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Abstract
Vehicle routing and scheduling problems with interdependent routes arise when some services must be
performed by at least two vehicles and temporal synchronization is thus required between the starting
times of these services. These problems are often coupled with time window constraints in order to
model various real-world applications such as pickup and delivery with transfers, cross-docking and
home care scheduling. Interdependent routes in these applications can lead to large idle times for
some drivers, unnecessarily lengthening their working hours. To remedy this unfairness, it is necessary
to balance the duration of the drivers’ routes. However, quickly evaluating duration-based equity
functions for interdependent vehicle routes with time windows poses a significant computational
challenge, particularly when the departure time of routes is flexible. This paper introduces models
and algorithms to compute two well-known equity functions in flexible departure time settings: min-
max and range minimization. We explore the challenges and algorithmic complexities of evaluating
these functions both from a theoretical and an experimental viewpoint. The results of this paper
enable the development of new heuristic methods to balance the workload of interdependent vehicle
routes with time windows.
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1 Introduction

Concerns regarding workload balancing in Vehicle Routing Problems (VRPs) have recently
received attention in the literature [14, 15]. Most of this research addresses the VRP with
route balancing [10], where the routes of multiple drivers are balanced according to some equity
function in order to fairly distribute the workload between all workers. Route balancing is a
challenging problem since it typically takes place in the context of a bi-objective VRP, where
conflicting objectives such as total cost and workload imbalance must both be minimized.
The difficulty of the problem increases when time windows are incorporated [16], in which
case the workload is typically measured in terms of the route duration: from the departure
time of the route until its completion, which includes possible idle periods of the driver.
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1:2 Efficient Duration-Based Workload Balancing for Interdependent Vehicle Routes

Existing literature has mainly focused on balancing workload between independent vehicle
routes. By contrast, problems in which interdependent routes are considered have rarely been
explored in terms of workload balancing. Interdependent routes occur when the start time of
one driver’s service depends on the completion time of another driver’s service. In other words,
there are temporal precedence constraints between tasks in different vehicle routes which
therefore requires those routes to be synchronized somehow. Many real-world applications
contain such interdependencies: pickup and delivery with transfers [17], equipment delivery
and installation [1, 9] and home health care [8]. In all these applications, complications arise
from the combination of time windows and interdependent routes. These difficulties are
further compounded by the fact that we consider departure times of routes to be flexible.
The combination of these three characteristics means that the computation of duration-based
equity functions for workload balancing represents a nontrivial question and one which has
not been previously addressed in the literature.

In this paper, we will consider two duration-based equity functions: min-max and range.
These functions are often applied within decision support tools because they are very intuitive
for decision makers [14]:
(1) Min-max: minimization of the longest route duration;
(2) Range: minimization of the difference between the longest and shortest route durations.

Evaluating these equity functions requires computing the minimum duration for all routes
in a VRP solution. For VRPs with independent routes, such as the VRP with time windows,
evaluating these durations can be performed in constant time after a preprocessing step [18].
In contrast, when routes are interdependent then these techniques for independent routes fail
to correctly optimize functions (1) or (2). Indeed, [7] has noted that they are unaware of any
constant-time method to update these duration-based equity functions that accommodate
interdependent vehicle routes. When departure times are fixed, we can compute (1) and (2)
with a linear time algorithm as detailed in Section 2. However, we have been unable to find
studies concerning specialized algorithms with any complexity to correctly evaluate these
functions when departure times are flexible.

The contributions of this paper are twofold. First, we describe how computing duration
and corresponding equity functions of interdependent routes is challenging. Second, we
introduce algorithms based on established methods in the literature to compute the duration-
based workload balance of these routes along with their algorithmic complexity. A series of
computational experiments provides additional understanding concerning the algorithmic
performance in practice. The introduced algorithms can be incorporated within heuristic
methods in which new solutions must be quickly evaluated with respect to workload balance.
Hence, our contributions also open new research avenues for other researchers who would
like to heuristically address vehicle routing problems which feature interdependent routes,
time windows and workload balancing.

2 The interdependent route scheduling problem

This section defines the Interdependent Route Scheduling Problem (IRSP). The IRSP is
defined over a graph G = (V, A), where V is the set of nodes and A is the set of arcs that
define temporal precedence constraints between pairs of nodes. Additionally, a set of fixed
vehicle routes R is defined in G. A route rk ∈ R is a sequence of nodes rk = (λ1, . . . , λ|rk|)
where λi ∈ V . All nodes in V belong to exactly one route. For a route rk ∈ R, its first and
last nodes are the origin and destination locations and denoted ok and dk, respectively.
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Every node i ∈ V has an associated time window [ei, li] which indicates the earliest time
ei and latest time li that service is allowed to begin at node i. A vehicle is allowed to arrive
at i before ei and wait for service to start, but it may never arrive later than li. The service
duration at i is wi units of time. Furthermore, there is a time horizon H so that all services,
including departure and completion time of the routes, must lie within [0, H].

Arcs are subdivided into two sets A = AR ∪ AP . Arc set AR contains route arcs (i, j, tij)
which connect nodes i and j belonging to the same route. They represent trips of duration
tij . Meanwhile, set AP contains interdependency arcs (u, v, δuv) which connect nodes u and
v belonging to two different vehicle routes. The start time of service at u and v is captured
by means of Equation 1, where variable hi denotes the start time of service at node i ∈ V

and where δuv is a parameter.

hu + δuv ≤ hv (1)

Correctly defining δuv enables us to model the five most common interdependency
constraints encountered in practice [6]. For example, setting δuv = wu (the service duration
at u) creates the minimum difference interdependency found in VRPs with transfers [13,
17]. Meanwhile, creating two arcs (u, v, δuv) and (v, u, δvu) models general synchronization
constraints occurring in some delivery and installation problems [9]. When δuv = 0 and
δvu = −2h service at u and v may start simultaneously or with a difference of at most 2h.
Similarly, if δuv = δvu = 0 then strict synchronization of the services at u and v is required,
which is encountered in home health care problems [8]. In this paper, we present examples
using the minimum difference interdependency, but the algorithms and models are valid
for any constraint so long as it can be represented with the interdependency arcs in AP .
Interested readers are referred to Appendix A for more information on parameter δuv.

The goal of the IRSP is to produce a schedule where the starting time of service hi

complies with all of the time window constraints for every node i ∈ V . This includes deciding
the departure and completion times of the routes at their origin and destination locations.
Furthermore, we introduce three variants of the IRSP in this paper, which induce additional
constraints to the decision of the starting times of service. The variants are:
(1) Feasibility: All routes rk ∈ R must comply with a maximum duration M .
(2) Min-max: produce a schedule that minimizes the longest duration xmax across all

routes;
(3) Range minimization: produce a schedule that minimizes the difference between the

longest duration xmax and the shortest duration xmin.

When departure times are fixed, these three variants reduce to computing the completion
time of all routes and this can be trivially solved in O(|V |) by assigning a start time of
service to each node in a topological ordering of G (see Appendix B). However, we consider
departure times to be additional decision variables in the IRSP, thereby increasing the search
space and the complexity of solving the problem. Despite substantially complicating the
evaluation of route duration, flexible departure times are encountered in many real-world
applications [18] and are of significant importance for ensuring the best use of all resources.

Figure 1(a) illustrates an instance of the IRSP with two routes: r1 = (1, 2, 3, 4, 5) and
r2 = (6, 7, 8, 9). The service duration is wi = 0h30, ∀i ∈ V and the departure and completion
times of the routes must lie within [0:00, 23:59] (time horizon H = 24h). Only nodes 4
and 7 have associated time windows. There is one minimum difference interdependency
(3, 8, 0h30) ∈ AP which indicates that service at node 8 can only begin 0h30 after the start
of service at node 3. Figures 1(b)–(e) depict four different solutions for the instance outlined
in Figure 1(a). In these solutions, grey rectangles are service periods, blue rectangles (D) are
driving periods and white rectangles (I) are idle (or waiting) periods.

ATMOS 2021



1:4 Efficient Duration-Based Workload Balancing for Interdependent Vehicle Routes

Figure 1(b) presents a solution to the IRSP in which all drivers depart at time t = 0:00.
Due to the time window at node 4, route r1 has 6h of idle time and a total duration of 16h.
Note that removing the idle time in r1 requires delaying the start of service at node 3 which
consequently delays the start time of service at node 8, thereby lengthening the duration
of route r2. Indeed, if all of the idle time in r1 is removed, then the duration of route r2 is
increased to 17h, as illustrated by Figure 1(c). This effectively increases both the Min-max
and the Range equity functions compared to 1(b). Furthermore, to comply with a maximum
duration of M = 15h, route r1 must be postponed by an hour, which delays start of service
at node 8 by an hour as well. This lengthens the duration of r2 to 12h, as shown in Figure
1(d). The optimal schedule for both Min-max and Range is depicted in Figure 1(e), where a
balance is achieved between the durations of routes r1 and r2. In this schedule, any further
reduction concerning the duration of route r1 would increase the duration of r2, leading to
suboptimal solutions. The optimal schedule is obtained by postponing the departure time of
route r1 by 2:30, which is not an intuitive solution.

1 2 3 4 5

6 7 8 9

2h30 3h 1h 1h

4h 2h 3h

[14:00,16:00]

[2:00,4:30]

(a) Instance with two routes. Solid arcs represent direct trips where the weight is the trip’s duration.
Meanwhile, the dotted arc represents an interdependency constraint between the two routes.

0:00 4:30 7:00 11:00

0:00 7:00 14:00 16:00

1 D 2 D 3 D I 4 D 5

6 D 7 D 8 D 9

(b) Schedule obtained after computing earliest ser-
vice times. Longest duration xmax = 16h. Range
xmax − xmin = 5h. This schedule is optimal with
respect to both the min-max and range equity func-
tions if departure times are fixed at t = 0:00.

0:00 4:30 13:00 17:00

6:00 13:00 14:00 16:00

1 D 2 D 3 D 4 D 5

6 D 7 D I 8 D 9

(c) Schedule obtained by removing all idle time
from route r1. This reduces the duration of r1 to
10h, but also increases the duration of r2 to 17h.
The longest duration is xmax = 17h and the range
is xmax − xmin = 7h.

0:00 4:30 8:00 12:00

1:00 8:00 14:00 16:00

1 D 2 D 3 D I 4 D 5

6 D 7 D I 8 D 9

(d) Schedule in which all routes comply with max-
imum duration M = 15h. This is only possible
if departure times are flexible since route r1 must
start at t = 1:00. Note that this delay increases the
duration of r2 from 11h to 12h.

0:00 4:30 9:30 13:30

2:30 9:30 14:00 16:00

1 D 2 D 3 D I 4 D 5

6 D 7 D I 8 D 9

(e) Schedule with optimal xmax = 13h30 and mini-
mum difference xmax − xmin = 0 when departure
times are flexible. This solution is obtained by
delaying the departure time of route r1 and the
completion time of r2 by 2h30.

Figure 1 An IRSP instance and four possible solutions.

Note that when considering the VRP with time windows, minimizing route duration
is equivalent to minimizing total waiting time [18], however this is not the case for the
IRSP. Indeed, the total waiting time in the four solutions outlined in Figure 1 is the same:
5h30. The key difference is in how this total waiting time is distributed across all the routes.
Therefore, simply minimizing total waiting time could lead to any of the four solutions in
Figures 1(b)–(e), which is not the desirable outcome.

Finally, as the number of interdependent routes increases, the complex interactions
between routes become more difficult to manage. This motivates us to examine whether it is
possible to design efficient algorithms to effectively schedule interdependent vehicle routes.
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3 The feasibility problem

The feasibility problem is the decision-version of IRSP for which an algorithm must provide
an answer to the following question: can all routes comply with a given maximum duration
M? This section introduces a Mathematical Programming (MP) formulation to precisely
describe the feasibility problem along with two special-purpose algorithms to solve it.

3.1 Mathematical formulation
A Linear Program (LP) for the feasibility IRSP is:

hi − hj ≤ −wi − tij , ∀ (i, j, tij) ∈ AR (2)
hu − hv ≤ −δuv, ∀ (u, v, δuv) ∈ AP (3)

hi ≥ ei, ∀ i ∈ V (4)
hi ≤ li, ∀ i ∈ V (5)

(hdk
− hok

) ≤ M, ∀rk ∈ R (6)

Several general-purpose methods can be employed to solve this LP. For example, the
Simplex algorithm, Karmarkar’s algorithm [11] or more recent approaches whose worst-case
time complexity make them more efficient in theory [3]. However, special-purpose algorithms
exist which are capable of solving the LP much quicker.

3.2 Simple temporal networks
A Simple Temporal Network (STN) is a graph which comprises of nodes that are events and
arcs between these nodes enable us to capture temporal relations between them. STNs have
been used in the past to check feasibility of VRP solutions with interdependent routes such
as the the dial-a-ride problem with transfers [13]. The formulation defined by Constraints
(2)–(6) can be represented as an STN. In order to do so, we define a special node α as the
beginning of time t = 0 and we replace Constraints (4) and (5) with:

hα − hi ≤ −ei, ∀ i ∈ V (7)
hi − hα ≤ li, ∀ i ∈ V (8)

Constraints (2),(3),(6),(7) and (8) define a Simple Temporal Problem (STP) [5], which has
an associated STN. This network is a distance graph GD = (VD, AD), where VD = V ∪ {α}
is the set of vertices and where AD is the set of arcs that represent the constraints of the
STP formulation. Note that all constraints are binary, meaning they all contain exactly two
variables. A constraint of the form hi − hj ≤ ωij induces an arc from node j to i with weight
ωij in GD. Figure 2 depicts the STN associated with the instance illustrated in Figure 1(a).

Let τiα denote the shortest path distance from i to α in GD. Then, setting hi = −τiα

provides the earliest feasible schedule for the routes of the corresponding IRSP instance. In
other words, the LP can be solved by computing shortest paths in GD [5]. Note, however,
that the graph contains cycles and arcs of negative weight. Therefore, one must use methods
that can detect negative cycles in graphs, such as the Bellman-Ford algorithm. If GD has a
negative-cost cycle then the STP is inconsistent, implying that the IRSP instance has no
feasible solution.

The asymptotic time complexity of the Bellman-Ford algorithm over GD is O(|VD||AD|).
The number of arcs |AD| is O(|V |) given that all nodes i ∈ V have no more than three
outgoing arcs and node α has no more than |V | outgoing arcs. This means that the complexity
of determining feasibility of an IRSP instance is O(|V |2).

ATMOS 2021
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α

1 2 3 4 5

6 7 8 9

-3h -3h30 -1h30 -1h

-4h30 -2h30 -3h

M

M

-0h30
4h30

-2h

16h

-14h

Figure 2 STN created from the instance in Figure 1(a). Dashed arcs denote time window
constraints. Service durations have been included in the travel times between nodes.

3.3 Surrogate graph

The graph depicted in Figure 1(a) is a directed acyclic graph (DAG). Similar to STNs, the
introduction of maximum duration constraints in this DAG creates cycles, as illustrated in
Figure 3(a). Exactly |R| maximum duration arcs must be included: one per route.

Computing shortest paths in a DAG, or in the IRSP the earliest feasible start times of
service, is straightforward and can be efficiently performed in O(|V |) time (see Appendix B).
We are therefore interested in removing the |R| maximum duration arcs that were introduced
in order to remove the cycles induced by them while still ensuring compliance with the
maximum duration M . To remove these arcs, we employ the strategy introduced by [19] for
almost acyclic graphs. We define an associated surrogate graph GS where a new source node
α is created. Then, each maximum duration arc of the form (dk, ok, −M) is replaced with
an arc (α, ok, 0). In doing so, GS becomes a DAG. This is illustrated in Figure 3(b).

Once GS has been defined, we can solve the LP (2)–(6) by means of shortest paths
employing the Surrogate Algorithm [19] outlined in Algorithm 1. This procedure needs to
perform no more than |R| + 1 iterations of the for-loop (lines 2–9). In each iteration, the
start time of service is computed in O(|V |) via the procedure in line 3 (Appendix B), which
returns true if no time window has been violated and false otherwise. At the end of each
iteration, the departure time of each route rk ∈ R is updated using the current completion
time at the destination node dk and the maximum route duration M (line 5). Updating the
departure times corresponds to dynamically updating the weights ωαok

of the surrogate arcs
(α, ok, ωαok

) in GS . Since every iteration of the for-loop takes O(|V |), the total complexity
of the Surrogate Algorithm is O(|V ||R|).

Algorithm 1 Surrogate Algorithm.

Input: An instance of the IRSP and maximum duration M .
Output: Returns true if all routes comply with M , and false otherwise.
1: p← true
2: for i = 0 until |R| do
3: p← ComputeStartTimeOfService(GS)
4: if p = true then
5: ωαok ← max{0, hdk

−M}, ∀ rk ∈ R
6: else
7: goto 10
8: end if
9: end for

10: return p
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1 2 3 4 5

6 7 8 9

2h30 3h 1h 1h

4h 2h 3h

−M

−M

[14:00,16:00]

[2:00,4:30]

(a) Instance modified by introducing maximum duration arcs for each route.

α

1 2 3 4 5

6 7 8 9

2h30 3h 1h 1h

4h 2h 3h

ωα,1

ωα,6

[14:00,16:00]

[2:00,4:30]

(b) Maximum duration arcs replaced with surrogate arcs from a dummy source node α. Surrogate arcs
have variable weights ωαi, which will be updated during the execution of the Surrogate Algorithm.

Figure 3 The surrogate graph of the instance in Figure 1(a).

The correctness and complexity of Algorithm 1 follow directly from [19]. Note that
computing the earliest feasible start time of a service corresponds to computing the longest
path from α to any node in GS , which can be accomplished in linear time over a DAG [4].

4 The min-max problem

In the Min-max problem, we seek to minimize the longest duration so as to alleviate the
working hours of the drivers who work the most. This is performed even though the duration
of some shorter routes is increased in the process. The methods presented to solve Min-max
build upon those of the feasibility problem (Section 3).

4.1 Mathematical formulation

The Min-max IRSP can be formulated as an LP by defining a continuous variable xmax to
represent the longest duration. The model is:

min xmax (9)
constraints (2)–(5)

xmax ≥ (hdk
− hok

), ∀rk ∈ R (10)

The current best general-purpose LP algorithm that can solve Min-max is not asymptoti-
cally faster than O∗(|V |2.37 log(|V |/γ)), for a given precision 0 < γ ≤ 1 [3]2. Therefore, we
are interested in determining whether it is possible to solve Min-max more efficiently.

2 Complexity O∗ is based on the notation by [3] to hide extra factors (for example, no(1)).

ATMOS 2021
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4.2 A special-purpose algorithm
Algorithm 2 outlines a simple procedure to solve Min-max. This algorithm is based on the
research introduced by [12] and performs a binary search over the space of route durations in
the range [a, b], which is initially [0, H]. For every mid-point m in this range, feasibility with
respect to maximum duration m is checked using procedure DurationFeasibility (line 5).
This test can be implemented using any of the feasibility algorithms outlined in Section 3.
Limits a and b are subsequently updated according to the feasibility of m (line 6). These
steps are repeated as long as b − a > ϵ for a given precision value ϵ > 0.

In practice, m, a, b and ϵ are floating-point variables and therefore permit only a finite
value representation. This implies that Algorithm 2 is guaranteed to finish executing in a
finite number of steps. The number of iterations performed in the algorithm is O(log H). The
complexity of each iteration depends on the algorithm employed at line 5. If the STN method
is employed, then Algorithm 2 has complexity O(|V |2 log H). However, if the Surrogate
Graph is used, the complexity is reduced to O(|V ||R| log H) because |V | > |R|.

Algorithm 2 Duration minimization.

Input: An instance of the IRSP.
Output: Minimum longest duration xmax.
1: a← 0
2: b← H
3: while (b− a) > ϵ do
4: m← (b + a) · 0.5
5: p← DurationFeasibility(m)
6: if p = true then b← m else a← m
7: end while
8: return b

5 The range minimization problem

The minimization of range is a complicated problem to formulate using an MP when time
windows are incorporated [16]. This is because routes may be artificially lengthened by
increasing the waiting time at service locations, thereby decreasing the difference between the
longest and shortest routes. To avoid unnecessary waiting times, a formulation that forces
the start time of all services to be as early as possible was proposed by [16]. However, their
scheduling problem was much simpler than the IRSP because (i) routes were independent
and (ii) departure times were fixed at t = 0. The same modeling ideas thus cannot be applied
to the IRSP due to the combination of flexible departure times and interdependent routes.

5.1 Mathematical formulation
A naive MP formulation to minimize Range uses the following objective function:

min xmax − xmin (11)

However, this function minimizes xmax at the same time that it maximizes xmin. This, in
turn, leads to the situation depicted in Figure 4. The instance in Figure 4(a) has two routes:
r1 = (1, 2, 3, 4) and r2 = (5, 6, 7, 8). Only node 6 has an associated time window. Service
durations are wi = 0h30, ∀i ∈ V and the length of the time horizon is H = 24h. There is
one minimum difference interdependency (2, 7, 0h30) ∈ AP .

Assuming a departure time for both routes at t = 0:00, we can produce the solution in
Figure 4(b) where the range is 6h. By contrast, the naive MP formulation would produce the
solution depicted in Figure 4(c) in which the range is optimal: 0h. Note that such an optimal
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solution is only possible by incurring 6h of idle time in r2, even though this is unnecessary.
Although mathematically optimal, the solution in 4(c) is very unlikely to be accepted in
practice given that it delays several services and it forces the second driver to be in route for
a much longer period even though almost half of their working time is idle. Furthermore,
this naive formulation could guide a VRP solver to produce solutions with a mathematically
perfect balance by creating a lot of idle time in some routes, while other routes would be
completely exhausted with working time. From the perspective of the workers, this would be
seen as a great imbalance in workloads, thereby negatively impacting their morale.

1 2 3 4

5 6 7 8

2h 5h 4h

2h 1h 2h
[1:00,2:30]

(a) Instance considered in the example.
0:00 4:00 7:00

0:00 3:00 13:00

1 D 2 D 3 D 4

5 D 5 D 7 D 8

(b) Solution where xmax − xmin = 13h− 7h = 6h.

0:00 4:00 10:00 13:00

7:00 10:00 20:00

1 D 2 D 3 D 4

5 D 5 D I 7 D 8

(c) Solution where xmax − xmin = 13h− 13h = 0h.

Figure 4 Instance for which a naive MP fails to correctly minimize the range.

The modeling approach proposed by [16] cannot be applied to the IRSP because the
earliest start time of service at interdependent nodes depends on the departure time of the
routes, which is flexible. For example, the start time of service at node 2 (and subsequently
node 7) depends on the departure time of route r1. In the IRSP, it does not appear to be
possible to force values for the start times of services without sacrificing optimality.

To correctly minimize the range by means of an MP, we propose a two-stage approach.
First, we solve the LP from Section 4 to obtain xmax. Then, we obtain xmin by solving the
following Mixed-Integer Linear Programming (MILP) formulation:

min xmin (12)
constraints (2)–(5)

Xmax ≥ (hdk
− hok

), ∀ rk ∈ R (13)
xmin ≥ (hdk

− hok
) + H(yk − 1), ∀ rk ∈ R (14)∑|R|

k=1
yk ≥ 1 (15)

Here Xmax refers to a constant value equal to the min-max duration xmax. Meanwhile,
for each route rk ∈ R, a binary variable yk = 1 if route rk has the shortest duration among
all in R, otherwise yk = 0. This effectively (de)activates Constraints (14) which set the
value of variable xmin. Unfortunately, solving MILP (12)–(15) in addition to LP (9)–(10)
can create a significant computational overhead. Therefore, we are interested in determining
whether a special-purpose algorithm can be defined to minimize range.

5.2 A special-purpose algorithm
Range minimization can also be achieved by Algorithm 3. DurationMinimizer is any method
capable of solving Min-max, such as those detailed in Section 4. Here, this procedure takes
three values as input: a set of routes R′ ⊆ R for which the longest duration is to be minimized
in addition to the lower and upper bounds (a and b) for the duration of each route.

ATMOS 2021



1:10 Efficient Duration-Based Workload Balancing for Interdependent Vehicle Routes

Algorithm 3 begins by computing xmax (line 1): the min-max duration considering all
routes in R. The loop spanning lines 3–6 then attempts to minimize the duration of each
route rk ∈ R independently in order to produce the minimum duration xmin considering all
routes in R. In line 4, DurationMinimizer receives as input R′ = {rk}, a = 0 and b = xmax,
and computes the minimum duration xk for route rk. However, the computation of xk

may modify the duration of other routes in R because of the interdependencies, which can
subsequently increase the longest duration xmax. To avoid this, the duration of all routes
rz ∈ R : rz ̸= rk is constrained to be at most xmax when computing xk. Moreover, the
minimization taking place in line 4 is performed without considering the results of previous
iterations so as to not interfere with the computation of xk. The result is then used to update
variable xmin (line 5). Finally, the minimum range xmax − xmin is returned at line 7.

Algorithm 3 Range minimization.

Input: An instance of the IRSP.
Output: Minimum value for range xmax − xmin.
1: xmax ← DurationMinimizer(R, 0, H)
2: xmin ← +∞
3: for each rk ∈ R do
4: xk ← DurationMinimizer({rk}, 0, xmax)
5: xmin ← min{xmin, xk}
6: end for
7: return (xmax − xmin)

The complexity of Algorithm 3 depends on that of DurationMinimizer. If STNs are
employed, then the algorithm’s complexity is O(|V |2|R| log H). However, when using Sur-
rogate Graphs it is O(|V ||R|2 log H). Alternatively, one could employ a general-purpose
LP solver as DurationMinimizer by trivially modifying the formulation in Section 4. This
would result in a complexity of O∗(|V |2.37|R| log(|V |/γ)). However, solving |R| LPs is likely
to incur a prohibitive computational overhead despite the polynomial time complexity. In all
of these algorithmic variants, the additional |R| derives from the for-loop spanning lines 3–6.

6 Computational experiments

Table 1 summarizes the worst-case asymptotic time complexities when solving the IRSP
variants by employing each of the algorithms described in this paper. These complexities
indicate that the Surrogate approach represents the fastest method of all the options because
the relation |R| < |V | is always valid.

Table 1 Worst-case asymptotic time complexity for the algorithms. Recall that V is the set of
nodes and R the set of routes in the IRSP instance, while H denotes the length of the time horizon.
Value γ is the desired precision for the LP solver [3].

Problem STN Surrogate MP

Feasibility O(|V |2) O(|V ||R|) O∗(|V |2.37 log(|V |/γ))

Min-max O(|V |2 log H) O(|V ||R| log H) O∗(|V |2.37 log(|V |/γ))

Range min. O(|V |2|R| log H) O(|V ||R|2 log H) O∗(|V |2.37|R| log(|V |/γ))

In addition to these theoretical results, we have also performed a computational study of
the algorithms to examine their processing times for real-sized instances. We implemented
all algorithms in C++ and compiled them using g++ 7.5 with optimization flag -O3. The MP
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components were implemented using the Gurobi 9 API for C++ which is a state-of-the-art
solver, even though it does not necessarily implement the LP algorithm introduced by [3]. All
executions were restricted to a single thread on a computer equipped with an Intel i7-8850H
processor at 2.6 GHz, 32 GB of RAM and Ubuntu 18.04 LTS operating system.

IRSP instances were obtained by solving the VRP with multiple synchronization con-
straints [9]. To produce solutions for the VRP, we employed the Slack Induction by String
Removals heuristic [2]. For each new solution, the Min-max and Range equity functions
were evaluated using the three algorithms. The IRSP instances that were generated had
characteristics with the following ranges: |V | ≤ 300, |R| ≤ 35 and |AP | ≤ 100. Note that
these are already large scale instances for most real-world purposes.

Let us begin the analysis by considering the worst-case performance observed during the
experiments. This deserves focus because the algorithms must run as fast as possible even
in their worst-case to be safely employed in practice. The graphs in Figure 5 report the
maximum recorded execution time in microseconds (µs)3 according to the number of nodes
|V | in the IRSP instance. Due to the significant differences across the algorithms, the graphs
are presented in logarithmic scale. The raw data points are plotted directly, while the curves
were produced by polynomial interpolation in order to more easily analyze the results.

The MP approach is 20–30 times slower than the other two methods. This is not surprising
because Gurobi is a general-purpose solver which incurs significant overhead when addressing
structurally simple problems such as the IRSP. Meanwhile, STN solves Min-max 50% quicker
and is almost twice as fast when minimizing Range compared to the Surrogate Algorithm.
These results clearly contradict the theoretical worst-case time complexity. The reason for
this is that STN can detect infeasible maximum durations much faster than Surrogate. This
is reflected in the processing times of the two algorithms since, particularly for Range, many
feasibility tests must be performed to obtain the optimal solution.

Min−max Range
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Figure 5 Maximum processing times in microseconds of the three algorithms (logarithmic scale).

3 Processing times were measured using the C++ library std::chrono::high_resolution_clock.
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Alternatively, let us now consider the average processing times of the algorithms. The
graphs in Figure 6 report the raw data points for the average processing times as well as an
interpolation of the data according to the number of nodes in the IRSP instance, similar to
the graphs in Figure 5.
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Figure 6 Average processing times in microseconds (µs) of the algorithms (logarithmic scale).

On the one hand, the MP is again 20–25 times slower than the other two methods,
on average. On the other hand, comparison of STN and Surrogate is more subtle this
time around. Surrogate is 16% faster than the STN when solving Min-max, whereas when
minimizing Range the STN is 17% faster. These results are significantly different from
the worst-case because Surrogate has more variability in its processing times, while both
MP and STN are consistent. Once again, these observations are explained by the fact that
Surrogate sometimes requires many iterations to prove infeasibility of a maximum duration
M . Meanwhile, in some other instances, Surrogate benefits from its reduced complexity and
quickly provides the optimal solution. All of these reasons help explain why, on average, the
differences between STN and Surrogate are reduced.

Finally, the experiments indicate that minimizing Range is 2–3 times slower than solving
Min-max, which is what one would expect given the time complexities outlined in Table 1.
Hence, it may be worth exploring the differences of employing Min-max and Range when
balancing workloads, similar to the study conducted by [15] for independent vehicle routes.

7 Conclusion

Interdependent route scheduling is a nontrivial problem when both time windows and flexible
departure times must be taken into account. The problem becomes even more challenging
when duration-based workload balance between these interdependent routes is desired given
how the decisions made for one route can have unforeseen impacts on others, potentially
leading to unfair schedules for the drivers. To overcome these challenges, this paper introduced
complementary optimization models for balancing duration-based workload among drivers in
addition to algorithms for the efficient evaluation of the corresponding equity functions.
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The resulting evaluation methods may be employed within, for example, local-search
heuristics to produce balanced vehicle routes. Balanced routes help improve the working
conditions and morale of the drivers. There are many real-world applications that can benefit
from these methods: logistics, transportation, home health care and workforce scheduling.

In spite of our results, many questions remain open. Are there more efficient algorithms
to evaluate the Min-max and Range equity functions? Are there alternative approximations
that can be employed to compute them faster? Can we extend the methods to address
multiple time windows per customer node? More broadly, how can we model an entire VRP
with interdependent routes such that the range is minimized? Is it possible to use only one
MILP? All of these exciting research opportunities are open for researchers to explore in
future studies.
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A Types of temporal interdependency

The five most common types of temporal interdependencies encountered in practice as
described by [6] can be represented with Equation 1 by correctly parameterizing δ values.
Table 2 details the setting of these parameters for each type of constraint when relating two
nodes u and v which belong to two different vehicle routes.

Table 2 Definition of δ weights for temporal interdependencies. N/A denotes that no value is
assigned (no relation or arc is defined). Here, αmin and αmax are parameters defining the desired
minimum and maximum time differences. Table adapted from [6].

Interdependency δuv δvu

strict synchronization 0 0
overlap −wv −wu

minimum difference αmin N/A
maximum difference N/A −αmax

general synchronization αmin −αmax

Appendix B describes how these interdependencies can be modeled in a precedence graph
and the impact they can have on the computation of service start times. Particularly, note
that minimum and maximum difference are both unidirectional constraints, while the other
three are all bidirectional constraints.

B Computing service start times

Given an instance of the IRSP with a graph G = (V, A), we can compute earliest feasible
start time of service hi at every node i ∈ V by following a topological ordering of G [4]. In
doing so, the computation is guaranteed to be performed in O(|V |) time.

Before going into details about the procedure, we must note that in order to obtain a
topological ordering, G must be a DAG. However, Table 2 shows that some interdependencies
are bidirectional and therefore incur cycles when represented as a graph. These cyclic
interdependencies arise whenever two interdependency arcs are required to represent them
in a graph. In other words, whenever for two nodes u and v there are arcs (u, v, δuv) and
(v, u, δvu) in set AP . Figure 7 illustrates the cycles and how we can trivially eliminate them
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to obtain a DAG. Figure 7(a) depicts one of the three interdependencies on a graph with
a cycle of size two. Fortunately, these cycles can be removed by duplicating nodes as per
Figure 7(b), where wu′ = wv′ = 0.

u

v

δuv δvu

(a) Cyclic interdependency in graph form.

u′ u

v′ v

0

0
δuv δvu

(b) An equivalent directed acyclic graph.

Figure 7 Cyclic interdependencies on a graph.

Once a topological order of G is obtained, we can compute start time of service hi at
every node i ∈ V . First, we set the departure times at origins ok, ∀rk ∈ R. For simplicity
purposes we assume hok

= 0 for all routes, but in practice any departure time can be set if
known or previously computed (for example after each iteration of the Surrogate Algorithm).
Then, for each node j in the topological ordering (and such that j is not an origin location),
the start time of service hj is computed by:

hj = max{ej , hi + wi + tij}, (i, j, tij) ∈ AR

However, if j is part of an interdependency constraint, that is, (u, j, δuj) ∈ AP , then we must
also take into account the relation captured by Equation 1:

hj = max{hj , hu + δuj}, if (u, j, δuj) ∈ AP (16)

Value hu is always known when computing hj in Equation 16 thanks to the topological
order. In this way, every value hi, ∀i ∈ V is computed exactly once and all interdependency
relations are respected. If, however, hj > lj for any node j ∈ V then there is an infeasibility
and the procedure terminates.
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