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Abstract
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1 Introduction

Given a sparse graph class, how well can we approximate the size of the minimum dominating
set (MDS) in the graph using a constant number of rounds in the LOCAL model? A
dominating set of a graph G = (V, E) is a set S ⊆ V such that every vertex in V \ S has a
neighbor in S. Given a graph G and an integer k, deciding whether G has a dominating set
of size at most k is NP-complete even when restricting to planar graphs of maximum degree
three [9]. Moreover, the size of the MDS is NP-hard to approximate within a constant factor
(for general graphs) [16]. The practical applications of MDS are diverse but almost always
involve large networks [3], and it is therefore natural to turn to the the distributed setting.
No constant factor approximation of the MDS is possible using a sub-linear number of rounds
in the LOCAL model [13], and so various structural restrictions have been considered on the
graph classes with the hope of finding more positive results (see [8] for an overview).
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13:2 A Tight Local Algorithm for MDS in Outerplanar Graphs

Planar graphs are a hallmark case. For planar graphs, guaranteeing that some constant
factor approximation can be achieved is already highly non-trivial [7, 14]. The current best
known upper-bound is 52 [19], while the best lower-bound is 7 [11]. Substantial work has
focused on generalizing the fact that some constant factor approximation is possible to more
general classes of sparse graphs, like graphs that can be embedded on a given surface, or
more recently graphs of bounded expansion [1, 2, 5, 12]. Tight bounds currently seem out of
reach in those more general contexts.

In this paper we focus instead on restricted subclasses of planar graphs. Better approxi-
mation ratios can be obtained with additional structural assumptions: 32 if the planar graph
contains no triangle [3] and 18 if the planar graph contains no cycle of length four [4]. These
bounds are not tight, and in fact we expect they can be improved significantly. We are able
to provide tight bounds for a different type of restriction: we consider planar graphs with no
K2,3-minor or K4-minor1, i.e. outerplanar graphs. Outerplanar graphs can alternatively be
defined as planar graphs that can be embedded so that there is a special face which contains
all vertices in its boundary.

Outerplanar graphs are a natural intermediary graph class between planar graphs and
forests. A planar graph on n vertices contains at most 3n − 6 edges, and a forest on n

vertices contains at most n − 1 edges; an outerplanar graph on n vertices contains at most
2n − 3 edges. Every planar graph can be decomposed into three forests [15]; it can also be
decomposed into two outerplanar graphs [10].

For planar graphs, as discussed above, we are far from a good understanding of how to
optimally approximate Minimum Dominating Set in O(1) rounds. Let us discuss the case of
forests, as it is of very relevant to the outerplanar graph case. For forests, a trivial algorithm
yields a 3-approximation: it suffices to take all vertices of degree at least 2 in the solution, as
well as vertices with no neighbor of degree at least 2 (that is, isolated vertices and isolated
edges). The output is clearly a dominating set, and the proof that it is at most three times
as big as the optimal solution is rather straightforward. In fact, the trivial algorithm is tight
because of the case of long paths. Indeed, no constant-time algorithm can avoid taking all
but a sub-linear number of vertices of a long path, while there is a dominating set containing
only a third of the vertices.

Our contribution
We prove that a similarly trivial algorithm (as the one described for forests above) works to
obtain a 5-approximation of MDS for outerplanar graphs in the LOCAL model.

Algorithm 1 A local algorithm to compute a dominating set in outerplanar graphs.
Input: An outerplanar graph G

Result: A set S ⊆ V (G) that dominates G

In the first round, every vertex computes its degree and sends it to its neighbors;
S := {Vertices of degree ≥ 4} ∪ {Vertices with no neighbor of degree ≥ 4};

It is easy to check that the algorithm indeed outputs a dominating set. It is significantly
harder to argue that the resulting dominating set is at most 5 times as big as one of minimum
size. To do that, we delve into a rather intricate analysis of the behavior of a hypothetical
counterexample, borrowing tricks from structural graph theory (see Lemma 2).

The proof that the bound of 5 is tight for outerplanar graphs is similar to the proof
that the bound of 3 is tight for trees. Every graph in the family depicted in Figure 1 is
outerplanar, and every local algorithm that runs in a constant number of rounds selects all

1 For any integer n ≥ 1, Kn denotes the complete graph on n vertices. For integers n, m ≥ 1, Kn,m

denotes the complete bipartite graph with partite classes of size n and m.
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Figure 1 The graph G−
n is a path v1, . . . , vn to which we add all edges between vertices of distance

two. In this example n is even.

but a sub-linear number of vertices [7, pp. 87–88]. Informally, all but a sub-linear number of
vertices “look the same” – see Section 3 for more details, and [17] for an excellent survey of
lower bounds.

Our main result is the following.

▶ Theorem 1. There is an algorithm that computes a 5-approximation of Minimum Domi-
nating Set for outerplanar graphs in O(1) rounds in the LOCAL model. This is tight, in the
sense that no algorithm can compute a (5 − ε)-approximation with the same constraints, for
any ε > 0.

In other words, there is a trivial local algorithm for Minimum Dominating Set in outerpla-
nar graphs that turns out to be tight. All the difficulty lies in arguing that the approximation
factor is indeed correct.

We note that the algorithm is so trivial that every vertex only needs to send one bit of
information to each of its neighbors (“I have degree at least 4” or “I have degree at most 3”).
The network might be anonymous – names are not useful beyond being able to count the
number of neighbors, and the solution is extremely easy to update when there is a change in
network. For contrast, in anonymous planar graphs the best known approximation ratio is
636 [18].

It is important to note that there is no hope for such a trivial algorithm in the case of
planar graphs. Indeed, in Figure 2, we can see that for any p, no algorithm taking all vertices
of degree ≥ p in the solution can yield a constant-factor approximation in planar graphs.
However, the case of outerplanar graphs shows that the road to a better bound for planar
graphs might go through finer structural analysis rather than smarter algorithms.

Definitions and notation
For a vertex set A ⊆ V , let G[A] denote the induced subgraph of G with vertex set A. Let
E(A) denote set of edges of G[A]. For vertex sets A, B ⊆ G, let E(A, B) denote the set
of edges in G with one end in A and the other end in B. We write G \ e for the graph in
which the edge e is removed from the edge set of G. For a set P ⊆ V inducing a connected
subgraph, we write G/P for the graph obtained by contracting the set P : we replace the
vertices in P with a new vertex vP , which is adjacent to u ∈ V \ P if and only if u has some
neighbor in P . For a set X of vertices, we let N [X] denote the set X ∪ ∪x∈XN(x) and we let
N(X) denote the set N [X] \ X. If x1, x2, . . . , xk are the elements of X, we may also denote
N [X] and N(X) as N [x1, x2, . . . , xk] and N(x1, x2, . . . , xk), respectively.

Given a graph G, let V4+(G) denote the set of vertices of degree at least 4 in G, and
let V ∗(G) denote the set V (G) \ N [V4+(G)]. In other words, V ∗(G) is the set of vertices of
degree at most 3 in G which only have neighbors of degree at most 3. For a graph G and a
dominating set S of G, we denote V4+(G) \ S by BS(G) and we denote V ∗(G) \ S by DS(G).
We additionally let AS(G) denote the set V (G) \ (S ∪ DS(G) ∪ BS(G)). In situations where

DISC 2021
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Figure 2 For any p, q ∈ N, there is a planar graph Gp,q which admits a dominating set of size 2
such that |{Vertices with degree ≥ q}| ≥ p.

our choice of G, S is not ambiguous we will simply write B, D, A for BS(G), DS(G) and
AS(G), respectively. An overview of the notation is given in Table 1.

Table 1 An overview of the notation used in Section 2.

v is an element of deg(v) degrees of neighbors of v further restrictions
V4+ (G) ≥ 4 arbitrary -
BS(G) ≥ 4 arbitrary v /∈ S

V ∗(G) ≤ 3 ≤ 3 -
DS(G) ≤ 3 ≤ 3 v /∈ S

AS(G) ≤ 3 at least one neighbor of degree ≥ 4 v /∈ S

An outerplanar embedding of G is an embedding in which a special outer face contains
all vertices in its boundary.

We denote by HG(S) the multigraph with vertex set S, obtained from G as follows. For
every vertex u in V (G) \ S, we select a neighbor s(u) ∈ N(u) ∩ S, and contract the edge
{u, s(u)}. Contrary to the contraction operation mentioned earlier, this may create parallel
edges, but we delete all self-loops. The resulting multigraph inherits the set S as its vertex
set. We refer to Figure 3 for an example.

Note that HG(S) inherits an outerplanar embedding from G. If the graph G and the
dominating set S are clear, we will write H for HG(S). Lemma 3 provides some intuition as
to why the graph H is useful.

Properties of outerplanar graphs
Here we mention some standard but useful properties of outerplanar graphs. A graph H

is a minor of a graph G if H can be obtained from G through a series of vertex or edge
deletions and edge contractions. Alternatively, an H-minor of G consists of a connected set
Xh ⊆ V (G) for each h ∈ V (H) and a set of paths {Phh′ | hh′ ∈ E(H)}, where Phh′ is a path
in G between a vertex in Xh and a vertex in Xh′ , all of which are pairwise vertex-disjoint
except for possibly their ends. Note that any minor of an outerplanar graph is outerplanar.
Neither K4 nor K2,3 can be drawn in the plane so that all vertices appear on the boundary
of a special face. Therefore, outerplanar graphs are K4-minor-free and K2,3-minor-free.
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Figure 3 On the left is a graph G with dominating set S = {s1, s2, s3, s4}. The vertex s(u) is
uniquely determined for all u ̸= a4. On the right is the graph HG(S) for s(a4) = s3.

Any outerplanar graph G satisfies |E(G)| ≤ 2|V (G)|−3 by a simple application of Euler’s
formula. It follows immediately that every outerplanar graph contains a vertex of degree at
most 3, but a standard structural analysis guarantees that every outerplanar graph contains
a vertex of degree at most 2.

2 Analysis of the approximation factor

This section is devoted to proving the following result. (An overview of the relevant notation
is given in Table 1.)

▶ Lemma 2. For every outerplanar graph G, any dominating set S of G satisfies |S| ≥
1
4 (|BS(G)| + |DS(G)|).

We briefly argue that Lemma 2 yields the desired result. Given an outerplanar graph,
Algorithm 1 outputs V4+(G)∪V ∗(G) as a dominating set. To argue that it is a 5-approximation
of the Minimum Dominating Set problem, it suffices to prove that any dominating set S of
G satisfies |S| ≥ 1

5 (|V4+(G) ∪ V ∗(G)|). For technical reasons, it is easier to bound S as a
function of the vertices in V4+(G)∪V ∗(G) that are not in S, i.e. |S| ≥ 1

4 (|BS(G)|+ |DS(G)|),
which yields |S| ≥ 1

5 (|V4+(G) ∪ V ∗(G)|).
We prove the lemma by analyzing the structure of a “smallest” counterexample. A

counterexample satisfies

|S| <
1
4(|BS(G)| + |DS(G)|),

and we will choose one which minimizes |S| and with respect to that maximizes |BS(G)| +
|DS(G)|. For this, we need that |BS(G)| + |DS(G)| is bounded in terms of |S| by some
constant, otherwise a counterexample maximizing |BS(G)| + |DS(G)| might not exist since
|BS(G)| + |DS(G)| could be arbitrarily large. We therefore first prove the following much
weaker result.

▶ Lemma 3. For every outerplanar graph G, any dominating set S of G satisfies |S| ≥
1

39 (|BS(G)| + |DS(G)|).

We did not try to optimize the constant 39 and rather aim to get across some of the main
ideas as clearly as possible. The proof shows the importance of the graph HG(S), which we
will also use in the proof of Lemma 2.

DISC 2021
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Proof of Lemma 3. We may assume that the graph G is connected; otherwise, we can repeat
the same argument for each connected component of G. We fix an outerplanar embedding of
G. For each u ∈ V (G) \ S we select an arbitrary neighbor s(u) ∈ N(u) ∩ S that we contract
it with (keeping parallel edges but removing self-loops), resulting in the multigraph HG(S)
on the vertex set S. The key step in our proof is showing that HG(S) has bounded edge
multiplicity. Indeed, every edge s1s2 in HG(S) is obtained from G by contracting at least
one vertex or from the edge s1s2 in G. For i ∈ {1, 2}, let Vi be the set of vertices contracted
to si that gave an edge between s1 and s2 in HG(S). Since there is no K2,3-minor in G (as
G is outerplanar), we find |V1| ≤ 2 and |V2| ≤ 2. Any edge between s1 and s2 in HG(S) can
now be associated with an edge between {s1} ∪ V1 and {s2} ∪ V2 in G, and hence edges in
HG(S) have multiplicity at most 9 (this is far from tight).

We derive that |E(HG(S))| ≤ 9|E(H ′)|, where H ′ is the simple graph underlying HG(S)
(i.e. the simple graph obtained by letting s1, s2 ∈ S be adjacent in H ′ if and only if there
is an edge between them in HG(S)). Note that H ′ is a minor of G. Since outerplanar
graphs are closed under taking minors, the graph H ′ is an outerplanar graph. It follows that
|E(H ′)| ≤ 2|S| − 3. Combining both observations, we get |E(HG(S))| ≤ 18|S|.

By outerplanarity, we have |E(HG(S))| ≥ 1
2 |BS(G)|. Indeed, each vertex u ∈ BS(G)

has at most two common neighbors with s(u) (otherwise there would be a K2,3), hence u

has at least one neighbor v such that v ̸∈ N [s(u)]. The edge uv corresponds to an edge
in E(HG(S)), hence each u ∈ BS(G) contributes at least half an edge to E(HG(S)) (as
v could be also in BS(G)). We derive 1

2 |BS(G)| ≤ |E(HG(S))| ≤ 18|S|. We observe that
|DS(G)| ≤ 3|S|: indeed, each vertex from S is adjacent to at most 3 vertices from DS(G),
since any vertex adjacent to a vertex in DS(G) has degree at most 3 by definition. We
conclude that |BS(G)| + |DS(G)| ≤ (36 + 3)|S| = 39|S|. ◀

In Lemma 3 we use that edges in H have low multiplicity, from which we then obtain a
bound on the size of S. In order to improve the bound from Lemma 3, we dive into a deeper
analysis of the graph H.

Proof of Lemma 2. We will consider a special counterexample (G, S) (satisfying |S| <
1
4 (|BS(G)| + |DS(G)|)) so that our counterexample has a structure we can deal with more
easily than a general counterexample. In particular we will choose a counterexample (G, S)
amongst those that minimize S and with respect to that maximize BS(G) ∪ DS(G) to
maximize and minimize certain other graph parameters.

Namely, we assume that (G, S) in order: minimizes |S|; maximizes |BS(G)∪DS(G)|; min-
imizes |E(BS(G))|; minimizes |V (G)|; maximizes |E(S, N(S))|; minimizes |E(G)|. Note that
this is well-defined since we established |BS(G)∪DS(G)| ≤ 39|S|, and clearly |E(S, N(S))| ≤
|E(G)| ≤ 2|V (G)| by outerplanarity. Consequently, if a counterexample exists, then there
exists one satisfying all of the above assumptions. More formally, we select a counterexample
that is minimal for

(|S|, 39|S| − |BS(G) ∪ DS(G)|, |E(BS(G))|, |V (G)|, 2|V (G)| − |E(S, N(S))|, |E(G)|) (‡)

in the lexicographic order. Since all the elements in the sextuple are non-negative integers
and their minimum is bounded below by zero, this is well-defined. (We remark that the
parts indicated in gray were added to ensure the entries are non-negative; minimizing
39|S| − |BS(G) ∪ DS(G)| comes down to maximizing |BS(G) ∪ DS(G)|.)

While this approach is not entirely intuitive, the assumptions will prove to be extremely
useful for simplifying the structure of G. For example, we can show that in a smallest
counterexample that minimizes (‡), S is a stable set (Claim 5) and no two vertices in S have
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a common neighbor (Claim 7). In general, the Claims 4 to 14 show that such a minimal
counterexample G has strong structural properties, by showing that otherwise we could
delete some vertices and edges, or contract edges, and find a smaller counterexample.

Informally, for any vertex from S that we remove from the graph, we may decrease
|BS(G) ∪ DS(G)| by 4 while maintaining |S| < 1

4 (|BS(G) ∪ DS(G)|). It is therefore natural
to consider what happens when we reduce |S| by one by contracting a connected subset
containing two or more vertices from S. The result is again an outerplanar graph and we aim
to show it is a smaller counterexample (unless the graph has some nice structure). Contracting
an edge uv can affect the degrees of the remaining vertices in the graph G. Therefore BS(G)
may “lose” additional vertices besides u and v if more than one of its neighbors are contracted
and DS(G) may “lose” additional vertices if a neighbor got contracted, increasing the degree.
We remark that vertices from DS(G) have no neighbors in BS(G), and therefore removing
or contracting them does not affect the set BS(G).

We note that our minimal counterexample (G, S) is connected and again fix an outerplanar
embedding of G. By definition, vertices in D can have no neighbors in B. In fact, the
following stronger claim holds.

▷ Claim 4. Every vertex d ∈ D satisfies N(d) ⊆ S.

Proof. Let e = dv ∈ E(G) be such that d ∈ D. Suppose v ̸∈ S. We consider the graph
G \ e. Since v ̸∈ S, S is a dominating set of G \ e. We find |BS(G \ e)| = |BS(G)|, since a
vertex in D has no neighbor in B. Similarly, |DS(G \ e)| = |DS(G)|. Hence we also find that
|S| < 1

4 (|BS(G \ e)| + |DS(G \ e)|). Since v ̸∈ S, the number of edges with one end incident
to S is the same in G and G \ e. It follows that (G \ e, S) is a counterexample to Lemma 2.
Since v ̸∈ S, G and G \ e have the same number of edges with exactly one end in S. Hence
since |E(G \ e)| < |E(G)|, the pair (G \ e, S) is smaller with respect to ‡, contradicting our
choice of (G, S). ◁

We are now ready to make more refined observations about the structure of (G, S). When
considering a pair (G′, S′) that is smaller than (G, S) with respect to ‡ with V (G′) ⊆ V (G),
it can be useful to refer informally to vertices that belong to BS(G) but not to BS′(G′) as
lost vertices (similarly for DS(G) and DS′(G′)). The number of lost vertices is an upper
bound on |BS(G) ∪ DS(G)| − |BS′(G′) ∪ DS′(G′)|.

We need the following notation. Let P ⊆ E(G). We denote the multigraph obtained
from G by contracting every edge in P and deleting self-loops by G/P . Note G/P remains
outerplanar and may contain parallel edges.

▷ Claim 5. The set S is a stable set.

Proof. Assume towards a contradiction that there are two vertices u and w in S that are
adjacent.

Consider the outerplanar graph G′ = G/{uw} and let vuw be the vertex resulting from
the contraction of the edge uw. Let S′ = S \ {u, w} ∪ {vuw}. Define B′ = BS′(G′), and
D′ = DS′(G′). Note that S′ dominates G′. Since we reduced the size of the dominating set
by one, we are allowed to “lose up to four vertices from B ∪ D”, as then we get that

|B′| + |D′| ≥ |B| + |D| − 4 > 4(|S| − 1) = 4|S′|.

We will now show the above inequality holds. If v ∈ B \ B′, then v is a common neighbor of
u and w (and u, w have at most two such neighbors by outerplanarity). If v ∈ D \ D′, then
v is a neighbor of u and/or w in G (since no vertex in V (G) ∩ V (G′) has a higher degree in
G′ than G). We consider three cases, depending on the neighbors of u and of w in D.

DISC 2021
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Suppose that u, w have no neighbors in D. Then D′ = D and we lose only vertices from
B which are common neighbors of u, w, so at most 2.
Suppose that u, w both have neighbors in D. Then u, w are of degree at most 3. Since
they are adjacent to each other, they are adjacent to at most 4 other vertices in total. So
|B′| + |D′| ≥ |B| + |D| − 4.
Suppose that u has a neighbor in D and w does not (the other case is analogous). Now
|B| + |D| decreases by at most 2, since any “lost” vertex is adjacent to u and distinct
from w.

In all cases, S has decreased by 1 and |B| + |D| by at most 4, so we indeed find |B′| + |D′| >

4|S′|. Since |S′| < |S|, this gives a contradiction with the minimality of our choice of (G, S).
◁

We remark that no vertex in S has only neighbors in D. Indeed, if some s ∈ S has only
neighbors in D then we remove s and its neighborhood from the graph and we have a smaller
counterexample, as we reduced |S| by one and |D| by at most 3. In fact, we will show the
following:

▷ Claim 6. If d ∈ D and s ∈ N(d) ∩ S, then s has a neighbor in B.

Proof. Suppose that d ∈ D is adjacent to s ∈ S. Since d ∈ D, we find that s has degree at
most 3. Say s has neighbors w1 and w2 (possibly equal, but both not equal to d). We argued
above that s has a neighbor outside of D, so without loss of generality w1 ̸∈ D. Suppose
towards a contradiction that w1, w2 ̸∈ B. By Claim 5, we find w1, w2 ̸∈ S, and so w1, w2
have degree at most 3. As w1 ̸∈ D, we find w1 ∈ A.

Suppose first that w1 and w2 together have at most two neighbors outside of {w1, w2, s}.
When we remove N [s] from the graph, |S| goes down by one and |B ∪ D| goes down by at
most four (‘counting’ the two outside neighbors, w2 and d), contradicting the minimality of
our counterexample. So w1, w2 have at least three “outside” neighbors, which implies that
w2 exists and that w1, w2 are non-adjacent (see Figure 4). Moreover, w1, w2 together have

s

w2

w1

d

Figure 4 An illustration of the case when w1, w2 are not in B and together have three neighbors
which are not s, w1 or w2. At least one of the wavy edges is present and at least one of w1, w2 has
degree three in the picture. In particular, w1 and w2 are not adjacent.

at least three neighbors in B by using the same strategy (showing that deleting N [s] would
give a smaller counterexample). Since w1 has degree at most 3 and is already adjacent to s,
it has at most two neighbors in B. Thus w2 is also not in D, since vertices in D have no
neighbors in B.

Recalculating now that we know that w1, w2 ̸∈ B ∪ D, if N({w1, w2}) contains at most
three vertices of degree four in B, then |B ∪ D| goes down by at most four in G \ N [s]. This
would be a contradiction as (G, \N [s], S \ {s}) would be a smaller counterexample. Hence,
w1, w2 have exactly four neighbors in B, all of which are of degree exactly 4.
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We show that we may assume that d has degree 1. If d has another neighbor, it is in S

by Claim 4. We delete the vertices s, w1, w2; since d is still in D and dominated, |B ∪ D|
decreases by at most 4, and hence (G \ {s, w1, w2}, S \ s) is a smaller counterexample. Hence
we can assume d has degree one and therefore the edge ds is on the outer face.

Let G′ be the graph obtained from G by adding the edge w1w2. Considering the local
rotation of the three neighbors of s in an outerplanar embedding of G, we note that w1, w2
are consecutive neighbors of s. We can draw the edge w1w2 close to the path w1-s-w2 keeping
the embedding outerplanar (note that the edge ds is still on the outer face). It follows that
w1, w2 ∈ BS(G′) \ BS(G), so |BS(G) ∪ DS(G)| < |BS(G′) ∪ DS(G′)|. Thus, (G′, S) is a
smaller counterexample, a contradiction. ◁

▷ Claim 7. No two vertices in S have a common neighbor.

Proof. Assume towards a contradiction that there are two vertices s1 and s2 in S that have
a common neighbor v. Since S is a stable set (Claim 5), we have v ̸∈ S.

We will consider the outerplanar graph G′ = G/P obtained by contracting P = {s1v, vs2}
into a single vertex vP . Let S′ = S \ {s1, s2} ∪ {vP }. We use the abbreviations B′ = BS′(G′)
and D′ = DS′(G′).

We will again do a case analysis, on the union of the neighbors of s1 and the neighbors of
s2 in D \ {v}, to find a smaller counterexample. If |B′| + |D′| ≥ |B| + |D| − 4, then (G′, S′)
is a smaller counterexample. Note that vertices in B \ B′ have at least two neighbors in the
set {s1, v, s2}.

Suppose first that for some i ∈ {1, 2}, si is adjacent to at least two vertices in D \ {v}.
Then v is the only other neighbor of si, so the graph G′′ obtained from G by deleting
si and its two neighbors in D, satisfies |B(G′′) ∪ D(G′′)| ≥ |B ∪ D| − 3 whereas the set
S′′ = S \ {si} is dominating. This gives a smaller counterexample.
Suppose that both s1, s2 are adjacent to a single vertex in D \{v}. Then both have degree
at most 3. Let d1, d2 ∈ D \ {v} be the neighbors of s1, s2 respectively (where d1, d2 might
be equal). The graph G′ is a smaller counterexample unless we lost two vertices from
B besides possibly v, that is, |B′| ≤ |B \ {v}| − 2. Any vertex lost from B \ {v} must
be adjacent to two vertices among {s1, v, s2} (as otherwise its degree did not change),
and since both s1 and s2 already have two named neighbors, G′ is a counterexample
unless there is, for each i ∈ {1, 2}, a common neighbor bi ∈ B of si and v, and all named
vertices are distinct.
Since d1 ∈ D and b1 ∈ B, we find that b1d1 is not an edge of G. Since s1 has three
neighbors, b1 and d1 are consecutive neighbors and the edge b1d1 can be added without
making the graph non-planar. Consider adding the edge b1d1 in G along the path b1s1d1,
such that there are no vertices in between the edge and the path. This may affect whether
s1 is on the outer face, but it does not affect whether s2 is on the outer face. Therefore,
after contracting this adjusted graph, the obtained graph G′′ is still outerplanar. Moreover,
b1 has the same degree in G′′ as in G, and so |BS′(G′′) ∪ DS′(G′′)| ≥ |B| + |D| − 4 and
G′′ is a smaller counterexample.
Suppose that s1 is adjacent to a vertex d1 in D \ {v} and s2 is not (the symmetric case
is analogous). There can be at most three vertices in B \ {v} which are adjacent to
two vertices in s1, v, s2 (as only one can be adjacent to s1 and v, s2 have at most two
common neighbors since the graph is outerplanar). The only way in which G′ is not a
counterexample, is when there is a common neighbor b1 of s1 and v and two common
neighbors b2, b3 of s2 and v with all named vertices distinct. As before, we may now add
the edge b1d1 in order to obtain a smaller counterexample G′′.
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Finally, suppose that s1 and s2 have no neighbors in D \ {v}. By outerplanarity, there are
at most four vertices with two neighbors among {s1, v, s2}. Hence G′ is a counterexample
unless there are exactly four (the only vertices “lost” from B ∪ D are either v or among
such common neighbors, since s1 and s2 have no neighbors in D \ {v}). All four vertices
are adjacent to v, because otherwise G contains a K2,3-minor2, a contradiction. In
particular, G′ is a counterexample unless there are two common neighbors of v and s1
and two common neighbors of v and s2 (and so d(v) ≥ 6 and v ∈ B).
Fix a clockwise order w1, w2, . . . , wd on the neighbors of v such that the path w1vwd

belongs to the boundary of the outer face. Let i ̸= j such that wi = s1 and wj = s2.
After relabelling, we may assume i < j. Since s1 and s2 both have two common neighbors
with v, we find i > 1, j < d and i + 1 < j − 1. The vertices adjacent to multiple vertices
in {s1, v, s2} are wi−1, wi+1, wj−1 and wj+1. We create a new graph G′′ by replacing v

with two adjacent vertices v1 and v2, where v1 is adjacent to w1, w2, . . . , wi+1 and v2 to
wi+2, . . . , wd. This graph is outerplanar because both v1 and v2 have an edge incident to
the outer face. Moreover, d(v1) and d(v2) are both at least 4, since they are adjacent to
each other, to either s1 or s2 and to at least two vertices among w1, . . . , wd. The set S is
still a dominating set, but |B(G′′) ∪ D(G′′)| > |B ∪ D| so this is a smaller counterexample.

In all cases, we found a smaller counterexample. This contradiction proves the claim. ◁

Since vertices in D only have neighbors in S, the claim implies in particular that each vertex
of D has degree 1.

With the claims above in hand, we now analyze the structure of H = HG(S) as described
in the notation section more closely. Note that the for each u ∈ V (G) \ S the vertex s(u) is
uniquely defined by Claim 7.

Recall that H is outerplanar. It follows that there is a vertex s1 ∈ V (H) with at most 2
distinct neighbors in H.

We start with an easy observation.

▶ Observation 8. Let b ∈ B and s(b) be its unique neighbor in S. Then there exists
w ∈ N(b) \ {s(b)}, such that its unique neighbor s(w) ∈ S is not equal to s(b).

Indeed, the vertex b can have at most two common neighbors with s(b) (otherwise there
would be a K2,3, contradicting outerplanarity), and a vertex in B has degree at least 4 by
definition.

Note that the vertex s1 has at least one neighbor in H. Indeed, if s1 has no neighbor
in H, then N [s1] is a connected component in G. Since G is connected, G = N [s1]. By
Observation 8, we have B = ∅, so |D ∪ B| ≤ 3.

▷ Claim 9. The vertex s1 has precisely two neighbors in H.

Proof. Assume towards a contradiction that s1 has a single neighbor s2 in H. Let v1, . . . , vk

be the vertices in N [s1] that have a neighbor in N [s2], and conversely let u1, . . . , uℓ be
the vertices in N [s2] that have a neighbor in N [s1]. Note that by Claims 5 and 7, all of
{v1, . . . , vk, u1, . . . , uℓ, s1, s2} are pairwise distinct. If ℓ ≥ 3, then contracting the connected
set N [s1] in G gives a K2,3 on the contracted vertex and s2 on one side and u1, u2, u3 on the
other. We derive that ℓ ≤ 2, and by symmetry, k ≤ 2. By Observation 8, the only neighbors
of s1 that belong to B are in {v1, v2}. As we assumed that s1 has degree 1 in H, we have
N [vi] ⊆ N [s1] ∪ {u1, u2} for i ∈ {1, 2}. We will do a case distinction on N [s1] ∩ D.

2 The vertices s1, s2 can have at most one further common neighbor v∗ besides v. If v∗ exists, we contract
it with s1 and s2. We find a K2,3 subgraph with v, v∗ on one side and the three other common neighbors
on the other side.
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If s1 has no neighbor in D, we delete N [s1], and note that DS(G) = DS\s1(G \ N [s1]),
while BS(G) \ {v1, v2, u1, u2} ⊆ BS\s1(G \ N [s1]). Therefore,

|S \ {s1}| ≥ 1
4 · (|DS\s1(G \ N [s1])| + |BS\s1(G \ N [s1])|).

So we have found a smaller counterexample.
Suppose s1 has two neighbors d1 ≠ d2 in D. Then v2 does not exist since d(s1) ≤ 3 and
because v1, v2 are distinct from d1, d2 (vertices in D have degree 1). Suppose first that v1
has degree at least 4. Let x be its neighbor distinct from u1, u2, s1. By assumption on
s1, the vertex x has no neighbor in S \ {s1}. Therefore, x is adjacent to s1. However,
x is distinct from d1, d2 and v1, which contradicts d(s1) ≤ 3. This case is illustrated
in Figure 5. Hence v1 /∈ B and removing N [s1] now gives a smaller counterexample, a
contradiction.

s1 s2

d1

d2

v1

x

u1

u2

=
?

Figure 5 An illustration of the case where s1 has degree one in H and two neighbors d1, d2 ∈ D in
G. If v1 ∈ B, then some vertex x exists such that both wavy edges are present in G, a contradiction.

Suppose that s1 has a single neighbor d1 in D. Removing N [s1] gives a smaller counterex-
ample again, unless all of u1, u2, v1, v2 exist and belong to B. In particular, v1, v2 both
have degree at least 4. Each of v1 and v2 can only have neighbors within {s1, v1, v2, u1, u2}
because a neighbor x not within {s1, v1, v2, u1, u2} is a neighbor of s1, but d(s1) ≤ 3.
Therefore, both v1 and v2 are adjacent to u1 and u2. Together with s1, this forms a K2,3
subgraph (see Figure 6): a contradiction. ◁

s1 s2d1

v1

v2

u1

u2

Figure 6 An illustration of the case where s1 has degree one in H and has exactly one neighbor
in D in G. We reduce to the case in which the depicted graph is a subgraph of G. We find a
contradiction since the depicted graph contains a K2,3.

.

So s1 has two neighbors in H. Let s2, s3 ∈ V (H) be its neighbors. In G, let w1, . . . , wp

be the vertices in N [s1] that have a neighbor in N [s3], and conversely let x1, . . . , xq be the
vertices in N [s3] that have a neighbor in N [s1]. By the same argument as before for s1 and
s2, we obtain p ≤ 2 and q ≤ 2 and that all of {w1, w2, x1, x2, s1, s3} are pairwise distinct.
However, there may be a vertex in {w1, w2} ∩ {v1, v2}; there may not be two such vertices
since this would lead to a K2,3-minor (with vertices {v1, w1} and {v2, w2} in one part, and
s1, {s2, u1, u2}, {s3, x1, x2} in the other).
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Our general approach is to delete N [s1] and add edges between {u1, u2} and {x1, x2}
as appropriate so as to mitigate the impact on |B ∪ D|. If this does not work, we obtain
further structure on the graph which we exploit to create a different smaller counterexample.
We will repeatedly apply the following Observation 10. Sometimes when deleting vertices
and edges from the graph G, the result is a disconnected graph, so we can perform the
“flipping” operation described below, and connect the different components to get a smaller
counterexample (G′, S′).

▶ Observation 10 (Flipping). Let G be the disjoint union of two outerplanar graphs O1
and O2. Consider an outerplanar embedding of G, and let (u1, u2, . . . , uq) denote the outer
face of G[O2] in clockwise order. We can obtain a different outerplanar embedding of G by
reversing the order of O2 without modifying the embedding of O1, so that the outer face of
G[O2] is (uq, . . . , u2, u1) in clockwise order.

t1

t2

t3

tp

..
.

z1

z2

z3

zq

..
.

t1

t2

t3

tp

..
.

z1

z2

z3

zq

..
.

Figure 7 An illustration of Observation 10.

An example of the observation above is given in Figure 7. Beside Observations 8 and 10,
the third useful observation is as follows.

▶ Observation 11. N [v1, v2, w1, w2] ⊆ N [s1] ∪ {u1, u2, x1, x2}. Additionally, if {v1, v2} ∩
{w1, w2} = ∅, then N [v1, v2] ⊆ N [s1] ∪ {u1, u2} and N [w1, w2] ⊆ N [s1] ∪ {x1, x2}.

This observation is argued similarly to Observation 8, we omit the argument.
Since s1 is adjacent to s2 and s3 in H, all of u1, x1, v1 and w1 exist. We assume that

either {v1, v2} ∩ {w1, w2} = ∅ or v1 = w1. Note that {u1, u2} ∩ {x1, x2} = ∅ since s2 and s3
do not have common neighbors by Claim 7. See Figure 8 for an illustration. For simplicity,
when depicting which edges to add in which cases, we represent “u2 does not exist” as “u2 is
possibly equal to u1” (and variations). This means merely that if u2 does not exist then the
edges involving u2 involve u1 instead – multiple edges are ignored.

▷ Claim 12. One of w2 and v2 exists.

Proof. Suppose that neither w2 nor v2 exists. It is possible that v1 = w1, and that u2 or x2
do not exist. By Observation 11, if v1 ≠ w1, then u1, u2 are not adjacent to w1 and x1, x2
are not adjacent to v1.

The degrees of x1, x2, u1, u2 in G \ N [s1] are at least one less than their degrees in G.
Every vertex in V (G) \ (N [s1] ∪ {x1, x2, u1, u2}) has the same degree in G and in G \ N [s1].
Let S′ = S \ {s1}, and note that S′ dominates G \ N [s1].

Suppose x2, u2 do not exist. If v1 belongs to B, then it needs to have a neighbor which
is not u1, s1 or one of x1, w1 (depending on whether v1 = w1), so it shares a neighbor
with s1 which is not in B ∪ D. This implies that if v1 ∈ B, then s1 can have a neighbor
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s2 s1 s3

v1 w1

v2 w2

u1

u2

x1

x2
=

?

=
?

=
?

=
?

=?

Figure 8 When s1 has exactly two neighbors s2, s3 in H, each of s2, s3 has at most two neighbors
with edges to vertices in N [s1]. Moreover, s2 and s3 may have at most one common neighbor in
N [s1]. We draw vertices which may not exist in G as a dotted circle and connect vertices which
may be equal with dotted edges. There may be more edges present in that are not drawn.

s2 s1 s3v1 w1

u1

u2

x1

x2

=
?

=?

s2 s3

u1

u2

x1

x2

=
?

=
?

Figure 9 The case where w2, v2 do not exist. The original graph is drawn at the left and the
modified graph is drawn at the right. The wavy line indicates there may be an edge between u1 and
x1. Edges that may have been added are drawn in blue. Note that u2 may not exist. There may be
more edges which are not drawn (for instance v1 might be adjacent to w1) but these edges are not
relevant to our argument.

d1 ∈ D or w1 ̸= v1, but not both at the same time. It follows that regardless of whether
v1 ∈ B, we have |N [s1] ∩ (B ∪ D)| ≤ 2. But now |(N [s1] ∪ {x1, u1}) ∩ (B ∪ D)| ≤ 4, so
(G \ N [s1], S′) is a smaller counterexample, a contradiction.
By symmetry, we assume that x2 exists. If u1 and u2 both exist, then they are not
distinguishable at this point, which means we can swap their label. The same holds for
x1 and x2. Hence we may assume that the vertices appear in the outer face in the order
x1, x2, u2, u1, and that either u1x1 is an edge of G or there is no edge between {u1, u2}
and {x1, x2}. Let G′ be the graph obtained from G \ N [s1] by adding the edges u1x1 (if it
is not already present), u1x2 and (if u2 exists) the edge u2x2 (see Figure 9). Note that G′

is outerplanar and that S′ dominates G′. Since G is outerplanar, if u1x1 is an edge in G,
then neither u1x2 nor u2x2 is an edge in G. In G′, the degrees of the vertices u1, u2, x2
are at least as large as their respective degrees in G (the degree of x1 might have dropped
if the edge u1x1 was already present in G). Note that |{v1, w1, x1} ∪ (N [s1] ∩ D)| ≤ 4,
hence |BS′(G′) ∪ DS′(G′)| ≥ |B ∪ D| − 4, a contradiction. ◁

▷ Claim 13. If w1 = v1, then v2 and w2 exist.

Proof. By Claim 12 we can assume v2 exists. Suppose w2 does not exist and w1 = v1. We
remove N [s1] and add edges between {u1, u2} and {x1, x2} as above to ensure that for all
but at most one of them, the degree does not decrease. To see an illustration of how the
edges are added, see Figure 10. We suppose first that there are no edges between {u1, u2}
and {x1, x2}. The edges remedy the degree for x1, x2, since they only lost w1, and for one of
u1, u2; indeed, it is not possible that both u1 and u2 are adjacent to both v1 and v2 (since
we would obtain a K2,3 when considering s1 as well).

By Observation 11, the degrees of other vertices are not affected by removing N [s1].
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s2 s1 s3

v1, w1

v2

u1

u2

x1
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=
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s2 s3

u1

u2

x1

x2

=
?

=
?

Figure 10 An example of the reduction for the case where v1 is equal to w1, v2 exists and w2

does not exist. We only draw edges which are relevant to our argument.

Again, since |N [s1] ∩ (B ∪ D)| ≤ 3, we have removed a vertex from S and at most 4 from
B ∪ D so we have constructed a smaller counterexample.

We now assume u1x1 is an edge.
Assume that u2 does not exist. Now v2 has degree at most 3 unless it has a common
neighbor with s1, but then s1 has no neighbor in D and we lose only two vertices from
N [s1] and possibly u1, x1.
Assume now that u2 exists. Both x1 and x2 lose at most one edge, and we can ensure
both gain at least one edge. So if we lose only two vertices from N [s1], plus possibly
u1, u2, then we lose at most four vertices from B ∪ D in total. If there are three vertices
from B ∪ D in N [s1], then v2 is adjacent to both u1, u2 and s1 has a neighbor d in D. We
know that v1 is adjacent to u1 or u2, but since there is the path v1x1u1, we know that if
v1 would be adjacent to u2, then there would be a K2,3-minor with v1, v2 in one part and
{u1, x1}, u2, s1 in the other part. Since u2 is not adjacent to v1, we know that u2 loses at
most one edge when deleting N [s1] and gains an edge when we add the edge u2x2. This
means we lose at most four vertices from B ∪ D (counting u1, v1, v2 and d). ◁

We henceforth assume that |{v1, v2, w1, w2}| ≥ 3. We can show that also in this case we can
always reduce to a smaller counterexample.Since the details of the remaining casework are
not particularly illuminating, we will omit them for brevity. Appendix A and the longer
arXiv version [6] of our paper both contain the full details.

Since in all claims and cases we can show that there is a smaller counterexample, there
can not be a counterexample to Lemma 2, which proves that Algorithm 1 computes a
5-approximation of Minimum Dominating Set for outerplanar graphs. ◀

3 Lower bound for outerplanar graphs

In this section we show that there is no deterministic local algorithm that finds a (5 − ϵ)-
approximation of a minimum dominating set on outerplanar graphs using T rounds, for any
ϵ > 0 and T ∈ N. To do so we use a result from Czygrinow, Hańćkowiak and Wawrzyniak [7,
pp. 87–88] who gave a lower bound in the planar case. For n ≡ 0 mod 10, they consider
a graph Gn, which is a cycle v1, v2, . . . , vn, v1 where edges between vertices of distance two
are added. They showed that for every local distributed algorithm A and every δ > 0 and
n0 ∈ N there exists n ≥ n0 for which the algorithm A outputs a dominating set for Gn that
is not within a factor of 5 − δ of the optimal dominating set for Gn. Their graph Gn is
not outerplanar, but we can delete three of its edges to get an outerplanar graph G−

n . The
graph G−

n is a path v1 . . . vn where all edges between vertices of distance two are added as
in Figure 1. The argument of [7] builds on a lower bound for local algorithms computing
a maximum independent set, which in turn depends on multiple applications of Ramsey’s
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theorem. A similar approach is used by [11] to obtain the best-known lower-bound for planar
graphs. Using the graph G−

n , this approach can also be used to prove our result; the main
idea is that since in the middle all the vertices “look the same”, no local algorithm can do
better than selecting almost all of them.

Alternatively, we can exploit the result of [7] as follows. For any bound T ∈ N on the
number of rounds, any vertex in M = {v2T +1, . . . , vn−2T −1} has the same local neighborhood
in Gn as in G−

n . Since Gn is rotation symmetric, a potential local algorithm also finds a
dominating set D for Gn (for n ≥ 4T + 2), and with the result of [7] we obtain |D| ≥ (5 −
δ)γ(Gn). For n sufficiently large with respect to T , the set D is the same as the set D′ that the
algorithm would give for Gn up to at most δn/10. Since n ≡ 0 mod 10, γ(Gn) = γ(G−

n ) = n
5

and we find the desired lower-bound |D′| ≥
(
5 − δ

2
)

γ(G−
n ) ≥ (5−ϵ)γ(G−

n ) for δ small enough.

4 Conclusion

Through a rather intricate analysis of the structure of outerplanar graphs, we were able to
determine that a very naive algorithm gives a tight approximation for minimum dominating
set in outerplanar graphs in O(1) rounds. While there are some highly non-trivial obstacles
to extending such work to planar graphs, we believe that similar techniques can be used
to vastly improve the state of the art for triangle-free planar graphs and for C4-free planar
graphs. In the first case, recall that a 32-approximation is known [3], and there is a simple
construction (a large 4-regular grid) showing that 5 is a lower bound. We believe that 5
is the right answer. In the second case, an 18-approximation is known [4], and there is no
non-trivial lower bound. We refrain from conjecturing the right bound here – we simply
point out that there is no reason yet to think 3 is out of reach. We believe that very similar
techniques to the ones developed here can be used to obtain a 9-approximation, and possibly
lower.
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A Remaining casework

This appendix will provide the details of the case analysis from end of the proof of Lemma 2.
We are in the case in which |{v1, v2, w1, w2}| ≥ 3. In particular, we may assume that s1

has no neighbor in D.

▷ Claim 14. We have v1 ̸= w1.

Proof. If not, then v1 = w1. By Claim 13, both v2 and w2 exist. Let G′ be the outerplanar
graph obtained from G by splitting the vertex v1 into two vertices v′

1 and w′
1, both adjacent

to s1 and adjacent to each other, where v′
1 is adjacent to N [v1] ∩ N [s2] and w′

1 is adjacent to
N [v1] ∩ N [s3]. This gives three neighbors for both v′

1 and w′
1. Since we can always add the

edges v′
1v2 and w′

1w2 (which are chords of a cycle, using also that N [s1]∩(N [s2]∪N [s3]) = ∅),
we find |BS(G′)| > |BS(G)|, whereas DS(G′) = DS(G), S is still dominating and G′ is
outerplanar. We find a contradiction with our assumption of the minimality of G. ◁

We henceforth assume that v1, w1 exist and are distinct and at least one of v2, w2 exists.

▷ Claim 15. The vertices v2, w2 exist.
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Proof. By Claim 14 we can assume v1 ̸= w1 and by Claim 12 we can assume v2 exists.
Suppose that w2 does not exist. As in the previous case, N [s1] forms a vertex cut separating
the component containing N [s2] from the component containing N [s3]: if there was a path
between N [s2] to N [s3] disjoint from N [s1], then we obtain a K2,3-minor on vertex sets
N [s2], {s1} on one side and {v1}, {v2}, N [s3] on the other. When we delete N [s1], at most
one of u1, u2 loses two neighbors, and the other (if it exists) loses only a single neighbor.
The vertices x1, x2 can lose only a single neighbor. By Observation 10, after deleting N [s1]
we can align the components of N [s2] and N [s3] in such a way that we can add the edges
from {u1x1, u2x1, u2x2}. (For brevity, we handle the cases in which some of u2, x2 do not
exist here as well, in which case we might add less edges.) We lost at most 4 vertices B ∪ D,
namely at most v1, v2, w1 and one of the ui (if one of them lost two neighbors). ◁

We have one final case in which v1, v2, w1, w2 all exist and are all distinct. Note that, as
in Claim 15 above, N [s1] forms a vertex cut separating N [s2] from N [s3]. We break this
problem into three subcases: The case where x2, u2 both exists, the case where exactly one
of x2 and u2 exists and the case where neither x2 nor u2 exists.

A.1 The case where x2 and u2 both exist
Suppose that x2 and u2 both exist. Note that at most one of u1, u2 and one of x1, x2
is adjacent to two vertices in N [s1]. Let us assume without loss of generality that x1, u2
have at most one neighbor in N [s1]. By Observation 10, after deleting N [s1], we can
re-embed the graph in a way that we can add the edges u1x1, u1x2, u2x2. This gives a
smaller counterexample, since we have “fixed” the degrees of u1, u2, x1, x2 and only lost
N [s1] ∩ (B ∪ D), which has size at most 4.

A.2 The case when exactly one of x2, u2 exists
Suppose now that only u2 exists. (The case in which only x2 exists is analogous.) Note that
s2 can have at most one neighbor in D. See also Figure 11.

Suppose first that s2 has a neighbor d ∈ D. We delete and add edges (if needed) and
renumber such that u1 is adjacent to v1, u2 to v2 and u1 to u2, but no other edges
among {u1, u2, v1, v2} are present. Now we can add the chords u1s1, u2s1 to the cycle
s1v1u1s2u2v2s1. We delete s2 and d. We have now lost at most four vertices from B ∪ D:
namely at most v1, v2, d and one of the ui (if it was adjacent to v1 and v2 originally).

s2 s1 s3

v1

v2

w1

w2

u1

u2

x1 s2 s3

u1

u2

x1

z1

z2

Figure 11 An illustration of the case v1, v2, w1, w2, u2 all exist and are all distinct and x2 does
not exist. At top we show the case where s2 has a neighbor d ∈ D. Some of the wavy edges may be
present in G. As usual, there may be other edges present in G that have not been drawn, but they
are not relevant to our argument. At the bottom we illustrate the case where s2 has no neighbor in
D. For i ∈ {1, 2}, we add the vertices zi and edges zis2, ziui if needed to make deg(ui) ≥ 4 in G′.
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s2 s1 s3

v1

v2

w1

w2

u1 x1

s2 u1 x1 s3

v

Figure 12 An illustration of the reduction for the case where u2, w2 do not exist and s2 has no
neighbors in D. We only draw edges that are relevant to our argument.

s2 s1 s3

v1

v2

w1

w2

u1 x1

d

y

s1 s3

v1

v2

w1

w2

u1 x1

y

Figure 13 An illustration of the reduction for the case where u2, w2 do not exist and s2 has
exactly one neighbor d ∈ D. We use dashed red lines to emphasize that v1 is not adjacent to u1, u2

in G′ and a wavy line to show that v1 may be adjacent to v2 in G. As usual, we do not draw edges
that are not relevant to our argument.

Suppose now that s2 has no neighbors in D. We remove N [s1] and add the edges u1x1,u2x1
and u1u2 if it is not already present. If u1 has degree 3, then it has no neighbors outside
of u2, x1, s2 and so we may create a new vertex adjacent to both u1 and s2. Similarly, we
can fix the degree of u2 if needed. Note that since s1 has degree at least four, w1, w2 /∈ D.
If we lost one of w1, w2 from B, then x1 /∈ D. In that case we lose at most v1, v2, w1, w2
from B ∪ D.If x1 ∈ D we lose at most v1, v2, x1 from B ∪ D. In both cases we found a
smaller counterexample.

A.3 The case when neither u2 nor x2 exists
If both u1 and x1 do not have degree exactly four, then we can remove N [s1] and add the
edge u1x1; in this case we only lose a subset of {v1, v2, w1, w2} from B ∪ D. Hence we can
assume by symmetry that u1 has degree exactly four.

We first handle the case in which s2 has no neighbor in D. Since u1 has degree exactly 4,
after removing N [s1] we can create a new vertex v and add the edges u1v, s2v, x1v, u1x1.
As a result, we have lost at most v1, v2, w1, w2 from B ∪ D and found a smaller coun-
terexample. See Figure 12.
Suppose now that s2 has only neighbors in D ∪ {u1}, which we name d1, d2 (where d2
may or may not exist). We remove N [s2] \ {u1} (at most three vertices), remove the
edge v1v2 and add the edge u1s1. We again found a smaller counterexample as the only
vertices we may have lost from B ∪ D are v1, v2, d1, d2.
Suppose now that s2 has exactly one neighbor d ∈ D. It may have another neighbor
y ̸= u1, d, which if it exists, is not in D. We delete the vertices s2, d as well as the edges
u1v1 and v1v2 (if these exist). As u1 was a cut-vertex previously, we can now add the
edges u1s1 and ys1 (say along the path u1v2s1) to ensure that the size of the dominating
set has dropped by one whereas we lost at most d, u1, v1, v2 from B ∪ D. See Figure 13.
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