
J ean-Pierre Finance, Stefan Jähnichen,
Jacques Loeckx, Martin Wirsing (editors)

Logical Theory for Program Construction

Dagstuhl-Seminar-Report; 7
25.2. - 1.3.1991 (9109)

Jean-Pierre Finance, Stefan Jahnichen, 
Jacques Loeckx, Martin Wirsing (editors) 

Logical Theory for Program Construction 

Dagstuhl-Seminar-Report; 7 
25.2. - 1.3.1991 (9109) 



ISSN 0940-1 121

Copyright © 1991 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadem, Germany
Tel.: +49-6871 - 2458

Fax: +49-6871 - S942

Das Intemationales Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemeinnützige
GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen
durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. Jose Encarnacao.
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautem,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes

W - 6600 Saarbrücken

Germany
Tel.: �+49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397

e-mail: dagstuhl@dag.uni�sb.de

ISSN 0940-1121 

Copyright© 1991 by IBFI GmbH, Schlo6 Dagstuhl, W-6648 Wadem, Gennany 
Tel: +49-6871 - 2458 
Fax: +49-6871 - 5942 

Das lntemationales Begegnungs- und Forschungszentrum ftir Informatik (IBFI) ist eine gemeinniltzige 
GmbH. Sie veranstaltet regelmlIBig wissenschaft.liche Seminare, welche nach Antrag der Tagungsleiter 
und Begutachtung durch das wissenschaftliche Direktorium mit persOnlich eingeladenen G:isten 
durchgeftihrt werden. 

Verantwortlich ftir das Programm: 

Gesellschafter: 

Trliger: 

Bezugsadresse: 

Prof. Dr.-Ing. Jose Encama~ao, 
Prof. Dr. Winfried GOrke, 
Prof. Dr. 1beo H:trder, 
Dr. Michael Laska, 
Prof. Dr. Thomas Lengauer, 
Prof. Ph. D. Walter Tichy, 
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor). 

Universit.:it des Saarlandes, 
Universit.:it Kaiserslautem, 
Universit:it Karlsruhe, 
Gesellschaft fiir Infonnatik e.V., Bonn 

Die BundesHinder Saarland und Rheinland Pfalz. 

Gesch:tftsstelle Schlo6 Dagstuhl 
lnformatik, Bau 36 
Universit:it des Saarlandes 
w - 6600 Saarbrucken 
Gennany 
Tel.: +49 -681 - 302 - 4 396 
Fax: +49 -681 - 302 - 4397 
e-mail: dagstuhl@dag.uni-sb.de 



Introduction

Today, many different approaches towards the use of formal methods in program
construction exist, each having its favorite application domains, its advantages, and
its drawbacks.

The aim of this workshop was to bring together experts to compare and evalu-
ate their approaches and methods, especially with respect to their suitability for
computer support. Great emphasis was put on discussions between the different
approaches.

The workshop provided a forum for researchers and developers to gain awareness of
current practical and experimental work across the breadth of the �eld.

Among the topics encompassed were:

0 Speci�cation languages and methods

0 Algebraic algorithmic calculi

o Program development based on type-theory

0 Program development based on logical theorem proving

o Formalization of methods in meta-calculi

Although, as intended, a broad variety of topics was covered, including e.g. non-
monotonic reasoning as well as formal treatment of software reuse, some main issues
can be identi�ed:

o constructive languages and calculi related to Martin-L6f�s type theory,

0 formal semantics of algebraic and axiomatic speci�cation languages,

0 the combinatorial approach to functional program development related to the
Bird-Meertens formalism.

We have the feeling that the workshop gave an actual overview of at least the
European efforts in the �eld of formal program development and that it served as a
source of mutual encouragement and suggestions.

The Organizers
Jean-Pierre Finance Stefan J éihnichen Jacques Loeckx Martin Wirsing

Introduction 

Today, many different approaches towards the use of formal methods in program 
construction exist, each having its favorite application domains, its advantages, and 
its drawbacks. 

The aim of this workshop was to bring together experts to compare and evalu
ate their approaches and methods, especially with respect to their suitability for 
computer support. Great emphasis was put on discussions between the different 
approaches. 

The workshop provided a forum for researchers and developers to gain awareness of 
current practical and experimental work across the breadth of the field. 

Among the topics encompassed were: 

• Specification languages and methods 

• Algebraic algorithmic calculi 

• Program development based on type-theory 

• Program development based on logical theorem proving 

• Formalization of methods in meta-calculi 

Although, as intended, a broad variety of topics was covered, including e.g. non
monotonic reasoning as well as formal treatment of software reuse, some main issues 
can be identified: 

• constructive languages and calculi related to Martin-Lof's type theory, 

• formal semantics of algebraic and axiomatic specification languages, 

• the combinatorial approach to functional program development related to the 
Bird-Meertens formalism. 

We have the feeling that the workshop gave an actual overview of at least the 
European efforts in the field of formal program development and that it served as a 
source of mutual encouragement and suggestions. 

The Organizers 
Jean-Pierre Finance Stefan Jahnichen 

3 

Jacques Loeckx Martin Wirsing 



A Fine-Grain Approach to Sorted Logic

Jochen Burghardt

GMD Forschungsstelle Karlsruhe

The talk introduced a new constructor-based sort discipline on predicate logic that
allows to express more sophisticated sorts than conventional approaches. Algorithms
were given to calculate in�mum and difference of two sorts, and to decide the inhab-
itance, the subsort, and the sort equivalence property. The range sort of a de�ned
function (as opposed to a constructor function) is calculated from its de�ning equa-
tions using a mechanism of �sort rewriting�. This leads to a more exact description
than obtaining a signature from the user: different equations of the same function
are usually assigned with different sorts. Thus, the sort discipline helps to select
the �right� equations for inference steps (like narrowing), and cuts down the search
space of a formal proof. This effect was demonstrated using an example from the
area of data re�nement and implementation proofs.

The Speci�cation Language SPECTRUM

Franz Regensburger

Technische Universität München

This talk presented the general philosophy of the speci�cation approach of the Mu-
nich project SPECTRUM. SPECTRUM is a language for predicate logic, and the
speci�cation development is completely performed in a predicate calculus based on
natural deduction.

A framework for the development of speci�cations has been sketched. The general
design decisions for the model semantics and the syntax of the abstract language
have been outlined.

An interesting decision for the syntax is that formulae are de�ned in a way such
that they are a proper subset of the terms of sort Bool. The property of a Boolean
term to be also a formula may be decided by pure syntactic calculation, namely by
attributation techniques.

The advantage of this function is that big formulae can be manipulated in an equa-
tional style as well as in the usual junctor-based natural deduction style.

A Fine-Grain Approach to Sorted Logic 

Jochen Burghardt 

G MD Forschungsstelle Karlsruhe 

The talk introduced a new constructor-based sort discipline on predicate logic that 
allows to express more sophisticated sorts than conventional approaches. Algorithms 
were given to calculate infimum and difference of two sorts, and to decide the inhab
itance, the subsort, and the sort equivalence property. The range sort of a defined 
function (as opposed to a constructor function) is calculated from its defining equa
tions using a mechanism of "sort rewriting". This leads to a more exact description 
than obtaining a signature from the user: different equations of the same function 
are usually assigned with different sorts. Thus, the sort discipline helps to select 
the "right" equations for inference steps (like narrowing) , and cuts down the search 
space of a formal proof. This effect was demonstrated using an example from the 
area of data refinement and implementation proofs. 

The Specification Language SPECTRUM 

Franz Regens burger 

Technische Universitat Miinchen 

This talk presented the general philosophy of the specification approach of the Mu
nich project SPECTRUM. SPECTRUM is a language for predicate logic, and the 
specification development is completely performed in a predicate calculus based on 
natural deduction. 

A framework for the development of specifications has been sketched. The general 
design decisions for the model semantics and the syntax of the abstract language 
have been outlined. 

An interesting decision for the syntax is that formulae are defined in a way such 
that they are a proper subset of the terms of sort Boo/. The property of a Boolean 
term to be also a formula may be decided by pure syntactic calculation, namely by 
attributation techniques. 

The advantage of this function is that big formulae can be manipulated in an equa
tional style as well as in the usual junctor-based natural deduction style. 

4 



A Re�nement Case Study

J ean-Raymond Abrial

Paris

In this talk, I developed with great details a classical little example (the longest
upsequence algorithm) of refinement from initial speci�cation down to �nal code. I
insisted on a few methodological points among which are the following:

o the importance of a sound mathematical preamble,

o the systematic usage of data re�nement steps based on clear and intuitive
technical decisions,

o the reusability of already speci�ed and re�ned pieces of code.

The exercise is conducted using an homogeneous notational style based on abstract
machines and generalized substitutions.

The Role of Programming Logics in Formal
Program Construction

Werner Stephan

Institut fiir Logik, Komplexität und Deduktionssysteme,
Universität Karlsruhe, D-7500 Karlsruhe, West Germany

Programming Logics are fundamental constituents of systems for logic-based pro-
gram construction. In such a system we do not only generate a program, but also
provide a formal proof of its correctness. In order to combine safety with �exi-
bility the underlying logic should be expressive enough to formalize all interesting
properties of programs and should allow many proof styles.

From a more technical point of view it is agreed that a suitable programming logic
should represent programs in a form that is close to the original syntax and that
the declarative system should allow domain independent reasoning.

After a brief discussion of two other well known programming logics an axiomatisa�
tion of recursive procedures (of any �nite type) within the framework of Dynamic
Logic is presented.

A Refinement Case Study 

Jean-Raymond Abrial 

Paris 

In this talk, I developed with great details a classical little example (the longest 
upsequence algorithm) of refinement from initial specification down to final code. I 
insisted on a few methodological points among which are the following: 

• the importance of a sound mathematical preamble, 

• the systematic usage of data refinement steps based on clear and intuitive 
technical decisions, 

• the reusability of already specified and refined pieces of code. 

The exercise is conducted using an homogeneous notational style based on abstract 
machines and generalized substitutions. 

The Role of Programming Logics in Formal 
Program Construction 

Werner Stephan 

Institut fur Logik, Komplexitat und Deduktionssysteme, 
Universitat Karlsruhe, D-7500 Karlsruhe, West Germany 

Pr~gramming Logics are fundamental constituents of systems for logic-based pro
gram construction. In such a system we do not only generate a program, but also 
provide a formal proof of its correctness. In order to combine safety with flexi
bility the underlying logic should be expressive enough to formalize all interesting 
properties of programs and should allow many proof styles. 

From a more technical point of view it is agreed that a suitable programming logic 
should represent programs in a form that is close to the original syntax and that 
the c.eclarative system should allow domain independent reasoning. 

After a brief discussion of two other well known programming logics an axiomatisa
tion of recursive procedures (of any finite type) within the framework of Dynamic 
Logic is presented. 

5 



To make domain independent reasoning possible there are strong axioms for assigne-
ments and quanti�ers (following Goldblatt�s approach) and induction schemes for
counters and environments. Counters and environments are auxiliary data struc-
tures for the axiomatisation of while loops and recursive procedures. They are kept
separate from the data structures the programs compute on.

This axiomatisation is used as the logical basis of the Karlsruhe Interactive Veri�er
(KIV) which is a logic-based shell for program veri�cation and program development.

Integrating Various Approaches to Program
Synthesis Using Dynamic Logic

Maritta Heisel

Universität Karlsruhe

The current situation in program synthesis can be characterized by the fact that
there are several different approaches to this task which, in general, are incompatible.
An integration of diffferent approaches has the advantage that the strong points of
the isolated methods can be preserved, whereas their weaknesses can be eliminated
to a large extent.

An integrated open synthesis system is presented. This system was designed and im-
plemented within the logical framework of the Karlsruhe Interactive Veri�er (KIV).
This is a system for formal reasoning on imperative programs which uses the prin-
ciple of tactical theorem proving.

The �rst step of the design was to formalize and implement various approaches to
program synthesis known from the literature. This resulted in �ve separate strategies
for program synthesis which are all available in the KIV environment.

In a second step, these strategies are integrated to form a homogeneous system.
This system is characterized by the following technical features:  C Programs are
developed top-down. (ii) The �rst part of a compound statement should be de-
veloped �rst resulting in the advantage that more information is available for the
development of the second part of the compound. (iii) As a necessary prerequisite
for automation, non-logical information is made available to the system in addition
to the program speci�cation.

Apart from these technical points, the integrated system supports program develop-
ment according to the following paradigm: The postcondition usually is represented
as a conjunction. Then compound statements are developed to establish the parts

To make domain independent reasoning possible there are strong axioms for assigne
ments and quantifiers (following Goldblatt's approach) and induction schemes for 
counters and environments. Counters and environments are auxiHary data struc
tures for the axiomatisation of while loops and recursive procedures. They are kept 
separate from the data structures the programs compute on. 

This axiomatisation is used as the logical basis of the Karlsruhe Interactive Verifier 
(KIV) which is a logic-based shell for program verification and program development. 

Integrating Various Approaches to Program 
Synthesis Using Dynamic Logic 

Maritta Heisel 

Universitat Karlsruhe 

The current situation in program synthesis can be characterized by the fact that 
there are several different approaches to this task which, in general, are incompatible. 
An integration of diffferent apptoaches has the advantage that the strong points of 
the isolated methods can be preserved, whereas their weaknesses can be eliminated 
to a large extent. 

An integrated open synthesis system is presented. This system was designed and im
plemented within the logical framework of the Karlsruhe Interactive Verifier (KIV). 
This is a. system for formal reasoning on imperative programs which uses the prin
ciple of tactical theorem proving. 

The first step of the design was to formalize and implement various approaches to 
program synthesis known from the literature. This resulted in five separate strategies 
for program synthesis which a.re all available in the KIV environment. 

In a second step, these strategies are integrated to form a homogeneous system. 
This system is characterized by the following technical features: (i) P rograms are 
developed top-down. (ii) The first part of a compound statement should be de
veloped first resulting in the advantage that more information is available for the 
development of the second part of the compound. (iii) As a necessary prerequisite 
for automat ion, non-logical information is made available to the system in addition 
to the program specification. 

Apart from these technical points, the integrated system supports program develop
ment according to the following paradigm: The postcondition usually is represented 
as a conjunction. Then compound statements are developed to establish t he parts 

6 



of the postcondition. In this process, the dependencies between the subgoals must
be taken into account. Knowledge about the problem domain is incorporated by
replacing the postcondition by a stronger one.

The integrated system is P�V� formal, (ii) machine supported, (iii) abstract, because
the logical rules of the system correspond to high-level design decisions, (iv) au-
tomatable, and (v) �exible, because it is designed as an open system: adding new
rules is a routine activity.

References:

Formalizing ans Implementing Gries� Program Development Method in Dy-
namic Logic; to appear in Science of Computer Programming

Formal Program Development by Goal Splitting and Backward Loop Forma-
tion; Technical Report 32/90; Univ. Karlsruhe, Fak. für Informatik

The Complexity of Proving Program
Correctness

Hardi Hungar

Universität Oldenburg

Everybody who has tried to prove the correctness of a program with respect to a
formal speci�cation knows that this is dif�cult even if the data domain is �nite. It is
already hard for while-programs, and it is even harder for programs with recursive
procedures.

However, how hard is really? And what is the source of the difficulties? Are Hoare-
style proof-systems adequate tools, or do they make the problem harder?

We answer these questions for partial correctness assertions about programs from
different languages. We characterize the the complexities of spectra of partial cor-
rectness assertions (that is: of sets of those �nite interpretations where an assertion
is valid) for various programming languages. Then we show that there are not only
decision procedures (of the determined complexities) but also proof constructing
procedures, i.e., Turing-machines which do not only decide whether the (�xed) as-
sertion is valid in the interpretation under investigation, but which also construct a
proof in a Hoare-style system if it is valid.

of the postcondition. In this process, the dependencies between the subgoals must 
be taken into account. Knowledge about the problem domain is incorporated by 
replacing the postcondition by a stronger one. 

The integrated system is (i) formal, (ii) machine supported, (iii) abstract, because 
the logical rules of the system correspond to high-level design decisions, (iv) au
tomatable, and (v) flexible, because it is designed as an open system: adding new 
rules is a. routine activity. 

References: 

Formalizing ans Implementing Gries' Program Development Method in Dy
namic Logic; to appear in Science of Computer Programming 

Formal Program Development by Goal Splitting and Backward Loop Forma
tion; Technical Report 32/90; Univ. Karlsruhe, Fak. fiir Informatik 

The Complexity of Proving Program 
Correctness 

Hardi Hungar 

Universitat Oldenburg 

Everybody who has tried to prove the correctness of a program with respect to a 
formal specification knows that this is difficult even if the data domain is finite. It is 
already hard for while-programs, and it is even harder for programs with recursive 
procedures. 

However, how hard is really? And what is the source of the difficulties? Are Hoare
style proof-systems adequate tools, or do they make the problem harder? 

We answer these questions for partial correctness assertions about programs from 
different languages. We characterize the the complexities of spectra of partial cor
rectness assertions ( that is: of sets of those finite interpretations where an assertion 
is valid) for various programming languages. Then we show that there are not only 
decision procedures ( of the determined complexities) but also proof constructing 
procedures, i.e., Turing-machines which do not only decide whether the (fixed) as
sertion is valid in the interpretation under investigation, but which also construct a 
proof in a Hoare-style system if it is valid. 

7 



The languages we considered include Clarke�s language L4 which turns out to have
a very hard (to decide) partial correctness theory (hyperexponential).

The main results are that Hoare-style systems are adequate, but that program cor-
rectness for complicated languages may be too hard to be handled in practice (hy-
perexponential) .

Virtual Data Structures

S.D. Swierstra

Utrecht University, The Netherlands

In many algorithm �rst a data structure is constructed, which is then inspected at a
later stage of the program. It was shown how in certain situations such intermediate
data structures may be removed from the program using program transformation
techniques. A calculational derivation was presented for an algorithm solving the
�longest low segment� problem, where a segment is �low� when its maximum value
is smaller than its length (T / <" #). The derivation was given using the Bird-
Meertens Formalism.

Crucial design steps were:

o the choice of an appropriate generator for segments

o the refinement of the non-deterministic generator in order to treat all segments
with the same maximum element at the same time.

The resulting algorithm runs in O(n) time. Finally it was shown how a large class
of similar problems could be solved by choosing appropriate substitutions for a set
of operators characterizing the problem.

Calculating Programs by Equational Reasoning
Lambert Meertens

CWI Amsterdam & Utrecht University

The languages we considered include Clarke's language L4 which turns out to have 
a very hard (to decide) partial correctness theory (hyperexponential). 

The main results are that Hoare-style systems are adequate, but that program cor
rectness for complicated languages may be too hard to be handled in practice (hy
perexponential). 

Virtual Data Structures 

S.D. Swierstra 

Utrecht University, The Netherlands 

In many algorithm first a data structure is constructed, which is then inspected at a 
later stage of the program. It was shown how in certain situations such intermediate 
data structures may be removed from the program using program transformation 
techniques. A calculational derivation was presented for an algorithm solving the 
"longest low segment" problem, where a segment is "low" when its maximum value 
is smaller than its length (i / <" # ). The derivation was given using the Bird
Meertens Formalism. 

Crucial design steps were: 

• the choice of an appropriate generator for segments 

• the refinement of the non-deterministic generator in order to treat all segments 
with the same maximum element at the same time. 

The resulting algorithm runs in 0( n) time. Finally it was shown how a large class 
of similar problems could be solved by choosing appropriate substitutions for a set 
of operators characterizing the problem. 

Calculating Programs by Equational Reasoning 

Lambert Meertens 

CWI Amsterdam & Utrecht University 

8 



Whereas we have formal languages for expressing algorithms in great detail � namely
programming languages � no suitable formalisms exist when it comes to explaining
how such solutions arise from the original problem. Common techniques in explain-
ing algorithms are handwaving, using a mixture of pseudo-formal English and Pidgin
ALGOL, and drawing pictures with snapshots of the algorithm in action.

Work has been in progress for about 15 years now to design a formalism for deriving
programs by calculation, suitable for use in e.g. textbooks and the class room. The
approach is to study diverse problems, both well-known ones and new ones, in order
to identify the crucial algorithmic concepts involved, to devise notation, to formulate
the algorithmic laws that hold, and, while doing so to build up a corpus of theories.

In the calculational style aimed at, equational reasoning is the basic mode: a se-
quence of expressions chained with (usually) the sign �=�, in which each step is
easily justified by appeal to one of the laws involving no more than pattern match-
ing and substitution. The expressions can, e.g. be (a composition of) functional
expressions, having a �mathematical� non-operational reading but usually also hav-
ing computational content.

Basic equational laws can be obtained from the �unique properties� characterizing
categorical limit and co-limit constructions. E.g., in the category of F -algebras (F an
endofunctor on set, e.g.) the initial algebra in has a unique arrow (homomorphism)
to any F-algebra, often denoted in diagrams with a dotted arrow. Leaving out
type information, the unique property can be formulated as: Vcp :: 3!h :: in; h =
hF; go. This formulation is unsuitable for calculation. By choosing a notation for
the unique arrow which depends functionally on go, e.g. (I <p) we can reformulate:
h = (l <p[) E in; h = hF;<p. It thereby becomes possible to derive a diversity of
non-trivial programs by straightforward calculation.

Calculation by Computer

Roland Backhouse

Eindhoven Technical University

A system (implemented by Paul Chisholm) providing support for interactive proof
construction was brie�y introduced and later demonstrated. The main concern is
calculational (or transformational) style proof development, but a form of bottom-
up natural deduction proof is also supported. The principles upon which the system
is based are that it be �exible and easy to use, that proof is viewed as a syntactic
editing process, and that the user decides the level of detail of a proof. Consequently,
a traditional constraint of proof editors � that proofs be machine checkable � is not

9

Whereas we have formal languages for expressing algorithms in great detail - namely 
programming languages - no suitable formalisms exist when it comes to explaining 
how such solutions arise from the original problem. Common techniques in explain
ing algorithms are hand waving, using a mixture of pseudo-formal English and Pidgin 
ALGOL, and drawing pictures with snapshots of the algorithm in action. 

Work has been in progress for about 15 years now to design a. formalism for deriving 
programs by calculation, suitable for use in e.g. textbooks and the class room. The 
approach is to study diverse problems, both well-known ones and new ones, in order 
to identify the crucial algorithmic concepts involved, to devise notation, to formulate 
the algorithmic laws that hold, and, while doing so to build up a corpus of theories. 

In the calculational style aimed at, equational reasoning is the basic mode: a se
quence of expressions chained with (usually) the sign "=", in which each step is 
easily justified by appeal to one of the laws involving no more than pattern match
ing and substitution. The expressions can, e.g. be ( a composition of) functional 
expressions, having a "mathematical" non-operational reading but usually also hav
ing computational content. 

Basic equational laws can be obtained from the "unique properties" characterizing 
categorical limit and co-limit constructions. E.g. , in the category of F-algebras (Fan 
endofunctor on set, e.g.) the initial algebra in has a unique arrow (homomorphism) 
to any F-algebra, often denoted in diagrams with a dotted arrow. Leaving out 
type information, the unique property can be formulated as: V<p :: 3!h :: in; h = 
hF; <p. This formulation is unsuitable for calculation. By choosing a notation for 
the unique arrow which depends functionally on 'P, e.g. 0 'P~ we can reformulate: 
h = 0 'PD = in; h = hF; 'P· It thereby becomes possible to derive a diversity of 
non-trivial programs by straightforward calculation. 

Calculation by Computer 

Roland Backhouse 

Eindhoven Technical University 

A system (implemented by Paul Chisholm) providing support for interactive proof 
construction was briefly introduced and later demonstrated. The main concern is 
calculational ( or transformational) style proof development, but a form of bottom
up natural deduction proof is also supported. The principles upon which the system 
is based are that it be flexible and easy to use, that proof is viewed as a syntactic 
editing process, and that the user decides the level of detail of a proof. Consequently, 
a traditional constraint of proof editors - that proofs be machine checkable - is not 

9 



enforced.

A Relational Theory of Datatypes

Roland Backhouse

Eindhoven Technical University

Research was reported into a theory of datatypes based on the calculus of relations.
A fundamental concept is the notion of �relator� which is an adaptation of the cat-
egorical notion of functor. Axiomatisations of polynomial relators (that is, relators
built from the unit type and the disjoint sum and cartesian product relators) are
given, following which the general class of initial datatypes is studied. Among the
topics discussed are natural polymorphism, junctivity, and continuity properties.

Relations as a Program Development Language
Bernhard Möller

University of Augsburg

We use relations as elements of a language in which to specify and develop programs.
The main emphasis is on algebraic laws for the language constructs which are to
be used in transforming speci�cations into efficient programs. Our approach is
characterized by the following particularities:

1. We use relations of arbitrary arities. Relations of arities 2 2 are used as non-
deterministic functions with tuples as arguments and results. Unary relations,
i.e. sets of singleton tuples or, equivalently, of single elements, correspond to
types. The two nullary relations (the one consisting of the empty tuple and the
empty one) play the röle of Boolean values. This also allows easy de�nitions
of assertions and conditionals.

2. Relations may be of higher order, i.e. contain other relations as tuple compo-
nents. This also allows parameterized and dependent types.

10

enforced. 

A Relational Theory of Datatypes 

Roland Backhouse 

Eindhoven Technical University 

Research was reported into a theory of datatypes based on the calculus of relations. 
A fundamental concept is the notion of "relator" which is an adaptation of the cat
egorical notion of functor. Axiomatisations of polynomial relators ( that is, relators 
built from the unit type and the disjoint sum and cartesian product relators) are 
given, following which the general class of initial datatypes is studied. Among the 
topics discussed are natural polymorphism, junctivity, and continuity properties. 

Relations as a Program Development Language 

Bernhard Moller 

University of Augsburg 

We use relations as elements of a language in which to specify and develop programs. 
The main emphasis is on algebraic laws for the language constructs which are to 
be used in transforming specifications into efficient programs. Our approach is 
characterized by the following particularities: 

1. We use relations of arbitrary arities. Relations of arities ;;,: 2 are used as non
deterministic functions with tuples as arguments and results. Unary relations, 
i.e. sets of singleton tuples or, equivalently, of single elements, correspond to 
types. The two nullary relations (the one consisting of the empty tuple and the 
empty one) play the role of Boolean values. This also allows easy definitions 
of assertions and conditionals. 

2. Relations may be of higher order, i.e. contain other relations as tuple compo
nents. This also allows parameterized and dependent types. 

10 



3. We allow nested tuples as elements of relation.

Essential operations on relations are (besides union, intersection, and difference)
junction and join. Junction encompasses concatenation and composition; as special
cases we obtain image and reverse image as well as tests for emptiness, membership,
intersection, and equality. Special cases of the join yield restriction.

All operations are monotonic wrt. inclusion. Hence, the Knaster-Tarski �xpoint
theorem provides a semantics for recursive de�nitions of relations, in particular of
types. By (3) we obtain general tree-like data types in this way. The principle of
computational induction allows proofs about recursively de�ned types or relations.

The algebraic properties of the operators are illustrated with the derivations of a
simple reachability algorithm from its specification.

The intensive collaboration of Mrs. Langmaack, W. Bibel and Mr. Weber concern-
ing some key issues 4�� is gratefully acknowledged.

Time Analysis, Cost Equivalence and Program
Re�nement

D. Sands

Imperial College, London SW7

Techniques for reasoning about extensional properties of functional programs are
well-understood, but methods for analysing the underlying intensional, or opera-
tional properties have been much neglected. This talk presents the development
of a. simple but practically useful calculus for time analysis of non-strict functional
programs with lazy lists.

An operational model is used to induce a set of equations which form the basis of a
calculus for reasoning about time cost. However, in order to buy-back some equa-
tional properties lacking from this calculus, we develop a non-standard notion of
operational equivalence, cost equivalence. By considering time cost as an �observ-
able� component of the evaluation process, we de�ne this relation by analogy with
Park�s de�nition of bisimulation in CCS. This formulation allows us to show that

cost equivalence is a contextual congruence (and therefore substitutive w.r.t. the cal-
culus) and provides a uniform method for establishing cost-equivalence laws. Cost
equivalence is interesting in its own right a similar notion of program re�nement
arises naturally, and implications for program transformation are brie�y considered.

11

3. We allow nested tuples as elements of relation. 

Essential operations on relations are (besides union, intersection, and difference) 
junction and join. Junction encompasses concatenation and composition; as special 
cases we obtain image and reverse image as well as tests for emptiness, membership, 
intersection, and equality. Special cases of the join yield restriction. 

All operations are monotonic wrt. inclusion. Hence, the Knaster-Tarski fixpoint 
theorem provides a semantics for recursive definitions of relations, in particular of 
types. By (3) we obtain general tree-like data types in this way. The principle of 
computational induction allows proofs about recursively defined types or relations. 

The algebraic properties of the operators are illustrated with the derivations of a 
simple reachability algorithm from its specification. 

The intensive collaboration of Mrs. Langmaack, W. Bibel and Mr. Weber concern
ing some key issues -is gratefully acknowledged. 

Time Analysis, Cost Equivalence and Program 
Refinement 

D. Sands 

Imperial College, London SW7 

Techniques for reasoning about extensional properties of functional programs are 
well-understood, but methods for analysing the underlying intensional, or opera
tional properties have been much neglected. This talk presents the development 
of a simple but practically useful calculus for time analysis of non-strict functional 
programs with lazy lists. 

An operational model is used to induce a set of equations which form the basis of a 
calculus for reasoning about time cost. However, in order to buy-back some equa
tional properties lacking from this calculus, we develop a non-standard notion of 
operational equivalence, cost equivalence. By considering time cost as an "observ
able" component of the evaluation process, we define this relation by analogy with 
Park's definition of bisimulation in CCS. This formulation allows us to show that 
cost equivalence is a contextual congruence (and therefore substitutive w.r.t. the cal
culus) and provides a uniform method for establishing cost-equivalence laws. Cost 
equivalence is interesting in its own right a similar notion of program refinement 
arises naturally, and implications for program transformation are briefly considered. 

11 



Coping With Requirement Freedoms

Martin S. Feather

USC/ Information Sciences Institute, Marina Del Rey, California,
USA

Formal methods for software development employing formal speci�cations are be-
ing used to good effect in a number of real-world situations. Two key factors that
impede the even more extensive application of these methods are the difficulty of
manipulating formal speci�cations, and the di�iculty of constructing speci�cations.
Manipulation has been widely studied (veri�cation, analysis and program transfor-
mation research); construction has received less attention.

We argue that there may be a wide gap between the natural statement of a task�s
requirements and a formal speci�cation of the same. To understand this gap, we
identify �freedoms� that requirements typically exhibit, but which speci�cations
cannot tolerate (e.g. inconsistency, incompleteness). We also consider the processes
that are applied to construct and use formal speci�cations. Comparing the freedoms
against the processes, we determine the capabilities required of those processes.

We than sketch some small steps toward these ends:

0 Speci�cation construction by incremental elaboration in several (mostly) inde-
pendent directions (using �evolution transformations� to perform the elabora-
tion steps), followed by comparisons to identify and resolve interdependencies,
and combination to achieve an all-inclusive �nal speci�cation.

o �Idealized� description of a task from several different points of view, followed
by negotiation and compromise to resolve the inconsistencies.

Both of these illustrate the wealth of opportunity that exists for techniques, tools and
methods to support speci�cation construction by coping with requirement freedoms.

(Joint Work with Stephen Fickas of the University of Oregon, Eugene)

The IO-Graph-Method 
Gerd N eugebauer

TH Darmstadt, West Germany

12

Coping With Requirement Freedoms 

Martin S. Feather 

USC/Information Sciences Institute, Marin_a Del Rey, California, 
USA 

Formal methods for software development employing formal specifications are be
ing used to good effect in a number of real-world situations. Two key factors that 
impede the even more extensive application of these methods are the difficulty of 
manipulating formal specifications, and the difficulty of constructing specifications. 
Manipulation has been widely studied (verification, analysis and program transfor
mation research); construction has received less attention. 

We argue that there may be a wide gap between the natural statement of a task's 
requirements and a formal specification of the same. To understand this gap, we 
identify "freedoms" that requirements typically exhibit, but which specifications 
cannot tolerate ( e.g. inconsistency, incompleteness). We also consider the processes 
that are applied to construct and use formal specifications. Comparing the freedoms 
against the processes, we determine the capabilities required of those processes. 

We than sketch some small steps toward these ends: 

• Specification construction by incremental elaboration in several (mostly) inde
pendent directions ( using "evolution transformations" to perf(\l'm the elabora
tion steps), followed by comparisons to identify and resolve interdependencies, 
and combination to achieve an all-inclusive final specification. 

• "Idealized" description of a task from several different points of view, followed 
by negotiation and compromise to resolve the inconsistencies. 

Both of these illustrate the wealth of opportunity that exists for techniques, tools and 
methods to support specification construction by coping with requirement freedoms. 

(Joint Work with Stephen Fickas of the University of Oregon, Eugene) 

The 10-Graph-Method 

Gerd Neugebauer 

TH Darmstadt, West Germany 

12 



Two essential subproblems of automatically generating programs from vage ideas are
the algorithm design (program synthesis) and algorithm implementation (program
transformation). The IO-Graph Method originally was developed to solve the prob-
lem of algorithm implementation. To do so it incorporates the sequentially execution
of the desired program together with the usage of moded variables, i.e. in most real
programs variables are used either as inputs or as outputs. As natural consequence
some properties of variables have to be taken into account, e.g. variables can not be
taken as input before they are bound to values.

In addition to the given problem description - in first order logic - the description
of the executable predicates has to be available. This information is stored in the
so-called environment. Such considerations led to an algorithm to determine all
executable orderings of literals in the special case of a single clause.

This method of algorithm implementation is then combined with a method for algo-
rithm design - the LOPS approach.The combination is demonstrated with the square
example, i.e. the relation between two natural numbers z, y is given by y = 2:2. For
this speci�cation different distributions of input and output variables are taken into
account. Different algorithms are obtained by exploiting the modes and the choices
which can be taken during the algorithm design phase.

Proof and Program Transformation in Type
Theory: Some Remarks

Didier Galmiche

C.R.I.N, Université Nancy I, Nancy, France

This talk aims at presenting the notion of proof and program transformation in type
theory and more precisely in programming with proofs frameworks. In such frame-
works, programs obtained from proofs (by extraction) are not always eflicient and
the relationship between programs and proofs has to be studied through construction
and transformation steps.

Considering constructive type theory, we study transformation of programs through
proofs using a A-abstraction generalization strategy and connections with data struc-
ture transformers with a view to deriving more interesting programs (from an effi-
ciency point of view).

13

Two essential subproblems of automatically generating programs from vage ideas are 
the algorithm design (program synthesis) and algorithm implementation (program 
transformation). The JO-Graph Method originally was developed to solve the prob
lem of algorithm implementation. To do so it incorporates the sequentially execution 
of the desired program together with the usage of moded variables, i.e. in most real 
programs variables are used either as inputs or as outputs. As natural consequence 
some properties of variables have to be taken into account , e.g. variables can not be 
taken as input before they are bound to values. 

In addition to the given problem description - in first order logic - the description 
of the executable predicates has to be available. This information is stored in the 
so-called environment. Such considerations led to an algorithm to determine all 
executable orderings of literals in the special case of a single clause. 

This method of algorithm implementation is then combined with a method for algo
rithm design - the LOPS approach.The combination is demonstrated with the square 
example, i.e. the relation between two natural numbers x, y is given by y = x2

• For 
this specification different distributions of input and output variables are taken into 
account . Different algorithms are obtained by exploiting the modes and the choices 
which can be taken during the algorithm design phase. 

Proof and Program Transformation in Type 
Theory: Some Remarks 

Didier Galmiche 

C.R.I.N, Universite Nancy I, Nancy, France 

This talk aims at presenting the notion of proof and program transformation in type 
theory and more precisely in programming with proofs frameworks. In such frame
works, programs obtained from proofs (by extraction) are not always efficient and 
the relationship between programs and proofs has to be studied through construction 
and transformation steps. 

Considering constructive type theory, we study transformation of programs through 
proofs using a A-abstraction generalization strategy and connections with data struc
ture transformers with a view to deriving more interest ing programs (from an effi
ciency point of view). 

13 



Using the Calculus of Constructions in Order to
Synthetise Correct Programs

Benjamin Werner

INRIA - Rocquencourt, (Project FORMEL) France

The Calculus of Constructions, a polymorphic A-calculus with dependent types, is a
by-now well known formalism. Its expressiveness, as well for algorithms as for log-
ical / mathematical reasoning, makes it a reasonable base for program development,
where the specifications and their proofs are written in the same formalism.

The idea is to define a notion of realisability between the speci�cations (i.e. types of
the CoC of the form Vx: T3y: T� P(:r, y)) and a target language which corresponds
approximately to the functional kernel of ML. An extraction algorithm maps proofs
of speci�cations to programs of this language and erases the non-computational
parts of the proof.

It is possible to use extensions of the programming language by proving that they can
be viewed as realisations of axioms in CoC. In that way, it is possible (resp. should
soon be possible) to produce programs using machine integers, general recursion,
control structures, etc.

Several examples have been developed, and encourargingly reasonable programs
obtained. Recent progress in proof synthesis allows us to hope that the user comfort
of the system should soon be enhanced.

The theoretical background of this talk is the work of Christine Paulin-Mohring.

A Survey of the Categorical Semantics of
Dependent and Polymorphic Types

Thomas Streicher

Fakultät Mathematik Informatik, Universität Passau, D-839O
Passau, West Germany

We define in a modular way the categorical semantics of type theoretic concepts as
appearing in LF, AUTOMATH, Calculus of Constructions. Martin-Löf Type Theory
etc. That means for any type-theoretic concept we give a corresponding categorical

14

Using the Calculus of Constructions in Orde r to 
Sy nthetise Correct Programs 

Benjamin Werner 

INRIA - Rocquencourt, (Project FORMEL) France 

The Calculus of Constructions, a polymorphic A-calculus with dependent types, is a 
by-now well known formalism. Its expressiveness, as well for algorithms as for log
ical/mathematical reasoning, makes it a reasonable base for program development, 
where the specifications and their proofs are written in the same formalism. 

The idea is to define a notion of realisability between the specifications (i.e. types of 
the CoC of the form Vx: T3y: T' P(x, y)) and a target language which corresponds 
approximately to the functional kernel of ML. An extraction algorithm maps proofs 
of specifications to programs of this language and erases the non-computational 
parts of the proof. 

It is possible to use extensions of the programming language by proving that they can 
be viewed as realisations of axioms in CoC. In that way, it is possible (resp. should 
soon be possible) to produce programs using machine integers, general recursion, 
control structures, etc. 

Several examples have been developed, and encourargingly reasonable programs 
obtained. Recent progress in proof synthesis allows us to hope that the user comfort 
of the system should soon be enhanced. 

The theoretical background of this talk is the work of Christine Paulin-Mohring. 

A Survey of the Categorical Semantics of 
Dependent and Polymorphic Types 

Thomas Streicher 

Fakultat Mathematik Informatik, Universitat Passau, D-8390 
Passau, West Germany 

We define in a modular way the categorical semantics of type theoretic concepts as 
appearing in LF, AUTO MATH, Calculus of Constructions. Martin-Lof Type Theory 
etc. That means for any type-theoretic concept we give a corresponding categorical 

14 



condition.

Finally we discuss several dependence and independence results.

Independence results can be proven by changing the choice of propositional types in
the model of realisability sets.

Propre: An Experimental Language for
Programming with Proofs

Michel Parigot

CNRS, Université Paris 7, France

The main originality of the system - as a so called �Theory of Types� - is probably
to be based on usual logic, with usual syntax and usual semantics! But there are
some mathematics behind in order to justify the approach. The system is actually
in a �primitive� state and will be enriched using a �call by need� methodology.
Implementation is only partly done.

As well-known the extraction of programs from constructive proofs of high-level
speci�cations of problems allow to build correct programs. But it leads to a basic
dif�culty: how to recognize at the level of proofs the corresponding algorithms (an
algorithm is not only a function, it represents a particular way of computing which
is usually not speci�ed in the problem). In PROPRE the speci�cation of algorithms
is considered as a basic part of the system. The general scheme of the language is
the following:

15

condition. 

Finally we discuss several dependence and independence results. 

Independence results can be proven by changing the choice of propositional types in 
the model of realisabil:ty sets. 

Propre: An Experimental Language for 
Programming with Proofs 

Michel Parigot 

CNRS, Universite Paris 7, France 

The main originality of the system - as a so called "Theory of Types" - is probably 
to be based on usual logic, with usual syntax and usual semantics! But there are 
some mathematics behind in order to justify the approach. The system is actually 
in a "primitive" state and will be enriched using a "call by need" methodology. 
Implementation is only partly done. 

As well-known the extraction of programs from constructive proofs of high-level 
specifications of problems allow to build correct programs. But it leads to a basic 
difficulty: how to recognize at the level of proofs the corresponding algorithms ( an 
algorithm is not only a function, it represents a particular way of computing which 
is usually not specified in the problem). In PROPRE the specification of algorithms 
is considered as a basic part of the system. The general scheme of the language is 
the following: 

15 



speci�cation of a PROBLEM

(logical formula)

�interactive� theorem proving (1) T (classical) proof conceptual level
speci�cation of an ALGORITHM
(equations)

deterministic �proof� strategies (2) l (intuitionistic) proof algorithmic level
code of a PROGRAM

(term of /\-calculus)

(3) l
abstract machine

0 At level 2 one needs a strict control on the proof (as representing a way of
computing) and therefore uses deterministic strategies to prove theorems and
extract programs. A deterministic strategy is a deterministic algorithm which
either produces a proof of at prede�ned form (and thus a program) or given a
diagnostic of failure (with respect to the prede�ned form) suggesting modi�-
cations of the speci�cation. This leads to a notion of interactive correctness:

strategy ES» correct program
iNo
diagnostic
of failure

l
modi�cation of

the speci�cation

Many deterministic strategies have been designed and implemented by Pascal
MANOURY and Marianne SIMONOT.

o At level 1 no control is really needed and even classical proofs are allowed. The
idea is to confront, in many directions, speci�cations of algorithms and spec-
i�cations of problems. We plan to use at this level different existing theorem
provers, but nothing has been yet implemented.

0 At level 3 an abstract machine based on a mathematical model has been

implemented by Christophe RAFFALLI.

16

specification of a PROBLEM 
(logical formula) 

"interactive" theorem proving ( 1) j ( classical') proof 

specification of an ALGORITHM 
(equations) 

deterministic "proof" strategies (2) l (intuitionistic) proof 

code of a PROGRAM 
( term of A-calculus) 

abstract machine 

conceptual level 

algorithmic level 

• At level 2 one needs a strict control on the proof ( as representing a way of 
computing) and therefore uses deterministic strategies to prove theorems and 
extract programs. A deterministic strategy is a deterministic algorithm which 
either produces a proof of a predefined form (and thus a program) or given a 
diagnostic of failure (with respect to the predefined form) suggesting modifi
cations of the specification. This leads to a notion of interactive correctness: 

strategy 

l NO 
diagnostic 
of failure 

l 
modification of 
the specification 

YES 
---+ correct program 

Many deterministic strategies have been designed and implemented by Pascal 
MANOURY and Marianne SIMONOT. 

• At level 1 no control is really needed and even classical proofs are allowed. The 
idea is to confront, in many directions, specifications of algorithms and spec
ifications of problems. We plan to use at this level different existing theorem 
provers, but nothing has been yet implemented. 

• At level 3 an abstract machine based on a mathematical model has been 
implemented by Christophe RAFFALLI. 

16 



An Overview of another logical framework

Bengt N ordstriim

Chalmers & University of Göteborg, Sweden

The idea behind a logical framework is to have a formal system in which it is possible
to express many different theories. We can look at Martin-L6f�s logical framework
as a small programming language (it has only two ways of constructing programs)
with a simple but rich type structure.

The ground types are Set (also called Prop) and EI(A) (if A E Set). The objects
in Set are (monomorphic) sets and the objects in EI(A) are the elements of A (i.e.
objects whose value is a canonical element in A). If A is a type and B a family of
types indexed by a: e A then (a: E A)B is a type whose objects are functions f such
that f(a) 6 B[a/2:] whenever a e A.

A program consists of:

declaration of constants

expression

where the declaration of constants is a description of a theory (primitive constants
used to express formation and introduction rules, implicitly de�ned constants ex-
presses elimination rules with the step between the de�niendum to the de�niens
being contraction, explicitly de�ned constants used to express lemmas or derived
rules).

Abstract Data Types in the Polymorphic
A-Calculus

Kurt Sieber

University Saarbrücken, West Germany

The ultimate goal of our work is to develop the foundations of program veri�cation
for a �realistic� powerful programming language. Such a programming language
should in particular contain a module concept, so that large programs can be built
from samll reusable units (and their correctness can be derived from the speci�ca-
tions of these units).

17

An Overview of another logical framework 

Bengt Nordstrom 

Chalmers & University of Goteborg, Sweden 

The idea behind a logical framework is to have a formal system in which it is possible 
to express many different theories. We can look at Martin-Lof's logical framework 
as a small programming language (it has only two ways of constructing programs) 
with a simple but rich type structure. 

The ground types are Set (also called Prop) and El(A) (if A E Set). The objects 
in Set are (monomorphic) sets and the objects in El(A) are the elements of A (i.e. 
objects whose value is a canonical element in A). If A is a type and B a family of 
types indexed by x EA then (x E A)B is a type whose objects are functions f such 
that /(a) E B[a/x] whenever a e A. 

A program consists of: 

declaration of constants 
expression 

where the declaration of constants is a description of a theory (primitive constants 
used to express formation and introduction rules, implicitly defined constants ex
presses elimination rules with the step between the definiendum to the definiens 
being contraction, explicitly defined constants used to express lemmas or derived 
rules). 

Abstract Data Types in the Polymorphic 
-\-Calculus 

Kurt Sieber 

University Saarbriicken, West Germany 

The ultimate goal of our work is to develop t he foundations of program verification 
for a "realistic" powerful programming language. Such a programming language 
should in particular contain a module concept, so that large programs can be built 
from samll reusable units ( and their correctness can be derived from the specifica
tions of these units). 

17 



We have developed our own programming language for this purpose. Its type system
is essentially the same as for Girard�s system F�, but we have added several features
which are useful in a real programming language like recursive types, imperative
features, exception handling, ‚ Following Mitchell/Plotkin�s idea that �abstract
types have existential type� , modules are given a type and are thus �rst class objects.
We have extended this idea to parametrized abstract data types: They can be
considered as functors (= functions mapping modules to modules) of higher order
existential types (with 3-quanti�cation over type constructors instead of types).
This view allows us to program with parametrized abstract datatypes in a very
�exible way. An example which illustrates this flexibility: The parametrized ADT
�Set� can be used to implement the parametrized ADT �Nested Set� (nested in the
same sense as LISP-lists).

Current state of our work: The programming language is implemented. A formal
description will be available in some months. Currently we are taking the �rst steps
towards program veri�cation.

A Meta-Calculus for Formal System

Development

Matthias Weber

Universität Karlsruhe, West Germany

This talk presents the de�nition and basic properties of the DEVA meta-calculus,
a language designed for the formalisation of development methods and develop-
ments. The design of DEVA was in�uenced by results on the development of logical
frameworks such as ELF, CoC, or the languages investigated in the AUTOMATH
project.

The de�nition of DEVA is presented in �ve pieces starting from the following two
approximations:

o simple typed A-calculus

o /\-calculus with hierarchical, A-structured types

The �ve pieces of DEVA gradually introduce operations to structure developments
and methods.

Further, an implicit level is de�ned in which it is allowed to omit components of
developments.

18

We have developed our own programming language for this purpose. Its type system 
is essentially the same as for Girard's system F..,, but we have added several features 
which are useful in a real programming language like recursive types, imperative 
features, exception handling, . . . . Following Mitchell/Plotkin 's idea that "abstract 
types have existential type", modules are given a type and are thus first class objects. 
We have extended this idea to parametrized abstract data types: They can be 
considered as functors ( = functions mapping modules to modules) of higher order 
existential types (with 3-quantification over type constructors instead of types). 
This view allows us to program with parametrized abstract datatypes in a very 
flexible way. An example which illustrates this flexibility: The parametrized ADT 
"Set" can be used to implement the parametrized ADT "Nested Set" (nested in the 
same sense as LISP-lists). 

Current state of our work: The programming language is implemented. A formal 
description will be available in some months. Currently we are taking the first steps 
towards program verification. 

A M e t a-Calculus for Formal Syst e m 
D eyelopme nt 

Matthias Weber 

Universitat Karlsruhe, West Germany 

This talk presents the definition and basic properties of the DEYA meta-calculus, 
a language designed for the formalisation of development methods and develop
ments. The design of DEYA was influenced by results on the development of logical 
frameworks such as ELF, CoC, or the languages investigated in the AUTOMATH 
project. 

The definition of DEYA is presented in five pieces starting from the following two 
approximations: 

• simple typed >.-calculus 

• >.-calculus with hierarchical, >.-structured types 

The five pieces of DEYA gradually introduce operations to structure developments 
and methods. 

Further, an implicit level is defined in which it is allowed to omit components of 
developments. 

18 



Finally, the talk has presented basic properties of DEVA:

o Church-Rosser property for closed expressions.

0 Closure of type-validity against reduction and validity.

0 Strong normalisation for type-valid expressions.

0 Decidability of type-validity.

An experiment in Formal Software Development:
Using the B Theorem Prover on a VDM Case

study
Yves Ledru

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

The B tool is generic theorem prover developed by J .R. Abrial. This talk has
presented how the prover has been instantiated to the logic of VDM (Vienna Devel-
opment Method). The result of this instantiation is an environment for the formal
proof of VDM developments. It has been applied succesfully on several case studies.
The nature of the support provided by this environment is two-fold: the validity of
the formal development is ensured but also automatic generation of the VDM proof
obligations is provided. These proof obligations are then discharged as ordinary
theorems with the assistance of the tool.

One of the by�products of this work is a better understanding of the formal method
and in particular, the macroscopical structure of developments and the hidden proof
rules of the method.

A full paper on this subject has been published on the proceedings of the 12 th
International Conference on Software Engineering (Nice, 1990, IEEE publisher).

19

Finally, the talk has presented basic properties of DEVA: 

• Church-Rosser property for closed expressions. 

• Closure of type-validity against reduction and validity. 

• Strong normalisation for type-valid expressions. 

• Decidability of type-validity. 

An experiment in Formal Software Development: 
Using the B Theorem Prover on a VDM Case 

study 

Yves Ledru 

Universite Catholique de Louvain , Louvain-la-Neuve, Belgium 

The B tool is generic theorem prover developed by J .R. Abrial. This talk has 
presented how the prover has been instantiated to the logic of VDM (Vienna Devel
opment Method). The result of this instantiation is an environment for the formal 
proof of VDM developments. It has been applied succesfully on several case studies. 
The nature of the support provided by this environment is two-fold: the validity of 
the formal development is ensured but also automatic generation of the VDM proof 
obligations is provided. These proof obligations are then discharged as ordinary 
theorems with the assistance of the tool. 

One of the by-products of this work is a better understanding of the formal method 
and in particular, the macroscopical structure of developments and the hidden proof 
rules of the method. 

A full paper on this subject has been published on the proceedings of the 12 th 
International Conference on Software Engineering (Nice, 1990, IEEE publisher). 

19 



Specifying Systems of Structured Polymorphic
Speci�cations

Martin Wirsing

Universität Passau & Forwiss, Bayern, West Germany

Starting from an algebraic speci�cation approach a uniform framework for specify-
ing data structures and con�gurations of systems was presented. The framework
covers �at algebraic speci�cations with higher-order functions and shallow polymor-
phism. Structured speci�cations are introduced with the help of three speci�cation
operations for which semantics, a �module algebra� and modular proof systems are
developed. The concept of dependent types is used to de�ne parameterised speci�ca-
tions and classes of speci�cation schemata, so-called polymorthic speci�cations. Due
to the introduction of a second level, con�gurations of modules can be abstractly
speci�ed; relationships between different classes of objects such as speci�cations,
signatures or parameterised speci�cations can be described.

(Joint work with J acek Leszczytowski, Polish academy of Science, Warsaw)

Inheritance with exceptions - On the meaning of
66but99

Pierre-Yves Schobb ens

U.C.Louvain, Belgium

We show here why exceptions to a general rule can improve the expressive power
of loose algebraic languages (such as Wirsing (1986) ), allowing to better capture
informal requirements and better explain formal speci�cations. We propose to this
end a new (non-monotonic) logical connective, �but�, which links two (�rst-order)
formular (or speci�cation modules), the �rst one being the general rule, the second
one exceptions that takes precedence over the general rule. We indicate that a
model-theoretic de�nition of this connective offers several advantages:

0 abstraction from the syntax;

o easy integration in model theoretic speci�cation languages (Wirsing 1986,
Brauer 1985)

20

Specifying Systems of Structured Polymorphic 
Specifications 

Martin Wirsing 

Universitat Passau & Forwiss, Bayern, West Germany 

Starting from an algebraic specification approach a uniform framework for specify
ing data structures and configurations of systems was presented. The framework 
covers flat algebraic specifications with higher-order functions and shallow polymor
phism. Structured specifications are introduced with the help of t hree specification 
operations for which semantics, a "module algebra" and modular proof systems are 
developed. The concept of dependent types is used to define parameterised specifica
tions and classes of specification schemata, so-called polymorthic specifications. Due 
to the introduction of a second level, configurations of modules can be abstractly 
specified; relationships between different classes of objects such as specifications, 
signatures or parameterised specifications can be described. 

(J oint work with Jacek Leszczytowski, Polish academy of Science, Warsaw) 

Inheritance with exceptions - On the meaning of 
"but" 

Pierre-Yves Schobbens 

U.C.Louvain, Belgium 

We show here why exceptions to a general rule can improve the expressive power 
of loose algebraic languages (such as Wirsing (1986) ), allowing to better capture 
informal requirements and better explain formal specifications. We propose to this 
end a new (non-monotonic) logical connective, "but", which links two (first-order) 
formular (or specification modules) , the first one being the general rule, the second 
one exceptions that takes precedence over the general rule. We indicate that a 
model-theoretic definition of this connective offers several advantages: 

• abstraction from the syntax; 

• easy integration in model theoretic specification languages (Wirsing 1986, 
Brauer 1985) 

20 



o enforced consistency (contrast with Reiter (1980), KL-ONE, À

Such a de�nition is proposed, or top of �correspondences� (a variant of homomor-
phisms), which can be sketched as choosing the models of the exceptions that are
the �closest� to the set of models of the general rule. A simple algorithm is given for
solving 5&#39; but E |= (I? in the conjunctive sublanguage - which essentially �rst looks
for an answer in E, and in 5&#39; only if E �ts to answer the question.

The audience is invited to look for further properties of this connective.

The Algebraic Module Speci�cation and
Interconnection Language ACT TWO

Werner Fey

Technische Universität Berlin, West Germany

The speci�cation language ACT TWO - as successor of ACT ONE - is based on alge-
braic module speci�cations, (parameterized) initial speci�cations and requirements
speci�cations with their interconnection mechanisms renaming, extension, union
and actualization. As a kernel language ACT TWO is intented fbr the horizontal
structuring of modular systems mainly on the design level.

The functional semantics of ACT TWO is de�ned on two levels: the presentation
and the model level. Semantical context conditions de�ne the desired sublanguage
of correct and consistent speci�cations with compositional semantics. The language
de�nition of ACT TWO is given in [Fey 88]. The theoretical foundation of the
underlying speci�cation concepts and interconnection mechanisms can also be found
in [EM 85, 9o].

[Fey 88] � W. Fey, Pragmatics, Concepts, Syntax, Semantics, and Correctness No-
tions of ACT TWO: An Algebraic Module Speci�cation and Interconnection Lan-
guage. Techn. Report No 1988/26, TU Berlin, FB 20

[EM 85, 90] - H. Ehrig, B. Mahr, Fundamental of Algebraic Specifications Vol. 1+2.
EATCS Monographs on Theoretical Computer Science, Vol. 6 + Vol. 21, Springer-
Verlag (1985,1990).

21

• enforced consistency ( contrast with Reiter (1980), KL-ONE, ... ). 

Such a definition is proposed, or top of "correspondences" (a variant of homomor
phisms), which can be sketched as choosing the models of the exceptions that are 
the "closest" to the set of models of the general rule. A simple algorithm is given for 
solving S but E p 4> in the conjunctive sublanguage - which essentially first looks 
for an answer in E, and in S only if E fits to answer the question. 

The audience is invited to look for further properties of this connective. 

The Algebraic Module Specification and 
Interconnection Language ACT TWO 

Werner Fey 

Technische Universitat Berlin, West Germany 

The specification language ACT TWO - as successor of ACT ONE- is based on alge
braic module specifications, (parameterized) initial specifications and requirements 
specifications with their interconnection mechanisms renaming, extension, union 
and actualization. As a kernel language ACT TWO is intented fbr the horizontal 
structuring of modular systems mainly on the design level. 

The functional semantics of ACT TWO is defined on two levels: the presentation 
and the model level. Semantical context conditions define the desired sublanguage 
of correct and consistent specifications with compositional semantics. The language 
definition of ACT TWO is given in [Fey 88]. The theoretical foundation of the 
underlying specification concepts and interconnection mechanisms can also be found 
in [EM 85, 90]. 

[Fey 88] - W. Fey, Pragmatics, Concepts, Syntax, Semantics, and Correctness No
tions of ACT TWO: An Algebraic Module Specification and Interconnection Lan
guage. Techn. Report No 1988/26, TU Berlin, FB 20 

[EM 85, 90] - H. Ehrig, B. Mahr; Fundamental of Algebraic Specifications Vol. 1+2. 
EATCS Monographs on Theoretical Computer Science, Vol. 6 + Vol. 21, Springer
Verlag {1985,1990). 

21 



The Speci�cation System OBSCURE: An
Overview

Jacques Loeckx

University of Saarbrücken, West Germany

The system OBSCURE consists of a speci�cation language and an environment.

The speci�cation language[1, 3] differs from languages such as Clear or ACT�ON E
in at least three respects. First, it is a language for parametrized algebras rather
than for algebras. Next, it handles with models rather than theories. Finally, it is
nearly institution-independent.

The environment [3] supports the editing and rapid prototyping of speci�cations.
It allows in�x and mix�x notation, overloading and lazy evaluation. The induction
prover INKA developed at the University of Karlsruhe is to be integrated into the
environment in the very next future.

[1] Th. Lehmann, J. Loeckx, �The speci�cation Language of OBSCURE� in D.
Sannella, A.Tarlecki (eds.), �Recent trends in abstract data types�, LNCS 332,
1988

[2] Th. Lehmann, J. Loeckx. �OBSCURE, a speci�cation language for abstract
data types�, Internal Rep., Universität Saarbrücken, Nov. 1990. Submitted
for publication.

[3] J. Fuchs et al, �The manual of OBSCURE�, Internal Report, Universität
Saarbrücken, Febr. 1991.

Software-Retrieval Based on Logical
Speci�cations of Functions

Sigi Meggendorfer

Intellektik - AI Research Group, Technical University Munich,
West Germany

22

The Specification System OBSCURE: An 
Overview 

Jacques Loeckx 

University of Saarbriicken, West Germany 

The system OBSCURE consists of a specification language and an environment. 

The specification language[l, 3] differs from languages such as Clear or ACT-ONE 
in at least three respects. First, it is a language for parametrized algebras rather 
than for algebras. Next, it handles with models rather than theories. Finally, it is 
nearly institution-independent. 

The environment [3] supports the editing and rapid prototyping of specifications. 
It allows infix and mixfix notation, overloading and lazy evaluation. The induction 
prover INKA developed at the University of Karlsruhe is to be integrated into the 
environment in the very next future. 

[1] Th. Lehmann, J. Loeckx, "The specification Language of OBSCURE" in D. 
Sannella, A.Tarlecki (eds.) , "Recent trends in abstract data types", LNCS 332, 
1988 

[2] Th. Lehmann, J. Loeckx. "OBSCURE, a specification language for abstract 
data types", Internal Rep., Universitat Saarbriicken, Nov. 1990. Submitted 
for publication. 

[3] J. Fuchs et al, "The manual of OBSCURE", Internal Report, Universitat 
Saarbriicken, Fehr. 1991. 

Software-Retrieval Based on Logical 
Specifications of Functions 

Sigi Meggendorfer 

Intellektik - AI Research Group, Technical University Munich, 
West Germany 

22 



Within the SW Retrieval task it is necessary to propose a pragmatical point of view
on formal speci�cation techniques. These techniques and methods should support
the SW designer in efficient development of large SW-Systems and therefore be
treatable in practice.

Our approach to SW retrieval given here takes place at the lowest pre-algorithmical
speci�cation level of functions and modules. It is founded on a frame based spec-
ification formalism decribing as much properties of a function as are available. In
order to retrieve pieces of code we demand the existance of a library of SW com-
ponents consisting of a small piece of code and a related detailed speci�cation. To
solve the retrieval task we have to compare the speci�cation of the desired function
(called target) with all given speci�cations in the library (called sources).

One important part of a speci�cation, called the semantics attribute, is represented
by using full �rst order predicate logic in a well known pre- and postcondition
de�nition style for functions. We introduce a formal de�nition of the reuse relation
based on the semantics of functions which has a so-called input completeness and
output correctness properly, following the intuition of reusability.

This formal framework with the related inference mechanism (a theorem prover;
we use SETHEO) is embedded in a KL-ONE like knowledge representation system
which supports taxonomical reasoning with a classi�er. This embedding results in
a connection of the theorem prover and the classi�er yielding several advantages for
the original theorem prover task to show reusability.

We will discuss some ideas and problems of this framework.

23

Within the SW Retrieval task it is necessary to propose a pragmatical point of view 
on formal specification techniques. These techniques and methods should support 
the SW designer in efficient development of large SW-Systems and therefore be 
treatable in practice. 

Our approach to SW retrieval given here takes place at the lowest pre-algorithmical 
specification level of functions and modules. It is founded on a frame based spec
ification formalism decribing as much properties of a function as are available. In 
order to retrieve pieces of code we demand the existance of a library of SW com
ponents consisting of a small piece of code and a related detailed specification. To 
solve the retrieval task we have to compare the specification of the desired function 
( called target) with all given specifications in the library ( called sources). 

One important part of a specification, called the semantics attribute, is represented 
by using full first order predicate logic in a well known pre- and postcondition 
definition style for functions. We introduce a formal definition of the reuse relation 
based on the semantics of functions which has a so-called input completeness and 
output correctness properly, following the intuition of reusability. 

This formal framework with the related inference mechanism ( a theorem prover; 
we use SETHEO) is embedded in a KL-ONE like knowledge representation system 
which supports taxonomical reasoning with a classifier. This embedding results in 
a connection of the theorem prover and the classifier yielding several advantages for 
the original theorem prover task to show reusability. 

We will discuss some ideas and problems of this framework. 

23 



Introduction

A Fine-Grain Approach to Sorted Logic

The Speci�cation Language SPECTR UM

A Re�nement Case Study

The Role of Programming Logics in Formal Program Construction

Integrating Various Approaches to Program Synthesis Using Dy-
namic Logic

The Complexity of Proving Program Correctness

Virtual Data Structures

Calculating Programs by Equational Reasoning

Calculation by Computer

A Relational Theory of Datatypes

Relations as a Program Development Language

Time Analysis, Cost Equivalence and Program Re�nement

Coping With Requirement Freedoms

The IO-Graph-Method

Proof and Program Transformation in Type Theory: Some Remarks

Using the Calculus of Constructions in Order to Synthetise Correct
Programs

A Survey of the Categorical Semantics of Dependent and Polymor-
phic Types

Propre: An Experimental Language for Programming with Proofs

An Overview of another logical framework

Abstract Data Types in the Polymorphic z\-Calculus

A Meta-Calculus for Formal System Development

An experiment in Formal Software Development: Using the B The-
orem Prover on a VDM Case study

Specifying Systems of Structured Polymorphic Speci�cations

Inheritance with exceptions - On the meaning of �but�

The Algebraic Module Speci�cation and Interconnection Language
ACT TWO

The Speci�cation System OBSCURE: An Overview

Software-Retrieval Based on Logical Speci�cations of Functions

24

Jochen Burghardt

Franz Regensburger

J .-R. Abrial

Werner Stephan

Maritta Heisel

Hardi Hungar

S.D. Swierstra

Lambert Meertens

Roland Backhouse

Roland Backhouse

Bernhard Möller

D. Sands

Martin S. Feather

Gerd Neugebauer

Didier Galmiche

Benjamin Werner

Thomas Streicher

Michel Parigot

Bengt Nordström

Kurt Sieber

Matthias Weber

Yves Ledru

Martin Wirsing

P.-Y. Schobbens

Werner Fey

Jacques Loeckx

Sigi Meggendorfer

Introduction 

A Fine-Grain Approach to Sorted Logic Jochen Burghardt 

The Specification Language SPECTRUM Franz Regensburger 

A Refinement Case Study J .-R. Abrial 

The Role of Programming Logics in Formal Program Construction Werner Stephan 

Integrating Various Approaches to Program Synthesis Using Dy- Maritta Heisel 
namic Logic 

The Complexity of Proving Program Correctness Hardi Hungar 

Virtual Data Structures 

Calculating Programs by Equational Reasoning 

Calculation by Computer 

A Relational Theory of Datatypes 

Relations as a Program Development Language 

Time Analysis, Cost Equivalence and Program Refinement 

Coping With Requirement Freedoms 

The JO-Graph-Method 

S.D. Swierstra 

Lambert Meertens 

Roland Backhouse 

Roland Backhouse 

Bernhard Moller 

D. Sands 

Martin S. Feather 

Gerd Neugebauer 

Proof and Program Transformation in Type Theory: Some Remarks Didier Galmiche 

Using the Calculus of Constructions in Order to Synthetise Correct Benjamin Werner 
Programs 

A Survey of the Categorical Semantics of Dependent and Polymor- Thomas Streicher 
phic Types 

Propre: An Experimental Language for Programming with Proofs Michel Parigot 

An Overview of another logical framework Bengt Nordstrom 

Abstract Data Types in the Polymorphic >.-Calculus Kurt Sieber 

A Meta-Calculus for Formal System Development Matthias Weber 

An experiment in Formal Software Development: Using the B The- Yves Ledru 
orem Prover on a VDM Case study 

Specifying Systems of Structured Polymorphic Specifications Martin Wirsing 

Inheritance with exceptions - On the meaning of "but" P.-Y. Schobbens 

The A lgebraic Module Specification and Interconnection Language Werner Fey 
ACT TWO 

The Specification System OBSCURE: An Overview 

Software-Retrieval Based on Logical Specifications of Functions 

24 

Jacques Loeckx 

Sigi Meggendorfer 





Jean-Raymond Abrial Dr. Wemcr Fey
26 rue des Plantes Technische Universität Berlin

F-75014 Paris Fachbereich 20, Sekr. FR 6-1

France Institut für Software und Theoretische Infor-

phone: (1) 45428349 matik
Franklinstraße 28-29

Prof. Dr. Roland Backhouse 0-1000 Bali" 10
Dept. of Mathematics and Computing Science P00�: 030 314 25812 °� O30 314 73510
Eindhovcn University of Technology
p_O_ Box 513 Prof. Dr. Jean-Pierre Finance
NL-5600 MB Eindhoven CRIN-CNRS & INRIA �nah�
Netherlands Boitc Postalc 239

phone: +31 40 472744 F-54506 Vandoeuvre les Nancy, France
email: wsinrcb@win.tue.nl Plmne� (33) 83 91 2112
Fax: +31 40 436685 email: �nance@loria.crin.fr

Fax: (33) 83 41 3079

Prof. Dr. Wolfgang Bibel
Technische Hochschule Darmstadt D� Didi� Galmichc

Fachbereich 20 Informatik CRINCNR5
Alexanders�. 10 Boitc Postale 239

w_61O0 Darmstadt F-54506 Vandoeuvre-les-Nancy, France
phone: +49_6151_16_21O0 phone: (33) 83 91 20 00 ext. 2869
email: xiiswbib@ddathd21.bitnct emaik 8a1m1°h°@1°Fia-°1�in-ff
Fax: +49-6151-16-5326

Maritta Hciscl

Jochen Burghardt Universität Karlsruhe
GMD Forschungsstelle Institut für Logik, Komplexität und Deduk-
an der Universität Karlsruhe nonssysteme
Vmcenz-Prießnitz-Str. 1 P°S�fa°� 69 8°

W-7500 Karlsruhe 1
W-7500 Karlsruhe 1

phone: +49-721-6622-45

email: burghard@ gmdka.uucp
Fax: +49-721-6622-968

phone: 0721-608-4212

email: hcisel@ira.uka.dc

Dr. Hardi Hungar

Dr. M min S. Feather Universität Oldenburg s O
University of Southern California Fachbereich 10 - Technische Informatik
Information Sciences Institute Postfach 2503
4676 Admiralty Way Ammerländer Heerstraße 114-118
Marina Del Rey CA 90292, USA �"2900 °��°�"��3

phone: (0441) 798-2372

email: hardi.hungar@arbijnfonnatikuni-old-_
enburg.de

phone: +1-213-822-l5ll�ext. 246

email: feather@vaxa.isi.edu

Fax: +1-213-823-6713

Jean-Raymond Abrial 

26 rue des Plantes 

F-75014 Paris 

France 

phone:(1)45428349 

Prof. Dr. Roland Backhouse 

Dept. of Mathematics and Computing Science 

Eindhoven University of Technology 

P.O. Box 513 

NL-5600 MB Eindhoven 

Netherlands 

phone: +3140472744 

email: wsinrcb@win.tue.nl 

Fax: +3140436685 

Prof. Dr. Wolfgang Bibel 

Technische Hochschule Dannstadt 

Fachbereich 20 Informatik 

Alexanderstr. 10 

W-6100 Darmstadt 

phone: +49-6151-16-2100 

email: xiiswbib@ddathd21.bitnet 

Fax: +49-6151-16-5326 

Jochen Burghardt 

GMD Forschungsstelle 

an der Universitat Karlsruhe 

Vincenz-Prie8nitz-Str. 1 

W-7500 Karlsruhe 1 

phone: +49-721-6622-45 

email: burghard@gmdka. uucp 

Fax: +49-721-6622-968 

Dr. Martin S. Feather 

University of Southern California 

Information Sciences Institute 

4676 Admiralty Way 

Marina Del Rey CA 90292, USA 

phone: +1-213-822-1511,ext. 246 

email: feather@vaxa.isi.edu 

Fax: +1-213-823-6713 

Dr. Werner Fey 

Technische U niversitiit Berlin 

Fachbereich 20, Sekr. FR 6-1 

Institut filr Software und Theoretische Infor
matik 

Franklinstra8e 28-29 

D-1000 Berlin 10 

phone: 030 314 25812 or030 314 73510 

Prof. Dr. Jean-Pierre Finance 

CRIN-CNRS & INRIA Lorraine 

Boite Postale 239 

F-54506 Vandoeuvre les Nancy, France 

phone: (33) 83 91 2112 

email: finance@loria.crin.fr 

Fax: (33) 83 41 3079 

Dr. Didier Galmiche 

CRIN-CNRS 

Boite Postale 239 

F-54506 Vandoeuvre-les-Nancy, France 

phone: (33) 83 91 20 00 ext. 2869 

email: galmlche@loria.crin.fr 

Maritta Heisel 

Universitat Karlsruhe 

Institut filr Logilc, Komplexitat und Dedu.k
tionssysteme 

Postf ach 69 80 

W-7500 Karlsruhe 1 

phone: 0721-608-4212 

email: heisel@ira.uka.de 

Dr. Hardi Hungar 

Universitat Oldenburg 

Fachbereich 10 - Technische Infonnatik 

Postf ach 2503 

Ammerlander Heerstra& 114-118 

W-2900 Oldenburg 

phone: (0441) 798-2372 

email: hardi.hungar@arbi.inf onnatik. uni-old
en burg.de 



Prof. Dr. Stefan J ähnichen Institue of Computer Science
Universität Karlsruhe Polish Academy of Sciences
Institut für Programmstrukturen und Datenor- P.O. Box 22
ganisation 00-901 Warszawa PKiN, Poland
Postfach 69 30 phone: +48 (22) 357716 (home)
W-7500 Karlsruhe 1 email: jacek@ida.liu.se
phone: +49-721-662210 Fax: +43 (22) 200114 (of�ce)
email: jaehn@gmdka.uucp

Fax: +49-721-6622-968 prcf_ Dr wer Li
0� Dept. of Computer Science
GMD Karlsruhe Beijing University of
Vi"CC�Z&#39;P"i¬3"i�Z&#39;StT- 1 Aeronautics and Astronautics
W-7500 Karlsruhe 1 Beijing 100083, P.R. China
phone: +49-721-662210 phche; 00364-20} 6994

Fax: 0086-1-201 5347

Dr. Christoph Kreitz Lzr
Technische Hochschule Darmstadt Fachbereich 14 - Informatik
Fachbereich 20 Informatik Lehrsruhl prcf_ Dr Herz
Alexanders� 10 Universität des Saarlandes
W&#39;6100 Darmstadt W-6600 Saarbrücken 11
phone: +49-6151-162863

email: xiisckre@ddathd21.bitnet prcf_ Dr�-1rrg_ Jacques Lceckx
Fax: &#39;*&#39;49&#39;6151�165325 Fachbereich 14 - Informatik

Universität des Saarlandes

Prof. Dr. Hans Langmaack 1m Stadtwald 15
Inst. für Informatik und Praktische Mathematik w.6600 Saarbrücken

Christian-Albrechts-Universität Kiel phone; (0631) 302 3435
PTCUBCTSU- 1&#39;9, Haus H email: loeckx@cs.uni�sb.de
W-2300 Kiel 1

phone: 0431/5604-28 or 27 Prof. Dr Lambert Meerrehs
email: hl@eausun.uucp Cw}
Fax: 0431565143 Dept. of Algorithrnics & Architecture

P.O. Box 4079

Y. Ledru NL-1009 AB Amsterdam, Netherlands
Unité d�Informatique phone: +31 20 592 4141
Université Catholique de Louvain cm3�; 1arhberr@cwi�rr1
Place Saintc Barbe. 2 Fax: +31 20 592 4199
B-1348 Louvain-la�Neuve, Belgium er;
phone: +32 10 47 31 50 Utrecht University
email: yl@info.ucl.ac.be p_()� Box 3o 039
Fax: +32 10 45 03 45 NL-3508 TB Utrecht, Netherlands
Dr. Jacek Leszczylowski phone; +31 30 534040

Prof. Dr. Stefan Jahnichen 
Universitat Karlsruhe 
Institut filr Programmstrukturen und Datenor
ganisation 

Postfach 69 80 
W-7500 Karlsruhe 1 
phone: +49-721-662210 
email: jaehn@gmdka.uucp 
Fax: +49-721-6622-968 
or: 

GMO Karlsruhe 
Vincenz-PrieBnitz-Str. 1 
W-7500 Karlsruhe 1 
phone: +49-721-662210 

Dr. Christoph Kreitz 
Technische Hochschule Darmstadt 
Fachbereich 20 Informatik 
Alexanderstr. 10 
W-6100 Darmstadt 
phone: +49-6151-162863 
email: xiisckre@ddathd21.bitnet 
Fax: +49-6151-165326 

Prof. Dr. Hans Langmaack 
Inst. ftir Infonnatik und Praktische Mathemati.k 
Christian-Albrechts-Universitat Kiel 
PreuBerstr. 1-9, Haus II 
W-2300 Kiel 1 
phone: 0431/5604-28 or 27 
email: hl@eausun.uucp 
Fax: 0431/566143 

Y.Ledru 
Unite d'lnfonnatique 
Universite Catholique de Louvain 
Place Sainte Barbe, 2 
B-1348 Louvain-la-Neuve, Belgium 
phone: + 32 10 47 31 50 
email: yl@info.ucl.ac.be 
Fax: +32 10 45 03 45 

Dr. Jacek Leszczylowski 

Institue of Computer Science 
Polish Academy of Sciences 
P.O. Box 22 
00-901 Warszawa PKiN, Poland 
phone: +48 (22) 357716 (home) 
email: jacek@ida.liu.se 
Fax: +48 (22) 200114 (office) 

Prof. Dr. Wei Li 
Dept. of Computer Science 
Beijing University of 
Aeronautics and Astronautics 
Beijing 100083, P.R. China 
phone: 0086-1-201 6994 
Fax: 0086-1-201 5347 

z.Zt. 

Fachbereich 14 - lnformatik 
Lehrstuhl Prof. Dr. Hotz 
Universitat des Saarlandes 
W-6600 Saarbrticken 11 

Prof. Dr.-Ing. Jacques Loeckx 
Fachbereich 14 - lnformatik 
Universitat des Saarlandes 
Im Stadtwald 15 

W-6600 Saarbrticken 
phone: (0681) 302 3435 
email: loeckx@cs.uni-sb.de 

Prof. Dr. Lambert Meertens 
CWI 
Dept. of Algorithrnics & Architecture 
P.O. Box 4079 
NL-1009 AB Amsterdam, Netherlands 
phone: +31 20 592 4141 
email: lambert@cwi.nl 
Fax: +31 20 592 4199 

or: 

Utrecht University 
P.O. Box 80 089 
NL-3508 TB Utrecht, Netherlands 
phone: + 31 30 534040 



email: lambert@cwi.nl

Fax: +31 30 513791

Sigi Meggendorfer
TU München, Institut für Informatik

Forschungsgruppe KI

Augustenstr. 46, RGB

W-8000 München 2

phone: 089/521096
email: sigi@laninformatik.tu-muenchen.db-
p.de

Prof. Dr. W. Menzel

Universität Karlsruhe

Institut für Logik, Komplexität und Deduk-

tionssysteme 
Postfach 69 80
W-7500 Karlsruhe l

phone: 0721/608 3919

email: menzel@ira.uka.de

Prof. Dr. Bemhard Möller

Institut für Mathematik

Universität Augsburg
Universitätsstraße 2

W-8900 Augsburg
phone: +49-821-598-2164

email: moellerb%uniaug@ira.uka.de
Fax: +49-821-598-2200

Gerd Neu gebauer
Technische Hochschule Darmstadt

Fachbereich 20 Informatik

Alexanderstr. 10

W-6100 Darmstadt

phone: 06151/16 5382

email: xiisgneu@ddathd2l.bitnet

Prof. Dr. Bengt Nordström

Department of Computer Science
University of Göteborg - Chalmers
S-412 96 Göteborg, Sweden

phone: +46-31-721033

email: bengt@cs.chalmers.se

Fax: +46-31-165 655

Prof. Dr. Michel Parigot
Univcrsité Paris 7, CNRS URA 753 *

2, place Jussieu
F-75251 Paris Cedex O5, France

phone: +33-1-44-27-37-68
email: parigot@ frmap7 11
Fax: +33-1-44-27-69-35

Prof. Dr. Helmut A. Partsch

Faculty of Mathematics and Informatics

Nijmegen University
Toemooiveld 1

NL-6525 ED Nijmcgcn, Netherlands

phone: +31-80-652258/653410
email: helmut@cs.kun.nl

Fax: +31-80-553450

Prof. Dr. Peter Pepper

Technische Üniversität Berlin
Fachbereich 20 -- Informatik

Franklinstraße 28-29, Sekr. FR 5-6

D-1000 Berlin l0

phone: (O30) 314-73470

email: pepper@opal.cs.tu-berlin.de

Franz Regensburger

TU München

Arcisstr. 21

W-8000 München 40

phone: 089/2105-8194

email: regensbu@Ian.informatik.tu-mucnchcn.de

Dr. David Sands

Imperial College
180 Queen�s Gate

London SW7 2BZ, U.K.

phone: (071) 5895111 or 4993

email: ds@doc.ic.ac.uk

email: lambert@cwi.nl 
Fax: +31 30 513791 

Sigi Meggendorfer 
TU Mtinchen, Institut ftir Informatik 
Forschungsgruppe Kl 
Augustenstr. 46, RGB 
W-8000 Mtinchen 2 

phone: 089/521096 
email: sigi@lan.infonnatik. tu-muenchen.db
p.de 

Prof. Dr. W. Menzel 
Universitat Karlsruhe 
Institut filr Logik, Komplexitat und Deduk
tionssysteme 
Postf ach 69 80 
W-7500 Karlsruhe 1 
phone: 0721/608 3919 
email: menzel@ira.uka.de 

Prof. Dr. Bernhard Moller 
Institut ftir Mathematik 
Universitat Augsburg 
UniversitatsstraBe 2 
W-8900 Augsburg 
phone: +49-821-598-2164 
email: moellerb%uniaug@ira.uka.de 
Fax: +49-821-598-2200 

Gerd Neugebauer 
Technische Hochschule Darmstadt 
Fachbereich 20 Infonnatik 
Alexanderstr. 10 
W-6100 Darmstadt 
phone: 06151/16 5382 
email: xiisgneu@ddathd21.bitnet 

Prof. Dr. Bengt Nordstrom 
Department of Computer Science 
University of Goteborg - Chalmers 
S-412 96 Goteborg, Sweden 

phone: +46-31-721033 
email: bengt@cs.chalmers.se 
Fax: +46-31-165 655 

Prof. Dr. Michel Parigot 
Universite Paris 7, CNRS URA 753 
2, place Jussieu 
F-75251 Paris Cedex 05, France 
phone: +33-1-44-27-37-68 
email: parigot@frmap711 
Fax: + 33-1-44-27-69-35 

Prof. Dr. Helmut A. Partsch 
Faculty of Mathematics and Informatics 
Nijmegen University 
Toemooiveld 1 
NL-6525 ED Nijmegen, Netherlands 
phone: + 31-80-652258/653410 
email: helmut@cs.kun.nl 
Fax: +31-80-553450 

Prof. Dr. Peter Pepper 
Technische Universitat Berlin 
Fachbereich 20 -- lnformatik 
FranklinstraBe 28-29, Sekr. FR 5-6 

D-1000 Berlin 10 
phone: (030) 314-73470 
email: pepper@opal.cs.tu-berlin.de 

Franz Regensburger 
TU Mtinchen 
Arcisstr. 21 
W-8000 Mtinchen 40 
phone: 089/2105-8194 
email: regensbu@lan.infonnatik.tu-muenchen.de 

Dr. David Sands 

Imperial College 
180 Queen's Gate 
London SW7 2BZ, U .K. 
phone: (071) 5895111 or 4993 
email: ds@doc.ic.ac.uk 



Dr. Kurt Sieber Matthias Weber

Fachbereich 14 - Infonnatik Universität Karlsruhe

Universität des Saarlandes Institut für Prograrrunstrukturen und Datenor-
Im Stadtwald 15, Bau 36 ganisation
W-6600 Saarbrücken 11 P°3tfa°h 59 30

phone: 0681/302 3235 W-7500 Karlsruhe 1
email: sieber@cs.uni-sb.de phone: +721/608-4386

email: nick@ gmdka.uucp

Martin Simons 01"

GMD Forschungsstelle GMD F°1&#39;3°h�n8S3t¢113
Vincenz-PricBnitz Straße 1 Vincmz Prie�nitz 5� 1
w.75()() Karlsruhe 1 W-7500 Karlsruhe 1

phone: 0721/662221 phone: +721/662236
email: simons@karlsruhe.gmd.dbp.de email: niek@gmdka.uuep

Fax: +721/6622968

Prof. Dr. Michel Sintzoff

Université de Louvain Benjamin WCTUCT
Ulme (flnfonnatjque INRIA - Domaine de Voluceau-Racquencourt
place Sainte-Barbe 2 BP 105
B-1348 Louvain-la-Neuve, Belgium E78153 1-3 ChCSn3Y Cedcxs France
phone: +32-10-473150 phone: (I) 39 63 52 31
email: ms@info.ucl.ac.be email: W¬m6Y@m3TguaX-infia-fr

Fax: +32-10-450345 
Prof. Dr. Martin Wrrsing

Dr, Thomas streichsr Universität Passau

Universität Passau Fakultät für Mathematik und Informatik

Fakultät für Informatik Gebäude FMI
Innstr. 33, Postfach 2540 Innstr. 33
w.339() passau W�839O Passau

phone: 0851/509-353 phone: 0851/509345
email: streiche@unipas.frni.uni-passau.de ""3": WiTSin8@f0I&#39;WiSS-lmi&#39;PaSS311-dc
Fax; 03 51 /509-497 Fax: 0851/509497

or:

Pro� Dr, 3, Doaitse swig,-stra Bayer. Forschungszentrum für Vlfrssensbasiertc

Utrecht University 5YS�°��°
Dept. of Computer Science Forschungsgruppe Programmiersysteme
P.O. Box s0 089 A 1��S�° 33

NL-3508 TB Utrecht, Netherlands �"3390 Pass�
phone: 0851/509705phone: +31-30-53-3962

email: swierstra@cs.ruu.nl email: wirsing@forwiss.uni-passau.dc

Dr. Kurt Sieber 
Fachbereich 14 - Infonnatik 
Universitat des Saarlandes 
Im Stadtwald 15, Bau 36 

W-6600 Saarbrticken 11 
phone: 0681/302 3235 
email: sieber@cs.uni-sb.de 

Martin Simons 
GMD Forschungsstelle 
Vincenz-PrieBnitz StraBe 1 
W-7500 Karlsruhe 1 
phone:0721/662221 
email: simons@karlsruhe.gmd.dbp.de 

Prof. Dr. Michel Sintzoff 
Universite de Louvain 
Unite d'Infonnatique 
place Sainte-Barbe 2 

B-1348 Louvain-la-Neuve, Belgium 
phone: +325 10~473150 
email: ms@info.ucl.ac.be 
Fax: + 32-10-450345 

Dr. Thomas Streicher 
Universitat Passau 

Fakultat fiir lnfonnatik 
Innstr. 33, Postfach 2540 
W-8390 Passau 
phone: 0851/509-353 
email: streiche@unipas.fmi.uni-passau.de 
Fax: 0851/509-497 

Prof. Dr. S. Doaitse Swierstra 
Utrecht University 
Dept. of Computer Science 
P.O. Box 80 089 
NL-3508 TB Utrecht, Netherlands 
phone: +31-30-53-3962 
email: swierstra@cs.ruu.nl 
Fax: +31-30-513791 

Matthias Weber 
Universitlit Karlsruhe 
Institut fur Programmstrukturen und Datenor
ganisation 
Postf ach 69 80 
W-7500 Karlsruhe 1 
phone: + 721/608-4386 
email: nick@gmdka.uucp 
or: 
GMD Forschungsstelle 
Vincenz Prie8nitz Str. 1 
W-7 500 Karlsruhe 1 
phone: +721/662236 
email: nick@gmdka. uucp 
Fax: + 721/6622968 

Benjamin Werner 
INRIA- Domaine de Voluceau-Racquencourt 
BP 105 
F-78153 Le Chesnay Cedex, France 
phone: (1) 39 63 52 31 
email: wemer@marguax.inria.fr 

Prof. Dr. Martin Wll'Sing 
Universitlit Passau 
Fakultlit filr Mathematik und lnfonnatik 
Gebl'iude FMI 
Innstr. 33 
W-8390 Passau 
phone:0851/509345 
email: wirsing@forwiss.uni-passau.de 
Fax: 0851/509497 
or: 
Bayer. Forschungszentrum filr Wissensbasierte 
Systeme 
Forschungsgruppe Programmiersysteme 
Innstr. 33 
W-8390 Passau 
pbone:0851/509705 
email: wirsing@forwiss.uni-passau.de 
Fax: 0851/509497 





Bisher erschienene und geplante Titel:

W. Gentzsch, W.J. Paul (editors):
Architecture and Performance, Dagstuhl-Seminar-Report; 1,
18.-20.6.1990; (9025)

K. Harbusch, W. Wahlster (editors):
Tree Adjoining Grammars, lst. Intemational Worshop on TAGS: Formal Theory
and Application, Dagstuhl-Seminar-Report; 2, 15.-17.8.1990 (9033)

Ch. Hankin, R. Wilhelm (editors):
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report; 3,
3.-7.9.1990 (9036)

H. Alt, E. Welzl (editors):
Algorithmic Geometry, Dagstuhl-Seminar-Report; 4, 8.-12.10.1990 (9041)

J. Berstel , J .E. Pin, W. Thomas (editors):
Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar-
Report; 5, 14.-18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prüfen, Testen, Dagstuhl-Seminar-Report; 6, 18.-22.2.1991 (9108)

J . P. Finance, S. Jähnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-
1.3.1991 (9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 8, 4.-8.3.1991
(9110)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Speci�cation, and Synthesis, Dagstuhl-Seminar-
Report; 9, 11.-15.3.1991 (9111) �

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10,
18.-22.3.1991 (9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report;
11, 15-19.4.1991 (9116)

B. Nebel, C.Pe1tason, K. v. Luck (editors):
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5.1991 (9119)

R. Giegerich, S. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13, ,
20.-24.5.1991 (9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-l4.6.1991 (9124)

J . Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex Object, and Nested Relation Data-
bases, Dagstuhl-Seminar-Report; 15, 17.-21.6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Re-
port; 16, 24.-28.6.1991 (9126)

Bisher erschienene und geplante Titel: 

W. Gentzsch, W.J . Paul (editors): 
Architecture and Performance, Dagstuhl-Seminar-Repon; 1, 
18.-20.6.1990; (9025) 

K. Harbusch, W. Wahlster (editors): 
Tree Adjoining Grammars, 1st. International Worshop on TAGs: Formal Theory 
and Application, Dagstuhl-Seminar-Repon; 2, 15.-17.8.1990 (9033) 

Ch. Hankin, R. Wilhelm (editors): 
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report; 3, 
3.-7.9.1990 (9036) 

H . Alt, E. Welzl (editors): 
Algorithmic Geometry, Dagstuhl-Seminar-Report; 4, 8.-12.10.1990 (9041) 

J . Berstel, J.E. Pin, W. Thomas (editors): 
Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar
Report; 5, 14.-18.1.1991 (9103) 

B. Becker, Ch. Meinel (editors): 
Entwerfen, Prufen, Testen, Dagstuhl-Seminar-Report; 6, 18.-22.2.1991 (9108) 

J. P. Finance, S. Jahnichen, J. Loeckx, M . Wirsing (editors): 
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-
1.3.1991 (9109) 

E. W. Mayr, F . Meyer auf der Heide (editors): 
Parallel and Distributed Algorithms, Dagstuhl-Scminar-Rcport; 8, 4.-8.3.1991 
(9110) 

M. Broy, P . Deussen, E.-R. Olderog, W.P. de Roever (editors): 
Concurrent Systems: Semantics, Specification, and Synthesis, Dagstuhl-Seminar
Repon; 9, 11.-15.3.1991 (9111) 

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors): 
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10, 
18.-22.3.1991 (9112) 

E. Novak, J. Traub, H . Wozniakowski (editors): 
Algorithms and Complexity for Continuous Problems, Dagstuhl-Scminar-Rcport; 
11, 15- 19.4.1991 (9116) 

B. Nebel, C. Peltason, K. v. Luck (editors): 
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5.1991 (9119) 

R. Giegerich, S. Graham (editors): 
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13, , 
20.-24.5.1991 (9121) 

M. Karpinski, M. Luby, U. Vazirani (editors): 
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124) 

J. Ch. Freytag, D. Maier, G . Vossen (editors): 
Query Processing in Object-Oriented, Complex Object, and Nested Relation Data
bases, Dagstuhl-Seminar-Repon; 15, 17.-21.6.1991 (9125) 

M. Droste, Y. Gurevich (editors): 
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Re
pon; 16, 24.-28.6.1991 (9126) 


