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—— Abstract

Let G be a graph on n nodes. In the stochastic population protocol model, a collection of n
indistinguishable, resource-limited nodes collectively solve tasks via pairwise interactions. In each
interaction, two randomly chosen neighbors first read each other’s states, and then update their
local states. A rich line of research has established tight upper and lower bounds on the complexity
of fundamental tasks, such as majority and leader election, in this model, when G is a clique.
Specifically, in the clique, these tasks can be solved fast, i.e., in n polylogn pairwise interactions,
with high probability, using at most polylogn states per node.

In this work, we consider the more general setting where G is an arbitrary graph, and present a
technique for simulating protocols designed for fully-connected networks in any connected regular
graph. Our main result is a simulation that is efficient on many interesting graph families: roughly,
the simulation overhead is polylogarithmic in the number of nodes, and quadratic in the conductance
of the graph. As an example, this implies that, in any regular graph with conductance ¢, both
leader election and exact majority can be solved in ¢~ 2 - npolylogn pairwise interactions, with
high probability, using at most ¢~ 2 - polylogn states per node. This shows that there are fast and
space-efficient population protocols for leader election and exact majority on graphs with good
expansion properties.
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1 Introduction

In distributed computing, population protocols [4] have become a popular model for invest-
igating the collective computational power of large collections of communication-bounded
agents with limited computational capabilities. This model consists of n identical agents,
seen as finite state machines, and computation proceeds via pairwise interactions of the
agents, which trigger local state transitions. The sequence of interactions is provided by
a scheduler, which picks pairs of agents to interact. Upon every interaction, the selected
agents observe each other’s states, and then update their local states. The goal is to have
the system reach a configuration satisfying a given predicate, while minimising the number
of interactions (time complexity) and the number of states per node (space complexity).

Early work on population protocols focused on the computational power of the model
under various interaction graphs [4, 5]. More recently, the focus has shifted to complexity,
often in the form of trade-offs between time and space complexity, e.g. [3, 17, 1, 9, 18, 16, 2].
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This line of work almost exclusively focuses on the uniform stochastic scheduler, where
each interaction pair is chosen uniformly at random among all pairs of agents in the population,
and the time complexity of a protocol is measured by the number of interactions needed to
solve a task. However, many natural systems exhibit spatial structure and this structure can
significantly influence the system dynamics.

Indeed, there is a separation in terms of computational power for population protocols
in the clique versus other interaction graphs: connected interaction graphs can simulate
adversarial interactions on the clique graph by shuffling the states of the nodes [4] and
population protocols on some interaction graphs can compute a strictly larger set of predicates
than protocols on the clique; see e.g. [6] for a survey of computability results.

By comparison, surprisingly little is known about the complezity of basic tasks in general
interaction graphs under the stochastic scheduler. So far, only a handful of protocols have
been analysed on general graphs. Existing analyses tend to be complex, and specialised to
specific algorithms on limited graph classes [15, 11, 8]. This is natural: given the intricate
dependencies which arise due to the underlying graph structure, the design and analysis of
protocols in the spatial setting is understood to be challenging.

We provide a general approach showing that standard problems in population protocols
can be solved efficiently under graphical stochastic schedulers, by leveraging solutions designed
for complete graphs.

First, we give a general framework for simulating a large class of synchronous protocols
designed for fully-connected networks, in the graphical stochastic population protocol model.
Thus, the user can design efficient (and simple to analyse) synchronous algorithms on a clique
model, and transport the analysis automatically to the population protocol model on a large
class of interaction graphs. For instance, on any d-regular graph with edge expansion 5 > 0,
the resulting overhead in parallel time and state complexity is in the order of (d/3)?-polylogn.
As concrete applications, we show that for any d-regular graph with edge expansion 8 > 0,
there exist protocols for leader election and exact majority that stabilise both in expectation
and with high probability in (d/3)? - polylogn parallel time, using (d/3)? - polylog n states.

Second, to complement the results following from the simulation, we also show that, on any
graph G with diameter diam(G) and m edges, leader election can be solved both in expectation
and with high probability in O(diam(G) - mn?logn) parallel time, using a constant-state
protocol. This result provides the first running time analysis of the protocol of [7].

Our reduction framework combines several techniques from different areas, and can be
distilled down to the following ingredients.

We start by defining a simple synchronous, fully-connected model of communication for
the n nodes, called the k-token shuffling model. This is the model in which the algorithm
should be designed and analysed, and is similar, and in some ways simpler, relative to the
standard population model. Specifically, nodes proceed in synchronous rounds, in which
every node v first generates k tokens based on its current state. Tokens are then shuffled
uniformly at random among the nodes. At the end of a round, every node v updates its local
state based on its current state, and the tokens it received in the round. This simple model
is quite powerful, as it can simulate both pairwise and one-way interactions between all sets
of agents, for well-chosen settings of the parameter k.

Our key technical result is that any algorithm specified in this round-synchronous k-token
shuffling model can be efficiently simulated in the graphical population model. Although
intuitive, formally proving this result, and in particular obtaining bounds on the efficiency
of the simulation, is non-trivial. First, to show that simulating a single round of the
k-token shuffling model can be done efficiently, we introduce new type of card shuffling
process [12, 10, 19], which we call the k-stack interchange process, and analyse its mixing
time by linking it to random walks on the symmetric group.
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Table 1 Protocols for exact majority (EM) and leader election (LE) for different graph classes.
The state complexity is the number of states used by the protocol. The parallel time column gives
the expected parallel time (expected number of interaction steps divided by n) to stabilise. (*)
In [15], the running time of the protocol is bounded by the initial discrepancy in the inputs and the
spectral properties of the contact rate matrix; bounds in terms of n are only given for select graph
classes (paths, cycles, stars, random graphs and cliques). No sublinear in n bounds on parallel time
are given in [15]. Protocols marked with (x) stabilise also in non-regular graphs in poly(n) time.

Graph class Task States Parallel time Note
cliques EM 4 O(nlogn) [15]
EM  O(logn) O(logn) [13]
LE 2 O(n) [14]
LE O(loglogn) O(logn) 9]
connected EM 4 poly(n) [15, 8], (*)
LE 6 O(diam(G) - mn®logn) new analysis of [7]
d-regular EM (d/B)* - polylogn  (d/B)? - polylogn new, (x)
LE (d/B)? - polylogn  (d/B)? - polylogn new, (x)

Second, to allow correct and efficient asynchronous simulation of the synchronous token
shuffling model, we introduce two new gadgets: (1) a graphical version of decentralised phase
clocks [1, 17], combined with (2) an asynchronous token shuffling protocol, which simulates
the k-token interchange process in a graphical population protocol. The latter ingredient is
our main technical result, as it requires both efficiently combining the above components,
and carefully bounding the probability bias induced by simulating a synchronous model
under asynchronous pairwise-random interactions.

Finally, we instantiate this framework to solve exact majority and leader election in the
graphical setting. We provide simple token-shuffling protocols for these problems, as well as
backup protocols to ensure their correctness in all executions.

Our results imply new and improved upper bounds on the time and state complexity of
majority and leader election for a wide range of graph families. In some cases, they improve
upon the best known upper bounds for these problems. Please see Table 1 for a systematic
comparison. While our protocols guarantee fast stabilisation in regular graphs with high
expansion, they will stabilise in polynomial expected time in any connected graph.

Our results suggest the existence of a similar complexity gap in the graphical setting.
Specifically, on d-regular graphs with good expansion, such that d/8 € polylogn, we provide
polylogarithmic-time protocols for both leader election and exact majority. This opens a
significant complexity gap relative to known constant-state protocols on graphs. For instance,
the 4-state exact majority protocol for general graphs [15] requires Q(n) parallel time even in
regular graphs with high expansion, if node degrees are ©(n). Yet, our protocols guarantee
stabilisation in only polylogn parallel time in both low and high degree graphs, as long as
d/B is at most polylogn.
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