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Introduction

Today, many different approaches towards the use of formal methods in program
construction exist, each having its favorite application domains, its advantages, and
its drawbacks.

The aim of this workshop was to bring together experts to compare and evalu-
ate their approaches and methods, especially with respect to their suitability for
computer support. Great emphasis was put on discussions between the different
approaches.

The workshop provided a forum for researchers and developers to gain awareness of
current practical and experimental work across the breadth of the �eld.

Among the topics encompassed were:

0 Speci�cation languages and methods

0 Algebraic algorithmic calculi

o Program development based on type-theory

0 Program development based on logical theorem proving

o Formalization of methods in meta-calculi

Although, as intended, a broad variety of topics was covered, including e.g. non-
monotonic reasoning as well as formal treatment of software reuse, some main issues
can be identi�ed:

o constructive languages and calculi related to Martin-L6f�s type theory,

0 formal semantics of algebraic and axiomatic speci�cation languages,

0 the combinatorial approach to functional program development related to the
Bird-Meertens formalism.

We have the feeling that the workshop gave an actual overview of at least the
European efforts in the �eld of formal program development and that it served as a
source of mutual encouragement and suggestions.

The Organizers
Jean-Pierre Finance Stefan J éihnichen Jacques Loeckx Martin Wirsing
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A Fine-Grain Approach to Sorted Logic

Jochen Burghardt

GMD Forschungsstelle Karlsruhe

The talk introduced a new constructor-based sort discipline on predicate logic that
allows to express more sophisticated sorts than conventional approaches. Algorithms
were given to calculate in�mum and difference of two sorts, and to decide the inhab-
itance, the subsort, and the sort equivalence property. The range sort of a de�ned
function (as opposed to a constructor function) is calculated from its de�ning equa-
tions using a mechanism of �sort rewriting�. This leads to a more exact description
than obtaining a signature from the user: different equations of the same function
are usually assigned with different sorts. Thus, the sort discipline helps to select
the �right� equations for inference steps (like narrowing), and cuts down the search
space of a formal proof. This effect was demonstrated using an example from the
area of data re�nement and implementation proofs.

The Speci�cation Language SPECTRUM

Franz Regensburger

Technische Universität München

This talk presented the general philosophy of the speci�cation approach of the Mu-
nich project SPECTRUM. SPECTRUM is a language for predicate logic, and the
speci�cation development is completely performed in a predicate calculus based on
natural deduction.

A framework for the development of speci�cations has been sketched. The general
design decisions for the model semantics and the syntax of the abstract language
have been outlined.

An interesting decision for the syntax is that formulae are de�ned in a way such
that they are a proper subset of the terms of sort Bool. The property of a Boolean
term to be also a formula may be decided by pure syntactic calculation, namely by
attributation techniques.

The advantage of this function is that big formulae can be manipulated in an equa-
tional style as well as in the usual junctor-based natural deduction style.
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A Re�nement Case Study

J ean-Raymond Abrial

Paris

In this talk, I developed with great details a classical little example (the longest
upsequence algorithm) of refinement from initial speci�cation down to �nal code. I
insisted on a few methodological points among which are the following:

o the importance of a sound mathematical preamble,

o the systematic usage of data re�nement steps based on clear and intuitive
technical decisions,

o the reusability of already speci�ed and re�ned pieces of code.

The exercise is conducted using an homogeneous notational style based on abstract
machines and generalized substitutions.

The Role of Programming Logics in Formal
Program Construction

Werner Stephan

Institut fiir Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe, D-7500 Karlsruhe, West Germany

Programming Logics are fundamental constituents of systems for logic-based pro-
gram construction. In such a system we do not only generate a program, but also
provide a formal proof of its correctness. In order to combine safety with �exi-
bility the underlying logic should be expressive enough to formalize all interesting
properties of programs and should allow many proof styles.

From a more technical point of view it is agreed that a suitable programming logic
should represent programs in a form that is close to the original syntax and that
the declarative system should allow domain independent reasoning.

After a brief discussion of two other well known programming logics an axiomatisa�
tion of recursive procedures (of any �nite type) within the framework of Dynamic
Logic is presented.
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To make domain independent reasoning possible there are strong axioms for assigne-
ments and quanti�ers (following Goldblatt�s approach) and induction schemes for
counters and environments. Counters and environments are auxiliary data struc-
tures for the axiomatisation of while loops and recursive procedures. They are kept
separate from the data structures the programs compute on.

This axiomatisation is used as the logical basis of the Karlsruhe Interactive Veri�er
(KIV) which is a logic-based shell for program veri�cation and program development.

Integrating Various Approaches to Program
Synthesis Using Dynamic Logic

Maritta Heisel

Universität Karlsruhe

The current situation in program synthesis can be characterized by the fact that
there are several different approaches to this task which, in general, are incompatible.
An integration of diffferent approaches has the advantage that the strong points of
the isolated methods can be preserved, whereas their weaknesses can be eliminated
to a large extent.

An integrated open synthesis system is presented. This system was designed and im-
plemented within the logical framework of the Karlsruhe Interactive Veri�er (KIV).
This is a system for formal reasoning on imperative programs which uses the prin-
ciple of tactical theorem proving.

The �rst step of the design was to formalize and implement various approaches to
program synthesis known from the literature. This resulted in �ve separate strategies
for program synthesis which are all available in the KIV environment.

In a second step, these strategies are integrated to form a homogeneous system.
This system is characterized by the following technical features:  C Programs are
developed top-down. (ii) The �rst part of a compound statement should be de-
veloped �rst resulting in the advantage that more information is available for the
development of the second part of the compound. (iii) As a necessary prerequisite
for automation, non-logical information is made available to the system in addition
to the program speci�cation.

Apart from these technical points, the integrated system supports program develop-
ment according to the following paradigm: The postcondition usually is represented
as a conjunction. Then compound statements are developed to establish the parts
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of the postcondition. In this process, the dependencies between the subgoals must
be taken into account. Knowledge about the problem domain is incorporated by
replacing the postcondition by a stronger one.

The integrated system is P�V� formal, (ii) machine supported, (iii) abstract, because
the logical rules of the system correspond to high-level design decisions, (iv) au-
tomatable, and (v) �exible, because it is designed as an open system: adding new
rules is a routine activity.

References:

Formalizing ans Implementing Gries� Program Development Method in Dy-
namic Logic; to appear in Science of Computer Programming

Formal Program Development by Goal Splitting and Backward Loop Forma-
tion; Technical Report 32/90; Univ. Karlsruhe, Fak. für Informatik

The Complexity of Proving Program
Correctness

Hardi Hungar

Universität Oldenburg

Everybody who has tried to prove the correctness of a program with respect to a
formal speci�cation knows that this is dif�cult even if the data domain is �nite. It is
already hard for while-programs, and it is even harder for programs with recursive
procedures.

However, how hard is really? And what is the source of the difficulties? Are Hoare-
style proof-systems adequate tools, or do they make the problem harder?

We answer these questions for partial correctness assertions about programs from
different languages. We characterize the the complexities of spectra of partial cor-
rectness assertions (that is: of sets of those �nite interpretations where an assertion
is valid) for various programming languages. Then we show that there are not only
decision procedures (of the determined complexities) but also proof constructing
procedures, i.e., Turing-machines which do not only decide whether the (�xed) as-
sertion is valid in the interpretation under investigation, but which also construct a
proof in a Hoare-style system if it is valid.
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The languages we considered include Clarke�s language L4 which turns out to have
a very hard (to decide) partial correctness theory (hyperexponential).

The main results are that Hoare-style systems are adequate, but that program cor-
rectness for complicated languages may be too hard to be handled in practice (hy-
perexponential) .

Virtual Data Structures

S.D. Swierstra

Utrecht University, The Netherlands

In many algorithm �rst a data structure is constructed, which is then inspected at a
later stage of the program. It was shown how in certain situations such intermediate
data structures may be removed from the program using program transformation
techniques. A calculational derivation was presented for an algorithm solving the
�longest low segment� problem, where a segment is �low� when its maximum value
is smaller than its length (T / <" #). The derivation was given using the Bird-
Meertens Formalism.

Crucial design steps were:

o the choice of an appropriate generator for segments

o the refinement of the non-deterministic generator in order to treat all segments
with the same maximum element at the same time.

The resulting algorithm runs in O(n) time. Finally it was shown how a large class
of similar problems could be solved by choosing appropriate substitutions for a set
of operators characterizing the problem.

Calculating Programs by Equational Reasoning
Lambert Meertens

CWI Amsterdam & Utrecht University
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Whereas we have formal languages for expressing algorithms in great detail � namely
programming languages � no suitable formalisms exist when it comes to explaining
how such solutions arise from the original problem. Common techniques in explain-
ing algorithms are handwaving, using a mixture of pseudo-formal English and Pidgin
ALGOL, and drawing pictures with snapshots of the algorithm in action.

Work has been in progress for about 15 years now to design a formalism for deriving
programs by calculation, suitable for use in e.g. textbooks and the class room. The
approach is to study diverse problems, both well-known ones and new ones, in order
to identify the crucial algorithmic concepts involved, to devise notation, to formulate
the algorithmic laws that hold, and, while doing so to build up a corpus of theories.

In the calculational style aimed at, equational reasoning is the basic mode: a se-
quence of expressions chained with (usually) the sign �=�, in which each step is
easily justified by appeal to one of the laws involving no more than pattern match-
ing and substitution. The expressions can, e.g. be (a composition of) functional
expressions, having a �mathematical� non-operational reading but usually also hav-
ing computational content.

Basic equational laws can be obtained from the �unique properties� characterizing
categorical limit and co-limit constructions. E.g., in the category of F -algebras (F an
endofunctor on set, e.g.) the initial algebra in has a unique arrow (homomorphism)
to any F-algebra, often denoted in diagrams with a dotted arrow. Leaving out
type information, the unique property can be formulated as: Vcp :: 3!h :: in; h =
hF; go. This formulation is unsuitable for calculation. By choosing a notation for
the unique arrow which depends functionally on go, e.g. (I <p) we can reformulate:
h = (l <p[) E in; h = hF;<p. It thereby becomes possible to derive a diversity of
non-trivial programs by straightforward calculation.

Calculation by Computer

Roland Backhouse

Eindhoven Technical University

A system (implemented by Paul Chisholm) providing support for interactive proof
construction was brie�y introduced and later demonstrated. The main concern is
calculational (or transformational) style proof development, but a form of bottom-
up natural deduction proof is also supported. The principles upon which the system
is based are that it be �exible and easy to use, that proof is viewed as a syntactic
editing process, and that the user decides the level of detail of a proof. Consequently,
a traditional constraint of proof editors � that proofs be machine checkable � is not
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enforced.

A Relational Theory of Datatypes

Roland Backhouse

Eindhoven Technical University

Research was reported into a theory of datatypes based on the calculus of relations.
A fundamental concept is the notion of �relator� which is an adaptation of the cat-
egorical notion of functor. Axiomatisations of polynomial relators (that is, relators
built from the unit type and the disjoint sum and cartesian product relators) are
given, following which the general class of initial datatypes is studied. Among the
topics discussed are natural polymorphism, junctivity, and continuity properties.

Relations as a Program Development Language
Bernhard Möller

University of Augsburg

We use relations as elements of a language in which to specify and develop programs.
The main emphasis is on algebraic laws for the language constructs which are to
be used in transforming speci�cations into efficient programs. Our approach is
characterized by the following particularities:

1. We use relations of arbitrary arities. Relations of arities 2 2 are used as non-
deterministic functions with tuples as arguments and results. Unary relations,
i.e. sets of singleton tuples or, equivalently, of single elements, correspond to
types. The two nullary relations (the one consisting of the empty tuple and the
empty one) play the röle of Boolean values. This also allows easy de�nitions
of assertions and conditionals.

2. Relations may be of higher order, i.e. contain other relations as tuple compo-
nents. This also allows parameterized and dependent types.
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3. We allow nested tuples as elements of relation.

Essential operations on relations are (besides union, intersection, and difference)
junction and join. Junction encompasses concatenation and composition; as special
cases we obtain image and reverse image as well as tests for emptiness, membership,
intersection, and equality. Special cases of the join yield restriction.

All operations are monotonic wrt. inclusion. Hence, the Knaster-Tarski �xpoint
theorem provides a semantics for recursive de�nitions of relations, in particular of
types. By (3) we obtain general tree-like data types in this way. The principle of
computational induction allows proofs about recursively de�ned types or relations.

The algebraic properties of the operators are illustrated with the derivations of a
simple reachability algorithm from its specification.

The intensive collaboration of Mrs. Langmaack, W. Bibel and Mr. Weber concern-
ing some key issues 4�� is gratefully acknowledged.

Time Analysis, Cost Equivalence and Program
Re�nement

D. Sands

Imperial College, London SW7

Techniques for reasoning about extensional properties of functional programs are
well-understood, but methods for analysing the underlying intensional, or opera-
tional properties have been much neglected. This talk presents the development
of a. simple but practically useful calculus for time analysis of non-strict functional
programs with lazy lists.

An operational model is used to induce a set of equations which form the basis of a
calculus for reasoning about time cost. However, in order to buy-back some equa-
tional properties lacking from this calculus, we develop a non-standard notion of
operational equivalence, cost equivalence. By considering time cost as an �observ-
able� component of the evaluation process, we de�ne this relation by analogy with
Park�s de�nition of bisimulation in CCS. This formulation allows us to show that

cost equivalence is a contextual congruence (and therefore substitutive w.r.t. the cal-
culus) and provides a uniform method for establishing cost-equivalence laws. Cost
equivalence is interesting in its own right a similar notion of program re�nement
arises naturally, and implications for program transformation are brie�y considered.
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Coping With Requirement Freedoms

Martin S. Feather

USC/ Information Sciences Institute, Marina Del Rey, California,
USA

Formal methods for software development employing formal speci�cations are be-
ing used to good effect in a number of real-world situations. Two key factors that
impede the even more extensive application of these methods are the difficulty of
manipulating formal speci�cations, and the di�iculty of constructing speci�cations.
Manipulation has been widely studied (veri�cation, analysis and program transfor-
mation research); construction has received less attention.

We argue that there may be a wide gap between the natural statement of a task�s
requirements and a formal speci�cation of the same. To understand this gap, we
identify �freedoms� that requirements typically exhibit, but which speci�cations
cannot tolerate (e.g. inconsistency, incompleteness). We also consider the processes
that are applied to construct and use formal speci�cations. Comparing the freedoms
against the processes, we determine the capabilities required of those processes.

We than sketch some small steps toward these ends:

0 Speci�cation construction by incremental elaboration in several (mostly) inde-
pendent directions (using �evolution transformations� to perform the elabora-
tion steps), followed by comparisons to identify and resolve interdependencies,
and combination to achieve an all-inclusive �nal speci�cation.

o �Idealized� description of a task from several different points of view, followed
by negotiation and compromise to resolve the inconsistencies.

Both of these illustrate the wealth of opportunity that exists for techniques, tools and
methods to support speci�cation construction by coping with requirement freedoms.

(Joint Work with Stephen Fickas of the University of Oregon, Eugene)

The IO-Graph-Method 
Gerd N eugebauer

TH Darmstadt, West Germany
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Two essential subproblems of automatically generating programs from vage ideas are
the algorithm design (program synthesis) and algorithm implementation (program
transformation). The IO-Graph Method originally was developed to solve the prob-
lem of algorithm implementation. To do so it incorporates the sequentially execution
of the desired program together with the usage of moded variables, i.e. in most real
programs variables are used either as inputs or as outputs. As natural consequence
some properties of variables have to be taken into account, e.g. variables can not be
taken as input before they are bound to values.

In addition to the given problem description - in first order logic - the description
of the executable predicates has to be available. This information is stored in the
so-called environment. Such considerations led to an algorithm to determine all
executable orderings of literals in the special case of a single clause.

This method of algorithm implementation is then combined with a method for algo-
rithm design - the LOPS approach.The combination is demonstrated with the square
example, i.e. the relation between two natural numbers z, y is given by y = 2:2. For
this speci�cation different distributions of input and output variables are taken into
account. Different algorithms are obtained by exploiting the modes and the choices
which can be taken during the algorithm design phase.

Proof and Program Transformation in Type
Theory: Some Remarks

Didier Galmiche

C.R.I.N, Université Nancy I, Nancy, France

This talk aims at presenting the notion of proof and program transformation in type
theory and more precisely in programming with proofs frameworks. In such frame-
works, programs obtained from proofs (by extraction) are not always eflicient and
the relationship between programs and proofs has to be studied through construction
and transformation steps.

Considering constructive type theory, we study transformation of programs through
proofs using a A-abstraction generalization strategy and connections with data struc-
ture transformers with a view to deriving more interesting programs (from an effi-
ciency point of view).
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Using the Calculus of Constructions in Order to
Synthetise Correct Programs

Benjamin Werner

INRIA - Rocquencourt, (Project FORMEL) France

The Calculus of Constructions, a polymorphic A-calculus with dependent types, is a
by-now well known formalism. Its expressiveness, as well for algorithms as for log-
ical / mathematical reasoning, makes it a reasonable base for program development,
where the specifications and their proofs are written in the same formalism.

The idea is to define a notion of realisability between the speci�cations (i.e. types of
the CoC of the form Vx: T3y: T� P(:r, y)) and a target language which corresponds
approximately to the functional kernel of ML. An extraction algorithm maps proofs
of speci�cations to programs of this language and erases the non-computational
parts of the proof.

It is possible to use extensions of the programming language by proving that they can
be viewed as realisations of axioms in CoC. In that way, it is possible (resp. should
soon be possible) to produce programs using machine integers, general recursion,
control structures, etc.

Several examples have been developed, and encourargingly reasonable programs
obtained. Recent progress in proof synthesis allows us to hope that the user comfort
of the system should soon be enhanced.

The theoretical background of this talk is the work of Christine Paulin-Mohring.

A Survey of the Categorical Semantics of
Dependent and Polymorphic Types

Thomas Streicher

Fakultät Mathematik Informatik, Universität Passau, D-839O
Passau, West Germany

We define in a modular way the categorical semantics of type theoretic concepts as
appearing in LF, AUTOMATH, Calculus of Constructions. Martin-Löf Type Theory
etc. That means for any type-theoretic concept we give a corresponding categorical
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condition.

Finally we discuss several dependence and independence results.

Independence results can be proven by changing the choice of propositional types in
the model of realisability sets.

Propre: An Experimental Language for
Programming with Proofs

Michel Parigot

CNRS, Université Paris 7, France

The main originality of the system - as a so called �Theory of Types� - is probably
to be based on usual logic, with usual syntax and usual semantics! But there are
some mathematics behind in order to justify the approach. The system is actually
in a �primitive� state and will be enriched using a �call by need� methodology.
Implementation is only partly done.

As well-known the extraction of programs from constructive proofs of high-level
speci�cations of problems allow to build correct programs. But it leads to a basic
dif�culty: how to recognize at the level of proofs the corresponding algorithms (an
algorithm is not only a function, it represents a particular way of computing which
is usually not speci�ed in the problem). In PROPRE the speci�cation of algorithms
is considered as a basic part of the system. The general scheme of the language is
the following:
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speci�cation of a PROBLEM

(logical formula)

�interactive� theorem proving (1) T (classical) proof conceptual level
speci�cation of an ALGORITHM
(equations)

deterministic �proof� strategies (2) l (intuitionistic) proof algorithmic level
code of a PROGRAM

(term of /\-calculus)

(3) l
abstract machine

0 At level 2 one needs a strict control on the proof (as representing a way of
computing) and therefore uses deterministic strategies to prove theorems and
extract programs. A deterministic strategy is a deterministic algorithm which
either produces a proof of at prede�ned form (and thus a program) or given a
diagnostic of failure (with respect to the prede�ned form) suggesting modi�-
cations of the speci�cation. This leads to a notion of interactive correctness:

strategy ES» correct program
iNo
diagnostic
of failure

l
modi�cation of

the speci�cation

Many deterministic strategies have been designed and implemented by Pascal
MANOURY and Marianne SIMONOT.

o At level 1 no control is really needed and even classical proofs are allowed. The
idea is to confront, in many directions, speci�cations of algorithms and spec-
i�cations of problems. We plan to use at this level different existing theorem
provers, but nothing has been yet implemented.

0 At level 3 an abstract machine based on a mathematical model has been

implemented by Christophe RAFFALLI.
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An Overview of another logical framework

Bengt N ordstriim

Chalmers & University of Göteborg, Sweden

The idea behind a logical framework is to have a formal system in which it is possible
to express many different theories. We can look at Martin-L6f�s logical framework
as a small programming language (it has only two ways of constructing programs)
with a simple but rich type structure.

The ground types are Set (also called Prop) and EI(A) (if A E Set). The objects
in Set are (monomorphic) sets and the objects in EI(A) are the elements of A (i.e.
objects whose value is a canonical element in A). If A is a type and B a family of
types indexed by a: e A then (a: E A)B is a type whose objects are functions f such
that f(a) 6 B[a/2:] whenever a e A.

A program consists of:

declaration of constants

expression

where the declaration of constants is a description of a theory (primitive constants
used to express formation and introduction rules, implicitly de�ned constants ex-
presses elimination rules with the step between the de�niendum to the de�niens
being contraction, explicitly de�ned constants used to express lemmas or derived
rules).

Abstract Data Types in the Polymorphic
A-Calculus

Kurt Sieber

University Saarbrücken, West Germany

The ultimate goal of our work is to develop the foundations of program veri�cation
for a �realistic� powerful programming language. Such a programming language
should in particular contain a module concept, so that large programs can be built
from samll reusable units (and their correctness can be derived from the speci�ca-
tions of these units).
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We have developed our own programming language for this purpose. Its type system
is essentially the same as for Girard�s system F�, but we have added several features
which are useful in a real programming language like recursive types, imperative
features, exception handling, ‚ Following Mitchell/Plotkin�s idea that �abstract
types have existential type� , modules are given a type and are thus �rst class objects.
We have extended this idea to parametrized abstract data types: They can be
considered as functors (= functions mapping modules to modules) of higher order
existential types (with 3-quanti�cation over type constructors instead of types).
This view allows us to program with parametrized abstract datatypes in a very
�exible way. An example which illustrates this flexibility: The parametrized ADT
�Set� can be used to implement the parametrized ADT �Nested Set� (nested in the
same sense as LISP-lists).

Current state of our work: The programming language is implemented. A formal
description will be available in some months. Currently we are taking the �rst steps
towards program veri�cation.

A Meta-Calculus for Formal System

Development

Matthias Weber

Universität Karlsruhe, West Germany

This talk presents the de�nition and basic properties of the DEVA meta-calculus,
a language designed for the formalisation of development methods and develop-
ments. The design of DEVA was in�uenced by results on the development of logical
frameworks such as ELF, CoC, or the languages investigated in the AUTOMATH
project.

The de�nition of DEVA is presented in �ve pieces starting from the following two
approximations:

o simple typed A-calculus

o /\-calculus with hierarchical, A-structured types

The �ve pieces of DEVA gradually introduce operations to structure developments
and methods.

Further, an implicit level is de�ned in which it is allowed to omit components of
developments.
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Finally, the talk has presented basic properties of DEVA:

o Church-Rosser property for closed expressions.

0 Closure of type-validity against reduction and validity.

0 Strong normalisation for type-valid expressions.

0 Decidability of type-validity.

An experiment in Formal Software Development:
Using the B Theorem Prover on a VDM Case

study
Yves Ledru

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

The B tool is generic theorem prover developed by J .R. Abrial. This talk has
presented how the prover has been instantiated to the logic of VDM (Vienna Devel-
opment Method). The result of this instantiation is an environment for the formal
proof of VDM developments. It has been applied succesfully on several case studies.
The nature of the support provided by this environment is two-fold: the validity of
the formal development is ensured but also automatic generation of the VDM proof
obligations is provided. These proof obligations are then discharged as ordinary
theorems with the assistance of the tool.

One of the by�products of this work is a better understanding of the formal method
and in particular, the macroscopical structure of developments and the hidden proof
rules of the method.

A full paper on this subject has been published on the proceedings of the 12 th
International Conference on Software Engineering (Nice, 1990, IEEE publisher).
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Specifying Systems of Structured Polymorphic
Speci�cations

Martin Wirsing

Universität Passau & Forwiss, Bayern, West Germany

Starting from an algebraic speci�cation approach a uniform framework for specify-
ing data structures and con�gurations of systems was presented. The framework
covers �at algebraic speci�cations with higher-order functions and shallow polymor-
phism. Structured speci�cations are introduced with the help of three speci�cation
operations for which semantics, a �module algebra� and modular proof systems are
developed. The concept of dependent types is used to de�ne parameterised speci�ca-
tions and classes of speci�cation schemata, so-called polymorthic speci�cations. Due
to the introduction of a second level, con�gurations of modules can be abstractly
speci�ed; relationships between different classes of objects such as speci�cations,
signatures or parameterised speci�cations can be described.

(Joint work with J acek Leszczytowski, Polish academy of Science, Warsaw)

Inheritance with exceptions - On the meaning of
66but99

Pierre-Yves Schobb ens

U.C.Louvain, Belgium

We show here why exceptions to a general rule can improve the expressive power
of loose algebraic languages (such as Wirsing (1986) ), allowing to better capture
informal requirements and better explain formal speci�cations. We propose to this
end a new (non-monotonic) logical connective, �but�, which links two (�rst-order)
formular (or speci�cation modules), the �rst one being the general rule, the second
one exceptions that takes precedence over the general rule. We indicate that a
model-theoretic de�nition of this connective offers several advantages:

0 abstraction from the syntax;

o easy integration in model theoretic speci�cation languages (Wirsing 1986,
Brauer 1985)

20

Specifying Systems of Structured Polymorphic 
Specifications 

Martin Wirsing 

Universitat Passau & Forwiss, Bayern, West Germany 

Starting from an algebraic specification approach a uniform framework for specify
ing data structures and configurations of systems was presented. The framework 
covers flat algebraic specifications with higher-order functions and shallow polymor
phism. Structured specifications are introduced with the help of t hree specification 
operations for which semantics, a "module algebra" and modular proof systems are 
developed. The concept of dependent types is used to define parameterised specifica
tions and classes of specification schemata, so-called polymorthic specifications. Due 
to the introduction of a second level, configurations of modules can be abstractly 
specified; relationships between different classes of objects such as specifications, 
signatures or parameterised specifications can be described. 

(J oint work with Jacek Leszczytowski, Polish academy of Science, Warsaw) 

Inheritance with exceptions - On the meaning of 
"but" 

Pierre-Yves Schobbens 

U.C.Louvain, Belgium 

We show here why exceptions to a general rule can improve the expressive power 
of loose algebraic languages (such as Wirsing (1986) ), allowing to better capture 
informal requirements and better explain formal specifications. We propose to this 
end a new (non-monotonic) logical connective, "but", which links two (first-order) 
formular (or specification modules) , the first one being the general rule, the second 
one exceptions that takes precedence over the general rule. We indicate that a 
model-theoretic definition of this connective offers several advantages: 

• abstraction from the syntax; 

• easy integration in model theoretic specification languages (Wirsing 1986, 
Brauer 1985) 
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o enforced consistency (contrast with Reiter (1980), KL-ONE, À

Such a de�nition is proposed, or top of �correspondences� (a variant of homomor-
phisms), which can be sketched as choosing the models of the exceptions that are
the �closest� to the set of models of the general rule. A simple algorithm is given for
solving 5&#39; but E |= (I? in the conjunctive sublanguage - which essentially �rst looks
for an answer in E, and in 5&#39; only if E �ts to answer the question.

The audience is invited to look for further properties of this connective.

The Algebraic Module Speci�cation and
Interconnection Language ACT TWO

Werner Fey

Technische Universität Berlin, West Germany

The speci�cation language ACT TWO - as successor of ACT ONE - is based on alge-
braic module speci�cations, (parameterized) initial speci�cations and requirements
speci�cations with their interconnection mechanisms renaming, extension, union
and actualization. As a kernel language ACT TWO is intented fbr the horizontal
structuring of modular systems mainly on the design level.

The functional semantics of ACT TWO is de�ned on two levels: the presentation
and the model level. Semantical context conditions de�ne the desired sublanguage
of correct and consistent speci�cations with compositional semantics. The language
de�nition of ACT TWO is given in [Fey 88]. The theoretical foundation of the
underlying speci�cation concepts and interconnection mechanisms can also be found
in [EM 85, 9o].

[Fey 88] � W. Fey, Pragmatics, Concepts, Syntax, Semantics, and Correctness No-
tions of ACT TWO: An Algebraic Module Speci�cation and Interconnection Lan-
guage. Techn. Report No 1988/26, TU Berlin, FB 20

[EM 85, 90] - H. Ehrig, B. Mahr, Fundamental of Algebraic Specifications Vol. 1+2.
EATCS Monographs on Theoretical Computer Science, Vol. 6 + Vol. 21, Springer-
Verlag (1985,1990).
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The Speci�cation System OBSCURE: An
Overview

Jacques Loeckx

University of Saarbrücken, West Germany

The system OBSCURE consists of a speci�cation language and an environment.

The speci�cation language[1, 3] differs from languages such as Clear or ACT�ON E
in at least three respects. First, it is a language for parametrized algebras rather
than for algebras. Next, it handles with models rather than theories. Finally, it is
nearly institution-independent.

The environment [3] supports the editing and rapid prototyping of speci�cations.
It allows in�x and mix�x notation, overloading and lazy evaluation. The induction
prover INKA developed at the University of Karlsruhe is to be integrated into the
environment in the very next future.

[1] Th. Lehmann, J. Loeckx, �The speci�cation Language of OBSCURE� in D.
Sannella, A.Tarlecki (eds.), �Recent trends in abstract data types�, LNCS 332,
1988

[2] Th. Lehmann, J. Loeckx. �OBSCURE, a speci�cation language for abstract
data types�, Internal Rep., Universität Saarbrücken, Nov. 1990. Submitted
for publication.

[3] J. Fuchs et al, �The manual of OBSCURE�, Internal Report, Universität
Saarbrücken, Febr. 1991.

Software-Retrieval Based on Logical
Speci�cations of Functions

Sigi Meggendorfer

Intellektik - AI Research Group, Technical University Munich,
West Germany
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Within the SW Retrieval task it is necessary to propose a pragmatical point of view
on formal speci�cation techniques. These techniques and methods should support
the SW designer in efficient development of large SW-Systems and therefore be
treatable in practice.

Our approach to SW retrieval given here takes place at the lowest pre-algorithmical
speci�cation level of functions and modules. It is founded on a frame based spec-
ification formalism decribing as much properties of a function as are available. In
order to retrieve pieces of code we demand the existance of a library of SW com-
ponents consisting of a small piece of code and a related detailed speci�cation. To
solve the retrieval task we have to compare the speci�cation of the desired function
(called target) with all given speci�cations in the library (called sources).

One important part of a speci�cation, called the semantics attribute, is represented
by using full �rst order predicate logic in a well known pre- and postcondition
de�nition style for functions. We introduce a formal de�nition of the reuse relation
based on the semantics of functions which has a so-called input completeness and
output correctness properly, following the intuition of reusability.

This formal framework with the related inference mechanism (a theorem prover;
we use SETHEO) is embedded in a KL-ONE like knowledge representation system
which supports taxonomical reasoning with a classi�er. This embedding results in
a connection of the theorem prover and the classi�er yielding several advantages for
the original theorem prover task to show reusability.

We will discuss some ideas and problems of this framework.
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