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Abstract
Byzantine Agreement (BA) is one of the most fundamental problems in distributed computing, and
its communication complexity is an important efficiency metric. It is well known that quadratic
communication is necessary for BA in the worst case due to a lower bound by Dolev and Reischuk.
This lower bound has been shown to be tight for the unauthenticated setting with f < n/3 by
Berman et al. but a considerable gap remains for the authenticated setting with n/3 ≤ f < n/2.

This paper provides two results towards closing this gap. Both protocols have a quadratic
communication complexity and have different trade-offs in resilience and assumptions. The first
protocol achieves the optimal resilience of f < n/2 but requires a trusted setup for threshold
signature. The second protocol achieves near optimal resilience f ≤ (1/2 − ε)n in the standard PKI
model.
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1 Introduction

Byzantine Agreement (BA) is one of the most fundamental problems in distributed al-
gorithms [21]. It also serves as an important building block in cryptography and distributed
systems. At a high level, Byzantine agreement is the problem for n parties to agree on a value,
despite that up to f of them may behave arbitrarily (called Byzantine faults). Arguably the
most important efficiency metric of Byzantine Agreement is the communication complexity,
since communication will be the bottleneck in applications like state machine replication and
cryptocurrency when there is a large number of parties.

Dolev and Reischuk proved that a quadratic number of messages are necessary for any
perfectly secure BA protocol. More formally, they showed that even in the authenticated
setting (i.e., assuming public key infrastructure and ideal digital signature), any BA protocol
with perfect security (i.e., all executions are correct) has at least one execution where
quadratic number of messages are sent by honest parties. The tightness of this lower bound
was partially established by Berman et al. in the unauthenticated setting with f < n/3.
However, for decades, the best known protocol for the authenticated setting (with f ≥ n/3)
remains the classic Dolev-Strong protocol [14] 1, which uses quadratic messages but cubic
communication. The reason is that in Dolev-Strong, the messages can contain up to f + 1
signatures. Therefore, the optimal worst-case communication complexity of authenticated
BA with f ≥ n/3 has remained an open problem for decades.

1 Dolev-Strong solves a related problem called Byzantine broadcast, but it is easy to transform it into a
BA protocol.
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32:2 Communication Complexity of BA

Table 1 Upper bounds for worst-case communication complexity of Byzantine agreement with
assumptions preserving the quadratic lower bound. ε is any positive constant.

protocol model communication resilience

Berman et al. [6] unauthenticated O(n2) f < n/3
Dolev-Strong [14] authenticated O(κn2 + n3) a) f < n/2 b)

this paper threshold signature O(κn2) f < n/2
this paper authenticated O(κn2) f ≤ ( 1

2 − ε)n

a) The original Dolev-Strong protocol solves BB but can be easily converted
into a BA protocol with an initial round to multicast the inputs. Using
a multi-signature with a list of signer identities attached, the protocol
achieves O(κn2 + n3).

b) Although the original Dolev-Strong BB protocol tolerates f < n faults,
converting it to a BA protocol decreases the fault tolerance to f < n/2,
which is optimal for authenticated BA.

This paper provides two results that help close this gap. More specifically, we show the
following two theorems. Note that when f ≥ n/3, it is necessary to adopt the synchronous and
authenticated setting. Under asynchrony [18], partial synchrony [15], or the unauthenticated
setting [17], BA is impossible for f ≥ n/3.

▶ Theorem 1. Assuming a threshold signature scheme, there exists a Byzantine agreement
protocol with O(κn2) communication complexity tolerating f < n/2 faults where n is the
number of parties and κ is a security parameter.

▶ Theorem 2. Assuming a digital signature scheme with a public-key infrastructure, there
exists a Byzantine agreement protocol with O(κn2) communication complexity tolerating
f ≤ ( 1

2 − ε)n faults where n is the number of parties, κ is a security parameter, and ε is any
positive constant.

As we can see, the above two results achieve quadratic worst-case communication with
different trade-offs. The first result achieves the optimal resilience f < n/2 but relies on a
trusted setup due to the use of threshold signature. On the other hand, the second result is
in the standard PKI model, but there is a small gap in the resilience.

Tightness with respect to the Dolev-Reischuk lower bound. In the Byzantine agreement
and Byzantine fault tolerance literature, it is common and convenient to abstract signatures
as ideal oracles and focus on the aspect of distributed computing [21, 14, 13, 9]. The rational
is that modern cryptography has given us solid understandings and confidence about digital
signatures, and that the probability that an adversary breaks a signature scheme is too small
to be a concern.

When we abstract digital signatures and threshold signatures as ideal oracles with
perfect security, our two results match the quadratic worst-case communication lower bound
established by Dolev and Reischuk. Table 1 compares our results to the current landscape of
worst-case communication complexity of perfectly secure BA.

On this note, it is very important to note that the Dolev-Reischuk lower bound applies to
any protocol that is perfectly secure, even if the protocol has access to ideal digital signature
and threshold signature oracles. With ideal digital signature and threshold signature oracles,
our protocols are perfectly secure. On the other hand, there exist in the literature sub-
quadratic BA protocols [20, 10, 1, 11] that use randomization techniques and allow a negligible
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fraction of the executions to fail. These protocols do not provide perfect security even if we
assume their randomization primitives are ideal. Naturally, they do not address the tightness
of the Dolev-Reischuk lower bound.

We also remark that while it is possible to circumvent the Dolev-Reischuk lower bound
by allowing a small failure probability, it should be clear that if the only source of failure in
a protocol comes from imperfect cryptographic primitive, the protocol will not be able to
circumvent the lower bound, because upgrading the cryptographic primitive from imperfect
security to perfect security (at no extra costs) only strengthens the protocol.

Comparing with state-of-the-art BA solutions. Although our primary motivation of
this study is to show the tightness of the quadratic lower bound of Dolev-Reischuk, the
second result in Theorem 2 has some advantage even over state-of-the-art BA protocols with
assumptions that are not subject to the Dolev-Reischuk bound. To the best of our knowledge,
our second protocol is the first to achieve the following three properties simultaneously
under the standard PKI model: (1) near-optimal resilience of f ≤ ( 1

2 − ε)n, (2) security
against an adaptive adversary, (3) expected sub-cubic communication complexity. In fact, our
protocol achieves worst-case quadratic communication and is secure against a strongly rushing
(defined in [1]) adaptive adversary. The works of Berman et al. [6] and King-Saia [20] achieve
(sub-)quadratic communication and adaptive security but tolerate only f < n/3. Abraham
et al. [2, 1] achieve (sub-)quadratic communication and adaptive security under f ≤ ( 1

2 − ε)n,
but require some trusted setup assumption due to the use of threshold signature or verifiale
random functions. Tsimos et al. [28] recently achieve nearly-quadratic communication in the
standard PKI model for f ≤ (1− ε)n (for broadcast), but it is secure only against a static
adversary.

Organization. The rest of the paper is organized as follows. In the rest of this section, we
briefly review related work and give an overview of the techniques we use to achieve our
two results. Section 2 introduces definitions, models and notations. Section 3 introduces
the recursive framework to get a BA protocol with quadratic communication including
the definition of GBA primitive. Section 4 presents two GBA protocols to instantiate two
BA protocols with different trade-offs to complete our results. Finally, we discuss future
directions and conclude the paper in Section 5.

1.1 Technical Overview
Abstracting the recursive framework of Berman et al. To obtain the results, we revisit the
Berman et al. [6] protocol. At a high level, Berman et al. is a recursive protocol: it partitions
parties into two halves recursively until they reach a small instance with sufficiently few
(e.g., a constant number of) participants. Since the upper bound on the fraction of faults
1/3 is preserved in at least one of two halves, the “correct” half directs the entire parties
to reach an agreement. If the communication except the two recursive calls is quadratic,
the communication complexity of the entire protocol is also quadratic. The challenge is to
prevent an “incorrect” run of recursive call (in a half with more than 1/3 faults) from ruining
the result. Berman et al. solve this problem with a few additional rounds of communication
called “universal exchange” before each recursive call. It helps honest parties stick to a value
when all honest parties already agree on the value, thus preventing an incorrect recursive
call from changing the agreed-upon value.
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32:4 Communication Complexity of BA

Back to our setting of f ≥ n/3, we will use the recursive framework of Berman et al..
However, the universal exchange step of Berman et al. relies on a quorum-intersection
argument, which only works under f < n/3. To elaborate, the quorum size can be at most
n−f ; two quorums of size n−f intersect at 2(n−f)−n = n−2f parties; for this intersection
to contain at least one honest party, it requires n− 2f > f , or equivalently f < n/3.

To achieve our goal of BA with f ≥ n/3, we observe that the functionality achieved by
the universal exchange can be abstracted as a primitive called graded Byzantine agreement
(GBA), which we formally define in Section 3. If we can construct a GBA with quadratic
communication and plug it into the recursive framework, we will obtain a BA protocol with
quadratic communication. Thus, it remains to construct quadratic GBA.

Two constructions of Graded BA with different trade-offs. As the name suggests, the
GBA primitive shares some similarities with graded broadcast studied in [16, 19, 2], but it is
harder to construct due to the fact that every party has an input. This can be addressed in
two ways, leading to our two constructions.

The first method way is to resort to the (well-established) use of threshold signatures [7, 29].
Roughly, a threshold signature condenses a quorum of n− f = Ω(n) votes into a succinct
proof of the voting result. This way, a verifiable voting result can be multicasted to all
parties using quadratic total communication (linear per node). This achieves Theorem 1 and
requires a trusted setup for threshold signature.

Next, we try to construct a quadratic GBA without trusted setup or threshold signature
scheme. This turns out to be much more challenging. Naïvely multicasting the voting result
would require quadratic communication per node (cubic in total) since the voting result
consists of a linear number of votes. To get around this problem, we replace the multicast
step with communication through an expander graph with constant degree. As each party
transmits the voting result to only a constant number of neighbors, the communication is
kept quadratic in total even though the voting result consists of a linear number of votes.
Our key observation is that even though some of the honest parties may fail to receive or
transmit the voting result (because all their neighbors are corrupted), as long as a small
but linear number of honest parties transmit the voting result, the good connectivity of the
expander helps prevent inconsistent decisions between honest parties. In order to verify a
linear number of honest parties actually transmit, a quorum of n− f parties who claim to
have transmitted should contain at least a linear number of honest parties, which results in
the gap of ϵn in the resilience in Theorem 2.

1.2 Related Work
Byzantine Agreement was first introduced by Lamport et al. [26, 21]. Without cryptography
(i.e., the unauthenticated setting), BA can be solved if and only if f < n/3. Assuming a
digital signature scheme with a public-key infrastructure (i.e., the authenticated setting),
BA can be solved if and only if f < n/2. Lamport et al. gave BA protocols for both
settings, but they both require exponential communication. Later, polynomial communication
protocols were shown in both settings. In particular, Dolev and Strong [14] showed a
O(κn3) communication protocol for the authenticated setting and Dolev et al. [12] showed a
O(n3 log n) communication protocol for the unauthenticated setting. For the unauthenticated
setting, Berman et al. further reduced the communication to O(n2), matching a lower bound
established by Dolev and Reischuk [13], which states that any deterministic protocol with
perfect security even in the authenticated setting must incur Ω(n2) communication complexity.
A recent work called HotStuff [29] can be modified [27] to achieve O(κn2) communication
with f < n/3 for the authenticated setting.
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We also mention several orthogonal lines of work. Some works known as extension
protocols [8, 24, 25, 22] achieve an optimal O(nl) communication complexity for sufficiently
long inputs of size l using the BA oracle for short inputs. When the input size is small, e.g.,
l = O(1), the communication complexity degenerates to that of the underlying BA oracle.
Our work provides improved oracles for these protocols.

Another line of works study protocols with sub-quadratic communication [20, 10, 1]. The
idea is to select a random and unpredictable subset of parties to run the protocol (often
using cryptographic primitives such as verifiable random function). Even after assuming ideal
common randomness, these protocols will still have a small fraction of insecure executions, and
are thus not subject to the Dolev-Reischuk lower bound. In contrast, we only use (threshold)
signatures for message authentication. Once we assume ideal (threshold) signatures, our
protocols are perfectly secure and are subject to the Dolev-Reischuk.

Other works study protocols with expected quadratic communication protocols [16, 19, 7,
23, 4, 2]. These protocols can require super-quadratic communication in the worst-case.

2 Preliminaries

Execution model. We define a protocol as an algorithm for a set of parties. There are a
set of n parties, of which at most f < n are Byzantine faulty and behave arbitrarily. We
assume f = Θ(n). All presented protocols are secure against f adaptive corruption that
can happen anytime during the protocol execution. Moreover, we assume a strongly rushing
adaptive adversary [2, 1] who can corrupt parties in a round after seeing the messages they
sent in that round and immediately delete those messages from network before they reach
other parties. A party that is not faulty throughout the execution is said to be honest and
faithfully execute the protocol. We use the term quorum to mean the minimum number of
all honest parties, i.e., n− f . A protocol proceeds in synchronous rounds. If an honest party
sends a message at the beginning of some round, an honest recipient receives the message at
the end of that round.

Ideal (threshold) signatures. As mentioned, our two results, after assuming an ideal
signatures and threshold signatures, address the tightness of the Dolev-Resichuk lower bound.
We define the interface of signature and threshold signature oracles.

▶ Definition 3 (Digital signature). A digital signature oracle provides the following interfaces:
σ ← Signr(x). Party r can invoke this interface to obtain a signature σ by party r on
message x.
b← Verify(σ, x, r). Any party can invoke this interface to check whether σ is a signature
by party r on message x.

The oracle satisfies the following property.

For any σ, x, r, Verify(σ, x, r) outputs b = 1 if and only if Signr(x) has been queried by
party r and the output is σ.

The above property ensures correctness, i.e., correctly generated signatures are always
verified, and unforgeability, i.e., no one other than party r can generate a signature for party r.
For simplicity, we use ⟨x⟩r to denote a signed message x by party r, i.e., ⟨x⟩r = (x, σ) where
σ = Signr(x) Any party can verify a signed message ⟨x⟩r = (x, σ) by querying Verify(σ, x, r).

DISC 2021
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▶ Definition 4 ((t, n)-threshold signature). Each party r have access to the (t, n)-threshold
signature oracle that provides the following interfaces, where t < n/2 is a given threshold.

σ ← Signr(x). Party r can invoke this interface to obtain a signature share σ by party r

on message x.
b ← VerifyShare(σ, x, r). Any party can invoke this interface to check whether σ is a
signature share by party r on message x.
Σ← Combine(x, {σ1, ..σt}, {r1, ..rt}). Any party can invoke this interface to combine a
set of signature shares {σ1, ..σt} on the message x from t different parties {r1, ..rt} into
a threshold signature Σ.
b← Verify(x, Σ). Any party can invoke this interface to check whether Σ is a threshold
signature generated from valid t signature shares.

The oracle satisfies the following properties.
For any σ, x, r, VerifyShare(σ, x, r) outputs b = 1 if and only if Signr(x) has been queried
by party r and the output is σ.
For any x, Verify(x, Σ) outputs b = 1 if and only if there exist {σ1, ..σt} and {r1, ..rt}
such that for all 1 ≤ i ≤ t, VerifyShare(σi, x, ri) = 1, and Combine(x, {σ1, ..σt}, {r1, ..rt})
has been queried by a party and the output is Σ.

These two properties together satisfy the correctness and unforgeability properties of the
signature shares and threshold signatures as before, and in addition a robustness property,
i.e., t valid signature shares can always be combined into a valid threshold signature.

For simplicity, we use the same notation ⟨x⟩r as in digital signature to denote a tuple
of message x and a signature share σ ← Signr(x). Each party r verifies a signature share
⟨x⟩r = (x, σ) by querying VerifyShare(σ, x, r). A set of ⟨x⟩∗ from t different parties can be
combined into a threshold-signed x and verified by any party, using the Combine and Verify
interfaces.

Setup assumptions. In practice, the above oracles are realized with negligible error with
a PKI setup or trusted setup. The currently known threshold signature schemes require a
trusted dealer who generates all public and private keys for all parties and a group public key
to verify a combined full signature, henceforth we call it trusted setup. The digital signature
requires the standard PKI setup and does not require any trusted setup beyond that. In
that case, each party independently generates a pair of public and private keys without any
extra assumption.

The Dolev-Reischuk lower bound. The Dolev-Reischuk lower bound holds (without any
modification) even with ideal (threshold) signature oracles. We also note that the Dolev-
Reischuk lower bound, which was originally proved for deterministic protocols, can be
extended to randomized protocols as well. More precisely, any BA protocol (either de-
terministic or randomized) cannot simultaneously enjoy perfect security and sub-quadratic
worst-case communication complexity. This has been observed and briefly mentioned in [20]
and we show a proof for completeness.

▶ Theorem 5. There does not exist a (either deterministic or randomized) BA protocol with
worst-case communication complexity of at most f2/4 that is perfectly secure.

Proof. Suppose for the sake of contradiction that there exists such a protocol P . If P is
randomized, we can transform P into a deterministic protocol P ∗ by fixing the output of the
all random coin tossing to 0. Since P if perfectly secure and has at most f2/4 communication
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cost in the worst case, P ∗ is a deterministic BA protocol that is perfectly secure and has at
most f2/4 communication complexity. This contradicts the original Dolev-Reischuk lower
bound [13]. ◀

Give this more general lower bound, our protocols, regardless of whether or not ideal
digital signatures and threshold signatures are considered deterministic or randomized, are
subject to the quadratic worst-case lower bound.

A remark on complexity metrics. The communication complexity of a protocol is the
maximum number of bits sent by all honest parties combined across all executions. Since
all messages in our protocols are signed, we use the signature size κ as the unit of measure
for communication. We assume the size of any input value is on the order of κ. The Dolev-
Reichuk lower bound, however, is in terms of the number of messages. With no assumption
on the message size, this leaves a gap of κ in the upper and lower bounds. If we further
assume that every message in authenticated protocols is signed, then the bounds match. It
is an interesting open problem whether we can design an authenticated protocol that leaves
most of the messages unsigned to do better than O(κn2).

Byzantine Agreement. In Byzantine Agreement (BA), each party has an input value, and
all parties try to decide on the same value. The requirement of BA is defined as follows.
▶ Definition 6 (Byzantine Agreement (BA)). A Byzantine agreement protocol must satisfy
the following properties.
1. consistency: if two honest parties r and r′ decide values v and v′, then v = v′.
2. termination: every honest party decides a value and terminates.
3. validity: if all honest parties have the same input value, then all honest parties decide

that value.
Although our main focus of this paper is BA, we also mention a closely related problem

called Byzantine broadcast (BB). In BB, a designated sender has an input to broadcast to
all parties, and all parties try to decide on the same value. The requirement of BB is defined
as follows.
▶ Definition 7 (Byzantine Broadcast (BB)). A Byzantine broadcast protocol must satisfy the
following properties.
1. consistency: same as above.
2. termination: same as above.
3. validity: if the sender is honest, then all honest parties decide the sender’s value.

It is easy to transform a BA protocol into a BB protocol preserving the same resilience and
quadratic communication complexity by having an initial round for the sender to broadcast
its input value before starting the BA protocol [21]. As the Dolev-Reischuk lower bound
holds for both BA and BB, our results establish the tightness of the quadratic communication
complexity for BB as well (though the resilience f < n/2 is not optimal for BB, which is
possible under any f < n).

3 Recursive Framework of Byzantine Agreement with Quadratic
Communication

This section reviews the recursive framework to construct a BA protocol with quadratic
communication introduced by Berman et al. [6] for f < n/3, and making it works for
f < n/2.

DISC 2021
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Dissecting Berman et al. In the Berman et al. protocol, parties are partitioned into two
halves, and each half runs the BA protocol recursively in sequential order. The partition
continues until we reach a BA instance with a constant number of parties, where using
any inefficient BA protocol will not impact the overall complexity. At each recursive step,
additional quadratic communication is incurred besides the two recursive BA calls. It is not
hard to see that the overall communication complexity is quadratic.

Since the fraction of faults in the entire parties is less than 1/3, one of two halves also has
faults of less than 1/3 and thus achieve a “correct” BA. However, even if the first committee
is correct, the potential incorrect second BA instance may “ruin” the result of the first one.
To prevent this, parties run a few rounds of preprocessing steps called “universal exchange”
in Berman et al. before each recursive BA call. The universal exchange step helps parties
“stick to” a value (ignoring the recursive BA output) if all honest parties already agree on
that value. In more detail, if the first run of recursive BA is correct and all honest parties
agree on a value, the universal exchange before the second run makes sure all honest parties
stick to it and the second run cannot change the agreed-upon value.

A tricky situation this universal exchange step needs to handle is when some honest
parties stick to a value but other parties do not. In this case, this step needs to ensure that,
if any honest party sticks to a value, other parties at least input that value to the subsequent
BA call. The validity property of a correct recursive BA call will ensure agreement.

Here, the above recursive construction itself is independent of f , but the universal
exchange step of Berman et al. relies on a quorum-intersection argument which only works
under f < n/3. To make the framework independent of f , we abstract the functionality of
this step as graded Byzantine agreement (GBA), since it is essentially the agreement version
of graded broacast [16, 19]. In the rest of this section, we formally define the GBA primitive
and construct a BA protocol using a GBA protocol as a black-box and prove its correctness.

3.1 Graded Byzantine Agreement
In graded Byzantine agreement (GBA), each party r has an input, and outputs a tuple (v, g)
where v is the output value and g ∈ {0, 1} is a grade bit.

▶ Definition 8 (Graded Byzantine Agreement (GBA)). A Graded Byzantine agreement protocol
must satisfy the following properties.
1. consistency: if an honest party outputs (v, 1), then all honest parties output (v, ∗).
2. validity: if all honest parties have the same input value v, then all honest parties output

(v, 1)
3. termination: every honest party outputs and terminates.

The “stick to” nature is expressed by the grade bit g. The consistency property requires
that if an honest party sticks to a value v, i.e., output v with g = 1, then all honest parties
output the same value v. The validity property states that if all honest parties have the same
input value v, they all stick to the value. These two properties capture what the universal
exchange step needs to achieve explained at an intuitive level.

3.2 Recursive Construction of Byzantine Agreement
Next, we present the recursive BA protocol RBA in Figure 1. Let Qw denote a set of parties
that run a BA protocol. Since the protocol is recursive, the set Qw is also defined recursively.
Q1 is a set of all n parties. Q2w is the first ⌈|Qw|/2⌉ parties in Qw, and Q2w+1 is the
remaining ⌊|Qw|/2⌋ parties. All parties start by running RBA(Q1) at the beginning.
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RBA(Qw)

Let r be a party. A variable vr is initialized with the input value.

If |Qw| ≤M , parties in Qw execute any inefficient BA protocol with the f < n/2
resilience and output the decision of this inefficient BA. Otherwise, run the following
steps, and output vr and terminate.

1. Run GBA(Qw) with input vr. Let (vr, gr) be r’s output from GBA(Qw).
2. If r ∈ Q2w, run RBA(Q2w) with input vr, and send the output v to all parties in Qw.

Otherwise, wait until the step finish.
3. If r receives the same value v from a majority of parties in Q2w and gr = 0, set vr to

v.

4. Run GBA(Qw) with input vr. Let (vr, gr) be r’s output from GBA(Qw).
5. If r ∈ Q2w+1, run RBA(Q2w+1) with input vr, and send the output v to all parties

in Qw. Otherwise, wait until the step finish.
6. If r receives the same value v from a majority of parties in Q2w+1 and gr = 0, set vr

to v.

Figure 1 Byzantine Agreement with O(κn2) communication and f < n
2 .

If the size of the RBA instance gets below a constant, denoted as M in the figure, parties
can run any inefficient BA protocol with cubic or even higher communication complexity
but with the desired resilience up to f < n/2. There are many such constructions in the
literature [21, 14, 19, 2]; we do not describe these protocols. Otherwise, parties run two
instances of RBA recursively to further reduce the instance size. Before each recursive call,
they run a given GBA protocol denoted GBA. The grade bit output gr of the GBA determines
if a party r “sticks to” the GBA output or adopts the recursive RBA output.

Correctness of the Protocol. We prove the correctness of RBA for f < n/2 assuming
the given GBA protocol GBA also tolerates f < n/2. The proof is easily extended for
f ≤ ( 1

2 − ε)n. Below, minority faults within a set of parties Q mean at most ⌊(|Q| − 1)/2⌋
faults.

▶ Lemma 9. RBA solves BA in the presence of minority faults.

Proof. Termination is obvious. The proof for validity is also easy. If all honest parties have
the same input value vr = v, then due to the validity of GBA, all honest parties output (v, 1)
in step-1. Thus, they do not change vr at step-3 and input vr = v into the GBA of step-4.
Again due to the validity of GBA, all honest parties output (v, 1) in step-4, do not change vr

at step-6, and all output v.
Next, we prove consistency. When |Q| ≤ M , the correctness of RBA reduces to the

correctness of the given inefficient BA. We just need to prove for the recursive step. Specifically,
we will prove that RBA solves BA under n parties with minority faults, if RBA solves BA
under < n parties with minority faults.

Consider RBA(Qw). Since Qw has minority faults, at least one of the two halves Q2w

and Q2w+1 has minority faults. Let us first consider the case where Q2w has minority faults.
Here, there are two situations with regard to the result of step-1: (i) all honest parties in Qw

set gr to 0, or (ii) at least an honest party in Qw sets gr to 1.

DISC 2021
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In the first situation, all honest parties will set vr to the majority output of step-2. By
the consistency and termination of RBA(Q2w), all honest parties in Qw receive the same
value v from honest parties in Q2w (which constitute a majority in Q2w ). Thus, all honest
parties in Qw set vr to v in step-3.

In the second situation, since some honest party sets gr to 1 in step-1, then by the
consistency of GBA, all honest parties in Qw set vr to the same value v at the end of step-1.
By the validity of RBA(Q2w), all honest parties in Q2w output v, so all honest parties in Qw

receive v from a majority of parties in Q2w. Thus, all honest parties in Qw set vr to v in
step-3.

Therefore, in both situations, all honest parties in Qw have the same value vr = v at the
beginning of step-4. Then, by the validity of GBA, all honest parties in Qw set (vr, gr) to
(v, 1) in step-4, so will not change their vr in step-6 and all output the same value v.

The other case where Q2w+1 has minority faults can be proved similarly. No matter
which of the two situations holds at step-4 (all have gr = 0 or some have gr = 1), all honest
parities in Qw have the same value vr = v at the end of step-6 and output the same value v.
Therefore, regardless of whether Q2w or Q2w+1 has minority faults, consistency holds. ◀

With some foresight, we will construct GBA with quadratic communication in the later
section. This will give RBA with quadratic communication in total.

▶ Lemma 10 (Communication Complexity). If the communication complexity of GBA is
O(κn2), then the communication complexity of RBA is O(κn2).

Proof. The communication complexity of RBA is given as a recurrence below. Let s be the
number of parties in an RBA instance.

C(s) =
{

O(κ) (if s ≤M)
C(⌊s/2⌋) + C(⌈s/2⌉) + O(κs2) (otherwise)

For any n, the depth of the recursion k satisfies 2k−1M ≤ n ≤ 2kM . Hence, C(n) ≤ 2kO(κ)
+
∑k

i=0 2iO(κ(n/2i)2) = O(κn2). ◀

4 Two Constructions of Graded Byzantine Agreement

This section presents two constructions of GBA protocols with different trade-offs to instan-
tiate two BA protocols from the recursive framework in the previous section and complete
the proof of Theorem 1 and 2.

4.1 Graded Byzantine Agreement with Threshold Signature Scheme
We first present a GBA protocol (denoted 1

2 -GBA) with quadratic communication and
f < n/2 assuming a threshold signature scheme, which complete the proof of Theorem 1.
We describe 1

2 -GBA in Figure 2. The parameter Q is a set of parties that participate in the
protocol. Let n = |Q|.

Intuitive overviews. The construction is inspired by a few recent work on synchronous BB
and BFT protocols [2, 3, 5]. Rounds 1–3 form a set of n − f vote-1 (vote1-certificate) for
the same value v, denoted C1(v). Here, if an honest party votes for a value v in round 3, it
must have received and multicast n− f echo (echo-certificate) for v, denoted E(v) in round
2. Moreover, if a party receives a conflicting echo-certificate E(v′) by the end of round 2, it
does not vote in round 3. Therefore, rounds 1 and 2 prevent conflicting vote1-certificates
from being created.
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1
2 -GBA(Q)

Let r be a party. n = |Q|, and f < ⌊(n− 1)/2⌋. A variable vr is initialized to the input
value. g is initialized to 0. Run the following within the set of parties Q. ⟨x⟩r is a
signature share on message x of a (n− f, |Q|)-threshold signature.

1. Multicasts ⟨echo, vr⟩r.
2. If r receives n− f ⟨echo, v⟩∗, combine them into a threshold signature denoted E(v),

and then multicasts E(v).
3. If r have multicast E(v) in round 2, and does not receive E(v′) (v′ ̸= v) by the end of

round 2, multicasts ⟨vote-1, v⟩r.
4. If r receives n − f ⟨vote-1, v⟩∗, combine them into a threshold signature denoted
C1(v), and then multicasts C1(v) and ⟨vote-2, v⟩r.
At the end of the round, if r receives C1(v), sets vr to v. If r receives n−f ⟨vote-2, v⟩∗,
denoted C2(v), sets g to 1.

Finally, outputs (vr, g).

Figure 2 Graded Byzantine agreement with f < n/2 with a threshold signature scheme.

Round 4 forms a set of n− f vote-2 (vote2-certificate) for a value v, denoted C2(v). If a
party receives a vote1-certificate C1(v) by the end of round 3, it sends vote-2 for a value v

(along with C1(v)) in round 4. Therefore, if a vote2-certificate C2(v) is formed, all honest
parties can receive a vote1-certificate C1(v).

Finally, a party outputs a value v if it receives a vote1-certificate C1(v), and it further
sets the grade bit g to 1 if it also receives a vote2-certificate C2(v). Consistency follows from
the properties above. Moreover, if all honest parties have the same input value v, all honest
parties (at least n− f) receive both C1(v) and C2(v) and output (v, 1), so validity also holds.

Correctness of the protocol. We prove the correctness of 1
2 -GBA assuming f < n/2. The

termination of 1
2 -GBA is trivial, and thus we prove the consistency and validity.

▶ Lemma 11. If C1(v) and C1(v′) are both created, then v = v′.

Proof. Suppose C1(v) is created, then at least an honest party r must have multicast vote-2
for v in round 3. That implies r received E(v) and multicast it in round 2. Then, all honest
parties must have received E(v) by round 3, and all honest parties could not have multicast
vote-2 for v′ ̸= v. Therefore, C1(v′) cannot be created unless v′ = v. ◀

▶ Lemma 12 (Consistency). If an honest party outputs (v, 1), then all honest parties output
(v, ∗)

Proof. Suppose an honest party outputs (v, 1), then it must have received C2(v) for a value
v by the end of round 4. Then, at least one honest party must have multicast C1(v) in round
4, and all honest parties must have received it by the end of round 4. Since there is not
C1(v′) for a different value v′ by Lemma 11, all honest parties set vr to v at the end of round
4 and thus output v. ◀

▶ Lemma 13 (Validity). If all honest parties have the same input value v, then all honest
parties output (v, 1).

DISC 2021
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Proof. If all honest parties have the same input value v, they all multicast ⟨echo, v⟩ in
round 1, and thus E(v) should be formed and E(v′) for v′ ̸= v cannot be formed. In the same
way, all honest parties multicast ⟨vote-1, v⟩ in round 3 and ⟨vote-2, v⟩ in round 4. Therefore,
C1(v) and C2(v) should be formed and C1(v′) and C2(v′) for v′ ̸= v cannot be formed. Thus,
all honest parties output (v, 1). ◀

Communication complexity and discussion. With threshold signatures, all certificates
E(v), C1(v), C2(v) are O(κ) in size, and the commutation complexity of 1

2 -GBA is clearly
O(κn2). But we note that the RBA protocol in Figure 1 invokes GBA with different numbers
of participants for each depth in the recursion and hence requires different thresholds for
threshold signatures. As a result, each party needs Θ(log n) key setups.

4.2 Graded Byzantine Agreement without Threshold Signature Scheme
Next, we present a GBA protocol (denoted ( 1

2 − ε)-GBA) with quadratic communication and
f ≤ ( 1

2 − ε)n for any positive constant ε without relying on any threshold signature scheme
or trusted setup (beyond the standard PKI). We describe ( 1

2 − ε)-GBA in Figure 3.

Intuitive overview. The main motivation of ( 1
2 − ε)-GBA is to remove the use of threshold

signature. Thus, let us first review why threshold signature scheme is necessary in the GBA
protocol from the previous section. The threshold signature scheme is used to aggregate a
set of n − f signatures (quorum certificate E(v) in round 2 and vote1-certificate C1(v) in
round 4). If these are not aggregated, each party needs to multicast linear-sized certificates,
leading to cubic communication in total.

Therefore, to remove aggregation while keeping the communication quadratic, we need
to remove multicast. However, multicasting quorum certificates in round 2 and 4 is key to
consistency. Specifically, multicasting an echo-certificate E(v) in round 2 helps honest parties
detect a conflicting echo-certificate E(v′), which allows honest parties to decide the value v

safely; multicasting a vote1-certificate C1(v) in round 4 helps notify all honest parties of the
existence of C1(v), which allows the party to decide the value v with confidence, i.e., grade
bit g = 1.

Our key new technique is to replace the multicast steps with more efficient yet robust
dissemination of certificates through a predetermined expander graph with a constant degree.

▶ Definition 14 (Expander). An (n, α, β)-expander (0 < α < β < 1) is a graph of n vertices
such that, for any set S of αn vertices, the number of neighbors of S is more than βn.

It is well-known that for any n and 0 < α < β < 1, (n, α, β)-expanders exist. For our
purpose, we need an (n, 2ε, 1− 2ε)-expander; in other words, we set α = 2ε and β = 1− 2ε.
Henceforth, we write an (n, 2ε, 1 − 2ε)-expander as Gn,ε. For completeness, we show in
Appendix A that for all positive ε and for all n, the required expander Gn,ε always exists.

Instead of sending a quorum certificate to all other parties, a party propagates it to a
constant number of neighbors in Gn,ε. Therefore, the total number of messages is reduced
from quadratic to linear, and thus the total communication is kept quadratic even though
some messages contain a linear number of signatures. Our key observation is that although
the message is not sent to everyone (since the expander is not a fully connected graph), it is
sufficient to maintain consistent decisions among honest parties.

In more detail, in round 3, each party multicasts vote-1 for a value v only if it propagated
an echo-certificate E(v) in round 2 and it does not receive a conflicting echo-certificate
E(v′). If a vote1-certificate C1(v) forms, at least n− 2f = 2εn are honest. They must have
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( 1
2 − ε)-GBA(Q)

Let r be a party. n = |Q|, and f = ⌊( 1
2 − ε)n⌋. A variable vr is initialized to the input

value. g is initialized to 0. “Propagate” means sending to all neighbors in Gn,ε and
“multicast” means sending to all n parties. Run the following within the set of parties Q.
⟨x⟩r is a digital signature on a message x.

1. Multicasts ⟨echo, vr⟩r.
2. If r receives n− f ⟨echo, v⟩∗, denoted E(v), propagates E(v).
3. If r have propagated E(v) in round 2, and does not receive E(v′) (v′ ̸= v) by the end

of round 2, multicasts ⟨vote-1, v⟩r.
4. If r receives n − f ⟨vote-1, v⟩∗, denoted C1(v), propagate C1(v), and multicasts
⟨vote-2, v⟩r. .

5. If r receives C1(v) by the end of round 4, multicasts ⟨vote-3, v⟩r.
At the end of the round, if r receives f + 1 ⟨vote-3, v⟩∗, sets vr to v. If r receives
n− f ⟨vote-2, v⟩∗, denoted C2(v), set g to 1.

Finally, outputs (vr, g).

Figure 3 Graded Byzantine agreement with f ≤ ( 1
2 − ε)n without threshold signature scheme.

propagated E(v) and it will be received by more than (1− 2ε)n = 2f parties. Out of these,
at least f + 1 are honest and will not vote for a conflicting value. This guarantee the unique
existence of vote1-certificate C1(v).

Confirming the existence of a vote1-certificate is trickier as we cannot afford multicasts
to notify all parties. We achieve this in two steps. In round 4, after propagating C1(v),
the party multicast vote-2 for v. If a vote2-certificate C2(v) forms, due to the expansion
property, at least f + 1 honest parties receive C1(v) by the end of round 4. Then, in round 5,
if a party receives C1(v), it multicast vote-3 message for v. As at least f + 1 honest parties
receives C1(v), all honest parties can receive f + 1 vote-3 message for v, which works as a
succinct proof of existence of C1(v). This allows all honest parties to confirm the existence of
a vote1-certificate.

Correctness of the protocol. We prove the correctness of ( 1
2−ε)-GBA assuming f ≤ ( 1

2−ε)n
for any positive constant ε. The termination of ( 1

2 − ε)-GBA is trivial, and thus we prove the
consistency and validity.

▶ Lemma 15. If C1(v) and C1(v′) are both created, then v = v′.

Proof. Suppose C1(v) is created, then at least 2εn honest parties must have propagated E(v)
in round 2. Then, due to the expansion property of Gn,ε, more than 2f parties, out of which
at least f + 1 honest parties must have received E(v) by the end of round 2, and do not
send ⟨vote-1, v′⟩∗ for a different value v′ ̸= v in round 3. Therefore, C1(v′) cannot be created
unless v′ = v. ◀

▶ Lemma 16 (Consistency). If an honest party outputs (v, 1), then all honest parties output
(v, ∗).

DISC 2021
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Proof. Suppose an honest party outputs (v, 1), then it must have received C2(v) for a value
v by the end of round 5. Then, at least 2εn honest parties must have propagated C1(v)
in round 4. Due to the expansion property of Gn,ε, more than 2f parties, out of which at
least f + 1 honest parties must have received C1(v) by the end of round 4, and multicast
⟨vote-3, v⟩∗ in round 5. Thus, all honest parties must have received f + 1 ⟨vote-3, v⟩∗ by the
end of round 5. Here, as C1(v′) for a different value v′ ̸= v cannot form by Lemma 15, honest
parties could not have multicast ⟨vote-3, v′⟩∗. Therefore, all honest party could not have
received f + 1 ⟨vote-3, v′⟩∗, and thus output v. ◀

▶ Lemma 17 (Validity). If all honest parties have the same input value v, then all honest
parties output (v, 1)

Proof. If all honest parties have the same input value v, they all multicast ⟨echo, v⟩ in round
1, and thus E(v) must form and E(v′) for v′ ≠ v cannot form. Then, all honest parties
multicast ⟨vote-1, v⟩ in round 3, propagate C1(v) and multicast ⟨vote-2, v⟩ in round 4, and
⟨vote-3, v⟩ in round 5. Therefore, all honest parties receive both C2(v) and f + 1 ⟨vote-3, v⟩∗,
and output (v, 1). ◀

Communication complexity. All certificates E(v), C1(v), C2(v) are O(κn) in size, but are
only sent through the degree-d expander. All the multicasted messages are O(κ) in size.
Thus, the communication complexity of ( 1

2 − ε)-GBA is O(κn2d). Appendix A shows that
d = O( 1

ε ) suffices, so the communication complexity of ( 1
2 − ε)-GBA is O(κn2) when ε is a

constant, and is O(κn2/ε) in general. This communication complexity is inherited in the
RBA protocol in Figure 1.

5 Conclusion

In this paper, we provided two results: (1) a BA protocol with quadratic communication
with optimal resilience f < n/2 with a trusted setup, and (2) a BA protocol with quadratic
communication with near optimal resilience f ≤ ( 1

2 − ε)n without trusted setup. Even with
our new results, the tightness of the Dolev-Reischuk lower bound is still open for some
settings, for exmaple, BA under a standard PKI model with ( 1

2 −ε)n < f < n/2, or quadratic
BB with f ≥ n/2 even with a trusted setup. These are intriguing open questions for future
work.
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A Expander

We show that an expander Gε in the Definition 14 exists for all positive constant ε. We use
Γ(V, G) to denote a set of all neighbors of V in a graph G.

▶ Theorem 18 (Existence of Expander). For all positive integer n and positive ε, there exists
an expander Gn,ε with degree d = O( 1

ε ).

Proof. Let c = 2ε and Gn,ε is an (n, c, 1− c)-expander. For c ≥ 1/2, the expansion property
becomes trivial. Note that for our purpose, we can consider a vertex a neighbor of itself, so
a graph with a self edge for every vertex is an (n, c, 1− c)-expander for c ≥ 1/2. So we just
need to focus on c < 1/2.

Consider a random d degree graph G taking the union of random d perfect matchings (if
n is odd, the first party has two links). In each perfect matching P , for any set of cn parties
(say S), and any set of (1− c)n parties (say T ), the probability that Γ(S, P ) ⊆ T is at most

Pr[Γ(S, P ) ⊆ T ] ≤
(

(1− c)n
n

) cn
2

= (1− c) cn
2 .

Thus, the probability that any set of cn parties do not expand in the graph, i.e., |Γ(S, G)| ≤
(1− c)n for any S, is at most(

n

cn

)(
n

(1− c)n

)
(1− c) cdn

2

≤
(e

c

)cn
(

e

1− c

)(1−c)n

(1− c) cdn
2

≤

(
e

(
1
c

)c( 1
1− c

)1−c

(1− c) cd
2

)n

The above probability upper bound is smaller than 1 (in fact, exponentially small in n),
when the degree d is sufficiently large. The precise requirement on d is d

2 > 1
c −1+ c log c−log e

c log(1−c) .

It is not hard to show that when 0 < c < 1
2 , d = O( 1

c ) = O( 1
ε ) will suffice. This means there

is a non-zero (in fact, overwhelmingly large) probability that a randomly chosen graph is an
expander. Thus, Gn,ε with degree d = O( 1

ε ) exists. ◀
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