
Robustness Generalizations of the Shortest
Feasible Path Problem for Electric Vehicles
Payas Rajan #

Department of Computer Science & Engineering,
University of California, Riverside, CA, USA

Moritz Baum #

Apple, Cupertino, CA, USA

Michael Wegner #

Apple, Cupertino, CA, USA
Tobias Zündorf #

Apple, Cupertino, CA, USA

Christian J. West #

Apple, Cupertino, CA, USA
Dennis Schieferdecker #

Apple, Cupertino, CA, USA

Daniel Delling #

Apple, Cupertino, CA, USA

Abstract
Electric Vehicle routing is often modeled as a Shortest Feasible Path Problem (SFPP), which
minimizes total travel time while maintaining a non-zero State of Charge (SoC) along the route.
However, the problem assumes perfect information about energy consumption and charging stations,
which are difficult to even estimate in practice. Further, drivers might have varying risk tolerances
for different trips. To overcome these limitations, we propose two generalizations to the SFPP; they
compute the shortest feasible path for any initial SoC and, respectively, for every possible minimum
SoC threshold. We present algorithmic solutions for each problem, and provide two constructs:
Starting Charge Maps and Buffer Maps, which represent the tradeoffs between robustness of feasible
routes and their travel times. The two constructs are useful in many ways, including presenting
alternate routes or providing charging prompts to users. We evaluate the performance of our
algorithms on realistic input instances.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Paths and connectivity problems

Keywords and phrases Electric Vehicles, Route Planning

Digital Object Identifier 10.4230/OASIcs.ATMOS.2021.11

Funding Payas Rajan: This work was done while the author was an intern at Apple Inc.

1 Introduction

Several factors can cause an Electric Vehicle (EV) to get stranded along a route: They often
have shorter ranges than internal combustion (IC) vehicles, charging stations can be sparse
and fragmented among different providers. For drivers, this stranding risk manifests as range
anxiety and range stress [18, 25, 40, 41, 44, 46]. To alleviate range anxiety, route planning
for EVs must consider battery constraints while selecting routes [19, 33, 34, 48, 49].

Previous work [7, 8] models EV routing with charging stops as the NP-hard Shortest
Feasible Path Problem (SFPP): Given a road network modeled as a weighted, directed graph
with energy consumptions and travel times on each edge; charging stations on a subset
of vertices and their respective concave charging functions; a source vertex, a destination
vertex and a starting battery SoC, find a path that minimizes the total travel time including
charging time while maintaining a non-zero battery SoC at all points along the route. The
Charging Function Propagation (CFP) algorithm solves SFPP in exponential time and space.

In practice, however, the shortest feasible path might not be sufficient. First, the energy
consumptions on edges are derived from estimation models that are not perfectly accurate
[14, 20, 42, 43]. Second, the energy consumption of an EV depends on several factors that

© Payas Rajan, Moritz Baum, Michael Wegner, Tobias Zündorf, Christian J. West, Dennis
Schieferdecker, and Daniel Delling;
licensed under Creative Commons License CC-BY 4.0

21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021).
Editors: Matthias Müller-Hannemann and Federico Perea; Article No. 11; pp. 11:1–11:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:payas.rajan@email.ucr.edu
https://orcid.org/0000-0001-8939-1682
mailto:moritz_baum@apple.com
mailto:michael_wegner@apple.com
mailto:tzundorf@apple.com
mailto:christian_west@apple.com
mailto:dschieferdecker@apple.com
mailto:ddelling@apple.com
https://doi.org/10.4230/OASIcs.ATMOS.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Robustness Generalizations of Shortest Feasible Path for EVs

are difficult to even estimate: driver aggressiveness, age of the battery, wear and tear of
the EV. Each of these factors can affect the energy consumption significantly [1, 22]. Third,
users may have varying risk tolerances, and thus a one-size-fits-all approach is not sufficient
to alleviate range anxiety when serving routes for a large number of EV drivers.

In this work, we introduce two generalizations of SFPP which are used to compute
two constructs, the Starting Charge Map (SCM) and Buffer Map (BM). Both SCM and
BM are computed between a source vertex s and target vertex t. Evaluating SCMst for
a valid starting SoC βs gives the corresponding shortest feasible path between s and t,
while evaluating BMst for buffer energy b returns a shortest feasible path where the SoC is
guaranteed to never drop below b along the route.

The SCM and BM allow route planning systems to access a larger set of alternative
feasible paths than the standard CFP algorithm, which returns only a single feasible path.
This variety in paths has several applications–recommending EV drivers alternative routes,
generating suggestions like charging extra at s to save travel time, or letting users choose the
degree of acceptable risk for a trip. Both problems can be solved by brute force approaches
that run CFP for all possible values of βs or b. However, since βs or b can take an infinite
number of possible values, such an approach would simply not terminate. In this paper, we
make the following contributions:

We introduce the Starting Charge Map (SCM) and Buffer Map (BM) that encapsulate a
set of alternative routes to help alleviate range anxiety for a wide variety of EV drivers.
Computing SCM and BM using standard CFP requires several expensive runs of the
algorithm. We present fast, exact algorithms that compute the two abstractions with
acceptable real-time performance on large graphs.
We evaluate our algorithms on realistic instances, using real-world road networks of
California and Oregon, an energy consumption model taken from a Nissan Leaf 2013 [20],
and a dataset of public EV charging stations [2]. Our results show good performance
even without the use of preprocessing techniques for shortest path queries.

2 Related Work

Most current EVs suffice for a majority of trips that drivers take, as shown in [39]. However,
range anxiety, defined as an EV driver’s fear of getting stranded along a route is often cited
as a major hindrance to widespread EV adoption [24, 26]. Prior work shows that perceived
range anxiety is inversely related to the degree of drivers’ trust in the EVs [31, 44, 25, 46, 32].
Route planning for EVs, therefore, has two objectives: Minimize travel times under battery
constraints, and reduce surprise for the driver to minimize range anxiety.

Early works on EV route planning like [3, 45] consider the problem of minimizing energy
consumption along routes insted of standard route planning formulations that minimize
travel time [4]. Since then, many additions have been proposed to the EV routing problem
to make it more realistic. Several newer variants consider battery-swapping stations [19] or
charging functions [7, 12, 37, 50]. Some works [29, 48, 49] model EV routing as a multicriteria
Dijkstra’s search [35], which returns a set of pareto-optimal routes that are not dominated in
either travel time or energy consumption. Conversely, some other works like [7, 12] present
EV routing as an extension of the Constrained Shortest Path problem. These problems
seek to minimize total travel time including charging time, while constraining the total
energy consumption of paths to levels allowed by realistic battery capacities. Another line of
research considers “profile queries”, which look for all optimal shortest paths depending on a
certain state [47], e.g., the initial state of charge of an EV [10, 13] or the current point in
time [11, 17, 23].

P. Rajan et al. 11:3

Underlying all EV routing algorithms is an assumption that the energy consumptions
assigned to graph edges are accurate. In practice, this is difficult to achieve with existing
energy consumption models [14, 20, 21, 42, 43, 36]. EV energy consumption is affected by
several factors including traffic conditions, driver aggressiveness, battery health and regular
wear-and-tear of the vehicle, which are hard to estimate. Recently, [1] showed that each
of these factors can impact the energy consumption along short routes by as much as 40%.
Similarly, [43] show a high variance in EV energy consumptions for short trips. To mitigate
the effects of inaccurate estimates, [46] recommend holding a safety margin between 12 and
23% of battery capacity. Only few EV routing algorithms [22, 30] accommodate buffer energy
for variance in energy consumption estimates or provide robust routes.

3 Preliminaries

Our setup is similar to the standard shortest feasible path problem [7, 8]. We consider a road
network modeled as directed graph G = ⟨V,E⟩, with V the set of vertices and E : V × V the
set of edges. We are given two edge weight functions d : E → R≥0 and c : E → R that assign
the travel time and energy consumption to each e ∈ E. An s− t path in G is a sequence of
adjacent vertices P = [s = v1v2 . . . vn = t], such that ∀1 ≤ i ≤ n, (vi, vi+1) ∈ E holds.

For a path P , the total driving time is d(P) = Σn−1
i=1 d(vi, vi+1). The consumption profile,

fP : [0,M] → [−M,M] ∪ {−∞} is a function that maps the starting SoC βs to residual
SoC βt at t after traversing P . fP can be negative due to energy recuperation along P , or
−∞ if it is not possible to traverse P with starting SoC βs. fP (β) can be computed using
a 3-tuple ⟨inP , costP ,maxP ⟩, where inP is the minimum SoC required at s to traverse P ,
costP = Σn−1

i=1 c(vi, vi+1), and outP is the maximum SoC possible at t after traversing P [19].
Conversely, we define an inverse consumption profile f−1

P : [−M,M] → [0,M] ∪ {∞}, which
maps residual SoC βt to the starting SoC βs. We evaluate both functions as:

fP (β) =


−∞ if β < inP

outP if β − costP > outP

β − costP otherwise
, f−1

P (β) =


∞ if β > outP

inP if β + costP < inP

β + costP otherwise

Let fϕ(β) and f−1
ϕ (β) be identity SoC profiles that always map a given SoC β to itself.

Given two paths P = [v1v2 . . . vk] and Q = [vk+1 . . . vn], we can get the concatenation P ◦Q =
[v1 . . . vkvk+1 . . . vn] and a linked consumption profile fP ◦Q as inP ◦Q = max{inP , costP +inQ},
outP ◦Q = min{outQ, outP − costQ}, and costP ◦Q = max{costP + costQ, inP − outQ}, if
outP ≥ inQ; otherwise, P ◦Q is infeasible and fP ◦Q ≡ −∞. Lastly, an (inverse) SoC profile
f1 is said to dominate f2 if ∀β ∈ [0,M], f1(β) ≥ f2(β).

A set S ⊆ V marks the available charging stations on the road network. Each v ∈ S is
assigned a concave, monotonically increasing charging function cfv : R≥0 → [0,M] that maps
the charging time at v to the resultant SoC after charging. Conversely, we also define the
inverse charging function cf−1

v : [0,M] → R≥0. To obtain the time it takes to charge from β1
to β2, we compute cf−1(β2) − cf−1(β1).

▶ Definition 1. A shortest feasible path P between a source s ∈ V and a target t ∈ V for
an EV with a starting SoC βs ∈ [0,M] is one that minimizes the total trip time (travel time
+ charging time) while maintaining a non-negative battery SoC at all points on P .

For this work, we add two constraints to the original definition of charging functions:
First, we require that all charging functions have a minimum initial SoC of 0 and are able to
fully charge EVs to M SoC. This constraint is realistic as any real-world charging station can
charge an EV with an empty battery to its full capacity. Second, similar to [7], we require
all charging functions to be piecewise linear.

ATMOS 2021

11:4 Robustness Generalizations of Shortest Feasible Path for EVs

3.1 Charging Function Propagation (CFP)
CFP [7, 8] is a generalization of the bicriteria Dijkstra’s algorithm [35] with two major
differences: First, the set of labels at a vertex represent all possible tradeoffs between
charging time and the resultant SoC after charging at the last station, and second, the
decision how much to charge at a station is taken at the immediately following station the
EV visits. This is because the amount of charge needed at u ∈ S is dependent on energy
consumed by the EV between u and the next station v ∈ S. If vi and vj are two consecutive
charging stations on a path P = [v1 . . . vn], we call the subpath [vi . . . vj] a leg of P .

Assume that we want to find a shortest feasible path between s, t ∈ V for starting SoC
βs. For all v ∈ V , we maintain sets Luns(v) for unsettled and Lset(v) for settled labels. For
vertex v, a label of the CFP search is a 4-tuple ℓ = ⟨τv, βu, u, f[u...v]⟩ where τv is the total
travel time from s to v except the charging time at the last charging station u, βu is the
EV’s SoC on arriving at u and f[u...v] is the consumption profile of subpath [u . . . v]. The
CFP search propagates through G as follows:
1. At s: A label ℓ = ⟨0, βs, s, fϕ⟩ is added to the travel time ordered min-priority queue PQ.
2. Search reaches a non-charging vertex v ̸= t: Let path P = [s = v1 . . . vk = v] and total

travel time τP = Σk−1
i=1 d(vi, vi+1). Create label ⟨τP , βs, s, fP ⟩ and add to Luns(v).

3. Search reaches first charging station vertex v ̸= t: Let path P = [s . . . v] and total travel
time over P be τP . Create label ⟨τP , fP (βs), v, fϕ⟩ and add to Luns(v).

4. Search reaches a non-charging vertex v ≠ t: Let ℓ = ⟨τv, βu, u, f[u...v]⟩ be the current label
extracted from PQ. Since u is the last charging station, let subpath P = [u . . . v] and the
total travel time over P be τP . Add label ⟨τ[s...v], f[s...v](βs), u, fP ⟩ to Luns(v).

5. Search reaches a subsequent charging vertex v ̸= t: Let ℓ = ⟨τv, βu, u, f[u...v]⟩ be the
current label extracted from PQ. Since u is the last charging station, let leg L = [u . . . v]
of path P = [s . . . v], and the total travel time over P be τP . Compute the SoC function
bℓ(τ) := τP + fL(cfu(βu, τ − τP)). Since all charging functions are assumed to be
piecewise linear, it suffices to create one label per breakpoint of bℓ [7]. For breakpoint
B = (τB , SoCB), create a label ⟨τB , SoCB , v, fϕ⟩ and add to Luns(v).

6. Search reaches destination t: Terminate and backtrack to extract a path from s to t.

The label sets for all v ∈ V are used to minimise the total number of dominance checks
among labels for v. Luns is implemented as a min-heap with total feasible travel time as
the key, and the following invariant is maintained: The minimum label ℓ in Luns(v) is not
dominated by any label in Lset(v). Label ℓ dominates ℓ′ iff bℓ(τ) ≥ bℓ′(τ) when τ ≥ 0.

As the number of labels created during CFP search can be exponential, the algorithm
belongs to the EXPTIME class. A combination of A* search using potential functions and
Contraction Hierarchies [28] can be used to speed up CFP on large graphs in practice. When
both speedup techniques are combined, the result is called the CHArge algorithm [7, 8].

4 Starting Charge Maps

▶ Definition 2. For a given source s ∈ V and target t ∈ V , a starting charge map
SCMst : [0,M] → P is a function that maps a starting charge βs to the corresponding
shortest feasible path P .

An SCM is a generalization of the shortest feasible path problem where the starting
SoC βs is unknown. First, it can be used to recommend users faster routes that they can
take if the starting SoC is higher. For example, given an SCM , it is trivial to generate
recommendations for EV drivers like “The best path with your current SoC takes 45 minutes,

P. Rajan et al. 11:5

but you might save 10 minutes if you spend 15 more minutes charging at your present location
before starting your trip”. Such recommendations can be particularly useful to EV drivers for
routes with flexible starting times. Second, different trips taken by an EV user might have
different levels of risk aversion, and an SCM can be used to show users feasible paths that
suit the current scenario. As an example, consider two EV trips, the first through an urban
area with a high density of charging stations during daytime, and a second trip through a
sparsely populated area after nightfall. In the first scenario, most drivers might trade off a
higher stranding risk for shorter travel times, while the preferences might be reversed for
the second route. SCMs can be used to explore such alternatives and present them to the
driver. Asking the driver to charge longer might reduce the risk, while allowing to start with
a lower SoC usually increases the risk. Lastly, in most applications, routes are computed
on a server and sent to the users on mobile clients. Since battery constraints apply for EV
routing, more information about the vehicle needs to be sent to the server than for regular
Internal Combustion (IC) vehicles. If instead of individual routes, SCMs are computed and
sent to the client for display, the current SoC no longer needs to be sent to the routing server,
which may result in better privacy for the drivers.

A brute force approach to compute SCMst is to run the CFP algorithm for all values in
[0,M]. However, since [0,M] contains an infinite number of values, this is clearly not feasible.
Even if we discretize the domain and restrict it to only percentage values that are multiples
of a small fixed integer k, running CFP 100

k times, once each for {0, k, 2k, 3k, ..., 100}%,
would still be too slow for interactive routing applications where queries need to be answered
quickly. A better approach is to run a series of binary searches in the starting SoC range
[0,M] such that on iteration i, the search returns a breakpoint starting SoC β ∈ [0,M],
where the shortest feasible paths for starting SoC β and (β + ϵ) differ by at least one edge.
However, if |SCMst| = N , such an approach would take N logN runs of the CFP algorithm.
In the next section, we present an algorithm that computes SCMst in N runs.

4.1 Reverse Charging Function Propagation
First, we introduce the following intermediate problem:

▶ Definition 3. The Reverse Shortest Feasible Path (RSFP) Problem:
Given a graph G = ⟨V,E⟩, edge weight functions d : E → R≥0 and c : E → R that represent
travel time and energy consumption on edges respectively, a source s ∈ V and a target t ∈ V ,
a set S ⊆ V marked as charging stations, and an SoC βt, find a shortest path P such that
SoC never drops below 0 along P and has a residual SoC at least βt at t.

As RSFP is closely related to the regular shortest feasible path problem, it can be solved
with a reverse variant of the CFP algorithm. Note that several operations needed for CFP
are not symmetric, e.g., f(P ◦Q) ̸= f(Q ◦ P). Following, we detail the Reverse Charging
Function Propagation (RCFP) algorithm and extend it to compute Starting Charge Maps.

The Reverse CFP works on a backward graph G′, obtained by reversing the directions of
all edges in G. The RCFP search starts at t with residual SoC βt and propagates towards s.
At v ∈ V , a label ℓ′ is defined as ⟨τt, β

′
u, u, f[v...u]⟩, with τt the total travel time on subpath

[t . . . v], u the last charging station encountered in the search, β′
u the SoC after charging at

u, and f[v...u] the consumption profile of subpath [v . . . u].
A key difference between forward and reverse CFP search labels is that while a label ℓ

for the forward search contains βu, the SoC before charging at the last charging station u,
ℓ′ stores β′

u, the SoC after charging at u. Computing β′
u is only possible in reverse CFP

search, because of the following: As forward CFP search reaches v, only the exact energy

ATMOS 2021

11:6 Robustness Generalizations of Shortest Feasible Path for EVs

(a) CFP runs on G with piecewise linear, concave charging functions.

(b) RCFP runs on backward graph G′ with inverse charging functions.

Figure 1 Comparing SFP and RSFP problem setups. While charging functions map the time
spent charging to an EV’s SoC at departure, inverted charging functions map the EV’s SoC at
arrival at the charging station to the least possible charging time required to reach target.

consumption on [u . . . v] is known, and therefore CFP needs to keep track of all possible
charging scenarios at previous charging station u until the search reaches t or the next
charging station. However, in RCFP search, the exact energy consumption between v and
the target or next charging station u is known. Thus, as RCFP search reaches a charging
station or origin, we know exactly how much charge is needed to travel from v to u, and
have residual SoC β′

u. Both forward and reverse CFP maintain two label sets for each v ∈ V :
Luns(v) for unsettled and Lset(v) for settled labels.

Further, for RCFP, we transform all cfv to inverse charging functions cf−1
v . At v ∈ S,

cf−1
v returns the time required to charge an empty battery to resultant SoC β′. Note that

under our assumptions, the inverse charging functions are piecewise linear, convex and
monotonically decreasing. RCFP propagates through G′ as follows:
1. At t: A label ℓ′ = ⟨0, βt, t, f

−1
ϕ ⟩ is added to the travel time ordered min-priority queue.

2. Search reaches a non-charging vertex v ̸= s: Let path P = [v = v1 . . . vk = t] and total
travel time be τP = Σk

1d(vi, vi+1). Create label ⟨τP , βt, t, f
−1
P ⟩ and add to Luns(v).

3. Search reaches first charging station vertex v ̸= s: Let path P = [v . . . t], total travel time
over P be τP . Create label ⟨τP , f

−1
P (βt), v, f−1

ϕ ⟩ and add to Luns(v).
4. Search reaches a non-charging vertex v ≠ t: Let ℓ = ⟨τv, βu, u, f[u...v]⟩ be the current label

extracted from PQ. Since u is the last charging station, let subpath P = [u . . . v] and the
total travel time over P be τP . Add label ⟨τ[s...v], f

−1
[s...v](βs), u, f−1

P ⟩ to Luns(v).
5. Search reaches a subsequent charging vertex v ̸= s: Let ℓ′ = ⟨τt, β

′
u, u, f

−1
[u...v]⟩ be the

current label extracted from PQ. Since u is the last charging station, let leg L =
[u . . . v] and path P = [v . . . t]. Let the total travel time over P be τP . Next, compute
the Starting SoC function b′

ℓ′(β) := τP + max(0, cf−1
u (f−1

ℓ (β)) − cf−1
u (β′

u)). Again,
since we assume that all inverted charging functions are piecewise linear, it suffices to
create one label per breakpoint of b′

ℓ′ . For breakpoint B = (τB , SoCB), create a label
⟨b′

ℓ′(SoCB), SoCB , v, f
−1
P ⟩ and add to Luns(v).

6. Search reaches destination s: Terminate and backtrack to extract a path from t to s.

A label ℓ′
1 is said to dominate ℓ′

2 iff b′
ℓ′

1
(β) ≤ b′

ℓ′
1
(β) for β ≥ 0.

P. Rajan et al. 11:7

Figure 2 “Virtual” vertices added to the graph.

▶ Lemma 4. If a shortest feasible s− t path exists, running the RCFP algorithm from t to s
with βt = 0 finds it.

Proof. Let P be a shortest feasible s− t path in G. Now, we show that RCFP computes
the correct solution (travel time and starting SoC) for P . We distinguish three cases:

P contains no charging stop: The linking operation on (inverse) consumption profiles is
associative [10]. Further, the order in which labels are added to Luns(v) does not affect
the correctness of the algorithms. Therefore, a shortest feasible path is found regardless
of search direction and the correctness of RCFP follows from that of CFP [8].
P contains a single charging stop: Let u be the charging stop on P , which divides P
into subpaths [s . . . u] and [u . . . t]. As the RCFP search starts from t and reaches u, the
departure SoC at u is set to in[u...t], the minimum SoC required to ensure feasibility
of P . Charging more at u only increases the charging time without any corresponding
decrease in travel time, which in turn increases the total travel time along P , violating
the assumption that P is the shortest feasible path. On subpath [s . . . u], the RCFP
search proceeds as in case (1).
P contains multiple charging stops: Let u and u′ be two consecutive charging stations on
P , which divide P into subpaths [s . . . u], [u . . . u′] and [u′ . . . t]. Lemma 2 in [8] shows that
for CFP, the optimal departure time at u always corresponds to charging to either in[u...u′]
or to a breakpoint of cfu. Similarly, after the RCFP search reaches u, the departure time
at u′ always corresponds to charging to either in[u...u′], or to a breakpoint of cf−1

u′ , which
is optimal.

Next, we show that the minimum time label in RCFP search is not dominated by other
labels and reaches s the first. The first claim follows from the dominance criterion for RCFP,
which is symmetric to that of CFP: A label ℓv is dominated if it results in a higher total
travel time for every possible initial SoC at v. This implies that a dominated label can not
result in a unique optimal solution, since replacing the sub-path to the target it represents
with the sub-path of the label dominating it would result in a better or equal solution. Lastly,
since labels are ordered by travel time at all Luns(v), the label with minimum total travel
time reaches s first. ◀

4.1.1 Computing SCM with Reverse CFP
If the Reverse CFP algorithm does not terminate when the search reaches s and is instead
allowed to continue to run until PQ is empty, we would have the set of all pareto-optimal
feasible paths from s to t at s. This set of pareto-optimal feasible paths forms the Starting
Charge Map between vertices s and t.

ATMOS 2021

11:8 Robustness Generalizations of Shortest Feasible Path for EVs

▶ Theorem 5. If the RCFP algorithm is run from t ∈ V with βt = 0 until the priority queue
is empty, the Pareto-set of labels at every s ∈ V is equivalent to SCMst.

Proof. We prove Theorem 5 by showing that after running the RCFP from t, a starting
SoC βs, the label set at s contains a label that corresponds to SCMst(βs). For this, we add
temporary virtual vertices s(M−x) and an edge from s(M−x) to s with energy consumption x
to the network, as depicted in Figure 2. From Lemma 4, we know that RCFP can compute
a shortest feasible path P from s(M−x) to t. Note that by construction, P must contain s

and in[s...t] ≤ x, since (M − x) energy is consumed on the edge from s(M−x) to s. Thus, a
label ℓ must exist at s that represents the shortest feasible path from s to t and requires an
initial SoC of at most x.ℓ corresponds to SCMst(x). Since the computation of RCFP in the
network without s(M−x) is independent of the existence of s(M−x), the RCFP algorithm has
to compute the label ℓ before the priority queue runs empty even if s(M−x) is not part of the
network. ◀

5 Buffer Maps

Like Starting Charge Maps, a Buffer Map is a generalization of the Shortest Feasible Path
Problem; albeit instead of unknown starting charge βs, the lower bound of minimum allowed
SoC along the path is raised from 0 to an arbitrary b ∈ [0,M]. Formally,

▶ Definition 6. A buffer map BMst : [0,M] → P between a source s ∈ V and target t ∈ V

is a function that maps a given buffer SoC b ∈ [0,M] to the corresponding shortest feasible
path P such that the EV maintains at least b SoC at all points in P .

Further, like SCMs, Buffer Maps can be used to show alternative routes to EV drivers who
can decide upon the degree of acceptable stranding risk along the route. However, a key
difference between the two abstractions and their usage is that while SCMs are used to get
alternative routes depending on the starting state of the EV, alternative routes in buffer
maps differ on the basis of projected EV behaviour along the route. In this way, alternative
routes in BMs offer strong guarantees against stranding risk for EV drivers; not surprisingly,
they are also more expensive to compute. Note that this problem would also qualify as what
is referred to as “profile query” in the literature, since we ask for an optimal solution for
arbitrary initial SoC [10, 13]. However, unlike [10, 13], we consider a multi-criteria variant of
this problem and also allow intermediate charging stops.

For each distinct b, a run of the CFP algorithm can yield a shortest feasible path with
the minimum SoC equal to b. A brute force approach to computing a Buffer Map is to run
CFP several times, setting b to each value in [0,M]. However, this approach is not feasible
since the interval [0,M] contains infinite values. In the next subsection, we present an exact,
practical algorithm to compute a buffer map.

5.1 Iterative Charging Function Propagation
Each EV path consists of a sequence of legs. We define:

▶ Definition 7. Given an SoC b ∈ [0,M], a critical leg of a shortest feasible path P is one
on which the SoC drops to b.

CFP computes the exact amount of charge that an EV charges at every station along a
feasible route P in order to minimize total travel time. However, to ensure that the minimum
SoC of the EV along P never drops below a given b ∈ [0,M], the EV must charge extra on

P. Rajan et al. 11:9

the charging stations adjacent to critical legs along P . The amount of extra energy to charge
at such stations is exactly equal to that required to maintain at least b SoC along the route,
and is called the buffer energy.

Our approach to computing a Buffer Map BMst for a given source s ∈ V and target t ∈ V

works in iterations. Every iteration starts with choosing a value b′ ∈ [0,M]. An augmented
variant of CFP is run that returns a shortest feasible path P ′ such that the minimum SoC
of the EV along P ′ is equal to b′. A collection of all such P ′ constitutes the set of paths
in BMst. Therefore, our approach has two components: first, an augmented variant of the
CFP that respects the buffer SoC b′, and second, an algorithm that computes the increase
in b′ on every iteration.

5.1.1 Augmenting CFP
The first iteration of our algorithm starts with b′ = 0. The augmented CFP search starts
from s with an SoC βs and propagates towards t. Assume that the search requires charging
at consecutive stations u′ and u, and reaches v ∈ V . Let the breakpoints of cfu′ be
[B1

u′B2
u′ . . . Bm

u′], where Bi
u′ = (τ i

u′ , SoCi
u′), 1 ≤ i ≤ m where SoC ′

i is EV’s resultant SoC after
charging for time τ i

u′ . Similarly, the breakpoints of cfu are [B1
uB

2
u...B

n
u].

Figure 3 Augmented CFP setup.

Recall that CFP sets the amount of charge added to the EV at a station only after the
search reaches the next charging station. Let the EV’s SoC be ψu′ at departure after charging
at station u′. Also, let Bu′ = (τu′ , SoCu′) be the breakpoint of cfu′ with SoC immediately
lesser or equal to ψu′ , and Bu′ = (τu′ , SoCu′) be the next breakpoint after Bu′ . Therefore,
SoCu′ ≤ ψu′ < SoCu′ . Figure 3 shows an example of the Bu′ and Bu′ corresponding to a
given ψu′ . Similarly, given cfu and ψu, SoCu ≤ ψu ≤ SoCu.

At v ∈ V , a label of the search is given by l = ⟨τv, βu, u, f[u...v], ρv, δv⟩, where τt, βu, u,
and f[u...v] are analogous to regular CFP, ρv is the time required to add unit buffer energy
to the EV on the current path, and δv is the maximum SoC up to which it can be charged
without a loss in charging rate (due to concavity of charging functions).

▶ Lemma 8. Let P be a shortest feasible s − t path with k charging stops on P and b be
the minimum allowed SoC along P . Assume that the EV arrives at ith charging station with
SoC αi, charges for ti time, and departs with SoC ψi. Further, let C be the charging stations
at the beginning of critical legs in P . To increase the buffer energy along P by ϵ, increasing
departure SoC ψi to (ψi + ϵ) on all stations in C is an optimal solution if:
(1) On charging stations in C, f(ψi + ϵ) − f(ψi) = ϵ, i.e. charging ϵ more increases the

residual SoC at t by ϵ.
(2) On all non-critical legs, the minimum allowed SoC is at least b + ϵ.

ATMOS 2021

11:10 Robustness Generalizations of Shortest Feasible Path for EVs

(3) For all charging stations in C, the charging function is differentiable and does not have
breakpoints with SoCs in range [ψi, (ψi + ϵ)].

(4) For all charging stations at the end of a critical leg, the charging function is differentiable
and does not have a breakpoint in SoC range [αi, (αi + ϵ)].

Proof. First, note that increasing ψi at all charging stations in C by ϵ is sufficient to increase
the total buffer by ϵ – this follows immediately from conditions (1) and (2).

Let a solution S be the set of charging stops and charging times along path P , resulting
from an Augmented CFP run between vertices s to t. We will show that no other solution
can result in a lower total travel time along path P without changing at least one edge in P .
Assume for contradiction, a solution S′ has a lower total travel time than S along same path
P . In order to increase the buffer energy for S by ϵ, ψi for each charging station in C must
be increased by at least (ψi + ϵ). This can only be achieved by charging additional energy at
a station on P .

Let j be the charging stop closest to t at which charging time differs between S and S′.
We claim that there must be a critical leg after departing from j and that its departure
SoC is (ψj + ϵ) – if this were not the case, we could decrease the departure SoC at j to
(ψj + ϵ), which would be sufficient to increase buffer energy by ϵ, giving us a faster solution
and contradicting the assumption that S is optimal. This implies that we can decrease the
departure SoC at j to (ψj + ϵ), which is sufficient to increase buffer energy by ϵ, which gives
us a faster solution contradicting the assumption that S is optimal. Since the departure
SoC on j is equal to (ψj + ϵ), the arrival SoC at j must be greater. In other words, we
charge more at some other stop i so we can charge less at j. But then, we can create a faster
solution for buffer energy b as follows: there exists a δ > 0 such that we can charge δ more at
i and charge δ less at j (since the charging function is concave and differentiable around ψj ,
the charging rate remains the same as for (ψj + ϵ)). This contradicts the fact the solution S
for buffer SoC b was optimal. ◀

The CFP search starts from s with ρs = 0 and δs = M . Assume that the search reaches
charging station u after charging at a prior station u′. Let lu = ⟨τv, βu, u, f[u...v], ρv, δv⟩
be the current label extracted from priority queue. If ψu′ = b′, i.e. the leg [u′ . . . u] is a
critical leg, we set δu = min(δu′ , SoCB2 − SoCB1 , SoCu − cfu(f[u′...u](ψu′))), where SoCB1

and SoCB2 are the SoC of the first and second breakpoints of the SoC function of lu.
We also set ρu = ρu′ +

(τu′ −τu′)
(SoCu′ −SoCu′)

− (τu−τu)
(SoCu−SoCu)

. If [u′ . . . u] is not a critical leg, the

δu = min(δu′ , in[u′...u] − b′), and ρu = ρu′ .
A label lu dominates l′u if the SoC function of lu dominates the SoC function of lu′ , and

ρu ≤ ρu′ . In other words, a label l dominates l′ if it represents a faster path to which the
buffer energy can be added at a faster rate.

5.1.2 Computing b′ for the next iteration
On an iteration, we let the augmented CFP run and collect the complete set of non-dominated
labels at target t. Let the set of labels collected at t be L. The Augmented CFP search
guarantees that every li ∈ L represents a feasible path where the SoC along the path does
not drop below b. Let the label lmin have the minimum total travel time of all l ∈ L. Next,
we need to determine the maximum buffer energy that can be added at stations adjacent to
critical legs of the shortest feasible path P found in the current iteration, while ensuring that
no other feasible path becomes a better (faster) choice than P . We can solve this problem
geometrically on an X-Y plane, where X and Y axis represent the buffer SoC and the total
travel time of the EV respectively.

P. Rajan et al. 11:11

Figure 4 Each line on the X-Y plane represents a label li ∈ L for iteration N . Highlighted blue
label line segment represents the minimum time label lmin. The slope of blue label line segment is
ρ ∈ lmin, and the X-intercept is equal to travel time τt ∈ lmin. It intersects with two other label line
segments at ι1 and ι2. Similarly, let intersection points be {ι1, ι2, ..., ιn} if L contains more labels. b′

for the next iteration is equal to the minimum buffer SoC in {ι1, ι2, ..., ιn} (SoC of shown green line).

For a label lt, we draw a label line segment with slope ρt ∈ lt, and the X-intercept equal
to the total travel time τt of l. Further, the maximum ordinate of the line segment is given
by δt ∈ lt. Figure 4 shows an example where L contains three labels. The next step is to find
the globally minimum buffer SoC, δmin to which the EV can be charged the fastest among all
labels in L. To find such a value, we start with the label line segment for lmin, and find its
intersections with all other label line segments on the plane. Let the set of such intersections
be {ι1, ι2, ..., ιn}. Since Figure 4 has only three label line segments, it shows two intersection
points ι1 and ι2. Thus, δmin is given by the buffer SoC of the intersection point that lowest
on the Y-axis in the plane. For the next iteration, we set b′ = δmin and add the feasible path
represented by lt to the buffer map BM .

▶ Lemma 9. The global delta selection algorithm is correct, i.e. no feasible path has a
lower total travel time and can add buffer energy faster than the chosen route given by the
algorithm.

Proof. We prove geometrically. Since all charging functions are convex with a positive slope,
the slopes of all label line segments in the X-Y plane are positive. Further, since lmin has
the smallest X-intercept, in buffer SoC interval [0,SoC of ι1], no other label in L can charge
the EV to a higher buffer SoC in lesser time. ◀

As we increase b′ on each iteration, the augmented CFP search becomes more selective
and the number of feasible paths from s to t decreases, since only on fewer paths would an
EV be able to maintain a higher minimum SoC. The iterations terminate when b′ becomes
high enough so the CFP search does not return any feasible paths.

▶ Theorem 10. The Iterative CFP algorithm terminates and computes BMst correctly.

Proof. We have already argued that we compute ρ and δ correctly for labels propagated by
the Augmented CFP search, and that for label l it gives us the minimum additional required
charging time in order to increase the buffer energy by any value in [0, δ] on the feasible
path represented by l. We now show that the solutions added to the buffer map are indeed
optimal and there is no remaining path with a shorter time for some value of buffer energy.
Assume for contradiction, that we add a label l to the buffer map, for which there exists a
label l′ that offers a faster solution for some buffer energy. Observe that this implies that it
is not a part of the Pareto set at the target, since the global delta computation finds the
best label in that set by lemma 9. We can now distinguish two cases:

ATMOS 2021

11:12 Robustness Generalizations of Shortest Feasible Path for EVs

1. l′ represents a feasible path with at least one critical leg: Since l′ can not have a faster
(minimum) traversal time than l by construction (the algorithm selected l and added it
to the buffer map because it is the label with minimum travel time), it can only become
the better solution after adding additional charge so it yields shorter total travel time for
higher buffer energy. In other words, l′ offers a better charging rate and therefore is not
dominated by l, which implies that it (or another dominating label) must be a member
of the Pareto set. This must result in a lower intersection point on the Y-axis than δ

during the global delta computation, which contradicts our assumption.
2. l′ represents a feasible path with no critical leg: This implies it has no charging stop (if

there was a label with a charging stop but no critical leg, we could always charge less to
obtain a faster solution). This means it cannot be dominated by l because it has ρ = 0,
and therefore it or another single-leg path must be a part of the Pareto set, which implies
that it is taken into account when computing the global value of δ, again leading to a
contradiction. ◀

Several factors can affect the total number of iterations required to compute BM : the
distance between s and t, the total number of charging stations required to reach from s

to t, which in turn depends on the parameters of the EV under consideration. The number
of iterations further depends on the number of breakpoints in charging functions along the
feasible paths from s to t. However, in practice, the number of iterations remains small for
the following reasons: First, cfu, u ∈ S are usually simple, linear functions up to 80% charge
and only have a small number of breakpoints in the 80 − 100% range. Next, most EV trips
tend to not have a large number of charging stops along the way, and as EV ranges increase,
this number would further decrease.

6 Experiments

We implemented our algorithms in C++ using Apple clang version 10.0.1 with −O3 optimiz-
ations. All experiments were run on macOS 10.14.6 using a Mac Pro 6,1 with a quad-core
Intel Xeon E5 (3.7 GHz base clock). The processor has 256 KB of per-core L2 and 10 MB of
shared L3 cache. The machine has 64 GBs of DDR3-ECC memory clocked at 1866 MHz.

6.1 Preparing a realistic EV Routing instance

Table 1 Our road network is taken from OpenStreetMap, public charging stations data from
the Alternative Fuel Data Center [2], elevations from NASADEM [38] and an energy consumption
model from a Nissan Leaf 2013 [20].

Dataset Vertices Edges |Ch. stations|
Oregon (contracted) 502327 710107 323
California (contracted) 2547618 3741891 1406

We extract the road networks of Oregon and California from OpenStreetMap (OSM)1

and label each edge with travel time equal to geographic distance divided by the maximum
allowed speed for the road segment type. We contract all vertices with degrees ≤ 2 for our
experiments, keeping only the largest connected component of the network. Table 1 shows
the size of road networks after contraction.

1 https://openstreetmap.org/

https://openstreetmap.org/

P. Rajan et al. 11:13

Next, we add the elevation to each vertex of the network, taken by sampling the NAS-
ADEM elevation dataset at 30m resolution [38]. The elevation is required to compute the
energy consumption on every edge of the network, which we derive from a microscopic EV
energy consumption model for a Nissan Leaf 2013 [20].

Lastly, we extract the locations of public EV charging stations in Oregon and California
from the Alternative Fuels Data Center [2]. For each charging station in the dataset, we
mark the vertex geographically closest to it as the charging station. We assign each charging
station vertex one of three charging functions: i) a slow linear function that charges the
EV to full battery in 120 minutes; ii) a fast charging function that charges the EV to 80%
in 30 minutes and to full capacity in 60 minutes, and iii) a fastest charging function that
charges to 80% capacity in 20 minutes, and to full in 40 minutes. We arbitrarily assign 60%
of all charging stations the slow charging function, another 30% stations the fast, and the
remaining 10% the fastest charging functions.

To allow for tests with reasonable running times, we make it easier for a label to dominate
another in the (Reverse) CFP search. We do this by adding a constant slack energy
consumption ϵ to the dominance criterion in all three algorithms. Given labels ℓ1 and ℓ2, ℓ1
dominates ℓ2 iff all breakpoints of ℓ1’s SoC function have a higher energy than breakpoints
of ℓ2’s SoC function after decreasing each breakpoint by ϵ energy. We set ϵ to 1% of the
total battery capacity of the EV. Similar modifications to the dominance criteria have been
proposed in earlier work, e.g. see [5, 12].

6.2 Reverse Shortest Feasible Path Queries & Starting Charge Maps

Table 2 Average performance of 1000 queries running RCFP vs. variants of standard CFP. The
EV is always assumed to start with 100% SoC at source. CFP with stopping criterion terminates
after finding only one feasible route, and is therefore much faster than regular CFP which returns
all feasible routes. RCFP can be seen to perform at par with CFP without stopping criterion. Time
shown in seconds, also shown – no. of labels extracted from priority queue, alternative routes to t,
and the no. of times search reached target. Targets found differ between RCFP and CFP because of
the difference in dominance criteria.

16 kWh 32 kWh
Alg. Time kLabels |Routes| Targets Time kLabels |Routes| Targets
CFP (Stp) 1.767 933 0.709 709 1.510 873 0.895 895
CFP 3.853 1758 4.962 709 3.629 1973 5.634 895
RCFP 4.861 2477 7.703 710 3.502 2370 7.176 895O

re
go

n

CFP (Stp) 34.847 10141 0.722 722 21.805 8645 1.0 1000
CFP 70.076 19684 8.88 722 61.171 21596 9.837 1000
RCFP 66.096 22571 11.467 724 46.617 22191 11.645 1000C

al
ifo

rn
ia

64 kWh 128 kWh
Time kLabels |Routes| Targets Time kLabels |Routes| Targets

CFP (Stp) 0.877 730 1.0 1000 0.678 621 1.0 1000
CFP 2.648 1859 5.205 1000 2.521 1751 5.04 1000
RCFP 2.641 2071 6.599 1000 2.241 1877 5.76 1000O

re
go

n

CFP (Stp) 13.919 6631 1.0 1000 7.221 5006 1.0 1000
CFP 47.197 18273 8.429 1000 25.182 13752 6.304 1000
RCFP 36.568 19079 9.897 1000 16.255 12220 6.563 1000C

al
ifo

rn
ia

Table 2 shows the results of running 1000 SFP and RSFP queries with several standard EV
battery capacities (16, 32, 64, and 128 kWh) between random vertices in the road networks
of Oregon and California. The table compares the performance of three algorithms–forward

ATMOS 2021

11:14 Robustness Generalizations of Shortest Feasible Path for EVs

CFP with stopping criterion, which makes the search terminates as soon as it reaches t; full
forward CFP that runs till all pareto-optimal feasible paths from s to t are found; and the
Reverse CFP algorithm as presented in Section 4.

We find that the CFP with stopping criterion performs at least a factor of two faster than
full CFP that computes the pareto-optimal set of feasible paths. This is hardly surprising as
the full CFP offers a richer set of routes which planners can use, in lieu of more computational
overhead. However, if faster queries are desirable at the cost of alternative routes, the same
technique can be applied to the reverse CFP algorithm with little effort. Target pruning [9]
is another closely related technique that can achieve the same goal.

We observe that for both networks, SFP and RSFP query times generally decrease with
increase in range of the EV, with a notable exception of capacity increase from 16 to 32 kWh,
in which case the reverse search query times increase for the Oregon network and full CFP
query times for the California network. This can be explained as follows: As the battery
capacity increases, the (R)CFP search is able to reach vertices farther away. However, with
increase in range, the slack energy ϵ also increases, making it easier for a label to dominate
another, so fewer labels are settled in the search. The net effect of the two opposing factors,
in this case, is that the total query time increases.

6.3 Iterative CFP and Buffer Maps

Table 3 Average performance of Iterative CFP to answer 1000 Buffer Map queries (with 50 and
100% starting SoC) between random vertices on the Oregon road network.

Range Time (s) kLabels Iterations Avg. |BM | Targets
16 kWh 67.405 30754 7.03 6.103 640
32 kWh 99.310 45685 9.987 9.061 878
64 kWh 32.571 25441 9.37 8.538 1000
128 kWh 17.440 15316 7.013 6.359 1000

50
%

16 kWh 198.395 57545 10.573 9.57 709
32 kWh 85.484 47106 14.285 13.29 895
64 kWh 53.706 37930 14.225 14.22 1000
128 kWh 14.240 16183 10.611 9.635 1000

10
0%

Table 3 shows the results of 1000 Iterative CFP queries between random vertices in the
Oregon network. We do not report the running times for California, since they were found
to be impractical with some queries running for more than 3 hours.

The total running time of the Iterative CFP algorithm has two components: The cost of
Augmented CFP runs and the cost of computing the minimum global δ energy in each round.
The cost of global delta computation is negligible in practice, since the number of Augmented
CFP labels reaching the target vertex is often low. In Table 3, note that an Augmented CFP
run takes longer than full CFP. This is caused due to inclusion of an additional parameter
(charging rate) in the dominance criteria of the Augmented CFP.

The Iterative CFP is slower than the other algorithms discussed. This is expected as the
algorithm involves running several iterations of an exponential-time shortest path computation.
Our networks do not use standard speedup techniques like Contraction Hierarchies (CHs) [28],
their multicriteria variant [27], or CRP [15, 16], though. Applying any of these techniques
can significantly reduce query times by reducing the number of vertices explored to find
shortest paths. A combination of speedup techniques such as CHs and A* search could be
further applied for even greater speedups [6] at the cost of additional complexity.

P. Rajan et al. 11:15

7 Conclusion and Future Work

In this paper, we introduced Starting Charge Maps and Buffer Maps, which are helpful in
preventing EV users’ range anxiety and enable other use cases (such as minimizing trip time
by charging more at home). Both problems require extending the known Shortest Feasible
Path problem, essentially increasing its output by another dimension. Similar to profile
queries in time-dependent route planning [11], this requires more sophisticated algorithms
for Buffer Maps, which is reflected in the running times we observed in our experimental
evaluation. For Starting Charge Maps, however, we proposed a simple and elegant approach
which is in large parts symmetric to the known CFP algorithm and, as a result, computes
them with similar running times, as out experimental results confirm.

Possible future work includes (heuristic) improvements of the Buffer Map search, or
integration with A* and CH for faster queries as done by the CHArge algorithm [7, 8]. We
may further consider related problem settings such having the SoC buffer dependent on the
distance between charging stops.

References
1 Yazan Al-Wreikat, Clara Serrano, and José Ricardo Sodré. Driving behaviour and trip

condition effects on the energy consumption of an electric vehicle under real-world driving.
Appl. Energy, 297:117096, September 2021.

2 Alternative Fuels Data Center. Electric vehicle charging station locations. https://afdc.
energy.gov/fuels/electricity_locations.html, 2021. Accessed: 2021-6-9.

3 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The shortest
path problem revisited: Optimal routing for electric vehicles. In KI 2010: Advances in Artificial
Intelligence, Lecture Notes in Computer Science, pages 309–316. Springer, Berlin, Heidelberg,
September 2010.

4 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation
networks. In Algorithm Engineering, Lecture Notes in Computer Science, pages 19–80. Springer,
Cham, 2016.

5 Lucas S Batista, Felipe Campelo, Frederico G Guimarães, and Jaime A Ramírez. A comparison
of dominance criteria in many-objective optimization problems. In 2011 IEEE Congress of
Evolutionary Computation (CEC), pages 2359–2366, June 2011.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, ,
and Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for
dijkstra’s algorithm. Algorithms, 2008.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
page 44. ACM, November 2015.

8 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. Transportation Science,
53(6):1627–1655, November 2019.

9 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-Consumption tradeoff for electric vehicle route planning. In 14th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAc-
cess Series in Informatics (OASIcs), pages 138–151. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014.

10 Moritz Baum, Julian Dibbelt, Thomas Pajor, Jonas Sauer, Dorothea Wagner, and Tobias
Zündorf. Energy-Optimal routes for battery electric vehicles. Algorithmica, December 2019.

ATMOS 2021

https://afdc.energy.gov/fuels/electricity_locations.html
https://afdc.energy.gov/fuels/electricity_locations.html

11:16 Robustness Generalizations of Shortest Feasible Path for EVs

11 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-Dependent
route planning in road networks with user preferences. In Experimental Algorithms, volume
9685 of Lecture Notes in Computer Science, pages 33–49, Cham, 2016. Springer International
Publishing.

12 Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf. Modeling and engin-
eering constrained shortest path algorithms for battery electric vehicles. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 87, 2017.

13 Moritz Baum, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Consumption profiles in
route planning for electric vehicles: Theory and applications. In 16th International Symposium
on Experimental Algorithms (SEA 2017). drops.dagstuhl.de, 2017.

14 Cedric De Cauwer, Wouter Verbeke, Thierry Coosemans, Saphir Faid, and Joeri Van Mierlo.
A Data-Driven method for energy consumption prediction and Energy-Efficient routing of
electric vehicles in Real-World conditions. Energies, 10(5):608, May 2017.

15 Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Customizable
route planning. In Experimental Algorithms, pages 376–387. Springer, Berlin, Heidelberg, May
2011.

16 Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck. Customizable
route planning in road networks. Transportation Science, 51(2):566–591, May 2015.

17 Daniel Delling and Dorothea Wagner. Time-Dependent route planning. In Robust and Online
Large-Scale Optimization, Lecture Notes in Computer Science, pages 207–230. Springer, Berlin,
Heidelberg, 2009.

18 Matthias Eisel, Ilja Nastjuk, and Lutz M Kolbe. Understanding the influence of in-vehicle
information systems on range stress – insights from an electric vehicle field experiment. Transp.
Res. Part F Traffic Psychol. Behav., 43:199–211, November 2016.

19 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric vehicles
in large networks. AAAI, 25(1), August 2011.

20 Chiara Fiori, Kyoungho Ahn, and Hesham A Rakha. Power-based electric vehicle energy
consumption model: Model development and validation. Appl. Energy, 168:257–268, April
2016.

21 Chiara Fiori, Vittorio Marzano, Vincenzo Punzo, and Marcello Montanino. Energy consumption
modeling in presence of uncertainty. IEEE Trans. Intell. Transp. Syst., pages 1–12, 2020.

22 Matthew William Fontana. Optimal routes for electric vehicles facing uncertainty, congestion,
and energy constraints. PhD thesis, Massachusetts Institute of Technology, 2013.

23 Luca Foschini, John Hershberger, and Subhash Suri. On the complexity of Time-Dependent
shortest paths. Algorithmica, 68(4):1075–1097, April 2014.

24 Thomas Franke and Josef F Krems. Interacting with limited mobility resources: Psychological
range levels in electric vehicle use. Transp. Res. Part A: Policy Pract., 48:109–122, February
2013.

25 Thomas Franke, Isabel Neumann, Franziska Bühler, Peter Cocron, and Josef F Krems.
Experiencing range in an electric vehicle: Understanding psychological barriers: Experiencing
range. Appl. Psychol., 61(3):368–391, July 2012.

26 Thomas Franke, Nadine Rauh, Madlen Günther, Maria Trantow, and Josef F Krems. Which
factors can protect against range stress in everyday usage of battery electric vehicles? toward
enhancing sustainability of electric mobility systems. Hum. Factors, 58(1):13–26, February
2016.

27 Stefan Funke and Sabine Storandt. Polynomial-time construction of contraction hierarchies
for multi-criteria objectives. In Proceedings of the Meeting on Algorithm Engineering &
Expermiments, pages 41–54, Philadelphia, PA, USA, 2013. Society for Industrial and Applied
Mathematics.

28 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
August 2012.

P. Rajan et al. 11:17

29 Michael T Goodrich and Paweł Pszona. Two-phase bicriterion search for finding fast and
efficient electric vehicle routes. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 193–202. ACM, November
2014.

30 Gerhard Huber, Klaus Bogenberger, and Hans van Lint. Optimization of charging strategies
for battery electric vehicles under uncertainty. IEEE Trans. Intell. Transp. Syst., pages 1–17,
2020.

31 Malte F Jung, David Sirkin, Turgut M Gür, and Martin Steinert. Displayed uncertainty
improves driving experience and behavior: The case of range anxiety in an electric car. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
pages 2201–2210. ACM, April 2015.

32 Johannes Kester. Security in transition(s): The low-level security politics of electric vehicle
range anxiety. Security Dialogue, 50(6):547–563, December 2019.

33 Yan Li, Pratik Kotwal, Pengyue Wang, Yiqun Xie, Shashi Shekhar, and William Northrop.
Physics-guided energy-efficient path selection using on-board diagnostics data. ACM/IMS
Trans. Data Sci., 1(3):1–28, September 2020.

34 Yan Li, Shashi Shekhar, Pengyue Wang, and William Northrop. Physics-guided energy-
efficient path selection: a summary of results. In Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pages 99–108. ACM,
November 2018.

35 Ernesto Queirós Vieira Martins. On a multicriteria shortest path problem. Eur. J. Oper. Res.,
16(2):236–245, May 1984.

36 Michail Masikos, Konstantinos Demestichas, Evgenia Adamopoulou, and Michael Theologou.
Energy-efficient routing based on vehicular consumption predictions of a mesoscopic learning
model. Appl. Soft Comput., 28:114–124, March 2015.

37 Sören Merting, Christian Schwan, and Martin Strehler. Routing of electric vehicles: Con-
strained shortest path problems with resource recovering nodes. In OASIcs-OpenAccess
Series in Informatics, volume 48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2015.

38 J P L Nasa. NASADEM merged DEM global 1 arc second V001 [dataset]. http://dx.doi.
org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001, 2020. Accessed: 2021-6-9.

39 Zachary A Needell, James McNerney, Michael T Chang, and Jessika E Trancik. Potential
for widespread electrification of personal vehicle travel in the united states. Nature Energy,
1:16112, August 2016.

40 Dario Pevec, Jurica Babic, Arthur Carvalho, Yashar Ghiassi-Farrokhfal, Wolfgang Ketter, and
Vedran Podobnik. Electric vehicle range anxiety: An obstacle for the personal transportation
(r)evolution? In 2019 4th International Conference on Smart and Sustainable Technologies
(SpliTech), pages 1–8, June 2019.

41 Dario Pevec, Jurica Babic, Arthur Carvalho, Yashar Ghiassi-Farrokhfal, Wolfgang Ketter, and
Vedran Podobnik. A survey-based assessment of how existing and potential electric vehicle
owners perceive range anxiety. J. Clean. Prod., 276:122779, December 2020.

42 Xuewei Qi, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J Barth. Data-driven
decomposition analysis and estimation of link-level electric vehicle energy consumption under
real-world traffic conditions. Transp. Res. Part D: Trans. Environ., 64:36–52, October 2018.

43 Payas Rajan and Chinya V Ravishankar. The phase abstraction for estimating energy
consumption and travel times for electric vehicle route planning. In Proceedings of the 27th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
SIGSPATIAL ’19, pages 556–559, New York, NY, USA, 2019. ACM.

44 Nadine Rauh, Thomas Franke, and Josef F Krems. User experience with electric vehicles
while driving in a critical range situation – a qualitative approach. IET Intel. Transport Syst.,
9(7):734–739, July 2015.

ATMOS 2021

 http://dx.doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001
 http://dx.doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001

11:18 Robustness Generalizations of Shortest Feasible Path for EVs

45 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
energy-optimal routing for electric vehicles. In Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI’11, pages 1402–1407. AAAI Press, August 2011.

46 Stefan Sautermeister, Max Falk, Bernard Bäker, Frank Gauterin, and Moritz Vaillant. Influence
of measurement and prediction uncertainties on range estimation for electric vehicles. IEEE
Trans. Intell. Transp. Syst., 19(8):2615–2626, August 2018.

47 René Schönfelder and Martin Leucker. Abstract routing models and abstractions in the context
of vehicle routing. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
June 2015.

48 Sabine Storandt. Quick and energy-efficient routes: Computing constrained shortest paths for
electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, IWCTS ’12, pages 20–25, New York, NY, USA, 2012.
ACM.

49 Sabine Storandt and Stefan Funke. Cruising with a Battery-Powered vehicle and not getting
stranded. In AAAI, volume 3, page 46, 2012.

50 Martin Strehler, Sören Merting, and Christian Schwan. Energy-efficient shortest routes for
electric and hybrid vehicles. Trans. Res. Part B: Methodol., 103(Supplement C):111–135,
September 2017.

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Charging Function Propagation (CFP)

	4 Starting Charge Maps
	4.1 Reverse Charging Function Propagation
	4.1.1 Computing SCM with Reverse CFP

	5 Buffer Maps
	5.1 Iterative Charging Function Propagation
	5.1.1 Augmenting CFP
	5.1.2 Computing bprime for the next iteration

	6 Experiments
	6.1 Preparing a realistic EV Routing instance
	6.2 Reverse Shortest Feasible Path Queries & Starting Charge Maps
	6.3 Iterative CFP and Buffer Maps

	7 Conclusion and Future Work

