
Chris Hankin, Reinhard Wilhelm (editors)

Functional Languages:
Optimization for Parallelism

Dagstuhl-Seminar-Report; 3
3.9.1990-8.9.1990 (9036)

Chris Hankin, Reinhard Wilhelm (editors)

Functional Languages:
Optimization for Parallelism

Dagstuhl-Seminar-Report; 3
3.9.1990-8.9.1990 (9036)

Copyright © 1991 by IBFI GmbH, Schloß Dagstuhl, W�6648 Wadem, Germany
Tel.: +49�6871 - 2458

Fax: +49-6871 - 5942

Das IBFI (Intemationales Begegnungs- und Forschungszentrum für Informatik) ist eine gemeinnützige
GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare,welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen
durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. lose Encamacao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Harder,
Dr. Michael Laska,

Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes,

Universität Kaiserslautem�
Universität Karlsruhe,
Gesellschaft �ir Informatik e.V.� Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Infonnatik, Bau 36
Universität des Saarlandes

W - 6600 Saarbrücken

Gennany
Tel.: +49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397

e-mail: dagstuhl@dag.uni-sb.de

Copyright© 1991 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadem, Gennany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das IBFI (Intemationales Begegnungs- und Forschungszentrum filr Infonnatik) ist eine gemcinnillzigc
GmbH. Sie veranstaltet regehnfil3ig wissenschaftliche Seminare,welche nach Antrag der T agungslciter
und Begutachtung durch das wissenschaftliche Direktorium mit per~nlich eingeladenen Gasten
durchgefiihrt werden.

Verantwortlich fiir das Programm:

Gcscllschafter:

Trager:

Bczugsadresse:

Prof. Dr.-Ing. Jose Encam~ao,
Prof. Dr. Winfried GOrke,
Prof. Dr. Theo Hllrder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Universitlit des Saarlandes,
Universitlit Kaiserslautem,
Universitlit Karlsruhe,
Gesellschaft filr lnfonnatik e .V., Bonn

Die BundesHinder Saarland und Rheinland Pfalz.

Geschliftsstelle SchloB Dagstuhl
Infonnatik, Bau 36
Universitlit des Saarlandes
W - 6600 Saarbliicken
Gennany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: dagstuhl@dag.uni-sb.de

DAGSTUHL SEMINAR

FUNCTIONAL LANGUAGES : OPTIMIZATION FOR PARALLELISM

Organized by :

Chris Hankin (Imperial College, London)
Reinhard Wilhelm (Universität des Saarlandes)

September 3-8 .1990

DAGSTUHL SEMINAR

FUNCTIONAL LANGUAGES : OPTIMIZATION FOR PARALLELISM

Organized by :

Chris Hankin (Imperial College, London)
Reinhard Wilhelm (Universitat des Saarlandes)

September 3-8 1990

Overview

Chris Hankin and Reinhard Wilhelm

The seminar emphasised four main areas:

0 Static analysis and program transformation

0 Abstract machines and compilation

o Architectures to support the parallel evaluation of functional languages

0 Pragmatics for the control of evaluation order

The majority of the talks concerned the first two topics.

Static analysis and program transformation

Few of the static analysis techniques which have been proposed for functional langua-
ges have been concerned with the discovery of opportunities for parallel evaluation or
the control of parallel evaluation. The seminar provided a setting for interaction bet-
ween the theorists working on analysis techniques and implementors. As a result of
discussion, a number of analyses were identi�ed as being of interest; these include:

0 Detection of Sharing between parallel threads of computation

o Compile-time analysis of lifetimes

0 An analysis to remove redundant Sparks in GRIP-like architectures

0 Usage analysis

0 An analysis to support compile-time load balancing

A more detailed list, which was compiled by Thomas Johnsson, is included in the next
section. Another important issue that was raised was how such analyses could be
combined.

In contrast, several speakers reported on experiments in program transformation which
are directed at better exploitation of parallel hardware. The essence of this approach
is a library of higher order functions (e.g. scan) which are suited for implementation
on a particular parallel machine model and a transformation algebra for transforming
general programs into the required form. This is extremely important work in the light
of our concluding remarks below.

Overview

Chris Hankin and Reinhard Wilhelm

The seminar emphasised four main areas:

• Static analysis and program transformation

• Abstract machines and compilation

• Architectures to support the parallel evaluation of functional languages

• Pragmatics for the control of evaluation order

The majority of the talks concerned the first two topics.

Static analysis and program transformation

Few of the static analysis techniques which have been proposed for functional langua
ges have been concerned with the discovery of opportunities for parallel evaluation or
the control of parallel evaluation. The seminar provided a setting for interaction bet
ween the theorists working on analysis techniques and implementors. As a result of
discussion, a number of analyses were identified as being of interest; these include:

• Detection of Sharing between parallel threads of computation

• Compile-time analysis of lifetimes

• An analysis to remove redundant Sparks in GRIP-like architectures

• Usage analysis

• An analysis to support compile-time load balancing

A more detailed list, which was compiled by Thomas Johnsson, is included in the next
section. Another important issue that was raised was how such analyses could be
combined.

In contrast, several speakers reported on experiments in program transformation which
are directed at better exploitation of parallel hardware. The essence of this approach
is a library of higher order functions (e.g. scan) which are suited for implementation
on a particular parallel machine model and a transformation algebra for transforming
gene~al programs into the required form. This is extremely important work in the light
of our concluding remarks below.

1

Abstract machines and compilation

While there is wide variance between the level of abstraction employed in the different
abstract machines, it is possible to identify some emerging trends.

Four of the talks focussed on Term Graph Rewriting, a rewriting formalism invented
by Barendregt and co�workers which explicitly captures sharing. The advantage of
this approach is that it is readily formalisable, it is an abstraction of the mechanisms
involved in many graph reduction machines and so can provide a formal basis for
reasoning about the correctness of analysis and transformation techniques.

Certain considerations such as copying of graph structure are not easily describable
in Term Graph Rewriting. At a lower level, much of the abstract machine work is
based on re�nements of the G-machine which has become established as a standard.

The most important re�nements are Bpinelessnesséind taglessness�; the former involves
caching the spine of the graph on the stack so that the whole expression graph does
not have to be rebuilt at each step, the latter avoids the need for some indirection by
storing code pointers with. values rather than type tags.

Architectures

The key discussion between the architects continues to be the �ne grain versus coarse
grain dispute. The experience of the MIT MONSQON system gives encouraging evidence
to support the �ne grain approach but offset against this is the early experience with
Glasgow�s GRIP which requires throttling and a more coarse grain approach. Some of
the talks on program transformation suggest that this issue can be hidden from the
high-level user. Which class of architecture is �betteri°s clearly dependent on the likely
job mix.

Pragmatics

Finally, it is becoming apparent that achieving high performance from any parallel
architecture will involve signi�cant programmer intervention. The form of intervention
may be guidance to a program transformation system or the insertion of control anno-
tations. The need for annotations should come as no surprise given our experience of
imperative languages, however the situation is different here since the annotations are
semantics-preserving and there is room for optimism that they could be automatically
generated by smart static analysis tools.

Abstract machines and compilation

While there is wide variance between the level of abstraction employed in the different
abstract machines, it is possible to identify some emerging trends.

Four of the talks focussed on Term Graph Rewriting, a rewriting formalism invented
by Barendregt and co-workers which explicitly captures sharing. The advantage of
this approach is that it is readily formalisable, it is an abstraction of the mechanisms
involved in many graph reduction machines and so can provide a formal basis for
reasoning about the correctness of analysis and transformation techniques.

Certain considerations such as copying of graph structure are not easily describable
in Term Graph Rewrit ing. At a lower level, much of the abstract machine work is
based on refinements of the G-machine which has become established as a standard.
The most impor tant refinements are fipinelessnessand t aglessness"; the former involves
caching the spine of the graph on the stack so that the whole expression graph does
not have to be rebuilt at each step, the latter avoids the need for some indirection by
storing code pointers with values rather than type tags.

Architectures

The key discussion between the architects continues to be the fine grain versus coarse
grain dispute. T he experience of the MIT MONS_OON system gives encouraging evidence
to support the fine grain approach but offset against this is the early experience with
Glasgow's GRIP which requires throttling and a more coarse grain approach. Some of
the talks on program transformation suggest that this issue can be hidden from the
high-level user. Which class of architecture is "betteri's clearly dependent on the likely
job mix.

Pragmatics

Finally, it is becoming apparent that achieving high performance from any parallel
architecture will involve significant programmer intervention. The form of intervention
may be guidance to a program transformation system or the insertion of control anno
tations. The need for annotations should come as no surprise given our experience of
imperative languages, however the situation is different here since the annotations are
semantics-preserving and there is room for optimism that they could be automatically
generated by smart static analysis tools.

2

Acknowledgements

Thanks are due to Josephine Schneider, who ensured that everything ran smoothly at
Schloss Dagstuhl, and to Denise Smith who typed most of this report.

Acknowledgements

Thanks are due to Josephine Schneider, who ensured that everything ran smoothly at
Schloss Dagstuhl, and to Denise Smith who typed most of this report.

3

Discussion summary: which analysis?

reported by
Thomas Johnsson,

Glasgow University, U.K. / Chalmers
University, Göteberg

John Hughes opened the discussion and asked the following question: �Implemen-
tors, what analysis would you want from us analysis designers to make your parallel
functional implementation run faster?� The following analyses were proposed by the
participants:

o Find out which expressions (bits of graphs built) that need locks, since they are
shared by parallel processors.

0 SPARK elimination: if it can be determined that a certain SPARK is SPARKing
something that has been SPARKed before, then eliminate that SPARK.

o Find out which is the cheapest on each case: remote access to data vs. copying
the data structure.

0 Update elimination: unshared redexes should be identified so that they are not
updated (useful also in a sequential implementation).

0 Cost estimation (granularity analysis): if the cost of evaluating an expression
is sufficiently low, do it on the same processor, thus avoiding the overhead of
distributing the computation.

o Time�before-needed-estimation: if a parameter is needed immediately, don�t eva-
luate it on another processor. But if the time before it is needed is long, and the
cost of of the parameter is high, do evaluate it on another processor. '

o Pipeline buffer size: if you have f o g, f : [A] -�> B, g : C �> [A], you have a
pipeline. You would like to implement [A] as a buffer rather than using the heap.
If g produces and f consumes values at regular intervals you can use a small
buffer. But if either f or g needs/produces values in bursts, you need a large
buffer. An analysis might help in determining the size.

0 An analysis of right hand sides of de�nitions such that it is known that objects can
be delivered unboxed whenever possible for as much data structure as possible.

Example:

Discussion summary: which analysis?

reported by
Thomas Johnsson,

Glasgow University, U .K. / Chalmers
University, Goteberg

John Hughes opened the discussion and asked the following question: "lmplemen
tors, what analysis would you want from us analysis designers to make your parallel
functional implementation run faster?,, The following analyses were proposed by the
participants:

• Find out which expressions (bits of graphs built) that need locks, since they are
shared by parallel processors.

• SPARK elimination: if it can be determined that a certain SPARK is SPARKing
something that has been SPARKed before, then eliminate that SPARK.

• Find out which is the cheapest on each case: remote access to data vs. copying
the data structure.

• Update elimination: unshared redexes should be identified so that they are not
updated (useful also in a sequential implementation).

• Cost estimation (granularity analysis): if the cost of evaluating an expression
is sufficiently low, do it on the same processor, thus avoiding the overhead of
distributing the computation.

• Time-before-needed-estimation: if a parameter is needed immediately, don't eva
luate it on another processor. But if the time before it is needed is long, and the
cost of of the parameter is high, do evaluate it on another processor.

• Pipeline buffer size: if you have fog, f : [A] -+ B, g : C -+ [A], you have a
pipeline. You would like to implement [A] as a buffer rather than using the heap.
If g produces and f consumes values at regular intervals you can use a small
buffer. But if either f or g needs/produces values in bursts, you need a large
buffer. An analysis might help in determining the size.

• An analysis ofright hand sides of definitions such that it is known that objects can
be delivered unboxed whenever possible for as much data structure as possible.
Example:

4

gab=(a,b)

:fab=a+b
where (a, b) =gab

I.e., g should return the pair (a, b) simply by putting the two numbers a and b
in machine registers.

c Any analysis which enables both

- a nice speci�cation of a sorting algorithm, and

- sorting such that the updates are performed in situ, i.e., no additional copy
is required (the sorting is done in-place).

0 An analysis specific to Clean: analysing, a functional program (or better, a Clean
(TGRS) program) such that the Clean annotations {P} and {I} (which introduce
parallelism and control process placement) are put into the right place.

g a b = (a, b)

fab=a+b

vhere (a , b) =gab

I.e. , g should return the pair (a, b) simply by putting the two numbers a and b

in machine registers .

• Any analysis which enables both

a nice specification of a sorting algorithm, and

sorting such that the updates are performed in situ, i .e., no additional copy
is required (the sorting is done in-place).

• An analysis specific to Clean: analysing a functional program (or better, a Clean
(TGRS) program) such that the Clean annotations {P} and {I} (which introduce
parallelism and control process placement) are put into the right place.

5

Static Analysis of Term Graph
Rewriting Systems

Chris Hankin

Imperial College, London

Term Graph Rewriting (TGR) is the graph rewriting analogue of term rewriting. Its
distinctive characteristic is that sharing is explicitly captured. It is intended as an
abstraction of the process performed by many graph reduction implementations of
functional languages. We are concerned with semantics-based analysis techniques for
the optimization of programs represented in this idiom. The talk has three main parts.

Firstly, we review the operational semantics of TGR (presented by Barendregt et al
in PARLE�87). The rewriting process is factored into three distinct phases: the build
phase during which new nodes are added to the graph, the redirection phase during
which the rewrite is effected by switching �pointers� and the garbage collection phase.

In the �classical� approach to abstract interpretation (due to the Cousots) the analy-
sis is factored through a �collecting� semantics. The collecting semantics is the most
precise semantics; it collects complete information about program execution and asso-
ciates it with �program points� . Abstract interpretations are presented as abstractions
of and proved correct with respect to the collecting semantics. In the second part of
the talk we construct a collecting semantics for TGR using the rewrite rules as program
points.

Finally, we present an example analysis which performs a form of type inference. The
interpretation is essentially similar to the standard semantics but uses abstract variants
of the three phases of rewriting. We show how the correctness of this analysis can be
established using adjoined functions in the �classical� style. We suggest that we have
established a general framework for such analysis.

Extending Compile Time Garbage
Collection to Parallel Implementations

Simon B Jones

University of Stirling, Scotland

One of the most significant factors in�uencing the performance of functional programs
is their uneconomical use of dynamic data storage: functional semantics prevents the
programmer from explicitly indicating that storage can be reused, and thus expensive

Static Analysis of Term Graph
Rewriting Systems

Chris Hankin
Imperial College, London

Term Graph Rewriting (TGR) is the graph rewriting analogue of term rewriting. Its
distinctive characteristic is that sharing is explicitly captured. It is intended as an
abstraction of the process performed by many graph reduction implementations of
functional languages. We are concerned with semantics-based analysis techniques for
the optimization of programs represented in this idiom. The talk has three main parts.

Firstly, we review the operational semantics of TGR (presented by Barendregt et al
in PARLE'87). The rewriting process is factored into three distinct phases: the build
phase during which new nodes are added to the graph, the redirection phase during
which the rewrite is effected by switching "pointers" and the garbage collection phase.

In the "classical" approach to abstract interpretation (due to the Cousots) the analy
sis is factored through a "collecting" semantics. The collecting semantics is the most
precise semantics; it collects complete information about program execution and asso
ciates it with "program points". Abstract interpretations are presented as abstractions
of and proved correct with respect to the collecting semantics. In the second part of
the talk we construct a collecting semantics for TGR using the rewrite rules as program
points.

Finally, we present an example analysis which performs a form of type inference. The
interpretation is essentially similar to the standard semantics but uses abstract variants
of the three phases of rewriting. We show how the correctness of this analysis can be
established using adjoined functions in the "classical" style. We suggest that we have
established a general framework for such analysis.

Extending Compile Time Garbage
Collection to Parallel Implementations

Simon B Jones
University of Stirling, Scotland

One of the most significant factors influencing the performance of functional programs
is their uneconomical use of dynamic data storage: functional semantics prevents the
programmer from explicitly indicating that storage can be reused, and thus expensive

6

runtime heap management software is usually required (mark/sweep, stop-and-copy,
reference counting, etc). It seems likely that a functional program�s performance can
be improved if we optimize it, at compile time, to include explicit unconditional storage
de-allocation or re-allocation operations rather than code for runtime decision making
(e.g. replacing a graph marking scan or a decrement and test of a reference count).
Hudak and Bloss have investigated static program analysis techniques for updating
atomic or aggregate data structures �in place�: abstract interpretation is used to locate
operations in a program which always consume the last reference to an operand, and
which immediately create a new object of identified structure. Le Métayer and the
author have investigated the application of a similar technique to a strict language
with list structures, and the result of this in the sequential case have been published in
the proceedings of FPCA�89. It is important that we consider extending the technique
to the context of the parallel evaluation of functional programs; this work has not
started yet, and the author presented some preliminary thoughts to the workshop.

In the sequential context the approach is straightforward, though the details are com-
plex: we proceed from a standard semantics of our functional language, to a stan-
dard storage semantics which includes a heap management model, and then to a non-
standard form of the semantics which controls storage allocation and de-allocation via
sharing and �future use� information obtained by abstract interpretation (the storage
cells that can be collected during evaluation of an expression are those that are not
shared with previously evaluated expressions, and are not needed by expressions still
be evaluated).

How must this approach be adapted to the parallel case? It would appear that the
standard storage semantics, being an operational model, will need to be extended to a
parallelism model; this is not a simple problem. Similarly, perhaps the non-standard
semantics expressing the desired optimizations will need to be a parallelism model.
However, let us consider a simple implementation of parallelism in which the indivi-
dual arguments in an argument list are evaluated in parallel and then synchronization
occurs before the function in entered. In this case the desired optimization can be
described without explicitly modelling parallelism: we must compile every argument
in an argument list under the assumption that all the other arguments are still to be
evaluated, since this is the worst cast that can occur with unpredictable, interleaved,
parallel evaluation of the argument list. This storage allocation and deallocation can
be controlled by �future use� information, and it appears that the sharing information
may be redundant.

runtime heap management software is usually required (mark/sweep, stop-and-copy,
reference counting, etc). It seems likely that a functional program's performance can
be improved if we optimize it, at compile time, to include explicit unconditional storage
de-allocation or re-allocation operations rather than code for runtime decision making
(e.g. replacing a graph marking scan or a decrement and test of a reference count).
Hudak and Bloss have investigated static program analysis techniques for updating
atomic or aggregate data structures "in place": abstract interpretation is used to locate
operations in a program which always consume the last reference to an operand, and
which immediately create a new object of identified structure. Le Metayer and the
author have investigated the application of a similar technique to a strict language
with list structures, and the result of this in the sequential case have been published in
the proceedings of FPCA'89. It is important that we consider extending the technique
to the context of the parallel evaluation of functional programs; this work has not
started yet, and the author presented some preliminary thoughts to the workshop.

In the sequential context the approach is straightforward, though the details are com
plex: we proceed from a standard semantics of our functional language, to a stan
dard storage semantics which includes a heap management model, and then to a non
standard form of the semantics which controls storage allocation and de-allocation via
sharing and "future use" information obtained by abstract interpretation (the storage
cells that can be collected during evaluation of an expression are those that are not
shared with previously evaluated expressions, and are not needed by expressions still
be evaluated).

How must this approach be adapted to the parallel case? It would appear that the
standard storage semantics, being an operational model, will need to be extended to a
parallelism model; this is not a simple problem. Similarly, perhaps the non-standard
semantics expressing the desired optimizations will need t o be a parallelism model.
However, let us consider a simple implementation of parallelism in which the indivi
dual arguments in an argument list are evaluated in parallel and then synchronization
occurs before the function in entered. In this case the desired optimization can be
described without explicitly modelling parallelism: we must compile every argument
in an argument list under the assumption that all the other arguments are still to be
evaluated, since this is the worst cast that can occur with unpredictable, interleaved,
parallel evaluation of the argument list. This storage allocation and deallocation can
be controlled by "future use" information, and it appears that the sharing information
may be redundant.

7

Analysis of Functional Programs by
Abstraction of Pre-Postconditions

Torben 1E. Mogensen
DIKU, Denmark

We investigate the idea of using the notion of pre- and post conditions to make an
automatic analysis of functional languages.

We start by de�ning our concept of a condition: a continuous function from a value
domain into the domain of booleans.

Conditions are partially ordered by implication, and pre/post-conditions are de�ned in
terms of the ordering.

We then identify a condition by the pair of inverse images of true and false, and restate
the de�nitions of implication and pre/postconditions in terms of such pairs of sets. We
�nd that we can compute the weakest precondition and strongest postcondition if we
can �nd the images and inverse images of functions applied to the sets from a pair.

We then present a small functional language and its semantics and show how images
and inverse images of functions de�ned in that language can be found. The method is,
however, not computable, so approximations should be used.

Derivation of parallel scan

John T. O�Donnell

Glasgow University

Mapping algorithms onto parallel architectures can be a difficult problem. Equational
reasoning and hardware modelling in a functional language provide powerful tools
for solving this problem. An example of the method is the derivation of a parallel
implementation of scan for an abstract tree machine.

We begin by specifying the scan algorithm as a functional program. (Scan is an im-
portant algorithm with many practical applications.) Trying a divide and conquer
approach, we derive a scan decomposition law which shows how a large scan can be
de�ned by combining two smaller scans. This law formalizes the intuition behind a
parallel implementation of scan.

Analysis of Functional Programs by
Abstraction of Pre-Postconditions

Torben JE. Mogensen
DIKU, Denmark

We investigate the idea of using the notion of pre- and post conditions to make an
automatic analysis of functional languages.

We start by defining our concept of a condition: a continuous function from a value
domain into the domain of booleans.

Conditions are partially ordered by implication, and pre/post-conditions are defined in
terms of the ordering.

We then identify a condition by the pair of inverse images of true and false, and restate
the definitions of implication and pre/postconditions in terms of such pairs of sets. We
find that we can compute the weakest precondition and strongest postcondition if we
can find the images and inverse images of functions applied to the sets from a pair.

\Ve then present a small functional language and its semantics and show how images
and inverse images of functions defined in that language can be found. The method is,
however, not computable, so approximations should be used.

Derivation of parallel scan

John T. O'Donnell
Glasgow University

Mapping algorithms onto parallel architectures can be a difficult problem. Equational
reasoning and h ardware modelling in a functional language provide powerful tools
for solving this problem. An example of the method is the derivation of a parallel
implementation of scan for an abstract tree machine.

We begin by specifying the scan algorithm as a functional program. (Scan is an im
portant algorithm with many practical applications.) Trying a divide and conquer
approach, we derive a scan decomposition law which shows how a large scan can be
defined by combining two smaller scans. This law formalizes the intuition behind a
parallel implementation of scan.

8

Next we give a formal specification of the parallel architecture; this takes the form of
a function m, such that (m p 2:) is the result of running machine m with program p on
data m.

The crucial step is to formally state a conjecture that there exists a program p which
causes machine m to execute the algorithm a. This conjecture takes the form

3p.\/:c.m p 2: = a a:

Let m be the abstract tree architecture, let a be the function which computes scan and
fold, and let a: be an arbitrary argument to scan. The only unknown value is p, and
equational reasoning suffices to solve the equation for p. This derivation achieves three

goals:

1. it proves that a tree machine can execute scan in parallel,

2. it gives us the parallel program p, and

3. it provides a correctness proof for p.

The result turns out to be the fastest known algorithm for scan. The algorithm was
originally derived using ad hoc methods, and apparently it has never before been proved
correct.

This work relies on the following properties of functional languages: referential trans-
parency, nonstrict semantics, higher order functions, polymorphic types and algebraic
types. It provides supporting evidence for the thesis that formal reasoning about func-
tional programs can help to solve practical problems.

Analyzing and Transforming
Functional Programs

Hanne Riis Nielson

Aarhus University, Denmark

It is often useful to regard the e�icient implementation of functional programs as arising
from two stages. The post-processing stage performs a rather naive implementation
whereas the pre-processing stage achieves a better overall result by performing program
transformations.

We shall �rst discuss this paradigm in the context of binding time analysis. The binding
time analysis will ensure a clear separation between the binding times of interest.

9

Next we give a formal specification of the parallel architecture; this takes the form of
a function m, such that (m p x) is the result of running machine m with program p on
data :z:.

The crucial step is to formally state a conjecture that there exists a program p which
causes machine m to execute the algorithm a. This conjecture takes the form

3p.Vx.m p x = a x

Let m be the abstract tree architecture, let a be the function which computes scan and
fold, and let :z: be an arbitrary argument to scan. The only unknown value is p, and
equational reasoning suffices to solve the equation for p. This derivation achieves three
goals:

l. it proves that a tree machine can execute scan in parallel,

2. it gives us the parallel program p, and

3. it provides a correctness proof for p.

The result turns out to be the fastest known algorithm for scan. The algorithm was
originally derived using ad hoe methods, and apparently it has never before been proved
correct.

This work relies on the following properties of functional languages: referential trans
parency, nonstrict semantics, higher order functions, polymorphic types and algebraic
types. It provides supporting evidence for the thesis that formal reasoning about func
tional programs can help to solve practical problems.

Analyzing and Transforming
Functional Programs

Hanne Riis Nielson
Aarhus University, Denmark

It is often useful to regard the efficient implementation of functional programs as arising
from two stages. The post-processing stage performs a rather naive implementation
whereas the pre-processing stage achieves a better overall result by performing program
transformations.

We shall first discuss this paradigm in the context of binding time analysis. The binding
time analysis will ensure a clear separation between the binding times of interest.

9

However, in doing so, it will often defer too many computations to the base binding
time. To avoid this it is helpful to re-arrange the program before performing the
binding time analysis. We show how the well-formedness rules for the binding times
may be used to derive a disagreement point analysis that explicitly indicates where it
will be beneficial to apply program transformations that change the overall type of the
program. We sketch how the approach may be extended to recognize sub-tasks that
may be performed in parallel on different processors.

In general, program transformations need to exploit the results of abstract interpreta-
tion. In the second part of this talk we take a first step in that direction by restating
Phil Wadler�s strictness analysis for lists in our framework of parameterized semantics.
We succeed in obtaining a composite description of his case analysis using two techni-
ques. One is to approximate the Booleans by a four-point diamond domain rather than
the usual two-point chain domain. The other is to use a kind of inverse cons operation
that maps into a tensor product rather than a cartesian product. We conclude by
discussing the benefits of the parameterized semantics approach to specifying analyses.

On Parallel Evaluation of Expressions
in Function Languages

Hugh Glaser
University of Southampton, UK

Almost since the first introduction of subroutines in computer languages, there has
been widespread discussion of the varieties of evaluation mechanisms for parameters.
The introduction of new and different models from the traditional von Neumann ap-
proach, and more recently the work on parallel execution, has meant that there are
now a large number of terms available to describe the parameter passing mechanisms.
Unfortunately these terms do not describe the complete set of options open to the
language implementor and machine designer and in addition it is now being recognised
that the complexities of the new parallel machines require the ability to describe more
complex evaluation mechanisms. In this paper we look at the situation for functional
languages, focusing on the more general idea of expression evaluation time, part of
which is the parameter evaluation mechanism, and discuss the variety of options that
are available.

10

However, in doing so, it will often defer too many computations to the base binding
time. To avoid this it is helpful to re-arrange the program before performing the
binding time analysis. WP. show how the well-formedness rules for the binding times
may be used to derive a disagreement point analysis that explicitly indicates where it
will be beneficial to apply program transformations that change the overall type of the
program. We sketch how the approach may be extended to recognize sub-tasks that
may be performed in parallel on different processors.

In general, program transformations need to exploit the results of abstract interpreta
tion. In the second part of this talk we take a first step in that direction by restating
Phil Wadler's strictness analysis for lists in our framework of parameterized semantics.
We succeed in obtaining a composite description of his case analysis using two techni
ques. One is to approximate the Booleans by a four-point diamond domain rather than
the usual two-point chain domain. The other is to use a kind of inverse cons operation
that maps into a tensor product rather than a cartesian product. We conclude by
discussing the benefits of the parameterized semantics approach to specifying analyses.

On Parallel Evaluation of Expressions
in Function Languages

Hugh Glaser
University of Southampton, UK

Almost since the first introduction of subroutines in computer languages, there has
been widespread discussion of the varieties of evaluation mechanisms for parameters.
The introduction of new and different models from the traditional von Neumann ap
proach, and more recently the work on parallel execution, has meant that there are
now a large number of terms available to describe the parameter passing mechanisms.
Unfortunately these terms do not describe the complete set of options open to the
language implementor and machine designer and in addition it is now being recognised
that the complexities of the new parallel machines require the ability to describe more
complex evaluation mechanisms. In this paper we look at the situation for functional
languages, focusing on the more general idea of expression evaluation time, part of
which is the parameter evaluation mechanism, and discuss the variety of options that
are available. ·

10

Mapping Functional Programs onto
Parallel Machines

John Darlington
Imperial College, U.K.

We address the problem of how applications can be implemented efficiently on exi-
sting parallel machines without compromising desirable software characteristics such
as comprehensibility, modifiability and portability. Current experience indicates that
explicit control over a machine�s resources is necessary for the ef�cient exploitation of
the available parallelism but if this is achieved through the use of imperative program-
ming languages the programmer�s task becomes very complex.

Our approach is to use functional programming languages to model general parallel
computation and identify the characteristics of particular machines with subsets of
general program forms and to use program transformation to convert general programs
into a form that can be efficiently implemented on the target machine.

The target program forms are represented by a range of program skeletons or hig-
her order functions representing useful algorithms paradigms that can be efficiently
implemented on particular parallel machines. Skeletons have been produced, so far,
for pipeline, mesh, co-operating specialists, divide and conquer and process farms and
a range of transformation algebras have been developed for each particular skeleton.
The skeletons can be implemented sequentially or as specially optimized functions on
particular parallel machines.

Improving Graph Reductions Code by
In-line Expansions of EVALS

Thomas J ohnsson

Glasgow University, U.K. / Chalmers
University, Giiteberg

In imperative programs for e�iciency the bulk of the work is done in relatively big
procedures, and calls and returns are relatively rare. In such situations there are well-
established techniques for generating good machine code, making good use of machine
resources, the registers in particular.

On the other hand, a typical functional program consists of a large number of small
functions. Therefore, the code from functional programs have a much higher call / return
overhead.

11

Mapping Functional Programs onto
Parallel Machines

John Darlington
Imperial College, U .K.

We address the problem of how applications can be implemented efficiently on exi
sting parallel machines without compromising desirable software characteristics such
as comprehensibility, modifiability and portability. Current experience indicates that
explicit control over a machine's resources is necessary for the efficient exploitation of
the available parallelism but if this is achieved through the use of imperative program
ming languages the programmer's task becomes very complex.

Our approach is to use functional programming languages to model general parallel
computation and identify the characteristics of particular machines with subsets of
general program forms and to use program transformation to convert general programs
into a form that can be efficiently implemented on the target machine.

The target program forms are represented by a range of program skeletons or hig
her order functions representing useful algorithms paradigms that can be efficiently
implemented on particular parallel ma.chines. Skeletons have been produced, so far,
for pipeline, mesh, co-opera.ting specialists, divide a.nd conquer and process farms and
a range of transformation algebras have been developed for ea.eh particular skeleton.
The skeletons can be implemented sequentially or as specially optimized functions on
particular parallel ma.chines.

Improving Graph Reductions Code by
In-line Expansions of EVALS

Thomas J ohnsson
Glasgow University, U.K. / Chalmers

University, Goteberg

In imperative programs for efficiency the bulk of the work is done in relatively big
procedures, and calls and returns are relatively rare. In such situations there are well
established techniques for generating good machine code, making good use of machine
resources, the registers in particular.

On the other hand, a typical functional program consists of a large number of small
functions. Therefore, the code from functional programs have a much higher call/return
overhead.

11

A common �trick� in dealing with this overhead is to make function bodies bigger by
doing inline expansion of functional calls. But this is straight forward only if the
applied functional has a �known� body (this rules out functions passed as arguments).
An additional difficulty with this is caused by laziness: in addition to the calls visible
in the source program, the intermediate graph reduction code for lazy programs also
contain a lot of calls to EVAL, making it nearly impossible to use machine registers.

In this work, the intermediate language (called PG-code) is essentially a procedural
version of G-machine code with the G-machine instructions as �three address code�.

An essential feature is that in the PG-code from a functional program, EVAL is an
�ordinary� procedure. It is thus possible to do in-line expansions also of EVAL calls.

Once an in-line expansion of an EVAL call has been made, other improving transfor-
mations present themselves. For instance, we are able to do a transformation to obtain
an analog to what the spineless tagless G-machine does at runtime with its vectored
return mechanism.

Compiling a Functional Language for
Fine-grained Parallelism

Rishiyur S. Nikhil
MIT Laboratory for Computer Science

Fine-grained parallelism is useful in large scale MIMD machines in order to tolerate
long inter-node latencies. If a program is partitioned into many, small threads, each
processor can have an adequate pool of threads to keep it busy even though several
threads may be suspended on inter-node communications.

We are building a compiler to translate non-strict functional languages into �ne-grained
threads. It has three interesting intermediate languages: a Flat First Order Language,
Dataflow Graphs and P-RISC Abstract Machine Code.

After conventional front�end processing (type checking, lambda lifting, case compila-
tion, etc.) we translate the resulting supercombinators into a Flat First-Order Lan-
guage (F F OL), in which all higher order functions and applications have been coded
into explicit closure manipulation operations, with closure representations being chosen
on a case-by-case basis. FFOL expressions are constants, variables, Letrecs, conditio-
nals (case) and simple first order applications.

FF OL code is translated into data�ow graphs (DFG+s) which depict all the explicit
data dependencies as control �ow arcs. Implicit data dependencies (through data
structures) are handled by assuming operators for synchronized access to heap locations
(I-store and I-fetch).

12

A common 'trick' in dealing with this overhead is to make function bodies bigger by
doing inline expansion of functional calls. But this is straight forward only if the
applied functional has a 'known' body (this rules out functions passed as arguments).
An additional difficulty with this is caused by laziness: in addition to the calls visible
in the source program, the intermediate graph reduction code for lazy programs also
contain a lot of calls to EVAL, making it nearly impossible to use machine registers.

In this work , the intermediate language (called PG-code) is essentially a procedural
version of G-machine code with the G-machine instructions as 'three address code' .
An essential feature is that in the PG-code from a functional program, EVAL is an
'ordinary' procedure. It is thus possible to do in-line expansions also of EVAL calls.

Once an in-line expansion of an EVAL call has been made, other improving transfor
mations present themselves. For instance, we are able to do a transformation to obtain
an analog to what the spineless tagless G-machine does at runtime with i ts vectored
return mechanism.

Compiling a Functional Language for
Fine-grained Parallelism

Rishiyur S. Nikhil
MIT Laboratory for Computer Science

Fine-grained parallelism is useful in large scale MIMD machines in order to tolerate
long inter-node latencies. If a program is partitioned into many, small threads, each
processor can have an adequate pool of threads to keep it busy even though several
threads may be suspended on inter-node communications.

We are building a compiler to translate non-strict functional languages into fine-grained
threads. It has three inter'!sting intermediate languages: a Flat First Order Language,
Dataflow Graphs and P-RTSC Abstract Machine Code.

After conventional front-end processing (type checking, lambda lifting, case compila
tion, etc.) we translate the resulting supercombinators into a Flat First-Order Lan
guage (FFOL), in which all higher order functions and applications have been coded
into explicit closure manipulation operations, with closure representations being chosen
on a case-by-case basis . FFOL expressions are constants, variables, Letrecs, conditio
nals (case) and simple first order applications.

FFOL code is translated into dataflow graphs (DFG+s) which depict all the explicit
data dependencies as control flow arcs. Implicit data dependencies (through data
structures) are handled by assuming operators for synchronized access to heap locations
(I-store and I-fetch).

12

The DFG is translated into code for the P-RISC abstract machine, which makes explicit
the threads in the DFG and their synchronization, the frame locations needed by a
procedure, and the procedure calling conventions. P-RISC code is close to conventional
RISC code.

Finally, P-RISC code is translated into native code for various existing machines and
for some new, multi-threaded architectures.

A prototype of the compiler has been implemented, up to the generation of P-RISC
code. We hope to complete a P-RISC to C back end in the next few months, and
to improve the optimizations at each stage. After this, we can begin performance
evaluations and experiments in resource management.

Provably Correct Compilation of
Functional Programs

Flemming Nielson
Aarhus University, Denmark

Functional languages like Miranda and Haskell employ a non-strict semantics. This is
important for the functional programming style as it allows one to compute with infinite
data structures. However, a straight-forward implementation of the language will result
in a rather inefficient implementation. In this talk we consider the compilation from a
large (categorical) combinator notation to a version of the categorical abstract machine.

In the �rst part we consider ways of reducing the number of DELAY and RESUME
instructions generated in the naive approach. One scheme exploits the use of local
strictness information and another the use of strictness information as right context.
Together they allow to avoid generating a good part of the super�uous DELAY in-
structions. Combined with a notion of evaluation degrees as left context this allows
also to avoid generating a good part of the super�uous RESUME instructions. For
the factorial program they result in the same code as would have been produced in an
eager scheme.

In the second part we consider the correctness of the compilation. Even the well-
behavedness of the code generated in the naive approach is surprisingly hard to ensure.
We show how the techniques of Kripke-like relations indexed by a two-level type struc-
ture may be used to overcome this.

13

The DFG is translated into code for the P-RISC abstract machine, which makes explicit
the threads in the DFG and their synchronization, the frame locations needed by a
procedure, and the procedure calling conventions. P-RISC code is close to conventional
RISC code.

Finally, P-RISC code is t ranslated into native code for various existing machines and
for some new, multi-threaded architectures.

A prototype of the compiler has been implemented, up to the generation of P-RISC
code. We hope to complete a P-RISC to C back end in the next few months, and
to improve the optimizations at each stage. After this, we can begin performance
evaluations and experiments in resource management.

Provably Correct Compilation of
Functional Programs

Flemming Nielson
Aarhus University, Denmark

Functional languages like Miranda and Haskell employ a non-strict semantics. This is
important for the functional programming style as it allows one to compute with infinite
data structures. However, a straight-forward implementation of the language will result
in a rather inefficient implementation . In this talk we consider the compilation from a
large (categorical) combinator notation to a version of the categorical abstract machine.

In the first part we consider ways of reducing the number of DELAY and RESUME
instructions generated in the naive approach. One scheme exploits the use of local
strictness information and another the use of strictness information as right context.
Together they allow to avoid generating a good part of the superfluous DELAY in
structions. Combined with a notion of evaluation degrees as left context this allows
also to avoid generating a good part of the superfluous RESUME instructions. For
the factorial program they result in the same code as would have been produced in an
eager scheme.

In the second part we consider the correctness of the compilation. Even the well
behavedness of the code generated in the naive approach is surprisingly hard to ensure.
We show how the t echniques of Kripke-like relations indexed by a two-level type struc
ture may be used to overcome this.

13

Ultimate GOTO Considered Interesting
(Work in Progress)

Lennart Augustsson
Chalmers University, Sweden

In constructive type theory you write programs by first writing the speci�cation in a
(kind of) predicate logic. The next step is to prove that the speci�cation, viewed as a
logical proposition, is true. Since each proof rule corresponds to a program construct,
it is then possible to extract a program from this proof. This corresponds to the other
view of the logic: viewing propositions as sets and programs as elements in the sets.

There are an (in�nite) number of propositions that can be proved by classical logic,
but not by constructive logic. The most well known is the law of excluded middle,
A V -«A (as usual �A E A �+ 0, where 0 is the false proposition or the empty set). The
proposition ((A �-> B) �> A) �> A is called Pierce�s axiom, and it is valid classically but
not constructively (using it the law of excluded middle can be proved and vice versa).

The language Scheme has a primitive function ca11/ cc. This may be considered as the
ultimate goto. Ca11/ cc sets up a �label� in the computation to which later computations
may �jump�. The continuation style denotational semantics for call/ cc is very simple,
it just takes the current continuation and gives it to its argument. The type of call/cc

is((A�>B)�+A)-+A.

This suggests a connection between Pierce�s axiom, i.e. classical logic, and call/cc.
Using ca11/ cc as the realizer for Pierce�s axiom it is possible to extract programs
from classical proofs. A number of classical propositions give rise to quite reasonable
programs. E.g. (A �-> (B V C)) �> ((A -> B) V C), which gives a kind of error handler.

Using call/cc will not really give any new expressive power because it is possible to
run a program with ca11/ cc in a language without ca11/ cc by writing an interpreter.
The advantage is that the program with call/cc is simpler.

Continuation-Based Parallel

Implementation of Functional
Languages

J-F Giorgi and D. le Métayer
IRISA/INRIA, Rennes, France

14

Ultimate GOTO Considered Interesting
(Work in Progress)

Lennart Augustsson
Chalmers University, Sweden

In constructive type theory you write programs by first writing the specification in a
(kind of) predicate logic. The next step is to prove that the specification, viewed as a
logical proposition, is true. Since each proof rule corresponds to a program construct,
it is then possible to extract a program from this proof. This corresponds to the other
view of the logic: viewing propositions as sets and programs as elements in the sets.

There are an (infinite) number of propositions that can be proved by classical logic,
but not by constructive logic. The most well known is the law of excluded middle,
AV -,A (as usual -,A = A --t 0, where 0 is the false proposition or the empty set) . The
proposition ((A --t B) --t A) --t A is called Pierce's axiom, and it is valid classically but
not constructively (using it the law of excluded middle can be proved and vice versa).

The language Scheme has a primitive function call/ cc . This may be considered as the
ultimate goto. Call/ cc sets up a 'label' in the computation to which later computations
may "jump". The continuation style denotational semantics for call/ cc is very simple,
it just takes the current continuation and gives it to its argument. The type of call/ cc
is ((A --t B) --t A)-. A.

This suggests a connection between Pierce's axiom, i.e. classical logic, and call/ cc.
Using call/cc as the realizer for Pierce's axiom it is possible to extract programs
from classical proofs. A number of classical propositions give rise to quite reasonable
programs. E.g. (A-. (B V C)) -. ((A-. B) V C), which gives a kind of error handler.

Using call/cc will not really give any new expressive power because it is possible to
run a program with call/cc in a language without call/cc by writing an interpreter.
The advantage is that the program with call/cc is simpler.

Continuation-Based Parallel
Implementation of Functional

Languages

J-F Giorgi and D. le Metayer
IRISA/INRIA, Rennes, France

14

Using the concept of continuation, we have designed a sequential compiler for functional
languages based on successive program transformations. The output of the compiler,
while still in a functional language, can be seen as traditional machine code. Continua-
tions are used to model the computation rule of the language (a simple x\-calculus with
constants and call-by-value). We propose here an extension of the role of continuations
for a parallel implementation; all control transfers are continuations, exportable tasks
are continuations, exported tasks are replaced in the stack by continuations which are
executed if the processor reaches the continuation before its result is returned, the task
of sending the result to the original processor is the continuation of the exported task.
As a result of this policy, there is no task management system in our implementation
and the code produced for an inherently sequential program is exactly the code pro-
duced by the sequential version of the compiler and almost no overhead is incurred for
the creation of tasks. The first results are promising but a full-scale implementation
of a real language with complex data structures and call-by-need is necessary to fully
assess this approach.

Work in Progress on Compiling
Caliban

Paul Kelly
Imperial College, U.K.

The aim of this work is to develop powerful, simple tools to aid programmers in exploi-
ting the capabilities of existing parallel processors. The goal is to give the programmer
enough control over the machine to get the performance of which it is capable, while
providing the maximum level of assistance with abstraction mechanisms in the pro-

gramming language.

This talk concerns Caliban, a declarative annotation language which� augments a pure
functional language. Caliban annotations in their simplest form resemble Peyton Jones�
�Spark�s, or Halsteads �Futures�. The difference is that in Caliban annotations are
collected in a declarative description of the �processor network� to be created. The
annotations take the form of assertions about placement and communications, and
these assertions can be generated by user-de�ned functions. This allows networks
to be parameterized, and enables recurring structures to be captured using �network

forming operators�.

The work reported in this talk is aimed at the simple case where a program has a
static process network. This occurs just when the program can be simplified by partial
evaluation to a basic �normal� sublanguage. In this case, a network of communicating
functional processes (in fact a Kahn network), can be derived. Unfortunately, this

15

Using the concept of continuation, we have designed a sequential compiler for functional
languages based on successive program transformations. The output of the compiler,
while still in a functional language, can be seen as traditional machine code. Continua
tions are used to model the computation rule of the language (a simple >.-calculus with
constants and call-by-value). We propose here an extension of the role of continuations
for a parallel implementation; all control transfers are continuations, exportable tasks
are continuations, exported tasks are replaced in the stack by continuations which are
executed if the processor reaches the continuation before its result is returned, the task
of sending the result to the original processor is the continuation of the exported task.
As a result of this policy, there is no task management system in our implementation
and the code produced for an inherently sequential program is exactly the code pro
duced by the sequential version of the compiler and almost no overhead is incurred for
the creation of tasks. The first results are promising but a full-scale implementation
of a real language with complex data structures and call-by-need is necessary to fully
assess this approach.

Work in Progress on Compiling
Caliban

Paul Kelly
Imperial College, U .K.

The aim of this work is to develop powerful, simple tools to aid programmers in exploi
ting the capabilities of existing parallel processors. The goal is to give the programmer
enough control over the machine to get the performance of which it is capable, while
providing the maximum level of assistance with abstraction mechanisms in the pro
gramming language.

This talk concerns Cali ban, a declarative annotation language which· augments a pure
functional language. Caliban annotations in their simplest form resemble Peyton Jones,
"Spark" s, or Halsteads "Futures,,. The difference is that in Cali ban annotations are
collected in a declarative description of the "processor network,, to be created. The
annotations take the form of assertions about placement and communications, and
these assertions can be generated by user-defined functions. This allows networks
to be parameterized, and enables recurring structures to be captured using "network
forming operators".

The work reported in this talk is aimed at the simple case where a program has a
static process network. This occurs just when the program can be simplified by partial
evaluation to a. basic "normal,, sublanguage. In this case, a network of communicating
functional processes (in fact a Kahn network), can be derived. Unfortunately, this

15

process does not easily lead directly to sequential Kahn processes. The problem occurs,
for example, when a processor has two output streams: there is no sequential reduction
order for the processor which both respects termination semantics, and exploits vertical
parallelism. We are thus forced either to use a parallel reduction strategy, with two
fairly-scheduled reduction processes, or to avoid pre-computing a value of either output
stream until a demand token is received determining which is needed.

An alternative view is that the programmer should control this behaviour explicitly,
for example by rewriting the program so that a stream of pairs is communicated rather
than a pair of streams.

Binding-time Improvement for Free!

Carsten-Kehler Holst and John Hughes
University of Glasgow

Any curried function may contain expressions that depend only on the earlier pa-
rameters. When such a function is partially applied, the evaluation of these static
expressions may be shared between all calls of the partial application. Fully lazy
implementations and partial evaluators take advantage of this possibility to realise
signi�cant performance improvements.

Unfortunately, staticness is a delicate property. In practice, programs intended for
partial evaluation must be carefully tweaked to improve their binding-times. This
process is tricky, error-prone, and tedious.

We are interested in transformations that improve binding-times. One useful class
of transformations is the �commutative� laws, which enable static operations to be
brought closer to static data, thus enlarging the static parts of the computation. But
there are an unlimited number of such laws.

We have examined the possibility of using only laws that follow from the polymorphic
types of functions, a la Wadler�s �Theorems for Freel�. In the case of first order
functions, the �free theorem� is just a commutative law. For higher�order functions,
the free theorem is a conditional commutative law, which can be used for transformation
once the conditions are solved for function-valued unknowns. We have de�ned a pre-
order on functions which allows these conditions to be expressed as a number of lower
bounds for the unknowns; these can be solved by taking lubs.

We have applied these techniques to a number of examples, including transforming an
interpreter into a compiler. These examples show that free theorems suffice to make
signi�cant binding-time improvements. An automated binding-time improver based on
this work seems feasible, and would be a useful programming tool.

16

process does not easily lead directly to sequential Kahn processes. The problem occurs,
for example, when a processor has two output streams: there is no sequential reduction
order for the processor which both respects termination semantics, and exploits vertical
parallelism. We are thus forced either to use a parallel reduction strategy, with two
fairly-scheduled reduction processes, or to avoid pre-computing a value of either output
stream until a demand token is received determining which is needed.

An alternative view is that the programmer should control this behaviour explicitly,
for example by rewriting the program so that a stream of pairs is communicated rather
than a pair of streams.

Binding-time Improvement for Free!

Carsten-Kehler Holst and John Hughes
Unive rsity of Glasgow

Any curried function may contain expressions that depend only on the earlier pa
rameters. When such a function is partially applied, the evaluation of these static
expressions may be shared between all calls of the partial application. Fully lazy
implementations and partial evaluators take advantage of this possibility to realise
significant performance improvements.

Unfortunately, staticness is a delicate property. In practice, programs intended for
partial evaluation must be carefully tweaked to improve their binding-times. This
process is tricky, error-prone, and tedious.

We are interested in transformations that improve binding-times. One useful class
of transformations is the "commutative" laws , which enable static operations to be
brought closer to static data, t hus enlarging the static parts of the computation. But
there are an unlimited number of such laws.

We have examined the possibility of using only laws that follow from the polymorphic
types of functions, a la Wadler's "Theorems for Free!". In the case of first order
functions, the "free theorem" is just a commutative law. For higher-order functions,
the free theorem is a conditional commutative law, which can be used for transformation
once the conditions are solved for function-valued unknowns. We have defined a pre
order on functions which allows these conditions to be expressed as a number of lower
bounds for the unknowns; these can be solved by taking lubs.

We have applied these techniques to a number of examples, induding transforming an
interpreter into a compiler. These examples show that free theorems suffice to make
significant binding-t ime improvements. An automated binding-time improver based on
this work seems feasible, and would be a useful programming tool.

16

The Implementation of Functional
Logic Languages

Hendrik C.R. Lock

GMD National Research Laboratory, University
of Karlsruhe

Functional Logic Languages combine the features of the two main declarative program-
ming paradigms. A whole bunch of such languages has been proposed over the recent
years. On one side of the spectrum we �nd Horn logic languages extended by functional
features, and on the other end generalizations of functional languages by uni�cation
and non-determinism. Their operational models involve deterministic and ambiguous
term rewriting, narrowing and SLD resolution.

In order to characterize different classes of such languages by their operational seman-
tics, a calculus was presented which consists of a syntax �Co and a reduction semantics.
This base calculus is an extension of the /\-calculus by: 1st order terms, logical va-
riables, 1st order uni�cation (which subsumes pattern matching), a choice operator,
a guard operator and conjunction. In particular, its reduction semantics preserves
sharing wrt. substitution. Then, a language class is de�ned by some (abstract) syntax
L, and by a translation of [.3 into �Co.

Furthermore, a general implementation technique was presented which supports each
of the features contained in the base calculus including all of their combinations. It _
consists of a design space of abstract machines, each of them supporting a particular
combination. Thus, a direct correspondence is obtained between the language classes
and abstract machines implementing them.

The design space consists of a core machine and orthogonal extensions. The core is
derived by unifying the common principles of functional and logic machines, and it
turns out to be the �classical� ALGOL 60 technology underlying the implementations
of procedural languages. Accordingly, the core supports all features of first order func-
tional languages. The four extensions respectively implement lazyness, higher order
functions, uni�cation, and backtracking.

An instance of this design principle is the J UMP-machine which integrates the core and
all extensions. It implements the class based on combinations of reduction, uni�cation
and SLD resolution. It also has been shown how another simple extension suffices for
correct and complete implementations of lazy narrowing.

The careful design of the JUMP machine shows that the logical support does not
introduce run-time overhead whenever ground term reduction is performed. In this
case we can expect that the efficiency of functional machines such as the �Spineless

17

The Implementation of Functional
Logic Languages

Hendrik C.R. Lock
GMD National Research Laboratory, University

of Karlsruhe

Functional Logic Languages combine the features of the two main declarative program
ming paradigms. A whole bunch of such languages has been proposed over the recent
years. On one side of the spectrum we find Horn logic languages extended by functional
features, and on the other end generalizations of functional languages by unification
and non-determinism. Their operational models involve deterministic and ambiguous
term rewriting, narrowing and SLD resolution.

In order to characterize different classes of such languages by their operational seman
tics, a calculus was presented which consists of a syntax £ 0 and a reduction semantics.
This base calculus is an extension of the >.-calculus by: 1st order terms, logical va
riables, 1st order unification (which subsumes pattern matching), a choice operator,
a guard operator and conjunction. In particular, its reduction semantics preserves
sharing wrt. substitution. Then, a language class is defined by some (abstract) syntax
£z and by a translation of £z into £ 0 •

Furthermore, a general implementation technique was presented which supports each
of the features contained in the base calculus including all of their combinations. It
consists of a design space of abstract machines , each of them supporting a particular
combination. Thus, a direct correspondence is obtained between the language classes
and abstract machines implementing them.

The design space consists of a core machine and orthogonal extensions. The core is
derived by unifying the common principles of functional and logic machines, and it
turns out to be the "classical" ALGOL 60 technology underlying the implementations
of procedural languages. Accordingly, the core supports all features of first order func
tional languages. The four extensions respectively implement lazyness, higher order
Junctions, unification, and backtracking.

An instance of this design principle is the JUMP-machine which integrates the core and
all extensions. It implements the class based on combinations of reduction, unification
and SLD resolution. It also has been shown how another simple extension suffices for
correct and complete implementations of lazy narrowing.

The careful design of the JUMP machine shows that the logical support does not
introduce run-time overhead whenever ground term reduction is performed. In this
case we can expect that the efficiency of functional machines such as the "Spineless

17

Tagless G-Machine� can be preserved. The effect on memory consumption is not yet
known, at least it is clear that deallocation becomes much more involved. The logical
parts of the machine are efficiently designed by following the principles of the �Warren
Abstract Machine�.

Distributed Applicative Arrays

Herbert Kuchen

RWTH Aachen, Germany

Lists, the typical data structure of functional languages, force a sequential treatment
of their elements and are hence badly suited for parallel implementations. Some other
applicative data structures are proposed, which are appropriate for implementations of
such languages on loosely coupled multiprocessor systems. Besides so called sequences,
i.e. list-like structures internally implemented by binary trees, we mainly consider dis-
tributed applicative arrays (DAA�s).

A DAA is distributed among the stores of the processing units. Each element is accessed
via its virtual address. Each processing unit maintains a table which translates the
virtual address of the accessor is stored and later on used to transmit a copy of the
element, when it is ready.

For functions like map, fold, and zip, DAA�s have the advantage that the number of
messages only depends on the number of processing elements, not on the number of
DAA elements. This is not the case if lists or sequences are used.

For some example programs DAA�s were between 4 and 16 times faster than sequences.
The experiments were performed on a system with 1, 12, 48 and 64 processors respec-
tively. The implementation is based on the parallel abstract machine PAM, which uses
programmed graph reduction.

Extending a Graph Reduction
Machine for the Implementation of a

Functional Logic Language

Rita Loogen
RWTH, Aachen

The talk presents joint work with Herbert Kuchen (RWTH Aachen), Juan Jose Moreno-
Navarro (Madrid) and Mario Rodriguez Artalejo (Madrid).

18

Tagless G-Machine" can be preserved. The effect on memory consumption is not yet
known, at least it is clear that deallocation becomes much more involved. The logical
parts of the machine are efficiently designed by following the principles of the "Warren
Abstract Machine".

Distributed Applicative Arrays

Herbert Kuchen
RWTH Aachen, Germany

Lists, the typical data structure of functional languages, force a sequential treatment
of their elements and are hence badly suited for parallel implementat ions. Some other
applicative data structures are proposed, which are appropriate for implementations of
such languages on loosely coupled multiprocessor systems. Besides so called sequences,
i.e . list-like structures internally implemented by binary trees, we mainly consider dis
tributed applicative arrays (DAA's).

A DAA is distributed among the stores of the processing units. Each element is accessed
via its virtual address. Each processing unit maintains a table which translates the
virtual address of the accessor is stored and later on used to transmit a copy of the
element, when it is ready.

For functions like map, fold, and zip, DAA's have the advantage that the number of
messages only depends on the number of processing elements, not on the number of
DAA elements. This is not the case if lists or sequences are used.

For some example programs DAA's were between 4 and 16 times faster than sequences.
The exper iments were performed on a system with 1, 12, 48 and 64 processors respec
tively. The implementation is based on the parallel abstract machine PAM, which uses
programmed graph reduction.

Extending a Graph Reduction
Machine for the Implementation of a

Functional Logic Language

Rita Loogen
RWTH, Aachen

The talk presents joint work with Herbert Kuchen (RWTH Aachen), Juan Jose Moreno
Navarro (Madrid) and Mario Rodr{guez Artalejo (Madrid).

18

During the last years, several approaches have been proposed to achieve an integration
of functional and logic programming languages in order to combine the advantages of
the two main declarative programming paradigms in a single framework. The so-called
functional logic languages retain functional syntax but use narrowing�an evaluation
mechanism that uses uni�cation instead of pattern matching for parameter passing-as
operational semantics.

We present an implementation of the higher-order lazy functional logic language BABEL
on (the sequential kernel of) a parallel graph reduction machine that has been extended
by the logic features, namely uni�cation and backtracking.

Lazy evaluation is supported by an automatic transformation that eliminates non-
flat sub-uni�able program rules. The resulting program allows an easy determination
of demanded arguments of a function symbol f, because in either all or none of the
program rules for the formal parameter is a non-variable term.

Finally, we discuss the possibilities to exploit implicit parallelism in the functional logic
framework.

Some Early Experiments on GRIP

Kevin Hammond and Simon Peyton-Jones
Glasgow University, U.K. E

GRIP is a multiprocessor designed to execute functional programs in parallel using
graph reduction. We have implemented a compiler for GRIP, based on the Spineless
Tagless G-Machine, and can now run parallel functional programs with substantial
absolute speedup over the same program running on a uniprocessor Sun.

Parallel functional programming shifts some of the burden of resource allocation from
the programmer to the system. Examples of such decisions include when to create a new
concurrent activity (or thread), when to execute such threads, where to execute them,
and so on. It is clearly desirable that the system should take such decisions, provided
it does a good enough job. The big question for parallel functional programming is
whether good resources allocation strategies exist, and how well they perform under a
variety of conditions.

Now that we have an operational system, we are starting to carry out experiments
to develop resource-allocation strategies, and measure their effectiveness. This talk
reported on some very preliminary results, mainly concerning the issue of when, or
even whether, to create a new thread. This is an aspect which has so far received
little attention�other work has focussed mainly on load sharing rather than thread
creation.

19

During the last years, seve:::al approaches have been proposed to achieve an integration
of functional and logic programming languages in order to combine the advantages of
the two main declarative programming paradigms in a single framework. The so-called
functional logic languages retain functional syntax but use narrowing-an evaluation
mechanism that uses unification instead of pattern matching for parameter passing-as
operational semantics.

We present an implementation of the higher-order lazy functional logic language BABEL

on (the sequential kernel of) a parallel graph reduction machine that has been extended
by the logic features, namely unification and backtracking.

Lazy evaluation is supported by an automatic transformation that eliminates non
flat sub-unifiable program rules . The resulting program allows an easy determination
of demanded arguments of a function symbol f, because in either all or none of the
program rules for the formal parameter is a non-variable term.

Finally, we discuss the possibilities to exploit implicit parallelism in the functional logic
framework.

Some Early Experiments on GRIP

Kevin Hammond and Simon Peyton-Jones
Glasgow University, U.K.

GRIP is a multiprocessor designed to execute functional programs in parallel using
graph reduction. We have implemented a compiler for GRIP, based on the Spineless
Tagless G-Machine, and can now run parallel functional programs with substantial
absolute speedup over the same program running on a uniprocessor Sun.

Parallel functional programming shifts some of the burden of resource allocation from
the programmer to the system. Examples of such decisions include when to create a new
concurrent activity (or thread), when to execute such threads, where to execute them,
and so on. It is clearly desirable that the system should take such decisions, provided
it does a good enough job. The big question for parallel functional programming is
whether good resources allocation strategies exist, and how well they perform under a
variety of conditions.

Now that we have an operational system, we are starting to carry out experiments
to develop resource-allocation strategies, and measure their effectiveness. This talk
reported on some very preliminary results, mainly concerning the issue of when, or
even whether, to create a new thread. This is an aspect which has so far received
little attention-other work has focussed mainly on load sharing rather than thread
creation.

19

Our results con�rm the importance of effective throttling strategies to limit parallelism,
especially ones capable of adapting dynamically to the characteristics of a particular
program. Simple strategies give useful improvements, but much work is needed to re�ne
these strategies. as we make improvements based on the statistics we have gathered,
so the performance of normal functional programs should improve.

Probabilistic Load Balancing for
Parallel Graph Reduction

Helmut Seidl and Reinhard Wilhelm

Universität des Saarlandes, Germany.

We analyze simple probabilistic implementations of (slightly restricted) parallel graph
rewriting both on a shared memory architecture like a PRAM and a more realistic
distributed memory architecture like a transputer network.

Graph rewriting is executed in cycles where every cycle consists in the execution of
all the tasks presently available in the graph. Assume there are p processors and N
executable tasks in the cycle. We are able to show: the PRAM can execute the cycle
in (optimal) time 0(%) with high probability provided N = 9(1)� log p), whereas a
processor net can execute the cycle in time O(%log p) with high probability using
chunks of messages of size 0(-1%) if only N = Q(plog p).

Implementation of A Parallel
Functional Language

Martin Rab er

Universität Saarbrücken

Our approach to the implementation of a parallel functional language is shown. It
is based on a parallel abstract machine which is a straightforward parallelization of
J ohnsson�s G-machine modi�ed due to some observations Fairbairn and Wray made in
their Tim article.

The presentation is divided into three parts :

o The parallel functional language and its compilation to machine code.

o Some features of the abstract machine.

20

Our results confirm the importance of effective throttling strategies to limit parallelism,
especially ones capable of adapting dynamically to the characteristics of a particular
program. Simple strategies give useful improvements, but much work is needed to refine
these strategies. as we make improvements based on the statistics we have gathered,
so the performance of normal functional programs should improve.

Probabilistic Load Balancing for
Parallel Graph Reduction

Helmut Seidl and Reinhard Wilhelm
Universitiit des Saarlandes, Germany.

We analyze simple probabilistic implementations of (slightly restricted) parallel graph
rewriting both on a shared memory architecture like a PRAM and a more realistic
distributed memory architecture like a transputer network.

Graph rewriting is executed in cycles where every cycle consists in the execution of
all the tasks presently available in the graph. Assume there are p processors and N
executable tasks in the cycle. We are able to show: the PRAM can execute the cycle
in (optimal) time O(N) with high probability provided N = O(p2 logp), whereas a

p

processor net can execute the cycle in time 0(; log p) with high probability using
chunks of messages of size 0(N) if only N = O(p log p). p

Implementation of A Parallel
Functional Language

Martin Raber
Universitiit Saarbriicken

Our approach to the implementation of a parallel functional language is shown. It
is based on a parallel abstract machine which is a straightforward parallelization of
Johnsson's G-machine modified due to some observations Fairbairn and Wray made in
their Tim article.

The presentation is divided into three parts :

• The parallel functional language and its compilation to machine code.

• Some features of the abstract machine.

20

o The realization of that machine on a transputer network.

A Pragmatic Approach to the Analysis
and Compilation of Lazy Functional

Languages

Hugh Glaser, Pieter Hartel and John Wild
University of Southampton, U.K.

The aim of the FAST Project is to provide an implementation of the functional lan-
guage Haskell on a transputer array. An important component of the system is a
highly optimizing compiler for Haskell to a single transputer. This talk presents a
methodology for describing the optimizations and code generation for such a compiler,
which allows the exploitation of many standard and some new techniques in a clear
and concise notation. Results are included showing that the optimizations give signi-
�cant improvement over the standard combinator and (Johnsson�s 1984) G-machine
implementations.

Compiling Functional Languages Based
On Graph Rewriting

John Glauert

University of East Anglia, Norwich, U.K.

We extend techniques of Kennaway (TCS�90) to allow a general functional program ex-
pressed as a Term Graph Rewriting System to be transformed to a much simpler TGRS
which may be converted to machine code directly. Programs may also be executed in
the practical graph rewriting language, Dactl.

The key technique is to separate pattern matching of rules from evaluation of argu-
ments, ensuring that arguments are sufficiently evaluated before a rule is invoked.
Information about the degree of evaluation enables optimization to be made so that
the resulting rules have a data�ow style.

We use a rewriting framework in order to allow programs to be reasoned about and
transformed. First-order functions are handled, but rules to ��atten� higher-order pro-
grams exist.

21

• The realization of that machine on a transputer network.

A Pragmatic Approach to the Analysis
and Compilation of Lazy Functional

Languages

Hugh Glaser, Pieter Hartel and John Wild
University of Southampton, U.K.

The aim of the FAST Project is to provide an implementation of the functional lan
guage Haskell on a transputer array. An important component of the system is a
highly optimizing compiler for Haskell to a single transputer. This talk presents a
methodology for describing the optimizations and code generation for such a compiler,
which allows the exploitation of many standard and some new techniques in a clear
and concise notation. Results are included showing that the optimizations give signi
ficant improvement over the standard combinator and (Johnsson's 1984) G-machine
implementations.

Compiling Functional Languages Based
On Graph Rewriting

John Glauert
University of East Anglia, Norwich, U .K.

We extend techniques of Kennaway (TCS'90) to allow a general functional program ex
pressed as a Term Graph Rewriting System to be transformed to a much simpler TGRS
which may be converted to machine code directly. Programs may also be executed in
the practical graph rewriting language, Dactl.

The key technique is to separate pattern matching of rules from evaluation of argu
ments, ensuring that arguments are sufficiently evaluated before a rule is invoked.
Information about the degree of evaluation enables optimization to be made so that
the resulting rules have a dataflow style.

We use a rewriting framework in order to allow programs to be reasoned about and
transformed. First-order functions are handled, but rules to 'flatten' higher-order pro
grams exist.

21

Concurrent Functional Programming

Rinus Plasmeijer and Marko van Eekelen
University of Nijmegen, The Netherlands

The primitives for process creation in the functional language Concurrent Clean already
enable the speci�cation of all kinds of process behaviour. However, for an average pro-
grammer it is difficult to get a clear view of the process structure being de�ned. Higher
level primitives with a restricted power are needed to allow functional programmers
to de�ne relatively simple kinds of dynamically changeable process behaviour. Two
such primitives are proposed with which the potential power of concurrent functio-
nal programming is demonstrated. In a concurrent functional language processes are
functions that are executed concurrently. By using mutual recursion arbitrary depen-
dencies between these functions can be speci�ed thus creating a way to de�ne arbitrary,
possibly cyclic, process networks. The communication between the processes is de�ned
implicitly and it is driven by the lazy evaluation order. No extra primitives for com-
munication are needed: communication takes place when a process demands a value
that is being calculated by another process. An important aspect of the introduced
primitives is that in contrast with the primitives of Concurrent Clean they force eva-
luation of the indicated expressions to normal form instead of the root normal form (a
weak head normal form). The user has to take care with help of a strictness analyzer
that the semantics are not changed.

Concurrent Clean�-Status Report

Rinus Plasmeijer, Marko van Eekelen, Erik
Nocker and Sjaah Smetsers

University of Nijmegen, The Netherlands

Concurrent Clean is a lazy, high-order functional language based on Term Graph Re-
writing Systems. Clean has an explicit notion of sharing and copying graph structures.�
The language includes Modula2-like modules and a Milner-Mycroft type system with
algebraic, synonym and abstract types.

The language is designed to let the programmer explicitly control the reduction order
via annotations. Lazy evaluation can be turned into eager evaluation, (partially) strict
datatypes can be speci�ed. �Parallel evaluation can be de�ned using the concept of
lazy copying in the semantics. Two annotations to spark off processes are employed:
one with which a parallel process can be created on another processor, one with which

22

Concurrent Functional Programming

Rinus Plasmeijer and Marko van Eekelen
University of Nijmegen, The Netherlands

The primitives for process creation in the functional language Concurrent Clean already
enable the specification of all kinds of process behaviour. However, for an average pro
grammer it is difficult to get a clear view of the process structure being defined. Higher
level primitives with a restricted power are needed to allow functional programmers
to define relatively simple kinds of dynamically changeable process behaviour. Two
such primitives are proposed with which the potential power of concurrent functio
nal programming is demonstrated. In a concurrent functional language processes are
functions that are executed concurrently. By using mutual recursion arbitrary depen
dencies between these functions can be specified thus creating a way to define arbitrary,
possibly cyclic, process networks. The communication between the processes is defined
implicitly and it is driven by the lazy evaluation order. No extra primitives for com
munication are needed: communication takes place when a process demands a value
that is being calculated by another process. An important aspect of the introduced
primitives is that in contrast with the primitives of Concurrent Clean they force eva
luation of the indicated expressions to normal form instead of the root normal form (a
weak head normal form). The user has to take care with help of a strictness analyzer
that the semantics are not changed.

Concurrent Clean-Status Report

Rinus Plasmeijer, Marko van Eekelen, Erik
N ocker and Sjaah Smetsers

University of Nijmegen, The Netherlands

Concurrent Clean is a lazy, high-order functional language based on Term Graph Re
writing Systems. Clean has an explicit notion of sharing and copying graph structures.
The language includes Modula2-like modules and a Milner-Mycroft type system with
algebraic, synonym and abstract types.

The language is designed to let the programmer explicitly control the reduction order
via annotations. Lazy evaluation can be turned into eager evaluation, (partially) strict
datatypes can be specified. · Parallel evaluation can be defined using the concept of
lazy copying in the semantics. Two annotations to spark off processes are employed:
one with which a parallel process can be created on another processor, one with which

22

an interleaved process can be created on the same processor. For the communication
between parallel executing processes a copy of a graph structure is made in such a way
that the indicated graph is copied upto the nodes where other processes are executing.
Lazy copying makes it possible to choose between shipping data or shipping work.
Dynamically changeable arbitrary process networks can be speci�ed.

The Concurrent Clean system includes a powerful and fast strictness analyzer based on
abstract reduction. Clean is compiled to abstract machine code (PABC machine). A
simulator is available that simulates the parallel behaviour (runs on Mac, Sun, Atari,
PC). A code generator for MacII and Sun3 is available that generates very good code:
n�b 303,000 calls per second on MacIIx (MPW-C runs at 180,000 calls per sec.). Fast
Fourier of 8>< 1024 elements cost 16 seconds + 19 seconds garbage collection (The
corresponding imperatively-written C program takes 8 seconds). So, the performance
of Concurrent Clean programs is becoming comparable with C.

23

an interleaved process can be created on the same processor. For the communication
between parallel executing processes a copy of a graph structure is made in such a way
that the indicated graph is copied upto the nodes where other processes are executing.
Lazy copying makes it possible to choose between shipping data or shipping work.
Dynamically changeable arbitrary process networks can be specified.

The Concurrent Clean system includes a powerful and fast strictness analyzer based on
abstract reduction. Clean is compiled to abstract machine code (PABC machine). A
simulator is available that simulates the parallel behaviour (runs on Mac, Sun, Atari,
PC). A code generator for Madi and Sun3 is available that generates very good code:
nfib 303,000 calls per second on Macllx (MPW-C runs at 180,000 calls per sec.). Fast
Fourier of 8x 1024 elements cost 16 seconds + 19 seconds garbage collection (The
corresponding imperatively-written C program takes 8 seconds). So, the performance
of Concurrent Clean programs is becoming comparable with C.

23

Bisher erschienene Titel:

W. Gentzsch, W.J. Paul:

Architecture and Performance, Dagstuhl-Seminar-Report 1 (9025),
18.6.1990 - 20.6.1990

K. Harbusch, W. Wahlster:

Tree Adjoining Grammars, 1st. Intemationa1Worshop on TAGs: Formal Theory
and Application, Dagstuhl-Serninar-Report 2 (9033),
15.8.1990 - 17.8.1990

Ch. Hankin, R. Wilhelm:

Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report 3
(9036), 3.9.1990 - 7.9.1990

H. Alt, E. Welzl:

Algorithmic Geometry, Dagstuhl-Seminar-Report 4 (9041),
8.10.1990 - 12.10.1990

Bisher erschienene Titel:

W. Gentzsch, W.J. Paul:

Architecture and Performance, Dagstuhl-Seminar-Report 1 (9025),
18.6.1990 - 20.6.1990

K. Harbusch, W. Wahlster:

Tree Adjoining Grammars, 1st. International Worshop on TAGs: Formal Theory
and Application, Dagstuhl-Seminar-Report 2 (9033),
15.8.1990- 17.8.1990

Ch. Hankin, R. Wilhelm:
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report 3
(9036), 3.9.1990 - 7.9.1990

H. Alt, E. Welzl:
Algorithmic Geometry, Dagstuhl-Seminar-Report 4 (9041),
8.10.1990 - 12.10.1990

