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Abstract
The goal of this paper is to understand the complexity of a key symmetry breaking problem,
namely the (α, β)-ruling set problem in the graph streaming model. Given a graph G = (V, E),
an (α, β)-ruling set is a subset I ⊆ V such that the distance between any two vertices in I is at
least α and the distance between a vertex in V and the closest vertex in I is at most β. This is a
fundamental problem in distributed computing where it finds applications as a useful subroutine for
other problems such as maximal matching, distributed colouring, or shortest paths. Additionally, it
is a generalization of MIS, which is a (2, 1)-ruling set.

Our main results are two algorithms for (2, 2)-ruling sets:
1. In adversarial streams, where the order in which edges arrive is arbitrary, we give an algorithm

with Õ(n4/3) space, improving upon the best known algorithm due to Konrad et al. [DISC 2019],
with space Õ(n3/2).

2. In random-order streams, where the edges arrive in a random order, we give a semi-streaming
algorithm, that is an algorithm that takes Õ(n) space.

Finally, we present new algorithms and lower bounds for (α, β)-ruling sets for other values of α

and β. Our algorithms improve and generalize the previous work of Konrad et al. [DISC 2019] for
(2, β)-ruling sets, while our lower bound establishes the impossibility of obtaining any non-trivial
streaming algorithm for (α, α − 1)-ruling sets for all even α > 2.
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1 Introduction

The goal of this paper is to understand the complexity of symmetry breaking problems,
specifically the (α, β)-ruling set problem, which is defined as follows.

▶ Definition 1. Given a graph G = (V, E), an (α, β)-ruling set is a subset I ⊆ V such that
the distance between any two vertices in I is at least α and the distance between a vertex in
V and the closest vertex in I is at most β.

Ruling sets are a generalization of maximal independent sets: MIS is a (2, 1)-ruling set.
Ruling sets have been well-studied in numerous distributed setting such as the CONGEST
and LOCAL models, and the k-machine model (see e.g. [7, 8, 10, 17, 18, 24, 31]). Moreover,

© Sepehr Assadi and Aditi Dudeja;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
mailto:aditi.dudeja@rutgers.edu
https://doi.org/10.4230/LIPIcs.DISC.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Ruling Sets in Random Order and Adversarial Streams

ruling sets are used as a subroutine in algorithms solving other interesting graph problems
such as distributed coloring [12], maximal matching [8], maximal independent set [18], or
shortest paths [19]. In many applications where they are sufficient and easier to compute,
ruling sets can replace MIS computation. (see e.g. [8, 27]).

We study this problem in the graph streaming model, which is motivated by the fact that
modern data sets are too large to fit in a computer’s random access memory. A streaming
algorithm processes its data sequentially, in one or a small number of passes. It has a memory
sublinear in the size of input. The distributed and graph streaming models have a lot in
common, with techniques used in one model often finding applications in the other. For
example L0-sampling [20] and graph sketches [3] which were first used in the context of
streaming algorithms, now find application in several distributed settings too: [30] use linear
sketches to obtain algorithms for MST in the k-machine model, and [21] use them in the
Congested Clique model to give an optimal algorithm for the same problem. There are
numerous examples of tools from communication and information complexity being used to
establish lower bounds for streaming as well as distributed computing problems (see, e.g. [1]
and the references therein).

Many of the classical symmetry breaking problems have been studied in the semi-streaming
model. For example, [6] and [13] studied the MIS problem in the semi-streaming setting and
obtained an Ω(n2) lower bound on space for one pass streaming algorithms. If we increase
the number of passes, then correlation clustering of [2] enables us to get a semi-streaming
algorithm in O(log log n) passes. Similar to the case of distributed computing where the
problem of computing a (∆+1)-colouring is easier than computing an MIS, [6] also gave a
one-pass semi streaming algorithm for ∆+1 coloring. [24] studied the problem of (2, β)-ruling
sets in the semi-streaming setting, establishing that for β ≥ 2, the problem of computing a
(2, β)-ruling set is strictly easier than computing an MIS. We extend this line of study of
symmetry breaking problems by considering random order streams, and giving improved
algorithms and lower bounds for adversarial streams for various values of α and β.

Our Results. Our main result is a semi-streaming algorithm for (2, 2)-ruling sets and thus
(2, β)-ruling sets for all β ≥ 2 in random-order streams. The random order model is motivated
by the fact that it gives rise to a natural notion of average-case analysis, which explains why
some streaming problems may have strong lower bounds, while being efficiently solvable in
practice (see [28]). As a result, several problems such as matching (see [23, 16, 22, 15, 5, 4, 9]),
connectivity [11] or properties of bounded degree graphs [29] have been studied extensively
in this model. With this, we state our first result.

▶ Result 1. There is an Õ(n)-space streaming algorithm that computes a (2, 2)-ruling set
(and therefore (2, β)-ruling set for β ≥ 2) of any graph with high probability when the edges
arrive in a random order. This also gives a semi-streaming algorithm for (α, β)-ruling sets
for β ≥ α ≥ 2 when the edges arrive in a random order.

Result 1 is the first example of a semi-streaming algorithm for any (2, β)-ruling set for
β = O(1) (although we make the assumption that the edges arrive in a random order). This
bound is optimal since Ω(n) space is needed to output the solution. While it is known that
MIS requires Ω(n2) space when the edges arrive in the stream in an arbitrary order, no such
barriers are known for random-order stream. Thus resolving the complexity of MIS in this
model remains an interesting open question.

Our second contribution is improving the Õ(n1+ 1
2β −1 )-space algorithm of [24] for (2, β)-ruling

sets when edges arrive in the stream in an arbitrary order.
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▶ Result 2. There is an Õ(β · n1+ 1
2β −1 ) space streaming algorithm that computes a (2, β)-

ruling set of any graph with high probability when the edges arrive in an arbitrary order. This
also gives a streaming algorithm that computes an (α, β)-ruling set (for β ≥ α ≥ 2) with high
probability using Õ(n1+ 1

2β−α+2−1 ) space when the edges arrive in an arbitrary order

The improvement in Result 2 is the most significant for α = β = 2, where we get a bound
of Õ(n4/3), improving upon the previously known best bound of Õ(n3/2). Our final result is a
lower bound for (α, α− 1)-ruling sets for all even α > 2.

▶ Result 3. Any randomized constant error one-pass streaming algorithm in the adversarial
order model that computes a (α, α− 1)-ruling set for any even α > 2 requires Ω(n2

/α2) space.

Landscape of (α, β)-ruling sets. The algorithm of Result 2 gives non-trivial streaming
algorithms (with space complexity much smaller than input size), for all β ≥ α ≥ 2. On
the other hand, Result 3 establishes that the problem of computing (α, β)-ruling sets when
β = α− 1 for even α > 2, does not admit non-trivial streaming algorithms. When β < α− 1,
an (α, β)-ruling sets may not even exist. Thus, our results give a relatively complete picture
of which setting of parameters α and β the problem of computing (α, β)-ruling sets admits
non-trivial streaming algorithms.

2 Preliminaries

From now on, we use β-ruling sets to denote (2, β)-ruling sets. For a graph G we use n to
denote |V (G)| and m to denote |E(G)|. For a subgraph K of G and a vertex v ∈ K, we define
EK(v) to be the set of edges incident on v in K, degK(v) to be the number of neighbours of
v in K and NK(v) to be the neighbours of v in K. For u, v ∈ V (G), let dist(u, v) denote the
length of the shortest path from u to v.

Concentration Results. In our proofs, we will use negatively associated random variables.

▶ Definition 2. We say a collection of random variables {X1, X2, · · · , Xk} are negatively
associated if for any two disjoint index sets I, J ⊆ [n] and two functions f, g both monotone
increasing or both monotone decreasing, it holds

E [f(Xi : i ∈ I) · g(Xj : j ∈ J)] ≤ E [f(Xi : i ∈ I)] · E [g(Xj : j ∈ J)]

We will apply our concentration bounds to randomly chosen subsets of vertices of a
fixed size, or to segments of stream. Since the stream is random-ordered, both of these
situations can be thought of as sampling without replacement. Thus, we can apply Chernoff
for negatively associated random variables (see for example [32]).

▶ Proposition 3 ([14]). [Chernoff Bound] Let X1, · · · , Xk be negatively associated 0-1 random
variables. Let X =

∑k
i=1 Xi. Let µ = E

[∑k
i=1 Xi

]
and let µmin ≤ µ ≤ µmax. Then, for all

δ ∈ (0, 1), we have:

Pr (X ≥ (1 + δ)µmax) ≤ exp
(
−δ2µmax/3

)
and Pr (X ≤ (1− δ)µmin) ≤ exp

(
−δ2µmin/2

)
.

Communication Complexity. In order to prove lower bounds on the space complexity, we
will reduce Indext to our problem, which we formally define.

DISC 2021
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▶ Definition 4. In the two-party communication problem Indext, Alice holds a t-bit string
X ∈ {0, 1}t and Bob holds an index σ ∈ [t]. Alice sends a single message to Bob, who upon
receipt outputs Xσ.

We shall use the following well-known distribution for Indext.

Distribution 1 Distribution DInd.

1 Pick X ∈ {0, 1}t uniformly at random.
2 Pick σ ∈ [t] uniformly at random.

If an instance of Indext is drawn from DInd, then we have the following bound on the
message complexity of any communication protocol that solves it (see [26]).

▶ Proposition 5. For 0 < δ < 1/2, any δ-error protocol for Indext over DInd, ccmmunicates
Ω(t) bits.

3 2-Ruling Sets in Random-Order Streams

In this section, we state our main contribution: We give a simple streaming algorithm that
computes a 2-ruling set of a given graph in random-order stream in Õ(n) space. We now
state our main theorem formally.

▶ Theorem 6. There is an Õ(n)-space streaming algorithm that computes a 2-ruling set
of any graph G with high probability when the edges of G arrive in a random order in the
stream.

In Section 3.1 we will show a structural theorem that we will use to compute 2-ruling sets
in random order stream. In the subsequent section, we will state our algorithm and argue its
correctness and space complexity.

3.1 Peeling Decomposition
In order to compute 2-Ruling Sets in random order streams, we will use a structural
decomposition of the graph G. We formally state this decomposition. A similar decomposition
was used first by [25] and [10] to compute β-ruling sets in the distributed setting, and then
subsequently by [24] to get streaming algorithms for β-ruling sets. Since this decomposition
was given in a different language in the previous works, we re-state it here for completeness.
Our main contribution is the observation that this decomposition can be computed in the
random-order setting with high probability and using a small amount of space.

▶ Definition 7. Let G = (V, E) be a graph, let r = log n− log log n−7 and let (d0, d1, · · · , dr)
be a sequence of integers such that di = n/2i for i ∈ [r]. We define the Peeling Decomposi-
tion (G0, G1, · · · , Gr) of G as follows.
1. Each Gi consists of vertices Vi and edges Ei.
2. We let G0 = G, and Gi ⊆ Gi−1 for all i ≥ 0.
3. For i ≥ 1, we define Vi =

{
v ∈ Vi−1 | degGi−1(v) ≤ di

}
, Gi = G[Vi] and Ei = E(Gi).

Depending on the decomposition, with each vertex v ∈ V , we associate a level.

▶ Definition 8. For every vertex v, we define the level of a vertex to be the unique index l

such that v ∈ Vl but v /∈ Vl+1. If v ∈ Vr then the level of v is r.
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We now describe a process to create an induced subgraph H of G whose MIS with high
probability will be a 2-ruling set for G. Moreover, the total number of edges in H will be
small.

Process 2 A Process for Sampling a 2-Ruling Set.

Input: Graph G, (d0, d1, · · · , dr), where r = log n− log log n− 7, di = n/2i and
peeling decomposition (G0, · · · , Gr).

1 For each i ∈ {1, 2, · · · , r − 1}, we sample Si of size 10·|Vi|·log n
di+1

from Vi uniformly at
random.

2 Let H be the induced subgraph G[∪r−1
i=0 Si ∪ Vr].

3 Return M, an arbitrary MIS of H.

We now prove the following guarantees on H and M.

▶ Lemma 9. The set M returned by Process 2 is a 2-ruling set of G with high probability.

Proof. We first note that since H is an induced subgraph of G, M is an independent set
in G. We want to show that for all v /∈M, there is a vertex u ∈M such that u is at most
distance two from v.

Towards this, we first consider a vertex v ∈ Vr. Observe that since Vr ⊆ V (H), this implies
that either v ∈ M or there is a vertex u ∈ M such that dist(v, u) = 1. We now prove the
claim for vertices on level i < r. Consider a vertex v ∈ Vi−1 \ Vi. By definition, we know
that degGi−1(v) ≥ di. For a vertex w ∈ NGi−1(v), we define Xw to be the indicator random
variable that takes value 1 if w ∈ Si−1 and value 0 if w /∈ Si−1. Since Si−1 is sampled
uniformly at random from Vi−1 and |Si−1| = 10·|Vi−1|·log n

di
, we have the following bound for

a vertex w ∈ NGi−1(v).

Pr (Xw = 1) = |Si−1|
|Vi−1|

= 10 · log n

di

Note that the above bound is at most 1, since dr ≥ 100 · log n, by our choice of r and di’s.
Observe that the random variables

{
Xw | w ∈ NGi−1(v)

}
are negatively associated (since

they correspond to sampling without replacement). This gives us the following bounds:

Pr

 ∧
w∈NGi−1 (v)

Xw = 0

 ≤ ∏
w∈NGi−1 (v)

Pr (Xw = 0) =
(

1− 10 · log n

di

)degGi−1
(v)

≤
(

1− 10 · log n

di

)di

= O

(
1

n10

)
.

(Since degGi−1
(v) ≥ di)

Taking a union bound over all vertices we conclude that with probability 1− o(1) for i ∈ [r],
for all v ∈ Vi−1 \ Vi, there is a vertex w ∈ NGi−1(v) such that w ∈ Si−1. This proves our
claim. ◀

We now bound the total number of edges in H.

▶ Lemma 10. The total number of edges in H, the induced subgraph of Process 2, is at most
O(
∑r−1

i=0
|Vi|·di·log n

di+1
+ n · dr). By our choice of di’s and r, this is at most Õ(n).

Proof. To bound the total number of edges in H, we give a charging argument. For every
edge (u, v) we charge this edge to the endpoint with the lower level. We consider the following
two cases.

DISC 2021
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1. Total charge on v ∈ Vr. We begin by observing, that a vertex v ∈ Vr is charged an
edge (u, v) then level of u is also r (in other words, u ∈ Vr). Since degGr−1(v) ≤ dr, by
definition of Vr, and Vr ⊆ Vr−1, we conclude that degGr

(v) ≤ dr. From this discussion,
we know that the total charge on any v ∈ Vr is at most dr. Thus, the total charge on Vr

is at most |Vr| · dr.
2. Total charge on v ∈ Si. Consider a vertex v at level i, and suppose it is charged

an edge (u, v). Let j be the level of u. By our charging scheme, j ≥ i. Consequently,
u ∈ Vj ⊆ Vi ⊆ Vi−1. Additionally, we know by definition of Vi that degGi−1(v) ≤ di. By
the above discussion, the total charge on v is at most di. Therefore, the total charge on
Si is at most 100·di·|Vi|·log n

di+1
.

This proves our claim. ◀

3.2 The Algorithm
We briefly describe our algorithm. To give our algorithm, we would ideally like to sample the
subgraph H as described. If we were able to achieve this, then at the end of the stream we
could compute an MIS M of H, and using the Lemma 9, we would know this is a 2-ruling
set of G with high probability. Moreover using Lemma 10, we would be able to conclude
that we have a semi-streaming algorithm for this problem.

However, determining Vi even in random order streams seems impossible. Therefore, instead
of computing Vi, we will compute sets Ṽi and G̃i = G[Ṽi], which will have the following relaxed
property: for all vertices v ∈ Ṽi, degG̃i−1

(v) ≤ di, and for all v ∈ Ṽi−1 \ Ṽi, degG̃i−1
(v) ≥ di/2.

We can then show that the main property still holds: for i ∈ {1, · · · , r}, suppose we sample
S̃i−1 of size 100·|Ṽi−1|·log n

di
uniformly at random from Ṽi−1 then with high probability, for all

v ∈ Ṽi−1 \ Ṽi, there is u ∈ NG̃i−1
(v) such that u ∈ S̃i−1. Finally, if H = ∪r−1

i=1 S̃i ∪ Ṽr, then
an argument similar to the one in Lemma 10 will give us a similar bound on |E(H)|.

We give some intuition about our algorithm. Our algorithm starts by first guessing Ṽ1
described above as follows: given parameter d1, we sample a set S̃0 of size 10·n·log n

d1
uniformly

at random from V . We determine the set Ṽ1 by filtering out vertices that have a lot of edges
to S̃0. To do this we only look at a small portion of the stream (the first 100·m·log n

d1
edges),

and remove vertices that have a lot of edges incident on them in this portion of the stream.
We will argue via a Chernoff bound argument that Ṽ1 has the above property with high
probability: all vertices in Ṽ1 have few edges to S̃0, and all vertices in V \ Ṽ1 have a lot
of edges to S̃0. For any i ≥ 2, we repeat this process inductively: suppose we have Ṽi−1.
We sample S̃i−1 from it, and we obtain Ṽi by looking at a small portion of the stream and
removing vertices that have a lot of edges to S̃i−1.

We formally describe our algorithm in Algorithm 3, and we now show its correctness and
space complexity.

▷ Claim 11. Let Ṽ1, · · · Ṽr be the sets computed by Algorithm 3. Then, with high probability
the following facts hold for all i ∈ [r].
1. For any v ∈ Ṽi, degG̃i−1

(v) ≤ di.
2. For any v ∈ Ṽi−1 \ Ṽi, degG̃i−1

(v) ≥ di/2.

Proof. Consider v ∈ Ṽi, we want to show degG̃i−1
(v) ≤ di. Recall how Ṽi is created: we add

v ∈ Ṽi−1 to Ṽi if we see fewer than 70 log n edges from EG̃i−1
(v) among the first 100·m log n

di

edges that have arrived in the stream. Suppose degG̃i−1
(v) > di. Let Yv denote the random

variable |EG̃i−1
(v)∩Streami−1|. Observe that Yv is a sum of negatively associated 0-1 random
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Algorithm 3 Computing a 2-Ruling Set in Random-Order Streams.

1

Input: Integers r = log n− log log n− 7, (d0, d1, · · · , dr), where di = n/2i.
Phase 0:
1: Ṽ1 ← V

2: Let S̃0 be chosen uniformly at random from V , where |S̃0| = 10·n·log n
d1

3: Store the first 100·m·log n
d1

edges of G that arrive in the stream (denoted by Stream0).
4: For all vertices v with |EG(v) ∩ Stream0| > 70 log n, let Ṽ1 ← Ṽ1 \ {v}.
5: Discard all edges (u, v) such that either u /∈ S̃0 ∪ Ṽ1 or v /∈ S̃0 ∪ Ṽ1.

Phase i for i ∈ {1, 2, · · · , r − 1}:
6: Initialize Ṽi+1 ← Ṽi.
7: Sample S̃i uniformly at random from Ṽi, where |S̃i| = 10·|Ṽi|·log n

di+1
.

8: Let G̃i = G[Ṽi]. Let H̃i = G[∪i−1
j=0S̃j ∪ Ṽi]. Process the stream, storing only edges of H̃i.

After the first 100·m·log n
di+1

edges of G (denoted Streami) have been seen, do the following:
for all vertices v ∈ Ṽi with |EG̃i

(v) ∩ Streami| > 70 log n, let Ṽi+1 ← Ṽi+1 \ {v}.
9: Discard all edges (u, v) with u /∈ ∪i

j=0S̃j ∪ Ṽi+1 or v /∈ ∪i
j=0S̃j ∪ Ṽi+1.

After Phase r − 1:
10: Process the stream, while only retaining edges that have both endpoints in ∪r−1

j=0S̃j ∪ Ṽr.
11: At the end of the stream return M = MIS(G[∪r−1

j=0S̃j ∪ Ṽr]).

variables. We briefly explain why: for an edge e ∈ EG̃i−1
(v), define Xe to be the indicator

random variable that takes value 1 when e ∈ Streami−1 and 0 otherwise. Note that Xe are
negatively associated since they correspond to sampling 100·m·log n

di
edges without replacement.

We additionally have the following bound for e ∈ EG̃i−1
(v).

Pr (Xe = 1) =
(

1
m

)(
100 ·m · log n

di

)
The above bound is less than 1 due to the fact that r = log n− log log n−7 and dr > 100 log n.
This gives us the following bound on E [Xv]:

E [Yv] =
(

degG̃i−1
(v)

m

)(
100 ·m · log n

di

)
>

(
di

m

)(
100 ·m · log n

di

)
= 100 log n

We now apply Proposition 3 with δ = 3/10 and µmin = 100 log n, to get:

Pr (Yv ≤ 70 log n) ≤ exp
(
−(3/10)2(100 log n)(1/2)

)
= O

(
1
n4

)
Pr (Yv > 70 log n) = 1−O

(
1
n4

)
This implies that with high probability, v would be omitted from Ṽi, which is a contradiction.

We now prove that with high probability, for all v ∈ Ṽi−1 \ Ṽi, degG̃i−1
(v) ≥ di/2. The

proof strategy will be same as before. Assume that degG̃i−1
(v) < di/2. For e ∈ EG̃i−1

(v),
we let Xe be a random variable that takes value 1 if e ∈ Streami−1 and 0 otherwise. Let
Yv = |EG̃i−1

(v)∩Streami−1|. As discussed before, we know that Yv is a sum of 0-1 negatively
correlated random variables

{
Xe | e ∈ EG̃i−1

(v)
}

.

DISC 2021



6:8 Ruling Sets in Random Order and Adversarial Streams

Pr (Xe = 1) =
(

1
m

)(
100 ·m · log n

di

)
This gives us the following bound on E [Yv].

E [Yv] =
(

degG̃i−1
(v)

m

)(
100 ·m · log n

di

)
<

(
di

2m

)(
100 ·m · log n

di

)
= 50 log n

We now apply Proposition 3 with δ = 2/5 and µmax = 50 log n.

Pr (Yv ≥ 70 log n) ≤ exp(−(2/5)2(50 log n)(1/3)) = O

(
1
n2

)
Pr (Yv < 70 log n) > 1−O

(
1
n2

)
.

This implies that with high probability, v would be included in Ṽi which is a contradiction.
Taking a union bound over all vertices, we conclude the proof of the lemma. ◁

▷ Claim 12. For i ∈ [r], consider any v ∈ Ṽi−1 \ Ṽi, there is a neighbour of v in S̃i−1 with
high probability.

Proof. For the proof of this lemma, we condition on Claim 11. The set S̃i−1 is sampled
uniformly at random from Ṽi−1, and |S̃i−1| = 10·|Ṽi−1|·log n

di
. Consider any v ∈ Ṽi−1 \ Ṽi,

from Claim 11, we know that degG̃i−1
(v) ≥ di

2 . For w ∈ NG̃i−1
(v), consider 0-1 random

variable Xw, that takes value 1 if w ∈ S̃i−1 and 0 otherwise. The random variables{
Xw = 1 | w ∈ NG̃i−1

(v)
}

are negatively associated. Let Yv denote |NG̃i−1
(v) ∩ S̃i−1|. We

know that Yv is a sum of negatively associated 0-1 random variables. Having established
this notation, for w ∈ NG̃i−1

(v), we have the following fact.

Pr (Xw = 1) = |S̃i−1|
|Ṽi−1|

=
(

10 · |Ṽi−1| · log n

di

)(
1
|Ṽi−1|

)
= 10 log n

di
.

The above bound is at most 1, since dr > 100 · log n by our choice of r and di’s. We now
bound the probability that none of the vertices in NG̃i−1

(v) are included in S̃i−1.

Pr

 ∧
w∈NG̃i−1

(v)

{Xw = 0}

 ≤ ∏
w∈NG̃i−1

(v)

Pr (Xw = 0) =
(

1− 10 · log n

di

)degG̃i−1
(v)

(Negatively associated r.v.)

≤
(

1− 10 · log n

di

)di/2

= O

(
1
n5

)
(degG̃i−1

(v) ≥ di/2).

Taking a union bound over all v ∈ V , we conclude that for all i ∈ [r] and for all v ∈ Ṽi−1 \ Ṽi,
there is w ∈ NG̃i−1

(v) such that w ∈ S̃i−1 with high probability. ◁
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Correctness. To show correctness, note that Algorithm 3 retains all edges of H =
G
[
∪r−1

j=0S̃j ∪ Ṽr

]
till the end of the stream. This implies that the set of verticesM output by

the algorithm, indeed forms an MIS in H. Since H is an induced subgraph of G, M is also
an independent set in G. We know that all v ∈ V (H) are 1-ruled. Additionally, from Claim
12 and Claim 11 we conclude that for all i ∈ [r− 1], for all v ∈ Ṽi \ Ṽi+1, there is a neighbour
of v in S̃i. Let u be this neighbour. Since M is an MIS, either u ∈M or there is x ∈ NG(u)
such that x ∈M. This implies that v is 2-ruled. We conclude that with probability at least
1− o(1), all vertices in V are 2-ruled.

Space Complexity. We show that the space complexity of this algorithm. Towards this, we
show that the total number of edges stored by the algorithm is at most O(

∑r−1
i=0

|Ṽi|·di·log n
di+1

+
n · dr) = Õ(n) since r = log n− log log n− 7 and di = n/2i.

▶ Lemma 13. The total number of edges stored by Algorithm 3 is O(
∑r−1

i=0
150·|Ṽi|·di·log n

di+1
+

n · dr) with high probability.

Proof. We start with showing the total number of edges in the memory at the end of Phase
0. Observe that Phase 0 ends when we have seen first 100·m·log n

d1
edges of G. Therefore, by

the end of this phase we have at most 100·m·log n
d1

edges in the memory, which is 100·n2·log n
d1

,
the first term in the sum given in the lemma. During Phase i, we only store edges of
H̃i = G

[
∪i−1

j=0S̃j ∪ Ṽi

]
. We will now bound the number of such edges.

As before, we will make a charging argument. Recall the definition of the level of a vertex
in Definition 8. Consider an edge (u, v) ∈ H̃i that appears in Streami. We charge (u, v) to
the vertex with the lower level, breaking ties arbitrarily. Suppose v is at level j < i and is
charged the edge (u, v). This implies that level of u is at least j as well (since we charge the
edge to a lower level). In particular, u ∈ G̃j . Since degG̃j−1

(v) ≤ dj , this implies the total
charge on v is at most dj . Consider the set S̃j , which is sampled from G̃j . The total charge
on S̃j is at most 100·dj ·|Ṽj |·log n

dj+1
.

Finally, consider v ∈ Ṽi, if v is charged for an edge (u, v), then we conclude that u ∈ Ṽi

as well. So, the total charge on Ṽi is at most the total number of edges in G̃i ∩ Streami.
Observe that degG̃i−1

(v) ≤ di for all v ∈ Ṽi. This implies that degG̃i
(v) ≤ di for all v ∈ Ṽi

(from Claim 11) with high probability. In the rest of the argument, we condition on this
event. Let Yv be a random variable denoting |EG̃i

(v) ∩ Streami|. Note that Yv is a sum of
negatively associated 0-1 indicator random variables

{
Xe | e ∈ EG̃i

(v)
}

, which takes value 1
if e ∈ Streami and 0 otherwise. We have the following bounds on probabilities for e ∈ EG̃i

(v)

Pr (Xe = 1) =
(

1
m

)(
100 ·m · log n

di+1

)

The above bound is valid since dr > 100 log n by our choice of parameters. Therefore, the
bound on expectation of Yv is as follows.

E [Yv] =
(degG̃i

(v)
m

)(
100 ·m · log n

di+1

)
≤
(

di

m

)(
100 ·m · log n

di+1

)
= 100 · di · log n

di+1
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6:10 Ruling Sets in Random Order and Adversarial Streams

We now apply Proposition 3 with µmax = 100·di·log n
di+1

and δ = 1/2 to get the bound:

Pr
(

Yv ≥
150 · di · log n

di+1

)
≤ exp

(
−(5/10)2

(
100 · di · log n

di+1

)
(1/3)

)
= O

(
1
n8

)
(We use the fact that di > di+1)

Therefore, the total charge on Ṽi is at most 150·di|Ṽi|·log n
di+1

. So from the above discussion it
follows that the total number of edges stored in the memory till the end of Phase i is at
most 100·n2·log n

d1
+
∑i−1

j=1
100·|Ṽj |·dj ·log n

dj+1
+ 150·|Ṽi|·di·log n

di+1
. From this we conclude that the total

number of edges stored till the end of the stream O( n2·log n
d1

+
∑r−1

i=1
n·di·log n

di+1
+ n · dr), which

proves our claim. ◀

▶ Lemma 14. The total space complexity of Algorithm 3 is at most Õ(n).

Proof. From Lemma 13, the total number of edges stored in the memory at any time is
O(n2·log n

d1
+
∑r−1

i=1
n·di·log n

di+1
+ n · dr). Since we chose r = log n− log log n− 7 and di = n/2i,

we get the stated bound. ◀

(α, β)-Ruling sets in Random Order Streams. Algorithm 3 allows us to compute (α, β)-
ruling sets for all β ≥ α ≥ 2 in Õ(n) space: in the final step, we just compute an(α, α− 1)
ruling set of G[∪r−1

j=0S̃j ∪ Ṽr]. We formally state the algorithm, and prove its correctness and
space complexity in the full version of the paper.

4 Ruling Sets in Adversarial Streams

We also give an improved streaming algorithm that computes the β-ruling set of a graph
in adversarial streams in Õ(β · n1+ 1

2β −1 ) space. This is significant for β = 2, since the best
known algorithm for 2-ruling sets had space complexity Õ(n3/2), while our analysis improves
it to Õ(n4/3). We state our main result for this section.

▶ Theorem 15. There is an Õ(β · n1+ 1
2β −1 )-space streaming algorithm that computes a

β-ruling set of any graph G with high probability. This implies an Õ(n4/3)-space streaming
algorithm for computing a 2-ruling set of a graph G.

4.1 A Slightly Improved Algorithm for Ruling Sets
Our algorithm does hierarchical sampling as described in the papers of [24, 25, 10]. However,
we get a better bound on the space complexity. We illustrate the difference between their
technique and ours for the simpler case of β = 3.

Comparison with Previous Work. Similar to [24, 25, 10], sample a set S1 uniformly at
random from V, and a set S2 uniformly at random from S1. During the stream, we collect
edges incident on G[S1 ∪ S2]. These sets are not modified during the stream in the earlier
algorithms. On the other hand, we remove from S1 all vertices that have a large degree in
G[S1 ∪S2], because we hope that for such vertices, one of its neighbours in G[S1 ∪S2] will be
included in S2. This enables us to get a better bound on the degrees of vertices in G[S1 ∪S2],
and in turn a better bound on the space complexity. We note that [10, 25] state their peeling
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decomposition in a different way, however, their algorithm, too, peels off vertices that have
higher “overall” degree (this is made explicit in Lemma 2.1 and Lemma 2.2 of [25]). Instead
we remove vertices that have higher degree in the graph remaining after previous peeling
steps. For completeness we now describe the sampling scheme.

▶ Definition 16 (Sampling Scheme). Given integers s1, s2, · · · , sβ−1 such that s1 > s2 >

· · · > sβ−1 > 0, we sample sets S1, · · · , Sβ−1 as follows.
1. Let S0 = V and for i ≥ 1, sample Si uniformly at random from Si−1 and let |Si| = si.
For a vertex v we define the level of v, denoted l(v) to be the unique index l such that v ∈ Sl,
but v /∈ Sl+1. If v ∈ Sβ−1, then we say that level of v, denoted l(v) is β − 1.

We now describe our algorithm.
Algorithm 4 Computing a β-Ruling Set in Adversarial Streams.

Input: Take as input (s1, s2, · · · , sβ−1), where s1 > s2 > · · · > sβ−1
1 S0 ← V and s0 ← n.
2 Sample S1, S2, · · · , Sβ−1 with parameters s1, · · · , sβ−1 according to Definition 16.
3 S̃i ← Si for i ∈ {0, 1, · · · , β − 1}. We store all edges in G[∪β−1

j=0 S̃j ] in the stream.
4 For a vertex v ∈ ∪β−1

j=0 S̃j , with l(v) = l such that l ≤ β − 2, if degSl
(v) ≥ 100·sl·log n

sl+1
,

then let S̃j ← S̃j \ {v} for all j ≤ l. Delete any edges not in G[∪β−1
j=0 S̃j ].

5 Output MIS M of G[∪β−1
j=0 S̃j ].

We first claim that the algorithm indeed outputs a β-ruling set of G with high probability.
Towards this, we prove the following claim.

▶ Lemma 17. Consider any v ∈ V , then v is β-ruled by M.

Proof. We prove a stronger claim: We show that for all i ∈ {0, 1, · · · , β − 1} each vertex
v ∈ Si is β − i ruled by M. We prove this by induction. We first consider Sβ−1 and start
with the observation that Sβ−1 ⊆ ∪β−1

j=1 S̃j (this is because in Algorithm 4 Step 4 we only
delete vertices of level less than β − 1 from ∪β−1

j=1 S̃j). Since M is an MIS, this implies that
for every v ∈ Sβ−1, either v itself is in M or there is a neighbour u of v such that u ∈ M.
So, these vertices are 1-ruled.

We assume the claim holds for all v ∈ Si for some i < β. Under this inductive hypothesis,
we want to prove this claim for all v ∈ Si−1. Observe that if l(v) ≥ i, then we know that
v ∈ Si as well, and statement of the lemma holds by inductive hypothesis. So, we assume
that l(v) = i− 1. Additionally, if v ∈ ∪β−1

j=1 S̃j , then we know that v is 2-ruled. So, we assume
that v /∈ S̃i−1. We therefore conclude that degSi−1(v) ≥ 100·si−1·log n

si
. We now show that

with high probability there is u ∈ NSi−1(v) such that u ∈ Si. Let Yv be a random variable
denoting |NSi−1(v) ∩ Si|. This random variable is the sum of negatively associated indicator
random variables Xw for w ∈ NSi−1(v), which takes value 1 if w ∈ Si and 0 otherwise. We
have the following probability bound.

Pr (Xw = 1) =
(

si

si−1

)
E [Yv] = degSi−1(v) ·

(
si

si−1

)
≥ 100 log n
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6:12 Ruling Sets in Random Order and Adversarial Streams

Applying Proposition 3 with µmin = 100 log n and δ = 1
2 , we have:

Pr (Xv ≤ 50 log n) = exp
(
−(1/2)2(100 log n)(1/2)

)
= O

(
1

n12

)
Pr (Xv > 50 log n) = 1−O

(
1

n12

)
.

This implies that with high probability, v has a neighbour in Si. By inductive hypothesis, all
vertices in Si are at most β − i ruled by M, this implies that v is β − i + 1 ruled by M. ◀

We now bound the total number of edges stored in the memory at any time.

▶ Lemma 18. The total number of edges stored in the memory at any point in time is at
most Õ(n2

/s1 +
∑β−1

j=2
s2

j−1/sj + s2
β−1).

Proof. To prove this claim, we do a charging argument. We charge every edge (u, v) to the
vertex which is at a lower level, breaking ties arbitrarily. Consider a vertex v ∈ ∪β−1

j=0 S̃j

and suppose l(v) = i. This implies that degSi
(v) ≤ 100·si·log n

si+1
. So, the total charge on

vertices v ∈ ∪β−1
j=0 S̃j with level i is at most Õ(s2

i/si+1). If a vertex v ∈ Sβ−1 is charged
for an edge (u, v), then u ∈ Sβ−1 as well. So, the total bound on the number of edges is
Õ(n2

/s1 +
∑β−1

j=2
s2

j−1/sj + s2
β−1). ◀

▶ Lemma 19. The space complexity of Algorithm 4 is at most Õ(β · n1+1/2β −1).

Proof. Consider the bound on the edges in Lemma 18, we let si = n
1− 2i−1

2β −1 for i ∈
{0, 1, · · · , β − 1}. Consider the term s2

i

si+1
in the sum, we have the following bound on it.

s2
i

si+1
= n

2− 2i+1−2
2β −1

n
1− 2i+1−1

2β −1

= n
1+ 1

2β −1 .

Similarly, s2
β−1 = n

2− 2β −2
2β −1 = n

1+ 1
2β −1 .This proves our claim. ◀

Our analysis gives an improved bound of Õ(n4/3) for 2-ruling set. The previous best
known algorithm had a space bound of Õ(n3/2).

(α, β)-Ruling sets in a Adversarial Order Streams. A modification of Algorithm 4 allows
us to compute (α, β)-ruling sets for all β ≥ α ≥ 2 in Õ(n1+ 1

2β−α+2−1 ) space: in the final step,
we just compute an (α, α− 1) ruling set instead of MIS. We give the algorithm, along with a
proof of its space bound and correctness in the full version of the paper

4.2 Lower Bound for Ruling Sets

In this section, our goal is to prove the following theorem.

▶ Theorem 20. Every randomized constant error one-pass streaming algorithm in the
adversarial edge arrival model that computes an (α, α− 1)-ruling set in an n-vertex graph for
any even α > 2, requires Ω(n2

/α2) space.
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We now give a hard distribution DRule for our algorithm (refer to Figure 1).

Distribution 5 Distribution DRule.
Output: An instance (G1/2, a, b).

1 Let α := 2c for c ≥ 2 be an even number and let n = 2c ·N + 4c · (c− 1). Let G1/2 be
a random graph on N vertices with each edge being included with probability 1

2
2 Create α disjoint copies G1, · · · , Gα of G1/2.
3 Create α paths P i

x with vertices xi
1, · · · , xi

c−1 and P i
y with vertices yi

1, · · · , yi
c−1 for

i ∈ [α].
4 Pick a pair of vertices (a, b) of G1/2 uniformly at random. Let (ai, bi) be the copy of

(a, b) in Gi for i ∈ [α].
5 For all i ∈ [α], add an edge between ai and xi

1, and between bi and yi
1.

6 For all i ∈ [α− 1], add an edge between each w ∈ V (Gi) \ {ai, bi} and
z ∈ V (Gi+1) \ {ai+1, bi+1}. Similarly, add an edge between each
w ∈ V (G1) \ {a1, b1} and z ∈ V (Gα) \ {aα, bα}.

To relate the ruling set problem with Indext, we will condition on the following event.

Event Edist. For all u, v ∈ G1/2, dist(u, v) ≤ 2.

We state the following claim.

▷ Claim 21. Pr(Edist) ≥ 1− o(1).

Proof sketch. To bound the probability of Edist, it is sufficient to bound the probability that
there is a pair of vertices which don’t share a common neighbour. Consider two vertices u

and v, the probability that a fixed vertex w /∈ N(u) ∩N(v) is 3/4. Therefore, the probability
that N(u)∩N(v) = ∅ is at most (3/4)N . Thus, taking a union bound over all pairs of vertices,
we have the desired claim. ◁

From now on, while discussing the properties of G, we condition on the event Edist.

Before moving on to the proof of Theorem 20, we first clarify some notation. In what follows,
G := (G1/2, a, b) will denote a graph sampled from DRule, and V (G) will denote the vertices
of G (This includes vertices of Gi, P i

x and P i
y for all i ∈ [α]). The graph Gi for i ∈ [α] will

denote the ith copy of G1/2 in G, and V (Gi) denotes its vertex set. The set V (Gi) does not
include vertices of P i

x and P i
y. We use V (Gi ∪ P i

x ∪ P i
y) to denote the vertices of Gi, P i

x, and
P i

y for all i ∈ [α].
Towards proving our main theorem, we state a few properties of (G1/2, a, b). It might

help to refer to Figure 1 for the following claim.

▷ Claim 22. Let G := (G1/2, a, b) be drawn from DRule. For any j ∈ [α], consider any
u ∈ V (Gj) \ {aj , bj} and v ∈ V (G) \

{
xc−1

k , yc−1
k

}
for k ≡ c + j mod α; then dist(u, v) ≤

2c− 1 = α− 1. Moreover dist(u, xc−1
k ) = 2c = α and dist(u, yc−1

k ) = 2c = α.

Proof. We prove the claim for j = 1, and the proof is identical for all other values of j. We
consider u ∈ V (G1) \ {a1, b1}; we want to argue that u is at distance at most 2c− 1 from all
v ∈ V (G) \

{
xc−1

c+1, yc−1
c+1
}

. We consider the following cases.
1. Consider any v ∈ V (Gi) \ {ai, bi} for i ≤ c + 1, then dist(u, v) ≤ c. If v ∈ V (G1) then

dist(u, v) ≤ 2 since we condition on Edist. If v ∈ V (Gi) \ {ai, bi} for i ≠ 1, u and v are
connected by a path of length i− 1. For i ≥ c + 1, the argument is identical
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2. We can reach the vertices xc−1
c and yc−1

c in 2c−1 hops from u: since we condition on Edist,
there is a w ∈ V (Gc) \ {ac, bc} such that dist(xc−1

c , w) = c. Moreover, d(u, w) = c − 1.
This implies that all vertices of V (Gi ∪ P i

x ∪ P i
y) for i ≤ c are 2c − 1 ruled by u. The

proof for all i ≥ c + 2 is identical.
3. Consider the vertices xc−1

c+1 and yc−1
c+1 . For these vertices, dist(u, xc+1

c−1) = 2c and
dist(u, yc+1

c−1) = 2c. Additionally, for all other vertices in the set v ∈ V (Gc+1 ∪ P c+1
x ∪

P c+1
y ) \

{
xc−1

c+1, yc−1
c+1
}

, dist(u, v) ≤ 2c− 1.
◁

▶ Lemma 23. Let I be a (α, α − 1)-ruling set of (G1/2, a, b). Suppose for some i ∈ [2c],
xc−1

i ∈ I; if (a, b) /∈ E(G1/2), then yc−1
i ∈ I as well.

Proof. We show the claim for i = 1, and for other values, the proof is identical. To prove
this claim, we show that the vertices that (2c − 1)-rule xc−1

1 and yc−1
1 are the same. Let

A1 =
{

v /∈
{

xc−1
1 , yc−1

1
}
| dist(v, xc−1

1 ) = 2c− 1
}

. These are the vertices that 2c−1 rule xc−1
1 ,

not including yc−1
1 . Similarly we define A2 =

{
v /∈

{
xc−1

1 , yc−1
1
}
| dist(v, yc−1

1 ) = 2c− 1
}

.
We claim that A1 = A2. We consider the following cases.
1. For any xk

1 for k ≤ c − 2, dist(xk
1 , yc−1

1 ) ≤ 2c − 1 and similarly, dist(xk
1 , yc−1

1 ) ≤ 2c − 1.
This shows that xk

1 ∈ A1 and xk
1 ∈ A2 as well. Similarly, we can show that for k ≤ c− 2,

yk
1 ∈ A1 and yk

1 ∈ A2.
2. For any vertex v ∈ V (G1), dist(v, xc−1

1 ) ≤ c + 1 and similarly, dist(v, yc−1
1 ) ≤ c + 1 (since

we condition on Edist), and therefore, v ∈ A1 and v ∈ A2.
3. We now want to consider all vertices v /∈ V (G1 ∪ P 1

x ∪ P 1
y ). Since we condition on

Edist, we know that there exists a vertex u ∈ V (G1) \ {a1, b1}, such that dist(u, xc−1
1 ) =

dist(u, yc−1
1 ) = c. Therefore, for any v /∈ V (G1 ∪ P 1

x ∪ P 1
y ), dist(v, xc−1

1 ) = dist(v, yc−1
1 ).

From the above three cases, we conclude that A1 = A2. So, if xc−1
1 ∈ I, then for all w ∈ A2,

w /∈ I. Since (a, b) /∈ E(G1/2), this implies that dist(xc−1
1 , yc−1

1 ) = 2c. So, yc−1
1 ∈ I. ◀

▷ Claim 24. For all i ∈ [α], we denote ai and bi by x0
i and y0

i . Let I be a (α, α−1)-ruling set
of (G1/2, a, b). Suppose xk

i ∈ I for some k ≤ c− 2. If (a, b) /∈ E(G1/2), then
{

xc−1
j , yc−1

j

}
⊆ I

for j ≡ (i + c− k − 1) mod α.

Proof. Consider xc−1
j ; there is a vertex w ∈ V (Gj) \ {aj , bj} such that dist(w, xc−1

j ) = c and
there is a vertex z ∈ V (Gi) \ {ai, bi} such that dist(z, xk

i ) = k + 1. Additionally, by our
construction, dist(w, z) = j − i. This implies that: dist(xk

i , xc−1
j ) = c + (k + 1) + (j − i) = 2c.

We conclude that both vertices xc−1
j and yc−1

j are not (2c− 1)-ruled by xk
i .

Additionally, for all k < j, all vertices in V (Gk ∪ P k
x ∪ P k

y ) are excluded from being
added in I, since all these vertices are (2c − 1)-ruled by xk

i . Similarly, all vertices in
V (Gj ∪ P j

x ∪ P j
y ) \

{
xc−1

j , yc−1
j

}
are (2c− 1)-ruled by xk

i , so these vertices are excluded from
I as well. Finally, we argue that all vertices in V (Gk ∪ P k

x ∪ P k
y ) for k ≥ j + 1 that could

(2c− 1)-rule xc−1
j and yc−1

j are excluded from I. We prove this claim for k = j + 1, but it is
identical for all other values of k.

In V (Gj+1 ∪ P j+1
x ∪ P j+1

y ), the vertices that can be included in I are{
xc−2

j+1, yc−2
j+1, xc−1

j+1, yc−1
j+1
}

, however dist(xc−2
j+1, xc−1

j ) = (c − 1) + 1 + c = 2c. Therefore, we
conclude that all the vertices other than xc−1

j and yc−1
j that are still candidates for I cannot

(2c − 1)-rule xc−1
j and yc−1

j . Additionally, since dist(xc−1
j , yc−1

j ) = 2c, this implies that{
xc−1

j , yc−1
j

}
⊆ I. ◁

▶ Lemma 25. Let I be any (α, α − 1)-ruling set of (G1/2, a, b). Then, there is an i ∈ [α]
such that

{
xc−1

i , yc−1
i

}
⊆ I if and only if (a, b) /∈ G.
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Proof. Suppose (a, b) ∈ G1/2, then for any i ∈ [α], dist(xc−1
i , yc−1

i ) = 2c − 1, so, both
cannot be included in I. Consider the other direction when (a, b) /∈ G1/2. Let I be any
(α, α− 1)-ruling set of (G1/2, a, b) and let v ∈ I. We consider the following cases for v.
1. v ∈ V (Gi) \ {ai, bi} for some i ∈ [α]. In this case, from Claim 22, we conclude

that xc−1
k and yc−1

k for k ≡ i + c mod α are the only two vertices that are not ruled.
Additionally, since dist(xc−1

k , yc−1
k ) = α, we conclude that

{
xc−1

k , yc−1
k

}
⊆ I.

2. v = xc−1
i or v = yc−1

i for some i ∈ [α]. In this case, Lemma 23, implies that{
xc−1

i , yc−1
i

}
⊆ I.

3. v = xk
i or v = yk

i for some k ≤ c − 2. In this case, from Claim 24, we conclude that{
xc−1

j , yc−1
j

}
⊆ I for j ≡ (i + c− k − 1) mod 2c.

This proves our lemma. ◀

We now state the next lemma, which will imply Theorem 20. Throughout this section,
ARule is an algorithm that for an even α > 2 computes an (α, α− 1) ruling set with error at
most δ when the input is sampled from DRule.

▶ Lemma 26. There exists a (δ + o(1))-error protocol πInd for Indext on DInd such that the
communication cost of πInd is s(ARule), where s(ARule) is the space complexity of ARule.

Proof. We begin the proof by designing the protocol πInd (see Protocol 6). From now on,
t =

(
N
2
)

and n = 2c ·N + 4c(c− 1).

Protocol 6 Protocol πInd.
Input: An instance (X, σ) ∼ DInd
Output: Yes if Xσ = 1 and No if Xσ = 0.

1 Alice creates an N -vertex graph H whose adjacency matrix is given by X.
2 She then creates α disjoint copies of H: G1, G2, · · · , Gα.
3 Alice then creates 4α paths on c− 1 vertices:

{
P i

x

}
1≤i≤α

and
{

P i
y

}
1≤i≤α

.
4 Bob treats σ ∈ [t] as an edge (a, b) of an n-vertex graph. He adds edges (ai, x1

i ), and
(bi, y1

i ) for all i ∈ [α]. Additionally, for all i ∈ [α− 1], he adds edges (x, y) for all
x ∈ V (Gi) \ {ai, bi} and for all y ∈ V (Gi+1) \ {ai+1, bi+1}. Edges (x, y) are also
added for all x ∈ V (G1) \ {a1, b1} and y ∈ V (G2c) \ {a2c, b2c}.

5 The players compute an (α, α− 1)-ruling set on their graph using ARule and output
No if there is an i ∈ [α] such that

{
xc−1

i , yc−1
i

}
⊆ I, where I is an (α, α− 1)-ruling

set. Output Yes if there is no such i ∈ [α].

The distribution of (G, a, b) created by πInd matches the distribution DRule exactly. From
Lemma 25 and using the fact that Xσ = 1 if and only if (a, b) ∈ E(G), we conclude that πInd
outputs Yes if Xσ = 1 and No if Xσ = 0. Since the event ¬Edist happens with probability o(1),
we conclude that: Pr (πInd errs) ≤ Pr (ARule errs) + Pr (¬Edist) = δ + o(1). Since Alice sends
the memory contents of ARule, we know that the communication cost of πInd is s(ARule). ◀

Proof of Theorem 20. If there was an o(n2
/α2)-space δ-error one-pass streaming algorithm

for the problem of finding a (α, α− 1)-ruling set of a graph G, then Alice and Bob would
be able to solve Indext using this algorithm. Alice would run it on her input, and send
the contents of the memory to Bob, who would run it on his input and give the ruling set
output by the algorithm. Since the contents of the memory are o(n2

/α2), this would give a
protocol for Indext with communication complexity o(n2

/α2) = o(t) and (δ + o(1))-error, thus
contradicting Proposition 5. ◀
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A Missing Figures

Figure 1 To create an instance (G1/2, a, b), graph G1/2 is sampled by including every edge on
N -vertices with probability 1/2. Then α := 2c disjoint copies of G1/2 are created. Additionally, 4c

paths on c−1 vertices,
{

P i
x

}
1≤i≤2c

and
{

P i
y

}
1≤i≤2c

are created. A random edge (a, b) is sampled and
4c edges,

{
(ai, x1

i )
}

1≤i≤2c
and

{
(bi, y1

i )
}

1≤i≤2c
are added. Edges (x, y) for all x ∈ V (Gi) \ {ai, bi}

and y ∈ V (Gi+1) \ {ai+1, bi+1} for all i ∈ [2c − 1] are added. Finally, edges (w, z) for all w ∈
V (G1) \ {a1, b1} and z ∈ V (G2c) \ {a2c, b2c} are also added.
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