Brief Announcement: Auditable Register
Emulations

Vinicius Vielmo Cogo &
LASIGE, Faculdade de Ciéncias, University of Lisbon, PT

Alysson Bessani &
LASIGE, Faculdade de Ciéncias, University of Lisbon, PT

—— Abstract

We initiate the study of auditable storage emulations, which provide the capability for an auditor to
report the previously executed reads in a register. We define the notion of auditable register and
its properties, and establish tight bounds and impossibility results for auditable storage emulations
in the presence of faulty base storage objects. Our formulation considers registers that securely store
data using information dispersal (each base object stores only a block of the written value) and
supporting fast reads (that complete in one communication round-trip). In such a scenario, given a
maximum number f of faulty storage objects and a minimum number 7 of data blocks required to
recover a stored value, we prove that (R1) auditability is impossible if 7 < 2f; (R2) implementing a
weak form of auditability requires 7 > 3f + 1; and (R3) a stronger form of auditability is impossible.
We also show that (R4) signing read requests generically overcomes the lower bound of weak
auditability, while (R5 and R6) totally ordering operations or using non-fast reads enables strong
auditability. These results establish that practical storage emulations need f to 2f additional objects
compared to their original lower bounds to support auditability.

2012 ACM Subject Classification Computing methodologies — Distributed algorithms; Computer
systems organization — Reliability; Security and privacy — Information accountability and usage
control; Applied computing — Evidence collection, storage and analysis

Keywords and phrases Auditability, Secure Storage, Information Dispersal
Digital Object Identifier 10.4230/LIPIcs.DISC.2021.53
Related Version Full Version: https://arxiv.org/abs/1905.08637

Funding Work partially supported by the Fundagdo para a Ciéncia e Tecnologia (FCT, Portugal),
through the LASIGE research unit (UIDB/00408/2020 and UIDP/00408/2020) and the IRCoC
project (PTDC/EEL-SCR/6970/2014).

1 Introduction

Given a resilient storage system composed of n storage objects (e.g., [2, 11]), information
dispersal techniques (e.g., erasure codes and secret sharing) traditionally split and convert
a data value v into n coded blocks [7, 9, 10]. Each coded block b,, from value v is stored
in a different base object o, and readers need to obtain only 7 out of n coded blocks to
effectively recover the original value v. In this type of solution, no base object stores the
whole data value, which differentiates information dispersal from fully-replicated storage
systems where each object retains a full copy of the value.

In this paper, we address the following question: How to extend resilient storage emulations
with the capability of auditing who has effectively read data from them? More specifically, we
intend to audit resilient storage systems for protecting them from readers trying to obtain
data without being detected (i.e., audit completeness) and protecting correct readers from
faulty storage objects trying to incriminate them (i.e., audit accuracy).

? Vinicius Vielmo Cc?go and Alysson. Bessani;

37 icensed under Creative Commons License CC-BY 4.0
35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 53; pp. 53:1-53:4

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vvcogo@fc.ul.pt
https://orcid.org/0000-0002-1299-8950
mailto:anbessani@fc.ul.pt
https://orcid.org/0000-0002-8386-1628
https://doi.org/10.4230/LIPIcs.DISC.2021.53
https://arxiv.org/abs/1905.08637
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2

Brief Announcement: Auditable Register Emulations

Model. We consider a system composed of an arbitrary number of client processes (writers,
readers, and auditors) that interact with a set of n base storage objects by invoking operations
(e.g., as remote procedure calls on top of asynchronous reliable, authenticated channels).

Faulty writers and faulty auditors are honest and can only fail by crashing. Faulty readers
may be Byzantine, i.e., they can crash or request data from only a subset of objects, without
complying with any read algorithm. This characterises an attack where they attempt to read
data without being detected and reported by auditors.

Faulty storage objects can crash, omit their blocks to readers, omit read records to auditors,
or record nonexistent read operations. More specifically, to isolate storage from logging,
objects can fail by omission when accessing their blocks and arbitrarily when providing their
log records. Omitting records to auditors means a faulty object may be helping a reader to
avoid being detected by auditors. Producing records for nonexistent reads characterises an
active attack where a faulty object may be trying to incriminate a reader. Furthermore, we
assume no more than f storage objects are faulty.

Register Emulation. We consider a dispersed register as a high-level shared storage
object that stores a value v using information dispersal schemes. This object provides two
high-level operations: a-write(v) and a-read(). A high-level a-write(v) converts a value v,
passed as an argument, into n coded blocks by, , by,, ..., by,, , and each coded block b,, is stored
in the base object og. A high-level a-read() operation recovers the original value v from any
subset consisting of a specific number 7 of distinct blocks b,, .

Base objects in this work are loggable R/W registers, which is an object oy that stores
a data block b,, and has a log L to store records of every read operation that this base
object responded to. This object o provides three low-level operations:

rw-write(by,): writes the data block b,, , passed as an argument, in this base object oy

and returns an ack to confirm that the operation succeeded.

rw-read(): returns the data block b,, currently stored in this base object oy (i.e., the

block passed as argument in the latest preceding rw-write) or L if no block has been

written on it. It also creates a record (p,., label(b,,))* about this read in its log Ly.

rw-getLog(): returns the log Ly of this base object oy.

We extend the dispersed register emulation with a high-level operation a-audit(),
which uses the fail-prone logs obtained from the rw-getLog operation in loggable R/W
registers to compose an auditable register emulation. This emulation has access to a
log L € U, (1.n} L, from which auditors can infer who has effectively read a value from
the register in the past. Four concepts are essential for our initial auditable register
emulation: providing sets, effective reads, fast reads, and available auditing quorums.

First, we define a providing set based on the notion of an accepting set introduced by
Lamport [8] to abstract the access to multiple base objects. In our work, a providing set P, ,,
is mazximal if it contains all objects that have both stored a block associated with value v
and returned this block to a reader p;.

Second, we introduce the notion of an effective read, which characterises a providing
set P, , large enough (i.e., comprising at least 7 base objects) that a reader p, is able to
effectively obtain value v from the received blocks.

L p, is the identifier of the reader that invoked the rw-read operation and label(b,,) is an auxiliary function
that, given a block b, , returns a label (e.g., a unique identifier, hash, timestamp) associated to value v
(from which the block b,, was derived). This label can be written in the first few bytes of each block
and is critical for auditors to detect effective reads based on individual logs.

V.V. Cogo and A. Bessani

Third, to capture the most fundamental aspect of reading in dispersed storage, we consider
(initially) that high-level reads are fast — i.e., each read completes in a single communication
round-trip between the reader and the storage objects [4]. This faithfully represents a
“stealthy” reader directly obtaining blocks from a number of storage objects without following
any particular algorithm.

Fourth, we define an available auditing quorum A, where |A|] = n — f, as the set of
base objects from which the a-audit collects fail-prone individual logs to compose a set of
evidences E 4 about the effectively read values. Furthermore, we assume a threshold 0 as the
minimal required number of collected records obtained in the audit operation for an auditor
create an evidence &, , of an effective read. Each evidence &, ., contains at least d records
from different storage objects oy proving that v was effectively read by reader p,. This
threshold ¢ is a configurable parameter that depends on the guarantees a-audit operations
provide (defined below). A correct auditor receives E4 and reports all evidenced reads.

An auditable register provides an a-audit operation that guarantees completeness
and at least one form of accuracy (i.e., weak or strong). The formal definitions of these
properties are available in the full paper [3]. In summary, the completeness states that all
effective reads that precede an a-audit are reported by auditors in this audit operation. The
weak accuracy states that the a-audit operation never reports any effective read from a
correct reader that has never tried to read any value. The strong accuracy states that the
a-audit does not report any effective read of value v from a correct reader that has never
effectively read this value v. In the remaining of this paper, we consider weak auditability
when the storage system provides completeness and weak accuracy in audit operations and
strong auditability when it provides completeness and strong accuracy.

2 Results

Several tight bounds and impossibility results are presented in the full paper [3] considering
the previously mentioned model. We consider information dispersal as the primary form
of auditable register emulations because alternative solutions that replicate the whole
data can suffer from faulty base objects leaking data to readers without logging these read
operations.

Our formulation stores data using information dispersal (each base object stores only
a block of the written value) and initially supports fast reads (that complete in one com-
munication round-trip). In such a scenario, given a maximum number f of faulty storage
objects and a minimum number 7 of data blocks required to recover a stored value, we prove
that (R1) auditability is impossible if 7 < 2f; (R2) implementing a weak form of auditability
requires 7 > 3f + 1; and (R3) a stronger form of auditability is impossible.

We also prove in [3] that (R4) signing read requests generically (i.e., without mentioning
the value v to be read) overcomes the lower bound of weak auditability, (R5) totally ordering
operations [5] or using non-fast reads (e.g., multi-round read algorithms [2]) enables strong
auditability with 7 > 3f 4+ 1, and (R6) combining non-fast reads with specific signed read
requests (i.e., read requests with signatures valid only for a specific value v) overcomes the
lower bound of strong auditability with 7 > 2f 4 1. These results establish that practical
storage emulations (e.g., [1, 2, 6]) need f to 2f additional objects compared to their original
lower bounds to support auditability.

53:3

DISC 2021

53:4

Brief Announcement: Auditable Register Emulations

—— References

1

10

11

Soumya Basu, Alin Tomescu, Ittai Abraham, Dahlia Malkhi, Michael K. Reiter, and Emin Giin
Sirer. Efficient verifiable secret sharing with share recovery in BFT protocols. In Proc. of the
26th ACM Conference on Computer and Communications Security (CCS), page 2387-2402,
2019. doi:10.1145/3319535.3354207.

Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando Andre, and Paulo Sousa. DepSky:
Dependable and secure storage in cloud-of-clouds. ACM Transactions on Storage (TOS),
9(4):12:1-12:33, 2013. doi:10.1145/2535929.

Vinicius Vielmo Cogo and Alysson Bessani. Auditable register emulations. CoRR,
abs/1905.08637, 2019. arXiv:1905.08637.

Rachid Guerraoui and Marko Vukolié. How fast can a very robust read be? In Proc. of
the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
248-257, 2006. doi:10.1145/1146381.1146419.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical report, Cornell University, 1994.

James Hendricks, Gregory R. Ganger, and Michael K. Reiter. Low-overhead Byzantine
fault-tolerant storage. In Proc. of the 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 73-86, 2007. doi:10.1145/1294261.1294269.

Hugo Krawczyk. Secret sharing made short. In Proc. of the 13th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO), pages 136-146, 1993. doi:
10.1007/3-540-48329-2_12.

Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing, 19(2):104—
125, 2006. doi:10.1007/s00446-006-0155-x.

James S Plank. Erasure codes for storage systems: A brief primer. The USENIX Magazine,
38(6):44-50, 2013.

Michael Rabin. Efficient dispersal of information for security, load balancing, and fault
tolerance. Journal of the ACM (JACM), 36(2):335-348, 1989. doi:10.1145/62044.62050.
Jason K. Resch and James S. Plank. AONT-RS: Blending security and performance in
dispersed storage systems. In Proc. of the 9th USENIX Conference on File and Storage
Technologies (FAST), page 14, 2011.

https://doi.org/10.1145/3319535.3354207
https://doi.org/10.1145/2535929
http://arxiv.org/abs/1905.08637
https://doi.org/10.1145/1146381.1146419
https://doi.org/10.1145/1294261.1294269
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1145/62044.62050

	1 Introduction
	2 Results

