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Introduction

Concurrent, interacting systems are becoming more and more widespread. Examples

include distributed algorithms, operating systems, communication protocols, computer

architectures, and digital circuits.

The theoretical challenges of such systems resulted in various formal approaches to

their specification, analysis and verification. These approaches are based on

operational models, process algebras, temporal and modal logics, and compositional

calculi for design and verification. Current research problems in the theory of

concurrent systems are the search for suitable notions of semantic equivalence, the

analysis of system refinement, the issue of true concurrency versus interleaving

semantics, and the formal description of real-time and probabilistic systems.

On the other hand, the construction of realisticdistributed algorithms or the implemen-

tation of concurrent systems is mostly ignored in this theoretical work. However, the

correct synthesis of such systems is often of vital importance. To cope with these tasks,

pragmatic and - from a theoretical point of view - more ad hoc approaches have been

. developed. These approaches include iterative programs, interface specifications,

automatic finite state verification, implemented tools for system specification, and

�separate industrial methods.

The organizers of this workshop find that too little communication is going on between

the more theoretical and the more applied work on concurrent systems. The aim of this

workshop was therefore to bring together representatives of both sides. The result was

a very stimulating meeting with 26 talks (see the abstracts - in the order of presentation

- below), lots of discussion, and one demonstration of a tool for interactive system

design. All participants welcomed the plan for a successor workshop where specific

case studies should be discussed.
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Abstracts

Manfred Broy, Tech. Univ. München:

Functional System Specificatlon: Higher Order Messages, Real Tlme and

Operatlng System Structures

(joint work with C. Dendorfer, Tech. Univ. München)

A notation and a semantic model is introduced for specifying interactive components of

concurrent distributed systems that depend on real time properties and exchange

higher order messages such as processes again. This way a formal framework is

obtained for the specification of operating system structures.

Jozef Hooman, Eindhoven Univ. of Technology:

Specification and Compositional Verification of Real-Time Systems using

Metric Temporal Logic

To specify and verify real-time systems, we consider an Occam-like programming

language with synchronous communication along unidirectional channels that connect

two processes. As a starting point for a compositional axiomatization, a denotational

semantics for this language is given, describing the real-time behaviour of programs.

Specifications are written in a real-time version of temporal logic, called Metric

Temporal Logic, in which bounds have been added to the temporal operators. To verify

that a program satisfies a specification written in this logic, we formulate a

compositional proof system.

Ernst-Rüdiger Olderog� Univ. Oldenburg:

Trace-based Specification and Derivation of Communicating Programs

A simple specification language SL0for communicating systems is presented together

with some transformations for the derivation of Occam-like programs from SL0

specifications. The main idea of SL0 is to split the description of the desired process

behaviour into a trace part and a state part. The trace part specifies the sequencing

constraints on the interface channels of SL0 whereas the values communicated are

ignored. These values are specified in the state part with the help of internal state

variables. The motivation for organizing an SL0 specification in two parts is to ease its

stepwise transformation into Occam. The trace part yields a synchronization skeleton

and the state part completes this skeleton to a communicating program by adding

purely sequential parts.
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Philippe Schnoebelen, LiFia-lmag Grenoble:

Strong Bisimilarity of Nets Revisited

Following Olderog�s seminal idea, we present a new definition of bisimulation between

places of Petri nets. We compare bisimulation on places with several classical

bisimulations on markings: bisimulation on places preserves more of the structure of

the net. We present a way of collapsing bisimilar places, giving canonical

representatives (modulo place bisimulation) of nets.

Willem-Paul de Roever, Christian-Albrechts-Univ. Kiel:

Assertional Data Reification Proofs: Survey and Perspective

(joint work with J. Coenen, Eindhoven Univ. of Technology, and J. Zwiers, Univ. of

Twente)

Three wellknown methodologies for proving data refinement due to Jones, Reynolds

and Back have been presented up till now separately in the literature.

We investigate how these methodologies are related:

- by developing a modest predicate transformer framework;

- by relating the 4 known varieties for proving refinement and expressing them as

verification conditions within our framework;

- by analyzing Reynolds� method and VDM-style refinement proofs, stating their

associated verification conditions for partial correctness, and then, through a change

of interpretation to strict predicates and total relations to include non-termination, for

total correctness;

- by mentioning how a restricted form of Back�s general theory can also be

characterized.

Reinhard Gotzhein, University of Hamburg:

Requirement Specification for Open Distributed Systems

When specifying requirements on an open distributed system, it is essential to capture

both the conceptual system structure and the possible system behaviour. We use the

formalism of temporal logic with operators for the future, the past, for event occurrence

and for interval construction to model and specify these aspects. We show how the
logic can be applied to specifying and reasoning about the Initiator-Responder service,

a simplified version of the Abracadabra service from the protocol standardization

literature.
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Dominique Bolignano, Bull Corporate Research:

A Naive Approach to Formal Methods: an Application to Concurrency

We present the basis for an approach which is to provide an intuition based and

general means of modeling. In order to achieve this, we introduce finite annotated

graphs which we call semantic graphs. These graphs allow the finite structure of a

software system to be captured while precisely describing potentially infinite states and
behaviours. Data and basic "transitions" can be described using dedicated formal
languages such as VDM. The approach is intended to be used at this first stage as a
framework for comparing and unifying various approaches.

Steven Klusener, CWI Amsterdam:

Completeness In Real Time Process Algebra

Recently, J. Baeten and J. Bergstra extended the process algebra ACP with real-time,

resulting in ACPp. The aim is to do protocol verification on protocols concerning time,

thus containing time outs etc. The idea is that every action "a" has now a time stamp �t"
associated with it. This time stamp can be interpreted absolute (from the beginning) or

relative (from the previous action). Since every term in relative time can be rewritten in

a term in absolute time easily, we restrict ourselves to absolute time during the talk.

ACPp has the interesting construct of integration: J 1, e (0,1, a(v) denotes the process
which can execute the action "a" somewhere within �<0,1>. A variable binding

mechanism is contained in integration, e. g. IV e (0,1, a(v) =Jw e (0_1, a(w).
Hence in order to reason with all terms,�we have to be able to reason with terms

containing free time variables as well. Therefore we introduce conditional terms, which

are simply guarded terms. Then we can express Iaws Iike

a(v) . b(w)=v<w->-a(v) . b(w) +v2w->a(v).ö.

Furthermore a restricted notion of integration is introduced called "prefixed" integration.

This allows us to write I v e (0,1, a(v).p but excludes �f 1, e (0_1, a(v).b(v+10). Due to
this restricted notion of integration and the introduction of conditionals we obtain

completeness for ACPp. Soundness and the Congruence Theorem are discussed
shortly.
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Joost N. Kok, Univ. of Utrecht:

On the Relation of Logic Programming and the Refinement Calculus

Back&#39;s Refinement Calculus (BRC) is a calculus for the development of programs. It is a
mixed formalism (specification and programs can be mixed) based on the preservation

of total correctness.

We relate Logic Programming (including Horn Clause Logic, Pure Prolog and parts of

Concurrent Logic languages) to BRC by identifying a class of programs in the

command language of,BRC. This enables us to

- establish a flow-of-control semantical model for LP

- extend LP with specification constructs

- obtain lines for program development:

* from LP to distributed programs (LP = declarative = specification)

* use LP as target of refinements (LP = implementation)

Also it provides us with some interesting correspondences:

unification <-> angelic updates
HCL choice <-> angelic choice
commit <-> guarded actions

Bernhard Steffen, RWTH Aachen:

Computing Behavioural Relations, Logically

(joint work with R. Cleaveland, North Carolina State Univ.)

A model-checking algorithm for an intuitionistic fragment of the modal mu-calculus is
developed, and it is shown how it may be applied to the efficient computation of
behavioural relations between processes. The algorithm is� linear in the size of the

process times the size of the formula, and thus improves on the best known algorithms
for a similar logic, where worst-case complexity is proportional to� the size of the
process times the square of the size of the formula. The method for computing

behavioural preorders that the model-checker induces is also more efficient than

existing algorithm.

Bent Thomsen, ECRC München:

Higher Order Processes

We present a calculus of communicating systems which allows one to express sending

and receiving processes. Essential to this calculus is the treatment of restriction as a
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static binding operator on port names. The calculus is given an operational semantics

using labelled transition systems which combines ideas from applicative transition

systems described by Milner. The higher order process calculus enjoys algebraic

properties similar to those of CCS only needing obvious extra laws for sending and

receiving processes. A calculus allowing sending and receiving processes is a

powerful description tool. We show how to encode various programming paradigms

including functional, imperative and object-oriented programming paradigms.

Processes as first class objects enable the description of networks with changing

interconnection structure. There is a close connection between the higher order

process calculus and the 1:-calculus described by Milner. Parrow and Walker: the two

calculi can simulate one another.

W. Fleislg, Tech. Univ. München:
Petri Nets and UNITY: Combining their Respective Advantages

UNITY combines a temporal logic for abstract specifications with a programming

notation for algorithmic design. We suggest to replace this programming notation by

high level Petri nets. A symbolic version of such nets is employed, as expressive as

conventional programming languages. This leads to a couple of advantages:

.- fairness assumptions are introduced only if justified by the respective algorithm,

� early fixing of program variables and assignment statements are avoided,

- established Petri net proof techniques can be applied,

- data structures may be specified algebraically,

- concurrency and synchronization issues are dealt with explicitly.

The introduction of concurrency as a modality, exploiting the specific structure of Petri

nets, leads to transparent proofs.

Ursula Goltz, GMD St. Augustin and Univ. Erlangen:

Towards a Modular Hierarchical Calculus for System Design

(joint work with R. van Glabbeek, Stanford Univ.)

A theoretical framework aiming at modular design of reactive systems is considered. In

particular, the hierarchical structure of the design is representable by a construct for

changing the level of abstraction.

We use a language based on process algebras, enriched by an operation refining
actions by processes. We give a compositional semantic domain. The interplay
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between refinement (substitution) and semantic refinement is investigated. The power

and the limitations of the approach are discussed by applying it to a very simple

communication protocol.

Alessandro Glacalone, ECRC München:

The Semantics of Facile: A Symmetric Integration of Functlonal and

Concurrent Programming

We present the semantics of the Facile language, representative of a class of

languages that combine typed X-calculus with constructs for concurrent programming.

Examples include PFL, Amber and PML. Facile supports a symmetric integration of

functional and concurrent programming. Its expressions are very general and may

dynamically create processes and cause communication. We develop the semantics in
three steps. First, an operational semantics is developed, based on a structural

approach, which characterises a notion of program execution. Next, a notion of

observable behaviour of a program is introduced, based on a notion of window of

observation: a set of channels through which we may decide to observe a program.

The concept of window is then used to obtain a parametric notion of equivalence

between programs. The notion of equivalence generalizes Milner&#39;s bisimulation to

support reasoning about higher-order processes as well as systems whose interface

may change dynamically. The equivalence supports reasoning about, both, observable

behaviour of processes and evaluation of expressions. We conclude with a discussion

about compositional reasoning using the notion of window-parameterized equivalence.

Michael P. Fourman, Univ. of Edinburgh and Abstract Hardware Ltd.:
The LAMBDA/DIALOG System &#39;
We argue that multi-level specification and refinement requires a general�purpose

formalism (at least until we have more experience that might expose new

abstractions). We use higher-order predicate logic and treat time explicitly by modelling
devices as predicates relating streams of values on ports. In this we follow Gordon and

Hanna. As abstraction relations are often partial, we use a logic (that allows terms

which do not denote) of partial functions. We model a design state by a derived rule

schema and show how the design process may be supported by a tool based on

computer-assisted formal reasoning with an interface presented in the familiar
"schematic capture" idiom. This is the LAMBDA/DIALOG system.

7 

between refinement (substitution) and semantic refinement is investigated. The power 

and the limitations of the approach are discussed by applying it to a very simple 

communication protocol. 

Alessandro Giacalone, ECRC MOnchen: 

The Semantics of Facile: A Symmetric Integration of Functional and 

Concurrent Programming 

We present the semantics of the Facile language, representative of a class of 

languages that combine typed ).-calculus with constructs for concurrent programming. 

Examples include PFL, Amber and PML. Facile supports a symmetric integration of 

functional and concurrent programming. Its expressions are very general and may 

dynamically create processes and cause communication. We develop the semantics in 

three steps. First, an operational semantics is developed, based on a structural 

approach, which characterises a notion of program execution. Next, a notion of 

observable behaviour of a program is introduced, based on a notion of window of 

observation: a set of channels through which we may decide to observe a program. 

The concept of window is then used to obtain a parametric notion of equivalence 

between programs. The notion of equivalence generalizes Milner's bisimulation to 

support reasoning about higher-order processes as well as systems whose interface 

may change dynamically. The equivalence supports reasoning about, both, observable 

behaviour of processes and evaluation of expressions. We conclude with a discussion 

about compositional reasoning using the notion of window-parameterized equivalence. 

Michael P. Fourman, Unlv. of Edinburgh and Abstract Hardware Ltd.: 

The LAMBDA/DIALOG System 

We argue that multi-level specification and refinement requires a general-purpose 

formalism (at least until we have more experience that might expose new 

abstractions). We use higher-order predicate logic and treat time explicitly by modelling 

devices as predicates relating streams of values on ports. In this we follow Gordon and 

Hanna. As abstraction relations are often partial, we use a logic (that allows terms 

which do not denote) of partial functions. We model a design state by a derived rule 

schema and show how the design process may be supported by a tool based on 

computer-assisted formal reasoning with an interface presented in the familiar 

"schematic capture" idiom. This is the LAMBDA/DIALOG system. 



Michael R. Hansen, Techn. Univ. of Denmark:

Duration Calculus

(joint work with Zhou Chaochen and A. P. Ravn, Techn. Univ. of Denmark, and C.A.R.

Hoare, Oxford Univ.)

Duration calculus is an extension to interval temporal logic whose purpose is to reason

about designs and requirements for time-critical systems. its distinctive feature is the

ability to reason about durations of (propositional combinations of) states. We give a
formal system of durations which is shown to be relative complete wrt. interval temporal

logic.

Heino Kurki-Suonio, Tampere Univ. of Technology:

The Disco Language and Temporal Logic of Actions

DisCo (Distributed Cooperation) is a specification language for reactive systems that

combines the action-oriented approach of joint actions with object-oriented ideas of

classes and inheritance. lt is intended for structured derivation of semi-executable

models that can be reasoned about, visualized and animated. Modularity in DisCo is

essentially based on superposition whereby the system state can be extended, actions

can be refined, and further actions can be introduced. The talk related DisCo to TLA,

Lamport&#39;s temporal logic of actions, showing how superposition and union of DisCo

systems are syntactic approximations of corresponding �-more general notions in TLA.

Restricting the language to these approximations is motivated by the preservation of

both safety properties and (semi-)executability.

[Helene Collavlzza, Unlv. de Provence, Marsellle:

Specifying the Micro-program Parallelism in Microprocessors of the Von

Neumann Style.

(joint work with D. Borrione, Univ. de Provence, Marseille)

In order to verify significant u-processors, we believe that the proof process must be

decomposed into successive steps of verification between adjacent description levels.

Furthermore we recommend the use of a functional formalism. The " u�program" level

takes into account the memory/processor information exchanges, and the internal

operations that can be executed in parallel. For pipelined processors we define the

"implicit parallelism� of two u-program fragments executed in two independent pipiline
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stages, and the �partical parallelism" of two contiguous pipeline stages. We also define

the "implicit parallelism" of several internal operations which modify different state

variables and can possibly be executed during the same u-instruction.

Shengzong Zhou, Unlv. Saarbrücken:

Compositional Temporal Loglc Specifications
Temporal Logic is a powerful tool for specifying and verifying reactive systems. Up to

now, one specifies a program by describing the global behaviour of the program, or by

describing the behaviour of the possible parallel composition of the program with an

arbitrary program. The former approach results in the following disadvantages:
globality, non-modularity and non-compositionalty. The latter approach suffers from the

complexity of the proof rules and proof procedures. The talk presents a new approach

for temporal logic specifications to overcome these deficiencies. We specify a program

by describing the behaviour which every (or some) individual statement of the program

has. To show our approach, we introduce a temporal logic language XYZ/U, of which

one subset is an executable imperative language. We define some new temporal
logical operators describing the behaviour which every (or some) individual statement
of a program has. A program&#39;s specifications expressed with the new operators imply

directly the corresponding classical specifications. With the help of these new

operators, a program&#39;s specifications can be easily deduced form the specifications of

its components. This facilitates the compositional specification design, synthesis and

verification of large programs.

Cliff B. Jones, Univ. of Manchester:

Interference Resumed

The rely/garantee approach set out to extend operation decomposition methods for

sequential programs to cover concurrent shared-variable systems. The essential step

was to recognise that interference has to be specified in order to achieve a notion of

compositionality. Stephen&#39;s thesis (Univ. of Manchester) has addressed the main

shortcomings of my earlier work. This talk showed how to break away form the n-tuple

specifications. A semantic model (resumptions), some operators for predicates over

state pairs, and some examples were sketched.
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Frank de Boer, Elndhoven Univ. of Technology:

A Compositional Trace Model for Asynchronous Communication

(joint work with J. Kok, Univ. of Utrecht, J. Rutten, CWI Amsterdam, and C. Palamidessi,

Univ. of Pisa)

We develop a general framework for a variety of concurrent languages all based on

asynchronous communication, like data flow, concurrent logic, concurrent contraint

languages and CSP with asynchornous channels. The main characteristic of these

languages is that processes interact by reading and modifying the state� of some

common data structure. We abstract from the specific features of the various

communication mechanisms by means of a uniform language where actions are

interpreted as partially defined transformations on an abstract set of states. Suspension

is modelled by an action being undefined in a state. The languages listed above can

be seen as instances of our paradigm, and can be obtained by fixing a specific set of
states and interpretation of the actions. The computational model of our paradigm is

described by a transition system in the style of Plotkin�s SOS. A compositional model is

presented that is based on traces (of pairs of states). This sharply contrasts with the

synchronous case, where some additional braching information is needed to describe

deadlock. In particular, we show that our model is more abstract than the standard

failure set semantics (that is known to be fully abstract for the classical synchronous

paradigms). We also investigate the problem of full abstraction, with respect to various

observation criteria. To tackle this problem, we have to consider the particular features

of the specific languages. We study some cases, for which we give a fully abstract
semantics. &#39;

Job Zwlers, Twente Unlverslty:

Program. Development from Partlcal Order Specifications

Two different schools of thought can be observed in recent developments around

specification, verification and design of distributed systems. One departs from the

compositionality principle, based on algebraic structure of systems. The other school

rejects this on the basis that often the algebraic structure does not match the perceived

structure for analysis and design of such systems. Moreover, algebraic structure would
be geared already to a particular architecture, which should not be the case for the

initial design stage of systems. My claim ist_ that many (most?) of these disadvantages

of the algebraic style can be overcome by introducing the right compositional
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operations. Important here is that such operations can be explained only in models

that take causality into account. Actually we use a variation of the well known Pomset

model. We show for instance that the "communication closed layers principle" can be

formulated as an algebraic law in this setting. Another example is serializability in

databases which can be explained now by means of action refinement.

Werner Damm, Univ. Oldenburg:

AADL: A Net Based Method for Specification and Verification of

Distributed Systems

(joint work with G. Döhmen, B. Josko, and R. Schlör, Univ. Oldenburg)

Using the design of an asynchronous bus-protocol as example, the talk outlined a
modular approach to specification and verification of reactive systems.

The specification method is based on an assumption/commitment style temporal logic

MCTL. An introductory part of the talk discussed the use of timing diagrams as a

graphical representation of a certain class of temporal formulae. Such timing diagrams

contain for each atomic proposition a row depicting the truth value of this proposition
over time, and depict causal dependencies between changes of the truth of the atomic

propositions graphically by different types of arrows corresponding to different "idioms"

of the temporal logic. A formal definition of the semantics of such timing diagrams is

currently under preparation.

AADL provides for implementation modules allowing synchronous or asynchronous
communication between modules. The verification of the correctness of such an

implementation module against its assumption/commitment style temporal specification

is based on a modelchecking procedure for MCTL. The construction of the model out of

the implementation module uses as intermediate step the compilation of

implementation modules into a certain class of Petri-nets. To verify the correctness of a

parallel composition of modules, we refrain from employing modelcheking in order to

avoid the state-explosion problem but rather employ proof rules, which allow to infer

the behaviour of the composite model form the temporal specification of its constituents.

These rules address in particular elimination of assumptions and allow to handle

circular assumptions as long as they deal only with a restricted class of safety

properties.
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Frank A. Stomp, Abo Akademl:

Preventing Cycles In Graphs: Formal Program Derlvatlons

- Experiments with Reactive Refinements -�

The problem of formally and completely deriving complex programs is addressed. For

this purpose, derivations of a sequential, of a concurrent, and of a distributed program

for preventing cycles in finite, directed, and acyclic graphs under additions of edges to

that graph and deletions of edges from it are considered.

Transformations are carried out using a relation called reactive refinement within

context. This relation is a modified version of Back�s reactive refinement relation and

preserves all stutter-free temporal properties (in certain environments) when a

transformation is applied. It is argued that such a relation is, in general, too strong for

carrying out derivations. In particular, it is shown that a (convenient) specification for the

sequential case cannot be used to specify the concurrent case; and that a (convenient)

specification for the concurrent case cannot be used to specify the distributed case.

Rob Gerth and Fiuurd Kuiper, Eindhoven Univ. of Technology:

Action/Interface Refinement

Suppose one has a system that has a synchronous interface with its environment. Now,
suppose that one refines this system and changes its interface to an asynchronous
one. Whatever is meant here by refinement, it cannot be standard (process) refinement

since the interface actions have changed; nor is it action refinement in the sense that a

process is substituted for an action, as the intention presumably is to allow the system
to proceed without having to wait until the environment is willing to synchronize. What
comes closest is action refinement using Zwier�s notion of conflict composition (suitably

generalized). 
Standard process refinement can be seen as semantic inclusion:

S refines T iff Beh(S) S. Beh(T),

for a suitable notion of behaviour Beh. This" can be trivially rewritten as

S refines T iff Vs e Beh(S) Elt eBeh(T) s=t.

In our view, refinement while changing the interface generalizes standard refinement in

that instead of equality to relate behaviours one now uses a relation that defines how

the interface changes:

S refinesCT iff Vs e Beh(S) 3teBeh(T) s C� t.
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Here, C defines how the interface changes - so it might express that a synchronous

communication action cv now becomes an asynchronous send action sv with a later

corresponding receive action rv which might be represented as a pair of linear temporal

logic formulae ( cv , s A O rv ) - and C� is the canonical extension of C to behaviors.V

There are some subtleties in defining this canonical extension since one would like to

relate a behavoir c1c1 to s,s1r,r1 and to s,r1s1r1 but not to, e.g., s1r1 r,. In other words

such an extension calls for a partitioning of the actions in the behaviours.

The second part of the talk concerns a verification criterion for this notion. In fact we

concentrate on a subproblem of this, namely: given a set of LTL formulae and a

program how can one prove that on every behavior the actions can be partitioned in

such a way that every partition satisfies one of these formulae.

We develop a Manna and Pnueli style proof method for this and show how the proof

obligation can be reduced to a set of leads to properties of some suitably choosen

invariants. One of the surprising results - at least to us - is that this reduction is possible

at all. Initially, we expected some form of branching time reasoning to be inevitable.

Bernard Le Goff, Bull Research Center, Vprsallles:
Time and Specification of Concurrency: a Synchronous Approach

In the framework of formal specifications, the complexity of models makes automatic
proofs impossible, in general. The temporal indeterminism specified by models is a
cause of the complexity of models. The synchronous approach introduces a referential

time onto which events can be mapped. This referential time is simply an infinite

well-ordered set: a time index. The map from events to time indexes allows us to

specify either simultaneity of events or the fact that one occurs before another. No

duration notion exists: events are instantaneous. Such a time is a logical time. Time

can be represented by several time indexes. What is the structure of the space of time

indexes. Does one including all the others exists?

The answer to this question determines whether a deterministic implementation exists.

Moreover, the process of answering this question can detect temporal properties of

models. An algorithm that answers this question is currently implemented into the

SIGNAL compiler.
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