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Abstract
We consider the adversarial CONGEST model of distributed computing in which a fixed number
of edges (or nodes) in the graph are controlled by a computationally unbounded adversary that
corrupts the computation by sending malicious messages over these (a-priori unknown) controlled
edges. As in the standard CONGEST model, communication is synchronous, where per round each
processor can send O(log n) bits to each of its neighbors.

This paper is concerned with distributed algorithms that are both time efficient (in terms of the
number of rounds), as well as, robust against a fixed number of adversarial edges. Unfortunately,
the existing algorithms in this setting usually assume that the communication graph is complete
(n-clique), and very little is known for graphs with arbitrary topologies. We fill in this gap by
extending the methodology of [Parter and Yogev, SODA 2019] and provide a compiler that simulates
any CONGEST algorithm A (in the reliable setting) into an equivalent algorithm A′ in the adversarial
CONGEST model. Specifically, we show the following for every (2f + 1) edge-connected graph of
diameter D:

For f = 1, there is a general compiler against a single adversarial edge with a compilation
overhead of Ô(D3) rounds1. This improves upon the Ô(D5) round overhead of [Parter and
Yogev, SODA 2019] and omits their assumption regarding a fault-free preprocessing phase.
For any constant f , there is a general compiler against f adversarial edges with a compilation
overhead of Ô(DO(f)) rounds. The prior compilers of [Parter and Yogev, SODA 2019] were
limited to a single adversarial edge.

Our compilers are based on a new notion of fault-tolerant cycle covers. The computation of these
cycles in the adversarial CONGEST model constitutes the key technical contribution of the paper.
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1 Introduction

As communication networks grow in size, they become increasingly vulnerable to failures and
byzantine attacks. It is therefore crucial to develop fault-tolerant distributed algorithms that
work correctly despite the existence of such failures, without knowing their location. The

1 The notation Ô(.) hides factors of 2O(
√

log n) which arises by the distributed algorithms of [34, 35].
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area of fault-tolerant distributed computation has attracted a lot of attention over the years,
especially since the introduction of the byzantine agreement problem by [Pease, Shostak and
Lamport, JACM’80] [37]. The vast majority of these algorithms, however, assume that the
communication graph is the complete graph [12, 13, 16, 8, 43, 41, 6, 42, 5, 15, 18, 17, 27, 38,
25, 14, 29, 23, 10, 26]. For the latter, one can provide time efficient algorithms for various
distributed tasks that can tolerate up to a constant fraction of corrupted edges and nodes
[12, 4, 6, 14]. Very little is known on the complexity of fault-tolerant computation for general
graph topologies. In a seminal work, Dolev [12] showed that any given graph can tolerate
up to f adversarial nodes iff it is (2f + 1) vertex-connected. Unfortunately, the existing
distributed algorithms for general (2f + 1) connected graphs, usually require a polynomial
number of rounds in the CONGEST model of distributed computing [39].

In this paper, we present a general compiler that translates any given distributed al-
gorithm A (in the fault-free setting) into an equivalent algorithm A′ that performs the same
computation in the presence of f adversarial edges. Our primary objective is to minimize the
compilation overhead, namely, the ratio between2 the round complexities of the algorithms
A′ and A. We take the gradual approach of fault-tolerant network design, and consider first
the case of a single adversarial edge, and later on the case of multiple adversarial edges. We
note that, in general, such compilers might not be obtained for adversarial nodes3 and thus
we focus on edges.

1.1 Model Definition and the State of the Art

Very recently, [21] presented the first round-efficient broadcast algorithms against adversarial
edges in the CONGEST model. [21] also formalized the adversarial CONGEST model, which
is the model that we consider in this work as well.

The Adversarial CONGEST Model. The network is abstracted as an n-node graph G =
(V, E), with one processor on each node. Each node has a unique identifier of O(log n)
bits. Initially, the processors only know the identifiers of their incident edges4, as well as a
polynomial estimate on the number of nodes n.

There is a computationally unbounded adversary that controls a fixed set of edges F ∗ in
the graph. The set of F ∗ edges are denoted as adversarial, and the remaining edges E \ F ∗

are denoted as reliable. The nodes do not know the identity of the adversarial edges in F ∗,
but they do know the bound f on the cardinality of F ∗. We consider the full information
model where the adversary knows the graph, the messages sent through the graph edges in
each round, and the internal randomness and the input of the nodes. On each round, the
adversary can send O(log n) bits along each of the edges in F ∗. The adversary is adaptive as
it can determine its behavior in round r based on the overall communication up to round r.

We focus on (2f + 1) edge-connected graphs, which can tolerate up to f adversarial edges.
The problem of devising general round-by-round compilers in the adversarial CONGEST
model boils down into the following distributed task:

2 Note that we use the term compilation overhead to measure the time it takes to simulate a single
fault-free round of algorithm A in the adversarial setting. This should not be confused with the time
required to set up the compiler machinery (e.g., computing the cycle cover).

3 Such compilers might still be obtained under the stronger KT2 model where nodes know their two-hop
neighbors.

4 This is known as the standard KT1 model [3].
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Single Round Compilation in the Adversarial CONGEST Model: Given is a
(2f + 1) edge-connected graph G = (V, E) with a fixed set F ∗ ⊆ G of at most f

adversarial edges. Let M = {Mu→v | (u, v) ∈ E} be a collection of O(log n)-bit
messages that are required to be sent over (potentially) all graph edges. I.e., for each
(directed) edge (u, v), the node u has a designated O(log n)-bit message for v.

The single round compilation algorithm is required to exchange these messages in
the adversarial CONGEST model, such that at the end of the algorithm, each node v

holds the correct message Mu→v for each of its neighbors u, while ignoring all remaining
(corrupted) messages.

The main complexity measure is the round complexity of the single-round compilation
algorithm which corresponds to the compilation overhead of the compiler. The compilation
of CONGEST algorithms under various adversarial settings, has been recently studied by [33].
We next explain their methodology and discuss our contribution with respect to the state-of-
the-art.

The simulation methodology of [33]. Motivated by various applications for resilient
distributed computing, Parter and Yogev [33] introduced the notion of low-congestion cycle
covers as a basic communication backbone for reliable communication. Formally, a (c, d)-cycle
cover of a two edge-connected graph G is a collection of cycles in G in which each cycle is
of length at most d, and each edge participates in at least one cycle and at most c cycles.
The quality of the cycle cover is measured by c + d. Using the beautiful result of Leighton,
Maggs and Rao [28] and the follow-up by Ghaffari [19], a (c, d)-cycle cover allows one to
route O(log n) bits of information on all cycles simultaneously in Õ(c + d) CONGEST rounds.

Low-congestion cycle covers with parameters c, d give raise to a simulation methodo-
logy that transforms any distributed algorithm A and compile it into a resilient one; the
compilation overhead is g(c, d), for some function g. The resilient simulation exploits the
fact that a cycle covering an edge e = (u, v) provides two-edge-disjoint paths for exchanging
messages from u to v. Parter and Yogev [33] showed that any n-node two edge-connected
graph with diameter D has a (c, d)-cycle covers with c = O(1) and d = Õ(D). These bounds
are existentially tight. [34, 35] also presented an r-round CONGEST algorithm for computing
(c, d) cycles covers for r, d = Ô(D) and c = Ô(1).

Our simulation methodology in the adversarial CONGEST model extends the work of
[33] in several aspects. First, the cycle covers of [33] are limited to handle at most one edge
corruption. To accommodate a large number of adversarial edges, we introduce the notion of
fault-tolerant (FT) cycle covers which extends low-congestion cycle cover to handle multiple
adversarial edges. Informally, a FT cycle cover with parameters c, d is a cycle collection C
that covers each edge e by multiple cycles (instead of one): For every sequence of at most f

faults F , there is a cycle C in C that covers5 e without visiting any of the edges in F \ {e}.
All cycles in C are required to be of length at most d, and with an overlap of at most c, to
allow an efficient information exchange over all these cycles in parallel.

A key limitation of the compilers provided by [33] is that they assume the cycle covers
are computed in a (fault-free) preprocessing phase. These cycles are then used by the
compilers in the adversarial CONGEST model. Our main goal in this paper is to omit
this assumption and provide efficient algorithms for computing the FT cycle covers in

5 A stricter requirement is to cover each edge by f edge-disjoint cycles, however, this definition leads to a
larger compilation overhead compared to the one obtained with our definition.
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the adversarial CONGEST model. The computation of these cycles in the presence of the
adversarial edges is quite intricate. The key challenge is in computing cycles for covering
the adversarial edges themselves. The latter task requires some coordination between the
endpoints of the adversarial edges, which seems to be quite hard to achieve. Note that the
covering of the adversarial edges by cycles is indeed crucial for the compilation task, in order
to reliably simulate the message exchange over these edges in the given fault-free algorithm.
Upon computing FT cycle covers with parameter c, d, we then present a round-by-round
compiler whose overhead depends on the c, d parameters. To optimize for the round overhead,
we exploit (our modified) FT cycle covers in a somewhat more delicate manner compared to
that of [33], leading to an improvement by factor of O(D2) rounds.

1.2 Contributions and Key Results
We consider the design of compilers that can simulate every given distributed algorithm in
the adversarial CONGEST model. The compilers are based on a new notion of FT cycle
cover, an extension of the low-congestion cycle cover [31] to the adversarial setting. We
also provide a new method to compile the algorithm given the FT cycle cover. We start by
describing our contribution w.r.t the combinatorial characterization of FT cycle covers, and
then turn to consider the computational aspects in the adversarial CONGEST model.

1.2.1 Combinatorial Properties of Fault Tolerant Cycle Covers
We provide first the standard definition of low congestion cycle covers of [33], and then
introduce their extension to the fault-tolerant setting. A (c, d) low-congestion cycle cover of
a two edge-connected graph G is a collection of cycles in G in which (i) each cycle is of length
at most d (dilation), and (ii) each edge participates in at least one cycle (covering), and at
most c cycles (congestion). The quality of the cycle cover is measured by c + d. To provide
reliable computation in the presence of f adversarial edges F ∗, it is desired to cover each
edge by multiple short cycles with small overlap. This motivates the following definition.

▶ Definition 1 (f -FT Cycle Covers). Given an (f + 1) edge-connected graph G an f -FT cycle
cover with parameters (c, d) is a collection of cycles C such that for any set E′ ⊆ E of size
(f − 1) and every edge e ∈ E, there exists a cycle C ∈ C such that C ∩ (E′ ∪ {e}) = {e}. The
length of every cycle in C is at most d, and each edge participates in at most c cycles.

In other words, the f -FT cycle cover C provides for each edge e = (u, v) a subgraph G′
e

(consisting of all cycles covering e), such that the minimum u-v cut in G′
e is at least f + 1.

Using the FT sampling technique from [44, 11], in the full version we show the following:

▶ Lemma 2 (Upper bound on FT Cycle-Covers). For every (f + 1) edge-connected graph G

with diameter D, there is a randomized construction for computing f -FT cycle cover C with
parameters (c, d) where c = f(5fD)f · poly(log n) and d = 5fD.

One of our technical contributions is an almost matching lower bound for the quality of
FT cycle covers. This is done by a careful analysis of the congestion and dilation parameters
of replacement paths in faulty graphs. We believe that the following graph theoretical
theorem should be of independent interest in the context of fault-tolerant network design
and distributed minimum cut computation.

▶ Theorem 3 (Lower Bound on the Quality of FT Cycle Covers). For every f ≥ 1, D ≥ f and
n = ω(Df ), there exists an n-node (f + 1) edge-connected graph G∗ = (V, E) with diameter
D, such that any f -FT cycle cover with parameters c, d must satisfy that c + d = (D/f)Ω(f).
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This theorem provides an explanation for the compilation overhead of DO(f) of our compilers.
It also provides an explanation for the natural barrier of DO(f) rounds for handling f

adversarial edges in the distribued setting. Specifically, the lower bound implies that there
exists at least one pair of nodes u, v in the graph G∗ such that for any selection of f + 1
edge-disjoint u-v paths P in G∗, the longest path in P must have length of (D/f)Ω(f) edges.
Theorem 3 also proves that the collection of all V × V × Ef replacement paths6 avoiding f

faults, obtained by the FT sampling technique, are optimal in terms of their congestion +
dilation bounds. It also shows that the analysis of the distributed minimum cut algorithm
of [30] is nearly optimal7.

A relaxed notion of FT cycle covers. In a setting where a fixed set of edges F ∗ are
adversarial for |F ∗| = f , it might not be possible to compute (2f)-FT cycle cover as defined
by Definition 1. This is despite the fact that we require the edge connectivity of the graph
to be at least 2f + 1. To see this, consider the scenario where the adversarial edges F ∗ are
completely idle throughout the distributed computation. In such a case, the communication
graph becomes G \ F ∗, which is no longer guaranteed to have an edge-connectivity of 2f + 1.
For this reason, we consider a more relaxed notion of FT cycle covers, that on the one hand
can be computed in the adversarial setting, and on the other hand is strong enough for our
compilers.

▶ Definition 4 ((f, F ∗)-FT Cycle Cover). Given an (2f + 1) edge-connected graph G, and a
fixed set of unknown adversarial edges F ∗ ⊆ E of size at most f , an (f, F ∗)-FT cycle cover
with parameters (c, d) is a collection of cycles C such that for every edge e ∈ E (possibly
e ∈ F ∗), and every set E′ ⊆ E of size |E′| ≤ f − 1, there exists a cycle C ∈ C such that
C ∩ (E′ ∪ F ∗ ∪ {e}) = {e}. The length of each cycle is bounded by d, and every edge appears
on at most c cycles in C.

Note that for every F ⊆ E, |F | ≤ f , an (f, F )-FT cycle cover C contains an f -FT cycle
cover, and therefore the lower bound of Theorem 3 also holds for (f, F ∗)-FT cycle cover.
When F ∗ = {e′}, we slightly abuse notation and simply write (f, e′)-FT cycle covers Our FT
cycle covers should be useful for many other adversarial settings. Specifically, they provide
an immediate extension of the compilers of [33] to handle adversaries that corrupt multiple
edges, such as eavesdroppers [33] and semi-honest adversaries [32].

We next turn to consider the computational aspects of FT cycle covers, and their
applications. In the distributed setting, we assume throughout that the nodes of the graph
obtain a linear estimate8 on the diameter of the graph D. This assumption (also applied in
e.g., [9]) is needed as the compilation overhead is a function of D.

1.2.2 Handling a Single Adversarial Edge
We start by considering an adversarial setting with a single fixed unknown adversarial edge
e′. At the heart of the compiler lies an efficient construction of a (1, e′) FT cycle cover in the
adversarial CONGEST model.

6 A replacement path is a shortest path in some graph G \ F .
7 This algorithm computes the minimum cut by computing for each vertex v the collection of all

replacement paths w.r.t a fixed source node s.
8 This assumption can be omitted using the broadcast algorithms of [21, 22], in the case where the nodes

have a designated marked leader.
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▶ Theorem 5 ((1, e′)-FT Cycle Cover). Consider a 3 edge-connected n-node graph G of
diameter D, and a fixed adversarial edge e′.

There is an r-round deterministic algorithm for computing a (1, e′)-FT cycle cover
with congestion and dilation c = Ô(D2), d = Ô(D), and r = Ô(D4) in the adversarial
CONGEST model.
There is an r-round randomized algorithm for computing a (1, e′)-FT cycle cover, w.h.p.,
with congestion and dilation c, d = Ô(D), and r = Ô(D2) in the adversarial CONGEST
model.

In the distributed output format of the (1, e′)-FT cycle cover computation, the endpoints of
every edge e = (u, v) hold the unique identifiers of all the cycles Ce covering e ,as well as,
their neighbors on each of these cycles. The key challenge in proving Theorem 5 is in covering
the adversarial edge e′. For that purpose we provide a delicate cycle verification procedure
that allows the endpoints of each edge e = (u, v) to correctly identify if e is currently covered
by a (legal) cycle. This verification is robust to the behavior of the adversarial edge. Using
these cycle covers, we obtain general compilers against e′.

▶ Theorem 6 (Compiler against a Single Adversarial Edge). Given is a 3 edge-connected
D–diameter graph G with a fixed adversarial edge e′, and a (1, e′)-FT cycle cover C with
parameters (d, c) for G (e.g., as obtained by Theorem 5). Then any distributed algorithm
A can be compiled into an equivalent algorithm A′ against e′ with an overhead of O(c · d2)
rounds (in the adversarial CONGEST model).

This improves the compilation overhead of Parter and Yogev [33] by a factor of Õ(D2)
rounds. The compilers of [33] are based on exchanging the Mu→v messages of Alg. A along
3 edge-disjoint u-v paths. In our compilation scheme, instead of insisting on edge-disjoint
paths, the messages are exchanged over a collection u-v paths of a sufficiently large flow.
This leads to improvement in the compilation overhead.

1.2.3 Handling Multiple Adversarial Edges
We next consider (2f + 1) edge-connected graphs of diameter D with a fixed set F ∗ ⊆ E of
adversarial edges, |F ∗| ≤ f . To handle f adversarial edges F ∗ in (2f + 1) edge-connected
graphs, we use the notion of (f, F ∗)-FT cycle covers. Our first contribution is the construction
of the (f, F ∗)-FT cycle covers in the adversarial CONGEST model. Due to technicalities arises
in this adversarial setting, our final output contains the desired cycles required by (f, F ∗)-FT
cycle cover, but might include in addition, also truncated paths which are quite “harmless” in
the compilation process later on. Formally, our distributed construction computes (f, F ∗)-FT
cycle cover* where the asterisk indicates the possible existence of truncated paths in the
distributed output.

▶ Definition 7 ((f, F ∗)-FT Cycle Cover*). Given a (2f + 1) edge-connected graph G and
a fixed set of adversarial edges F ∗ ⊆ E where |F ∗| ≤ f , a (f, F ∗)-FT cycle cover* with
parameters (c, d) is a collection of cycles and paths C such that C contains a (f, F ∗)-FT
cycle cover for G. The length of each cycle and path in C is at most d and every edge e ∈ E

appears in at most c cycles and paths.

▶ Theorem 8 ((f, F ∗)-FT Cycle Cover*). Let G be a (2f + 1) edge-connected graph G

of diameter D, and a fixed set of f adversarial edges F ∗. Then, there exists an r-round
deterministic algorithm, in the adversarial CONGEST model, for computing a (f, F ∗)-FT
cycle cover* for G with parameters d = Ô(f ·D) and r, c = Ô((Df log n)O(f)).
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Note that by the lower bound result of Theorem 3, the quality of the FT cycle covers must be
(D/f)Ω(f). Given a (f, F ∗)-FT cycle cover* for a graph G, we extend the general compiler
of Theorem 6 to handle f adversarial edges.

▶ Theorem 9 (Compilers against f Adversarial Edges). Given a (2f + 1) edge-connected
D–diameter graph G with a fixed set of f adversarial edges F ∗, and a (f, F ∗)-FT cycle
cover* with parameters (d, c) for G. Then any distributed algorithm A can be compiled into
an equivalent algorithm A′ against F ∗, with a compilation overhead of O(c · d3) rounds.

The high level intuitive idea of our compiler is as follows. Fix a round i of algorithm A, and
consider the message Mu→v sent over the edge (u, v) in that round. Our compiler lets u

send the message Mu→v through all cycles covering e in the (f, F ∗)-FT cycle cover*. The
node v can then recover Mu→v by exploiting the following property. On the one hand, the
(f, F ∗)-FT cycle cover* covers e by sufficiently many cycles that avoid F ∗ \{e}. Consequently,
the correct message Mu→v is received by v over a path collection with a u-v flow9 at least
f + 1. On the other hand, any corrupted message M ′ ≠ Mu→v must be propagated along a
walk that contains at least one adversarial edge. Consequently, a corrupted message M ′ is
propagated over a walk collection with a u-v flow at most f .

Technical comparison with [21]. The recent work of [21] provides broadcast algorithms
in the adversarial CONGEST model. This paper is concerned with a general compiler that
translates any CONGEST algorithm into an adversarial CONGEST algorithms provided
that the adversary controls at most f edges in the graph. The common tool used by
both of the works is the covering family obtained by the FT sampling and its recent
derandomization [24, 7]. Besides this, each paper handles different types of challenges. In
the broadcast task the goal is to send the broadcast message m0 through a collection of
sufficiently many reliable paths. In contrast, in the compiler setting, given a (fault-free)
algorithm A, the goal is to exchange messages of A over (potentially) all graph edges in
a reliable manner. Specifically, unlike the broadcast setting, one cannot simply ignore the
adversarial edges (e.g., by exchanging messages over a reliable subgraph G′ ⊆ G), as it is
required to exchange messages in a reliable manner over the endpoints of the adversarial
edges as well. The heart of this simulation is in the computation of fault-tolerant cycle
covers.

1.3 Preliminaries
Notations. Throughout, the diameter of the given graph G is denoted by D, and the
number of nodes by n. For a graph G = (V, E), a subgraph G′ ⊆ G, and nodes u, v ∈ V (G′),
let π(u, v, G′) be the unique u-v shortest path in G′ where shortest-path ties are decided
arbitrarily in a consistent manner. Let N(u, G) be the neighbors of node u in the graph G.
When the graph G is clear from the context we may omit it and write N(u). For a path
P = [u1, . . . , uk] and an edge e = (uk, v), let P ◦ e denote the path obtained by concatenating
e to P . Similarly, for two paths P1 = [u1, . . . , uk], P2 = [uk, uk+1, . . . , uℓ] denote the
concatenated path [u1, . . . , uk, uk+1, . . . , uℓ] by P1 ◦P2. Given a path P = [u1, . . . , uk] denote
the sub-path from ui to uℓ by P [ui, uℓ]. The term Õ(·) hides poly(log n) factors, and the
term Ô(·) hides 2O(

√
log n)factors10.

9 To formalize this argument, we provide a formal definition for the cut value of a u-v walk collection.
10 The latter factors arise by the (fault-free) distributed computation of cycle covers by [34].
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▶ Definition 10 (Neighborhood Covers, [2]). The r-neighborhood cover of the graph G is a
collection of vertex subsets, denoted as, clusters N = {S1, . . . , Sℓ} where Si ⊆ V such that:
(i) every node v has a cluster that contains its entire r-radius neighborhood in G, (ii) the
diameter of each G[Si] is O(r logc n) for some constant c, and (iii) every node belongs to
Õ(1) clusters in N .

We use the deterministic construction of neighborhood covers by Rohzon and Ghaffari [40] .

▶ Theorem 11 (Corollary 3.5 [40]). There is a deterministic distributed algorithm that for
any radius r ≥ 1, computes an r-neighborhood cover N within Õ(r) CONGEST rounds.

Low-congestion cycle covers. The construction of FT cycle covers is based on the distrib-
uted construction of (c, d) cycle covers in the standard CONGEST model. In particular, we
use the construction from [34, 33] that covers each edge e = (u, v) by a cycle Ce such that
|Ce| = Õ(distG\{e}(u, v)).

▶ Fact 12 ([34, 33]). There is a randomized algorithm ComputeCycCov(G, D′) that for
any n-node input graph G = (V, E) and an input parameter D′, computes, w.h.p., a cycle
collection C with the following properties: (1) every edge e ∈ E that lies on a cycle of length
at most D′ in G is covered by a cycle in C of length Ô(D′), and (2) each edge appears on
Ô(1) cycles. Algorithm ComputeCycCov(G, D′) runs in Ô(D′) rounds. In the output format,
each node knows the edges of the cycles that cover each of its incident edges.

Note that Alg. ComputeCycCov does not require the graph G to be connected. This will
be important in our context. This algorithm can also be made deterministic using the
neighborhood covers of Theorem 11.

▶ Observation 13. The algorithm ComputeCycCov(Gi, D′) of Fact 12 can be made determ-
inistic using the neighborhood covering algorithm of Theorem 11. Additionally, in the output
format of the algorithm, each node u knows a Ô(1)-bit unique identifier for each of the cycles
it belongs to, as well as a full description of the cycle, obtained from both directions.

Covering families. Our distributed algorithms in the adversarial CONGEST model are
based on communication over a collection of G-subgraphs that we denote as covering
family. These families are used extensively in the context of fault-tolerant network design
[1, 44, 11, 20, 30, 36, 9, 7, 24, 21].

▶ Definition 14 ((L, t) Covering Families). For a given graph G, a family of G-subgraphs
G = {G1, . . . , Gℓ} is a (L, t) covering family, if for every edge e = (u, v) ∈ E and every
set F ⊆ E where |F | ≤ t− 1, such that11 distG\F ∪{e}(u, v) ≤ L, there exists a subgraph Gi

satisfying that (P1) distGi\(F ∪{e})(u, v) ≤ L, and (P2) (F ∪ {e}) ∩Gi = {e}.

Throughout, we use the following observation from [21].

▶ Observation 15 (Observation 8 from [21]). Consider a D-diameter graph G = (V, E)
and assume that u, v ∈ V are connected in G \ F for some F ⊆ G. It then holds that
distG\F (u, v) ≤ 2(|F |+ 1) ·D + |F |.

11 We note that our definition slightly differs from that of [21], in the sense that for a pair e = (u, v), F ,
we require the graph Gi (see below) to contain a cycle of length at least L covering e, rather than an
L-length u-v path.
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We note that by Observation 15, if G is (t + 1) edge-connected, then a (5tD, t) family satisfies
(P1) and (P2) for any edge (u, v) ∈ E, and an edge set F of size at most (t − 1). For our
purposes, it is required for the nodes to know the covering family in the following sense.

▶ Definition 16 (Local Knowledge of a Subgraph Family). A family of ordered subgraphs
G = {G1, . . . , Gℓ} where each Gi ⊆ G, is locally known if given the identifier of an edge
e = (u, v) and an index i, u and v can locally determine if e ∈ Gi.

▶ Fact 17 ([24]). Given a graph G and an integer parameter L, the following holds.
1. Given that all nodes share a seed S of Õ(1) random bits, there exists a 0-round ran-

domized algorithm for locally computing a (L, 1)-covering (ordered subgraph) family
G = {G1, . . . , Gℓ} such that ℓ = Õ(L), where the covering property holds w.h.p. Given the
seed S, index i ∈ {1, . . . , ℓ} and an edge identifier (u, v), each node can locally determine
if (u, v) ∈ Gi.

2. For every t ≥ 1, there exists a 0-round deterministic algorithm for computing a (L, t)
covering family G = {G1, . . . , Gℓ} such that ℓ = ((Lt log n)t+1). This covering family is
locally known.

Broadcast against adversarial edges. Our algorithms for constructing FT-cycle covers make
use of the broadcast algorithms of Hitron and Parter [21], which are resilient to adversarial
edges. We will use the following facts.

▶ Theorem 18 ([21] Broadcast against a Single Adversarial Edge). Given a D–diameter, 3
edge-connected graph G and an unknown adversarial edge e′, the following holds.
1. There exists a deterministic broadcast algorithm which delivers a message m0 from a

designated node s to all nodes in V within Õ(D2) rounds. In addition, at the end of the
algorithm, all nodes obtain a linear estimate for the diameter of the graph.

2. There exists a randomized broadcast algorithm which delivers a message m0 from a
designated node s to all nodes in V within Õ(D) rounds, provided that all nodes share
Õ(1) random bits.

In addition, the same bounds hold in the case where there are multiple sources holding the
same broadcast message m0.

▶ Theorem 19 ([21] Broadcast against f Adversarial Edges). There exists a deterministic
broadcast algorithm against f adversarial edges, for D-diameter, (2f + 1) edge-connected
graphs, with round complexity of (tD log n)O(t). In addition, the same bound holds in the
case where there are multiple sources holding the same broadcast message m0.

The broadcast algorithm of Theorem 18 also implies a leader election algorithm. For
completeness the proof of the following claim is given in the full version.

▷ Claim 20. [Leader Election against an Adversarial Edge] Given a D–diameter, 3 edge-
connected graph G and an adversarial edge e′, assuming a linear upper bound D′ = cD on the
diameter (for some constant c ≥ 1), there exists a randomized algorithm AdvLeaderElection
that w.h.p elects a single leader known to all nodes in the graph within Õ(D2) rounds.

2 Compilers against a Single Adversarial Edge

We first describe the construction of (1, e′)-FT cycle covers where e′ is the adversarial edge.
Then, we describe how to compile a single round using these cycles.
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2.1 (1, e′)-FT Cycle Covers
In this section, we prove Theorem 5. This section is devoted for showing the following key
lemma that computes a (1, e′)-FT cycle cover given a locally known covering family.

▶ Lemma 21. Given is a 3 edge-connected graph G, with a fixed unknown adversarial edge e′.
Let L be an integer satisfying that for every edge e = (u, v) it holds that distG\{e,e′}(u, v) ≤ L.
Assuming that all nodes locally know a (L, 1) covering family G of size ℓ, there exists a
deterministic algorithm ComputeOneFTCycCov for computing a (1, e′) FT-cycle cover C with
parameters c = Ô(ℓ), d = Ô(L) within Ô(L2 · ℓ) rounds.

Since the computation of the (L, 1) covering family is straightforward using known tools, we
focus on proving Lemma 21. As a warm-up, we describe the construction assuming a reliable
setting (with no adversarial edges). Then, we handle the real challenge of the (1, e′)-FT cycle
cover computation in the presence of an adversarial edge.

Warm-up: (1, e′)-FT cycle covers in a reliable communication graph. The construc-
tion is based on applying the cycle cover algorithm of [34] on every subgraph Gi in the
covering family G. Specifically, given a locally known covering family G = {G1, . . . , Gℓ}, the
algorithm proceeds in ℓ iterations. In each iteration i it applies the cycle cover algorithm
ComputeCycCov(Gi, L) from Observation 13 on the graph Gi with a diameter estimation L,
resulting in a cycle collection Ci. The final cycle collection is given by C =

⋃ℓ
i=1 Ci, that is,

the union of all cycles computed in the ℓ iterations. We next analyze the construction.

Correctness. The round complexity, the cycle length, and the edge congestion bounds
follow immediately by the construction. It remains to show that the cycle collection C is
indeed a (1, e′)-FT cycle cover. To see this, consider a fixed pair of edges e = (u, v), e′. We
will show that C contains a cycle Ce,e′ that contains e and does not contain e′. An iteration
i is defined to be good for the edge pair e, e′ if e′ /∈ Gi , e ∈ Gi and distGi\{e}(u, v) ≤ L .

Since, distG\{e,e′}(u, v) ≤ L, due to the covering property of G, there exists a good iteration
i∗ for every pair e, e′. We next show that e is successfully covered in iteration i∗ by some
cycle Ce. By the properties of Alg. ComputeCycCov, in iteration i∗ the edge e is covered by
a cycle C of length Ô(L). In addition, as e′ /∈ Gi∗ this cycle does not contain e′ as required.

Algorithm ComputeOneFTCycCov (Proof of Lemma 21). Given is a locally known
covering family G = {G1, . . . , Gℓ}. The algorithm works in ℓ iterations, where in iteration i it
performs the computation over the subgraph Gi. Since G is locally known, every node knows
its incident edges in Gi, and ignores messages from other edges in that iteration. Iteration i

then consists of two steps. In the first step, the nodes apply Alg. ComputeCycCov(Gi, L) of
Observation 13 over the graph Gi with diameter estimate L. This results in a cycle collection
C′

i(u) for every node u. In the output format of Alg. ComputeCycCov, every cycle in C′
i(u) is

presented by a tuple (ID(C), C), where ID(C) is the unique identifier of the cycle of size
Ô(1) bits, and C is the collection of the cycle edges12. Since e′ might be in Gi, the cycles of
C′

i(u) can be totally corrupted.
In the second step of iteration i, the nodes apply a verification procedure for their cycles

in C′
i(u). Only verified cycles will then be added to the set of cycles Ci(u). In the analysis

section, we show that for every reliable edge e = (u, v) ̸= e′, there exists at least one cycle
in C(u) =

⋃ℓ
i Ci(u) that covers e. The third step of the algorithm handles the remaining

12 Recall that in Alg. ComputeCycCov(Gi, L), each node receives the cycle description C from both
directions, i.e., from its two neighbors on C. In case a node u obtained distinct cycle descriptions from
its two neighbors, it omits the cycle from its cycle collection C′

i(u).
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adversarial edge, in case needed. We next elaborate on these steps in more details. We focus
on iteration i where the nodes communicate over the graph Gi ∈ G.

Step (1) of iteration i: Cycle cover computation. The (fault-free) cycle cover algorithm
ComputeCycCov of Observation 13 is applied over the subgraph Gi ∈ G, with parameter
L. Since the graph Gi is locally known, each node can verify which of its incident edges
lie on Gi and ignore the messages from the remaining edges. During the execution of Alg.
ComputeCycCov(Gi, L), if a node u receives an illegal message, or different cycle descriptions
with the same cycle ID, these messages are ignored, as well as future messages in that
iteration. At the end of the execution of ComputeCycCov(Gi, L), each node u performs the
following verification step on its output cycle set C′

i(u). The goal of this verification is to
ensure each cycle in C′

i(u) corresponds to a legal cycle.

Step (2) of iteration i: Cycle verification. First, each node u performs a local inspection
of its cycles in C′

i(u), and declares the iteration to be faulty if C′
i(u) contains at least one of

the following:
1. A cycle of length ω̂(D);
2. An edge appearing in ω̂(1) cycles in C′

i(u);
3. A partial cycle (i.e., a walk rather than a cycle);
4. Inconsistency in a cycle description (ID(C), C) ∈ C′

i(u) as obtained through the two
neighbors of u on C.

In the case where C′
i(u) is found to be faulty, u sets Ci(u) = ∅, and will remain silent

throughout this verification step. We will call such a node an inactive node. A node whose
local inspection is successful is called active.

We now describe the global verification procedure for an active node u. The verification
step is performed in super-rounds in the following manner. Each super-round consists of
c = Ô(1) rounds, which sets the upper bound on the number of cycles that an edge (u, v)
participates in. A single super-round has the sufficient bandwidth to exchange a single
message through an edge (u, v) for each of the cycles on which (u, v) lies. We then explicitly
enforce that in each super-round, each node u sends over an edge (u, v) at most one message
per cycle (ID(C), C) ∈ C′

i(u) for which (u, v) ∈ C.
For a cycle (ID(C), C) ∈ C′

i(u), let vC be the node with largest ID in the cycle description
C obtained by u during Alg. ComputeCycCov(Gi, L). We note that the cycle description
C is not necessarily correct, and in particular, it could be that (ID(C), C) /∈ C′

i(vC). For
each cycle (ID(C), C) ∈ C′

i(u) such that u = vC (the cycle’s leader), it initiates the following
verification steps.
(2.1) A leader vC of a cycle (ID(C), C) ∈ C′

i(vC) sends the verification message ver(C) =
(ID(C), ID(vC), ver) along its two incident edges on this cycle (i.e., in the clock-wise
and counter clockwise directions).

(2.2) The verification messages are then propagated over the cycles for R = Ô(L) super-
rounds, where Ô(L) is the upper bound on the maximal cycle length. Upon receiving a
verification message ver(C) = (ID(C), ID(vC), ver), an active node u sends ver(C) to a
neighbor w ∈ N(u) if the following conditions hold: (1) (ID(C), Cu) ∈ C′

i(u) for some
cycle Cu, (2) vC is the node with the highest ID in Cu, (3) w is a neighbor of u in Cu,
and (4) u received the message ver(C) from its second neighbor on the cycle Cu.

(2.3) A leader vC of a cycle C such that (ID(C), C) ∈ Ci(vC), which did not receive the
verification message ver(C) from both its neighbors in C within R super-rounds, initiates
a cancellation message, cancel(C) = (ID(C), ID(vC), cancel), and sends it to both its
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neighbors in C. This indicates to the nodes on this cycle that the cycle should be omitted
from their cycle collection.

(2.4) The cancellation messages cancel(C) are propagated over the cycle C for R super-
rounds in the following manner. Let τi be the first super-round of Step (2.3). In this
super-round, vC may start propagating the message cancel(C) (if the conditions of
2.3 hold). Note, however, that the cancellation messages might also originate at the
adversarial edge e′. Step (2.4) handles the latter scenario by augmenting the cancellation
messages cancel(C) with distance information. For every node u let d1

u, d2
u be the u-vC

distance on C along the first (second) u-vC path in C. Note that u can locally compute
d1

u, d2
u using the cycle description of C. A vertex u upon receiving a cancel(C) message

from its neighbor v on C acts as follows. Let dj
u be the length of the vC -u path on C that

passed through v. Then, if the message cancel(C) is received at u from v in super-round
rj = τi + dj

u, u accepts the cancellation message and sends it to its other neighbor on C.
All other cancellation messages received by u in later or prior super-rounds are dropped.

(2.5) A leader vC of a cycle (ID(C), C) ∈ Ci(vC) that received a cancellation message
cancel(C) that it did not initiate from only one direction (i.e., from exactly one of its
neighbors on C), broadcasts a cancellation message cancel(i), i.e., canceling iteration i,
to all the nodes in the graph by using the broadcast algorithm of Theorem 18(1) over the
graph G. Since there is only one broadcast message cancel(i) to be sent on that iteration,
possibly by many cycle leaders, this can be done in the same time as a single broadcast
operation (i.e., within Õ(D2) rounds).

(2.6) A node that accepts a cancellation message cancel(i) via the broadcast algorithm,
omits all cycles obtained in this iteration i.

At the end of the i’th iteration, every node u defines a verified cycle set Ci(u). A cycle
(ID(C), C) ∈ C′

i(u) is defined as verified by u if the following conditions hold (i) it received a
verification message ver(C) from both neighbors in C, (ii) any cancellation message cancel(C)
received by u has been dropped, and (iii) u accepted no cancellation message cancel(i). Every
verified cycle (ID(C), C) ∈ C′

i(u) is added to the set Ci(u). Thus, Ci(u) consists of all verified
cycles passing through u computed in iteration i. This concludes the description of the i’th
iteration. The output of each node u is C(u) =

⋃ℓ
i=1 Ci(u).

Step (3): Covering the adversarial edge. For a node u, an incident edge (u, v) is considered
by u to covered if there exists a tuple (ID(C), C) ∈ C(u) such that (u, v) ∈ C. The goal of
the third and final step is to cover the remaining uncovered edges. Every node u and an
uncovered edge (u, v), broadcasts the edge (u, v) using the deterministic broadcast algorithm
of Theorem 18(1). In the analysis section, we show that if there is an uncovered edge then it
must be the adversarial edge. The reason for broadcasting the edge (u, v) by its endpoints
is to prevent the adversarial edge from initiating this step (despite the fact that all edges
are covered). To cover (u, v), the endpoint with the larger identifier, say u, initiates a
construction of a BFS tree T rooted at u in G \ {(u, v)}. Within O(L) rounds, u and v learn
the u-v tree path P . Then the cycle covering (u, v) is given by C = (v, u) ◦ P . The cycle
(ID(C), C) is then13 added to the cycle collection C(w) of every w ∈ C.
The correctness is deferred to the full version. We also show that the graph G is not required
to be 3 edge-connected or with a bounded diameter. Our cycle cover algorithm has the

13 The ID of the cycle C can obtained by appending the maximum ID vertex on C with a special tag
indicating that the cycle is added in Step (3).
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guarantee to cover every reliable edge that lies on a reliable short cycle in G. That is, we
achieve the following.

▶ Lemma 22. There exists a deterministic algorithm DetComputeOneFTCycCov(G, L) that
given a graph G containing a single adversarial edge e′ and a parameter L, returns a collection
of cycles and paths C with the following property. Every reliable edge (u, v) ̸= e′ for which
distG\{e′,(u,v)}(u, v) ≤ L is covered by a reliable Ô(L)-length cycle C ∈ C such that e′ /∈ C.

2.2 General Compilers Given (1, e′)-FT Cycle Cover

We next show that our (1, e′)-FT cycle cover with parameters (c, d) yields a general compiler
that translates any r-round distributed algorithm A into an equivalent algorithm A′ that
works in the presence e′.

Compiler against a single adversarial edge (Proof of Theorem 6). The compiler works in
a round-by-round fashion, where every round of A is implemented in A′ using a phase of
O(c · d2) rounds. At the end of the i’th phase, all nodes will be able to recover the original
messages sent to them in round i of algorithm A.

Compilation of round i. Let C be the cycle collection of the (1, e′)-FT cycle cover. Fix a
round i of algorithm A, and let Mu→v be the message sent from u to v for every pair of
neighbors e = (u, v) ∈ E during the i’th round. In the i’th phase of A′, the node u sends v

the message Mu→v through e and all u-v paths Pu,v = {C \ {e} | C ∈ C, e ∈ C}. When
sending the messages, each node on a path P ∈ Pu,v sends at most one message targeted
from u to v. If a node w is requires to send at least two different messages from u to v, it
omits both messages and sends a null message Φ over the cycle.

At the end of phase i, each node v sets the message M̃u,v as its estimate for the message
Mu→v sent by u in round i of A. The estimate M̃u,v is defined by applying the following
protocol. In the case that v receives an identical message M ̸= Φ from u through all the
paths in Pu,v, then M̃u,v ←M . Otherwise, M̃u,v ←M ′ where M ′ is the message v received
over the direct edge (u, v).

Correctness. We show that at the end of phase i for every edge (u, v) ∈ E it holds that
M̃u,v = Mu→v. Consider the following two cases.
Case e = e′ is the adversarial edge. Since all u-v paths in Pu,v are reliable, all messages

received by v over these paths must be identical. Thus, all the messages that v receives
through the paths are identical, and equal to Mu→v. By the definition of the (1, e′)-FT
cycle cover, Pu,v ̸= ∅. Hence, v accepts the correct message.

Case e ̸= e′ is reliable. The message that u receives from v through the direct edge e is
M ′ = Mu→v. By the definition of the (1, e′)-FT cycle cover there exists a cycle C ∈ C
covering e that does not contain e′. Hence, if all edges on C deliver the same message
from u to v, it must be the message sent by u. Thus, if all messages v received through
the paths Pu,v are identical and differ from Φ, they are equal to Mu→v. Otherwise, v

accepts the correct message M ′ = Mu→v delivered through the reliable edge (u, v).
Round complexity. Since each edge belongs to at most c cycles in the (1, e′)-FT cycle cover
C, and as all cycles are of length at most d, the number of messages sent over an edge in
a given phase is bounded by c · d. Hence, each phase is implemented in O(c · d2) rounds.
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3 Compilers against Multiple Adversarial Edges

At the heart of the compilers lies the construction of (f, F ∗)-FT cycle covers in the adversarial
CONGEST model, that we describe in this section. The description of the compilers that
exploit these cycles are deferred to the full version. Our main result is a deterministic
construction of (f, F ∗)-FT cycle covers* in the adversarial CONGEST model.

▶ Lemma 23. Given is an (2f + 1) edge-connected graph G with a fixed subset of unknown
adversarial edges F ∗ of size f . Assuming all nodes locally know an (L = 7fD, 2f)-covering
family G of size ℓ, there exists an r-round algorithm ComputeFTCycCov for computing an
(f, F ∗)-FT cycle cover* with parameters d = Ô(L), c = Ô(ℓ·L2), and r = Ô(ℓ·(fD log n)O(f))
in the adversarial CONGEST model.

The proof of Theorem 8 follows by combining Lemma 23 and Fact 17. The algorithm
ComputeFTCycCov uses an (L, 1) covering family G with slightly different properties than
those provided in Definition 14. Specifically, we use the following fact from [24].

▷ Claim 24 ([24]). Given a graph G and an integer parameter L, there exists a (de-
terministic) 0-round algorithm that allows all nodes to locally know a family of subgraphs
G = {G1, . . . , Gℓ} of size ℓ = Õ(L2) where for every edge e = (u, v) ∈ G such that
distG\{e}(u, v) ≤ L there exists a subgraph Gi satisfying that (P1) distGi\({e})(u, v) ≤ L,
and (P2’) e /∈ Gi.

Our Approach. Before presenting the algorithm, we provide the high level approach.
Consider the following natural algorithm for computing an (f, F ∗)-FT cycle cover. Let
G be an (L, 2f) covering family for L = O(fD). By applying the (fault-free) algorithm
ComputeCycCov from Fact 12 on each subgraph Gi ∈ G, we have the guarantee that all the
reliable edges E \ F ∗ are covered successfully as required by Definition 4. The key challenge
is in determining whether the adversarial edges are covered as well. In particular, it might
be the case that an edge e ∈ F ∗ mistakenly deduces that it is covered, leading eventually to
an illegal compilation of the messages sent through this edge. Note that unlike (1, e′)-FT
cycle covers, here an edge is covered only if it is covered by cycles of sufficiently large “flow”.

Our approach is based on reducing the problem of computing an (f, F ∗)-FT cycle cover
into the problem of computing (1, e′)-FT cycle covers in multiple subgraphs for every e′ ∈ F ∗.
Specifically, we define a covering family G with the following guarantee for each adversarial
edges e′ ∈ F ∗: for every F ⊆ G, |F | ≤ f , there exists a subgraph Gi containing a short cycle
covering e′ such that Gi∩ (F ∗ \{e′}∪F ) = ∅. Since the covering guarantees for every e′ ∈ F ∗

are based on such “good” subgraphs Gi, it is safe to apply Alg. DetComputeOneFTCycCov
(from Lemma 22) on these subgraphs (as they contain at most one adversarial edge). This
approach also has a major caveat which has to do with the fact that the subgraph Gi is not
necessarily two-edge connected, and might not even be connected. In the single edge case, Alg.
DetComputeOneFTCycCov is indeed applied on the input graph which is 3 edge-connected.

Recall that Alg. DetComputeOneFTCycCov is based on performing a verification step of
the cycles, at the end of which we have the guarantee that at most one edge, corresponding
to the adversarial edge, might not be covered. The third step of that algorithm then covers
this edge, in case needed, using its fundamental cycle in the BFS tree. When applying Alg.
DetComputeOneFTCycCov on the subgraph Gi the situation is quite different. Since Gi is
not necessarily connected, there might be potentially a large number of edges in Gi that are
uncovered by cycles. Broadcasting the identities of these edges is too costly. For this reason,
our algorithm applies the reduction in a more delicate manner.
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Specifically, the algorithm applies Step (3) of Alg. DetComputeOneFTCycCov on the
neighborhood cover of Gi (with radius of O(fD)). In addition, it attempts to cover with
Alg. DetComputeOneFTCycCov only edges that lie on short cycles in Gi (i.e., to fix the issue
that Gi is not two edge-connected). This guarantees that at most one edge activates the
brute-force covering procedure in which the edge e get covered by a fundamental cycle of a
BFS tree in G \ {e}. We next describe the algorithm in details.

Algorithm ComputeFTCycCov (Proof of Lemma 23). Let G = {G1, . . . , Gℓ} be a (L, 2f)-
covering subgraph family that is locally known to all the nodes (from Definition 14). The
algorithm iterates over the subgraphs in G. In phase i, the algorithm considers the subgraph
Gi ∈ G and applies two major steps. Let Ei = {e = (u, v) ∈ Gi | distGi\{e}(u, v) ≤ L} be
the set of edges in Gi that are covered by a short cycle (of length at most L + 1) in Gi

14.
During the i’th phase, the goal is to cover the edges in Ei. The first step considers covering
the reliable edges in Ei \ F ∗, and the second step considers the adversarial edges F ∗ ∩ Ei.
Note that the endpoints of an edge e does not necessarily know if it belongs to Ei.

Step (1): Covering non-adversarial edges in Gi. The algorithm employs the deterministic
(1, e)-FT cycle cover algorithm DetComputeOneFTCycCov(Gi, L′) of Lemma 22 on the sub-
graph Gi with diameter estimate L′ = O(L · logc n), where c is the constant of Definition 10
(in the analysis part, it will be made clear why L′ is set in this manner). When executing Alg.
ComputeOneFTCycCov(Gi, L′), Step (3) of that algorithm which covers the adversarial edge
is omitted. In addition, in the verification step of Alg. ComputeOneFTCycCov(Gi, L′) (Step
2.6), instead of using the broadcast algorithm of [21] against a single adversarial edge, we use
the broadcast algorithm of [21] against f adversarial edges over the original graph G (see The-
orem 19). If during the execution of Alg. ComputeOneFTCycCov(Gi, L′), a node u receives
an illegal message or that it needs to send too many messages through its incident edges (i.e.,
that exceeds the allowed Ô(L′2) congestion bound of Alg. ComputeOneFTCycCov(Gi, L′)),
it cancels the i’th iteration in the following sense. It omits all its cycles computed in the i’th
phase, and remains silent until the next phase.

For a node u, let Ci(u) be the cycle collection obtained by u during
ComputeOneFTCycCov(Gi, L′). Every node u that did not cancel the i’th phase, adds the
cycles in Ci(u) to its final cycle collection C(u). Recall that the output of
Alg. ComputeOneFTCycCov is given by a collection of tuples Ci(u) = {(ID(C), C)}. At
the end of Step (1), a node u considers its incident edge (u, v) as i-handled if there exists
(ID(C), C) ∈ Ci(u) such that (u, v) ∈ C.

Step (2): Covering the adversarial edges in Gi. The goal of this step is to cover the
adversarial edges of Ei ∩ F ∗. At the beginning of the step, the nodes locally compute a
family of subgraphs Gi = {Gi,1, . . . , Gi,ℓi} of size ℓi = Õ(L2) using Claim 24 with parameter
L. The algorithm then proceeds in ℓi iterations, where in each iteration j the nodes perform
the following sub-steps over the communication subgraph Gi,j ∈ Gi.
(2.1) Compute an L neighborhood-cover Si,j = {Si,j,1, . . . , Si,j,ki,j

} by applying Theorem 11,
and let Ti,j,q be the spanning tree of each node subset Si,j,q.

(2.2) An edge (u, v) is short bridgeless if (i) (u, v) is not i-handled in Step (1), and (ii) there
exists a tree Ti,j,q containing u and v. For every short bridgeless edge e, the algorithm
adds a cycle Ce = π(u, v) ◦ e to the cycle collection, where π(u, v) is a u-v path in Ti,j,q.

14 Note that the set Ei is unknown to the nodes in G.
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If during the execution of this step, a node u detects an incident edge with a congestion
above the limit, it omits all the cycles obtained in this step from its cycle collection C(u)
and proceeds to the next sub-iteration.

The correctness analysis is deferred to the full version.
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