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Abstract
Byzantine consensus is a classical problem in distributed computing. Each node in a synchronous
system starts with a binary input. The goal is to reach agreement in the presence of Byzantine faulty
nodes. We consider the setting where communication between nodes is modelled via an undirected
communication graph. In the classical point-to-point communication model all messages sent on an
edge are private between the two endpoints of the edge. This allows a faulty node to equivocate, i.e.,
lie differently to its different neighbors. Different models have been proposed in the literature that
weaken equivocation. In the local broadcast model, every message transmitted by a node is received
identically and correctly by all of its neighbors. In the hypergraph model, every message transmitted
by a node on a hyperedge is received identically and correctly by all nodes on the hyperedge. Tight
network conditions are known for each of the three cases.

We introduce a more general model that encompasses all three of these models. In the local
multicast model, each node u has one or more local multicast channels. Each channel consists of
multiple neighbors of u in the communication graph. When node u sends a message on a channel,
it is received identically by all of its neighbors on the channel. For this model, we identify tight
network conditions for consensus. We observe how the local multicast model reduces to each of
the three models above under specific conditions. In each of the three cases, we relate our network
condition to the corresponding known tight conditions. The local multicast model also encompasses
other practical network models of interest that have not been explored previously, as elaborated in
the paper.
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1 Introduction

Byzantine consensus is a classical problem in distributed computing introduced by Lamport
et al [12, 14]. There are n nodes in a synchronous system. Each node starts with a binary
input. At most f of these nodes can be Byzantine faulty, i.e., exhibit arbitrary behavior.
The goal of a consensus protocol is for the non-faulty nodes to reach agreement on a single
output value in finite time. To exclude trivial protocols, we require that the output must be
an input of some non-faulty node.

In this paper, we study consensus under the local multicast model. We formalize this
model in Section 2. Intuitively, nodes are connected via an undirected graph G. A local
multicast channel is defined by a sender and a set of receivers. Each node u may potentially
serve as the sender on multiple local multicast channels. When node u sends a message on
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26:2 Byzantine Consensus with Local Multicast Channels

one of its local multicast channels, it is received identically and correctly by all the receivers
in the channel. This model generalizes the following models that have been considered before
in the literature.

1. Point-to-point communication model: In the classical point-to-point communication model,
each edge uv in the communication graph represents a private link between the nodes u

and v. This model is well-studied [1, 4, 12, 13, 14]. It is well-known that n ≥ 3f + 1 and
node connectivity at least 2f + 1 are both necessary and sufficient in this model.

2. Local broadcast model: Recently, we [8] studied consensus under the local broadcast model
[2, 11], where a message sent by any node is received identically by all of its neighboring
nodes in the communication graph. We obtained that minimum node degree at least 2f

and node connectivity at least
⌊
3f/2

⌋
+ 1 are both necessary and sufficient for Byzantine

consensus under the local broadcast model [8].

3. Hypergraph model: A hypergraph is a generalization of graphs consisting of nodes and
hyperedges. Unlike an edge in a graph, a hyperedge can connect any number of nodes.
For a communication network modelled as a hypergraph, a message sent by a node u on
a hyperedge e (that contains u) is received identically by all nodes in the hyperedge e.
Communication networks modelled as hypergraphs have been studied in the literature
[6, 7, 15]. Ravikant et al [15] gave tight conditions for Byzantine consensus on (2, 3)-
hypergraphs.1 As discussed in Section 4, this result extends to general undirected
hypergraphs as well.

The classical point-to-point communication model allows a faulty node to equivocate [3],
i.e., send conflicting messages to its neighbors without this inconsistency being observed
by the neighbors. For example, a faulty node z may tell its neighbor u that it has input 0,
but tell another neighbor v that it has input 1. Since messages on each edge are private
between the two endpoints, so node u does not overhear the message sent to node v and vice
versa. The local broadcast model and the hypergraph model restrict a faulty node’s ability
to equivocate by detecting such attempts. In the local broadcast model, a faulty node’s
attempt to equivocate is detected by its neighboring nodes in the communication graph. In
the hypergraph model, a faulty node’s attempt to equivocate on a hyperedge is detected
by the nodes in that hyperedge. In our local multicast model, a faulty node’s attempt to
equivocate on a single multicast channel is detected by the receivers in that channel.

In this work, we introduce the local multicast model, that unifies the models identified
above, and make the following main contributions:

1. Necessary and sufficient condition for local multicast model: In Section 3,
we present a network condition and show that it is both necessary and sufficient for
Byzantine consensus under the local multicast model. The identified condition is inspired
by the network conditions for directed graphs [9, 17], where node connectivity does
not adequately capture the network requirements for consensus. We present a simple
algorithm, inspired by [8, 9, 17].

2. Reductions to the existing models: The two extremes of the local multicast model
are 1) each channel consists of exactly one receiver, and 2) each node has exactly one
multicast channel. These correspond to the point-to-point communication model and the
local broadcast model, respectively. In Section 4, we discuss how the network condition
for the local multicast model reduces to the network requirements for the point-to-point

1 i.e., each hyperedge consists of either 2 or 3 nodes.
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model and the local broadcast model at the two extremes. On the other hand, if the
multicast channels are induced from the hyperedges in a hypergraph, then this corresponds
to the hypergraph model. In this case, the network condition reduces to the network
requirements of the undirected hypergraph model given by Ravikant et al [15]. Moreover,
our algorithm for the local multicast model works for all the three models identified here
as well.

3. Extensions to other models: The local multicast model also captures some other
models of practical interest (see Section 5). For instance, consider the scenario where
nodes are connected via a wireless network. This can be modelled as local multicast
over a graph G1. Separately, the nodes are also connected via a bluetooth network,
modelled using local multicast over a graph G2 (with the same node set as G1). Then
the union of these networks G1 ∪ G2 can be captured using the local multicast model as
well. As another example, consider the scenario where nodes are connected via point-
to-point channels. Additionally, nodes are also connected via a wireless network with
local broadcast guarantees. As before, this can also be captured using the local multicast
model. Our algorithm works for these cases as well.

In our recent work [10], we have generalized the results in this paper to the directed local
multicast model. The directed local multicast model corresponds to directed hypergraphs
where each directed hyperedge models a multicast channel with a single sender and a non-
empty set of receivers. The tight condition obtained in [10] for the directed case is a natural
extension of the tight condition obtained here for the undirected case. The results and proofs
in [10] are more general and encompass the results in this paper.

2 System Model and Problem Formulation

We consider a synchronous system of n nodes. Nodes communicate using local multicast
channels. Each node u has a set of multicast channels ζu. Each multicast channel χu ∈ ζu

is defined by the sender u and a non-empty set of receivers. For example, {v, w} ∈ ζu is a
multicast channel of sender u with two receivers v and w. By convention used here, u is
not included in the set of receivers. However, trivially, each node receives its own message
transmissions as well. The communication between nodes is bidirectional so that if a node
v ∈ χu for some channel χu ∈ ζu, then there exists a channel χv ∈ ζv such that u ∈ χv. A
message m sent by a node u on a multicast channel χu is received identically and correctly
by all nodes in χu. Moreover, each recepient v ∈ χu knows that m was sent by u on channel
χu. We assume that each multicast channel is a FIFO communication channel.

The communication graph G = (V (G), E(G)) is an undirected graph where V (G) is the
set of n nodes and uv ∈ E(G) is an edge of G if and only if there are channels χu and χv at
nodes u and v, respectively, such that u ∈ χv and v ∈ χu. Nodes u and v are neighbors in G.
Observe that each multicast channel χu consists of a non-empty subset of the neighbors of u,
such that each neighbor of u is in at least one channel in ζu.

Neighborhood: For a set S ⊆ V (G), a node v ∈ V (G) − S is a neighbor of S if it is
a neighbor of some node u ∈ S. More generally, for two disjoint sets A, B ⊆ V (G),
ΓG(A, B) defined below is the set of neighbors of B in A.

ΓG(A, B) :=
{

u ∈ A | ∃v ∈ B : uv ∈ E(G)
}

.

Adjacent: For two disjoint sets A, B ⊆ V (G), we use A →G B (read as A is “adjacent”
to B in G) to denote that either

DISC 2021



26:4 Byzantine Consensus with Local Multicast Channels

(i) B = ∅, or
(ii) nodes in B have at least f + 1 neighbors in A in the graph G, i.e.,∣∣ΓG(A, B)

∣∣ ≥ f + 1.

A Byzantine faulty node may exhibit arbitrary behavior. In Byzantine consensus problem
each node starts with a binary input and must output a binary value satisfying the following
constraints, in the presence of up to f Byzantine faulty nodes.

1. Agreement: All non-faulty nodes must output the same value.

2. Validity: If a non-faulty node outputs b ∈ {0, 1}, then at least one non-faulty node must
have input b.

3. Termination: All non-faulty nodes must decide in finite time.

It is easy to show that f < n is necessary for Byzantine consensus. So we assume f < n

throughout the paper.

Node split

We now introduce the notion of a node split that is used to specify the necessary and sufficient
condition under the local multicast model. As seen later, we will use the notion of node split
to simulate possible equivocation by a faulty node. Intuitively, by splitting a node v, we
are creating two copies of v and dividing up the channels amongst the two copies. Figure 1
shows two examples of node split. Formally, splitting a node v in G creates a new graph G′

as follows.

The node v is replaced by two nodes v0 and v1.

We add an edge v0v1 to E(G′).

We add a multicast channel
{

v1}
to v0 and a multicast channel

{
v0}

to v1.

For every multicast channel χv of node v in G, choose exactly one of v0 and v1 as node
v′. Create a multicast channel χ′

v′ of v′ with χ′
v′ =

{
u | u ∈ χv

}
, i.e., each neighbor of v

in χv is assigned to χ′
v′ .

The above step adds edges to E(G′), of the form uv′ such that v′ ∈
{

v0, v1}
, but v′ is

not assigned to any multicast channel at node u. We specify these assignments as follows.
Consider an edge uv′, for v′ ∈

{
v0, v1}

, in G′. For each multicast channel χu of node u

in G, such that v ∈ χu, add v′ to the corresponding multicast channel χ′
u in G′. Now

each neighbor w of u in G′ is part of at least one multicast channel at node u.

Observe that for every node u ∈ V (G′), each of its multicast channels in G′ corresponds
to a single multicast channel in G, except for the two channels

{
v1}

and
{

v0}
at nodes v0

and v1, respectively (where node v was split). Similarly, for every node u ∈ V (G), each of
its multicast channels in G corresponds to a single multicast channel in G′.

To split two nodes u and v in G, we first split u to obtain G′. We then split v to obtain
G′′ from G′. The order of splits does not matter. This process naturally extends to splitting
multiple nodes as well. For a set F ⊆ V (G), let ΛF (G) be the set of all graphs that can be
obtained from G by splitting some subset of nodes in the set F . For a graph G′ ∈ ΛF (G),
we use F ′ to denote the set of nodes in G′ that correspond to nodes in F in G, i.e.,

F ′ :=
(
V (G′) ∩ F

)
∪

(
V (G′) − V (G)

)
.
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{
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(a) Splitting a single node v. Only the channels in ζv are drawn here. There are two channels in ζv: {u, w}
and {w, z}, drawn with blue and red colors, respectively. There are three possible graphs in Λ{v}(G),
other than G, corresponding to the assignment of channels when v is split into v0 and v1. These are
depicted as G′

1, G′
2, and G′

3.

v u

wz

G

v0

v1 u0

u1

wz

G′

(b) Splitting two nodes u, v in a 4-node graph G. Directed edges of the same color, pointing out from the
same sender node, represent a single channel. G′ is obtained by splitting nodes u and v into u0, u1 and
v0, v1, respectively. The cyan channel is assigned to v1, the violet channel is assigned to v0, and the red
channel is assigned to u0.

Figure 1 Examples of the node split operation.
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26:6 Byzantine Consensus with Local Multicast Channels

Note that there are two choices in the node split operation above which give rise to all
the graphs in ΛF (G):

1. choice of which nodes in F to split, and

2. assignment of multicast channels for each split node.

As needed, we will occasionally clarify these choices to specify how a graph G′ ∈ ΛF (G) was
constructed by splitting some nodes in F .

3 Main Result

The main result of this paper is a tight characterization of network requirements for Byzantine
consensus under the local multicast model. Consider a graph G′ ∈ ΛF (G) obtained from G

by splitting some nodes in a set F . Recall that we use F ′ to denote the set of nodes in G′

that correspond to nodes in F in G.

▶ Theorem 1. Under the local multicast model, Byzantine consensus tolerating at most f

faulty nodes is achievable on graph G if and only if for every F ⊆ V (G) of size at most f ,
every G′ ∈ ΛF (G) satisfies the following: for every partition2 (L, C, R) of V (G′), either

1. L ∪ C →G′ R − F ′, or

2. R ∪ C →G′ L − F ′.

While we allow a partition to have empty parts, the interesting partitions are those where
both L and R are non-empty, but C can be possibly empty. In Section 4, we show that when
the local multicast model corresponds to the point-to-point, local broadcast, or hypergraph
model, the above condition reduces to the corresponding known tight network conditions in
each of the three cases.

We prove the necessity of Theorem 1 in Section 6. In Section 7, we give an algorithm to
constructively show the sufficiency. The above condition is similar to the network condition
for directed graphs in the point-to-point communication model [16, 17] and in the local
broadcast model [9]. Note that [9, 16, 17] deal with consensus on arbitrary directed graphs,
where connectivity constraints do not adequately capture the tight network requirements. In
this paper, we are interested in undirected graphs. However, since the local multicast model
is quite general and captures various models with different connectivity requirements, it is
plausible that no concise network connectivity property will be able to properly characterize
the tight condition.

For convenience, we give a name to the condition in Theorem 1.

▶ Definition 2. A graph G satisfies condition LCR with parameter F if for every G′ ∈ ΛF (G)
and every partition (L, C, R) of V (G′), we have that either

1. L ∪ C →G′ R − F ′, or

2. R ∪ C →G′ L − F ′.

We say that G satisfies condition LCR, if G satisfies condition LCR with parameter F for
every set F ⊆ V (G) of cardinality at most f .

2 with a slight abuse of terminology, we allow a partition of a set to have empty parts.
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4 Reductions to Other Models

In this section, we discuss how condition LCR relates to the tight conditions for the classical
point-to-point communication model, the local broadcast model, and the hypergraph model.

Point-to-piont Channels

The classical point-to-point communication model corresponds to the case where each
multicast channel in the graph consists of a single receiver node, so that the communication on
an edge uv is private between the two nodes u and v. Under the point-to-point communication
model, it is well known that n ≥ 3f + 1 [5, 12, 14] and node connectivity at least 2f + 1 [4, 5]
are both necessary and sufficient for consensus on arbitrary undirected graphs.

When G has only point-to-point channels, i.e., each multicast channel consists of a single
receiver node, then G satisfies condition LCR if and only if n ≥ 3f + 1 and G has node
connectivity ≥ 2f + 1. We prove this formally in [10]. Therefore, the two models are
equivalent when only point-to-point channels are present.

Local Broadcast

The local broadcast model corresponds to the other extreme where each node in the graph
has exactly one multicast channel, so that the messages transmitted by a node u are received
identically and correctly by all neighbors of u. Under the local broadcast model, we [8]
showed that node degree at least 2f and connectivity at least

⌊
3f/2

⌋
+ 1 are both necessary

and sufficient for consensus on arbitrary undirected graphs.

When G has only local broadcast channels, i.e., each node has a single multicast channel,
then G satisfies condition LCR if and only if G has minimum node degree ≥ 2f and node
connectivity ≥

⌊
3f/2

⌋
+ 1. We prove this formally in [10]. Therefore, the two models are

equivalent when only local broadcast channels are present.

Hypergraphs

The last model we consider in this section is the hypergraph model. In a hypergraph
H = (V (H), E(H)), each hyperedge e ∈ E(H) is a subset of nodes e ⊆ V (H). A hyperedge
e ∈ E(H) is called an |e|-hyperedge. Each hyperedge is effectively a multicast channel, i.e.,
a message sent by a node u on an edge e ⊇ {u} is received identically and correctly by all
nodes v ∈ e. However, any node on a hyperedge can act as a sender for this channel. In
our local multicast model with communication graph G, this corresponds to the case where,
for every pair of nodes u, v and multicast channel χu of u such that v ∈ χu, there exists a
channel χv of v such that χv =

(
χu ∪ {u}

)
− v.

Ravikant et al. [15] obtained tight conditions for the hypergraph model. We observe that
while the conditions were presented as a tight characterization for (2, 3)-hypergraphs3 in [15],
they also hold for general hypergraphs. In our local multicast model, when the communication
graph G and its local multicast channels correspond to an undirected hypergraph, then
condition LCR reduces to the tight conditions for hypergraphs given in [15]. The formal
proof is given in [10].

3 H is a (2, 3)-hypergraph if each hyperedge is either a 2-hyperedge or a 3-hyperedge.

DISC 2021
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5 Application to New Models

As mentioned in Section 1, the local multicast model also encompasses some other network
models of practical interest that, to the best of our knowledge, have not been considered
before in the literature. Suppose the n nodes are connected via a local multicast network
with graph G1. For example, network connectivity in G1 can be via point-to-point links or
via wireless channels modelled as local broadcast. Additionally, the n nodes are connected
via another local multicast network with graph G2. For example, G2 may correspond to
a wireless network with different frequencies and/or technologies. The complete system,
where nodes can communicate on channels in G1 as well as on channels in G2, can also be
characterized by the local multicast model. We omit details for brevity, but this corresponds
to the natural union of G1 and G2, with each node now having access to its multicast channels
in G1 as well as its multicast channels in G2.

6 Necessity of Condition in Theorem 1

Intuitively, consider a set F ⊆ V (G) of size at most f , such that the graph G violates
condition LCR with parameter F . With F as a candidate faulty set, the splitting of nodes
in F captures possible equivocation by nodes in F : a faulty node can behave as if it has
input 0 on some of its multicast channels and behave as if it has input 1 on the other
multicast channels. Let G′ ∈ ΛF (G) be a graph obtained by splitting nodes in F . We use
F ′ to denote the nodes in G′ that correspond to nodes in F in G. Suppose (L, C, R) is a
partition of G′. Now consider the execution where non-faulty nodes in L have input 0. Since
R ∪ C ̸→G′ L − F ′, nodes in L − F ′ can not distinguish between F and its neighbors in
R ∪ C, i.e., ΓG′(R ∪ C, L − F ′) as the set of faulty nodes. So non-faulty nodes in L are stuck
with outputting 0 in this case. Similarly if non-faulty nodes in R have input 1, then they
have no choice but to output 1, creating the desired contradiction.

A formal necessity proof is given in [10] for the directed local multicast model, which
generalizes the undirected local multicast model considered in this paper. It follows the
standard state machine based approach [1, 4, 5], similar to [9, 17]. Suppose there exists a set
F ⊆ V (G), of size at most f , such that G does not satisfy condition LCR with parameter F ,
but there exists an algorithm A that solves consensus on G. Algorithm A outlines a procedure
Au for each node u that describes u’s state transitions, as well as messages transmitted on
each channel of u in each round. Now there exists a graph G′ ∈ ΛF (G) and a partition
of V (G′) that does not satisfy the requirements of condition LCR. To create the required
contradiction, we work with an algorithm for G′ instead of A. To see why this works, observe
that an algorithm A on graph G can be adapted to create an algorithm A′ for a graph
G′ ∈ ΛF (G) as follows. Each round i in the algorithm A is now split into two sub-rounds i(a)
and i(b) in A′. We consider each of these rounds separately and specify the corresponding
steps for each node in G′ for the algorithm A′.

Round i(a): Each node v ∈ V (G′) ∩ V (G) that was not split runs Av as specified for
round i. For a node v ∈ V (G′) − V (G) that was split into v0, v1 ∈ V (G′), both v0 and
v1 run Av for round i with the following modification. Consider a multicast channel
χv ∈ ζv of node v in G. Let χ′

v0 (resp. χ′
v1) be the corresonding multicast channel in G′

at node v0 (resp. v1). If the algorithm Av wants to transmit a message on χv, then v0

(resp. v1) sends the message on χ′
v0 (resp. χ′

v1), while v1 (resp. v0) ignores this message
transmission. Observe that, for any node u ∈ χv, u receives messages on the channel
from exactly one of v0 and v1.
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Round i(b): This round is reserved for the split nodes. Consider a node v ∈ F − V (G′)
that was split into v0, v1 ∈ V (G′). Node v0 forwards all messages it received in round
i(a) to v1 and v1 forwards all messages it received in round i(a) to v0. This allows both
v0 and v1 to run Av in the next round.

Now, A′ might not solve consensus on G′, or may not even terminate. However, as long
as care is taken with regards to which nodes are allowed to be faulty in G′ and the input
of the split nodes, the guarantees for A will imply that A′ does indeed terminate and solve
consensus on G′. In particular, we want that

1. the faulty nodes in G′ correspond to at most f nodes in G,

2. for each node v ∈ F − V (G′) that was split into v0, v1 ∈ V (G′), either
a. both v0 and v1 have the same input, or
b. at least one of v0 and v1 is faulty.

So for necessity, it is enough to show that no algorithm exists for a hypergraph G′ ∈ ΛF (G),
under the two conditions identified above. We formalize this property and use it in the
formal necessity proof in [10].

7 Algorithm for the Local Multicast Model

To prove the sufficiency portion of Theorem 1, we work with a different network condition,
which we will be equivalent to condition LCR. We first introduce some notation that is used
in the algorithm. For a set of nodes U ⊆ V (G), we use G[U ] to denote the subgraph induced
by the nodes in U . The multicast channels in G[U ] are obtained from the multicast channels
in G by removing nodes in V (G) − U from each channel, with some channels possibly being
deleted entirely. We use G − U to denote the subgraph G[V (G) − U ].

A path is a sequence of distinct nodes such that if u precedes v in the sequence, then v is
a neighbor of u in G (i.e., uv is an edge). For a path P and node z, we use z • P to denote
the path obtained by prefixing the node z to P .

uv-paths: For two nodes u, v ∈ V (G), a uv-path Puv is a path from u to v. u is called
the source and v the terminal of Puv. Any other node in Puv is called an internal node
of Puv. Two uv-paths are node-disjoint if they do not share a common internal node.

Uv-paths: For a set U ⊂ V (G) and a node v ̸∈ U , a Uv-path is a uv-path for some node
u ∈ U . All Uv-paths have v as terminal. Two Uv-paths are node-disjoint if they do not
have any nodes in common except the terminal node v. In particular, two node-disjoint
Uv-paths have different source nodes. By definition, the number of disjoint Uv-paths
is upper bounded by the size of the set U . Note the difference in definition between
node-disjoint uv-paths and node-disjoint Uv-paths when U = {u} is a singleton set. The
former requires only internal nodes to be different, while the latter needs to have different
source nodes as well. For the former, there can be more than one such node-disjoint path,
while for the latter, there is at most one.

Propagate: For two disjoint node sets A, B ⊆ V (G), we use A ⇝G B (read as A

“propagates” to B in G) to denote that either
(i) B = ∅, or
(ii) for every v ∈ B, there exist at least f +1 node-disjoint Av-paths in the graph G[A∪B].
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26:10 Byzantine Consensus with Local Multicast Channels

We now give a different network condition which is equivalent to condition LCR, but will
be useful for specifying an algorithm for the local multicast model and proving its correctness.
Recall that we use F ′ to denote the set of nodes in G′ corresponding to nodes in F in G.

▶ Definition 3. A graph G satisfies condition AB with parameter F if for every G′ ∈ ΛF (G)
and every partition (A, B) of V (G′), we have that either

1. A⇝G′ B − F ′, or

2. B ⇝G′ A − F ′.

We say that G satisfies condition AB, if G satisfies condition AB with parameter F for every
set F ⊆ V of cardinality at most f .

▶ Theorem 4. A graph G satisfies condition LCR if and only if G satisfies condition AB.

We skip the proof of Theorem 4, which is (almost) identical to proof of Theorem 5.2
in [9]. We show the sufficiency of condition AB (and hence condition LCR) constructively.
For the rest of this section, we assume that G satisfies condition AB. The proposed algorithm
is given in Algorithm 1. It draws inspiration from algorithms in [8, 9, 17]. Each node v

maintains a binary state variable γv, which we call v’s γ value. Each node v initializes γv to
be its input value.

The nodes use “flooding” to communicate with the rest of the nodes. We refer the reader
to [8, 9] for details about the flooding primitive. Briefly, when a node u wants to flood a
binary value b ∈ {0, 1}, it transmits b to all of its neighbors, who forward it to their neighbors,
and so forth. If a node u receives a message on channel χ, then u appends the channel id of
χ when fowarding the message to its neighbors. By adding some simple sanity checks, one
can assume that even a faulty node v does indeed transmit some value when it is v’s turn
to forward a message. In at most n synchronous rounds, the value b will be “flooded” in G.
However, faulty nodes may tamper messages when forwarding, so some nodes may receive a
value b̄ ̸= b along paths that contain faulty nodes.

The algorithm proceeds in phases. Every iteration of the for loop (starting at line 3) is
a phase numbered 1, . . . , 2f . Let F ∗ denote the actual set of faulty nodes. Each iteration
of the for loop, i.e. phase > 0, considers a candidate faulty set F . In this iteration, nodes
attempt to reach consensus, by updating their γ state variables, assuming the candidate set
F is indeed faulty. Let Z and N be the set of nodes in G − F that have their state variable
set to 0 and 1, respectively, at the beginning of the iteration. Each iteration has three steps.

In step (a), each node v floods its γv value.

In step (b), based on the values received during flooding, each node v creates its estimate
of the sets Z and N , by ignoring all paths that pass through the candidate faulty set F ,
i.e., paths that have internal nodes from F . This estimate is created in a manner so that

1. when F ̸= F ∗, this estimate may be incorrect, but

2. when F = F ∗, this estimate is indeed correct.

In step (c), based on the estimates created in step (b), a node v may update its γv

value. The rules for updates ensure that

1. when F ̸= F ∗, for each non-faulty node v, its state γv at the end of the iteration equals
the γ value of some non-faulty node at the beginning of the iteration (Lemma 5).

2. when F = F ∗, all non-faulty nodes have identical γ values at the end of this iteration
(Lemma 6).
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Algorithm 1 Proposed algorithm for Byzantine consensus under the local multicast
model: Steps performed by node v are shown here.

1 Each node has a binary input value in {0, 1}.
2 Each node v maintains a binary state γv ∈ {0, 1}, initialized to the input value of v.
3 For each F ⊆ V such that |F | ≤ f :
4 Step (a): Flood value γv.
5 if v ∈ F then skip steps (b) and (c)

6 Step (b):

7 Create a graph G′
v by splitting all nodes in F as follows. Set

F ′ :=
{

u0 | u ∈ F
}

∪
{

u1 | u ∈ F
}

and V (G′
v) := (V (G) − F ) ∪ F ′.

The edges and channels of G′
v are as determined by the split operation, with the

following choices: For every node z ∈ F and a multicast channel χz ∈ ζz :
8 if ∃w ∈ χz such that w ∈ V (G) − F then
9 identify a single wv-path Pwv in G − F (Lemma 7).

10 if v received 0 from z along the path z • Pwv in step (a), such that the initial
message was sent by node z on channel χz then assign χz to z0.

11 else assign χz to z1.
12 else
13 assign χz to z1.

14 For each node u ∈ V − F , identify a single uv-path Puv in G − F (Lemma 7). Note that
path Pvv trivially exists (Pvv contains only v). Initialize a partition (Zv, Nv) of V (G′

v)
as follows,

Zv := {u0 | u ∈ F } ∪
{

u ∈ V − F | v received value 0 along Puv in step (a)
}

,

Nv := {u1 | u ∈ F } ∪ (V − F − Zv).

15 Step (c):

16 if Zv ⇝G′
v

Nv − F then set Av := Zv and Bv := Nv

17 else set Av := Nv and Bv := Zv

18 if v ∈ Bv − F then
// by construction, the paths of interest in G naturally correspond to

paths in G′
v.

19 if in step (a), v received a value δ ∈ {0, 1} identically along any f + 1
node-disjoint Avv-paths in the graph G′

v[A ∪ (B − F )] = G′
v − (Bv ∩ F ) then

20 set γv := δ

21 Output γv
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At the end, after all iterations of the main for loop, each output node v outputs its γv

value.

The correctness of Algorithm 1 relies on the following two key lemmas, which are proven
in Section A. Recall that we use F ∗ to denote the actual set of faulty nodes.

▶ Lemma 5. For a non-faulty node v ∈ V − F ∗, its state γv at the end of any given phase
of Algorithm 1 equals the state of some non-faulty node at the start of that phase.

▶ Lemma 6. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. At the end of this
phase, every pair of non-faulty nodes u, v ∈ V − F ∗ have identical state, i.e., γu = γv.

Lemma 5 ensures validity, i.e., that the output of each non-faulty node is an input of
some non-fautly node. It also ensures that agreement among non-faulty nodes, once acheived,
is not lost. Lemma 6 ensures that agreement is reached in at least one phase of the algorithm.
These two lemmas imply correctness of Algorithm 1 as shown in Section A.

8 Conclusion

In this paper, we introduced the local multicast model which, to the best our knowledge,
has not been studied before in the literature. The local multicast model encompasses the
point-to-point, local broadcast, and hypergraph communication models, as well as some new
models which have not been considered before. We identified a tight network condition for
Byzantine consensus under the local multicast model, along the lines of [9, 17], and proved
its necessity and sufficiency. When the local multicast model represents one of point-to-point,
local broadcast, or hypergraph communication models, we showed how the identified network
condition reduces to the known tight requirements for the corresponding case.

A natural extension to complete the local multicast model is to consider a directed
communication graph, which corresponds to directed hypergraphs, and generalizes the
directed cases of point-to-point and local broadcast models. In our recent work [10], we have
extended the results in this paper to the directed setting. The natural extension of condition
LCR to the directed case is the tight network condition for directed local multicast. We refer
the reader to [10] for more details.
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A Proof of Correctness of Algorithm 1

In this section, we show correctness of Algorithm 1 when the communication graph G

sastisfies condition AB. For the rest of this section, we assume that G satisfies condition AB.
Throughout this section, we use F ∗ to denote the actual set of faulty nodes. We first prove
Lemma 5.

Proof of Lemma 5. Fix a phase > 0. Note that a node updates its state only in step (c).
Suppose a node v updates its state γv to α. Then, as per the update rules in step (c),
v must have received the value α identically along f + 1 node-disjoint Avv-paths in step
(a). Since there are at most f faulty nodes, so at least one of these paths, say P , must
have neither any faulty internal node nor a faulty source node. Since α was received along
P , which has only non-faulty internal nodes, so the source node of P , say u, flooded α in
step (a) of this phase. Since u is non-faulty, so γu had value α at the start of this phase.
Therefore, the state of node v at the end of this phase equals the state of a non-faulty node
u at the start of this phase. ◀
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Before proving Lemma 9, we need some intermediate results. We first show that in every
iteration of the main for loop, the paths in step (b) do exist.

▶ Lemma 7. In any phase > 0 of the algorithm with a candidate faulty set F , for any two
nodes u, v ∈ V (G) − F , there exists a uv-path in G − F .

Proof. Suppose for the sake of contradiction that there exist two nodes u, v ∈ V (G) − F

such that there is no uv-path in G − F . Let A be the set of nodes that are reachable by node
u in G − F , and let B = V − A. Note that

(i) |F | ≤ f ,

(ii) u ∈ A = A − F so that A − F ̸= ∅, and

(iii) v ∈ B − F so that B − F ̸= ∅.

Now, there are no edges between A and B − F . Since |F | ≤ f , so there are at most f

node-disjoint Av-paths and at most f node-disjoint Bu-paths in graph G. Therefore, we
have

1. A ̸⇝G B − F , and

2. B ̸⇝G A − F .

Since G ∈ ΛF (G), so condition AB is violated, a contradiction. ◀

When a non-faulty node wants to flood a value b ∈ {0, 1}, it sends a single value b on
all of its multicast channels. But a faulty node might send different messages on different
channels. Note however, that even a faulty node must send the exact same value on a single
multicast channel.

▶ Lemma 8. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. For any two non-faulty
nodes u, v ∈ V (G) − F ∗, we have G′

u = G′
v in step (b) of this phase. Furthermore, if in

step (a) of this phase, faulty node z ∈ F ∗ transmitted 0 (resp. 1) on one of its channels
χz ∈ ζz, such that χz − F ∗ is non-empty, then in step (b) of this phase χz is assigned to
z0 (resp. z1) in G′

u = G′
v.

Proof. Consider the phase where F = F ∗ and any two non-faulty nodes u, v ∈ V (G) − F ∗.
Observe that the node set of the two graphs G′

u and G′
v are the same. For the edges and

channels, by construction, it is sufficient to show that for any z ∈ F ∗, the assignment of
multicast channels to z0 and z1 in the split operation is the same in G′

u as in G′
v. Consider

an arbitrary node z ∈ F ∗ and a multicast channel χz ∈ ζz at node z. There are two cases to
consider:

Case 1: There exists a node w ∈ χz such that w ∈ V (G) − F ∗.
Let w be any arbitrary such node. By Lemma 7, there exists a wu-path (resp. wv-path)
in G − F ∗. Let Pwu (resp. Pwv) be any arbitrary wu-path (resp. wv-path) identified
by u (resp. v) in line 9. Note that Pwu (resp. Pwv) does not contain any faulty nodes.
Therefore, a message transmitted by z on χz, is received by u (resp. u) along z • Pwu

(resp. z • Pwv) untampered. Therefore, in step (a), if z transmitted 0 on channel χz,
then u (resp. v) received value 0 from z along z • Pwu (resp. z • Pwv). So, in line 11,
node u (resp. node v) assigns χz to z0 in G′

u (resp. G′
v). Similarly, if z transmitted 1 on

channel χz in step (a), then both u and v assign χz to z1 in G′
u and G′

v, respectively.

Case 2: There does not exist any node w ∈ χz such that w ∈ V (G) − F ∗.
In this case, in line 13, both u and v assign χz to z1 in G′

u and G′
v, respectively.
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In both cases, we have that the multicast channel χz was assigned identically by both u and
v. As shown in Case 1, if z transmitted 0 (resp. 1) on χz and χz − F ∗ is non-empty, then
χz was assigned to z0 (resp. z1) by both u and v, as required. ◀

▶ Lemma 9. Consider a phase > 0 of Algorithm 1 wherein F = F ∗. Let

Z :=
{

u0 | u ∈ F
}

∪
{

w ∈ V (G) − F ∗ | w flooded value 0 in step (a) of this phase
}

N :=
{

u1 | u ∈ F
}

∪
{

w ∈ V (G) − F ∗ | w flooded value 1 in step (a) of this phase
}

.

For any two non-faulty nodes u, v ∈ V (G) − F ∗, we have Zu = Zv and Nu = Nv in step
(b) of this phase.

Proof. Consider the phase where F = F ∗ and any two non-faulty nodes u, v ∈ V (G) − F ∗.
We show that Z ⊆ Zv and N ⊆ Nv (resp. Z ⊆ Zu and N ⊆ Nu). Since Z ∪ N = Zu ∪ Nu =
Zv ∪ Nv, it follows that Z = Zu = Zv and N = Nu = Nv. For a node w ∈ F ∗, the two split
nodes w0 and w1 are assigned identically by both u and v. So consider an arbitrary node
w ∈ V (G) − F ∗ = (Z ∪ N) −

{
u0, u1 | u ∈ F ∗}

. Recall that we are considering the phase
> 0 of the algorithm where F = F ∗ is the actual set of faulty nodes. There are two cases to
consider:

Case 1: w ∈ Z −
{

u0 | u ∈ F ∗}
, i.e., w ̸∈ F ∗ flooded 0 in step (a) of this phase.

Let Pwv be the wv-path identified by v in step (b). Note that Pwv is contained entirely
in G − F ∗ so that Pwv does not have any faulty nodes. It follows that, in step (a), since
w flooded value 0 so v received value 0 along Pwv. Therefore, in step (b), v puts w in
the set Zv.

Case 2: w ∈ N −
{

u1 | u ∈ F ∗}
, i.e., w ̸∈ F ∗ flooded 1 in step (a) of this phase.

Let Pwv be the wv-path identified by v in step (b). Note that Pwv is contained entirely
in G − F ∗ so that Pwv does not have any faulty nodes. It follows that, in step (a), since
w flooded value 1 so v received value 1 along Pwv. Therefore, in step (b), v puts w in
the set Nv.

So we have that Z ⊆ Zv and N ⊆ Nv, as required. A symmetric argument gives Z ⊆ Zu

and N ⊆ Nu. As argued before, this implies that Z = Zu = Zv and N = Nu = Nv. ◀

We are now ready to prove Lemma 6.

Proof of Lemma 6. Consider the phase where F = F ∗. Suppose u, v ∈ V (G) − F ∗ are any
two non-faulty nodes. By Lemma 9, we have Z = Zu = Zv and N = Nu = Nv, where Z and
N are as in the statement of Lemma 9. By Lemma 8, we have G′

u = G′
v, Let G′ = G′

u = G′
v.

We use F ′ to denote the set of nodes in G′ corresponding to nodes in F ∗ in G.
We now show that all non-faulty nodes in V (G) − F ∗ have identical state at the end of

this phase. Consider step (c) of this phase. If either Z − F ∗ or N − F ∗ is empty, then
all non-faulty nodes have identical state at the start of the phase and they do not update
their state in step (c). So suppose that both Z − F ∗ and N − F ∗ are non-empty. Observe
that, at the start of step (c), all nodes in Z − F ∗ have identical state of 0, while all nodes
in N − F ∗ have identical state of 1. We show that in step (c) either all nodes in Z − F ∗

update their state to 1, or all nodes in N − F ∗ update their state to 0.

Note that G′ ∈ ΛF ∗(G). By condition AB, either Z ⇝G′ N − F ′ or N ⇝G′ Z − F ′. We
consider each case as follows.
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Case 1: Z ⇝G′ N − F ′.
Consider an arbitrary node v ∈ (Z ∪ N) − F ′. In step (c), v sets Av = Z and Bv = N .
If v ∈ Av − F ′ = Z − F ′, then v has state 0 at the start of this phase and does not update
it in step (c). So suppose that v ∈ Bv − F ′ = N − F ′. Now, if in step (a) v received
the value 0 identically along some f + 1 node-disjoint Zv-paths in G′ − (N ∩ F ′), then
v sets γv = 0 in step (c). We show that such f + 1 node-disjoint Zv-paths do indeed
exist. Since Z ⇝G′ N − F ′, so there exist f + 1 node-disjoint Zv-paths in G′ − (N ∩ F ′).
Without loss of generality, only the source nodes on these paths are from Z. For each
such path, observe that only the source node, say z ∈ Z, can be faulty. If the source
node z is faulty, then by Lemma 8, and construction of G′ and Z, z sent the value 0 on
the first channel on this path in step (a). If z is non-faulty, then by construction of
Z, z flooded value 0 in step (a). Now all other nodes on the path are non-faulty, so v

received value 0 along this path in step (a). Therefore, v received value 0 identically
along the f + 1 node-disjoint Zv-paths in step (a), as required.

Case 2: Z ̸⇝G′ N − F ′ so that N ⇝G′ Z − F ′ by condition AB.
Consider an arbitrary node v ∈ (Z ∪ N) − F ′. In step (c), v sets Av = N and Bv = Z.
If v ∈ Av − F ′ = N − F ′, then v has state 1 at the start of this phase and does not
update it in step (c). So suppose that v ∈ Bv − F ′ = Z − F ′. As in Case 1, since
N ⇝G′ Z − F ′, so there exist f + 1 node-disjoint Nv-paths in G′ − (Z ∩ F ′) such that v

received the value 1 identically along these paths in step (a). Therefore, v sets γv = 1
in step (c), as required.

In both of the cases, all non-faulty nodes have identical state at the end of this phase, as
required. ◀

Using Lemmas 5 and 6, we can now prove the sufficiency of condition AB. Recall that
by Theorem 4, condition AB is equivalent to condition LCR. Thus this shows the reverse
direction of Theorem 1.

Proof of Theorem 1 (⇐ direction). Algorithm 1 satisfies the termination condition be-
cause it terminates in finite time.

In one of the iterations of the main for loop, we have F = F ∗, i.e., F is the actual set of
faulty nodes. By Lemma 6, all non-faulty nodes have the same state at the end of this phase.
By Lemma 5, these states remain unchanged in any subsequent phases. Therefore, all nodes
output an identical state. So the algorithm satisfies the agreement condition.

At the start of phase 1, the state of each non-faulty node equals its own input. By
inductively applying Lemma 5, we have that the state of a non-faulty node always equals
the input of some non-fautly node, including in the last phase of the algorithm. So the
output of each non-faulty node is an input of some non-faulty node, satisfying the validity
condition. ◀
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