Towards Improved Robustness of Public Transport
by a Machine-Learned Oracle

Matthias Miiller-Hannemann &
Martin-Luther-Universitat Halle-Wittenberg, Germany

Ralf Riickert &
Martin-Luther-Universitdt Halle-Wittenberg, Germany

Alexander Schiewe =
TU Kaiserslautern, Germany

Anita Schobel =
Fraunhofer-Institut fiir Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern, Germany
TU Kaiserslautern, Germany

—— Abstract

The design and optimization of public transport systems is a highly complex and challenging process.
Here, we focus on the trade-off between two criteria which shall make the transport system attractive
for passengers: their travel time and the robustness of the system. The latter is time-consuming to
evaluate. A passenger-based evaluation of robustness requires a performance simulation with respect
to a large number of possible delay scenarios, making this step computationally very expensive.

For optimizing the robustness, we hence apply a machine-learned oracle from previous work
which approximates the robustness of a public transport system. We apply this oracle to bi-criteria
optimization of integrated public transport planning (timetabling and vehicle scheduling) in two
ways: First, we explore a local search based framework studying several variants of neighborhoods.
Second, we evaluate a genetic algorithm. Computational experiments with artificial and close to
real-word benchmark datasets yield promising results. In all cases, an existing pool of solutions (i.e.,
public transport plans) can be significantly improved by finding a number of new non-dominated
solutions, providing better and different trade-offs between robustness and travel time.

2012 ACM Subject Classification Applied computing — Transportation
Keywords and phrases Public Transportation, Timetabling, Machine Learning, Robustness
Digital Object Identifier 10.4230/0ASIcs.ATMOS.2021.3

Funding This work has been partially supported by DFG under grants SCHO 1140/8-2 and
MU 1482/7-2.

1 Introduction

The design and planning of public transport systems is a challenging, multi-faceted optim-
ization problem. Given an infrastructure network (stations and direct connections), a line
concept (a set of lines with corresponding frequencies), and a passenger demand (origin-
destination pairs between which passengers wish to travel), we here focus on the integrated
optimization of a timetable with a corresponding vehicle schedule. The resulting public
transport plan shall be cost-efficient, attractive to passengers, and robust against different
types of disturbances. As usual in multi-criteria optimization, we are especially interested in
finding non-dominated solutions, i.e. solutions for which no other solution exists which is at
least as good in all criteria and strictly better in at least one.

In recent years, many different robustness concepts have been proposed, for recent surveys
see [12, 16]. All these concepts compute the robustness of public transport systems differently,
but as was, e.g., stressed in [21], considering the passengers when evaluating the robustness

© Matthias Miiller-Hannemann, Ralf Riickert, Alexander Schiewe, and Anita Schébel;
37 licensed under Creative Commons License CC-BY 4.0

21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS

2021).

Editors: Matthias Miiller-Hannemann and Federico Perea; Article No. 3; pp. 3:1-3:20

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:matthias.mueller-hannemann@informatik.uni-halle.de
https://orcid.org/0000-0001-6976-0006
mailto:ralf.rueckert@informatik.uni-halle.de
mailto:a.schiewe@mathematik.uni-kl.de
https://orcid.org/0000-0002-1055-2066
mailto:schoebel@mathematik.uni-kl.de
https://orcid.org/0000-0002-9306-5529
https://doi.org/10.4230/OASIcs.ATMOS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

is very important. To do that, there are several approaches, where especially the effect of
disruptions on passengers are examined, see e.g., [4, 5, 8, 9, 15]. But such an assessment
requires extensive performance simulations with respect to a large number of scenarios,
each measuring the effect of specific delays on the passengers. Already a single robustness
simulation is computationally very expensive, and therefore such an approach is hard to
use within an iterative optimization framework. This motivates the design of a much faster,
scenario-based robustness approximation by using methods from machine learning. In a
recent paper, we developed an efficient oracle for the estimation of the robustness of a public
transport plan by training an artificial neural network [19]. Based on only a few key features
of a public transport plan, the trained neural network can be used as a black box to instantly
predict the robustness of a previously unseen public transport plan with high accuracy.

Contribution. The long-term goal of this work is to provide an improved methodology for
the planning of robust, but still efficient and attractive public transport systems. Here, we
develop two algorithmic approaches, a local search and a genetic algorithm, both using the
robustness oracle to iteratively compute competitive solutions w.r.t. passenger quality and
robustness. First, we apply this oracle as a black box for increasing the robustness of a
given timetable and a corresponding vehicle schedule by local search. We propose several
alternative definitions of neighborhoods for this local search. Second, we develop a genetic
approach that also uses the oracle to speed up the computations. Our experimental results
are encouraging:

1. Local search, trying to improve robustness succeeds in most cases without worsening the
average perceived travel time by too much.

2. More specifically, local search applied to a pool of non-dominated instances generates
many new non-dominated solutions, thereby improving our approximation of the Pareto
front significantly.

3. Similarly, our genetic approach shows clear improvements from a given starting population
of solutions within few rounds.

Related work. Public transport planning consists of several stages that are traditionally
solved sequentially. For this paper, we are considering public transport systems, namely a line
plan, a timetable and a vehicle schedule. For an overview of line planning, see Schobel [26],
for an overview of timetabling, see Lusby et al. [17], and for an overview of vehicle scheduling,
see Bunte and Kliewer [3].

There are several robustness concepts in literature. Due to the increase in complexity,
methods for finding timetables based on these concepts often use heuristics, see e.g., Polinder
et al. [23] or Pétzold [22] for recent approaches. For an overview of robust timetabling, see
Lusby et al. [16]. Related to robust timetable creation is delay management, where trains are
rescheduled in specific delay scenarios. For an overview of delay management, see Dollevoet
et al. [6] and Konig [14]. Here, we consider the delay management strategy to be fixed
and implicitly learnt by the robustness oracle. Hence, our used robustness evaluations are
applicable to any given delay management strategy.

Both local search and genetic algorithms are used extensively in public transport research.
See e.g., [10, 11, 13, 28] for local search applications and [1, 20, 27] for usages of a genetic
algorithm approach. To our knowledge this paper is the first to use both approaches in the
context of passenger flow-based robustness of timetables. There are other approaches of
using machine learning (ML) in the optimization of public transport systems. For example,
Matos et al. [18] use reinforcement learning for the optimization of periodic timetables and

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

Bauer and Schébel [2] develop an approach to learn the quality of a connection in delay
management. As far as we know, ML has not been used for robustness optimization in public
transport before.

Overview. The remainder of this paper is structured as follows. In Section 2, we provide
background information and basic notions used in this paper about public transport systems,
sketch the evaluation of robustness, and briefly describe the machine learning approach by
which we create an oracle for fast robustness evaluation. Then, Section 3 describes our local
search framework and the different sets of neighborhoods used for optimization. In Section 4,
we introduce a second approach based on a genetic algorithm. Experimental results are
presented and discussed in Section 5. Finally, we conclude with an outlook.

2 Background: Public Transport, Robustness and Machine Learning

2.1 Public Transport Systems

To present our algorithmic approaches, we first need to clearly define the structures we are
working with. For all our algorithms mentioned below, we will assume that an infrastructure
network, a line concept and a passenger demand are given and cannot be changed. Here, a
line concept is a set of paths through the infrastructure network, each with a frequency, i.e., a
number of times the line should be served per planning period. We will call the infrastructure
network with a given line concept and passenger demand a dataset. Overall, we want to
determine the robustness of instances, i.e., a dataset combined with a timetable, a vehicle
schedule and a corresponding set of passenger routes. As a basic underlying model, we use
an event-activity network (€, A) with events £, representing the departures and arrivals of
vehicles at stops, and activities A between them. For activities, we are considering drive, wait
and turnaround activities to model the vehicle behavior and change activities for transferring
of passengers. Additionally, we assume that for every activity a € A a lower bound [, and
an upper bound u, are given, determining the feasibility of the timetable. Depending on
the context, different sets of change activities will be considered. For timetable construction,
we consider as change activities a small set of important transfer possibilities which shall
be guaranteed. Afterwards, i.e., for evaluating a timetable, we allow passengers to use all
possible transfers as change activities. A feasible timetable now assigns a time 7, to each

event e € £ such that the duration d, of every activity a € A stays within the given bounds.
We are considering both periodic and aperiodic timetables, depending on the algorithm used.

A trip is a path of drive and wait activities in the event-activity-network that needs to
be operated by a single vehicle. The wvehicle schedule is a collection of vehicle tours, each
covering a set of trips. To be feasible, each trip in the event-activity network needs to be
covered exactly once and the corresponding turnaround activities are feasible w.r.t. their
bounds, i.e., the last event of a trip and the first event of the consecutive trip by the same
vehicle have enough time between them, e.g., to drive from one station to the other.

The last objects to consider are the passenger routes. We use the given passenger demand
data, with corresponding earliest departure times for each passenger, to determine a realistic
passenger routing. To achieve this, scarce vehicle capacities are also very important. Each
passenger chooses a route that optimizes a utility function. For this, we use a model where
the passengers are searching for their shortest paths w.r.t. the perceived travel time, i.e.,
a weighted sum of travel time and the number of transfers (e.g. by counting 5 minutes
per transfer), while respecting the capacity of the vehicles. Conflicts are resolved using
seat-reservation in a first come first serve order, i.e., once a passenger chooses her path the

3:3

ATMOS 2021

3:4

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

Table 1 Robustness tests RT-1-RT-4 with a description and a motivation, as well as the parameters
used in our experiments.

name description motivation parameter for paper

RT-1 initial delay of emulates problems source delays of 5 minutes
a single vehicle at the beginning of a trip

RT-2 slow-down of emulates problems increase of travel
single network sections like road work time of section by 2 minutes

RT-3 temporary blocking emulates a gridlock blocking of 15 minutes
of single station at a station

RT-4 random delay simulation emulates multiple empirical distribution of

common independent delays delays based on [9]

corresponding capacity in the vehicle is guaranteed. In our experiments, this model is much
faster than a more complex simulation involving capacity checks when boarding a vehicle
but provides nearly the same results. See [19] for a more detailed discussion of these models.

2.2 Robustness

The evaluation of the robustness of public transport networks we use is based on Friedrich
et al. [8, 9]. With a simulation framework, we conduct several robustness tests simulating
certain aspects of common disturbances during daily operation. During this process, we
measure the arrival times of all passengers compared to their initially planned arrival time.
The sum of these differences for all passengers provides the robustness value of the simulation.
This value serves as an orientation for comparing public transport plans using the same
passenger demand. For better interpretability and comparability, however, we normalize the
robustness values for a set of known instances to a scale from 0 to 100 where 100 is the worst
instance. Hence, smaller robustness values are better.

In [9], we give a very detailed description of all aspects of the four tests we use here.
To better illustrate this method we now give a detailed explanation of the first robustness
test RT-1. The task of RT-1 is to simulate the total effect that starting delays have on the
schedule. The delay caused when the first departure of a vehicle is not on time is a common
occurrence in daily operation. To evaluate this metric, RT-1 creates a separate scenario
where each vehicle has a delay of x minutes and all other vehicles are on time. The sum of
all passenger delays at their destination is the final result of RT-1. The result of this test
is deterministic but highly dependent on the parameters specifying the passenger and the
delay management models. So if, for example, each vehicle waits for transferring passengers
or passengers neglect maximum vehicle capacities this produces another specific robustness
value. In Table 1, we provide a brief description of the considered robustness tests.

2.3 Robustness Estimation by Machine Learning

Conducting the four robustness tests mentioned in the last section is computationally
expensive. In an optimization scenario where parts of an instance are altered we want to
know the effect on the robustness value as quickly as possible. To this end, we want to
approximate the real robustness by using an oracle as a predictor based on machine learning.
In [19] we first introduced such an oracle and evaluated its approximation performance. In
this section, we will briefly explain how this oracle is created and how we use it for robustness
approximation. First, we give a short overview of how the process works, explaining the
most important steps. The creation of the oracle can be done in four steps:

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

generate oracle

=~ LinTim
generate multiple LinTim generates
modified solution

basic instances
4 key features

. (Otacle estimating
i - training
instance set neurslinetig >l rob(tf:as;l:)ess
pass robustness estimation

key features
of instance
sef
1

input infrastructure with line optimization

concept and passenger
demand

_/\

add solution(s)
to pool

Scheme for solution generation:
- different timetabling methods
- different vehicle scheduling
methods

_/\

Model of

- passenger behaviour
- delay management

- delay scenario parameter I

_/\

reached
iteration
limit?

(discard solution) (__return solutions))

solution is evaluated
by optimization process

robustness of
instances

Figure 1 Left box: Workflow of the creation of the oracle for estimating robustness of a public
transport system by training a neural network. Right box: Optimization as an exemplary application
of the oracle. Yellow fields denote input or choices of models and methods which are specific for
each application (but can easily be adapted).

Table 2 Our selection for key features and their length, which is specific for each infrastructure
network. In our networks the maximal values were 240 minutes for the maximal travel time
traveltime™®* 10 for the maximal number of transfers #transfers™**and 30 minutes for the maximal

turnaround time turnaround™?®*. m is the number of infrastructure edges, n the number of stations.

description # elements
1 the avg. occupancy rate of the corr. vehicle in percent for each drive m
activity
2 the number of passenger groups with a perceived travel time of ¢ minutes traveltime™**
3 the share of passengers with 7 transfers F#transfers™®*
4 the average slack on wait activities per station n
5 the average slack on transfer activities per station n
6 the share of transfers per station n
7 the average sum of line frequencies per station n
8 the share of events per station n
9 the number of trips with an outgoing turnaround slack of ¢ minutes turnaround™®*
1. defining a set of key features representing an instance,
2. generating a large number of training instances,
3. calculating the robustness of the instances with the original robustness test,
4. using ML to estimate robustness only by knowing the key features.

Figure 1, adapted from [19], illustrates how the creation and usage of the oracle is linked
to the optimization process. The definition of a set of key features is essential for several
reasons. We want a compact way of representing an instance with a fixed number of elements
so ML-algorithms can easily use this as input. If this is achieved the creation of the key
features during the optimization can be done fast without transferring large data sets to the
oracle. Characteristic features include slack values on activities, occupancy rates on vehicles,
and the number of passengers using a transfer. For a detailed list of the key features we
selected for our model see Table 2.

In the second step, we need to create a large number of instances as the training set for
the ML-algorithm. To do so, we use several different timetabling and vehicle scheduling

methods as well as buffering strategies, provided by the open-source library LinTim [24, 25].

These instances should ideally be diverse and cover most robustness values. If there are gaps
where we have no instances associated with a certain interval of robustness values (as can

3:5

ATMOS 2021

3:6

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

123 - [2] - [} N 12} -

173 w (73 1

Q Q [} Q

Se Seq Se Ee

(%2} w |2} (%2}

3 =3 =3 =}

Q o Q Qo

Oq [P Og Og

el o hel °

L 2 L 2

© © © ©

=t £ ES =t

k7] k7 k7] k7]

o} (o] o o}

T T T T 1 T T T T T T T T T T T T

2) 7 100 =) 7 100 2 s 7 100 2 %0 s
real robustness real robustness real robustness real robustness

Figure 2 Predictions of all four robustness tests for all instances of the grid network [19].

be observed in Figure 2), new instances may not accurately be predicted near this range,
see [19] for details. In the third step, the robustness values for the training set need to be
calculated. This is done by the framework mentioned in Section 2.2. In the last step, the
training of the oracle is done. We selected an artificial neural network (ANN) for the task of
machine learning. More specifically, we use a neural network with five hidden layers and an
output layer with four neurons predicting each of the four robustness tests separately. The
network was trained using a training-, test- and validation set. For all our four infrastructure
networks we achieved an average error below 1% in terms of the combined robustness value of
all four robustness tests [19] (see Figure 2). However, the oracle performed worse when tested
with instances created with a different method and robustness values outside the clusters in
the training set. In spite of these limitations, we will see that the oracle is powerful enough
to guide local search and the genetic algorithm into the desired direction.

3 Improving Robustness by Local Search

Our first approach in utilizing the robustness oracle presented in Section 2.3 is a generic local
search approach. It was first described in [19] and is stated in Algorithm 2, Appendix A.
The main idea is to determine a local neighborhood of the current solution in each step,
evaluating all solutions in the neighborhood using the robustness oracle.

The algorithm has a given instance as a starting solution, i.e., a fixed dataset, consisting
of an infrastructure network, a line concept and a passengers’ demand, in combination with a
timetable, a vehicle schedule and corresponding passenger routes. Since the dataset is fixed,
we want to improve the robustness of the starting solution by changing the timetable and
the vehicle schedule. To do so, we compute a local neighborhood of timetables in each step,
introducing possible changes to the timetable. Note that this may include changes of the
duration of turnaround activities, therefore requiring to adapt the vehicle schedule as well.

For every neighborhood, we consider several different activities for which an increase of its
slack (i.e. the difference of planned duration and lower bound) could benefit the robustness of
the instance: We sort the wait, drive and change activities each based on their current slack,
divided by the number of passengers using the activity in the current passenger routes, and
the turnaround activities by their current slack. Obtaining the N (here: N = 20) activities
with the smallest weight from every sorted list, we get a candidate set of 4N activities. For
each candidate a = (4,J) € A, i,j € £ with a lower bound [, and a current duration d,, we
then increase the slack d, — [, of the activity, resulting in a later time for the target event j.

This resulting timetable may be infeasible, since the lower bound on some activities
(4, k) € A, k € £ may not be respected anymore. Therefore, we need a propagation strategy
to reconstruct a feasible timetable. We considered the following four strategies here:

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

Strategy 1: Use all original slack. For every infeasible activity a = (,5) € A, we increase
the target event time exactly as much such that the lower bound of the activity is fulfilled
again, i.e., m; = m; + l,. Thus, the slack of this activity is reduced to zero.

Strategy 2: Reuse no slack. We maintain the original slack on each activity a = (i,j) € A,
therefore shifting the complete timetable after the considered candidate, i.e., m; = m; +d,.

Strategy 3: Reuse J% (here: J = 50) of the original slack, shifting the target event time of
an infeasible activity a = (i,) € A according to mj = m; + lo + 125 - (da — la).

Strategy 4: Reuse some slack, maintaining a minimal slack of K seconds (here: K = 300)
(or the original slack, if it was less) on a = (4,7) € A, i.e., mj = m + |, + min(K,d, — 1)

Note that we are considering all possibly infeasible activities here, including all change
activities that are used by some passenger. The latter implies that passenger routes remain
feasible. For ease of presentation, we do not check the upper bounds of the activities,
assuming that we can postpone all events arbitrarily. If the upper bounds u, should be
considered as well, the above equations can be easily adapted to include the corresponding
constraints. It may be the case that this leads to infeasibilities that can not be handled
by our propagations strategies. In these cases we simply remove the candidate from the
neighborhood. The different strategies lead to different trade-offs between robustness and
travel time of the passengers, as can be seen in the computational experiments in Section 5.

Another aspect of the propagation strategy is whether to consider aperiodic or periodic
timetables: The formulas given above can be extended to the periodic case, allowing us
to maintain a feasible periodic timetable where we need to shift all corresponding periodic
events at once. This leads to much larger changes in the resulting timetable and an additional
travel time increase for the passengers. Furthermore, the reconstruction of feasible solution
may not be possible due to the additional periodicity constraint. In such cases, we again
remove the candidate from the neighborhood. Mathematically, the case where we allow an
aperiodic timetable is a relaxation of the periodic case, therefore allowing better solutions
w.r.t. robustness. We provide computational evaluations for both cases in Section 5.

After every candidate has a restored feasible timetable, we can use the oracle to predict
the robustness value of the corresponding instance. Additionally, we evaluate the current
passenger routes, rejecting candidates where the travel time of the passengers increases too
much. The resulting set of instances serves as the neighborhood set for the local search and

we can choose the best solution in terms of estimated robustness as the new current solution.

To improve the runtime of the local search, we do not update the passenger routes in
every step. Since we maintain a feasible timetable, all passenger routes remain feasible as well
but may be suboptimal for single passengers. The idea is that for every single iteration, the
changes in the corresponding timetable are not too big, therefore not changing the optimal
passenger routes too drastically. To maintain an accurate robustness prediction, we introduce
additional rerouting steps, where we recompute all passenger routes every few iterations and
therefore improve the accuracy of the robustness oracle.

4 Genetic Algorithm

Our second approach applying the robustness oracle is a genetic algorithm. Feasible solutions,
i.e., instances as defined above, are mutated and breed to create new and hopefully better
solutions w.r.t. robustness. The general procedure is described in Algorithm 1.

To allow an easy mutation and breeding of different instances without losing feasibility,
we choose a specific data model to represent solutions in a compact way as genes of equal
length. Every current solution in our algorithm is determined by a vector s of slacks for each
possible activity in the event-activity-network, as well as a set of passenger routes. This

3:7

ATMOS 2021

3:8 Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

Algorithm 1 Genetic algorithm using machine learning.

Data: the starting solution set currentSolutions
currentSolutions = currentSolutions U mutate(currentSolutions)
while iteration limit not reached do

if Rerouting step? then
| Reroute passengers in all solutions and update currentSolutions

end
currentSolutions = breed(currentSolutions)
currentSolutions = predictAndSelect(currentSolutions)
end
Result: currentSolutions

allows for easy mutation and breeding, since every non-negative slack vector can be converted
into a feasible timetable, by propagating the slack from a given start event. Note that we
again do not consider upper bounds on the activities here and that we deliberately omit
the vehicle schedule. Since optimal vehicle schedules can be computed very fast, these are
calculated ad hoc when needed. To mutate an instance, a given number of { (here: [= 100)
entries in the vector s are randomly selected and the corresponding slack value is changed
by a random value in [—m,m| for a given m (here: m = 120 seconds), provided that the
updated slack remains non-negative. For breeding, we choose two parents randomly from the
previous generation and combine their slack vectors, i.e., for each entry in the slack vector
we randomly decide which of the possible values to use. This is done n times where n is
given beforehand, i.e., we gain n new individuals for each generation. We choose a rather
low number of 10 as the generation size and number of breedings per iteration due to the
relatively large amount of memory needed to store the different entities. Additionally, the
child is mutated as described above and directly inherits the passenger routes of one parent.

After creating the next generation in the breeding step, we introduce a selection process,
reducing the number of candidates to a given g. In our implementation, both parents and
children enter the selection process. We tested different variants here: The quality strategy
selects solutions solely based on their estimated robustness, ignoring the travel time for the
passenger. The Pareto strategy on the other hand chooses the non-dominant solutions in the
current solution pool, i.e., solutions with a worse estimated robustness may remain in the
population if their travel time is good enough. If less than g solutions are non-dominated,
we choose the best non-selected solutions w.r.t. the robustness estimation to fill up the next
generation. The difference between the two strategies is discussed in Section 5.

Note that since we only store the timetable for each solution, we need to compute a new
vehicle schedule for each evaluation. To do so, a flow-based integer programming formulation
of the open-source software library LinTim [24, 25] was used. Additionally, to maintain
realistic passenger routes, we add a rerouting step that is executed every few iterations,
computing new optimal passenger routes for every instance in the current generation.

5 Experiments

Algorithms 1 and 2 and their beforehand discussed variants were implemented and tested on
several datasets: two artificial benchmark datasets, grid and ring, see [7], and two close-to
real world datasets, the bus system in Géttingen, Germany (goevb) and the regional train
network in southern Lower Saxony, Germany (lowersaxony). All datasets are available as
part of the open-source library LinTim, see [24, 25]. Their key features are given in Table 3,
for a visualization of the infrastructure networks see Appendix B.

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

Table 3 Sizes of the used datasets.

Name # Stations # Edges # Passengers # Lines # Events
grid 80 145 1676 30 728
ring 161 320 2022 37 1376
goevb 257 548 1943 22 2348
lowersaxony 35 36 11967 7 508

Table 4 Average improvement of the different propagation strategies using 120 seconds of slack
on all datasets and starting instances.

strategy avg. robustness change avg. perceived travel time change

Strategy 1 -7.00% +0.27%
Strategy 2 -0.97% +2.17%
Strategy 3 -10.66% +0.28%
Strategy 4 -5.44% +1.25%

5.1 Local Search

First, we discuss our evaluations of the local search algorithm, presented in Section 3. We
study the different neighborhoods resulting from the propagation strategies, as well as the
potential to improve the pool of existing solutions. The following experiments were run for
several different starting instances per dataset. For the presentation, we selected one instance
with small, medium and high initial robustness values, respectively.

Propagation Strategy

To evaluate the local search, we first discuss the different propagation strategies proposed
in Section 3. In Table 4, the average changes to the two objective functions are given
for all considered starting instances on all datasets. On average, Strategy 3 provides the
best trade-off, by significantly improving the robustness at a small expense of increasing
travel time. Figure 3 shows all different strategies used on three starting instances for
grid. We can see that the expected performance, i.e., an improvement in robustness and an
increase in passenger travel time can be observed for all cases. Furthermore, we see that the
different strategies provide different trade-offs, e.g., Strategy 3 being a non-dominated solution
(w.r.t. the other propagation strategies) for the starting solution with high robustness but not
for the starting solution with the middle robustness. Note that although the improvement
in robustness does not look significant for the starting solution with good robustness, the
relative robustness improvement is still high, e.g., 31% for Strategy 4 compared to around
50% for Strategy 2 on the other two starting instances. Additionally, we see that choosing a
smaller slack increase does not significantly alter the results obtained by the local search.

Using non-dominated start instances

Next, we want to consider the overall quality of the solutions found by the local search.

Since the quality of the solution is dependent on the starting instance, Figure 4 shows
the effect of using the local search on every non-dominated original instance, i.e., on every
original instance that is not dominated by another one. For this, we chose an initial slack
increase of 120s per iteration and propagation Strategy 4. We can see that we find a huge

3:9

ATMOS 2021

3:10

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

Figure 3 Different propagation strategies for the local search, evaluated on grid. The performance
is depicted by a line from the starting instance to the end result, where the end result is additionally
marked by an “x”. The strategies are given by their number from Section 3 and the slack increase in
each iteration.

20
1

30
18
1

25
16
1

20
I
14
1

12
1

10
L
average perceived travel time

average perceived travel time

10

T T T T T T T T
20 40 60 80 100 20 40 60 80

realized robustness realized robustness

(a) lowersaxony. (b) grid.

o
38 4

120
I

average perceived travel time
40 60
Il

average perceived travel time

20

T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 100

realized robustness realized robustness
(c) ring. (d) goevb.

Figure 4 Aperiodic case: Using the local search on all non-dominated original instances. Old
instances are grey, local search solutions are marked in red.

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

Table 5 Aperiodic case: Sizes of the approximated Pareto sets using local search.

dataset originally non-dominated together non-dominated of those # new
grid 51 58 14
ring 44 29 12
lowersaxony 50 50 21
goevb 38 18 14

Table 6 Periodic case: Average improvement of the different periodic propagation strategies
using 120 seconds of slack on all datasets and starting instance.

strategy avg. robustness change avg. perceived travel time change

Strategy 1 -2.87% +0.14%
Strategy 2 -0.09% +0.01%
Strategy 3 -2.2% +0.07%
Strategy 4 -0.7% +0.04%

amount of solutions with structures not used beforehand, i.e., that have objective values that
are very different from the original instances. This is especially true for grid, Figure 4b,
where we have a large number of solutions in between the original clusters. But we find
competitive results for all instances, now dominating multiple beforehand non-dominated
solutions. An extreme example is goevb, where almost all originally non-dominated instances
are dominated by local search solutions, namely 34 of 38 instances. An overview of the
number of non-dominated solutions in the different solution sets can be found in Table 5.

Periodic Timetabling and Local Search

If we restrict the local search to finding periodic timetables, the algorithm can still improve
the robustness of the start instances. In Table 6, the average changes to the two objective
functions are given for all considered starting instances on all datasets. The number of new
solutions found that are non-dominated can be seen in Figure 5. Table 7 is a visualization of
the new Pareto fronts. Contrary to the aperiodic case, compare Table 4, there is no dominant
solution on average, i.e., on average all strategies provide different trade-offs. But the amount
of change in the two objective functions is smaller when compared to the aperiodic case, due
to the additional periodic restrictions. As can e.g. be seen in Figure 6, using the periodic
local search on a starting instance with middle robustness improves the only robustness
by 40% instead of the 50% of the aperiodic case. Still, the periodic local search is able to
improve the robustness of every given starting instance on dataset grid.

Table 7 Periodic case: Sizes of the approximated Pareto sets using periodic local search with
120s slack on the different datasets.

dataset originally non-dominated together non-dominated of those # new
grid 51 40 12
ring 44 47 14
lowersaxony 50 63 28
goevb 38 39 3

3:11

ATMOS 2021

3:12 Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

35
1

25
1

20

average percieved travel time
average percieved travel time

e - o B %
- x
‘O_ .
e | 3
T T T T T T T T
20 40 60 80 100 20 40 60 80
realized robustness realized robustness
(a) lowersaxony. (b) grid
2
° 3
o 2 Q
£ £
= = 84
[g -
T 8 ©
=1 5 o
kel T 2
(5] (5]
> >
QL o4 o
Q. o
(0] (0]
o < (o)
E E 8 .
[} [}
> >
© ©
o o
N <~
T T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 100
realized robustness realized robustness
(c) ring. (d) goevb.

Figure 5 Periodic case: Approximated Pareto fronts for the solutions computed by the periodic
local search with 120s slack on the different datasets. Old instances are grey, new solutions are
marked in red.

Figure 6 Using periodic planning for the local search, evaluated on grid. The performance is
depicted by a line from the starting instance to the end result, where the end result is additionally
marked by an “x”. The strategies are given by their number from Section 3 and the slack increase in
each iteration.

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel
X Original Instances
100 4 X Start Solutions
X Generation 1
g § % Generation 2
= Generation 3
= 801 Generation 4
é X Generation 5
= % Generation 6
2 X Generation 7
::: 60 1 X X Generation 8
g X % X Generation 9
% ’)‘5 ¥
£ 40 X%
2 X R
2 x X
XX %
20 1 WK X
0 20 40 60 80 100

realized robustness

Figure 7 Using the Pareto selection for the genetic algorithm, evaluated on ring.

Original Instances

100 4 X Start Solutions
X Generation 1
L X % Generation 2
E Generation 3
= 80 Generation 4
é ! Generation 5
= X Generation 6
=}
2 . x % Generation 7
§ 60 1 * X Generation 8
g X Generation 9
[
o0
<
€ 40
5 e
X
x X%
Xx
20 A
T T T T T
0 20 40 60 80 100

realized robustness

Figure 8 Using the quality selection for the genetic algorithm, evaluated on ring.

5.2 Genetic Algorithm

The genetic algorithm was evaluated on the described datasets as well. Note that all
experiments discussed here were repeated multiple times, due to their randomness. But since
the behavior of different runs were similar, only one run is presented for each experiment.

Choice of the selection process

The choice of the selection process shows the different qualities of the genetic algorithm.

When using the Pareto selection, shown in Figure 7, the genetic algorithm produces multiple
solutions dominating the original instances, exploring a large area of the previously empty part
of the solution space. This produces several new competitive solutions for a decision maker
to choose from. On the other hand, using the quality selection, shown in Figure 8, allows
the genetic algorithm to focus on the estimated robustness value of the solution, producing
more robust solutions with a higher travel time. Therefore both selection strategies have
their advantages, the best strategy is dependent on the desired outcome of the algorithm.

3:13

ATMOS 2021

3:14

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

Table 8 Sizes of the approximated Pareto sets using the genetic algorithm.

dataset originally non-dominated together non-dominated of those # new
grid 51 37 34
ring 44 48 43
lowersaxony 50 76 68
goevb 38 35 33

But we also see a disadvantage of the genetic algorithm: Since the algorithm only optimizes
the estimated robustness value, it is dependent on the quality of the robustness oracle used.
As was already discussed in [19], using the oracle in unexplored solution space potentially
increases the error, complicating the computation of robust solutions. This can, e.g., be seen
in the variance of the last generation in Figure 7. But nevertheless, the overall quality, i.e.,
the real simulated robustness, of the computed solutions is very high.

Comparison to local search

To compare the genetic algorithm results with the local search results, we choose a depiction
similar to Figure 4. In Figure 9, we collect the different solutions computed for the genetic
algorithm experiments. With this, we can compare the approximated Pareto front of the
different sets, namely the original instances, the local search solutions in Figure 4 and
the genetic algorithm solutions. The genetic algorithm is able to compute a large set of
competitive solutions, dominating even more original instances than the local search. For an
overview of the number of non-dominated solutions, see Table 8. Especially in the area with
worse robustness, the Pareto selection strategy combined with the randomness of the genetic
algorithm results in a higher density of solutions. The genetic algorithm is therefore not only
able to compute solutions with a good robustness but with very different trade-offs between
robustness and passenger quality. Overall, both algorithms presented here are competitive
and serve different means: While the local search can improve a single given starting solution
w.r.t. the robustness value, the genetic algorithm is able to compute competitive solutions
with different trade-offs from a set of given starting solutions.

Operating costs

Up until this point, we did not mention the operating cost of solutions since they are not
in the focus of this work and we do not try to optimize them. But clearly robust and fast
solutions still need to have competitive operating costs to be chosen by any public transport
planner. Here, we only calculate and evaluate operational cost a posteriori.

LinTim includes operating costs based on the number of vehicles used, driven kilometers
and an additional cost per hour for every vehicle in use. In our experiments the corresponding
parameters were set to 100000 € per vehicle, 1.5 € per kilometer and 25 € per hour. Figure 10
shows the Pareto fronts concerning cost and robustness for the aperiodic local search with
120s slack. The networks grid and goevb show several clusters of solutions where the costs
are dominated by solutions inside clusters near the Pareto front. We can observe that several
of the new solutions have costs that are competitive and belong to the Pareto-front.

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

20 25 30 35
1 1 1 1

15

average perceived travel time
average perceived travel time

10

T T T T T T T
20 40 60 80 100 20 40 60 80

realized robustness realized robustness

(a) lowersaxony.

100
I

80
1

40

average perceived travel time
60

average perceived travel time
60
Il

20
1

0 20 40 60 80 0 20 40 60 80 100

realized robustness realized robustness

(c) ring. (d) goevb.

Figure 9 Approximated Pareto fronts for the solutions computed by the genetic search. Old
instances are grey, new solutions are marked in red.

6 Outlook

In this paper, we have focused on improving the robustness of public transport systems from
a passenger-oriented point of view. Our computational tests with local search and genetic
algorithms demonstrated the ability of both methods to generate many new non-dominated
solutions. However, there are still several improvements to consider. With respect to local
search, we may further extend the definition of the used neighborhood and may consider
combinations of several ones. For the genetic algorithm, next to changes in the selection
process and the choice of starting instances, different mutation strategies would be possible
to consider as well. This may further improve the exploration of the solution space, leading
to more competitive solutions.

Improvement of the oracle and retraining is also of high importance. We need to eliminate
gaps in the codomain, which are the robustness values. During the optimization using the
genetic algorithm, we discovered many such solutions inside these gaps. This can be observed
in Figure 9(b) where the space between 20 and 35 in the realized robustness objective is
now populated. New solutions could now be added to the training process of the oracle,
potentially allowing a better robustness estimation for future runs of the algorithms.

We plan to continue this line of work to see if similar results are possible when we modify
the line concept, which is currently assumed to be fixed. Changing it would lead to different

solution structures to learn for the oracle, extending the covered area in the solution space.

Future work may also include further metaheuristics and stochastic local search methods.

3:15

ATMOS 2021

3:16

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

S 8
g | 8
o +
S &
2]
5 ©
o %4 8 o
o 3 o < |
@
8 x X
8 580 XX x
s v
< 5 £
e |
2 x
8 = 4 Rcaleie |
e |
&
N T T T T T T T T
20 40 60 80 100 20 40 60 80
realized robustness realized robustness
(a) lowersaxony. (b) grid.
~
3 5
8 ?
& N
S ~
8 - o 8
172 (2]
8 8 7 b
x X
'§ 5 x %%5 ><>><‘§<< X% Tx
o F |
& 3
§ i
: > :
&7 k:
w o T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 100
realized robustness realized robustness
(c) ring. (d) goevb.

—— References

1

Figure 10 Approximated Pareto fronts (robustness vs. operational costs) for the solutions
computed by the aperiodic local search with 120s slack and strategy 4 on the different datasets. Old
instances are grey, new solutions are marked in red.

D. Arenas, R. Chevrier, S. Hanafi, and J. Rodriguez. Solving the train timetabling problem, a
mathematical model and a genetic algorithm solution approach. In 6th international conference
on railway operations modelling and analysis (RailTokyo2015), 2015.

R. Bauer and A. Schébel. Rules of thumb — practical online strategies for delay management.
Public Transport, 6(1):85-105, 2014.

S. Bunte and N. Kliewer. An overview on vehicle scheduling models. Public Transport,
1(4):299-317, 20009.

O. Cats. The robustness value of public transport development plans. Journal of Transport
Geography, 51:236-246, 2016.

A. De-Los-Santos, G. Laporte, J. A. Mesa, and F. Perea. Evaluating passenger robustness in
a rail transit network. Transportation Research Part C: Emerging Technologies, 20(1):34-46,
2012. Special issue on Optimization in Public Transport+ISTT2011. doi:10.1016/j.trc.
2010.09.002.

T. Dollevoet, D. Huisman, M. Schmidt, and A. Schobel. Delay propagation and delay
management in transportation networks. In Handbook of Optimization in the Railway Industry,
pages 285—317. Springer, 2018.

Collection of open source public transport networks by DFG Research Unit “FOR 2083:
Integrated Planning For Public Transportation”, 2018. URL: https://github.com/FOR2083/
PublicTransportNetworks.

https://doi.org/10.1016/j.trc.2010.09.002
https://doi.org/10.1016/j.trc.2010.09.002
https://github.com/FOR2083/PublicTransportNetworks
https://github.com/FOR2083/PublicTransportNetworks

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

M. Friedrich, M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schoébel. Robustness
Tests for Public Transport Planning. In G. D’Angelo and T. Dollevoet, editors, 17th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59 of OpenAccess Series in Informatics (OASIcs), pages 6:1-6:16, Dagstuhl,

Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/0ASIcs.

ATMOS.2017.6
M. Friedrich, M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schobel. Robustness as
a Third Dimension for Evaluating Public Transport Plans. In R. Borndoérfer and S. Storandt,

editors, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2018), volume 65 of OpenAccess Series in Informatics (OASIcs), pages

4:1-4:17. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/0ASIcs.ATMOS.

2018.4.

M. Goerigk. Exact and heuristic approaches to the robust periodic event scheduling problem.
Public Transport, 7(1):101-119, 2015.

M. Goerigk and A. Schébel. Improving the modulo simplex algorithm for large-scale periodic
timetabling. Computers & Operations Research, 40(5):1363-1370, 2013.

M. Goerigk and A. Schobel. Algorithm engineering in robust optimization. In L. Kliemann
and P. Sanders, editors, Algorithm Engineering: Selected Results and Surveys, volume 9220 of
LNCS State of the Art, pages 245-279. Springer, 2016.

O. Ibarra-Rojas, F. Lépez-Irarragorri, and Y. Rios-Solis. Multiperiod bus timetabling. Trans-
portation Science, 50(3):805-822, 2016.

E. Konig. A review on railway delay management. Public Transport, 12(2):335-361, 2020.
Q.-C. Lu. Modeling network resilience of rail transit under operational incidents. Transportation
Research Part A: Policy and Practice, 117:227-237, 2018. doi:10.1016/j.tra.2018.08.015.
R. Lusby, J. Larsen, and S. Bull. A survey on robustness in railway planning. FEuropean
Journal of Operational Research, 266(1):1-15, 2018.

R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and methods.
OR spectrum, 33(4):843-883, 2011.

G. Matos, L. Albino, R. Saldanha, and E. Morgado. Solving periodic timetabling problems
with SAT and machine learning. Public Transport, 2020. doi:10.1007/s12469-020-00244~y.
M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schobel. Estimating the robustness of
public transport systems using machine learning, 2021. arXiv:2106.08967.

K. Nachtigall and S. Voget. A genetic algorithm approach to periodic railway synchronization.
Computers € Operations Research, 23(5):453-463, 1996.

J. Parbo, O. Nielsen, and C. Prato. Passenger perspectives in railway timetabling: a literature
review. Transport Reviews, 36(4):500-526, 2016.

J. Patzold. Finding robust periodic timetables by integrating delay management. Public
Transport, 2021. doi:10.1007/s12469-020-00260-y.

G. Polinder, V. Cacchiani, M. Schmidt, and D. Huisman. An iterative heuristic for passenger-
centric train timetabling with integrated adaption times. ERIM Report Series Research in
Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM
is the joint research institute of the Rotterdam School of Management, Erasmus University
and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam, 2020. URL:
https://ideas.repec.org/p/ems/eureri/127816.html.

A. Schiewe, S. Albert, P. Schiewe, A. Schébel, and F. Spiihler. LinTim - Integrated Optimization
in Public Transportation. Homepage. https://lintim.net, 2020.

A. Schiewe, S. Albert, P. Schiewe, A. Schobel, and F. Spiihler. LinTim: An integrated
environment for mathematical public transport optimization. Documentation for version
2020.12, 2020. URL: https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-62025.

A. Schobel. Line planning in public transportation: models and methods. OR spectrum,
34(3):491-510, 2012.

3:17

ATMOS 2021

https://doi.org/10.4230/OASIcs.ATMOS.2017.6
https://doi.org/10.4230/OASIcs.ATMOS.2017.6
https://doi.org/10.4230/OASIcs.ATMOS.2018.4
https://doi.org/10.4230/OASIcs.ATMOS.2018.4
https://doi.org/10.1016/j.tra.2018.08.015
https://doi.org/10.1007/s12469-020-00244-y
http://arxiv.org/abs/2106.08967
https://doi.org/10.1007/s12469-020-00260-y
https://ideas.repec.org/p/ems/eureri/127816.html
https://lintim.net
https://nbn-resolving.org/urn:nbn:de:hbz:386-kluedo-62025

3:18

Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

27 P. Tormos, A. Lova, F. Barber, L. Ingolotti, M. Abril, and M. Salido. A genetic algorithm for
railway scheduling problems. In Metaheuristics for scheduling in industrial and manufacturing
applications, pages 255—-276. Springer, 2008.

28 A. van den Heuvel, J. van den Akker, and M. van Kooten. Integrating timetabling and vehicle
scheduling in public bus transportation. Technical report, Department of Information and
Computing Sciences, Utrecht University, Utrecht, The Netherlands, 2008.

A Local Search
The local search algorithm used here, first described in [19], can be found in Algorithm 2.

Algorithm 2 Local search using machine learning, as stated in [19].

Data: the starting solution currentSolution
currentValue = evaluateByOracle(currentSolution)
while true do

bestImprovement = ()

bestValue = oo
foundImprovement = False
Compute local neighborhood of currentSolution

if Rerouting step? then

Reroute all passengers and update currentSolution
currentValue = evaluateByOracle(currentSolution)
end

for newSolution in local neighborhood do
introduceAdditionalSlack (newSolution)

value = evaluateByOracle(newSolution)

if passengerUtility(newSolution) too bad then
| continue

end

if value < bestValue then
bestValue = value

bestImprovement = newSolution
end
end

if currentValue > bestValue then
currentValue = bestValue

currentSolution = bestImprovement

foundImprovement = true
end

if not foundImprovement then
| break

end

end

B Dataset information

Figures 11— 14 provide a visualization of the datasets used in this paper.

M. Miiller-Hannemann, R. Riickert, A. Schiewe, and A. Schdbel

Gt ER G S Er) M s u [Ty MR Gy S
2 q a e @ | 1]
w » 2 2 2 o w 30 e
9 2 = 2 = 2 m + P
003 35 7005) 37 39 o il a3 - 45 a7 49
o0t £ Tors o
2 g ~— —
54 s 1 P r P « 5 s
Cooor 52 se oo s s £ 62 61 66
= = e 5 o o o o o
Gy Ty Ty Ty 7 = (E) S MG 5 D)
N - — 7 N — — N
q 7 o 7 s) w o o
5 5 P % Ty o o 100
o o o o o o o w01 10
103 105 108 110 1z 1 oy 116 s
Qoo
o1 11 - i e e] . -
G105 121 Troor)124 127 Oy 129 131 133 Tror) 135 <D
- . 4 2 15 = 154 15 11
= 138 140 Toooa 141 142 183 Ciooi) 1 Toor) 145

Figure 11 Infrastructure network of grid.

Figure 12 Infrastructure network of lowersaxony.

G\

3:19

ATMOS 2021

3:20 Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

. ° .
tggg?g‘én\\“
el

SEEL
i o

—

Figure 13 Infrastructure network of ring.

G

O 5O

Figure 14 Infrastructure network of goevb.

	1 Introduction
	2 Background: Public Transport, Robustness and Machine Learning
	2.1 Public Transport Systems
	2.2 Robustness
	2.3 Robustness Estimation by Machine Learning

	3 Improving Robustness by Local Search
	4 Genetic Algorithm
	5 Experiments
	5.1 Local Search
	5.2 Genetic Algorithm

	6 Outlook
	A Local Search
	B Dataset information

