

3.3.2 Feature engineering
With the goal of predicting which relationships are genuine among the large number of
possibilities, we engineered a range of features (see Table 1) that may indicate whether a
species-toponym pair match (i.e. toponym x describes the toponym of species y). Some
of these were entity-centric (relating to either the toponym or species) while others helped
describe the connection or distance between entities in a potential relationship.

Table 1 Engineered Features.

Feature Level Type Notes
Dependency_Steps Pairwise Integer Length of shortest dependency path

inAbstract300_Toponym Entity Boolean Explanation Below
inAbstract300_Species Entity Boolean Explanation Below

inAbstract500_Toponym Entity Boolean Explanation Below
inAbstract500_Species Entity Boolean Explanation Below
max_TFISF_Toponym Entity Float Explanation Below
max_TFISF_Species Entity Float Explanation Below

Num_Nouns_Between Pairwise Integer Count of nouns between entities
Num_Preps_Between Pairwise Integer Count of prepositions between entities

Num_Tokens_Between Pairwise Integer Count of tokens between entities
Num_Verbs_Between Pairwise Integer Count of verbs between entities
Num_Words_Between Pairwise Integer Count of words between entities
Preposition_Between Pairwise Boolean True if preposition between entities

Same_Sentence Pairwise Boolean True if entities in same sentence
Sent_Start_Toponym Entity Boolean True if entity begins a sentence
Sent_Start_Species Entity Boolean True if entity begins a sentence

In Abstract

Four features measured whether or not that entity, regardless of that specific instance’s
position in the document, was also mentioned in the abstract of a document as defined by
being in either the first 300 or 500 tokens after the first mention of the word “Abstract” in a
document. This is an attempt to capture some of the entity’s document-level characteristics
with the a priori assumption that if an entity, be it a species or toponym, is mentioned in
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the abstract it is a key theme in the document and takes on increased likelihood of being
in an actual relationship if mentioned subsequently. This is opposed to for example, that
entity mention simply acting as a comparison to a similar species or place for reference,
or representing a toponym where downstream aspects of the research, e.g. processing of
samples, occurred.

Term Frequency – Inverse Sentence Frequency (TFISF)

The common measure of term frequency-inverse document frequency (TFIDF) which reflects
how important a term is to a document by calculating a term’s relative frequency in its own
document multiplied by the logged inverse of the proportion of documents it appears in within
a corpus. Instead, for our calculations, term frequency – inverse sentence frequency (TFISF)
is intended to reflect how important a particular entity is to the sentence containing it.

tf(t, s) = f(t,s ) (1)

isf(t, d) = log( N

sεd : tεs
) (2)

tfisf(t, s, d) = tf(t, d) ∗ isf(t, d) (3)

As shown in the equations 1 through 3, term frequency (tf) for a given term (t) is a raw count
of how many times that term appears in its sentence (s) (often 1) . Inverse sentence frequency
(isf) is the log of the result from dividing the number of sentences in a document (N) by the
number of sentences in the document in which the term appears. The two are multiplied
together to get TFISF. If an entity contains more than one word, TSISF is calculated for
each word in the entity and the highest result selected.

3.3.3 Modelling Approaches

Given the modelling task is a binary classification problem with a known ground truth, a
range of supervised machine learning classifiers were applied including logistic regression,
AdaBoost, a neural network and three tree-based models – random forest, light gradient
boosting machine and extra randomised trees. All were imported as python packages from
Scikit-Learn or, in the case of the neural network, Keras.

As this was an exploratory assessment of each model’s suitability for further testing and
since the size of the training data is too small, at least in terms of members of the target
class (i.e., actual relationships) to allow for the creation of an adequately-sized validation set
in addition to the training and test splits, no parameters were fined-tuned for any models
due to the risk of over-fitting to the training data. Only default parameters were used and a
broad-brush summary of some of the key parameters follows.

AdaBoost used 50 estimators and a learning rate of 1, while Light GBM’s learning rate
was set at 0.1. Light GBM, random forest and extra randomised trees all used 100 estimators
with no max depth. Gini was used as the criterion for splitting in both random forest and
extra randomised trees while light GBM boosting type was set to a traditional gradient
boosting tree.

Logistic regression’s penalty function was set to L2 and the solver used was limited
memory BFGS while the neural network, which could not be run entirely on default settings
was constructed from input and one hidden layers of 64 nodes each, both with rectified linear
units (ReLU) as the activation functions and an output layer using sigmoidal activation
function. The loss function was binary cross entropy.

GISc ience 2021
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Some features were transformed for normality for use in logistic regression and the neural
network but only untransformed features were used for the tree-based or boosting models as
they are not affected by monotonic transformations to data.

4 Results

4.1 Data Overview
The data consisted of two tranches of documents with one used to develop the entity
recognition algorithms and an annotated second set used to act as the ground truth for
measuring the performance of the entity recognition and relationship prediction stages.

The first set contained nine PDF documents ranging from PhD theses to academic journal
articles and supplementary material with some documents electronically borne and others
scanned from printed versions. As these were not annotated, they remained unsuitable for
testing and model building.

The second tranche of seven documents, all electronically borne, was annotated by one of
the co-authors, a domain expert, using Tagtog, an online text annotation tool. Firstly, any
combination of genus and species (or a genus and species term in isolation) were tagged as
species and all toponyms were tagged as such. Next, any relationships between one species
and one toponym were tagged if the text indicated the species was present or found in that
toponym even if that relationship crossed the sentence boundary. Each tagged relationship
was binary, linking exactly one species instance to one toponym instance in the text, but any
species or toponyms instance could belong to multiple one-to-one relationships.

Table 2 Training Data Overview.

Doc. Sentences Tokens Species Location Potential True True
Mentions Mentions Pairs Pairs Pair %

1 214 5120 12 96 1152 11 0.955
2 252 7192 13 87 1131 12 1.061
3 335 8779 55 138 7590 48 0.632
4 194 5524 92 35 3220 11 0.342
5 82 2387 3 64 192 4 2.083
6 143 4212 8 31 248 3 1.210
7 323 10823 83 95 7885 40 0.507

Total 1543 44037 266 546 21418 129 0.602

Within this collection (as seen in Table 2), the tokenised documents ranged in length
from 2300 tokens to over 10,000 tokens and from just 82 sentences to 335 sentences. Overall,
the training data contained 44,037 tokens and 21,418 possible relationships between the 266
species mentions and 546 toponym mentions. This is a smaller than ideal set but indicates
potential in the presented methods applied to texts describing object locations, with multiple
mentions and relations that may be greatly separated.

4.2 Performance of Entity Recognition
Tables 3 and 4 show the performance of the approaches to recognising species and toponyms
within the documents when matched to annotated entities, using five-fold cross-validation.
We measured precision, recall and F1 score on two levels. Firstly, if there is an exact match
between the entity as it was annotated and as it was extracted by the entity recognition
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process (see Table 3); and secondly including partial matches where an extracted or annotated
entity is contained entirely within the other (see Table 4). A simple, and easily correctable,
example of a partial match for species is the algorithm failing to match the spp. token of
Diplosphaera spp. because SpaCy incorrectly parses the period as a separate token but the
process nonetheless recognises and extracts the genus on this example and this may still hold
some value for the end user.

Table 3 Species and Toponym Recognition – Exact Matches.

Entity Precision Recall F1
Species 0.9279 0.7256 0.8144

Toponym 0.9760 0.4469 0.6131

Table 4 Species and Toponym Recognition – Exact & Partial Matches.

Entity Adjusted Precision Adjusted Recall Adjusted F1
Species 0.9904 0.7744 0.8692

Toponym 0.9840 0.4505 0.6180

The rules- and dictionary-based approach to species recognition correctly identifies 72.6
per cent of species exactly as they are tagged by the annotator and this recall figure rises to
77.4 per cent when instances of partial matches are included. Precision is higher at 0.9279
(0.9904 including partial matches) with an overall F1 score for the species recognition process
of 0.8144 (0.8692).

The corresponding results for the toponym recognition process using SpaCy’s inbuilt NER
tool and a multi-level gazetteer matching process are generally lower than that for species
with the exception of precision for exact matches which is higher at 0.9760. This reflects
a high degree of confidence that a toponym that passes through the gazetteer-matching
process as either an exact, close or partial match in a gazetteer will also have been tagged as
a toponym by the annotator. This figure rises to 0.9840 when partial matches with what has
been annotated are included.

However, recall for toponym is 0.4469 (0.4505 including partial matches) and for some
documents, this is as low as 0.2286 for exact matches. Some ultra-specific toponyms
e.g. subglacial caves like Harry’s Dream and 22 Blue are not recognised in gazetteers
and abbreviations like MDVs for all subsequent mentions of McMurdo Dry Valleys in one
particular document are filtered out by the gazetteer-matching process as false negatives.

4.3 Performance of Species-Toponym Matching Model
We performed classification with three tree-based classifiers, after tests with neural networks,
logistic regression and AdaBoost proved less successful.

Because of the large ratio of false relationships to actual relationships, we attempt to
mitigate the impact by down-sampling the data at different rates to reduce the imbalance
in the data. The original ratio of 160 false relationships for every one actual relationship
was reduced to 100:1, 50:1, 10:1, 5:1 and 2:1 in different iterations of testing to gauge if this
approach could help a machine learning tool make better predictions.

Table 5 shows the average performances of the model and down-sample combinations
with three classifiers with five-fold cross validation. Light GBM and extra randomised trees
combined with a slight down-sample of 100 to 1 achieved the highest F1 scores, while the
extra trees model also did comparatively well on the ‘full’ training sample within each
cross-validation split.
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Table 5 Five-fold Mean Cross Validation Scores.

Model Down-sample Ratio Precision Recall F1
Extra Trees None (full sample) 0.884561 0.535077 0.661317
Extra Trees 100:1 0.754360 0.611692 0.671119
Extra Trees 50:1 0.590000 0.658154 0.618070
Extra Trees 10:1 0.327795 0.837231 0.470736

LGBM None (full sample) 0.739273 0.566769 0.638022
LGBM 100:1 0.714369 0.666769 0.685243
LGBM 50:1 0.502949 0.674769 0.574422
LGBM 10:1 0.273593 0.860615 0.413559

Random Forest None (full sample) 0.801411 0.434769 0.558376
Random Forest 100:1 0.814839 0.558154 0.659163
Random Forest 50:1 0.617086 0.666462 0.636299
Random Forest 10:1 0.304225 0.829538 0.444405

The trends in the effect of down-sampling can further be seen in the graphs in Figure 2
which respectively plot precision, recall and F1 across models and down sampling rate.
The more aggressively the majority ‘no relationship’ class was down-sampled to match the
minority ‘actual relationship’ class the higher the rate of recall as the models got better
at finding all actual relationships. However, this occurred at the expense of precision and
generated more false positives. The F1 score tended to increase for a minor down-sampling
effort of 100:1 for all three models and fall away after that.
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(b) Recall.
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(c) F1 Score.

Figure 2 Mean Cross-Validated Metrics by Downsample Rate and Model.

4.4 Feature Importance
For an indication of feature importance in the three types of tree-based models, we extracted
the feature importance rankings for the respective models when used on full samples. Im-
portance is determined by the the number of splits using each feature as a percentage of total
splits in the the respective collections of decision trees that comprised each model. Table 6
shows some commonalities among which features were used most by the various models.

The variables created to capture whether or not a species was also mentioned in the
abstract (at either 300 or 500 tokens from the first mention of ‘Abstract’ in the document)
and whether or not a preposition is between the two entities provided little to no value in the
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models, but the TSISF variables for both species and toponym were in the top seven features
for all three models and were the most important for the LGBM model, while TSISF for
toponym was also the most important for the extra randomised trees model. All of the five
number of <type> between distance variables rounded out the top seven in each model, and
the number of dependency steps also appeared in the top nine in each of the models.

Table 6 Most Important Features by Model Type.

Extra Random Trees Light GBM Random Forest
Feature Rank Imp. Rank Imp. Rank Imp.

max_TFISF_Location 1 0.1461 1 0.2687 5 0.1222
Num_Words_Between 2 0.1317 7 0.0553 1 0.1700
Num_Tokens_Between 3 0.1316 4 0.1203 2 0.1530
Num_Preps_Between 4 0.1217 6 0.0787 4 0.1295
Num_Nouns_Between 5 0.1105 5 0.1027 3 0.1401
Num_Verbs_Between 6 0.1095 3 0.1477 6 0.0901
max_TFISF_Species 7 0.0657 2 0.1670 7 0.0721
Dependency_Steps 8 0.0589 9 0.0113 9 0.0266

Sent_Start_Location 9 0.0491 8 0.0133 8 0.05055

5 Discussion

5.1 Entity Recognition
The precision for both species and toponym recognition is high (>0.9 for both) and minor
adjustments to the species method utilising existing SpaCy functionality such as out-of-vocab
tags could help it learn to recognise species and genus names that aren’t listed in a given
dictionary. This would lift the species recall figure which sits at 0.77 including partial matches.
Training a NLP engine to identify species entities is another option but not tested so far
with this work due to a lack of training data.

With a recall of just 0.45, larger adjustments are required to the toponym recognition
process. The task of toponym extraction in these types of documents is challenging because
of issues such as “second mentions” of place names (e.g. “McMurdo Dry Valleys”), including
pronouns (“it”), shortened forms (“the Valleys”) and acronyms (“MDVs”), and methods to
address these through coreference resolution would improve results. Loosening the gazetteer
filtering process to allow more toponym candidates to pass through would improve recall,
but at the cost of precision.

5.2 Relationship Extraction
The performance of the relationship modelling process with limited fine-tuning of tree-based
models is promising. The highest precision for predicting actual relationship was 0.88 (for
the Extra Trees model with no down-sampling), and the highest recall was 0.86 (for the
LGBM model with 10:1 down-sampling). The highest F1 score of 0.68 was achieved for
LGBM with 100:1 down-sampling (see Table 5). Further work on larger annotated data sets
would allow for validation sets to be created in addition to train/test splits and facilitate
tuning of models.

Ours is an approach that has not been applied to species-toponym relationships before
and it shows promising results when compared with other work addressing related, but
different problems in the biomedical fields, which use graph LTSMs [27], Bi-affine Relation

GISc ience 2021



13:14 Automated Georeferencing of Antarctic Species

Attention Networks [32], and transformer-type networks [8]. Furthermore, out work is not
limited to finding cross-sentence relations only in adjacent or near-adjacent sentences like
[28]. The process has highlighted however, the potential of exploring coreference resolution
as recent studies [8, 28] have done.

While some of the engineered features, namely the two TSISF measures showed promise
in the modelling process, others seemingly offered little utility. The process of engineering
and exploring new features (e.g. word vectors, sentence polarity etc) that help map the
relationship of species and toponym should be explored further and may yield improved
results as part of future work.

6 Conclusion

In this paper, we have described a method to extract mentions of species and place names
from text documents, and then to determine which place names describe the toponyms of
which species.

We have demonstrated a rules- and dictionary-based approach for the extraction of species
in the Antarctic context, and applied existing place name extraction methods, with a set
of gazetteers to identify toponyms. Our main contribution is the development of a method
that uses tree-based classifiers to match toponyms and species mentions in order to identify
the toponym of specific species, for georeferencing and mapping, with a precision of 0.88
(highest F1 of 0.68). In future work, we plan to include additional features in the model,
employ a larger corpus for training and tuning; and improve efficiency through filtering some
species-toponym combinations (those that are unlikely) before applying the classifier.

This research contributes to the goal of georeferencing text mentions of specific species
on two specific fronts. Firstly, little to no research is available on automatically extracting
species toponyms from text documents, and the work described in this paper is among the
first to provide a method for extracting specific mention toponyms in the biological domain.
Secondly, cross-domain methods for georeferencing mentions of different kinds of phenomena
(and being able to identify which kinds of phenomena are where) in a document have been
limited thus far. While this is early work, the method shows promise, particularly for dealing
with relations that may cross sentence boundaries and contain other kinds of complexities
such as abbreviations and a many to many relationship between species and toponyms.
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