
Brief Announcement: Twins – BFT Systems Made
Robust
Shehar Bano #

Facebook Novi, London, UK
Alberto Sonnino #

Facebook Novi, London, UK

Andrey Chursin #

Facebook Novi, Menlo Park, CA, USA
Dmitri Perelman #

Facebook Novi, Menlo Park, CA USA

Zekun Li #

Facebook Novi, Menlo Park, CA, USA
Avery Ching #

Facebook Novi, Menlo Park, CA, USA

Dahlia Malkhi #

Diem Association, Wilmington, DE, USA
Facebook Novi, Menlo Park, CA, USA

Abstract
Twins is an effective strategy for generating test scenarios with Byzantine [10] nodes in order to find
flaws in Byzantine Fault Tolerant (BFT) systems. Twins finds flaws in the design or implementation
of BFT protocols that may cause correctness issues. The main idea of Twins is the following: running
twin instances of a node that use correct, unmodified code and share the same network identity and
credentials allows to emulate most interesting Byzantine behaviors. Because a twin executes normal,
unmodified node code, building Twins only requires a thin wrapper over an existing distributed
system designed for Byzantine tolerance. To emulate material, interesting scenarios with Byzantine
nodes, it instantiates one or more twin copies of the node, giving the twins the same identities and
network credentials as the original node. To the rest of the system, the node and all its twins appear
indistinguishable from a single node behaving in a “questionable” manner. This approach generates
many interesting Byzantine behaviors, including equivocation, double voting, and losing internal
state, while forgoing uninteresting behavior scenarios that can be filtered at the transport layer,
such as producing semantically invalid messages.

Building on configurations with twin nodes, Twins systematically generates scenarios with
Byzantine nodes via enumeration over protocol rounds and communication patterns among nodes.
Despite this being inherently exponential, one new flaw and several known flaws were materialized
by Twins in the arena of BFT consensus protocols. In all cases, protocols break within fewer than a
dozen protocol rounds, hence it is realistic for the Twins approach to expose the problems. In two of
these cases, it took the community more than a decade to discover protocol flaws that Twins would
have surfaced within minutes. Additionally, Twins has been incorporated into the continuous release
testing process of a production setting (DiemBFT [7]) in which it can execute 44M Twins-generated
scenarios daily.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Distributed Systems, Byzantine Fault Tolerance, Real-World Deployment

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.46

Related Version Full Version: https://arxiv.org/abs/2004.10617

Funding This work is funded by Novi, a subsidiary of Facebook.

Acknowledgements The authors would like to thank Ben Maurer, David Dill, Daniel Xiang, Kartik
Nayak, and Ling Ren for feedback on late manuscript, and George Danezis for comments on early
manuscript. We also thank the Novi Research and Engineering teams for valuable feedback.

© Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and
Dahlia Malkhi;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 46; pp. 46:1–46:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bano@fb.com
mailto:asonnino@fb.com
mailto:achursin@fb.com
mailto:dmitrip@fb.com
mailto:zekun@fb.com
mailto:aching@fb.com
mailto:dmalkhi@fb.com
https://doi.org/10.4230/LIPIcs.DISC.2021.46
https://arxiv.org/abs/2004.10617
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


46:2 Brief Announcement: Twins

1 The Twins Approach

Twins systematically constructs test scenarios in which some nodes have one or more twins,
and the adversary can delay and drop messages between nodes, i.e., the communication is
asynchronous. Twins scenarios are constructed with logical protocol rounds. For each round,
the scenario indicates which nodes have twins and which nodes can be reached by other
nodes. In addition, each round can designate which nodes are acting as leaders, which is a
common role in BFT protocols. Executing Twins scenarios requires a thin shim layer that
emulates message scheduling and delivery and has a handle to designate a protocol leader.

In notation, nodes are represented by capital alphabets letters (e.g., A) and the twin
of a node is represented by the same letter with the prime symbol (e.g., A′). Nodes acting
in leader roles are underlined, e.g., A. We denote partitions of nodes by sets P∗, as in
P1 = {A, B, C, D}, P2 = {E, F, G}. For example, a single-round scenario in which a leader
equivocates in the first round and partitions the system into two sets of nodes, each getting
a different proposal, can be described as follows:

Set up a system with nodes {D, D′, E, F, G}.
Initialize D and D′ with different inputs v1 and v2.
Execute round 1 with partitions P1 = {D, E, G}, P2 = {D′, F}.

Although enumerating round-by-round scenarios is inherently exponential, experience
shows that protocols with logical flaws break with a handful of nodes in less than a dozen
rounds (see e.g., [1]). Indeed, the full paper shows several succinct Twins scenarios that
expose known BFT protocol flaws, as well as a scenario that surfaces a flaw in a recent
protocol that hasn’t been exposed before. Of these, we chose to present below one Twins
scenario. It demonstrates that in Tendermint [4] and Casper [5], a leader must delay the
maximal transmission bound; removing this delay would break liveness.

2 Preliminaries: PBFT, Tendermint and Casper

The goal of BFT replication is for a group of nodes to provide a fault-tolerant service through
redundancy. Clients submit requests to the service. These requests are collectively sequenced
by the nodes; this enables all nodes to execute the same chain of requests and hence agree on
their (deterministic) output. Practical Byzantine Fault Tolerance (PBFT) [6] is a hallmark
work that was designed to work efficiently in the asynchronous setting. Carrying the classical
PBFT solution to the blockchain world, Tendermint [4] and Capser [5] introduced a much
simplified linear strategy for leader-replacement. However, it has been observed [3, 12] that
this strategy forgoes an important property of asynchronous protocols – Responsiveness –
the ability of a leader to advance as soon as it receives messages from 2f + 1 nodes.1 We
demonstrate that this delay in fact mandatory: if the leader’s delay was removed from
Tendermint (equiv Casper), the protocol would lose liveness. .

3 Example: A Flawed Tendermint Variant

In a nutshell, the flawed variant works as follows. A quorum certificate (QC) is formed on
a leader proposal if it gathers 2f + 1 votes from nodes. A leader proposes to extend the
highest QC it knows. Nodes vote on the leader proposal if it extends the highest QC they

1 Tendermint is a precursor to HotStuff [13] and DiemBFT [7] which operates in two-phase views, but
has no Responsiveness. HotStuff/DiemBFT solve this by adding a third phase.



S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li, A. Ching, and D. Malkhi 46:3

know. A commit decision on the leader proposal forms if it gathers 2f + 1 votes forming a
QC, and then 2f + 1 nodes vote for that QC. Progress is hinged on leaders obtaining the
highest QC in the system, otherwise liveness is broken.

We demonstrate through a Twins scenario that liveness is broken. Lack of progress is
detected by observing that two consecutive views with honest leaders whose communication
with a quorum is timely do not produce a decision.

The liveness-attack scenario uses 4 replicas (D, E, F, G), where D has a twin D′. In
the first view, D and D′ generate equivocating proposals. Only D, E receive a QC for D’s
proposal. The next leader is F who re-proposes the proposal by D′, which E and D do
not vote for because they already have a QC for that height. Only F and D′ receive a QC
for F ’s proposal. This scenario repeats itself indefinitely, resulting in loss of liveness. More
specifically, this scenario works as follows:
View 1: Initialize D and D′ with different inputs v1 and v2.

Create the partitions P1 = {D, E, G}, P2 = {D′, F}.
Let D and D′ run as leaders for one round. D proposes v1 to P1 and gathers votes
from P1 creating QC(v1). D′ proposes v2 to P2 and gathers votes but not a QC.
Create the following partitions: P1 = {D, E}, P2 = {D′, F}, P3 = {G}. D broadcasts
QC(v1), which only reaches P1 i.e., (D, E).

View 2: Drop all proposals from D and D′ until View 2 starts.
Remove all partitions, i.e., P = {D, D′, E, F , G}.
Let F run as leader for one round. F re-proposes v2 (i.e., D′’s proposal in the previous
round) to P . (D, E) do not vote as they already have QC(v1) for that height. F

gathers votes from the other nodes and forms QC(v2).
Create partitions P1 = {D, E}, P2 = {D′, F}, P3 = {G}.
F broadcasts QC(v2), which only reaches P2.

View 3: Drop all proposals from F until View 3 starts.
Create the partitions P1 = {D, E, G}, P2 = {D′, F}.
Let E run as leader for one round. E proposes v3 which extends the highest QC it
knows, QC(v1). As before, E manages to form Q(v3), but as a result of a partition,
the QC will only reach (D, E). Next, there is a view-change, F is the new leader, and
there are no partitions. F proposes v4 which extends QC(v2), the highest QC it knows.
However, (D, E) do not vote because v4 does not extend their highest QC i.e., QC(v3).
This scenario can repeat itself indefinitely, resulting in the loss of liveness.

4 What Else?

The full version of the paper presents a new flaw exposed by Twins in Fast HotStuff [8]
and known flaws re-materialized as Twins scenarios in several BFT protocols (Zyzzyva [9],
FaB [11], Sync HotStuff [2]). In all cases, exposing vulnerabilities requires only a small
number of nodes, partitions, rounds and leader rotations. We implemented an automated
scenario generator for Twins and show that our implementation covers the described scenarios
within minutes.

References
1 Ittai Abraham, Guy Gueta, Dahlia Malkhi, and Jean-Philippe Martin. Revisiting Fast

Practical Byzantine Fault Tolerance: Thelma, Velma, and Zelma. arXiv preprint, 2018.
arXiv:1801.10022.

DISC 2021

http://arxiv.org/abs/1801.10022


46:4 Brief Announcement: Twins

2 Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync HotStuff:
Simple and Practical Synchronous State Machine Replication. In IEEE Symposium on Security
and Privacy, 2020.

3 Ethan Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. https:
//cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf, 2016.

4 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The Latest Gossip on BFT Consensus.
arXiv preprint, 2018. arXiv:1807.04938.

5 Vitalik Buterin and Virgil Griffith. Casper the Friendly Finality Gadget. arXiv preprint, 2017.
arXiv:1710.09437.

6 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In USENIX
Symposium on Operating Systems Design and Implementation, 1999.

7 Diem. DiemBFT. https://github.com/diem/diem.
8 Mohammad M Jalalzai, Jianyu Niu, and Chen Feng. Fast-hotstuff: A fast and resilient hotstuff

protocol. arXiv preprint, 2020. arXiv:2010.11454.
9 Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:

Speculative Byzantine Fault Tolerance. In ACM SIGOPS Symposium on Operating Systems
Principles, 2007.

10 Leslie Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM Transac-
tions on Programming Languages and Systems, 4:382–401, 1982.

11 J-P Martin and Lorenzo Alvisi. Fast Byzantine Consensus. IEEE Transactions on Dependable
and Secure Computing, 3(3):202–215, 2006.

12 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT Consensus in the Lens of Blockchain. arXiv preprint, 2018. arXiv:1803.05069.

13 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
BFT Consensus with Linearity and Responsiveness. In ACM Symposium on Principles of
Distributed Computing, 2019.

https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf
https://cdn.relayto.com/media/files/LPgoWO18TCeMIggJVakt_tendermint.pdf
http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1710.09437
https://github.com/diem/diem
http://arxiv.org/abs/2010.11454
http://arxiv.org/abs/1803.05069

	1 The Twins Approach
	2 Preliminaries: PBFT, Tendermint and Casper
	3 Example: A Flawed Tendermint Variant
	4 What Else?

