
Wolfgang Gcntzsch, Wolfgang J. Paul (editors)

Architecture and Performance

Dagstuhl-Seminar-Report; 1
18.6.1990 - 21.6.1990 (9025)

Wolfgang Gentzsch, Wolfgang J. Paul (editors)

Architecture and Performance

Dagstuhl-Seminar-Report; 1
18.6.1990 - 21.6.1990 (9025)

Copyright © 1991 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadem, Germany
Te1.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das IBFI (Intemationales Begegnungs- und Forschungszentrum für Informatik) ist eine gemeinnützige
GmbH. Sie veranstaltet regehnäßig wissenschaftliche Seminare,welche nach Antrag der Tagungslciter
und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen
durchgeführt werden. �

Verantwortlich für das Programm:
Prof. Dr.-Ing. José Encamacao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,

Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes,

Universität Kaiserslautem,
Universität Karlsruhe,
Gesellschaft für Informatik e.V.� Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes

W - 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397

e-mail: dagstuhl@dag.uni-sb.de

Copyright© 1991 by lBFI GmbH, SchloB Dagstuhl, W-6648 Wadem, Gennany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das IBFI (lntemationales Begegnungs- und Forschungszentrum fiir lnfonnatik) ist eine gemcinntitzigc
GmbH. Sie veranstaltet regelmlillig wissenschaftliche Seminare,welche nach Antrag der Tagungslciter
und Begutachtung durch das wissenschaftliche Direktorium mit pers6nlich eingeladenen Glisten
durchgefiihrt werden.

Verantwortlich fiir das Programm:

Gescllschafter:

Trager:

Bezugsadresse:

Prof. Dr.-Ing. Jose Encama~ao,
Prof. Dr. Winfried G6rke,
Prof. Dr. Theo Hlirder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Universitat des Saarlandes,
Universitat Kaiserslautem,
Universitat Karlsruhe,
Gesellschaft fur Infonnatik e.V., Bonn

Die BundesHinder Saarland und Rheinland Pfalz.

Geschliftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
W - 6600 Saarbtiicken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: dagstuhl@dag.uni-sb.de

Workshop on Architecture and Performance

Organizers: W. Gentzsch and W. J. Paul

A good computer architecture delivers high performance at reasonable price. The �eld of
computer architecture provides many techniques for constructing computers in order to
achieve this goal. But computer architects rarely make their model of price and workload
explicit; in case their performance �gures come from simulations or measurements and not
from analytical proofs.
Explicit models of workload are contructed in the �eld of benchmarking. Sophisticated me-
thods to analyze the runtime even of very involved algorithms exist in the �eld of theoretical
computer sience.

The organizers felt that insights into the effects of architectural changes on performance
and into benchmarking could be gained, if the models of workload were explicit and if
certain performance �gures could be obtained in an analytical way. Therefore scientists
from the following three �elds had been invited: architecture, benchmarking and analysis
of algorithms.
This meeting was supposed to be the very �rst meeting to be held in the newly opened
research institute IBFI in Dagstuhl, beautifully located in the middle of nowhere in the
northern Saar country. Because of delays in the renovation of the building in Dagstuhl, the
meeting had to be moved to a resort Hotel nearby. Funding was provided mostly by the
IBFI institute. Additional funds came from IBM.

The remote location and the apparently (but not really) absent organization of the meeting
in the style of Oberwolfach was a new experience for some participants but everyone quickly
learned to enjoy this.
The meeting was held in a relaxed atmosphere with plenty of time after talks. This time
was �lled with extraordinarily lively discussions, which went across the boundaries of the
three invited fractions. Stimulating this discussion was of cource the main purpose of the
meeting.
The organizers would like to express their thanks to everybody who helped to contribute
to the success of this meeting.

Workshop on Architecture and P e rformance

Organizers: W. Gentzsch and W. J. Paul

A good computer architecture delivers high performance at reasonable price. The field of
computer architecture provides many techniques for constructing computers in order to
achieve this goal. But computer architects rarely make their model of price and workload
explicit ; in case their performance figures come from simulations or measurements and not
from analytical proofs.
Explicit models of workload are contructed in the field of benchmarking. Sophisticated me
thods to analyze the runtime even of very involved algorithms exist in the field of theoretical
computer sience.
The organizers felt that insights into the effects of architectural changes on performance
and into benchmarking could be gained, if the models of workload were explicit and if
certain performance figures could be obtained in an analytical way. Therefore scientists
from the following three fields had been invited: architecture, b enchmarking and analysis
of algorithms.
This meeting was supposed to be the very first meeting to be held in the newly opened
research institute IBFI in Dagstuhl, beautifully located in the middle of nowhere in the
northern Saar country. Because of delays in the renovation of the building in Dagstuhl, the
meeting had to be moved to a resort Hotel nearby. Funding was provided mostly by the
IBFI institute. Additional funds came from IBM.
The remote location and the apparently (but not really) absent organization of the meeting
in the style of Oberwolfach was a new experience for some participants but everyone quickly
learned to enjoy this.
The meeting was held in a relaxed atmosphere with plenty of time after talks. This time
was filled with extraordinarily lively discussions, which went across the boundaries of the
three invited fractions. Stimulating this discussion was of cource the main purpose of the
meeting.
The organizers would like to express their thanks to everybody who helped to contribute
to the success of this meeting.

1

Monday, 18 June 1990

W. J. Paul: Welcome and Introduction

W. Gentzsch: Overview of Benchmarks and Related Problems

R. Weicker: A Detailed Look into the �Stone Age�: Dhrystone, Whetstone,
�Lhinstone�

N. Doduc: SSBA, SPEC, PERFECT
W. Schönauer: Micro�Measurements of Supercomputers
A. Bode: Performance Measurements for Parallel Systems with Dynamic

Load Balancing

Tuesday, 20 June 1990

A. v.d.Steen: Structure of the European Standard Benchmark
D. Schmidt: E�iciency Considerations on CPU Architectures
A. Formella: Performance, E�iciency and Quality of Vectorprocessors
R. Klar: Architectural Requirements for Efficient Monitoring
R. Hockney: Benchmark Parameters and Measurements

Wednesday, 21 June 1990

D. Müller-Wichards: Problem Size Scaling in the Presence of
n Parallel Overhead

H. Mierendorf: Performance Modelling of Grid�Oriented Problems on

Message Passing Systems
O. Kolp: Performance Evaluations for Parallel Systems

� A Workload Analysis
F. Meier auf der Heide: Shared Memory Emulations and Distributed Dictionaries
J. Cuellar: Lock Performance

Monday, 18 June 1990

W. J. Paul:
W. Gentzsch:
R. Weicker:

N. Doduc:
W. Schonauer:
A. Bode:

Welcome and Introduction
Overview of Benchmarks and Related Problems
A Detailed Look into the 'Stone Age': Dhrystone, Whetstone,
'Lhinstone'
SSBA,SPEC,PERFECT
Micro- Measurements of Supercomputers
Performance Measurements for Parallel Systems with Dynamic
Load Balancing

Tuesday, 20 June 1990

A. v.d.Steen:
D. Schmidt:
A. Formella:
R. Klar:
R . Hockney:

Structure of the European Standard Benchmark
Efficiency Considerations on CPU Architectures
Performance, Efficiency and Quality of Vectorprocessors
Architectural Requirements for Efficient Monitoring
Benchmark Parameters and Measurements

Wednesday, 21 June 1990

D. Mi.iller-Wichards:

H. Mierendorf:

0. Kolp:

F. Meier auf der Heide:
J. Cuellar:

Problem Size Scaling in the Presence of
Parallel Overhead
Performance Modelling of Grid-Oriented Problems on
Message Passing Systems
Performance Evaluations for Parallel Systems
- A Workload Analysis
Shared Memory Emulations and Distributed Dictionaries
Lock Performance

2

Benchmarks and Related Problems

Wolfgang Gentzsch
FH Regensburg and GENIAS Software GmbH

Roentgenstr. 13
D�8402 N eutraubling

This presentation consists mainly of two parts: In the �rst part we give an overview of '
existing benchmarks to evaluate the performance of various computers, among them'the
Whetstone and Dhrystone, the program kernels from Lawrence Livermore, Los Alamos and
NASA Laboratories, Linpack, SPEC and Perfect, ACCU and SSBA, and the GPC graphics

benchmark.
The second part of the talk deals with the main problems arising with benchmarking and
resulting from computer architectures, compilers and algorithms. Benchmarking detects
the bottlenecks of the machine under consideration, such as memory bank con�icts, paths
to memory cache misses, bus saturation, small register size, long start�up time, task crea-
tion, message passing overhead, memory contention and others. Problems with the soft-
ware/ algorithms are e. g. Amdahl�s law, data dependencies, non-contigues data, memory
access pattern, rate of �ops / memory references, load balancing, synchronization and com-
munication overhead, etc.
Finally, selected benchmark results for super� and mini-supercomputers are discussed.

A Detailed Look into the �Stone Age�
(An Overview of Common Benchmarks)

Reinhold Weiker

Siemens AG AUT E 51

Postfach 3220

D�852O Erlangen

The three most often used benchmarks for processors performance are analyzed in detail,
and comparative tables of language features are given:

0 Whetstone: Floating-point benchmark with heavy emphasis on mathematical li-
brary subroutines, high locality (short loops), mostly global variables.

o Linpack: Floating�point benchmark spending most of its time in a vector
add / multiply subroutine, very high code locality, data locality depending on the array
size.

0 Dhrystone: Integer benchmark modeling system programs, string operations some-
what overrepresented, balanced data types and locality.

All three benchmarks are too small to model memory access behaviour in the presence of
caches, and compiler writers can be tempted to twist their compilers towards these bench-
marks. More recent benchmarks suites, most notably the SPEC benchmarks, try to avoid
these problems. N on-CPU influences on benchmark performance are discussed: Program-
ming language, compiler optimization, runtime library, cache size. For 32-bit microproces-
sors, benchmark results obtained with the tree small benchmarks, and where available, with -
the SPEC benchmarks are presented and discussed.

Benchmarks and Related Problems
Wolfgang Gentzsch

FH Regensburg a.nd GENIAS Software GmbH
Roentgenstr. 13

D-8402 Neutra.ubling

This presentation consists mainly of two parts: In the first part we give an overview of
existing benchmarks to eva.lua.te the performance of various computers, among them · the
Whetstone a.nd Dhrystone, the program kernels from Lawrence Livermore, Los Alamos and
NASA Laboratories, Linpack, SPEC and Perfect, ACCU a.nd SSBA, a.nd the GP C graphics
benchmark.
The second pa.rt of the talk deals with the main problems arising with benchmarking and
resulting from computer architectures, compilers a.nd algorithms. Benchmarking detects
the bottlenecks of the machine under consideration, such as memory bank conflicts, paths
to memory cache misses, bus saturation, small register size, long start-up time, task crea
tion, message passing overhead, memory contention and others. Problems with t he sbft

ware/ algorithms are e. g. Amdahl's law, data dependencies, non- contigues data, memory
access pattern, rate of flops/memory references, load balancing, synchronization and com
munication overhead, etc.
Finally, selected benchmark results for super- and mini- supercomputers are dfacussed.

A D etailed Look into the 'Stone Age'
(An Overview of Comn1on Benchmarks)

Reinhold Weiker
Siemens AG AUT E 51

Postfach 3220
D-8520 Erlangen

The three most often used benchmarks for processors performance are a.na.lyzed in detail,
and comparative tables of language features a.re given:

• W hetstone: Floating- point benchmark with hea.vy emphasis on mathematical li
brary subroutines, high locality (short loops), mostly global va.ria.bles.

• Linpack : Floating- point benchmark spending most of its time in a. ve_ctor
add/ multiply subroutine, very high code locality, data locality depending on the array
s1.ze.

• Dhrystone: Integer benchmark modeling system programs, string operations some-
what overrepresented, balanced data types and locality.

All three benchmarks a.re too small to model memory access behaviour in the presence of
caches, and compiler writers can be tempted to twist their compilers towards these bench
marks. More recent benchmarks suites, most notably the SP EC benchmarks, try to a.void
these problems. Non- CP U influences on benchmark performance a.re discussed: Program
ming language, compiler optimization, runtime library, cache size. For 32- bit microproces
sors, benchmark results obtained with t he tree sma.ll benchmarks, and where a.vaila.ble, with
the SPEC benchmarks are presented a.nd discussed.

3

Micro�measurements of Supercomputers
Willi Schonauer, Hartmut Häfner

Rechenzentrum der Universität Karlsruhe

Postfach 6980

D-7500 Karlsruhe 1

We are interested in the �lost cycles� of supercomputers. They explain the often very poor
performance (compared to the theoretical peak performance). We measured the IBM 3090
VF (Vector Facility) for the addition with stride 1, stride lc 2 3, with gather/scatter and
under mask. There are signi�cant differences for data in cache and in main storage. Only
the �micro model� makes visible all sources of the losses. The �full model� compresses the
information. The �mean model� then replaces the step functions by an interpolating linear
function. The parameters in�uencing the operation are visible. We de�ne a �waste factor�
W : r¬fj,,,,�,,,/T the ratio of effective mean and hardware cycle time. The reciprocal is
the �architectural efficiency� 17,, = 1 / W. The most important operation is the vector triad
a, = b, + c," a: d,~. For this operation we obtain -na = 0.147 for all data in main storage. Then
measurements of the Siemens/ Fujitsu VP 4000�EX are presented in a similar way. This is
work in progress and therefore only provisional data is presented. In contrast to benchmarks
the micro-�measurements make visible the sources of the bottlenecks and losses. Such losses

can be avoided only by increased internal parallelism in the computer, i. e. by a better
architecture. As long as 17a < 1 programming of super computers is mere �bottleneckology�.

Performance Measurement for Load Balancing Strategies
in Multiprocessor Systems

Arndt Bode

Lehrstuhl für Rechnertechnik und Rechnerorganisation
Institut für Informatik

Technische Universität München

Postfach 20 24 20, Arcisstr. 21

D�8000 München 2, FRG

The paper presents performance measureinent with different monitoring techniques (soft-
ware monitoring, hardware monitoring, hybrid monitoring, simulation) in multiprocessor
systems to be used in three areas of interest:

o Use of collected runtime data for interactive development tools (debugger, perfor-
mance analyzer, visualizer) and manual performance debugging.

0 Use of collected runtime data for a dynamic load balancing mechanism.

0 Use for information collected when monitoring multiprocessor architectures and when
implementing monitoring tools to enhance the design of components, architecture and
basic software of parallel systems that will support runtime monitoring.

Scalable multiprocessor systems will only be successful, if they can be used in the sense of an
universally programmable general purpose machine. This implies the virtualization of con-
currency in hardware. Several schemes for virtualization, including virtual shared memory

Micro- 1neasurements of Supercomputers
Willi Schonauer, Hartmut Hafner

Rechenzentrum der Universita.t Karlsruhe
Postfa.ch 6980

D- 7500 Karlsruhe 1

We are interested in the 'lost cycles ' of supercomputers. They explain the often very poor
performance (compared to the theoretical peak performance). We measured the IBM 3090
VF (Vector Facility) for the addition with stride 1, stride k ~ 3, with ga.ther/sca.tter and
under mask. There are significant differences for data in cache and in ma.in storage. Only
the 'micro model' makes visible all sources of the losses . The 'full model' compresses the
information. The 'mean model' then replaces the step functions by a.n interpolating linear
function. The para.meters influencing the operation a.re visible. We define a 'waste factor '
W = Te/ /,mean.IT the ratio of effective mean and hardware cycle time. The reciprocal is
the 'architectural efficiency' T/a = 1/W. The most important operation is the vector t-riad
a , = b, + Ci * d, . For this operation we obtain T/a = 0.147 for a.11 <la.ta in ma.in storage. Then
measurements of the Siemens/Fujitsu VP 4000-EX are presented in a similar way. This is
work in progress and therefore only provisional data is presented. In contrast to benchmarks
the micro- measurements make visible the sources of the bottlenecks and losses. Such losses
can be avoided only by increased internal parallelism in the computer, i . e. by a better
architecture. As long as 7Jo. < 1 programming of super computers is mere 'bottleneckology'.

Perfonnance Measure1nent for Load Balancing Strategies
in Multiprocessor Systems

Arndt Bode
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation

lnstitut fiir lnformatik
Technische U niversita.t M iinchen
Postfach 20 24 20, Arcisstr. 21

D- 8000 Mi.inchen 2, FRG

The paper presents performance measurement with different monitoring techniques (soft
ware monitoring, hardware monitoring, hybrid monitoring, simulation) in multiproce~sor
systems to be used in three areas of interest:

• Use of collected runtime data. for interactive development tools (debugger, perfor
mance analyzer, visualizer) and manual performance debugging.

• Use of collected runtime data for a dynamic load balancing mechanism.

• Use for information collected when monitoring multiprocessor architectures and when
implementing monitoring tools to enhance the design of components, architecture and
basic software of parallel systems that will support runtime monitoring.

Scalable multiprocessor systems will only be successful , if they can be used in the sense of an
universally programmable general purpose machine. This implies the virtualization of con
currency in hardware. Several schemes for virtua.lization, including virtual shared memory

4

and dynamic load balancing have been proposed for this purpose. Future microprocessor
components (e. g. iWarp or Inmos H1) will support virtually completely interconnected
systems by offering communication processors with line switching procedures on the same
integrated circuit as the processor. -
The paper presents TOPSYS (TOols for Parallel SYStems), an integrated and hierarchical
tool environment for multiprocessor systems, that will be support all of the above features.
TOPSYS has been implemented on an iPSC and iPSC / 2 multiprocessor system. It is based
on hardware, software and hybrid monitoring techniques. A number of tools have been
implemented for manual performance debugging such as visualizers, performance analyzers,
debuggers, synthetic load generators etc. An operating system MMK, offering a virtual
common object space has been implemented on these machines. A progress migration
component migrating processes on a demand based strategy has been implemented. The
system moduls to evaluate runtime data for the purpose of deciding upon process migration
and different algorithms for process migration are currently being in development. Analogies
to operating system with load balancing for distributed systems are reviewed. First results
on the overhead incurred when virtualizing parallel architectures are presented.

The Structure of the European Standard Benchmark
Aad J. van der Steen

Academic Computing Center Utrecht
Budapestlan 6

NL�3584 CD Utrecht

The European Standard Benchmark is a synthetic benchmark set which is aimed at the
performance evaluation of (super)computers for scienti�c computation. We give the natio-
nale for the structure of this benchmark. It constist of modules which contain programs of
increasing complexity in such a way that the results obtained from programs in the lower
moduls help to explain the outcomes of programs in higher modules. The complexity of
the programs range from simple operations in module 1 to full application programs in
module 4. By running this benchmark, it is hoped that enough insight in the character of
a machine is obtained that general statements about its performance on general scienti�c
programs can be done. Apart from discussing the structure we also present examples of
recently obtained results.

Efficiency Considerations on CPU-Architectures
Dietmar Schmidt

Lehrstuhl Prof. Paul, Rechnerarchitektur und Parallele Rechner
Universität des Saarlandes

D-6600 Saarbrücken

Given a computer A, one is interested in evaluating and comparing it to other computers.
From the architect�s point of view, it is not interesting to know that Computer A is faster
or cheaper than computer B. If B was implemented in the same technology as A, it could be
as fast or cheap as A. To evaluate the architecture you need another time�cost model. We
reduce the problem by considering CPU-architectures. The hardware of such architectures

and dynamic load balancing have been proposed for this purpose. Future microprocessor
components (e. g. iWarp or Inmos Hl) will support virtually completely interconnected
systems by offering communication processors with line switching procedures on t he same
integrated circuit as the processor.
The paper presents TOP SYS (T Ools for Parallel SYStems), an integrated and hierarchical
tool environment for multiprocessor systems, that will be support all of t he above features.
TOPSYS has been implemented on an iPSC and iPSC/ 2 multiprocessor syst em. It is based
on hardware, software and hybrid monitoring techniques. A number of tools have been
implemented for manual performance debugging such as visualizers, performance analyzers,
debuggers, synthetic load generators etc. An operating system MMK, offering a virtual
common object space has been implemented on these machines. A progress migration
component migrating processes on a demand based strategy has been implemented. The
system moduls to evaluate runtime data for the purpose of deciding upon process migration
and different algorithms for process migration are currently being in development. Analogies
to operating system with load balancing for distributed systems are reviewed. First results
on the overhead incurred when virtualizing parallel architectures are presented.

The Structure of the European Standard B e nchmark
Aad J. van der Steen

Academic Computing Center Utrecht
Budapest.Ian 6

NL-3584 CD Utrecht

The European Standard Benchmark is a synthetic benchmark set which is aimed a t the
performance evaluation of (super)computers for scientific computation. We give the natio
n ale for the structure of this benchmark. It constist of modules which contain programs of
increasing complexity in such a way that the results obtained from programs in the lower
moduls help t..:i explain the outcomes of programs in higher mo dules . T he complexity of
the programs range from simple operations in module 1 to full application programs in
module 4. By running t his benchmark, it is hoped that enough insight in the character of
a machine is obtained that general statements about its performance on general scientific
programs can be done. Apart from discussing the structure we also present exam ples of
recently obtained result s.

Efficiency Considerations on CPU-Architectures
Diet.mar Schmidt

Lehrstuhl Prof. Paul, Rechnerarchitekt ur und Parallele Rechner
U niversitat des Saarlandes

D-6600 Saarbriicken

Given a compu ter A, one is interested in evaluating and comparing it to other compuiers.
From t he architect's point of view, it is not interesting to know that Computer A is faster
or cheaper than computer B. If B was implemented in t he same t echnology as A, it could be
as fast or cheap as A. To evaluate t he architecture you need another time-cost mo del. We
reduce the problem by considering CP U- architectures. The hardware of such architectures

5

may be modelled by switching circuits and evalua.ted by analyzing place and propagation
delays of that circuits. We consider the compiler as a part of an architecture. Our aim is
to say for example: Under certain technology parameters T and workload W the VAX�11
architecture is better or worse than the lBM�3T0 one.

Performance, Efficiency and Quality of Vectorprocessors
Arno Formella

Lehrstuhl Prof. Paul, Rechnerarchitektur und Parallele Rechner
Universität des Saarlandes

D�6600 Saarbrücken

Vectorprocessors are used to achieve high performance solving numerical problems. Per-
formance is measured in MFlop/s (Million Floating Point Operations per Second) on the
implemented algorithm. Given two different architectures (e.g. CRAY I or SPARK 2.0) how
can you decide which one is more efficient (in any sense) ?
We introduce a formal model trying to answer this question. The model takes the techno-
logie and the workload as parameters, so comparisons of architectures can be made. An
architecture is discribed by its hardware, its machine language, the used compiler and the
high level language. The quality (time�depending�-cost�function) is de�ned as the quotient
of performance and costs. The performance is modelled by implementing the �livermore
loops� in VeCtO1�PASCAL and measuring the computing time in gate delays. The costs are
obtained by counting the gate equivalents of the hardware. '
Some �rst results of the theory are presented, e. g. the optimal register �le length for SPARK
2.0 and CRAY I. Further questions are formulated, especially such questions concerning
modi�cations (improvements) of real architectures.

Architectural Requirements for Efficient Monitoring
Rainer Klar

Institut für Mathematische Maschinen und Datenverarbeitung VII
Universität Erlangen

Martensstr. 3

D�8520 Erlangen

As a result of long term experience in monitoring the advantages and drawbacks of hardware,
software and hybrid monitoring are presented and the relevance of event�driven monitoring
is described. Event�driven monitoring provides more than just one performance index. It
helps to understand the how and why of the dynamic behaviour. A short introduction
of the distributed hardware and hybrid monitor system ZM4 shows how applying hybrid
monitoring to many distributed objects computers or to large parallel systems can lead to a
comprehensive, intelligible and quantifying view. The method is recording event tokens from
each processor in a local event trace adding a globally valid time stamp to each recorded
event token. Eventually all local event traces are merged to a global event trace. The
ZM4 evaluation environmemt SIMPLE provides a set of tools for comfortable evaluation of
measured traces based on source level identi�ers. SIMPLE is independent of the monitor

system and evaluates arbitrarily formatted event traces.

may be modelled by switching circuits and evaluated by analyzing place and propagation
delays of that circuits. We consider the compiler as a part. of an architecture. Our aim is
t.o say for example: Under certain technology parameters T and workload W the VAX- 11
architecture is better or worse than the 1BM-3TO one.

Performance, Efficiency and Quality of Vectorprocessors
Arno Formella

Lehrstuhl Prof. Paul, Rechnerarchitektur und Parallele Rechner
Universita.t des Saarlandes

D-6600 Saarbriicken

Vectorprocessors are used to achieve high performance solving numerical problems. P er
formance is measured in MF lop/ s (Million Floating Point Operations per Second) on the
implemented a.lgorithm. Given two different architectures (e.g. CRAY I or SPARK 2.0) how
can you decide which one is more efficient (in any sense) ?
We introduce a formal model trying to answer this question. The model takes the techno
logie and the workload as parameters, so comparisons of architectures can be made. An
architecture is discribed by its hardware, its machine language, the used compiler and the
high level language. The quality (time-depending-cost-function) is defined as the quotient
of performance and costs. The performance is modelled by implementing the 'livermore
loops' in VectorPASCAL and measuring the computing time in gate delays. The costs are
obtained by counting the gate equivalents of the hardware.
Some first results of the theory are presented, e. g. the optimal register file length for SPARK

2.0 and CRAY I. Further questions are formulated, especially such questions concerning
modifications (improvements) of real architectures.

Architectural Requiren1ents for Efficient Monitoring
Rainer Klar

Institut fur Mathematische Maschinen und Datenverarbeitung VII
U niversi tat Erlangen

Martensstr. 3
D-8520 Erlangen

As a result of long term experience in monitoring the advantages and drawbacks of hardware,
software and hybrid monitoring are presented and the relevance of event- driven monitoring
is described. Event-driven monitoring provides more than just one performance index. It
helps to understand the how and why of the dynamic behaviour. A short introduction
of the distributed hardware and hybrid monitor system ZM4 shows how applying hybrid
monitoring to many distributed objects computers or to large parallel systems can lead to a
comprehensive, intelligible and quantifying view. The method is recording event tokens from
each processor in a local event trace adding a globally valid time stamp to each recorded
event token . Eventually all local event traces are merged to a global event trace. The
ZM4 evaluation environmemt SIMPLE provides a set of tools for comfortable evaluation of
measured traces based on source level identifiers. SIMPLE is independent of the monitor
system and evaluates arbitrarily formatted event traces.

6

Monitoring of already existing software is accompanied by program models, by implemen-
tation models and by monitoring models. These types of models are used to describe
inherent parallelism, to predict the performance of implementations on different architectu-
res / con�gurations and to de�ne interesting points of a program as being an event in therms
of monitoring.
Three examples illustrate typical problems with measurement interfaces and lead to the
following requirements for efficient monitoring:

0 The hardware interface should either be dedicated only to monitoring or it should be
a general interface with special quali�ers for monitoring which enables fast output of
event tokens.

o The hardware interface should offer problemoriented event tokens.

0 Software monitoring statements which refer to the hardware interfaces should not be
handled like general I/O statements but like internal register transfers.

0 Software monitoring statements should be available for system and user code.

Performance Parameters and Measurements

Roger Hockney
23 Hillside Hardwick Road

Whitchurch�on�Thames

Readirg, RG 87 HL England

The observed performance of supercomputers is found to vary between 1 % to 80 % of
the theoretical peak performance of their arithmetic pipelines. This can be seen in the
performance achieved, for example, on the 24 Livermore Fortran Kernels. Parameters are
introduced to explain this degradation of performance.
First the variation of performance with vector length is characterised by the parameter 711/2
which gives the vector length needed to achieve half of the asymptotic performance. The
concept of computational intensity (the amount of arithmetic performed per memory refe-
rence or data communication) was introduced, and the parameter fl/2 de�ned to quantify
the performance degradation arising from memory or communication bottlenecks. Similarly
the parameter 31/.3 was introduced to quantify the degradation in parallel computer systems
due to insufficient grain size, 3, and the need for global synchronisation.
The techniques for measuring these parameters were discussed and measured values were
given for the Cray�2, Cray X-MP, IBM 3090, IBM LCAP, Sequent Symmetry, and T 800
Transputer.
The above characterisations of performance, rely on approximately linear relation between
time and a suitably de�ned program variable (n, f, cos), and each effect is de�ned by a pair
of parameters such as ('roo,n1/2). Such a two parameter characterisation of performance
is also successful in representing the message transfer performance on distributed memory
networks. The �ping�pong� experiment was described for measuring these parameters on a
network. Also, frequently, the performance of a complex algorithm can be approximately
represented in the same way. The example was given of matrix multiplication.

Monitoring of a.lrea.dy existing software is a.ccompa.nied by progra.m models, by implemen
tation models a.nd by monitoring models . These types of models a.re used to describe
inherent pa.ra.llelism, to predict the performance of implementations on different a.rchitectu
res/ configura.tions a.nd to define interesting points of a. progra.m a.s being a.n event in therms
of monitoring.
Three examples illustrate typica.l problems with mea.surement interfaces a.nd lea.cl to the
following requirements for efficient monitoring:

• The ha.rdwa.re interface should either be dedicated only to monitoring or it should be
a genera.I interface with specia.l qualifiers for monitoring which enables fast output of
event tokens.

• The hardware interface should offer problemoriented event tokens.

• Software monitoring statements which refer to the hardware interfaces should not be
handled like genera.I 1/ 0 statements but like internal register transfers.

• Software monitoring statements should be available for system a.nd user code.

P e rformance P aram eters and M easure m e nts
Roger Hockney

23 Hillside Hardwick Road
Whi tchurch- on- Tha.mes

Rea.dirg , RG 87 HL Engla.nd

The observed performance of supercomputers is found to va.ry between 1 % to 80 % of
the theoretical pea.k performance of their arithmetic pipelines. This ca.n be seen in the
performance achieved, for exa.mple, on the 24 Livermore Fortra.n Kernels. Parameters a.re
introduced to explain this degradation of performance.
First the variation of performance with vector length is characterised by the para.meter n 1; 2

which gives the vector length needed to achieve half of the asymptotic performance. The
concept of computational intensity (the amount of arithmetic performed per memory refe
rence or data. communication) was introduced, and the parameter / 112 defined to quantify
the performance degradation arising from memory or communication bottlenecks. Similarly
the parameter s11~ wa.s introduced to quantify the degradation in para.llel computer systems
due to insufficient grain size, s , and the need for global synchronisation.
The techniques for measuring these para.meters were discussed a.nd measured values were
given for the Cray- 2, Cray X- MP, IBM 3090, IBM LCAP, Sequent Symmetry, a.nd T 800
Transputer.
The above chara.cterisa.tions of performance, rely on a.pproxima.tely linea.r relation between
time and a suitably defined progra.m va.ria.ble (n, f, w5), and ea.eh effect is defined by a pair
of para.meters such as (r= , n1; 2). Such a. two parameter characterisation of performance
is also successful in representing the message transfer performance on distributed memory
net.works. The 'ping- pong' experiment was described for measuring these para.meters on a.
network. Also, frequently, the performance of a. complex algorithm can be a.pproxima.tely
represented in the same wa.y. The example was given of ma.trix multiplication.

7

Problem Size Scaling in the Presence of Parallel Overhead
Dieter Miiller�Wichards

IBM Scienti�c Center Heidelberg
Tiergartenstr. 15

D�6900 Heidelberg

In this talk we study the performance of applications on multiprocessor systems. In par-
ticular we investigate the effect of synchronization and parallelization overhead where the
fact that part of the a.pplication may be inherently sequential is taken into account. By
relating our assumptions to an earlier work by Flatt and Kennedy we establish that the
overhead function can be characterized using the concept of convex functions.
In order to observe a satisfactory payoff for increased processing power it is essential to
increace the problem size accordingly. We discuss linear and nonlinear scaling schemes and
compare the corresponding asymptotic performance behaviour. Throughout this investiga-
tion we pro�t from the well developed mathematical apparatus of convex functions.

Performance modelling of grid oriented algorithms
on message passing systems

Hermann Mierendorf

Gesellschaft für Mathematik und Datenverarbeitung mbH
Schloß Birlinghofen

D�5205 St. Augustin 1

Prior to the realization of a computer, performance prediction by a theoretic model is of
special interest. Homogeneous iterative grid oriented algorithms are considered as process
systems. Fore message passing systems, a method is investigated, where the system is
represented by the structure and and a relatively small number of performance parameters.
Using these parameters, the time cost of basic activities can be evaluated. For an estimation
of the overall runtime, sequences of basic activities are considered. If there is an isomorphic
mapping of the process structure into the system structure, the set of these sequences is
partially ordered with respect to the parameters and the sequence length. Only a small
number of maximum elements must be combined in an model for estimating the time cost
of the algorithm. The method can be extended to systems showing resource sharing by
contention analysis for the last process.

Performance Evaluation for Parallel Computer Systems
��A Workload Analysis

Otto Kolp
GMD

Schloß Birlinghofen
D-5205 Sankt Augustin 1

For parallel computers, performance prediction is an important and dif�cult task. Diffe-
rent methods are available. A workload analysis tool has been presented to evaluate large

Proble1n Size Scaling in the Presence of Parallel Overhead
Dieter M iiller-Wichards

IBM Scientific Center Heidelberg
Tiergartenstr. 15

D-6900 Heidelberg

In this talk we study the performance of applications on multiprocessor systems. In par
ticular we investigate the effect of synchronization and parallelization overhead where the
fart that part of the application may he inherently sequential is taken into account . By
relating our assumptions to an earlier work by Flatt and Kennedy we establish that the
overhead function can be characterized using the concept of convex functions.
In order to observe a satisfactory payoff for increased processing power it is essential to
increace the problem size accordingly. We discuss linear and nonlinear scaling schemes and
compare the corresponding asymptotic performance behaviour. Throughout this investiga
tion we profit from the well developed mathematical apparatus of convex functions.

Performance n1odelling of grid oriented algorithms
on message passing systems

Hermann Mierendorf
Gesellschaft fiir Mathematik und Datenverarbeitung mbH

SchloB Birlinghofen
D-5205 St. Augustin 1

Prior to the realization of a computer, performance prediction by a theoretic model is of
special interest. Homogeneous iterative grid oriented algorithms are considered as process
systems. Fore message passing systems, a method is investigated, where the system is
represented by the structure and and a relatively small number of performance parameters.
Using these para.meters, the time cost of basic activities can be evaluated. For an estimation
of the overall runtime, sequences of basic activities a.re considered. If there is an isomorphic
mapping of the process structure into the system structure, the set of these sequences is
partially ordered with respect to the parameters and the sequence length. Only a small
number of maximum elements must be combined in an model for estimating the time cost
of the algorithm. The method can be extended to systems showing resource sharing by
contention analysis for the last process.

Performance Evaluation for Parallel Computer Systems
- A Workload Analysis

Otto Kolp
GMO

SchloB Birlinghofen
D-5205 Sankt Augustin 1

For parallel computers, performance prediction is an important and difficult task. Diffe
rent methods are available. A workload analysis tool has been presented to evaluate large

8

parallel systems for appropriate applications. The method involves hardware, software and
application aspects. Descriptions of the hardware including routing, of the application in-
cluding a parallel process structure and of the mapping of the parallel process structure to
the parallel processor system have to be given to the evaluation tool. The method was illu-
strated by examples. The hardware aspects are discussed by considering a two dimensional
crossbar network. For an eight color relaxation scheme of a 3-dimensional multigrid algo-
rithm the description of the application was shown. For a 2�dimensional process structure
the mapping of the algorithm to the system has been discussed. Some results concerning
performance in the terms of ef�ciency or �mega�ops� are given for some parallel systems as
the SUPRENUM system.

Shared memory emulations and distributed dictionary
Friedhelm Meyer auf der Heide

Universitat-GH Paderborn F B 17

Warburger Str. 100
D-4790 Paderborn

The aim of the talk is to give an overview of efforts in theoretical computer science to design
and measure performance of shared memory emulations on networks of processors.
We assume an idealized shared memory machine with some number p of processors, where
a parallel shared memory access executed synchronously by all processors needs one time
unit. We want to show how to simulate such memory accesses on a network with q .5 p
processors, where the shared memory is distributed among the processors in some clever
way. We present emulations with time delay 0(log(p)/ log log(p)), if q r: p and O(log(p)),
if q = p/ log(p). Both results are special cases of a design and performance analysis of a
distributed dictionary on a network. Both delays become 0(log(p)), if a communication
network is assumed and its delay is taken into account.
The 1og(p) / log log(p) delay for q = p is unavoidable. Thus scalable realistic parallel machi-
nes can offer a virtual shared memory to be accessible by all processors only to the cost of
a signi�cant delay.
The second result shows how (if possible at all) a virtual shared memory can be offered
to a user: She has to design algorithms using (at least) as much as log(p) times p virtual
processors that means she has to put more effort in parallelizing her problem in order to
use an efficient virtual shared memory.
This a joint work with Martin Dietzfelbinger, Paderborn.

Lockperformance in Betriebssystemen
Jorge Cuellar
Siemens AG

Otto��Hahn�Ring 6
8000 München 83

Im Multitasking-Betrieb eines Betriebssystems werden Betriebsmittel wie Prozessoren, Ar-
beitsspeicher oder auch Verwaltungsdaten nach Anforderung verteilt. Dies erfordert Koor-
dinierung und Serialisierung in kritischen Pfaden. Die Realisierung erfolgt über Lockme-
chanismen.

parallel systems for appropriate applicatious. The method involves hardware, software and
application aspects. Descriptions of the hardware including routing, of the application in
cluding a parallel process structure and of the mapping of the parallel process structure to
the parallel processor system have to be given to the evaluation tool. The method was illu
strated by examples. The hardware aspects are discussed by considering a. two dimensional
crossbar network. For a.n eight color relaxation scheme of a 3-dimensional multigrid algo
rithm the description of the application was shown. For a 2-dimensional process structure
the mapping of the algorithm to the system has been discussed. Some results concerning
performance in the terms of efficiency or 'mega.flops' are given for some parallel systems as
the SUPRENUM system.

Shared 1ne mory en1ulations and distributed dictionary
Friedhelm Meyer auf der Heide

Universitat-GH Paderborn FB 17
Wa.rburger Str. 100
D- 4790 Paderborn

The aim of the talk is to give an overview of efforts in theoretical computer science to design
and measure performance of shared memory emulations on networks of processors.
We assume an idealized shared memory machine with some number p of processors, where
a parallel shared memory access executed synchronously by a.11 processors needs one time
unit. We want to show how to simulate such memory accesses on a network with q .:$ p
processors, where the shared memory is distributed among the processors in some clever
way. We present emulations with time delay O(log(p)/ loglog(p)), if q = p and O(log(p)),
if q = p/ log(p). Both results are special cases of a design and performance analysis of a
distributed dictionary on a network. Both delays become O(log(p)), if a communication
network is assumed and its delay is ta.ken into account.
The log(p)/ log log(p) delay for q = p is unavoidable. Thus scalable realistic parallel machi
nes can offer a virtual shared memory to be accessible by all processors only to the cost of
a significant delay.
The second result shows how (if possible a.t all) a virtual shared memory can be offered
to a user: She has to design algorithms using (at least) as much as log(p) times p virtual
processors that means she has to put more effort in parallelizing her problem in order to
use an efficient virtual shared memory.
This a joint work with Martin Dietzfolbinger, Paderborn.

Lockperformance in Betriebssy steme n
Jorge Cuellar
Siemens AG

Otto-Hahn- Ring 6
8000 M iinchen 83

Im Multita.sking-Betrieb eines Betriebssystems werden Betriebsmittel wie Prozessoren , Ar
beitsspeicher oder auch Verwaltungsdaten nach Anforderung verteilt. Dies erfordert Koor
dinierung und Seria.lisierung in kritischen Pfaden. Die Realisierung erfolgt iiber Lockme
chanismen.

9

Um den Ein�uß der Locks auf das Systemverhalten besser zu verstehen und die Lockver-
luste quantitativ zu bestimmen, wird Modellierung eingesetzt. Die neuen Erkenntnisse
über das Lockverhalten wurden am BS 2000 veri�ziert und entsprechende Verbesserungen

implementiert.
Im Nukleus eines Betriebssystems kommt es häu�g vor, daß ein Prozessor bei Anforderung
eines Betriebsmittels (z. B. eine zentrale Tabelle für Task- oder Speicherverwaltung) die-
ses auch unbedingt braucht, um weitere produktive Arbeit leisten zu können. Aus diesem
Grunde, oder einfach weil die Kosten eines Kontextswitches teuerer als das Warten auf die

Betriebsmittelfreigabe wären, sind in vielen Multiprozessorsystemen die meisten Nukleus-
locks Spinlocks.
Es wird gezeigt, daß die Varianz neben der Lockwahrscheinlichkeit einen deutlichen Ein�uß
auf die Lockverluste hat.

Während bei Spinlocks in einer Schleife auf Lockfreigabe gewartet wird, verliert bei Sus-
pendlocks der Aufrufer die Kontrolle der CPU, sein gesamter Kontext wird gesichert. Der
Aufrufer ist im BS 2000 eine Task, im Falle eines Lockmisses �ndet ein Taskwechsel statt.
Weitere den Lock anfordernde Tasks werden nach FCSFS eingeordnet. Der Vorteil der Sus-
pendlocks liegt darin, daß die CPU nicht blockiert wird, als Nachteil schlagen die direkten
Kosten des Taskwechsels und eventuell indirekte, wie partieller Verlust des Working Sets
während der Wartezeit, zu Buche.
Bei beiden Lockarten wachsen die Lockverluste quadratisch mit der Lockwahrscheinlichkeit
p. Die durch Suspendlocks verursachten Verluste reagieren jedoch auf die Varianz der
Lockstrecken kaum. Einige Formeln zur Berechnung der Lockverluste werden vorgestellt
und diskutiert.

10

Um den Einflufi der Locks auf das Systemverhalten besser zu verstehen und die Lockver
luste quantitativ zu bestimmen, wird Modellierung einge!letzt. Die neuen Erkenntnisse
ii ber das Lockverhalten wurden am BS 2000 verifiziert und ent sprechende Verbesserungen
im plemen tiert.
Im Nukleus eines Betriebssystems kommt es haufig vor, daB ein Prozessor bei Anforderung
eines Betriebsmittels (z. B. eine zentrale Ta belle fur Task- o der Speicherverwaltung) die
ses auch unbedingt braucht, um weitere produktive Arbeit leisten zu konnen. Aus diesem
Grunde, oder einfach weil die Kosten eines Kontextswitches teuerer als das Warten auf die
Betriebsmittelfreigabe waren, sind in vielen Multiprozessorsystemen die meisten Nukleus
locks Spinlocks.
Es wird gezeigt, daB die Varianz neben der Lockwahrscheinlichkeit einen deutlichen Einflufi
auf die Lockverluste hat.
Wahrend bei Spinlocks in einer Schleife auf Lockfreigabe gewartet wird, verliert bei Sus
pendlocks der Aufrufer die Kontrolle der CPU, sein gesamter Kontext wird gesichert. Der
Aufrufer ist im BS 2000 eine Task, im Falle eines Lockmisses findet ein Taskwechsel statt.
Weitere den Lock anfordernde Tasks werden nach FCSFS eingeordnet. Der Vorteil der Sus
pendlocks liegt darin, dafi die CPU nicht blockiert wird, als N achteil schlagen die direkten
Kosten des Taskwechsels und eventuell indirekte, wie partieller Verlust des Working Sets
wahrend der Wartezeit, zu Buche.
Bei beiden Lockarten wachsen die Lockverluste quadratisch mit der Lockwahrscheinlichkeit
p. Die durch Suspendlocks verursachten Verluste reagieren jedoch auf die Varianz der
Lockstrecken kaum. Einige Formeln zur Berechnung der Lockverluste werden vorgestellt
und diskutiert.

10

