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Abstract
We present dynamic flow algorithms to solve the k-sink problem whose aim is to locate k sinks
(evacuation centers) in such a way that the evacuation time of the last evacuee is minimized. In
the confluent model, the evacuees originating from or passing through a vertex must evacuate to
the same sink, and most known results on the k-sink problem adopt the confluent model. When
the edge capacities are uniform (resp. general), our algorithms for non-confluent flow in the path
networks run in O(n+k2 log2 n) (resp. O(n log n+k2 log5 n)) time, where n is the number of vertices.
Our algorithms for cycle networks run in O(k2n log2 n) (resp. O(k2n log5 n)) time, when the edge
capacities are uniform (resp. general).

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Efficient algorithms, facility location, minmax sink, evacuation problem,
dynamic flow in network

Digital Object Identifier 10.4230/OASIcs.ATMOS.2021.13

Funding Robert Benkoczi: Partially supported by a Discovery Grant from NSERC of Canada.
Binay Bhattacharya: Partially supported by a Discovery Grant from NSERC of Canada.
Yuya Higashikawa: Partially supported by JSPS KAKENHI Grant Number 20K19746 and JSPS
KAKENHI Grant Number 19H04068.
Naoki Katoh: Partially supported by JSPS KAKENHI Grant Number 19H04068.
Junichi Teruyama: Partially supported by JSPS KAKENHI Grant Number 19H04068.

1 Introduction

Ford and Fulkerson [8] introduced the concept of dynamic flow which models movement of
commodities in a network. Each vertex is assigned some initial amount of supply, and each
edge has a capacity, which limits the rate of commodity flow into it, and the transit time to
traverse it. Once on an edge, the flow front travels at a constant speed either to a sink, or to
the vertex at the other end of the edge if there is no sink on the edge. Congestion is said
to occur when supplies cannot flow continuously but must wait at some vertex to enter an
outgoing edge, and congestion complicates the analysis.
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13:2 Locating Evacuation Centers Optimally

One variant of the dynamic flow problem is the quickest transshipment problem, where the
source vertices have given amounts of supplies and the sink vertices have specified demands.
The problem is to send exactly the right amount of commodity out of the sources into the
sinks in minimum overall time. Hoppe and Tardos [13] provided a polynomial time algorithm
for this problem in the case where the transit times are integral. However, the complexity of
their algorithm is impractically high. Finding a practical polynomial time solution to this
problem is still open. The interested reader is referred to a survey paper by Skutella [17].

The k-sink problem is another variant of the dynamic flow problem, whose aim is to locate
a set of k sinks that accepts the evacuees in minimum time [10, 15]. Each source vertex has
an initial number of evacuees, and each sink has infinite demand, namely it can receive an
arbitrary number of evacuees with no capacity constraint. Evacuation starts simultaneously
from all vertices. For general graphs, even the 1-sink problem is NP-hard [9, 14]. We thus
address simple networks (path and cycle) in this paper.

The existing solutions to the evacuation problem impose the condition that all evacuees
starting at or passing through a vertex must evacuate to the same sink. This can be justified
by the fact that posting “This way out” signs at each vertex, directing the evacuees to a
single exit, will avoid confusion. Such flow is called confluent flow. Adopting the confluence
restriction, Arumugam et al. [2] showed that the k-sink problem for path networks with
general edge capacities can be solved in O(kn log2 n) time, where n is the number of vertices.
A path network can model a corridor in a building, an aisle in an airplane, a street, etc. As
for the uniform edge capacity model, Higashikawa et al. [11] then proposed an O(kn) time
algorithm. More recently, Bhattacharya et al. [4] improved it to O(min{n+k2 log2 n, n log n})
time, and also presented an algorithm for the general edge capacity model that runs in
O(min{n log n+k2 log4 n, n log3 n}) time. These improvements were achieved by moving
from dynamic programming based approach to parametric search based methods. A recent
comprehensive survey on evacuation problems can be found in [12].

In this paper we consider non-confluent flow solution to the evacuation problem on path
and cycle networks. This means that the evacuees from a vertex can move in two opposite
directions. It can be practical, if each potential evacuee is given the exit number beforehand,
so that he/she knows exactly which exit to take in case of emergency. We will treat each
evacuee as if he/she was a tiny particle with a very small weight. This paper presents an
algorithm that runs in O(n+k2 log2 n) (resp. O(n log n+k2 log5 n)) time for the uniform
(resp. general) edge capacity model. Benkoczi and Das [3, 7] solve the k-sink problem for
cycle networks for confluent flows, which run in time O(n log n) (resp. O(n log3 n)) when the
edge capacities are uniform (resp. general).

This paper is organized as follows. After preliminaries in Sec. 2, we discuss the uniform
capacity model in Secs. 3 and Sec. 4, where we deal with feasibility testing and optimization,
respectively. Sec. 5 then discusses the general capacity model, and Sec. 6 extends the results
to cycle networks.

2 Preliminaries

2.1 Definitions
Let P (V, E) be a path network with the set of vertices V = {1, 2, . . . , n}, arranged from left
to right in this order. For each i (1 ≤ i ≤ n−1), there is an edge ei = (i, i+1) ∈ E, which
does not include its end vertices. For each vertex i ∈ V , let wi ∈ Z+ denote its weight, which
is the initial number of evacuees at vertex i, and for each ei ∈ E, let c(i, i+1) denote its
capacity, which limits the number of evacuees who can enter ei from i or i+1 per unit time.
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By a ∈ P we denote the fact that point a lies on P , either at a vertex or on an edge. For
any two points a, b ∈ P , we write a ≺ b to mean that a lies to the left of b, and a ⪯ b means
a ≺ b or a = b. The minimum capacity between a and b is denoted by c(a, b). Let li denote
the length of edge ei. We use d(a, b) to denote the distance between a and b, which is the
sum of the edge lengths. If a and/or b lies on an edge, its prorated length is used.

For a pair of values or positions x and y, [x, y] denotes the range or interval from x to y,
inclusive, while (x, y] (resp. [x, y)) denotes the range from x to y, excluding x (resp. y). For
a ⪯ b, P [a, b] (resp. P (a, b], P [a, b)) denotes the subpath of P from a to b with the above
interpretation of the range. The set of vertices on P [a, b] (resp. P (a, b], P [a, b)) are denoted
by V [a, b] (resp. V (a, b], V [a, b)). For a technical reason, we define v+ (resp. v−) to be
an imaginary vertex such that v ≺ v+, d(v, v+)=0, and c(v, v+)=c(v, v+1) (resp. v− ≺ v,
d(v−, v)=0, and c(v−, v)=c(v−1, v)). Let τ denote the unit distance travel time, so that
for a evacuee to travel from a to b, without encountering congestion, requires d(a, b)τ units
of time.

Our model assumes that evacuation starts at the same time from every vertex.

▶ Definition 1. Let W [i, j] ≜
∑

h∈V [i,j] wh, and for h, i, j ∈ V such that i ⪯ h ⪯ j define

f
[i,·]
L (x, h) ≜

{
d(h, x)τ + W [i, h]/c(h, x) for x ≻ h

0 for x ⪯ h,
(1)

f
[·,j]
R (x, h) ≜

{
d(x, h)τ + W [h, j]/c(x, h) for x ≺ h

0 for x ⪰ h.
(2)

Intuitively, f
[i,·]
L (x, h) is the evacuation time of all evacuees on P [i, h] to point x ⪰ h,

assuming that all of them were at vertex h initially, and the flow from P [h+1, x] to x does
not interfere with it. Similarly f

[·,j]
R (x, h) is the evacuation time of all evacuees on P [h, j] to

x ⪯ h, assuming that all of them were at vertex h initially, and the flow from P [x, h−1] to x

does not interfere with their flow. We now define their upper envelopes.

▶ Definition 2. For i, j ∈ V , define

Θ[i,·]
L (x) ≜ max

v∈V [i,x)

{
f

[i,·]
L (x, v)

}
= f

[i,·]
L (x, v∗

x), (3)

Θ[·,j]
R (x) ≜ max

v∈V (x,j]

{
f

[·,j]
R (x, v)

}
= f

[·,j]
R (x, v∗

x). (4)

The rightmost (resp. leftmost) vertex v∗
x satisfying Eq. (3) (resp. Eq. (4)) is called the L-

critical vertex (resp. R-critical vertex) for P [i, x] (resp. P [x, j]) w.r.t. x, and is denoted by
ρ

[i,·]
L (x) (resp. ρ

[·,j]
R (x)).

▶ Lemma 3 ([12]). For any point x ≻ i (resp. x ≺ i), Θ[i,·]
L (x) (resp. Θ[·,j]

R (x)) is the
evacuation time for all evacuees on P [i, x) (resp. P (x, j]) to x.

We thus refer to Θ[i,·]
L (x) (resp. Θ[·,j]

R (x)) as the L-time (resp. R-time) for P [i, x] (resp.
P [x, j]) at x.

▶ Definition 4. An instance P of a path network is said to be (λ, k)-feasible or just λ-feasible,
if k sinks can be placed on it so that every evacuee can evacuate to a sink within time λ. The
λ-feasibility test decides if the given instance P is (λ, k)-feasible.

2.2 Megiddo’s lemma
We shall apply the following lemma implied by Megiddo’s observation [16].

ATMOS 2021



13:4 Locating Evacuation Centers Optimally

▶ Lemma 5. Let cmp(n) be the number of comparisons made with λ in a λ-feasibility test,
t(n) be the time needed to generate a λ value to be tested, f(n) be the time complexity of the
λ-feasibility test, and h(n) be the time required by all other operations. Then the optimal
solution to the k facility location problem can be found in time

O(h(n) + cmp(n){f(n) + t(n)}). (5)

For a clear exposition of the idea behind this lemma, the reader is referred to Agarwal
and Sharir [1]. Intuitively, we replace each comparison with λ in the λ-feasibility test by a
comparison with λ∗, where λ∗ is the optimal solution. Note that a feasibility test is actually
a comparison of some value λ with λ∗, and it succeeds (resp. fails) if λ ≥ λ∗ (resp. λ < λ∗).
To determine λ∗, we perform successive λ-feasibility tests, using judiciously chosen λ values.

2.3 Review of CUE tree and CV tree
The critical vertex tree (CV tree) was introduced in [5], and the capacity and upper envelope
tree (CUE tree) was introduced in [4]. They are balanced binary trees built over path P .
Since they play an important role in this paper, we briefly review them for completeness.

The leaf nodes2 of the CUE-tree, denoted by T , are the vertices of P . See Fig. 1, for
example. For node u of T , let l(u) (resp. r(u)) denote the leftmost (resp. rightmost) vertex

u

l(u) r(u)1 nji

π(i, j)

Root

Figure 1 The structure of a CUE tree T .

of P that belongs to subtree T (u), rooted at u. We say that u spans subpath P [l(u), r(u)],
whose vertex set is denoted by V (u). Let N [i, j] denote the set of nodes spanning the
maximal subpaths of P [i, j]. Each node in N [i, j] either lies on the path π(i, j) from i to j

or is a child of a node on π(i, j). Each node u of T stores
(i) l(u) and r(u),
(ii) capacity c(i, j),
(iii) four 1-dimensional arrays, which are described below.

Given i, j ∈ V , consider any node u ∈ N [i, j−1]. The L-time at j ≻ r(u) for the supplies
from V (u) is given by

max
h∈V (u)

{
d(h, r(u))τ + W [i, h]

min{c(h, r(u)+), c}

}
+ d(r(u), j)τ, (6)

where c = c(r(u), j). We rewrite the first term of Eq. (6) as

max
h∈V (u)

{
d(h, r(u))τ + max

(
W [i, h]

c(h, r(u)+) ,
W [i, h]

c

)}
, (7)

2 We use the term “node” here to distinguish it from the vertices on P .
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which obviously equals

max{Θw
L(W, u), Θ̃c

L(c, u)+W/c}, (8)

where

Θw
L(W, u) ≜ max

h∈V (u)

{
d(h, r(u))τ + W

c(h, r(u)+) + W [l(u), h]
c(h, r(u)+)

}
(9)

Θ̃c
L(c, u) ≜ max

h∈V (u)

{
d(h, r(u))τ + W [l(u), h]

c

}
. (10)

Here W and c are unknowns at the time of constructing T during preprocessing. Note
that Θw

L(W, u) is a piecewise linear function in W , consisting of O(|V (u)|) linear segments.
We need a method by which to compute the inflection points (W, Θw

L(W, u)) of the upper
envelope (9). Let Aw

L(u) denote the 1-dimensional left weight array stored at node u of T . It
contains the W components of the inflection points (W, Θw

L(W, u)) in the increasing order
of W . For a technical reason, we consider (0, Θw

L(0, u)) and (∞,∞) as inflection points of
(W, Θw

L(W, u)). Let Ac
L(u) denote the 1-dimensional left capacity array stored at node u. For

a technical reason, we consider (0,∞) and (∞, Θc
L(∞, u)) as inflection points of Θc

L(c, u).
The size of Aw

L(u) and Ac
L(u) is clearly O(|T (u)|).

Suppose we want to compute the L-time of V [i, j−1] at j. To this end, we calcu-
late the contributions from subtree T (u), for each u ∈ N [i, j−1] separately, and find
their maximum. As we saw above, the contribution from each subtree T (u) is given by
max{Θw

L(W, u), Θ̃c
L(c, u)+W/c}, where W = W [i, l(u)−1] and c = c(r(u), j).

j2i2

u2

j

i1 j1

u1

u3
u4

u5

i3 j3

Aw
L(u1), A

c
L(u1)

i

Aw
L(u5), A

c
L(u5)

Aw
L(u4), A

c
L(u4)Aw

L(u3), A
c
L(u3)

Aw
L(u2), A

c
L(u2)

d2.c2
d3.c3

ρij

Figure 2 Weight arrays Aw
L(u) and capacity arrays Ac

L(u). Aw
R(u) and Ac

R(u) are not shown in
this figure.

▶ Example 6. Let W [u] denote the total weights of V [u], and let u = u4 in Fig. 2, for
example. Then we search in array Aw

L(u4) with the search key W = W [u2], to find the two
successive inflection points between which W falls, and obtain the time Θw

L(W [u2], u4) by
interpolating between the two points. Adding d3τ to it, we find the L-time of V (i, r(u4)) at
j, which is just one candidate for the true L-time of V [i, j−1] at j. We repeat this for all
u ∈ N [i, j−1]. ⌟

As for Θ̃c
L(c, u), it is useful to consider it as a linear function in 1/c, so that it is also

piecewise linear, consisting of O(|V (u)|) linear segments. At u, we store the 1-dimensional
capacity array Ac

L(u) in the increasing order of c, containing the c components of the
inflection points (c, Θ̃c

L(c, u)). After searching for c(r(u4), j) in Ac
L(u4) in Fig. 2, for example,

and interpolation, we need to compute Θ̃c
L(c(r(u4), j), u4)+W [i2, j2]/c(r(u4), j) to arrive at

another candidate L-time at j.

ATMOS 2021



13:6 Locating Evacuation Centers Optimally

Symmetrically to (9) and (10), we also define

Θw
R(W, u) ≜ max

h∈V (u)

{
d(l(u), h)τ + W

c(l(u)−, h) + W [h, r(u)]
c(l(u)−, h)

}
(11)

Θ̃c
R(c, u) ≜ max

h∈V (u)

{
d(l(u), h)τ + W [h, r(u)]

c

}
. (12)

We construct and store at node u the right weight array Aw
R(u) and right capacity array Ac

R(u),
based on (11) and (12), respectively. Thus Aw

R(u) (resp. Ac
R(u)) is left-right symmetric to

Aw
L(u) (resp. Ac

L(u)).
The CV tree [5] is a simplified version of the CUE tree, which is useful for the uniform

capacity model. Instead of data (ii) and (iii), node u stores the L-critical (resp. R-critical)
vertex ρ

[l(u),·]
L (r(u)+) (resp. ρ

[·,r(u)]
R (l(u)−)).

▶ Lemma 7 ([4, 5]). The CV tree (resp. CUE tree) can be constructed in O(n) (resp.
O(n log n)) time.

▶ Lemma 8 ([5]). Assume CV tree T is available, and let i < j. For the uniform edge
capacity model, we can compute
(a) ρ

[i,·]
L (j) and ρ

[·,j]
R (i) in O(log n) time.

(b) Θ[i,·]
L (x), Θ[·,j]

R (x), and Θ[i,j](x) in O(log n) time for any point x ∈ P [i, j].

▶ Lemma 9 ([4]). Assume CUE tree T is available, and let i < j. For the general edge
capacity model, we can compute
(a) ρ

[i,·]
L (j) and ρ

[·,j]
R (i) in O(log2 n) time.

(b) Θ[i,·]
L (x), Θ[·,j]

R (x), and Θ[i,j](x) in O(log2 n) time for any point x ∈ P [i, j].

Using fractional cascading, we can reduce the time complexity in Lemma 9 to O(log n).

2.4 Strategy
Let k (≥ 2) be the number of sinks to be placed, since if k = 1 the flows are always confluent.
We want to compute {si, bi, αi | 1 ≤ i ≤ k} that minimize the evacuation time, where si is
the location of the ith sink from the left, bi is the rightmost vertex from which at least some
evacuees move left to si, and is called the boundary vertex for si. αi evacuees (0 < αi ≤ wbi)
evacuate left from bi to si. Let ᾱi ≜ wbi

−αi, if αi < wbi
.

Path partitioning idea: Imagine that we have performed the λ∗-feasibility test. The result
may look like Fig. 3, where the dots and small circles represent vertices. Each triangle
represents a sink, a red triangle represents a sink placed at a vertex, and a dot that is not
a sink indicates a boundary vertex whose evacuees are not split. Let us remove the edges

b2

n

b1

1 s∗1 s∗2

b3 b4

s∗3 s∗4 s∗5

b5

s∗6

b5+1

Figure 3 {s∗
i } are optimal sinks and {bi} are boundary vertices between adjacent sinks.

carrying no flow, which are incident on non-split boundary vertices, if any, and then divide
each sink that lies on a vertex into two sinks, one of which is attached to its left incident
edge, and the other to its right incident edge. Then each connected subpath would be one of
the four types shown in Fig. 4, where there is at least one sink in each subpath. For example,
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Type A:

Type B:

Type C:

Type D:

Figure 4 Four types of subpaths.

a subpath of Type A starts with vertex 1 or a vertex that is the right neighbor of a non-split
boundary vertex and ends with a sink at a vertex. Our optimization algorithms locate sinks
in each subpath in the optimal way. The optimal evacuation time is given by the subpath
with the maximum evacuation time.

3 Feasibility test

Given a value (evacuation time) λ, starting from the left end of P , we identify the rightmost
point s1 such that all evacuees on P [1, s1) can evacuate right to s1 within time λ. We then
determine the boundary vertex for s1, denoted by b1, such that all evacuees on P (s1, b1−1]
and α1(0 < α1 ≤ wb1) evacuees from b1 can evacuate left to s1 within time λ, and b1 is the
rightmost such vertex. We repeat this for the remaining part P [b1, n] of P , with the weight
of b1 reduced to ᾱ1 = wb1−α1, if α1 < wb1 , and detaching P [1, b1] from P if α1 = wb1 . It is
clear that the given instance P is λ-feasible, if and only if the end vertex n of P is reached
before no more than k sinks are introduced this way. We present this approach later as
Algorithm FTest, after introducing its building blocks formally.

3.1 Finding maximal λ-covered subpaths
We say that vertex i is λ-covered by sink s, if Θ[i,·]

L (s) ≤ λ or Θ[·,i]
R (s) ≤ λ. A subpath is said

to be λ-covered, if every vertex on it is λ-covered by a sink.

3.1.1 Finding the next sink
Given a λ value, assume that we have introduced sinks, {s1, . . . , si−1}, and the associated
boundary vertices, {b1, b2, . . . , bi−1}, so far for some i ≥ 1, and we want to locate the new
sink si. Assume further that each sink λ-covers a maximal subpath, and lies at the rightmost
position possible. As the initial condition, we set ᾱ0 = w1, which implies that the amount
w1 must be sent to s1. For i ≥ 2, αi−1 (0 < αi−1 ≤ wbi−1) evacuees travel left to si−1.
If αi−1 < wbi−1 ,3 then ᾱi−1 ≜ wbi−1−αi−1 (> 0) evacuees must travel right to si. Let
Θ̃[bi−1,·]

L (x),4 where x ⪰ bi−1, denote the evacuation time for the evacuees from P [bi−1, x)
at x, with the weight of bi−1 changed to ᾱi−1. For the purpose of testing λ-feasibility, we
want to find a sink si, farthest from bi−1 on its right, such that Θ̃[bi−1,·]

L (si) ≤ λ. Since
Θ̃[bi−1,·]

L (x) monotonically increases as we move x to the right, we can perform binary search
to determine adjacent vertices v, v+1 ∈ V such that Θ̃[bi−1,·]

L (v) < λ and Θ̃[bi−1,·]
L (v+1) ≥ λ.

See Fig. 5. Then we can locate sink si on subpath P [v, v+1] in constant time.5

3 If not, then bi−1+1 is like v1. See b5+1 in Fig. 3.
4 It implicitly depends on λ, which indicated by the tilde on Θ.
5 Note that v is included, because Θ̃[bi−1,·]

L (v+) ≥ λ is possible. See Lemma 11.

ATMOS 2021
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v v+1bi−1

Θ̃
[bi−1,·]
L (v+1)≥λ

Θ̃
[bi−1,·]
L (v) < λ Θ̃

[bi−1,·]
L (v+)

ρ
[i,·]
L (v)

Figure 5 Looking for the next sink si.

▶ Observation 10. In the uniform edge capacity model, for a point x ≻ bi−1, the L-critical
vertex ρ

[bi−1,·]
L (x) for P [bi−1, x) w.r.t. x does not depend on ᾱi−1 as long as ᾱi−1 > 0, and

ρ
[bi−1,·]
L (x) satisfies

Θ̃[bi−1,·]
L (x) = d(ρ[bi−1,·]

L (x), x)τ + W [bi−1, ρ
[bi−1,·]
L (x)]− αi−1

c
(13)

= d(ρ[bi−1,·]
L (x), x)τ + W [bi−1+1, ρ

[bi−1,·]
L (x)] + ᾱi−1

c
, (14)

where we define W [bi−1+1, bi−1] = 0. ⌟

▶ Lemma 11. For a given λ, let v ∈ V satisfy Θ̃[bi−1,·]
L (v) < λ and Θ̃[bi−1,·]

L (v+) =
Θ̃[bi−1,·]

L (v+1)− lvτ ≥ λ.6 Then v is the rightmost possible position for sink si.

Proof. It is clear that if Θ̃[bi−1,·]
L (v+) > λ, then si must be placed at v. So consider the case

where Θ̃[bi−1,·]
L (v+) = λ. In this case, the evacuation time will be > λ at any location ≻ v+.

We could place the sink at the imaginary location v+, but we might as well place it at v,
since there is no difference in the coverage on the left or right side, if si is placed at v+ or
at v. ◀

When the condition of the above lemma holds, si is said to be vertex-bound, VB for short,
to v for λ. The L-time jumps beyond λ if the sink is placed at any finite distance (> 0) to
the right of v.

▶ Lemma 12. Procedure NxtSink(λ, a, α), presented below, finds the next sink correctly, and
if the CV tree T is available, then it runs in O(log n) time, performing O(log n) comparisons
with λ.

Proof. The correctness follows from the above discussions. The complexity follows from
Lemma 8, since the portion of the split weight to be λ-covered by the next sink is known. ◀

3.1.2 Finding the boundary vertex for sink si

We now look for si’s boundary vertex bi, as illustrated in Fig. 6.

▶ Lemma 13. Given sink si ∈ P (v, v+1], let b be the leftmost vertex such that Θ[·,b]
R (si) ≥ λ.

If d(si, b)τ > λ, then we must have bi = b−1 and all the wb−1 evacuees can evacuate to si

within time λ. Otherwise, we have bi = b, and a portion of wb can evacuate to si within
time λ.

6 This implies that ρ
[bi−1,·]
L (v+) = v.
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Procedure NxtSink(λ, a, α).

Input : a (vertex with weight α (0 < α ≤ wa)), λ (limit on L-time)
Output : v, d(v, s), s ∈ P [v, v+1] (next sink)

1 if Θ̃[a,·]
L (n) ≤ λ then

2 s← n, v ← n−1, and d(v, s)← ln−1 stop.
3 end
4 Using binary search, find h ∈ [a, . . . , n−1] such that Θ̃[a,·]

L (h) < λ and
Θ̃[a,·]

L (h+1) ≥ λ ;
5 if Θ̃[a,·]

L (h+) = Θ̃[a,·]
L (h+1)− lhτ ≥ λ then

6 d(h, s)← 0 ; // s is VB to h.
7 else
8 d(h, s)← {λ− Θ̃[a,·]

L (h+)}/τ ;
9 end

10 s← point at distance d(h, s) to the right of v ;
11 v ← h.

bb−1v

v+1

Θ
[·,b−1]
R (si)<λ

Θ
[·,b]
R (si)≥λ

d(v, si)

si

Figure 6 Finding the boundary vertex bi for sink si.

Proof. If d(si, b)τ > λ, then clearly it takes more than λ time for the first evacuee from b to
arrive at s.

Otherwise, there are two cases to consider. If W [h,bi−1]
c < d(h, bi)τ , where h = ρ

[·,b−1]
R ,

(bi is the R-critical vertex w.r.t. si), then at least one evacuee from bi can arrive at si within
λ. If W [h,bi−1]

c ≥ d(h, bi)τ (bi is not the R-critical vertex w.r.t. si), on the other hand, since
Θ[·,b−1]

R (si) < λ, the first arrival from b can reach si within λ, hence bi = b. ◀

If bi = b−1 in the above lemma, we call it the separator vertex for the current subpath.
If bi = b, on the other hand, we look for the split portion αi (0<αi≤wb) by setting

Θ[·,b−1]
R (si) + αi/c = λ,

or d(si, ρ
[·,b−1]
R (si))τ + W [ρ[·,b−1]

R (si), b−1] + αi

c
= λ. (15)

We now solve (15) for αi, which yields

αi = {λ−d(si, ρ
[·,b−1]
R (si))τ}c−W [ρ[·,b−1]

R (si), b−1]. (16)

If b is the R-critical vertex w.r.t. si, then we solve d(si, b)τ+αi/c=λ, instead of (15).
Procedure R-Bnd(λ, si, d), given below, computes the boundary vertex bi for si and

also αi.

Since Step 4 makes O(log n) probes, we have

▶ Lemma 14. If the CV tree T is available and the position of si is known, R-Bnd computes
the boundary vertex for a sink in O(log n) time by comparing O(log n) values with λ.
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Procedure R-Bnd(λ, si, d).

Input : λ, si, d // si ∈ P [v, v+1) and d = d(v, si).
Output : bi, αi (0 < αi ≤ wbi

)
1 if Θ[·,n]

R (si) ≤ λ then
2 Set bi ← n and αi ← wn

3 else
4 Using binary search, find vertex b such that Θ[·,b−1]

R (si) < λ and Θ[·,b]
R (si) ≥ λ ;

5 if d(si, b)τ > λ then
6 bi ← b−1, αi ← wb−1 ; // bi is a separator vertex.
7 else
8 bi ← b, and compute αi, using (16) with b = bi

9 end
10 end

3.2 Feasibility test algorithm
Algorithm FTest below presents our feasibility test as a pseudo code. It makes O(k) calls to
NxtSink and R-Bnd, which are the most time consuming operations.

Lemmas 12 and 14 imply

▶ Lemma 15. Algorithm FTest makes cmp(n) = O(k log n) comparisons with λ.

▶ Lemma 16. If the CV tree T is available, then Algorithm FTest decides λ-feasibility for
a given λ in f(n) = O(k log n) time.

Proof. When i = 1 in the while loop, NxtSink(λ, bi−1, ᾱi−1)=NxtSink(λ, 1, w1) in Step 3,
and it generates the exact distance d(v, s1) in O(log n) time by Lemma 12. This distance
is fed to R-Bnd(λ, s1, d) in Step 5 as d = d(v, s1), and it generates the exact split portion
α1 in O(log n) time by Lemma 14. We can now compute ᾱ1 = wb1−α1 as an input to the
second invocation of NxtSink. The lemma follows by repeating this argument k times. ◀

4 Optimization for the uniform capacity model

In applying Lemma 5, we now know that cmp(n) = O(k log n) and f(n) = O(k log n) from
Lemmas 15 and 16, respectively. Thus the remaining problem is to find t(n), which is the
time needed to identify the next λ value to be tested for feasibility. Suppose that we have
located the first i−1 sinks {s1, s2, . . . , si−1} on edges, where i ≤ k, based on the current
upper bound λ. They are obtained as a result of the last successful feasibility test. Note
that a λ-feasibility test has already been performed, because it is how λ was updated to the
current value.

4.1 Finding the next sink in optimal solution
As a result of the last successful feasibility test, the L-time and R-time of each sink sh (h ≤
i−1) equal λ, and we have the sink locations {sh | 1 ≤ h ≤ i−1} on edges and the split
portions {αh | 1 ≤ h ≤ i−1} of the boundary vertices {bh | 1 ≤ h ≤ i−1}. See Fig. 7. Since
we know αi−1, based on it, we can compute the L-time λv = Θ̃[bi−1,·]

L (v) at vertex v ≻ bi−1,
being probed using binary search as a candidate for sink si.
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Algorithm 1 FTest.

Input : P , λ, k

Output : Feasible/Infeasible, updated λ or λ, {si, bi | 1 ≤ i ≤ k}
1 i← 1; b0 ← 1; ᾱ0 ← w1;
2 while [i < k]∧ [Vertex n is not λ-covered by a sink] do
3 By invoking NxtSink(λ, bi−1, ᾱi−1), find the next sink si and d(v, si), where

v ⪯ si ≺ v+1;
4 Set d← d(v, si) ; // If d(v, si) = 0, then si is VB to v w.r.t. λ.
5 Run Procedure R-Bnd(λ, si, d); // Generate bi and αi.
6 if αi = wbi

then
7 bi ← bi+1; // The next subpath should start from updated bi.
8 else
9 ᾱi ← wbi − αi;

10 end
11 i← i+1
12 end
13 if vertex n is λ-covered by a sink then
14 λ← λ;
15 Output Feasible
16 else
17 λ← λ ;
18 Output Infeasible.
19 end
20 Output {si, bi | 1 ≤ i ≤ k}, λ and λ.

λ λ λ

v

λv

↓ ↓β
β/2cτ

(i−1)β
β/2cτ

↓2β

λs1 bi−1s2λ b1 b2

Figure 7 Equalization. Reduction in αh is hβ for 1 ≤ h ≤ i−1.

Whenever we probe such a vertex v, we need to compute the “equalized” evacuation time
at all the sinks {sh | 1 ≤ h ≤ i−1},7 including the candidate sink si that may be placed at v.
We may assume that λv < λ, since otherwise, the equalized time will be larger than λ, and
we would already know the outcome of its feasibility test. We thus have a “slack” of λ−λv,
which means that the L-time and R-time of each sh (1 ≤ h ≤ i−1) can be reduced to remove
this slack. For equalization, we move sinks {sh | 1 ≤ h ≤ i−1} left, and also reduce the split
portions {αh | 1 ≤ h ≤ i−1} to make all the L-time and R-time at all the sinks the same,
which should equal the minimum evacuation time for subpath that we are processing, if si is
placed at v (Type A or C).

▶ Lemma 17. Let λ and λ be the current bounds, and let {s1, . . . , si−1; b1, . . . , bi−1} be the
non-VB sinks and split boundary vertices, based on the current λ that resulted from the last
successful feasibility test. If λ is moved within (λ, λ), then
(a) Each sink sh (1 ≤ h ≤ i−1) moves on the same edge.
(b) Each boundary vertex bh (1 ≤ h ≤ i−1) does not change.

7 If no sink has been introduced (i=1), this step is not needed.
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Proof. (a) Let sh ∈ (u, u+1). In the process of determining that sh is not VB, we would have
tested the feasibility of Θ̃[bh−1,·]

L (u) and Θ̃[bh−1,·]
L (u+1), and the former (resp. latter) must

have failed (resp. succeeded). Thus the bounds were updated by λ← max{λ, Θ̃[bh−1,·]
L (u)}

and λ← min{λ, Θ̃[bh−1,·]
L (u+1)}. This implies that sh cannot reach u or u+1 if λ ∈ (λ, λ),

and will stay on edge (u, u+1).
(b) Assume that changing λ within (λ, λ) caused αh = 0 or αh = wbh

. Let λ0 (resp. λ1)
be the R-time for sink sh with αh = 0 (resp. αh = wbh

). In the process of identifying bh, we
would have done the λ0-feasibility test and λ1-feasibility test. Since the λ1-feasibility test
must have been successful, λ would have been set to λ1 at that time. Moreover, λ could have
been made smaller due to a later feasibility test. Thus changing λ with λ ≤ λ cannot move
αh beyond wbh

. Similar argument shows that αh > 0 for λ > λ. ◀

▶ Corollary 18. Let λ, λ, and {s1, . . . , si−1; b1, . . . , bi−1} be as defined in Lemma 17. Then
there is an optimal solution {ŝ1, . . . , ŝk−1; b̂1, . . . , b̂k−1} such that for ∀h (1 ≤ h ≤ i−1), ŝh

and sh lie on the same vertex or same edge, and ∀h (1 ≤ h ≤ i−1) : b̂h = bh.

In Fig. 7,8 for 1 ≤ h ≤ i−1, the value, hβ, shown below bh, indicates the amount by
which αh is reduced. Thus the difference between the values below bh and bh+1 is β for all
1 ≤ h ≤ i−1. To accommodate these changes in αh and αh+1, sink sh must move to the left
by the distance β/2cτ to balance its L-time and R-time. As a result, the evacuation time at
each sink gets reduced to λ−β/2c. Therefore, (i−1)β is the increase in αi−1 that must be sent
to v. To make all the L-times and R-times the same, we should have λv +(i−1)β/c = λ−β/2c,
from which we get

β/2c = (λ−λv)/(2i−1). (17)

Then the L- and R-time of every sink equal

λv = λ− β/2c = {(2(i−1)λ + λv}/(2i−1). (18)

Clearly, this λv can be computed in t(n) = O(1) time. We now perform the λv-feasibility
test to compare it with λ∗, which runs in f(n) = O(k log n) time by Lemma 16. If the
λv-feasibility test succeeds, then λv ≥ λ∗, which means that sink si needs to be placed at
or to the left of v. If it fails, then λv < λ∗, which means that sink si may be VB to v or it
needs to be placed to the right of v. If the test is successful (resp. fails), we update λ← λv

(resp. λ← λv). This is repeated until we either locate a sink or reach vertex n.
The following lemma is the counterpart to Lemma 11.

▶ Lemma 19. Suppose that the λv-feasibility test failed, but the λ̂v+1-feasibility test succeeded.
If the λ+

v -feasibility test succeeds, where

λ+
v = {2(i−1)λ + λv+1−lvτ}/(2i−1), (19)

then si is VB to v, otherwise, si ∈ P (v, v+1].

8 This is a special case of Fig. 8, and what is in the rest of this subsection follows from the analysis of the
general edge capacity model in Sec. 5.1. But we present it here, since it is easier to understand the
underlying idea with a simpler model.
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Proof. λ+
v is obtained by replacing λv in (18) by λv+1−lvτ . Assume that the λ+

v -feasibility
test succeeds, i.e., Θ̃[bi−1,·]

L (v+) ≥ λ∗. In this case we could have either si = v or si = v+. But
there is no advantage in placing it at v+ over placing it at v, since they make no difference
in the evacuation time of the overall solution.9 If it fails, i.e., Θ̃[bi−1,·]

L (v+) < λ∗, then we
clearly have si ≻ v.10 ◀

As a result of the λ+
v -feasibility test in Lemma 19, if si turns out to be VB to v, then we

have identified a subpath of Type A or C. So we can isolate and discard the subpath ending
at this sink si. But a copy of si should be made, because it is the start vertex of a subpath
of Type C or D that comes next. If si is not VB, on the other hand, si lies on (v, v+1), but
we do not know exactly where: we only know that d(v, si) depends linearly on λ, as implied
by Lemma 17. We now proceed to determine the boundary vertex for si.

4.2 Finding next boundary vertex in optimal solution
We want to decide if boundary vertex bi is a separator vertex, and once we have identified a
separator vertex, we remove the edge incident to it from the right. Otherwise, we will only
know that bi will be split.

Assume that we have introduced i sinks so far in the current subpath, and as a result of
the last successful λ-feasibility test, the first i−1 sinks have the same L-time and R-time that
are equal to λ, which is the same as the L-time of si. We now reduce them by β/2c from λ

for some β to be determined below. Let λ′
b be the R-time at si for P [si, b], where b is being

tested as a possible boundary vertex for si. As we argued in Sec. 4.1, it should increase by
(2i−1)β/2c, moving {sh | 1 ≤ h ≤ i} to the left by various distances. We thus have

λ′
b + (2i−1)β/2c = λ− β/2c⇒ β/2c = (λ−λ′

b)/2i. (20)

We now run a λb-feasibility test for

λb ≜ λ− β/2c = {(2i−1)λ + λ′
b}/2i. (21)

This is analogous to how we identifed VB sinks in Sec. 4.1. Here is the counterpart to
Lemma 19.

▶ Lemma 20. Suppose that the λ̂b−1-feasibility test failed, but the λb-feasibility test succeeded.
If the λ−

b -feasibility test succeeds, where

λ−
b = {(2i−1)λ + wb−1/c}/2i, (22)

then b−1 is the separator vertex for the current subpath. If it fails, bi = b and b is a split
vertex.

Intuitively, if the λ−
b -feasibility test succeeds, then b−1 cannot accept any more evacuees

within the equalized time λ−β/2c. If b−1 is the separator vertex, we end up with Type B
or D. If bi = b is a split vertex, we do not compute its split portion αi at this time. The
updated λ is used to find the next sink, using it in Eq. (17).

9 Moreover, there is no physical point corresponding to v+ other than v.
10 Note that if the critical vertex for P [bi−1, v] w.r.t. v is the same as that w.r.t. v+, then Θ̃[bi−1,·]

L (v+) =
Θ̃[bi−1,·]

L (v) < λ∗, so Θ̃[bi−1,·]
L (v+) ≥ λ∗ cannot happen.
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▶ Lemma 21. The total time to find all the λ values to be tested per sink and boundary
vertex is t(n) = O(k log n), where t(n) is defined in Lemma 5.

Proof. We need to probe for the candidate vertex v for the next sink si (see Sec. 4.1) and
boundary vertex bi, and compute λv, λv, and λ+

v (resp. λ′
b, λb, and λ−

b ). The dominant cost
is incurred for finding λv and λ′

b, which is O(log n) time, hence t(n) = O(log n). ◀

4.3 Time complexity of the algorithm
The dominant component of h(n) in Lemma 5 is the time used to construct the CV tree T ,
which is O(n) by Lemma 7. Lemmas 5, 15, 16, and 21 now imply

▶ Theorem 22. We can find the k-sink in path networks with uniform edge capacities in
O(n+k2 log2 n) time.

5 General edge capacity model

We want to make Lemma 17 and Corollary 18 valid for the general edge capacity model,
but different edge capacities introduce some complications. First of all, we need to use the
CUE tree T , instead of the CV tree, to find various L-time and R-time. The main issue is
computing the next λ value to be tested in optimization, and finding the time t(n) needed to
carry out this operation.

Assume that the sinks and boundary vertices have been placed up to boundary vertex
b, and each sink has L-time and R-time equal to λ. To locate the next sink, we want to
identify two adjacent vertices v and v+1 such that Θ̃[b,·]

L (v) (resp. Θ̃[b,·]
L (v+1)) is infeasible

(resp. feasible). Similar operations need to be performed to find the next boundary vertex.

5.1 Evacuation time equalization

v↓β1

s1 b1

c1l c1r

s2

c2l
↓β2c2r

b2 s3

↓βi−1

bi−1 λvsi−1b0

Figure 8 Evacuation time equalization.

5.1.1 Assuming the L- and R-critical vertices of each sink is unique
Fig. 8 corresponds to Fig. 7 in the uniform capacity model. Thus for 1 ≤ h ≤ i−1, βh is the
reduction amount in αh, and chl (resp. chr) is the capacity between sink sh and its L-critical
(resp. R-critical) vertex ρ

[bh−1,·]
L (sh) (resp. ρ

[·,bh]
R (sh)). If we start with the evacuation time

based on the up-to-date λ and spread the slack to compute the equalized time λ for the
feasibility test, then this λ value may not be the correct evacuation time at v, since λ was
computed based on the (possibly wrong) assumption that ρ

[bh−1,·]
L (sh) and ρ

[·,bh]
R (sh) would

not change when λ is reduced from λ. But in general, they may change. So the problem
is how to ensure that critical vertices do not change. Our approach is to make the interval
(λ, λ) sufficiently small so that as long as λ is varied within the constraint λ < λ < λ, they
do not change We address this issue after presenting an evacuation time equalization method,
assuming that the operations involved do not change critical vertices.



R. Benkoczi et al. 13:15

This assumption implies that capacities chl and chr do not change, as we move sh to the
left to equalize its L-time and R-time and reduce αh by βh, within the constraint that the
value λ to be tested for feasibility satisfies λ < λ < λ.

Starting from the left end of the subpath of Type A that we are processing, if we reduce
α1 by β1, the L-time and R-time of s1 get reduced from λ to λ−β1/2c1r. In general, reducing
αh−1 by βh−1 (increasing αh−1 by βh−1) causes sh to move to the left by some distance δh.
Similarly, the decrease in the R-time at sh is βh/chr − δhτ . Equating these decreases, we get

δhτ − βh−1/chl = βh/chr − δhτ ⇒ δhτ = (βh−1/chl + βh/chr)/2,

where β0=0. We thus obtain

δhτ − βh−1/chl = βh/chr − δhτ = (βh/chr − βh−1/chl)/2, (23)

and the L-time and R-time get reduced from λ to

λ−(βh/chr−βh−1/chl)/2. (24)

Equating the evacuation time reduction (23) for h=1 and h=2, we get

β1/2c1r = (β2/c2r − β1/c2l)/2,

from which we can express β2 as β2 = a2β1 for constant a2 = c2r(1/c2l + 1/c1r). Equating
the evacuation time reduction (23) for h=1 and h=3, we get

β1/2c1r = (β3/c3r − β2/c3l)/2.

Substituting β2 = a2β1 in this equality, we can express β3 = a3β1 for some constant
a3. In general, we have βh = ahβ1 for a constant ah, which is a function of capacities
{cjl, cjr | 1 ≤ j ≤ h}. Moreover, ah can be obtained in O(1) time when h is incremented,
since cjl and cjr (j ≤ h−1) remain the same by our assumption, hence it is a linear function
of λ whose coefficients are known.

We can now determine β1 by equating the L-time at v and the L-time at s1 as follows.

λv + βi−1/c(bi−1, v) = λ− β1/2cr1. (25)

With this β1, the L-time and R-time of every sink equal

λv = λ− β1/2cr1. (26)

This equalized time is used for λv-feasibility testing. The other types of subpaths can be
analyzed similarly.

5.1.2 Making the L- and R-critical vertices of each sink unique
As part of preprocessing, for each node u of CUE tree T , we construct array Λw

R(u) from
Aw

R(u) by replacing each element Wh in it by the corresponding time, λh
u ≜ Θw

R(Wh, u), which
is the R-time w.r.t. l(u)− for V (u) plus Wh coming from the right side of r(u). In other
words, (Wh, λh

u) is an inflection point. We define array Λw
L(u) symmetrically to Λw

R(u).
To make our assumption about the uniqueness of chl and chr valid, we update λ and λ

on additional occasions, which makes the interval (λ, λ) sufficiently narrow. Consider, for
example, a subpath of Type A and, without loss of generality, let b0 = 1 be its leftmost
vertex. In finding the edge on which s1 should lie, using binary search, we look for two
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adjacent vertices v and v+1 such that the L-time Θ[1,·]
L (v) (resp. Θ[1,·]

L (v+1)) is infeasible
(resp. feasible). By Lemma 9(b), we can compute Θ[1,·]

L (v) in O(log2 n) time, and by the
definition of v, we have

Θ[1,·]
L (v) < λ∗ ≤ Θ[1,·]

L (v+1). (27)

So we can update the bounds by λ ← max{λ, Θ[1,·]
L (v)} and λ ← min{λ, Θ[1,·]

L (v+1)}.
Thus the optimal s∗

1 will lie on P [v, v+1]. Ignoring the special case of s∗
1 = v+1, let

s∗
1 ∈ ev = (v, v+1). Then it is clear that the L-critical vertex w.r.t. s∗

1 is the same as the
L-critical vertex w.r.t. v+1, and we already know it is unique at this point.

Next, we look for the boundary vertex b1 for s1. Let s1 be the position of the first
sink, whose L-time is λ that is the most up-to-date upper bound. Using binary search, we
probe vertex b ≻ s1, computing R-time λb = Θ[·,b]

R (s1) < λ.11 Using this λb, we equalize the
L-time and R-time of s1, and test the equalized value, λb, for feasibility. This way, after
one feasibility test per probed vertex, we can identify two adjacent vertices b and b+1 such
that Θ[·,b]

R (s1) is infeasible and Θ[·,b+1]
R (s1) is feasible, where s1 is the sink with the equalized

L-time and R-time. Note that these tests are counted in cmp(n).
Before proceeding further, we want to make sure that any s1 ∈ (v, v+1) considered in

the future will have a unique R-critical vertex, for P [s1, b+1], as long as λ ∈ (λ, λ) for
the most up-to-date λ and λ and that αb+1 > 0 holds. To this end, we need to narrow
the interval (λ, λ) sufficiently. More generally, let λ and λ be the current bounds, and let
{s1, . . . , si−1; b1, . . . , bi−1} be the non-VB sinks and split boundary vertices, based on the
current λ that resulted from the last successful feasibility test. Suppose that si−1 ∈ (v, v+1)
and bi−1 = b+1.

For each u ∈ N [v+1, b], we do binary search in Λw
R(u), and based on the probed value,

we first equalize the L-time and R-time of {sh | 1 ≤ h ≤ i−1}. We then perform O(log n)
feasibility tests to identify two adjacent values, λgu

u , λgu+1
u ∈ Λw

R(u) such that the feasibility
test for the corresponding equalized value, λ

gu

u (resp. λ
gu+1
u ) fails (resp. succeeds). We now

update the bounds by

λ← max
{

λ, max
u∈N [v+1,b]

{λgu

u }
}

, (28)

λ← min
{

λ, min
u∈N [v+1,b]

{λgu+1
u }

}
. (29)

What we have done so far essentially is to identify a unique critical vertex per node u ∈
N [v+1, b]. We need O(log n) more feasibility tests to make the critical vertex for P [v+1, b]
w.r.t. si ∈ (v, v+1) unique.

▶ Lemma 23. Let {s1, . . . , si−1; b1, . . . , bi−1} be the non-VB sinks and split boundary vertices,
based on the current λ that resulted from the last successful feasibility test. For any equalized
value λ ∈ (λ, λ), where λ (resp. λ) is given by (28) (resp. (29)), the R-critical vertex for any
si−1 ∈ (v, v+1) is unique, and we can compute (28) and (29) in O(f(n) log2 n) time.

Proof. For any u ∈ N [v+1, b], we have λ ≥ λ
gu

u and λ ≤ λ
gu+1
u . Therefore, λ ∈ (λ, λ) implies

that λ lies in a unique position among the values in Λw
R(u).

For each of the O(log n) probed values from Λw
R(u), we can evaluate the equalized value

λ
gu

u in O(k) time, and λ
gu

u can be tested for feasibility in f(n) time. This is repeated O(log n)
times, resulting in O(f(n) log n) time. The total time for all nodes u in N [v+1, b] is thus
O(f(n) log2 n). ◀

11 Vertex b with Θ[·,b]
R (s1) ≥ λ is of no interest if s∗

1 ≺ s1.
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This ensures that if any λ value satisfying λ < λ < λ is tested for feasibility in the future,
the unique critical vertex ρ

[·,b+1]
R (si−1) is already known. Since we assume a subpath of

Type A, b+1 is split in the optimal solution. Moreover, we can easily find the bounds on
αb+1 corresponding to λ and λ.

Let bi−1 be the last boundary vertex introduced, which is split, and consider vertex
v ≻ bi−1 which is being probed as a candidate for si. See v in Fig. 8. We want to narrow the
interval (λ, λ) sufficiently, so that the L-critical vertex for the subpath P [bi−1, si] w.r.t. si is
unique when λ-feasibility is tested for any λ ∈ (λ, λ]. To this end, we do binary search in
Λw

L(u) for each u ∈ N [bi−1+1, v]. Let λgu
u be the probed element. Using λgu

u , we equalize
the L-time and R-time of all sh (1 ≤ h ≤ i−1), and perform the feasibility test for the
resulting equalized value λ

gu

u . This way we can identify two adjacent values λgu
u and λgu+1

u

in Λw
L(u) such that the feasibility test for the equalized value λ

gu

u (resp. λ
gu+1
u ) fails (resp.

succeeds). The rest is similar to what we did for sink si−1 above. This ensures that if any λ

value satisfying λ < λ < λ is tested for feasibility in the future, the L-critical vertex for the
subpath P [bi−1, si] w.r.t. si is unique and already known. To summarize,

▶ Lemma 24. Let {s1, . . . , si; b1, . . . , bi−1}, where si ∈ (v, v+1], be the sinks and split
boundary vertices that resulted from the last successful feasibility test. In O(f(n) log2 n) time,
we can further reduce the interval (λ, λ) sufficiently, so that if any value λ ∈ (λ, λ) is tested
for feasibility, the L-critical vertex for any si is unique.

Clearly, the uniqueness of the critical vertices implies the uniqueness of the capacities
{chl, chr | 1 ≤ h ≤ i−1} in Fig. 8. Note that if the equalized λ lies outside the current
interval (λ, λ), then we immediately know if it is feasible or not.

5.2 Complexity
▶ Lemma 25. If the CUE tree T is available, then for any λ, we can decide λ-feasibility in
f(n) = O(k log2 n) time.

Proof. The proof is similar to that of Lemma 16, except that it takes O(log3 n) time to
identify the maximal λ-interval by binary search, using the comment after Lemma 9. ◀

Since we already know h(n), cmp(n), and f(n), the only remaining task is to find t(n).
Lemmas 23 and 24 imply

▶ Lemma 26. If the CUE tree T is available, generating the values to be tested for feasibility
takes t(n) = O(f(n) log2 n) = O(k log4 n) time.

The CUE tree can be constructed in h(n) = O(n log n) time by Lemma 7. We have
cmp(n) = O(k log n), just as for the uniform capacity model. Finally, Lemmas 5, 25, and 26
imply our second main theorem.

▶ Theorem 27. For the general edge capacity model, we can find the optimal k-sink in
O(n log n+k2 log5 n) time

6 Cycle networks

We shall show that the feasibility test for non-confluent flows on cycle networks can be
performed in time that is no more than n times the time needed by the feasibility test for path
networks. It is known that [3, 7] the k-sink problem for cycle networks with confluent flows
can be solved in O(n log n) (resp. O(n log3 n)) time when the edge capacities are uniform
(resp. general). Given a cycle network C = (V, E), where V = {1, 2, . . . , n} is the the vertex
set, and the edge set E is given by E = {(i, i+1) | i = 1, 2, . . . , i−1} ∪ {(n, 1)}.
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▶ Lemma 28. There is always an optimal solution in which either at least one sink is located
at a vertex or there is an edge that carries no flow.

Proof. To prove the above claim, for a cycle C, let s∗
1, s∗

2, . . . , s∗
k be the locations of optimal

sinks arranged clockwise, and bi be the boundary vertices between s∗
i and s∗

i+1. If a sink is on
a vertex, then we can divide it into two vertices, converting C into a path. If the boundary
vertex bi for sink s∗

i is not split, then cutting the edge (bi, bi+1) converts C into a path.
Therefore, assume that all the optimal sinks are on edges and that all boundary vertices

are split. Pick a sink s∗
i , and gradually move it clockwise. We adjust the split portions of

the boundary vertices to compensate for this move. Eventually one of the two things will
occur. (i) some sink s∗

j reaches a vertex,12 or (ii) a boundary vertex bl is no longer split. In
the former case, we cut the vertex into two vertices, which become the end vertices of the
resulting path. In the latter case, the edge between bl and bl+1 will carry no flow any more,
and it can be removed, resulting in a path from bl+1 to bl. ◀

This implies that we can solve the problem as follows. We create n paths by dividing
each vertex into two vertices, and another n paths by removing each edge. We then solve the
k-sink problem for each of these 2n paths. The solution with the minimum evacuation time
is our overall solution. Let Pi denote the path that results by removing edge (i, i+1), where
vertex n+1 is interpreted as 1. We can solve the problem for each Pi in O(n log n+k2 log5 n)
time by Theorem 27. Thus the total time for all such paths is given by

O(n2 log n+k2n log5 n). (30)

However, we can save time on the preprocessing time h(n) as follows. We make a copy of
path Pn, name its vertices {n+1, n+2, . . . , 2n}, and connect Pn and its copy by introducing
a new edge (n, n+1). This results in a path P ′ of length 2n−1. We now construct the CUE
tree for this P ′. In solving the problem for Pi for any i, whenever the value Θ[bi−1,·]

L (v)
or Θ[·,b]

R (si) is needed, we can use a portion of the CUE tree to compute it. Since we can
construct this CUE tree in O(n log n) time, we have h(n) = O(n log n). This implies that we
can replace the first term in (30) by n log n, which is dominated by the second term.

▶ Theorem 29. If the edge capacities are uniform (resp. general), we can find the optimal
k-sink in cycle networks in O(k2n log2 n) (resp. O(k2n log5 n)) time.

7 Conclusion and discussion

We have presented algorithms to find a k-sink on path networks when the flow is non-confluent.
For the uniform capacity model, the time complexity of our algorithm is asymptotically the
same as the corresponding algorithm for confluent flow discussed in [4]. For the general
capacity model, however, it takes longer than the corresponding algorithm in [4]. We showed
that a similar approach can be used to find a k-sink on cycle networks, but the time complexity
increases.

A model in which the sinks are constrained to be in a prescribed set of vertices might be
more realistic. We can apply our methods developed in this paper with only small changes
to find a solution in such a model.

12 j=i is possible.
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There are a few open problems. First of all, can we improve the feasibility test for cycle
networks? Tree networks appear much harder to deal with. For the confluent flow model,
Chen and Golin [6] propose an O((k+ log n)k2n log3 n) (resp. O((k+ log n)k2n log4 n)) time
algorithm for finding a k-sink in the uniform (resp. general) capacity model. One of the
difficulties in the non-confluent flow model for tree networks is that a split portion of a vertex
cannot be represented by just one variable αi per vertex, because a vertex may have many
neighbors. Another serious problem is that the optimal split portion may be time-dependent.
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