
Transfer Customization with the Trip-Based Public
Transit Routing Algorithm
Vassilissa Lehoux-Lebacque1 #

NAVER LABS Europe, Meylan, France

Christelle Loiodice #

NAVER LABS Europe, Meylan, France

Abstract
In the context of routing in public transit networks, we consider the issue of the customization of
walking transfer times, which is incompatible with the preprocessing required by many state-of-the-
art algorithms. We propose to extend one of those, the Trip-Based Public Transit Routing algorithm,
to take into account at query time user defined transfer speed and maximum transfer duration. The
obtained algorithm is optimal for the bicriteria problem of optimizing minimum arrival time and
number of transfers. It is tested on two large data sets and the query times are compatible with
real-time queries in a production context.
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1 Introduction

In mobility applications or websites, finding paths between an origin and a destination is
a classical problem. In public transit networks, those paths can combine public transit
modes and walking between the stations. In this paper, we are interested in building sets
of alternative paths according to user specified transfer speed and/or maximum transfer
duration. Customization of transfer times is an important feature for routing applications, as
in many contexts, users have an a priori idea of the maximum duration they wish to spend
on a transfer, or the speed at which they will perform it. The speed or maximum duration
can be related to weather (not walking too much under the rain or walking more slowly in
hot weather), to trip aim (travelling with a heavy luggage, taking small kids to an activity)
or simply to the physical condition of the user. In some other contexts, a user might wish to
set a large maximum duration and a high speed, for instance if long transfers at a brisk pace
are perceived as an opportunity to keep fit. In addition, some modes that can be carried
by the user in the public transports, like kick scooter or roller blades, have a network very
similar to the walking network and can be modelled by faster walking transfers in the routing
algorithm. In the following, we will refer to walking transfers for simplicity, but transfers
could be done using those modes if speed customization is added.

Many efficient algorithms have been developed over the last years for mono- or bicriteria
routing in public transit network (e.g. [1, 4, 5, 15, 3]). However, they mostly consider fixed
transfer speed and sometimes rely on long preprocessing depending on fixed transfer times.
When transitive closure of transfers is not required by the algorithm, there usually exists
a limit at the application level of the duration of a transfer. This reduces the size of the
routing problem and is acceptable for many users who would like to avoid long transfers.
In [13], which extends the RAPTOR [4] algorithm, the authors consider higher maximum
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15:2 Transfer Customization with the Trip-Based Public Transit Routing Algorithm

transfer duration at the application level, and user customizable transfer speed and maximum
transfer duration. In [14], the authors consider unrestricted walking transfers (no maximum
duration). They find that the earliest arrival time is improved for long distance queries by
allowing more walking in 75 percent of the times, compared to a limit of 8 min walking for
Germany and a limit of 15 min for Switzerland. This issue of unlimited transfer times has
then been studied in several recent publications [11, 2]. However, as their transfer graphs
can count transfers of several hours, it is not clear that users will be willing to perform the
optimal itineraries when they involve too much walking. Especially if alternatives exist with
less walking, and even if those alternatives are significantly slower. We hence consider that
the possibility to customize the transfer speed and maximum duration at query time will
provide users with itineraries better adapted to their context and preferences.

In this article, we want to extend the Trip-Based Public Transit Routing algorithm [15]
to user customized transfer speed and maximum duration at query time, while preserving
the optimality of the algorithm. The outline is as follows. Section 2 describes the principle
of the Trip-Based Public Transit Routing algorithm and the notations used in the paper.
The proposed extension is explained in Section 3 and a proof of optimality is given. Tests on
two large size data sets are discussed in Section 4. Section 5 concludes the article.

2 Notations and principle of the Trip-Based Public Transit Routing

In this section, we describe public transit networks using notations similar to that of [15],
for easier reference. Public transit information contains the schedules of the transit vehicles.
For each vehicle, it defines the passage times of the vehicle at the stations (also called stops)
where its passengers can board and alight. A trip t corresponds to a vehicle following its
sequence of stops −→p (t) = ⟨t@0, t@1, . . . ⟩. We denote by τarr(t, i) (resp. τdep(t, i)) the
arrival time (resp. departure time) of t at the ith stop of −→p (t). We group trips of identical
stop sequences that do not overtake each other into lines. The lines hence do not exactly
represent the routes of the public transport network. Similarly to trip notations, we denote
by −→p (L) = ⟨L@0, L@1, . . . ⟩ the stop sequence of line L. Note first that the partition of the
trips into lines is not unique. Second, as the trips of a line do not overtake each other, they
form a totally ordered set with the relation ⪯ and a partial order with ≺ defined for two
trips t and u having the same sequence by:

t ⪯ u ⇐⇒ ∀i ∈ {0, 1, . . . , |−→p (t)| − 1}, τarr(t, i) ≤ τarr(u, i)
t ≺ u ⇐⇒ t ⪯ u and ∃i ∈ {0, 1, . . . , |−→p (t)| − 1}, τarr(t, i) < τarr(u, i)

t@i → t@j denotes a displacement between the ith and the jth stops of trip t using trip t

and similarly, a transfer between trip t at the ith station and trip u at the jth station is
denoted t@i → u@j. For a given stop s, L(s) is the set of all line-index pairs (L, i) such that
s = L@i. Information about the transfers between the stops of network is usually represented
directly by walking transfer times ∆τfp(p, q) defined for any pair of stops (p, q), p ̸= q that
are close enough from one another. When transferring between two trips at a given station
(t@i = u@j = p), a minimum change time ∆τfp(p, p) can also be defined to represent the
time needed to move within the station.

The Trip-Based Public Transit Routing (TB) algorithm [15] is an exact state-of-
the-art algorithm for routing in public transit networks. A bicriteria earliest arrival time
query (EAT) takes as inputs an origin, a destination and a start time. The two criteria
minimized are arrival time and number of transfers.
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If a set of criteria (c1, c2, . . . , cn) is to be minimized, a solution s with value (v1, v2, . . . , vn)
is non-dominated in the Pareto sense if there is no other solution s′ with values (v′

1, v′
2, . . . , v′

n)
such that for all i ∈ {1, 2, . . . , n}, v′

i ≤ vi and ∃i ∈ {1, 2, . . . , n} such that v′
i < vi. Non-

dominated solutions are called optimal and the maximum cardinality set of non-dominated
solutions is denoted Pareto set. The Pareto front is the image of the Pareto set in the
criterion space. As most routing algorithms, the TB algorithm doesn’t compute the complete
Pareto set but only one solution with this value per element in the Pareto front. As in [12],
we call this family of sets complete sets. The TB algorithm builds a complete set of solutions
for minimum arrival time and number of transfers in polynomial time. It uses a specific
graph representation based on trips as vertices and feasible transfers as arcs. For each trip,
a neighbourhood of reachable trips is built by a preprocessing step and is pruned while
ensuring that a complete set of solutions can still be obtained. We call a preprocessing that
ensure the optimality of the algorithm a correct preprocessing. Such a preprocessing for the
TB algorithm ensures that for any optimal value, there exists an optimal solution with this
value whose transfers are all in the pruned transfer set. In the search graph, an EAT query
consists in a breadth-first search like exploration. Trip segments reached from the origin
given the departure time form the initial current queue Q, while for every stop p from which
destination can be reached and any trip t such that p = t@j, trips segments t@i → t@k

with i < j ≤ k are the targets of the algorithm. Those targets can be represented by the
set L of triplets (L, i, ∆τ) where s is a stop from which destination can be reached, ∆τ is the
duration of walking from s to destination and (L, i) ∈ L(s). During an iteration, all the trip
segments of the current queue are processed. If a trip segment is a target, best arrival time
can be improved. Transfers are performed to add the reached trip segments to the queue for
the next iteration.

The TB algorithm can also be used with slight modifications to compute profile queries,
where all the optimal paths must be found for a given starting time range.

Pruning phase. Given an origin trip t and a destination trip u, transfer t@i → u@j is
feasible if and only if

τarr(t, i) + ∆τfp(t@i, u@j) ≤ τdep(u, j)

When considering the set of feasible transfers between a trip t at its ith stop and a line L at
its jth stop, the order on the trips of L implies that this set is either empty or has a minimum
element according to ⪯ and ≺. This element is the earliest trip such that the transfer is
feasible. To construct a complete solution set for minimum arrival time and number of
transfers, it is sufficient to add only this earliest transfer to the search graph.

The preprocessing phase of the TB algorithm as described in [15] first computes the set
of all earliest feasible transfers and then prune the neighbourhood of each trip based on stop
labels those values are the earliest arrival times at stops when transferring from the trip.

In [7], the authors modify the preprocessing to make it faster than in the original version.
The key idea is to perform an additional pruning step based on trip-to-line transfers before
the arrival time based pruning. The transfers between a trip t and a line L are compared
using the following dominance relation. If u, u′ ∈ L, a transfer t@i → u@j is dominated by a
transfer t@i′ → u′@j′ if and only if

i ≤ i′ and u′ ≤ u and j′ ≤ j and
(i < i′ or u′ < u or j′ < j)

We will extend both preprocessing steps to take into account transfer time customization.

ATMOS 2021
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3 Customization of transfers

Now we want to enable customization of transfer speed and maximum transfer duration at
query time. First note that the values chosen by the user need to be bounded between realistic
values defined at the application level. To modify the transfer speed, we consider that the
public transit information contains transfer times for some constant chosen speed sstd. We
can define for each query a duration coefficient σ corresponding to the user chosen speed s:
σ = sstd/s. If the standard duration of a transfer is ∆τ , the application of a duration
coefficient σ will result in a duration σ∆τ . To avoid unrealistic fast transfer time values, a
minimum application level duration coefficient can be chosen with 1 ≥ ςmin > 0. Similarly, a
maximum transfer duration coefficient at the application level ςmax ≥ 1 can be set.

3.1 Modifications of the query phase
Suppose that we obtain after preprocessing a transfer set correct for any user defined transfer
duration coefficient σ ∈ [ςmin, ςmax] and maximum transfer duration ∆τmax ≥ 0. To avoid
performing any transfer longer than ∆τmax, we can prune at query time the transfers whose
duration exceeds the bound. For faster computations, and unlike in the standard algorithm,
the duration must be an attribute of the transfer. Saving the maximum transfer duration
coefficient for which the transfer is feasible will similarly enable faster pruning during the
search phase. It would also be possible to add a minimum duration coefficient for which the
transfer can be useful if above that speed the previous destination trip of the same line can
be taken instead. In the case where possible speed values are from a discrete set, a speed
mask can be added to transfers in order to keep only the right ones for each speed during
the query phase.

Now each transfer of the transfer set is a triplet (t@i → u@j, ∆τ, σmax) where ∆τ is the
standard transfer duration and σmax the maximum duration coefficient for which the transfer
is feasible. The user gives as additional inputs a maximum transfer duration ∆τmax and
transfer duration coefficient σ. They are used to prune the transfers during the search phase
when exploring the neighbourhood of the trips. If a transfer (t@i → u@j, ∆τ, σmax) is such
that ∆τmax > σ ∆τ or σ > σmax, it can be pruned. For concision, the pseudo-code of the
modified query algorithm can be found in appendix in Algorithm 2.

Note that it would also be possible to bound the travel duration from origin to the first
stop or from the last stop to destination by pruning the initial queue Q0 and the target set L
according to a user defined value (possibly different of ∆τmax).

It has been proven in [6] that a correct transfer set for EAT queries is correct for latest
departure time queries (LDT). LDT queries could hence be modified similarly to integrate
maximum duration and variable transfer speed.

3.2 Preprocessing phase
When considering multiple possible speeds, there might be several transfers of interest for a
given origin trip t at stop t@i toward a given destination line L′ at L′@j, instead of a single
one. The smallest destination trip to consider is the earliest trip such that the transfer is
feasible with the fastest possible speed:

umin = min{u ∈ L′ | τdep(u, j) ≥ τarr(t, i) + ςmin ∆τfp(t@i, L′@j)}

The latest corresponds the slowest speed:

umax = min{u ∈ L′ | τdep(u, j) ≥ τarr(t, i) + ςmax ∆τfp(t@i, L′@j)}
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And all the trips of L′ in between could be taken, depending on the user chosen transfer
speed, each corresponding to a transfer to an earliest trip for a given speed range. We call
trips of interest of the transfer t@i → L′@j the destination trips of L′ in {umin, . . . , umax}.
When the set of possible speed values is finite, not all the trips of the range {umin, . . . , umax}
might be relevant, and we will consider only the earliest for each speed of the set.

For each feasible transfer described above, we save in the transfer set the t-uple (t@i →
u@j, ∆τfp(t@i, u@j), σmax) where σmax is the maximum duration coefficient such that the
transfer is feasible.

Note that the obtained transfer set is a correct transfer set. However, as explained, the
query times would be impacted by the unnecessary transfers. We will hence consider both
the line-based and the arrival time-based prunings and explain how to modify them to take
into account a customizable transfer speed and maximum transfer duration.

3.2.1 Pruning based on lines
The line-based pruning is based on a dominance relation between transfers. Since we want
to customize the maximum transfer duration, a transfer (t@i → u@j, ∆τ, σmax) cannot be
dominated by a transfer (t@i → v@j, ∆τ ′, σ′

max) such that ∆τ ′ > ∆τ . Indeed, the second
transfer could be forbidden by the custom maximum transfer duration, while the first is
not. Similarly, as σmax is the maximum duration coefficient such that the first transfer is
feasible, if σ′

max < σmax, the second transfer cannot dominate the first. We hence obtain the
following dominance relation. A transfer (t@i → u@j, ∆τ, σmax) is dominated by a transfer
(t@i′ → u′@j′, ∆τ ′, σ′

max) if and only if

i ≤ i′ and u′ ≤ u and j′ ≤ j and ∆τ ′ ≤ ∆τ and σmax ≤ σ′
max and

(i < i′ or u′ < u or j′ < j or ∆τ ′ < ∆τ or σmax < σ′
max)

Using this condition, it is possible to prune the transfer set as before. However, it is expected
that the percentage of pruned transfers will be lower, as the dominance condition is stronger
and that preprocessing will be longer, as additional comparisons need to be performed.
Corresponding pseudo-code can be found in appendix in Algorithm 4 describing the modified
preprocessing that builds the search graph arc set.

3.2.2 Pruning based on arrival times
Remember that in the original TB algorithm, a transfer is removed from the set of possible
transfers if previously scanned transfers allow for reaching the same stops at the same or
an earlier time. As the transfers are scanned starting from the end of the origin line, later
transfers are kept in case of identical arrival times. Now, we want to consider the possibility to
disable some transfers at query time according to maximal duration or if speed customization
makes the transfer time too long to reach the destination trip before it leaves. Applying the
same pruning will not be correct, as a transfer can be removed because of previously checked
transfers with longer duration. As a consequence, we consider for each tentative arrival time
at a stop the transfer time and the maximum duration coefficient for which the transfer is
feasible. Also, comparing arrival times is made more difficult by the speed variability. All
arrival times, in this preprocessing, have a speed independent component corresponding to
the arrival time of a trip at one stop of its sequence. Then, when reaching additional stations
by footpaths, the duration is dependent of speed. Obviously, simply comparing the sum of
the two is not correct, as the variable part will be multiplied by a duration coefficient.

ATMOS 2021



15:6 Transfer Customization with the Trip-Based Public Transit Routing Algorithm

We hence label the stops with a bag of t-uples instead of a single value. Each t-uple
indicates arrival time, fixed and variable parts, standard transfer duration and maximum
duration coefficient for the transfer to be feasible. We denote (arrf , arrv, ∆τ, σmax) such a
label, with arrf the fixed arrival time part, arrv the variable arrival time part with standard
speed, ∆τ the standard duration, and σmax the maximum duration coefficient. A transfer is
removed from the set if it doesn’t improve any of the label bags of the reached stops (i.e.
its labels are dominated at each stop). If we compare the labels (arrf , arrv, ∆τ, σmax) and
(arr′

f , arr′
v, ∆τ ′, σ′

max), (arrf , arrv, ∆τ, σmax) is dominated if and only if:
(a) σmax ≤ σ′

max
(b) ∆τ ′ ≤ ∆τ

(c) ∀σ ∈ [ςmin, ςmax], arr′
f + arr′

v × σ ≤ arrf + arrv × σ

Conditions (a) and (b) correspond to classical Pareto dominance between criterion values.
Condition (c) corresponds to arrival time dominance, but must be true for all possible speeds.
It is equivalent to:

∀σ ∈ [ςmin, ςmax],
arr′

f − arrf

σ
≤ arrv − arr′

v (1)

In particular, inequation (1) is true if it is true for the minimum value ςmin that duration
coefficient σ can take, obtaining the following conditions for label dominance:
(a) σmax ≤ σ′

max
(b) ∆τ ′ ≤ ∆τ

(c) arr′
f −arrf

ςmin
≤ arrv − arr′

v

We maintain for each stop a bag of all the non-dominated labels to compare with new
entries. We keep a transfer when it updates at least one label bag.

Note that in the case where possible speeds are only within a small discrete set (for
instance slow, standard, fast), it is possible to save one label bag per stop and speed and
use simpler labels with arrival time (computed for the given speed) and standard transfer
duration (or transfer duration computed for the given speed). Each transfer is feasible for a
subset of the speeds and can hence update label bags for each of those speeds.

Figure 1 Arrival time labels for a given transfer t@i→ t′@j.
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Figure 1 shows some tentative labels for a single transfer between a trip t (above) and a
trip t′ (below). First the stops of −→p (t) are marked with a fixed part equal to the trip arrival
time, and as no transfer is performed, a null variable part and maximum transfer time and
maximum duration coefficient ςmax. After transferring from t to t′, the stops of −→p (t′) are
marked by the arrival time of t′, a null variable arrival time part, standard transfer duration
and maximum duration coefficient from the transfer between t and t′. When performing
transfers from the stops of the trips’ stop sequences to reach additional stops, we do not
know which trips will be taken later. As a consequence, we use ςmax as a bound. A path with
several transfers is feasible for a given duration coefficient only if all its transfers’ maximum
coefficients are higher. Similarly, if a maximum transfer duration value is provided, the
path is feasible only if all the transfer times are bellow the given bound. We hence take the
maximum of the successive transfer durations and the minimum of the maximum transfer
duration coefficient to mark additional stops reached from t′. As in [15], we check also
minimum change times (giving them similar labels and multiplying them by a duration
coefficient when speed varies). Algorithm 1 describes this pruning phase.

3.3 Correctness
To prove that the preprocessing steps build correct transfer sets, we need to prove that for
any value in the Pareto front, there is an optimal solution with this value such that all
its transfers are in the computed transfer set. For each preprocessing step, we prove it by
constructing such a solution from any optimal solution.

▶ Proposition 1. The modified line-based preprocessing (Algorithm 4) computes a correct
set T of transfers for earliest arrival time and minimum number of transfers.

Proof. Consider an optimal solution s for a given duration coefficient σ and a maximum
transfer duration ∆τmax with at least one transfer. It can be described by its trip segment
sequence: s = ⟨t1@j1 → t1@i1, t2@j2 → t2@i2 . . . , tk+1@jk+1 → tk+1@ik+1⟩
with Li the line of the trip ti, for i ∈ {1, . . . , k +1}. Consider the first transfer t1@i1 → t2@j2
of s. If it belongs to the transfer set T (t1, L2) of t1 to L2 obtained at the end of the pruning,
we can move to the next transfer.

Otherwise, if t2 is not in the set T2 of trips of interest of transfer t1@i1 → L2@i2, we
can replace it with a transfer to the maximum trip u of T2 such that u ≤ t2 as it can only
improve arrival time at L2@i2 while keeping the transfer feasible for the same speed range,
including duration coefficient σ.

Now, we suppose that t2 ∈ T2 but that (t1@i1 → t2@j2, ∆τ1, σ1
max) ̸∈ T (t1, L2), which

means that it has been pruned. Since pruned transfers are dominated, there exists a
transfer (t1@i → t@j, ∆τ, σmax) of T (t1, L2) such that i ≥ i1, j ≤ j2, t ≤ t2, ∆τ ≤ ∆τ1 and
σ1

max ≤ σmax. If k > 1, transfer t@i2 → t3@j3 is feasible, since transfer t2@i2 → t3@j3 is
feasible and t ≤ t2. In solution s, we can hence replace t1@j1 → t1@i1 by t1@j1 → t1@i, and
t2@j2 → t2@i2 by t@j → t@i2 to obtain a new solution s′.

As the new solution uses a transfer (t1@i → t@j, ∆τ, σmax) such that ∆τ ≤ ∆τ1 ≤ ∆τmax
and σ ≤ σ1

max ≤ σmax, it is feasible for custom speed and custom maximum transfer time. It
also has an at least as good arrival time as s, and the same number of transfers. They are
hence both optimal with the same value.

Processing the transfers of s one after the other, we iteratively replace all the transfers
that do not belong to the pruned transfer set T by transfers belonging to it. The optimal
solution obtained is equivalent to s while using only transfers of T , which completes the
proof. ◀

ATMOS 2021
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Algorithm 1 Modifications of arrival time based pruning.

Input: Timetable data, footpath data, transfer set T
Input: System maximum duration coefficient ςmax

Output: Reduced transfer set T
for each trip t do

τA(.) ← ∅ ▷ Label bag with earliest arrival time at stops
τC(.) ← ∅ ▷ Label bag with earliest change time at stops
for i← |−→p (t)| − 1, . . . , 1 do

Update τA(t@i) with label (τarr(t, i), 0, 0, ςmax)
Update τC(t@i) with label (τarr(t, i), ∆τfp(t@i, t@i), τfp(t@i, t@i), ςmax)
for each stop q ̸= t@i such that ∆τfp(t@i, q) is defined do

Update τA(q) with label (τarr(t, i), ∆τfp(t@i, q), ∆τfp(t@i, q), ςmax)
Update τC(q) with label (τarr(t, i), ∆τfp(t@i, q), ∆τfp(t@i, q), ςmax)

end for
for each transfer (t@i→ u@j, ∆τ, σmax) ∈ T do

keep← false
for each stop u@k on trip u with k > j do

if (τarr(u, k), 0, ∆τ, σmax) is not dominated in τA(u@k) then
Update τA(u@k) with (τarr(u, k), 0, ∆τ, σmax)
keep← true

end if
labC ← (τarr(u, k), ∆τfp(u@k, u@k), max (∆τ, ∆τfp(u@k, u@k)) , σmax)
if labC is not dominated in τC(u@k) then

Update τC(u@k) with labC

keep← true
end if
for each stop q ̸= u@k such that ∆τfp(u@k, q) is defined do

lab← (τarr(u, k), ∆τfp(u@k, q), max (∆τ, ∆τfp(u@k, q)) , σmax)
if lab is not dominated in τA(q) then

Update τA(q) with lab

keep← true
end if
if lab is not dominated in τC(q) then

Update τC(q) with lab

keep← true
end if

end for
end for
if ¬keep then
T ← T \ {(t@i→ u@j, ∆τ, σmax} ▷ No improvement: remove the transfer

end if
end for

end for
end for
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▶ Proposition 2. The modified arrival time based preprocessing (Algorithm 1) computes a
correct set T of transfers for earliest arrival time and minimum number of transfers.

Proof. Consider again an optimal solution s′ with at least one transfer for an origin stop org,
a target stop tgt, a duration coefficient σ and a maximum transfer duration ∆τmax. We
consider both the cases where line-based pruning is applied to the set of transfers of interest
and where the set of transfers of interest is pruned directly without line-based pruning. From
the proof of Proposition 1, we can construct in both cases another optimal solution s from s′

(possibly equal to s′) such that all its transfers are in the input transfer set given to the
arrival time based pruning as input.

We again describe s by its trip segment sequence, but we add the origin and target stops
at the beginning and the end of the sequence:
s = ⟨org, t1@j1 → t1@i1, t2@j2 → t2@i2 . . . , tk+1@jk+1 → tk+1@ik+1, tgt⟩
with Li the line of the trip ti, for i ∈ {1, . . . , k + 1}.

Suppose that the first transfer (t1@i1 → t2@j2, ∆τ, σmax) of s is not in T . If it is the
last transfer (k = 1), it means that there exists a transfer (t1@i′

1 → t′
2@j′

2, ∆τ ′, σ′
max) of T

such that i′
1 ≥ i1 (as later transfers are scanned first) and target is reachable from t′

2@i′
2 for

an index i′
2 > j′

2 and l′ = (τarr(t′
2, j′

2), ∆τfp(t′
2@j′

2, tgt), max{∆τ ′, ∆τfp(t′
2@j′

2, tgt)}, σ′
max) is

dominating l = (τarr(t2, j2), ∆τfp(t2@j2, tgt), max{∆τ, ∆τfp(t2@j2, tgt)}, σmax) for the arrival
time label bag τA(tgt). As ∆τ ′ ≤ max{∆τ, ∆τfp(t2@j2, tgt)} ≤ ∆τmax and σ ≤ σmax ≤ σ′

max,
this transfer is feasible for custom parameters ∆τmax and σ. Note that target could not be
reached directly from one of the stops of t and arrival time be at least as good as that of s

since s is optimal and has hence the minimum number of trips for its arrival time. The
solution ŝ = ⟨org, t1@j1 → t1@i′

1, t′
2@j′

2 → t′
2@i′

2, tgt⟩ has hence the same arrival time as s

but its transfers belong to T .
Now, consider the case where transfer t1@i1 → t2@j2 is not the last transfer of s. As

transfer (t1@i1 → t2@j2, ∆τ, σmax) has been pruned, there exist a transfer t1@i′
1 → t′

2@j′
2 of T

such that i′
1 ≥ i1, t3@j3 can be reached from the trip segment t′

2@j′
2 → t′

2@i′
2 and the label

l′ = (τarr(t′
2, j′

2), ∆τfp(t′
2@j′

2, t3@j3), max{∆τ ′, ∆τfp(t′
2@j′

2, t3@j3)}, σ′
max) is dominating

l = (τarr(t2, j2), ∆τfp(t2@j2, t3@j3), max{∆τ, ∆τfp(t2@j2, t3@j3)}, σmax) for the change time
label bag τC(t3@j3). As previously, this transfer exists since arriving at t3@j3 directly from t1
at a time at least as good as that of s without performing a transfer would mean that s is not
optimal. The transfer is also feasible for custom parameters ∆τmax and σ. From dominance
condition (c), the change time at t3@j3 is identical or improved for all duration coefficients,
including σ. It will hence be possible to board trip t3 at index j3 after performing the
transfer. We can hence replace t1@i1 → t2@j2 by t1@i′

1 → t′
2@j′

2 in solution s.
Repeating this procedure for the transfers of s in order leads to build a solution ŝ with

the same number of transfers as s, the same arrival time and all its transfers in T . ◀

4 Experiments

To evaluate the computation time performances, we implemented the proposed algorithms in
rust and ran our experiments on a 64 2.7 GHz CPU Intel(R) Xeon(R) CPU E5-4650 server
with 20 M of L3 cache and 504 GB of RAM. We used two large size data sets. The first
covers the Région Île-De-France and is provided by IDFM [8] (Île-De-France Mobilités). The
footpaths are computed with an OSRM [10] monomodal routing server using OSM [9] road
data with a standard speed of 4 kph. To compare the impact of different maximum transfer
times, two footpath sets are generated: one with a maximum of 10 min between two adjacent
stops and one with a maximum of 30 min. The second data set is provided by Naver Map
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Table 1 Data sets.

Data set Nb stops Nb trips Nb lines Nb connections Nb footpaths Nb footpaths
(10 min) (30 min)

IDFM 42.3 K 319.2 K 1.9 K 103.8 M 846.2 K 7.186 M
Korea 180.9 K 446.7 K 31.7 K 241.9 M 4.196 M −

Table 2 Preprocessing for IDFM with maximum 10 min and 30 min transfer time.

IDFM (10 min) IDFM (30 min)
Version # kept # removed Mean # kept # removed Mean

transfers transfers duration (s) transfers transfers duration (s)
Standard 98.1 M 1 314.8 M 44 135.9 M 8 382.9 M 692

Variable speed 153.0 M 1 443.9 M 94 320.0 M 11 786.6 M 1 373
Max. duration 242.9 M 1 353.9 M 1 892 732.8 M 11 374 M 96 616
and var. speed

and contains public transit information for Korea and footpaths those maximum value is 10
min. We illustrate on this one the impact of the arrival time based preprocessing compare to
line-based pruning only. Table 1 gives the respective sizes of the two networks.

To test the proposed algorithms in a standard context, we allow for 3 different speeds
(slow: 2 kph, standard: 4 kph and fast: 6 kph). We hence have ςmax = 2 and ςmin = 2/3. We
compare 3 versions of the code: the standard version without customization, a version with
speed customization and a version with speed and maximum transfer duration customization.

4.1 Preprocessing
As explained, with speed customization, there might be several transfers of interest from
each origin trip-index pair to each reachable line-index pair. The total number of feasible
transfers before pruning is hence increased (see Table 2 and Table 3) and the preprocessing
is more computationally expensive. Enabling the maximum transfer duration constraint also
increases the number of kept transfers as conditions for removal are harder to fulfil. The
final number of transfers for each speed is indicated in appendix (see Table 6 and Table 7).

The preprocessing times for maximum duration and variable speed are considerably
increased compare to the standard version, while variable speed only multiply them by 2.33.
Indeed, label bag updating is much more expensive than taking the minimum between two
arrival times. As we use a straightforward implementation for those label bag updates and
as the number of labels can be large for one stop, the computation times are significantly
impacted for arrival time based pruning. However, they remain in an acceptable range for
public transit data update made every two or three days, which is often the case. On the

Table 3 Preprocessing for Korea with maximum 10 min transfer time.

Line based pruning All prunings
Version nb kept nb removed Mean nb kept nb removed Mean

transfers transfers duration (s) transfers transfers duration (s)
Standard 608.6 M 2192.2 M 89 238.1 M 3 251.9 M 170

Variable speed 1 085.5 M 2773.9 M 116 463.8 M 4 106.3 M 490
Max. duration 1 520.1 M 2.339.2 M 140 658.1 M 3 912.1 M 14 773
and var. speed
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other hand, line-based pruning is less impacted in terms of computation times since less
transfers are compared at once (only those to the same line) and the (c) condition of arrival
time based pruning is not necessary. It can hence be considered as an alternative when more
frequent updates are needed, at the price of slower query times.

4.2 Query phase

For each data set, we generated uniformly at random 100 origin-destination pairs from stop
to stop. We run earliest arrival time queries and one-hour profile queries starting at 8.30 am
(rush hour is the densest in term of number of trips and transfers).

Table 4 presents the mean execution times and number of solutions for EAT queries
with the different versions of the algorithm given a selected speed. As expected, using
appropriate transfer structure with speed mask, the execution times are not much impacted
by the existence of several speeds instead of one. They are increased compare to that of the
standard code without any modifications as the number of transfers is larger, but not much.
Remember that to divide by 3 the execution time, the number of transfers removed is 9
out of 10 in the standard version [15]. Here when the number of transfers is multiplied by
2.35 for IDFM 30 min, the mean query duration is multiplied by 1.49 compared to standard
version while it includes additional transfer checking. The query times of the different speed
values are similar.

When adding the possibility to set maximum transfer duration (see Table 5), the number
of transfers is multiplied by 5.39 for IDFM 30 min and the computation times are multiplied
by 2.04 for standard speed compare to standard version. Different values of maximum
transfer time hardly impact the query times with only a few milliseconds difference between
20 min, 10 min, 5 min and no restriction.

The results are similar for the other two networks and we can conclude that although
the modification does increase the query times, those remain sufficiently low for interactive
queries in a production application, with at most half a second of execution time for the
Korean network.

Numerical results for profile queries can be found in appendix in Tables 8 and 9, and are
similar to that of EAT queries.

5 Conclusion

In this article, we extend the Trip-Based Public Transit Routing algorithm, to take into
account at query time user defined transfer speed and maximum transfer duration, while
keeping the optimality for the bicriteria problem of optimizing minimum arrival time and
number of transfers. The tests on two large scale data sets show that the preprocessing steps
are significantly slower, but the query times are much less increased and still compatible
with real-time queries in a production context. Many other algorithms of the literature rely
on preprocessing steps using fixed sets of transfers of immutable duration. It would hence
be interesting to design similar extensions for those algorithms, in particular for the ones
relying on unbounded transfer duration, where transfers in an optimal solution can be very
long without customization.
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Table 4 EAT queries at 8.30 am.

Data set Version Speed Mean query Mean nb
time (ms) solutions

IDFM 30 min Standard - 75 1.86
IDFM 30 min Variable speed Standard 112 1.86
IDFM 30 min Variable speed Slow 108 1.76
IDFM 30 min Variable speed Fast 108 2.03
IDFM 30 min Max. duration - var. speed Standard 153 1.86
IDFM 30 min Max. duration - var. speed Slow 134 1.76
IDFM 30 min Max. duration - var. speed Fast 130 2.03

IDFM 10 min Standard - 91 1.71
IDFM 10 min Variable speed Standard 98 1.71
IDFM 10 min Variable speed Slow 94 1.72
IDFM 10 min Variable speed Fast 100 1.76
IDFM 10 min Max. duration - var. speed Standard 117 1.71
IDFM 10 min Max. duration - var. speed Slow 108 1.72
IDFM 10 min Max. duration - var. speed Fast 107 1.76

Korea Standard - 316 2.00
Korea Variable speed Standard 418 2.00
Korea Variable speed Slow 356 1.93
Korea Variable speed Fast 374 2.12
Korea Max. duration - var. speed Standard 583 2.00
Korea Max. duration - var. speed Slow 531 1.93
Korea Max. duration - var. speed Fast 543 2.12

Table 5 EAT queries at with user defined maximum transfer time and speed customization,
standard speed.

Data set Max transfer Mean query Mean nb
time (min) time (ms) solutions

IDFM 30 min - 153 1.86
IDFM 30 min 20 150 1.83
IDFM 30 min 10 158 1.87
IDFM 30 min 5 155 2.02
IDFM 10 min - 145 1.71
IDFM 10 min 5 150 1.96

Korea - 565 2.00
Korea 5 538 1.97
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A Algorithms

Algorithm 2 Earliest arrival query.
input Timetable data, transfer set T
input Source stop psrc, destination stop ptgt, start time τ

input Maximum transfer duration ∆τmax, transfer duration coefficient σ

output Result set J

J ← ∅, L ← ∅
Qn ← ∅ for n = 0, 1, . . .

R(.)←∞ for all trips t

INITIALIZATION()
τmin ←∞ ▷ The current minimum arrival time at target
n← 0
while Qn ̸= ∅ do

for each t@b→ t@e ∈ Qn do
▷ Checking if a target is reached

for each (Lt, i, ∆τ) ∈ L with b < i and τarr(t, i) + ∆τ < τmin do
τmin ← τarr(t, i) + ∆τ

J ← J ∪ {(τmin, n)}, removing dominated entries
end for

if τarr(t, b + 1) < τmin then ▷ Filling the queue for the next round
for each transfer (t@i→ u@j, ∆τ, σmax) ∈ T with b < i ≤ e and

σ ×∆τ ≤ ∆τmax and σ ≤ σmax do
ENQUEUE(u, j, n + 1)

end for
end if

end for
n← n + 1

end while

Algorithm 3 Auxiliary procedures.
procedure INITIALIZATION

for each stop q such that ∆τfp(q, ptgt is defined do
∆τ ← 0 if ptgt = q, else ∆τ = σ ×∆τfp(q, ptgt)
for each (L, i) ∈ L(q) do
L ← L ∪ {(L, i, ∆τ}

end for
end for

for each stop q such that ∆τfp(psrc, q) is defined do
∆τ = 0 if psrc = q, else ∆τ = σ ×∆τfp(psrc, q)
for each (L, i) ∈ L(q) do

t← earliest trip of L such that τ + ∆τ ≤ τdep(t, i)
ENQUEUE(t, i, 0)

end for
end for

end procedure
procedure ENQUEUE(trip t, index i, nb transfers n)

if i < R(t) then
Qn ← Qn ∪ {t@i→ t@R(t)}
for each trip u with t ≤ u and Lt = Lu do

R(u)← min(R(u), i)
end for

end if
end procedure
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Algorithm 4 Modification of transfer set building.

Input: Timetable data, footpath data
Input: Maximum and minimum transfer duration coefficients ςmax and ςmin

Output: Reduced transfer set T
T ← ∅
for each line L do
T (L)← LINE_T RANSF ERS(L)
for each trip t of L do

T ← ∅ ▷ Transfer set for each target line
Lprev ← null
for each transfer (i, L′@j, ∆τ) of T (L) do

if Lprev ̸= L′ then
T ← T ∪ T

T ← ∅, Lprev = L′

end if
t′
min ← earliest trip of L′ at j such that τdep(t′

min, j) ≥ τarr(t, i) + ∆τ × ςmin

t′
max ← earliest trip of L′ at j such that τdep(t′

max, j) ≥ τarr(t, i) + ∆τ × ςmax

Labs← ∅
for each trip t′, t′

min ≤ t′ ≤ t′
max do

σmax ← maximum value σ ≤ ςmax such that τdep(t′, j) ≥ τarr(t, i) + ∆τ × σ

Labs← Labs ∪ {(t@i→ t′@j, ∆τ, σmax)}
end for
if T = ∅ then

T (L′)← Labs

else
for each lab ∈ Labs do

if lab is not dominated by an element of T then
Update T with lab

end if
end for

end if
end for
T ← T ∪ T

end for
end for
return T

procedure LINE_TRANSFERS(line L, footpath data) ▷ Builds the line neighbourhood
for i← |−→p (L)| − 1, . . . , 1 do

for each stop q such that ∆τfp(L@i, q) is defined do
for each (L′, j) such that q = L′@j do
T ← T ∪ (i, L′@j, ∆τfp(L@i, L′@j))

end for
end for

end for
Sort T first by target line, then by decreasing origin line index, then by increasing target line

index, then by chosen sorting in case of tides
return T

end procedure
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B Experiments

Tables 6 and 7 describe the number of transfers for each speed level for speed customization
only and for maximum transfer duration and speed customization. We can observe that the
number of transfers are similar for each speed in all configurations.

Table 6 Preprocessing for IDFM with maximum 10 min and 30 min transfer time - Number of
transfers for each speed level in millions.

IDFM (10 min) IDFM (30 min)
Version Fast Standard Slow Fast Standard Slow

Variable speed 126.6 114.5 99.5 623.2 639.6 699.0
Max. duration and var. speed 209.4 196.9 179.0 2 364.9 2 328.5 2 268.4

Table 7 Preprocessing for Korea with maximum 10 min transfer time - Number of transfers for
each speed level in millions.

Line based pruning All prunings
Version Fast Standard Slow Fast Standard Slow

Variable speed 608.7 631.6 678.9 379.8 324.8 248.1
Max duration and variable speed 1 126.0 1 107.5 1 067.2 548.4 486.7 392.0

Tables 8 and 9 describe the performances of profile queries.

Table 8 One-hour profile queries at 8.30 am with user defined speed.

Data set Version Speed Mean query Mean nb
time (ms) solutions

IDFM 30 min Standard - 125 5.26
IDFM 30 min Variable speed Standard 202 5.26
IDFM 30 min Variable speed Slow 210 4.91
IDFM 30 min Variable speed Fast 155 5.6
IDFM 30 min Max. duration - var. speed Standard 347 5.26
IDFM 30 min Max. duration - var. speed Slow 229 4.91
IDFM 30 min Max. duration - var. speed Fast 237 5.6

IDFM 10 min Standard - 139 2.1
IDFM 10 min Variable speed Standard 146 2.1
IDFM 10 min Variable speed Slow 118 2.04
IDFM 10 min Variable speed Fast 126 2.28
IDFM 10 min Max. duration - var. speed Standard 144 2.1
IDFM 10 min Max. duration - var. speed Slow 137 2.04
IDFM 10 min Max. duration - var. speed Fast 126 2.28

Korea Standard - 586 3.96
Korea Variable speed Standard 698 3.96
Korea Variable speed Slow 672 3.83
Korea Variable speed Fast 682 4.25
Korea Max. duration - var. speed Standard 976 3.96
Korea Max. duration - var. speed Slow 941 3.83
Korea Max. duration - var. speed Fast 950 4.25
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Table 9 One-hour profile queries at 8.30 am with user defined maximum transfer time and speed.

Data set Speed Max transfer Mean query Mean nb
time (min) time (ms) solutions

IDFM 30 min Standard - 125 5.26
IDFM 30 min Standard 20 347 5.26
IDFM 30 min Standard 10 250 5.15
IDFM 30 min Standard 5 262 5.33
IDFM 10 min Standard - 140 2.1
IDFM 10 min Standard 5 136 2.14

Korea Standard - 976 3.96
Korea Standard 5 989 3.9
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