The Canonical Amoebot Model: Algorithms and
Concurrency Control

Joshua J. Daymude &

Biodesign Center for Biocomputing, Security and Society,
Arizona State University, Tempe, AZ, USA

Andréa W. Richa &
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Christian Scheideler &

Department of Computer Science, Universitidt Paderborn, Germany

—— Abstract

The amoebot model abstracts active programmable matter as a collection of simple computational
elements called amoebots that interact locally to collectively achieve tasks of coordination and
movement. Since its introduction (SPAA 2014), a growing body of literature has adapted its
assumptions for a variety of problems; however, without a standardized hierarchy of assumptions,
precise systematic comparison of results under the amoebot model is difficult. We propose the
canonical amoebot model, an updated formalization that distinguishes between core model features
and families of assumption variants. A key improvement addressed by the canonical amoebot model
is concurrency. Much of the existing literature implicitly assumes amoebot actions are isolated
and reliable, reducing analysis to the sequential setting where at most one amoebot is active at a
time. However, real programmable matter systems are concurrent. The canonical amoebot model
formalizes all amoebot communication as message passing, leveraging adversarial activation models
of concurrent executions. Under this granular treatment of time, we take two complementary
approaches to concurrent algorithm design. Using hexagon formation as a case study, we first
establish a set of sufficient conditions for algorithm correctness under any concurrent execution,
embedding concurrency control directly in algorithm design. We then present a concurrency control
framework that uses locks to convert amoebot algorithms that terminate in the sequential setting
and satisfy certain conventions into algorithms that exhibit equivalent behavior in the concurrent
setting. Together, the canonical amoebot model and these complementary approaches to concurrent
algorithm design open new directions for distributed computing research on programmable matter.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Theory
of computation — Concurrency; Theory of computation — Self-organization

Keywords and phrases Programmable matter, self-organization, distributed algorithms, concurrency
Digital Object Identifier 10.4230/LIPIcs.DISC.2021.20
Related Version Full Version: https://arxiv.org/abs/2105.02420 [17]

Funding Joshua J. Daymude: NSF (CCF-1733680), U.S. ARO (MURI W911NF-19-1-0233), and
the ASU Biodesign Institute.

Andréa W. Richa: NSF (CCF-1733680) and U.S. ARO (MURI W911NF-19-1-0233).

Christian Scheideler: DFG Project SCHE 1592/6-1.

Acknowledgements We thank Nicola Santoro and Paola Flocchini for their constructive feedback
and Kristian Hinnenthal for his contributions to a preliminary version of this work.

© Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler;
37 licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).

Editor: Seth Gilbert; Article No. 20; pp.20:1-20:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jdaymude@asu.edu
https://orcid.org/0000-0001-7294-5626
mailto:aricha@asu.edu
https://orcid.org/0000-0003-3592-3756
mailto:scheideler@upb.de
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://arxiv.org/abs/2105.02420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2

The Canonical Amoebot Model

1 Introduction

The vision of programmable matter is to realize a material that can dynamically alter its
physical properties in a programmable fashion, controlled either by user input or its own
autonomous sensing of its environment [38]. Towards a formal characterization of the
minimum capabilities required by individual modules of programmable matter to achieve
a given system behavior, many abstract models have been proposed over the last several
decades [3, 8, 9, 10, 29, 35, 36, 37, 39]. We focus on the amoebot model [16, 19] which is
motivated by micro- and nano-scale robotic systems with strictly limited computational
and locomotive capabilities [32, 33, 34, 40, 41]. The amoebot model abstracts active pro-
grammable matter as a collection of simple computational elements called amoebots that
utilize local interactions to collectively achieve tasks involving coordination, movement, and
reconfiguration. Since its introduction in 2014, the amoebot model has been used to study
both fundamental problems — such as leader election [5, 15, 23, 25, 28, 31] and shape forma-
tion [7, 20, 21, 24, 25] — as well as more complex behaviors including object coating [13, 22],
convex hull formation [14], bridging [2], spatial sorting [6], and fault tolerance [18, 27].

With this growing body of amoebot model literature, it is evident that the model has
evolved — and, to some extent, fractured — during its lifetime as assumptions were updated to
support individual results, capture more realistic settings, or better align with other models of
programmable matter. This makes it difficult to conduct any systematic comparison between
results under the amoebot model (see, e.g., the overlapping but distinct features used for
comparison of leader election algorithms in [5] and [28]), let alone between amoebot model
results and those of related models (e.g., those from the established autonomous mobile robots
literature [29]). To address the ways in which the amoebot model has outgrown its original
rigid formulation, we propose the canonical amoebot model that includes a standardized,
formal hierarchy of assumptions for its features to better facilitate comparison of its results.
Moreover, such standardization will more gracefully support future model generalizations by
distinguishing between core features and assumption variants.

A key area of improvement addressed by the canonical amoebot model is concurrency. The
original model treats concurrency at a high level, implicitly assuming an isolation property
that prohibits concurrent amoebot actions from interfering with each other. Furthermore,
amoebots are usually assumed to be reliable; i.e., they cannot crash or exhibit Byzantine
behavior. Under these simplifying assumptions, most existing algorithms are analyzed for
correctness and runtime as if they are executed sequentially, with at most one amoebot acting
at a time. Notable exceptions include the recent work of Di Luna et al. [24, 25, 27] that adopt
ideas from the “look-compute-move” paradigm used in autonomous mobile robots to bring
the amoebot model closer to a realistic, concurrent setting. Our canonical amoebot model
furthers these efforts by formalizing all communication and cooperation between amoebots as
message passing while also addressing the complexity of potential conflicts caused by amoebot
movements. This careful formalization allows us to use standard adversarial activation models
from the distributed computing literature to describe concurrency [1].

This fine-grained treatment of concurrency in the canonical amoebot model lays the
foundation for the design and analysis of concurrent amoebot algorithms. Concurrency adds
significant design complexity, allowing concurrent amoebot actions to mutually interfere,
conflict, affect outcomes, or fail in ways far beyond what is possible in the sequential setting.
As a tool for controlling concurrency, we introduce a LOCK operation in the canonical
amoebot model enabling amoebots to attempt to gain exclusive access to their neighborhood.

J.J. Daymude, A. W. Richa, and C. Scheideler

We then take two complementary approaches to concurrent algorithm design in the
canonical amoebot model: a direct approach that embeds concurrency control directly into
the algorithm’s design without requiring locks, and an indirect approach that relies on the
LOCK operation to mitigate issues of concurrency. In the first approach, we establish a
set of general sufficient conditions for amoebot algorithm correctness under any adversary
— sequential or asynchronous, fair or unfair — using the hexagon formation problem (see,
e.g., [16, 20]) as a case study. Our Hexagon-Formation algorithm demonstrates that locks are
not necessary for correctness even under an unfair, asynchronous adversary. However, this
algorithm’s asynchronous correctness relies critically on its actions succeeding despite any
concurrent action executions, which may be a difficult property to obtain in general.

For our second approach, we present a concurrency control framework using the LOCK
operation that, given an amoebot algorithm that terminates under any sequential execution
and satisfies some basic conventions, produces an algorithm that exhibits equivalent behavior
under any asynchronous execution. This framework establishes a general design paradigm for
concurrent amoebot algorithms: one can first design an algorithm with correct behavior in
the simpler sequential setting and then, by ensuring it satisfies our framework’s conventions,
automatically obtain a correct algorithm for the asynchronous setting. The convenience of
this approach comes at the cost of the full generality of the canonical amoebot model which
is limited by the framework’s conventions.

Our Contributions. We summarize our contributions as follows.
The canonical amoebot model, an updated formalization that treats amoebot actions at
the fine-grained level of message passing and distinguishes between core model features
and hierarchies of assumption variants (Section 2).
General sufficient conditions for amoebot algorithm correctness under any adversary and
an algorithm for hexagon formation that satisfies these conditions (Section 3).
A concurrency control framework that converts amoebot algorithms that terminate under
any sequential execution and satisfy certain conventions into algorithms that exhibit
equivalent behavior under any asynchronous execution (Section 4).

1.1 Related Work

There are many theoretical models of programmable matter, ranging from the non-spatial
population protocols [3] and network constructors [35] to the tile-based models of DNA
computing and molecular self-assembly [8, 36, 39]. Most closely related to the amoebot model
studied in this work is the well-established literature on autonomous mobile robots, and in
particular those using discrete, graph-based models of space (see Chapter 1 of [29] for a recent
overview). Both models assume anonymous individuals that can actively move, lacking a
global coordinate system or common orientation, and having strictly limited computational
and sensing capabilities. In addition, stronger capabilities assumed by the amoebot model
also appear in more recent variants of mobile robots, such as persistent memory in the
F-state model [4, 30] and limited communication capabilities in luminous robots [11, 12, 26].

There are also key differences between the amoebot model and the standard assumptions
for mobile robots, particularly around their treatment of physical space, the structure of
individuals’ actions, and concurrency. First, while the discrete-space mobile robots literature
abstractly envisions robots as agents occupying nodes of a graph — allowing multiple robots
to occupy the same node — the amoebot model assumes physical exclusion that ensures
each node is occupied by at most one amoebot at a time, inspired by the real constraints

20:3

DISC 2021

20:4

The Canonical Amoebot Model

of self-organizing micro-robots and colloidal state machines [32, 33, 34, 40, 41]. Physical
exclusion introduces conflicts of movement (e.g., two amoebots concurrently moving into the
same space) that must be handled carefully in algorithm design.

Second, mobile robots are assumed to operate in look-compute-move cycles, where they
take an instantaneous snapshot of their surroundings (look), perform internal computation
based on the snapshot (compute), and finally move to a neighboring node determined in the
compute stage (move). While it is reasonable to assume robots may instantaneously snapshot
their surroundings due to all information being visible, the amoebot model — and especially
the canonical version presented in this work — treats all inter-amoebot communication as
asynchronous message passing, making snapshots nontrivial. Moreover, amoebots have read
and write operations allowing them to access or update variables stored in the persistent
memories of their neighbors that do not fit cleanly within the look-compute-move paradigm.

Finally, the mobile robots literature has a well-established and carefully studied hierarchy
of adversarial schedulers capturing assumptions on concurrency that the amoebot model has
historically lacked. In fact, other than notable recent works that adapt look-compute-move
cycles and a semi-synchronous scheduler from mobile robots to the amoebot model [24, 25, 27],
most amoebot literature assumes only sequential activations. A key contribution of our
canonical amoebot model presented in this work is a hierarchy of concurrency and fairness
assumptions similar in spirit to that of mobile robots, though our underlying message passing
design and lack of explicit action structure require different formalizations.

2 The Canonical Amoebot Model

We introduce the canonical amoebot model as an update to the model’s original formulation [16,
19]. This update has two main goals. First, we model all amoebot actions and operations
using message passing, leveraging this finer level of granularity for a formal treatment of
concurrency. Second, we clearly delineate which assumptions are fixed features of the model
and which have stronger and weaker variants (Table 1), providing unifying terminology for
future amoebot model research. Unless variants are explicitly listed, the following description
of the canonical amoebot model details its core, fixed assumptions.

In the canonical amoebot model, programmable matter consists of individual, homo-
geneous computational elements called amoebots. Any structure that an amoebot system
can form is represented as a subgraph of an infinite, undirected graph G = (V, FE) where
V represents all relative positions an amoebot can occupy and E represents all atomic
movements an amoebot can make. Each node in V' can be occupied by at most one amoebot
at a time. There are many potential variants with respect to space; the most common is the
geometric variant that assumes G = G, the triangular lattice (Figure 1a).

An amoebot has two shapes: CONTRACTED, meaning it occupies a single node in V', or
EXPANDED, meaning it occupies a pair of adjacent nodes in V' (Figure 1b). For a contracted
amoebot, the unique node it occupies is considered to be its head; for an expanded amoebot,
the node it has most recently come to occupy (due to movements) is considered its head
and the other is its tail. Each amoebot keeps a collection of ports — one for each edge
incident to the node(s) it occupies — that are labeled consecutively according to its own
local orientation. An amoebot’s orientation is persistent and depends on its direction — i.e.,
what it perceives as “north” — and its chirality, or sense of clockwise and counter-clockwise
rotation. Different variants may assume that amoebots share one, both, or neither of their
directions and chiralities (see Table 1); Figure lc gives an example of the common chirality
variant where amoebots share a sense of clockwise rotation but have different directions.

J.J. Daymude, A. W. Richa, and C. Scheideler

Table 1 Summary of assumption variants in the canonical amoebot model, each organized from
most to least general. Variants marked with * have been considered in existing literature, and
variants marked with { are the focus of the algorithmic results in this work.

Variant Description
§ General” G is any infinite, undirected graph.
& Geometric*! G = Ga, the triangular lattice.
g Assorted™ T Assorted direction and chirality.
g Common Chirality™ Assorted direction but common chirality.
'qu Common Direction = Common direction but assorted chirality.
S Common Common direction and chirality.
o Oblivious No persistent memory.
3 Constant-Size* Memory size is O(1).
GEJ Finite Memory size is O(f(n)), some function of the system size.
= Unbounded Memory size is unbounded.
o Asynchronous’ Any amoebots can be simultaneously active.
% Synchronous™ Any amoebots can simultaneously execute a single action per discrete
g round. Each round has an evaluation phase and an execution phase.
% k-Isolated No amoebots within distance k can be simultaneously active.
O Sequential® At most one amoebot is active per time.
% Unfair' Some enabled amoebot is eventually activated.
g Weakly Fair™ Every continuously enabled amoebot is eventually activated.
S Strongly Fair Every amoebot enabled infinitely often is activated infinitely often.

Two amoebots occupying adjacent nodes are said to be neighbors. Although each amoebot
is anonymous, lacking a unique identifier, we assume an amoebot can locally identify its
neighbors using their port labels. In particular, we assume that amoebots A and B connected
via ports p4 and pp each know one another’s labels for p4 and pg. If A is expanded, we also
assume B knows the direction A is expanded in with respect to its own local direction, and
vice versa. This is sufficient for an amoebot to reconstruct which adjacent nodes are occupied
by the same neighbor, but is not so strong so as to collapse the hierarchy of orientation
assumptions. More details on an amoebot’s anatomy are given in Section 2.1.

An amoebot’s functionality is partitioned between a higher-level application layer and a
lower-level system layer. Algorithms controlling an amoebot’s behavior are designed from the
perspective of the application layer. The system layer is responsible for an amoebot’s core
functions and exposes a limited programming interface of operations to the application layer
that can be used in amoebot algorithms. The operations are defined in Section 2.2 and their
organization into algorithms is described in Section 2.3. We note that future publications
may abstract away from the system layer and focus on the interface to the application layer.

2.1 Amoebot Anatomy

Each amoebot has memory whose size is a model variant; the standard assumption is constant-
size memory. An amoebot’s memory consists of two parts: a persistent public memory
that is read-writeable by the system layer but only accessible to the application layer via
communication operations (see Section 2.2), and a volatile private memory that is inaccessible

20:5

DISC 2021

20:6

The Canonical Amoebot Model

) [) 9 2
8/ 3 45
—oe 7 @ 4 300
65 21
°
(a) (b)

(c)

Figure 1 The Canonical Amoebot Model. (a) A section of the triangular lattice G used in the
geometric variant; nodes of V' are shown as black circles and edges of E are shown as black lines. (b)
Expanded and contracted amoebots; Ga is shown in gray, and amoebots are shown as black circles.
Amoebots with a black line between their nodes are expanded. (c) Two amoebots that agree on their
chirality but not on their direction, using different offsets for their clockwise-increasing port labels.

to the system layer but read-writeable by the application layer. The public memory of an
amoebot A contains (¢) the shape of A, denoted A.shape € {CONTRACTED, EXPANDED}, (%)
the lock state of A, denoted A.lock € {TRUE,FALSE}, and (i) any variables used in the
algorithm being run by the application layer.

Neighboring amoebots (i.e., those occupying adjacent nodes) form connections via their
ports facing each other. An amoebot’s system layer receives instantaneous feedback whenever
a new connection is formed or an existing connection is broken. Communication between
connected neighbors is achieved via message passing. To facilitate message passing commu-
nication, each of an amoebot’s ports has a FIFO outgoing message buffer managed by the
system layer that can store up to a fixed (constant) number of messages waiting to be sent
to the neighbor incident to the corresponding port. If two neighbors disconnect due to some
movement, their system layers immediately flush the corresponding message buffers of any
pending messages. Otherwise, we assume that any pending message is sent to the connected
neighbor in FIFO order in finite time. Incoming messages are processed as they are received.

2.2 Amoebot Operations

Operations provide the application layer with a programming interface for controlling the
amoebot’s behavior; the application layer calls operations and the system layer executes them.
We assume the execution of an operation is blocking for the application layer; that is, the
application layer can only execute one operation at a time. We summarize the communication,
movement, and concurrency control operations below and in Table 2; see the full version [17]
for pseudocode and execution details, including failure handling and contention resolution.
The CONNECTED operation checks for the presence of neighbors. CONNECTED(p) returns
TRUE iff there is a neighbor connected via port p. CONNECTED() snapshots current port
connectivity, including whether any neighbor is connected via multiple consecutive ports.
The READ and WRITE operations exchange information in public memory. READ(p, x)
issues a request to read the value of a variable x in the public memory of the neighbor
connected via port p while WRITE(p, x, z,4) issues a request to update its value to yq;.
If p = 1, an amoebot’s own public memory is accessed instead of a neighbor’s.
An expanded amoebot can CONTRACT into either node it occupies; a contracted amoebot
can EXPAND into an unoccupied adjacent node. Neighboring amoebots can coordinate
their movements in a handover, which can occur in one of two ways. A contracted
amoebot A can PUSH an expanded neighbor B by expanding into a node occupied by
B, forcing it to contract. Alternatively, an expanded amoebot B can PULL a contracted
neighbor A by contracting, forcing A to expand into the neighbor it is vacating.

J.J. Daymude, A. W. Richa, and C. Scheideler

Table 2 Summary of operations exposed by an amoebot’s system layer to its application layer.

Operation Return Value on Success
CONNECTED(p) TRUE iff a neighboring amoebot is connected via port p
CONNECTED() [coy.. . cu—1] € {Nq,.. .,Ng,FALSE}k where ¢, = N; if N; is the locally

identified neighbor connected via port p and ¢, = FALSE otherwise
READ(p, z) The value of x in the public memory of this amoebot if p = | or of the
neighbor incident to port p otherwise

WRITE(p, T, Tvq;) Confirmation that the value of z was updated to 4 in the public memory
of this amoebot if p = L or of the neighbor incident to port p otherwise

CONTRACT(v) Confirmation of the contraction out of node v € {HEAD, TAIL}
EXPAND(p) Confirmation of the expansion into the node incident to port p

PuLL(p) Confirmation of the pull handover with the neighbor incident to port p
PusH(p) Confirmation of the push handover with the neighbor incident to port p
Lock() Local identifiers of this amoebot and the neighbors that were locked
UNLOCK(L) Confirmation that the amoebots of £ were unlocked

The LocCK operation encapsulates a variant of the mutual exclusion problem where
an amoebot attempts to gain exclusive control over itself and its neighbors. A Lock
operation attempts to set the amoebot’s and its neighbors’ lock states from FALSE to
TRUE but may fail if the amoebot or some neighbor is already locked or if there is a lock

conflict. The UNLOCK operation releases locks obtained in a successful LOCK operation.

Each operation’s message passing implementation is carefully designed so that (¢) any
operation execution terminates — either successfully or in failure — in finite time, and (%) at
any time, there are at most a constant number of messages being sent or received between any
pair of neighboring amoebots as a result of any set of operation executions. Combined with
the blocking assumption, these design principles prohibit outgoing message buffer overflow
and deadlocks in operation executions; see [17] for details.

2.3 Amoebot Actions, Algorithms and Executions

Following the message passing literature, we specify distributed algorithms in the amoebot
model as sets of actions to be executed by the application layer, each of the form:

(label) : {guard) — (operations)

An action’s label specifies its name. Its guard is a Boolean predicate determining whether
an amoebot A can execute it based on the ports A has connections on — i.e., which nodes
adjacent to A are (un)occupied — and information from the public memories of A and its
neighbors. An action is enabled for an amoebot A if its guard is true for A, and an amoebot is
enabled if it has at least one enabled action. An action’s operations specify the finite sequence
of operations and computation in private memory to perform if this action is executed. The
control flow of this private computation may optionally include randomization to generate
random values and error handling to address any operation executions resulting in failure.

20:7

DISC 2021

20:8

The Canonical Amoebot Model

Each amoebot executes its own algorithm instance independently and — as an assumption
for this work — reliably, meaning there are no crash or Byzantine faults.! An amoebot is
said to be active if its application layer is executing an action and is idle otherwise. An
amoebot can begin executing an action if and only if it is idle; i.e., an amoebot can execute
at most one action at a time. On becoming active, an amoebot A first evaluates which of its
actions «; : g; — ops; are enabled. Since each guard g; is based only on the connected ports
of A and the public memories of A and its neighbors, each g; can be evaluated using the
CONNECTED and READ operations. If no action is enabled, A returns to idle; otherwise, A
chooses the highest-priority enabled action «; : g; — ops; — where action priorities are set
by the algorithm — and executes the operations and private computation specified by ops;.
Recall from Section 2.2 that each operation is guaranteed to terminate (either successfully or
with a failure) in finite time. Thus, since A is reliable and ops; consists of a finite sequence
of operations and finite computation, each action execution is also guaranteed to terminate
in finite time after which A returns to idle. An action execution fails if any of its operations’
executions result in a failure that is not addressed with error handling and succeeds otherwise.

As is standard in the distributed computing literature (see, e.g., [1]), we assume an
adversary (or daemon) controls the timing of amoebot activations and the resulting action
executions. The power of an adversary is determined by its concurrency and fairness. We
distinguish between four concurrency variants: sequential, in which at most one amoebot
can be active at a time; k-isolated, in which any set of amoebots except those occupying
nodes of G within distance k can be simultaneously active; synchronous, in which time is
discretized into “rounds” and in each round any set of amoebots can simultaneously execute
one action each; and asynchronous, in which any amoebot can be active at any time. For
synchronous concurrency, we further assume that each round is partitioned into an evaluation
phase when all active amoebots evaluate their guards followed by an ezecution phase when
all active amoebots with enabled actions execute the corresponding operations. Fairness
restricts how often the adversary must activate enabled amoebots. We distinguish between
three fairness variants: strongly fair, in which every amoebot that is enabled infinitely often
is activated infinitely often; weakly fair, in which every continuously enabled amoebot is
eventually activated; and unfair, in which an amoebot may never be activated unless it is the
only one with an enabled action. An algorithm execution is said to terminate if eventually all
amoebots are idle and no amoebot is enabled; note that since an amoebot can only become
enabled if something changes in its neighborhood, termination is permanent. Formal notions
of algorithm runtime should be defined on a per-adversary basis; e.g., a standard synchronous
round would apply to synchronous adversaries, while a strongly fair sequential adversary
could use rounds that complete once every amoebot has been activated at least once.

In this paper, we focus on unfair sequential and asynchronous adversaries. In the sequential
setting, an active amoebot knows that all other amoebots are idle; thus, its guard evaluations
must be correct since the corresponding CONNECTED and READ operations cannot fail or
have their results be outdated due to concurrent changes in the system. In the asynchronous
setting, however, these issues may lead to guards being evaluated incorrectly, causing disabled
actions to be executed or enabled actions to be skipped. We address these issues in two
ways, justifying the formulation of algorithms in terms of actions. In Section 3, we present
an algorithm whose actions are carefully designed so that their guards are always evaluated
correctly under any adversary. In Section 4, we present a concurrency control framework that
uses locks to ensure that guards can be evaluated correctly even in the asynchronous setting.

L As we discuss in Section 5, designing fault tolerant algorithms is an important research direction for
programmable matter. We leave the formalization of different fault models under the canonical amoebot
model for future work.

J.J. Daymude, A. W. Richa, and C. Scheideler

3 Asynchronous Hexagon Formation Without Locks

We use the hexagon formation problem as a concrete case study for algorithm design,
pseudocode, and analysis in the canonical amoebot model. Our Hexagon-Formation algorithm
(Algorithm 1) assumes geometric space, assorted orientation, and constant-size memory
(Table 1) and is formulated in terms of actions as specified in Section 2.3. Our analysis
establishes a general set of sufficient conditions for amoebot algorithm correctness under
unfair asynchronous adversaries: (¢) correctness under any unfair sequential adversary, (i)
enabled actions remaining enabled despite concurrent action executions, and (i) executions
of enabled actions remaining successful and unaffected by concurrent action executions.
Any concurrent execution of an algorithm satisfying (é7) and (¢4) can be shown to be
serializable, which combined with sequential correctness establishes correctness under any
unfair asynchronous adversary, the most general of all possible adversaries. Notably, we prove
that our Hexagon-Formation algorithm satisfies these sufficient conditions without using locks,
demonstrating that while locks are useful tools for designing correct amoebot algorithms
under concurrent adversaries, they are not always necessary.

The hexagon formation problem tasks an arbitrary, connected system of initially contracted
amoebots with forming a regular hexagon (or as close to one as possible, given the number
of amoebots in the system). We assume that there is a unique seed amoebot in the system
and all other amoebots are initially idle.? Following the sequential algorithm given by
Derakhshandeh et al. [16, 20], the basic idea of our Hexagon-Formation algorithm is to form
a hexagon by extending a spiral of amoebots counter-clockwise from the seed.

In addition to the shape variable assumed by the amoebot model, each amoebot A keeps
variables A.state € {SEED, IDLE, FOLLOWER, ROOT, RETIRED}, A.parent € {NULL,0,...,9},
and A.dir € {NULL,0,...,9} in public memory. The amoebot system first self-organizes as
a spanning forest rooted at the seed amoebot using their parent ports. Follower amoebots
follow their parents until reaching the surface of retired amoebots that have already found
their place in the hexagon. They then become roots, traversing the surface of retired amoebots
clockwise. Once they connect to a retired amoebot’s dir port, they also retire and set their
dir port to the next position of the hexagon. Algorithm 1 describes Hexagon-Formation
in terms of actions. We assume that if multiple actions are enabled for an amoebot, the
enabled action with smallest index is executed. For conciseness and clarity, we write action
guards as logical statements as opposed to their implementation with READ and CONNECTED
operations. In action guards, we use N(A) to denote the neighbors of amoebot A and say
that an amoebot A has a tail-child B if B is connected to the tail of A via port B.parent.

We begin our analysis of the Hexagon-Formation algorithm by showing it is correct under
any sequential adversary.3 All omitted proofs can be found in [17].

» Lemma 1. Any unfair sequential execution of the Hexagon-Formation algorithm terminates
with the amoebot system forming a hexagon.

We next consider unfair asynchronous executions, the most general of all possible adver-
saries. In general, asynchronous executions may cause amoebots to incorrectly evaluate their
action guards. Nevertheless, in the following two lemmas, we show that Hexagon-Formation
has the key property that whenever an amoebot thinks an action is enabled, it remains
enabled and will execute successfully, even when other actions are executed concurrently.

2 Note that the assumption of a unique seed amoebot immediately collapses the hierarchy of orientation
assumptions since it can impose its own local orientation on the rest of the system via a simple broadcast.

3 Although the related algorithm of Derakhshandeh et al. has already been analyzed in the sequential
setting [16, 20], Hexagon-Formation must be proved correct with respect to its action formulation.

20:9

DISC 2021

20:10

The Canonical Amoebot Model

Algorithm 1 Hexagon-Formation for Amoebot A.

Ju—

oy : (A.state € {IDLE, FOLLOWER}) A (3B € N(A) : B.state € {SEED, RETIRED}) —

2: WRITE(L, parent, NULL).

3: WRITE(L, state, ROOT).

4: WRITE(L, dir, GETNEXTDIR(counter-clockwise)).

5: g : (A.state = IDLE) A (3B € N(A) : B.state € {FOLLOWER, ROOT}) —

6: Find a port p for which CONNECTED(p) = TRUE and READ(p, state) € {FOLLOWER, ROOT}.
7 WRITE(L, parent, p).

8: WRITE(L, state, FOLLOWER).

9: a3 : (A.shape = CONTRACTED) A (A.state = ROOT) A (VB € N(A) : B.state # IDLE)
10: A (3B € N(A) : (B.state € {SEED, RETIRED}) A (B.dir is connected to A)) —
11: WRITE(L, dir, GETNEXTDIR(clockwise)).
12: WRITE(L, state, RETIRED).
13: ay : (A.shape = CONTRACTED) A (A.state = ROOT) A (the node adjacent to A.dir is empty) —
14: EXPAND(A.dir).

15: a5 : (A.shape = EXPANDED) A (A.state € {FOLLOWER, ROOT})A(VB € N(A) : B.state # IDLE)
16: A (A has a tail-child B : B.shape = CONTRACTED) —

17: if READ(L, state) = ROOT then WRITE(L, dir, GETNEXTDIR(counter-clockwise)).

18: Find a port p € TAILCHILDREN() s.t. READ(p, shape) = CONTRACTED.

19: Let p’ be the label of the tail-child’s port that will be connected to p after the pull handover.
20: WRITE(p, parent,p’).
21: PuLL(p).
22: ag : (A.shape = EXPANDED) A (A.state € {FOLLOWER, ROOT})A (VB € N(A) : B.state # IDLE)
23: A (A has no tail-children) —
24: if READ(L, state) = ROOT then WRITE(L, dir, GETNEXTDIR(counter-clockwise)).

[}
ot

CONTRACT(TAIL).

» Lemma 2. For any asynchronous execution of the Hexagon-Formation algorithm, if an
action «; is enabled for an amoebot A, then oy stays enabled for A until A executes an action.

» Lemma 3. For any asynchronous execution of the Hexagon-Formation algorithm, any
execution of an enabled action is successful and unaffected by any concurrent action executions.

Combined, Lemmas 1-3 directly imply that the Hexagon-Formation algorithm is both
serializable and correct under any unfair asynchronous adversary.

» Lemma 4. For any asynchronous execution of the Hexagon-Formation algorithm, there
exists a sequential ordering of its action executions producing the same final configuration.

» Lemma 5. Any unfair asynchronous execution of the Hexagon-Formation algorithm termi-
nates with the amoebot system forming a hexagon.

Our analysis culminates in the following theorem.

» Theorem 6. Assuming geometric space, assorted orientations, and constant-size memory,
the Hexagon-Formation algorithm solves the hexagon formation problem under any adversary.

We note that serializability and correctness under any asynchronous adversary (Lemmas 4
5) follow directly from Lemmas 1-3, independent of the specific details of Hexagon-Formation.
Thus, these three lemmas establish a set of general sufficient conditions for amoebot algorithm
correctness under asynchronous adversaries. We are hopeful that other existing amoebot
algorithms can be adapted to satisfy these conditions under the new canonical model.

J.J. Daymude, A. W. Richa, and C. Scheideler

4 A General Framework for Concurrency Control

In the sequential setting where only one amoebot is active at a time, operation failures are
necessarily the fault of the algorithm designer: e.g., attempting to READ on a disconnected
port, attempting to EXPAND when already expanded, etc. Barring these design errors, it
suffices to focus only on the correctness of the algorithm — i.e., whether the algorithm’s
actions always produce the desired system behavior under any sequential execution — not
whether the individual actions themselves execute as intended. This is the focus of most
existing amoebot works [2, 6, 7, 14, 15, 20, 21, 22, 23, 28, 31].

Our present focus is on asynchronous executions, where concurrent action executions can
mutually interfere, affect outcomes, and cause failures far beyond those of simple designer
negligence. Ensuring algorithm correctness in spite of concurrency thus appears to be a
significant burden for the algorithm designer, especially for problems that are challenging
even in the sequential setting due to the constraints of constant-size memory, assorted
orientation, and strictly local interactions. What if there was a way to ensure that correct,
sequential amoebot algorithms could be lifted to the asynchronous setting without sacrificing
correctness? This would give the best of both worlds: the relative ease in design from the
sequential setting and the correct execution in a more realistic concurrent setting.

In this section, we introduce and rigorously analyze a framework for transforming an
algorithm A that works correctly for every sequential execution into an algorithm A’ that
works correctly for every asynchronous execution. We prove that our framework achieves
this goal so long as the original algorithms satisfy certain conventions. These conventions
limit the full generality of the amoebot model in order to provide a common structure to the
algorithms. We discuss interesting open problems regarding what algorithms are compatible

with this framework and whether it can be extended beyond these conventions in Section 5.

The first of these conventions requires that all actions of the given algorithm are executed
successfully under a sequential adversary. For sequential executions, the system configuration
is defined as the mapping of amoebots to the node(s) they occupy and the contents of each
amoebot’s public memory. Certainly, this configuration is well-defined whenever all amoebots
are idle, and we call a configuration legal whenever the requirements of our amoebot model
are met, i.e., every position is occupied by at most one amoebot, each amoebot is either
contracted or expanded, its shape variable corresponds to its physical shape, and its lock
variable is TRUE if and only if it has been locked in a LOCK operation. Whenever we talk
about a system configuration in the following, we assume that it is legal.

» Convention 1. All actions of an amoebot algorithm should be valid, i.e., for all its actions
a and all system configurations in which « is enabled for some amoebot A, the execution of
a by A should be successful whenever all other amoebots are idle.

The second convention keeps an algorithm’s actions simple by controlling the order and
number of operations they perform.

» Convention 2. Fach action of an amoebot algorithm should structure its operations as:
1. A compute phase, during which an amoebot performs a finite amount of computation in
private memory and a finite sequence of CONNECTED, READ, and WRITE operations.

2. A move phase, during which an amoebot performs at most one movement operation

decided upon in the compute phase.
In particular, no action should use LOCK or UNLOCK operations.

20:11

DISC 2021

20:12 The Canonical Amoebot Model

O ® O © O ® 0 - O
c 0 ,® % 0 e ®Cc, C O o—e,0 %> o, O C4
O O O 0O ® ® O 5 ® O
. 09 ° o ., 0@o0 cO |
C ® ,® %> ® o, ®C, ¢ ® oo, ® > o, ® C,
0 ® 0 ® ® 0 ® 5 ©® ®
(a) (b)

Figure 2 The monotonicity convention. In both examples, we examine the local configuration ¢ of
amoebot A, an extension ¢t of ¢, and the corresponding outcomes ¢, and ¢ reached by sequential
executions of a. The nodes with black circles denote the N(-) sets of nodes adjacent to A. Neighbors
occupying the “non-extended neighborhood” O(c) are shown in blue and neighbors occupying the
“extended neighborhood” O(c)\ O(c) are shown in pink. Monotonicity requires that the executions
of a make the same updates: in (a), amoebot A updates the public memory of B, shown in green;
in (b), amoebot A updates the public memory of B (green) and pulls neighbor C' in a handover.

Convention 2 is similar in spirit to the look-compute-move paradigm used in the mobile
robots literature (see, e.g., [29]), though message passing communication via READ and
WRITE operations adds additional complexity in the amoebot model. Moreover, the instan-
taneous snapshot performed in the mobile robots’ look phase is not trivially realizable by
amoebots whose public memories are included in neighborhood configurations (Section 1.1).

Finally, due to our approach of using a serializability argument to show the correctness
of algorithms using our framework, we need one last convention. This final convention is
significantly more technical and limits the generality of the model more strictly than the first
two, which we discuss further in Section 5. Consider any action « : g — ops of an algorithm
A being executed by an amoebot A. Recall that the guard g is a Boolean predicate based on
the local configuration of A; i.e., the connected ports of A and the contents of the public
memories of A and its neighbors. For a local configuration ¢ of A, let N(c¢) = (v1,...,vx) be
the nodes adjacent to A; note that k = 6 if A is contracted and k = 8 if A is expanded. Let
O(c) € N(c) be the nodes adjacent to A that are occupied by neighboring amoebots. Letting
M 4 denote the set of all possible contents of an amoebot’s public memory w.r.t. algorithm
A, we can write ¢ as a tuple ¢ = (cg,c1,...,cx) € My x (M4 U{NULL})® where ¢y € M4
is the public memory contents of A and, for i € {1,...,k}, ¢; € M 4 is the public memory
contents of the neighbor occupying node v; € N(c) if v; € O(c) and ¢; = NULL otherwise.
Thus, we can express the guard g as a function g : M4 x (M4 U {NULL})* — {TRUE, FALSE}.

A local configuration c is consistent if ¢; = ¢; whenever nodes v;,v; € N(c) are occupied
by the same expanded neighbor. Local configurations ¢ and ¢/ with N(c¢) = N(¢’) are said to
agree on a subset S C N(c) if for all nodes v; € S, we have ¢; = ¢,. A local configuration ¢t
is an extension of local configuration c if ¢t is consistent and ¢ and ¢ agree on the node A
occupies and O(c); intuitively, an extension ¢t has the same amoebots in the same positions
with the same public memory contents as ¢, but may also have additional neighbors occupying
nodes of N(c) \ O(c). An extension ¢t of ¢ is expansion-compatible with an execution of
an action on c if any EXPAND operation by A in this execution would also succeed in c¥.
An action « : g — ops is monotonic (see Figure 2) if for any consistent local configuration
¢ with g(¢) = TRUE, any local configuration ¢, reachable by an (isolated) execution of «
on ¢, and any extension ¢t of ¢ that is expansion-compatible with the execution reaching
¢, and is reachable by a sequential execution of A, g(c¢*) = TRUE and there exists a local
configuration ¢} reachable by an execution of o on ¢t such that:

J.J. Daymude, A. W. Richa, and C. Scheideler

1. N(cq) = N(cl); i.e., both executions of o leave A with the same set of adjacent nodes.

2. ¢, and ¢ agree on the node A occupies and O(c); i.e., both executions of & make identical
updates w.r.t. A and its non-extended neighborhood.

3. ¢ and ¢ agree on O(c™)\ O(c); i.e., the execution of o on ¢t does not make any updates
to the extended neighborhood of A.

» Convention 3. All actions of an amoebot algorithm should be monotonic.

4.1 The Concurrency Control Framework

Our concurrency control framework (Algorithm 2) takes as input any amoebot algorithm A =
{[evi : i = opsi] =i € {1,...,m}} satisfying Conventions 1-3 and produces a corresponding
algorithm A" = {[«/ : ¢’ — ops’]} composed of a single action o’. The core idea of our
framework is to carefully incorporate locks in o’ as a wrapper around the actions of A,
ensuring that A’ only produces outcomes in concurrent settings that A can produce in the
sequential setting. With locks, action guards that in general can only be evaluated reliably
in the sequential setting can now also be evaluated reliably in concurrent settings.

To avoid any deadlocks that locking may cause, our framework adds an activity bit
variable A.act € {TRUE, FALSE} to the public memory of each amoebot A indicating if
any changes have occurred in the memory or neighborhood of A since it last attempted to
execute an action. The single action o’ of A’ has guard ¢’ = (A.act = TRUE), ensuring that
o’ is only enabled for an amoebot A if changes in its memory or neighborhood may have
caused some actions of A to become enabled. As will become clear in the presentation of
the framework, WRITE and movement operations may enable actions of A not only for the
neighbors of the acting amoebot, but also for the neighbors of those neighbors (i.e., in the
2-neighborhood of the acting amoebot). The acting amoebot cannot directly update the
activity bits of amoebots in its 2-neighborhood, so it instead sets its neighbors’ awaken bits
A.awaken € {TRUE, FALSE} to indicate that they should update their neighbors’ activity bits
in their next action. Initially, A.act = TRUE and A.awaken = FALSE for all amoebots A.

Algorithm A’ only contains one action o : ¢ — ops’ where ¢’ requires that an amoebot’s
activity bit is set to TRUE (Step 1). If o’ is enabled for an amoebot A, A first attempts to

Lock itself and its neighbors (Step 2). Given that it locks successfully, there are two cases.

If A.awaken = TRUE, then A must have previously been involved in the operation of some
acting amoebot that changed the neighborhood of A but could not update the corresponding
neighbors’ activity bits (Steps 14, 17, 24, or 28). So A updates the intended activity bits to
TRUE, resets A.awaken, releases its locks, and aborts (Steps 4-6). Otherwise, A obtains the
necessary information to evaluate the guards of all actions in algorithm A4 (Steps 7-9). If no
action from A is enabled for A, A sets A.act to FALSE, releases its locks, and aborts; this
disables o’ for A until some future change occurs in its neighborhood (Step 10). Otherwise,
A chooses any enabled action and executes its compute phase in private memory (Step 11)

to determine which WRITE and movement operations, if any, it wants to perform (Step 12).

Before enacting these operations (thereby updating the system’s configuration) amoebot
A must be certain that no operation of o’ will fail. It has already passed its first point of
failure: the LOCK operation in Step 2. But o’ may also fail during an EXPAND operation if it
conflicts with some other concurrent expansion (Step 14). In either case, A releases any locks
it obtained (if any) and aborts (Steps 3 and 15). Provided neither of these failures occur, A
can now perform operations that — without locks on its neighbors — could otherwise interfere
with its neighbors’ actions or be difficult to undo. This begins with A setting the activity
bits of all its locked neighbors to TRUE since it is about to cause activity in its neighborhood

20:13

DISC 2021

20:14

The Canonical Amoebot Model

(Step 16). It then enacts the WRITE operations it decided on during its computation, writing
updates to its own public memory and the public memories of its neighbors. Since writes
to its neighbors can change what amoebots in its 2-neighborhood see, it must also set the
awaken bits of the neighbors it writes to to TRUE (Step 17).

The remainder of the framework handles movements and releases locks. If A did not
want to move or it intended to EXPAND — which, recall, it already did in Step 14 — it can
simply release all its locks (Step 18). If A wants to contract, it must first release its locks
on the neighbors it is contracting away from; it can then CONTRACT and, once contracted,
release its remaining locks (Step 20-22). If A wants to perform a PUSH handover, it does so
and then releases all its locks (Steps 24-26). Finally, pull handovers are handled similarly to
contractions: A first releases its locks on the neighbors it is disconnecting from; it can then
PuLL and, once contracted, release its remaining locks (Steps 28-31).

4.2 Analysis

The full technical analysis of the concurrency control framework is included in [17]. Here, we
outline our argument and techniques, concluding with a statement of our main theorem.

Let A be any amoebot algorithm satisfying Conventions 1-3 and A’ be the algorithm
produced from A by our concurrency control framework (Algorithm 2). Our goal is to show
that if any sequential execution of A terminates, then any asynchronous execution of A’ must
also terminate and will do so in a configuration that was reachable by a sequential execution
of A. This analysis is broken into two stages: analyzing A’ under sequential executions and
then leveraging a serialization argument to analyze A’ under asynchronous executions. In
each stage, we show that executions of A’ are finite; i.e., they must terminate. Since all
executions of A’ terminate, it suffices to show that the final configurations reachable by
asynchronous executions of A’ are contained in those reachable by sequential executions of
A’ which in turn are contained in those reachable by sequential executions of A.

The analysis of A’ under sequential executions is relatively straightforward. We first show
that every sequential execution of A’ must terminate since otherwise there would exist an
infinite sequential execution of A, a contradiction. We then show that the added activity and
awaken bits used in A’ never cause it to terminate while there are still amoebots with actions
of A left to perform. Together, these results imply that sequential executions of A’ always
terminate in configurations that sequential executions of A could also have terminated in.

The remainder of the analysis uses a serialization argument to show that asynchronous
executions of A’ always terminate in configurations that sequential executions of A’ could also
have terminated in. We model an asynchronous execution as a mapping of events (associated
with action and operation executions) to ideal wall-clock times defined by an adversary.
Given any asynchronous execution of A’, we first sanitize it of all events associated with
“irrelevant” action executions that do not affect the system configuration. We then argue
that the sanitized execution remains valid (i.e., it is possible for some execution of A’ to
produce the events in the sanitized version) and that the sanitized execution changes the
system configuration in exactly the same way as the original execution does.

Finally, we show that a sanitized execution can be serialized: there exists a sequential
ordering of the action executions in the sanitized execution that produces the same final
configuration as the sanitized execution. To do so, we construct a graph on the action
executions in the sanitized schedule where directed edges represent causal relationships. By
proving that the resulting graph is directed and acyclic, we obtain a partial order on the action
executions. Since Convention 3 is satisfied, this partial order can be harnessed to obtain the
desired serialization: a sequential execution of A’ that reaches the same final configuration
as the original asynchronous execution did. All together, we obtain the culminating theorem:

J.J. Daymude, A. W. Richa, and C. Scheideler

» Theorem 7. Let A be any amoebot algorithm satisfying Conventions 1-3 and A’ be
the amoebot algorithm produced from A by the concurrency control framework. Let Cy
be any nitial configuration for A and let C{j be its extension for A" with A.act = TRUE
and A.awaken = FALSE for all amoebots A. If every sequential execution of A starting in
Cy terminates, then every asynchronous execution of A’ starting in C{ terminates in a
configuration that some sequential execution of A starting in Cy also terminates in.

5 Discussion and Future Work

An immediate application of the canonical amoebot model and its hierarchy of assumption
variants is a systematic comparison of existing amoebot algorithms and their assumptions.
For example, when comparing the two state-of-the-art amoebot algorithms for leader election
using the canonical hierarchy, we find that among other problem-specific differences, Bazzi
and Briones [5] assume an asynchronous adversary and common chirality while Emek et
al. [28] assume a sequential adversary and assorted orientations. Such comparisons will
provide valuable and comprehensive understanding of the state of amoebot literature and
will facilitate clearer connections to related models of programmable matter.

Another direction would be to extend the canonical amoebot model to address fault
tolerance. This work assumed that all amoebots are reliable, though crash faults have been
previously considered in the amoebot model for specific problems [18, 27]. Faulty amoebot
behavior is especially challenging for lock-based concurrency control mechanisms which are
prone to deadlock in the presence of crash faults. Additional modeling efforts will be needed
to introduce a stable family of fault assumptions.

Finally, further study is needed on the design of algorithms for concurrent settings. The
amoebot model’s inclusion of memory, communication, and movement exacerbates issues of
concurrency, ranging from operating based on stale information to conflicts of movement. Our
analysis of the Hexagon-Formation algorithm produced one set of algorithm-agnostic invariants
that yield correct asynchronous behavior without the use of locks (Lemmas 1-3) while our
concurrency control framework gives another set of sufficient conditions for obtaining correct
behavior under an asynchronous adversary when using locks (Conventions 1-3).

Of the three conventions used by the concurrency control framework, monotonicity
(Convention 3) is the most restrictive and technically difficult to verify. The serializability
argument relies on it to show that when an action execution is removed from its timing
in an asynchronous schedule into the future where it is not concurrent with any other
execution, it makes exactly the same changes to the system configuration that it did
originally, regardless of any new amoebots that may have moved into its neighborhood in
the meantime. In that light, it is easy to see that stationary algorithms that do not use
movement trivially satisfy monotonicity. These include many of the existing algorithms
for leader election [5, 15, 23, 25, 31] and the recent algorithm for energy distribution [18].
However, many interesting collective behaviors for programmable matter require movement,
and it remains an open problem to identify if any of these algorithms satisfy monotonicity.

We emphasize that the monotonicity convention is not simply a technicality of our
approach but rather a general phenomenon for asynchronous amoebot systems. Imagine a
cycle alternating between contracted amoebots and empty positions and an asynchronous
execution where all amoebots, having no neighbors, expand concurrently. This forms a cycle
of expanded amoebots. However, any serialization of these expansions would result in at
least one amoebot seeing an already expanded neighbor at the start of its action execution,
which may prohibit its expansion and stop the system from reaching the original outcome
(an expanded cycle).

20:15

DISC 2021

20:16

The Canonical Amoebot Model

This discussion highlights two critical open questions. Do there exist algorithms that

are not correct under an asynchronous adversary but are compatible with our concurrency
control framework? Are there other, less restrictive sufficient conditions for correctness in
spite of asynchrony? We are hopeful that our approaches to concurrent algorithm design
combined with answers to these open problems will advance the analysis of existing and
future algorithms for programmable matter in the concurrent setting.

—— References

1

10

11

12

13

14

Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed
Self-Stabilizing Algorithms, volume 8 of Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2019.

Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W.
Richa. A stochastic approach to shortcut bridging in programmable matter. Natural Computing,
17(4):723-741, 2018.

Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235-253,
2006.

Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Deployment of asynchronous
robotic sensors in unknown orthogonal environments. In Algorithmic Aspects of Wireless
Sensor Networks, ALGOSENSORS 2008, pages 125-140, 2008.

Rida A. Bazzi and Joseph L. Briones. Stationary and deterministic leader election in self-
organizing particle systems. In Stabilization, Safety, and Security of Distributed Systems, SSS
2019, pages 22-37, 2019.

Sarah Cannon, Joshua J. Daymude, Cem Gokmen, Dana Randall, and Andréa W. Richa. A
local stochastic algorithm for separation in heterogeneous self-organizing particle systems. In
Approzimation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2019, pages 54:1-54:22, 2019.

Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain
algorithm for compression in self-organizing particle systems. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC 2016, pages 279-288, 2016.
Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In DNA Computing and Molecular
Programming, DNA 2018, pages 155-172, 2018.

Gregory S. Chirikjian. Kinematics of a metamorphic robotic system. In Proceedings of the
1994 IEEE International Conference on Robotics and Automation, volume 1 of ICRA 199/,
pages 449-455, 1994.

Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra, and Giuseppe
Prencipe. Leader election and compaction for asynchronous silent programmable matter.
In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS 2020, pages 276-284, 2020.

Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
The power of lights: Synchronizing asynchronous robots using visible bits. In IEFE 32nd
International Conference on Distributed Computing Systems, ICDCS 2012, pages 506-515,
2012.

Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theoretical Computer Science, 609:171-184, 2016.
Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W.
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating for
programmable matter. Natural Computing, 17(1):81-96, 2018.

Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex hull formation for programmable matter. In Proceedings of the
21st International Conference on Distributed Computing and Networking, ICDCN 2020, pages
2:1-2:10, 2020.

J.J.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Daymude, A. W. Richa, and C. Scheideler

Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Stroth-
mann. Improved leader election for self-organizing programmable matter. In Algorithms for
Sensor Systems, ALGOSENSORS 2017, pages 127-140, 2017.

Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by programmable particles. In Distributed Computing by Mobile Entities: Current
Research in Moving and Computing, pages 615—681. Springer, 2019.

Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The canonical amoebot
model: Algorithms and concurrency control. Full version available online at arXiv:2105.02420,
2021.

Joshua J. Daymude, Andréa W. Richa, and Jamison W. Weber. Bio-inspired energy distribu-
tion for programmable matter. In International Conference on Distributed Computing and
Networking 2021, ICDCN 2021, pages 8695, 2021.

Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot - a new model for programmable matter.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2014, pages 220-222, 2014.

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, NANOCOM 2015, pages 21:1-21:2, 2015.

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, pages 289-299,
2016.

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. Theoretical Computer Science,
671:56-68, 2017.

Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing programmable
matter. In DNA Computing and Molecular Programming, DNA 2015, pages 117-132, 2015.
Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Mobile RAM and shape formation by programmable particles. In Euro-Par 2020:
Parallel Processing, pages 343-358, 2020.

Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33(1):69-101,
2020.

Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri, Federico Poloni, Nicola
Santoro, and Giovanni Viglietta. Mutual visibility by luminous robots without collisions.
Information and Computation, 254(3):392-418, 2017.

Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni
Viglietta. Line recovery by programmable particles. In Proceedings of the 19th International
Conference on Distributed Computing and Networking, ICDCN 2018, pages 4:1-4:10, 2018.
Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr. Deterministic leader election
in programmable matter. In 46th International Colloguium on Automata, Languages, and
Programming, ICALP 2019, pages 140:1-140:14, 2019.

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities. Springer International Publishing, Switzerland, 2019.

Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Masafumi Yamashita. Rendezvous
with constant memory. Theoretical Computer Science, 621:57-72, 2016.

Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. In Algorithms for
Sensor Systems, ALGOSENSORS 2018, pages 159-179, 2019.

20:17

DISC 2021

https://arxiv.org/abs/2105.02420

20:18

The Canonical Amoebot Model

32

33

34

35

36

37

38

39

40

41

Lindsey Hines, Kirstin Petersen, Guo Zhan Lum, and Metin Sitti. Soft actuators for small-scale
robotics. Advanced Materials, 29(13):1603483, 2017.

Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. A scalable pipeline
for designing reconfigurable organisms. Proceedings of the National Academy of Sciences,
117(4):1853-1859, 2020.

Albert Tianxiang Liu, Jing Fan Yang, Lexy N. LeMar, Ge Zhang, Ana Pervan, Todd D.
Murphey, and Michael S. Strano. Autoperforation of two-dimensional materials to generate
colloidal state machines capable of locomotion. Faraday Discussions, 2021.

Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable
network construction. Distributed Computing, 29:207-237, 2016.

Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195-224, 2014.

Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular
robot to create programmable matter. Autonomous Robots, 42:1619-1633, 2018.

Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Physica D: Nonlinear Phenomena, 47(1):263-272, 1991.

Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pages
353-354, 2013.

Hui Xie, Mengmeng Sun, Xinjian Fan, Zhihua Lin, Weinan Chen, Lei Wang, Lixin Dong, and
Qiang He. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion,
and manipulation. Science Robotics, 4(28):eaav8006, 2019.

Jing Fan Yang, Pingwei Liu, Volodymyr B. Koman, Albert Tianxiang Liu, and Michael S.
Strano. Synthetic Cells: Colloidal-sized state machines. In Shawn M. Walsh and Michael S.
Strano, editors, Robotic Systems and Autonomous Platforms, Woodhead Publishing in Materi-
als, pages 361-386. Woodhead Publishing, 2019.

J.J. Daymude, A. W. Richa, and C. Scheideler 20:19

A Appendix: Concurrency Control Framework Pseudocode

Algorithm 2 Concurrency Control Framework for Amoebot A.

Input: Algorithm A = {[o : gs — opss] 14 € {1,...,m}} satisfying Conventions 1-3.
1: Set ¢’ + (A.act = TRUE) and ops’ + “Do:

2: try: Set £ < LOCK() to attempt to lock A and its neighbors.

3: catch lock-failure do abort.

4: if A.awaken = TRUE then

5: for all amoebots B € £ do WRITE B.act < TRUE.

6: WRITE A.awaken < FALSE, UNLOCK(L), and abort.

7 for all actions [a; : g; — opsi] € A do

8: Perform CONNECTED and READ operations to evaluate guard g; w.r.t. L.

9: Evaluate g; in private memory to determine if «; is enabled.

10: if no action is enabled then WRITE A.act <— FALSE, UNLOCK(L), and abort.

11: Choose an enabled action a; € A and perform its compute phase in private memory.
12: Let W; be the set of WRITE operations and M; be the movement operation in ops; based on

its compute phase; set M; <— NULL if there is none.

13: if M; is EXPAND (say, from node u into node v) then

14: try: Perform the EXPAND operation and WRITE A.awaken < TRUE.

15: catch expand-failure do UNLOCK(L) and abort.

16: for all amoebots B € £ do WRITE B.act < TRUE.

17: for all (B.x + Tya) € W; do WRITE B.x < Tye and WRITE B.awaken < TRUE.
18: if M; is NULL or EXPAND then UNLOCK each amoebot in L.

19: else if M; is CONTRACT (say, from nodes u,v into node u) then
20: UNLOCK each amoebot in £ that is adjacent to node v but not to node wu.
21: Perform the CONTRACT operation.
22: UNLOCK each remaining amoebot in L.
23: else if M; is PUsH (say, A is pushing B) then

24: WRITE A.awaken <— TRUE and B.awaken < TRUE.

25: Perform the PUSH operation.

26: UNLOCK(L).

27: else if M; is PULL (say, A in nodes u,v is pulling B into node v) then

28: WRITE B.awaken < TRUE.

29: UNLOCK each amoebot in £ (except B) that is adjacent to node v but not to node wu.
30: Perform the PULL operation.

31: UNLOCK each remaining amoebot in £.”

32: return A’ = {[o : ¢’ — ops']}.

DISC 2021

	1 Introduction
	1.1 Related Work

	2 The Canonical Amoebot Model
	2.1 Amoebot Anatomy
	2.2 Amoebot Operations
	2.3 Amoebot Actions, Algorithms and Executions

	3 Asynchronous Hexagon Formation Without Locks
	4 A General Framework for Concurrency Control
	4.1 The Concurrency Control Framework
	4.2 Analysis

	5 Discussion and Future Work
	A Appendix: Concurrency Control Framework Pseudocode

