
Johann Christoph Freytag, David Maier,
Gottfried Vossen (editors):

Query Processing in Object-Oriented,
Complex-Object and Nested Relation Databases

Dagstuhl-Seminar-Report; 15
17.-21.6.1991 (9125)

Johann Christoph Freytag, David Maier,
Gottfried Vossen (editors):

Query Proc~ing in Object-Oriented,
Complex-Object and Nested Relation Databases

Dagstuhl-Seminar-Report; 15
17.-21.6.1991 (9125)

ISSN 0940-1121

Copyright © 1991 by IBFI GmbH, Schloß Dagstuhl, W_-6648 Wadem, Germany
Tel.: +49-687l - 2458

Fax: +49-6871 - 5942

Das Intemationales Begegnungs- und Forschungszentrum �ir Informatik (IBFI) ist eine gemeinnützige
GmbH. Sie veranstaltet regehnäßig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit persönlich eingeladenen Gästen
durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. lose Encarnacao,
Prof. Dr. Winfried Görkc.
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy.
Prof. Dr. Reinhard Wilhehn (wissenschaftlicher Direktor).

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautem,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland Pfalz.

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes
W � 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 � 302 - 4397

e-mail: dagstuhl@dag.uni-sb.de

ISSN 0940-1121

Copyright© 1991 by IBFI GmbH, Schlo8 Dagstuhl, W-6648 Wadem, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lntemationales Begegnungs- und Forschungszentrum filr Informatik (IBFI) ist eine gemeinntitzige
GmbH. Sic veranstaltet regelmllBig wissenschaftliche Seminare, welche nach Antrag der Tagungsleiter
und Begutachtung durch das wissenschaftliche Direktorium mit pers(:Snlich eingeladenen Gasten
durchgefiihrt werden.

Verantwortlich flir das Programm:

Gesellschafter:

Trliger:

Bezugsadresse:

Prof. Dr.-lng. Jo~ Encarna~ao,
Prof. Dr. Winfried G(:Srke,
Prof. Dr. Theo Hlirder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor).

Universitlit des Saarlandes,
Universitlit Kaiserslautem,
Universitlit Karlsruhe,
Gesellschaft flir lnformatik e. V .• Bonn

Die Bundesllmder Saarland und Rheinland Pfalz.

Geschliftsstelle SchloB Dagstuhl
Informatik, Bau 36
Universitlit des Saarlandes
W - 6600 Saarbrticken
Germany
Tel.: +49 -681 - 302 -4396
Fax: +49-681 - 302 - 4397
e-mail: dagstuhl@dag.uni-sb.de

Query Processing in Object-Oriented, Complex-Object and Nested
Relation Databases

Organizers: J .C. Freytag, D. Ma.ier, G. Vossen

1 Introduction

There is an abundance of new types of database system on the horizon: behavioral
and structural ob ject-oriented database systems, extended relational databases,
multimedia databases and database systems based on semantic data models. These
efforts have yielded more than just new data model or paper systems. All the types
of systems mentioned are represented by working prototypes or even initial com-
mercial offerings. The initial focus of these systems has been greater expressivity
and supporting modes of access of new database applications, such as CAD and
CASE. However, on the whole these new systems are weak in an area where current
relational systems excel: efficient querying via a declarative language.

The need to provide such a capability in these new database systems is widely
acknowledged, but the challenges are many:

1. The algebraic formalisms used to represent queries for optimization and eval-
uation need to be extended to handle new data model features such as added

base types, ordered type constructors (e.g., lists and arrays), object identi�ers
and user-de�ned data types.

2. Relational query processing exploits the homogeneity of large collections of
data to carry out set-at-a-time processing. While these new database systems
intend to support large collections, heterogeneity creeps in from a variety of
sources: different levels of nesting or repetition, multiple implementations for
a type or a method, subtype hierarchies and union types to name a few. Can
set-at-a-time processing be adapted to tolerate such variations?

3. Many of these systems provide for extensibility by the application program-
mer, database designer or DBMS implementor. Query optimizers must be
constructed so that they can be extended in parallel with the models and
access methods.

4. The encapsulation provided by class- or type-de�nition mechanisms found in
some of these systems obscures the global knowledge required by a query op-
timizer to deduce alternative execution. Do there exist processing strategies
that allow the system to manage these two conflicting concepts in such a way
that they can coexist together? Based on requirements and/ or user speci-
�cations one might give preference to maintain encapsulation or to provide

Query Processing in Object-Oriented, Complex-Object and Nested
Relation Databases

Organizers: J .C. Freytag, D. Maier, G. Vossen

1 Introduction

There is an abundance of new types of database system on the horizon: behavioral
and structural object-oriented database systems, extended relational databases,
multimedia databases and database systems based on semantic data models. These
efforts have yielded more than just new data model or paper systems. All the types
of systems mentioned are represented by working prototypes or even initial com
mercial offerings. The initial focus of these systems has been greater expressivity
and supporting modes of access of new database applications, such as CAD and
CASE. However, on the whole these new systems are weak in an area where current
relational systems excel: efficient querying via a declarative language.

The need to provide such a capability in these new database systems is widely
acknowledged, but the challenges are many:

1. The algebraic formalisms used to represent queries for optimization and eval
uation need to be extended to handle new data model features such as added
base types, ordered type constructors (e.g., lists and a.rrays); object identifiers
and user-defined data types.

2. Relational query processing exploits the homogeneity of large collections of
data to carry out set-at-a-time processing. While these new database systems
intend to support large collections, heterogeneity creeps in from a variety of
sources: different levels of nesting or repetition, multiple implementations for
a type or a method, subtype hierarchies and union types to name a few. Can
set-at-a-time processing be adapted to tolerate such variations?

3. Many of these systems provide for extensibility by the application program
mer, database designer or DBMS implementor. Query optimizers must be
constructed so that they can be extended in parallel with the models and
access methods.

4. The encapsulation provided by class- or type-definition mechanisms found in
some of these systems obscures the global knowledge required by a query op
timizer to deduce alternative execution. Do there exist processing strategies
that allow the system to manage these two conflicting concepts in such a way
that they can coexist together? Based on requirements and/or user speci
fications one might give preference to maintain encapsulation or to provide

1

global knowledge for exhaustive optimization. Do there exist intermediate
approaches between these two extremes (i.e., not giving up encapsulation
completely thus not gaining complete global knowledge of the request) and
if so what kind of optimization is possible in those?

5. To support efficient execution of user requests in object-oriented, complex
object, or nested relation database systems, new kinds of access structures
need to be offered and explored. Furthermore, relationships between objects
on the logical level might impact the organization of objects on the storage
level. Such physical organization then needs to be maintained over time.
What kinds of concepts, data structures, and algorithms are necessary to
achieve optimal storage and processing of objects?

6. Most relational optimization is done at compile time based on cost estima-
tions that are derived by cost functions. The question is if such a �static�
model is still adequate for models with much richer concepts than the relation
model. Are there alternative ways of optimizing user requests, such as some
kind of �run time� optimizations that exhibit a more �dynamic� behavior to
take better into account the existing object organization and to adapt more
easily to possible changes on various levels.

7. Most relational systems focus on physical optimization, i.e., taking into ac-
count the physical layout of data on disk possibly supported by auxiliary
structures such as indexes. A semantically richer environment provides much
more information that should be included in the processing of user requests,
in particular information embedded in the semantic concepts offered by the
various models. Taking into account such information leads to a kind of
�logical� optimization that goes beyond current optimization in relational
systems. The question arises what kind of optimizations are possible and
what kind are desirable for these advanced database models.

8. All these new aspects raise the immediate question if the current architectures
for query processing components in relational systems are adequate for also
implementing such components for advanced database systems. The higher
complexity in query processing might suggest alternative architectures that
go beyond simply extending existing ones to the new requirements.

The intent of this workshop was to bring together academic and industrial
researchers working in query processing to discuss their initial efforts in solving
these problems, to set forth new problems they have encountered in the process,
and to generate ideas for new query processing strategies in advanced data models.

The meeting was the first database workshop held at Dagstuhl, and brought
together 32 scientists from 8 different countries (see Section 5). During the week,

global knowledge for exhaustive optimization. Do there exist intermediate
approaches between these two extremes (i.e., not giving up encapsulation
completely thus not gaining complete global knowledge of the request) and
if so what kind of optimization is possible in those?

5. To support efficient execution of user requests in object-oriented, complex
object, or nested relation database systems, new kinds of access structures
need to be offered and explored. Furthermore, relationships between objects
on the logical level might impact the organization of objects on the storage
level. Such physical organization then needs to be maintained over time.
What kinds of concepts, data structures, and algorithms are necessary to
achieve optimal storage and processing of objects?

6. Most relational optimization is done at compile time based on cost estima
tions that are derived by cost functions. The question is if such a "static"
model is still adequate for models with much richer concepts than the relation
model. Are there alternative ways of optimizing user requests, such as some
kind of "run time" optimizations that exhibit a more "dynamic" behavior to
take better into account the existing object organization and to adapt more
easily to possible changes on various levels.

7. Most relational systems focus on physical optimization, i.e., taking into ac
count the physical layout of data on disk possibly supported by auxiliary
structures such as indexes. A semantically richer environment provides much
more information that should be included in the processing of user requests,
in particular information embedded in the semantic concepts offered by the
various models. Taking into account such information leads to a kind of
"logical" optimization that goes beyond current optimization in relational
systems. The question arises what kind of optimizations are possible and
what kind are desirable for these advanced database models.

8. All these new aspects raise the immediate question if the current architectures
for query processing components in relational systems are adequate for also
implementing such components for advanced database systems. The higher
complexity in query processing might suggest alternative architectures that
go beyond simply extending existing ones to the new requirements.

The intent of this workshop was to bring together academic and industrial
researchers working in query processing to discuss their initial efforts in solving
these problems, to set forth new problems they have encountered in the process,
and to generate ideas for new query processing strategies in advanced data models.

The meeting was the first database workshop held at Dagstuhl, and brought
together 32 scientists from 8 different countries (see Section 5). During the week,

2

22 presentations were given (see Sections 2 and 3) with plenty of discussion time
after each; in addition, two afternoons were reserved for discussion of special topics
in small groups (see Section 4). The schedule for the different sessions and their
contents was not determined in advance, rather the organizers wanted to be �exible
in this matter and to react dynamically to requests and the questions raised by
all partcipants during the various session. The special topics that we discussed in
small groups were collected during the presentation sessions from the audience. In
this way we were able to cover additional aspects of query processing that were
not addressed by the presentations.

We felt that all participants enjoyed the workshop, and we wish to thank the
Dagstuhl staff for ensuring that everything ran so smoothly.

22 presentations were given (see Sections 2 and 3) with plenty of discussion time
after each; in addition, two afternoons were reserved for discussion of special topics
in small groups (see Section 4). The schedule for the different sessions and their
contents was not determined in advance, rather the organizers wanted to be flexible
in this matter and to react dynamically to requests and the questions raised by
all partcipants during the various session. The special topics that we discussed in
small groups were collected during the presentation sessions from the audience. In
this way we were able to cover additional aspects of query processing that were
not addressed by the presentations.

We felt that all participants enjoyed the workshop, and we wish to thank the
Dagstuhl staff for ensuring that everything ran so smoothly.

3

2 Final Program

Monday, June 17, 1991

Opening Remarks, Introductory Statement by each Participant 9.00 - 10.00 h
Chair: G. Vossen, FRG

Session 1: Indexing 10.30 � 12.30 h
Chair: J .C. Freytag, FRG

Indexing Techniques for Object-Oriented Databases
E. Bertino, Italy

Query Processing in GOM
G. Moerkotte, FRG

Session 2: Optimization 2.30 � 5.45 h
Chair: D. Maier, USA

Evaluation and Optimization of Complex Object Selections
J. van den Bussche, Belgium

Towards a Uni�cation of Rewrite Based Optimization Techniques for Object-Oriented
Queries
S. Cluet, France

Optimization of Complex-Object Queries in PRIMA � Statement of Problems
H. Schöning, FRG

Open Discussion; Proposals for Special Interest Groups

Tuesday, June 18, 1991

Session 3: Authorization and Methods Processing 9.00 � 12.15 h
Chair: H.-J. Schek, Switzerland

The Revelation Project: Query Processing in Object-Oriented Databases
D. Maier, USA

Implementation of the Object-Oriented Data Model TM

4

2 Final Program

Monday, June 17, 1991

Opening Remarks, Introductory Statement by each Participant 9.00 - 10.00 h
Chair: G. Vossen, FRG

Session 1: Indexing 10.30 - 12.30 h
Chair: J.C. Freytag, FRG

Indexing Techniques for Object-Oriented Databases
E. Bertino, Italy

Query Processing in GOM
G. Moerkotte, FRG

Session 2: Optimization 2.30 - 5.45 h
Chair: D. Maier, USA

Evaluation and Optimization of Complex Object Selections
J. van den Bussche, Belgium

Towards a Unification of Rewrite Based Optimization Techniques for Object-Oriented
Queries
S. Cluet, France

Optimization of Complex-Object Queries in PRIMA - Statement of Problems
H. Schoning, FRG

Open Discussion; Proposals for Special Interest Groups

Tuesday, June 18, 1991

Session 3: Authorization and Methods Processing 9.00 - 12.15 h
Chair: H.-J. Schek, Switzerland

The Revelation Project: Query Processing in Object-Oriented Databases
D. Maier, USA

Implementation of the Object-Oriented Data Model TM

4

P. Apers, The Netherlands

Supporting Access Control in an Object-Oriented Database Language
P. Lyngbaek, USA

Session 4: Models 2.30 -� 6.15 h

Chair: G. Lausen, FRG

What Results and Models Would Speed Progress for Other Researchers
A. Rosenthal, USA

Special Interest Groups
Open Discussion

Wednesday, June 19, 1991

Session 5: Complex Objects/ Nested Relations 9 � 12.30 h
Chair: K. Kulkarni, USA

Design and Implementation of SQL/XNF in Starburst�s Extensible Database Sys-
tem

B. Mitschang, FRG

Query Optimization in COOL � an Object-Oriented Database Query Language
Based on Nested Relations

M. Scholl, Switzerland

Joint Presentation:

Research in Query Processing at IFI/ University of Zurich
A. Geppert, Switzerland .
Optimization of Object-Oriented Queries Based on the NO�-Algebra
B. Demuth, FRG
Overview of the Ithaca Project
Th. Gorchs, FRG

P. Apers, The Netherlands

Supporting Access Control in an Object-Oriented Datahaae Language
P. Lyngbaek, USA

Session 4: Models 2.30 - 6.15 h
Chair: G. Lausen, FRG

What Results and Mode ls Would Speed Progrus for Other Researchers
A. Rosenthal, USA

Special Interest Groups
Open Discussion

Wednesday, June 19, 1991

Session 5: Complex Objects/Nested Relations 9 - 12.30 h
Chair: K. Kulkarni, USA

Design and Implementation of SQL/ XNF in Starhurst's Ezten.sible Datahaae Sys
tem
B. Mitschang, FRG

Query Optimization in COOL - '1Jn Object-Oriented Databaae Query Language
Baaed on Nested Relations
M. Scholl, Switzerland

Joint Presentation:
Research in Query Processing at /FI/University of Zurich
A. Geppert , Switzerland
Optimization of Object-Oriented Queries Baaed on the N02-Algehra
B. Demuth, FRG
Overoiew of the Ithaca Project
Th. Gorchs, FRG

5

Thursday, June 21, 1991

Session 6: Parallelism 9.00 - 12.15 h

Chair: G. Graefe, USA

Parallel Processing of Complex Objects over a Storage Hierarchy
Y. Kornatzky, Israel

Dynamic Parallel Query Processing
M. Kersten, The Netherlands

Query Processing in Volcano
G. Graefe, USA

Session 7: Architecture 2.00 � 6.00 h

Chair: P. Lyngbaek, USA

Query Processing in Client-Server Systems with Object-Orientation
P. Dadam, FRG

Evaluating Complex Queries Accessing Hierarchically Structured Objects by Using
Path Indexes '

U. Kessler, FRG

Special Interest Groups
Open Discussion

Friday, June 22, 1991

Session 8: Deductive Approaches 9.00 � 11.00 h
Chair: J .C. Freytag, FRG

Optimizing Queries with Structural Azioms of an Object-Centered Data Model
M. Jeusfeld, FRG

An Object-Oriented View on a Deductive Database
G. Lausen, FRG

Session 9: Languages 11.15 � 13.00 h
Chair: J .C. Freytag, FRG

Tagging as an Alternative to Creating New Objects

6

Thursday, June 21, 1991

Session 6: Parallelism 9.00 - 12.15 h
Chair: G. Graefe, USA

Parallel Proceaaing of Complex Objects over a Storage Hierarchy
Y. Kornatzky, Israel

Dynamic Parallel Query Procesaing
M. Kersten, The Netherlands

Query Processing in Volcano
G. Graefe, USA

Session 7: Architecture 2.00 - 6.00 h
Chair: P. Lyngbaek, USA

Query Proceasing in Client-Server System!l with Object-Orientation
P. Dadam, FRG

Evaluating Complex Queriea Accessing Hierarchically Structured Objects by Using
Path Indexes ·
U. Kessler, FRG

Special Interest Groups
Open Discussion

Friday, June 22, 1991

Session 8: Deductive Approaches 9.00 - 11.00 h
Chair: J.C. Freytag, FRG

Optimizing Queries with Structural Aziom!l of an Object-Centered Data Model
M. Jeusfeld, FRG

An Object-Oriented View on a Deductive Databaae
G. Lausen, FRG

Session 9: Languages 11.15 - 13.00 h
Chair: J .C. Freytag, FRG

Tagging all an Alternative to Creating New Objects

6

M. Gyssens, Belgium

ADT-based Type Systems for SQL
K. Kulkarni, USA

Session 10i Final Discussion 2.00 - 4.00 h

M. Gyssens, Belgium

ADT-based Type Systems for SQL
K. Kulkarni, USA

Session 10: Final Discussion 2.00 - 4.00 h

7

3 Abstracts of Presentations

The following abstracts of presentations appear in alphabetical order of speakers.

Implementation of the Object-Oriented Data Model TM
Peter M.G. Apers, University of Twente, The Netherlands

TM is an ob ject-oriented data model currently being developed at the University
of Twente. Its main characteristics are:

o high abstraction level for easy speci�cation of attributes, methods, and con-
straints;

o type constructors for complex objects are record, set, list, and variant;

0 inheritance of attributes, methods, and constraints;

o formal semantics based on type and set theory, lambda calculus, and first
order logic.

The language is currently being tested in a geographic and a complex hospital
application.

ADL is an algebra for complex objects with the same type constructors as TM.
It has higher order functions such as MAP, SEL, and GEN, besides the normal
operations such as PROD, NEST, UNNES T etc. ADL allows for easy rewriting of
expressions to obtain a more efficient execution plan for queries.

A translation of TM types and expressions to ADL is given. This translation
also takes inheritance into account. Furthermore, optimization rules in ADL are

discussed.
Future work concerns logical query language DTL for TM and an implementa-

tion of both of them.

Indexing Techniques for Ob ject-Oriented Databases
Elisa Bertino, University of Genova, Italy

In this work several issues concerning index organizations for ob ject-oriented databa-
ses are discussed and proposed techniques are surveyed. For the purpose of the
discussion, an ob ject-oriented database is considered organized into two orthogonal
dimensions: aggregation graphs, and inheritance hierarchies. First, indexing tech-
niques for efficiently traversing aggregation graphs are surveyed. The basic idea is
to maintain into separate structures object references along aggregation branches
that are frequently traversed in queries. Techniques surveyed include: multi-index,

8

3 Abstracts of Presentations

The following abstracts of presentations appear in alphabetical order of speakers.

Implementation of the Object-Oriented Data Model TM
Peter M.G. Apers, University of Twente, The Netherlands

TM is an object-oriented data model currently being developed at the University
of Twente. Its main characteristics are:

• high abstraction level for easy specification of attributes, methods, and con-
straints;

• type constructors for complex objects are record, set, list , and variant;

• inheritance of attributes, methods, and constraints;

• formal semantics based on type and set theory, lambda calculus, and first
order logic.

The language is currently being tested in a geographic and a complex hospital
application.

ADL is an algebra for complex objects with the same type constructors as TM.
It has higher order functions such as MAP, SEL, and GEN, besides the normal
operations such as PROD, NEST, UNNEST etc. ADL allows for easy rewriting of
expressions to obtain a more efficient execution plan for queries.

A translation of TM types and expressions to ADL is given. This translation
also takes inheritance into account. Furthermore, optimization rules in ADL are
discussed.

Future work concerns logical query language DTL for TM and an implementa
tion of both of them.

Indexing Techniques for Object-Oriented Databases
Elisa Bertino, University of Genova, Italy

In this work several issues concerning index organizations for object-oriented databa
ses are discussed and proposed techniques are surveyed. For the purpose of the
discussion, an object-oriented data.base is considered organized into two orthogonal
dimensions: aggregation graphs, and inheritance hierarchies. First , indexing tech
niques for efficiently traversing aggregation graphs are surveyed. The basic idea is
to maintain into separate structures object references along aggregation branches
that are frequently traversed in queries. Techniques surveyed include: multi-index,

8

nested index, path index, join index, access relation. Then indexing techniques for
inheritance hierarchies are discussed and two different organizations are presented:
single-class index, and class hierarchy index. In the first organization, an index
is maintained for each class in the hierarchy. In the second, the index is stored
by all classes in the hierarchy. In addition, integrated organizations are presented,
that support indexing along both inheritance and aggregation graphs. Finally, the
problem of method caching and precomputation is brie�y discussed.

Evaluation and Optimization of Complex Object Selections
Jan van den Bussche, University of Antwerp, Belgium

We provide a general framework for declarative selection operations for complex
object databases, based on the safe calculus for complex objects. Within this
framework, we consider a class of � single pass-evaluable� selection operations. We
show how such selection operations can be succinctly expressed by programs that »
use only very simple positive existential selections. Also, a syntactic criterion is
developed for the commutation of two such positive existential selections. These
two results are then jointly applied to the problem of optimizing complex object
selections, which is much more complicated than in classical relational databases.
Our results also �nd an application in rule systems for complex objects.

Towards a Uni�cation of Rewrite Based Optimization Techniques for
Object-Oriented Queries
Sophie Cluet, Altair, France

We present a formalism for the logical layer of an ob ject-oriented query optimizer
that subsumes two well-known optimization approaches: the Orion technique based
on classes extensions and the algebra based query rewritings. The formalism also
allows easy and exhaustive factorization of common query subexpressions. Fur-
thermore, it uses information on object placement policies and indices to limit the
search space for an equivalent expression, thereby reducing the rewriting phase.

nested index, path index, join index, access relation. Then indexing techniques for
inheritance hierarchies are discussed and two different organizations are presented:
single-class index, and class hierarchy index. In the first organization, an index
is maintained for each class in the hierarchy. In the second, the index is stored
by all classes in the hierarchy. In addition, integrated organizations are presented,
that support indexing along both inheritance and aggregation graphs. Finally, the
problem of method caching and precomputation is briefly discussed.

Evaluation and Optimization of Complex Object Selections
Jan van den Bussche, University of Antwerp, Belgium

We provide a general framework for declarative selection operations for complex
object databases, based on the safe calculus for complex objects. Within this
framework, we consider a class of "single pass-evaluable" selection operations. We
show how such selection operations can be succinctly expressed by programs that
use only very simple positive existential selections. Also, a syntactic criterion is
developed for the commutation of two such positive existential selections. These
two results are then jointly applied to the problem of optimizing complex object
selections, which is much more complicated than in classical relational databases.
Our results also find an application in rule systems for complex objects.

Towards a Unification of Rewrite Based Optimization Techniques for
Object-Oriented Queries
Sophie Chtet, Altair, France

We present a formalism for the logical layer of an object-oriented query optimizer
that subsumes two well-known optimization approaches: the Orion technique based
on classes extensions and the algebra based query rewritings. The formalism also
allows easy and exhaustive factorization of common query subexpressiona. Fur
thermore, it uses information on object placement policies and indices to limit the
search space for an equivalent expression, thereby reducing the rewriting phase.

9

Query Processing in Client-Server Systems with Object Orientation
Peter Dadam, University of Ulm, FRG

The availability of fast and cheap microprocessor technology is currently leading
to a quick growth of PC�s and workstations in industry and other organizations.
In business administration oriented application areas the trend is to �decentralize�
some of the applications by off-loading some of the application programs from the
host systems down to PC�s. As these PC�s usually need access to data residing
in host-based or centralized database systems this trend is leading quite naturally
to client-server solutions in the one way or another. Opposed to that, engineering
tasks have been usually performed on specialized (isolated) systems rather than on
central host systems already in the past. The quick growth of workstation instal-
lations in conjunction with the trend towards Computer Integrated Manufacturing
(CIM), however, makes some kind of global control and integration via a (log-
ically) centralized engineering database more and more important. Client-server
architectures are the natural choice here too. Unfortunately, the DBMS technology
currently available is not very well suited for this task. While the functionality and
expressive power of SQL only shows some weaknesses in business administration
oriented applications, it is practically not usable for engineering applications.

The weakness of relational database technology to handle complex structured
data objects is known and has led to many research and development efforts under
the label "object-oriented DBMSs�. One can distinguish two directions of research
and development in this area: One is heavily inspired by ob ject�oriented program-
ming languages like C++ or Smalltalk while the other is more in the tradition of
relational database systems. Unfortunately, both approaches often seem to address
� different worlds�. The talk tries to outline that some of the �big� differences may
not be that big as they look like at �rst glance. It also is a pleading for pushing
towards a common view on data and objects rather than pushing for very different
types of systems which would make integrated solutions as required for CIM, for
example, very hard to achieve.

Formalization and Optimization of Queries in the NooDLE Database
System

Birgit Demuth, Technical University of Dresden, FRG
Andreas Geppert, University of Zurich, Switzerland

Thorsten Gorchs, Siemens-Nixdorf, FRG

NooDLE is the database system of the ITHACA (Integrated Toolkit for Highly
Advanced Computer Applications, an ESPRIT-II project) software production en-
vironment. NO� (New Ob ject-Oriented Data Model), the data model of NooDLE

10

Query Processing in Client-Server Systems with Object Orientation
Peter Dadam, University of Ulm, FRG

The availability of fast and cheap microprocessor technology is currently leading
to a quick growth of PC1s and workstations in industry and other organizations.
In business administration oriented application areas the trend is to ,, decentralize,,
some of the applications by off-loading some of the application programs from the
host systems down to PC 1s. As these PC1s usually need access to data residing
in host-based or centralized database systems this trend is leading quite naturally
to client-server solutions in the one way or another. Opposed to that , engineering
tasks have been usually performed on specialized (isolated) systems rather than on
central host systems already in the past. The quick growth of workstation instal
lations in conjunction with the trend towards Computer Integrated Manufacturing
(CIM), however, makes some kind of global control and integration via a (log
ically) centralized engineering database more and more important. Client-server
architectures are the natural choice here too. Unfortunately, the DBMS technology
currently available is not very well suited for this task. While the functionality and

· expressive power of SQL only shows some weaknesses in business administration
oriented applications, it is practically not usable for engineering applications.

The weakness of relational database technology to handle complex structured
data objects is known and has led to many research and development efforts under
the label "object-oriented DBMSs". One can distinguish two directions of research
and development in this area: One is heavily inspired by object-oriented program
ming languages like C++ or Smalltalk while the other is more in the tradition of
relational database systems. Unfortunately, both approaches often seem to address
"different worlds". The talk tries to outline that some of the "big'1 differences may
not be that big as they look like at first glance. It also is a pleading for pushing
towards a common view on data and objects rather than pushing for very different
types ef systems which would make integrated solutions as required for CIM, for
example, very hard to achieve.

Formalization and Optimization of Queries in the NooDLE Database
System

Birgit Demuth, Technical University of Dresden, FRG
Andreas Geppert, University of Zurich, Switzerland

Thorsten Gorchs, Siemens-Nixdorf, FRG

NooDLE is the database system of the ITHACA (Integrated Toolkit for Highly
Advanced Computer Applications, an ESPRIT-II project) software production en
vironment. NO2 (New Object-Oriented Data Model) , the data model of NooDLE

10

is a structurally ob ject-oriented data model. N0� objects are pairs (OID, value)
where value constructors (set, tuple, list, and array) can be combined in a com-
pletely orthogonal manner. Object types have assigned a value set (describing the
permitted values for instances of the type) and an extension to them. Furthermore,
N02 supports type hierarchies (multiple inheritance). Permitted object structures
are subobject and general references (comparable to ORION).

Declarative or ad-hoc access is provided by the Quod query language (Query-
ing 0b ject-Oriented Databases). Among other features, Quod supports recursive
queries. Furthermore, access to NooDLE databases is provided via the program-
ming languages C++ and Cool (Combined Object-Oriented Language). Thus,
integration of NOODLE and (say) Cool results in full object-orientation.

A formalization of N02 and Quod is given by the N02 algebra. Each value
set (and each extension) corresponds to one carrier of the many-sorted algebra.
Supported operators are constructors, projection (for objects, lists, tuples, and
arrays), union and difference, �atten, image, and (last not least) selection for sets
and lists. Furthermore, joins can be expressed by other operations, but may be
introduced for the sake of optimization.

Algebraic optimization takes idempotence, commutativity, associativity, and
distributivity properties of operations into account. Some rules (based on these
properties) carry over from the relational algebra. Other rules are related to the
speci�c features of N02; thus we speci�ed inheritance, subobject, and navigational
rules. This work was partially supported by ESPRIT-II (Demuth, Gorchs) and
KWF, Switzerland (Geppert).

Query Processing in Volcano
Goetz Graefe, University of Colorado, USA

Volcano is an extensible and parallel query processing system. Its optimizer genera-
tor creates optimizer source code from a data model description �le similarly to the
EXODUS optimizer generator, but signi�cantly improves the search strategy and
its support for physical properties like sort order and data distribution in parallel
systems. The execution engine consists of an extensible set of operators realizing
mechanisms for query execution such that policies (strategies) can be determined
by a query optimizer or a human experimenter.

Its novel operators are the two �meta-operators�: the �choose-plan� operator
for dynamic plans and the � exchange� operator that encapsulates all issues of paral-
lel execution, including process creation, scheduling, �ow control, data transfer. It
even hides the underlying hardware architecture from the � work� operators which
can be implemented in a sequential environment but parallelized by combining
them with exchange operators.

11

is a structurally object-oriented data model. NO2 objects are pairs (OID, value)
where value constructors (set, tuple, list, and array) can be combined in a com
pletely orthogonal manner. Object types have assigned a value set (describing the
permitted values for instances of the type) and a.n extension to them. Furthermore,
NO2 supports type hierarchies (multiple inheritance). Permitted object structures
a.re subobject and general references (comparable to ORION).

Declarative or ad-hoe access is provided by the Quod query language (Query
ing Object-Oriented Data.bases). Among other features, Quod supports recursive
queries. Furthermore, access to NooDLE databases is provided via. the program
ming languages C++ and Cool (Combined Object-Oriented La.ngua.ge). Thus,
integration of NOODLE and (sa.y) Cool results in full object-orientation.

A formalization of NO2 and Quod is given by the NO2 algebra. Each value
set (and each extension) corresponds to one carrier of the many-sorted algebra.
Supported operators are constructors, projection (for objects, lists, tuples, and
arrays), union and difference, flatten, image, and (last not least) selection for sets
and lists. Furthermore, joins can be expressed by other operations, but may be
introduced for the sake of optimization.

Algebraic optimization takes idempotence, commutativity, associativity, and
distributivity properties of operations into account. Some rules (based on these
properties) carry over from the relational algebra. Other rules a.re related to the
specific features of NO2

; thus we specified inheritance, subobject, and navigational
rules. This work wa.s partially supported by ESPRIT-II (Demuth, Gorchs) and
KWF, Switzerland (Geppert).

Query Processing in Volcano
Goetz Graefe, University of Colorado, USA

Volcano is an extensible and parallel query processing system. Its optimizer genera
tor creates optimizer source code from a data. model description file similarly to the
EXODUS optimizer genera.tor, but significantly improves the search strategy and
its support for physical properties like sort order a.nd data distribution in parallel
systems. The execution engine consists of an extensible set of operators realizing
mechanisms for query execution such that policies (strategies) can be determined
by a query optimizer or a human experimenter.

Its novel operators are the two "meta-operators": the "choose-plan" operator
for dynamic plans and the "exchange" opera.tor that encapsulates all issues of paral
lel execution, including process creation, scheduling, flow control, data. transfer. It
even hides the underlying hardware architecture from the "work" operators which
can be implemented in a. sequential environment but parallelized by combining
them with exchange operators.

11

Tagging as an Alternative to Creating New Objects
Marc Gyssens, University of Limburg, Belgium

Based on the observation that graphs play an important role in the representation
of databases, an algebra is presented for the manipulation of binary relations, i.e.,
of directed unlabeled graphs. The algebra is based on early work by Tarski. The
key notion that is added is tagging which is needed for giving the model both
enough modeling power and enough querying power. Tagging can also be seen as
a value-based counterpart to object creation in object-oriented data models. In
this work, we present a general formal framework for tagging that incorporates
several variations of tagging as a special case. We also show that, in some sense,
tagging can be seen as a generic operation. It also follows that adding tagging
to the Tarski algebra together with a while-construct results in a computationally
complete database language. Finally we show how tagging can be used to represent
sets, especially in simulating the nest operator of the nested relational algebra.

This work was done together with L. Saxton, University of Regina, Sask.,
Canada, and D. van Gucht, Indiana University, Bloomington, IN, USA.

Optimizing Queries with Structural Axioms of an Object-Centered
Data Model

Manfred Jeusfeld, Universität Passau, FRG

A key technology that made relational databases a success is the efficient evaluation
of declarative expressions, in their incarnations as queries, deductive rules, and
integrity constraints. Surprisingly, these efficient evaluation algorithms can be
transferred easily to an ob ject-centered data model, and take advantage of the
additional structure in such an environment.

Rather than over relations or domains variables in a query range over classes
with �nitely many instances:

V 2:1/c1,. . . ,:::,,/c,, Q => Answer(:c1, . . .,a:,,)

which is a shorthand for

V 2:1,. . . �:c� In(:c1,c1) A .. . A In(:c�,c�) A Q => Answer(z:1, . . . ,:c,,)

The formula Q makes a statement about relationships between objects (here
we uniformly regard values and classes as objects). This is expressed by a literal
A(:c,l,y) which is sometimes written as 2.1 = y. All variables are assigned to
classes. Consequently, it is possible to determine the attribute de�nition (c, l, d) at
the class level that corresponds to a literal occurrence A(a:, l, y) in a query.

12

Tagging as an Alternative to Creating New Objects
Marc Gyssens, University of Limburg, Belgium

Based on the observation that graphs play an important role in the representation
of databases, an algebra is presented for the manipulation of binary relations, i.e.,
of directed unlabeled graphs. The algebra is based on early work by Tarski. The
key notion that is added is tagging which is needed for giving the model both
enough modeling power and enough querying power. Tagging can also be seen as
a value-based counterpart to object creation in object-oriented data models. In
this work, we present a general formal framework for tagging that incorporates
several variations of tagging as a special case. We also show that, in some sense,
tagging can be seen as a generic operation. It also follows that adding tagging
to the Tarski algebra. together with a while-construct results in a computationally
complete database language. Finally we show how tagging can be used to represent
sets, especially in simulating the nest operator of the nested relational algebra.

This work was done together with L. Saxton, University of Regina, Sask.,
Canada, and D. van Gucht, Indiana University, Bloomington, IN, USA.

Opti~izing Queries with Structural Axioms of an Object-Centered
Data Model

Manfred Jeusfeld, Universitat Passau, FRG

A key technology that made relational databases a success is the efficient evaluation
of declarative expressions, in their incarnations as queries, deductive rules, and
integrity constraints. Surprisingly, these efficient evaluation algorithms can be
transferred easily to an object-centered data model, and take advantage of the
additional structure in such an environment.

Rather than over relations or domains variables in a query range over classes
with finitely many instances:

which is a shorthand for

The formula ~ makes a statement a.bout relationships between objects (here
we uniformly regard values and classes as objects). This is expressed by a literal
A(:i:, l, y) which is sometimes written as :i:.l = y. All variables are assigned to
classes. Consequently, it is possible to determine the attribute definition (c, l, d) at
the class level that corresponds to a literal occurrence A(:i:, l, y) in a query.

12

A usual constraint in object-oriented languages demands the attributes of an
instance of a class to be instances of the attribute de�nitions. Thus, assigning
A(z,l,y) to the attribute de�nition (c,l,d) guarantees that In(z,c) and In(y,d)
hold. Therefore, each occurrence of such literals can be eliminated if they appear
in conjunction with A(:c,I,y). " a a

One may argue that a non-typed query language wouldn�t have caused the
problem with the I n-literals at all. However, in that case the concerned attribute
de�nition (c, l, d) is no longer unique. Since the same attribute label l can be used
for different classes which yields a bigger search space.

This optimization technique has been applied also to deductive rules and in-
tegrity constraints. Implementation was done within the object base ConceptBase.

Dynamic Parallel Query Processing
Martin Kersten, CWI, Amsterdam, The Netherlands

Traditional query optimizers for multiprocessor database systems produce a mostly
�xed query evaluation plan based on assumptions about data distribution and
processor workloads. However, these assumptions may not hold, at queryexecution
time due to contention caused by concurrent use of the system or lack of precision
in the derivation of the queryplan. In this task, we propose a dynamic query
processing scheme based on subdividing the query into subtasks and scheduling
these adequately at runtime. We present the results obtained by simulation of �a
queueing network model of the proposed software architecture. 4 �

This work was done together wi'thC.A. van den Berg p�� S. Shair-Ali, CWI,
Amsterdam.

Evaluating Complex Queries Accessing Hierarchically Structures
Objects by Using Path Indexes

Ulrich� Kessler, University of Ulm, FRG

To be generally applicable, an ob ject-oriented database management system sup-
porting complex objects should not only provide the retrieval of complex objects as
a whole but also of arbitrary subparts. For that reason, many systems offer a de-
scriptive query language to express arbitrary selections and projections (sometimes
called multi-target queries). Typically, complex queries are made up of subqueries.
Each of it refers to a multi-valued attribute of the object for which a selection or
projection shall be applied. In this context we can discriminate between indepen-
dent (sub)queries which are accessing "top-level� objects and dependent subqueries
which are selecting subobjects belonging to multi-valued attributes of parent ob-
jects. They are called dependent queries because they are only fully speci�ed after

13

A usual constraint in object-oriented languages demands the attributes of an
instance of a class to be instances of the attribute definitions. Thus, assigning
A(z,l, y) to the attribute definition (c,l,d) guarantees that Jn(z,c) and Jn(y,tl)
hold. Therefore, each occurrence of such literals can be eliminated if they appear
in conjunction with A(z, l , y).

One may argue that a non-typed query language wouldn't have cauaed the
problem with the Jn-literals at all. However, in that case the concerned attribute
definition (c, l, d) is no longer unique. Since the same attribute label l can be used
for different classes which yields a bigger search apace.

This optimization technique has been applied also to deductive rules and in
tegrity constraints. Implementation was done within the object base ConceptBue.

Dynamic Parallel Query Processing
Martin Kersten, CWI, Amsterdam, The Netherlands

Traditional query optimizers for multipro.cessor database systems produce a m01Uy
fixed query evaluation plan based on assumptions about data distribution and
processor workloads. However, these assumptions may not hold, at query execution
time due to contention caused by concurrent use of the system or lack of precision
in the derivation of the query plJLil. In this task, we propose a dynamic query
proces~ing scheme based on subdividing the query into subtasks and ach.eduling
these adequately at runtime. We present the results obtained by simulation of !£
queueing net:work model of the proposed software architecture.

This work was done together with C.A. van den Berg and S. Shair-Ali, CWI,
Amsterdam.

Evaluating Complex Queries Accessing Hierarchically Structures
Objects by Using Path Indexes

Ulrich·Ke11ler, University of Ulm, FRG

To be generally applicable, an object-oriented database management system sup
porting complex objects should not only provide the retrieval of complex objects as
a whole but also of arbitrary subparts. For that reason, many systems offer a de
scriptive query language to express arbitrary selections and projections (sometimes
called multi-target queries). Typically, complex queries are made up of aubqueries.
Each of it refers to a multi-valued attribute of the object for which a selection or
projection shall be applied. In this context we can discriminate between indepen
dent (sub)queries which are accessing "top-level" objects and dependent subqueries
which are selecting subobjects belonging to multi-valued attributes of parent ob
jects. They are called dependent queries because they are only fully specified after

13

the parent object owning the multi-valued attribute has been selected. To execute
such complex queries efficiently the database management system should be able
to to optimize them and to chose secondary access paths like Indexes, for exam-
ple, automatically as it is done today in relational systems. Within the context
we are considering, the queries to be analyzed and optimized can easily become
rather complex; much more complex than typical queries in relational systems.
Therefore, performing query optimization efficiently becomes an important issue
by itself. Our approach is to divide the queries into the subqueries they are com-
posed of and to decide on the evaluation strategy for each of these subqueries
almost independently. For that reason, we will discuss in the second part of the
talk alternative strategies to evaluate subqueries without and with using indexes.
As many systems are internally using hierarchical data structures to store complex
objects we will assume path indexes because they are well suited to invert such
data structures.

When evaluating a dependent query it has to be guaranteed that only subob-
jects belonging to the parent object under consideration will be returned. One
way to ensure this restriction is to use not only a value-based selection predicate _
as a search predicate within an Index structure but in addition also a so-called
address predicate containing the identi�er of the parent object. By doing so the
index �manager will read and return only identi�ers of subobjects belonging to
the respective parent object. An alternative method will be to retrieve in a �rst
step all index entries satisfying the value-based predicate from the index structure
and store them in an intermediate result table. Because in this case the address

predicate is not evaluated, the result set will contain identi�ers of all matching sub-
objects of all parent objects. Therefore, whenever evaluating the related query for
an actual parent object an additional associative search will be performed within
this intermediate result to identify the set of identi�ers of subobjects belonging
to the actual parent object. Both evaluation methods for dependent queries are
useful under different circumstances. If these methods are combined with methods

to evaluate independent queries as for example a complete class scan or an index
scan even complex queries can be optimized.

14

the parent object owning the multi-valued attribute has been selected. To execute
auch complex queriea efficiently the database management system should be able
to to optimize them and to choae aecondary acceas paths like Indexes, for exam
ple, automatically aa it ia done today in relational systems. Within the context
we are conaidering, the queries to be analyzed and optimized can easily become
rather complex; much more complex than typical queries in relational systems.
Therefore, performing query optimization efficiently becomes an important iHue
by itaelf. Our approach ia to divide the queries into the subqueries they are com
poaed of and to decide on the evaluation strategy for each of these subqueries
almost independently. For that reason, we will diacuas in the second part of the
talk alternative atrategies to evaluate subqueries without and with using indexes.
As many systems are internally using hierarchical data structures to store complex
objects we will assume path indexes becauae they are well suited to invert such
data atructures.

When evaluating a dependent query it has to be guaranteed that only subob
jecta belonging to the parent object under consideration will be returned. One
way to enaure thia restriction is to use not only a value-based selection predicate
aa a aearch predicate within an Index structure but in addition also a so-called
addreaa predicate containing the identifier of the parent object. By doing so the
index manager will read and return only identifiers of subobjecta belonging to
the respective parent object. An alternative method will be to retrieve in a first
atep all index entries satisfying the value-baaed predicate from the index structure
and atore them in an intermediate result table. Because in this case the address
predicate is not evaluated, the result set will contain identifiers of all matching sub
objects of all parent objects. Therefore, whenever evaluating the related query for
an actual parent object an additional associative search will be performed within
this intermediate result to identify the set of identifiers of subobjects belonging
to the actual parent object. Both evaluation methods for dependent queries are
u1eful under different circumstances. If these methods are combined with methods
to evaluate independent queries as for example a complete class scan or an index
acan even complex queries can be optimized.

14

Parallel Processing of Complex Objects over a Storage Hierarchy
Yoram Kornatzky, Hebrew University, Israel

We consider processing of complex objects by a shared-nothing multiprocessor
architecture whose storage system consists of multiple levels. Complex objects
may be spread over the different levels of the storage hierarchy, where in particular
long �elds are stored in lower levels. Our goal is to develop a realistic theory
of data movement between levels, which will form the basis for query processing
and optimization. We present a simple visual model for data organization which
identi�es the basic tradeoffs in processing queries over the storage hierarchy.

For an ideal model of queries processing complex objects in ascending order of
components� storage level, we propose an elevator algorithm analogous to the famil-
iar elevator disk scheduling algorithm. The algorithm permits maximal bundling
of accesses by different queries to the same storage level. To accommodate non-
ideal queries we suggest a new temporal clustering concept consisting of grouping
sub-queries accessing common objects and executing them in parallel.

An increasing number of future applications will be written in database pro-
gramming languages. In the discussed environment, physical data independence
of programs mandates the use of powerful program compilers, parallelizers, and
optimizers. We provide a foundation for compile-time scheduling of such programs
by developing a suitable notion of iteration space. Based on the iteration space
description of programs we suggest a compilation scheme into queries processed by
the elevator algorithm.

ADT-Based Type Systems for SQL
Krishna Kulkarni, DEC, USA

Currently, most database vendors support the Structured Query Language (SQL),
relational query language adopted by both ANSI and ISO as the database language
standard. An examination of the type system associated with the SQL language
reveals many serious shortcomings. This talk reports on an effort to add an ex-
tensible type system to SQL that is based on the notion of abstract data types
(ADTs) and query language extensions that deal with the new type system while
maintaining upward compatibility. The types in this system are abstract (obey
strict encapsulation) and orthogonal (allow arbitrarily complex types to be built).
In addition, the type system supports both value and object semantics, and sup-
ports the usual notions of inheritance, polymorphic functions and dynamic binding.
The talk also covers the initial change proposals that have been submitted to both
ANSI and ISO for incorporation into SQL3.

This work was done jointly with with Umesh Dayal, Jim Melton, Jonathan
Bauer and Mike Kelley, all from Digital Equipment.

15

Parallel Processing of Complex Objects over a Storage Hierarchy
Yoram Kornatzky, Hebrew University, Israel

We consider processing of complex objects by a shared-nothing multiprocessor
architecture whose storage system consists of multiple levels. Complex objects
may be spread over the different levels of the storage hierarchy, where in particular
long fields are stored in l~wer levels. Our goal is to develop a realistic theory
of data movement between levels, which will form the basis for query processing
and optimization. We present a simple visual model for data organization which
identifies the basic tradeoffs in processing queries over the storage hierarchy.

For an ideal model of queries processing complex objects in ascending order of
components' storage level, we propose an elevator algorithm analogous to the famil
iar elevator disk scheduling algorithm. The algorithm permits maximal bundling
of accesses by different queries to the same storage level. To accommodate non
ideal queries we suggest a new temporal clustering concept consisting of grouping
sub-queries accessing common objects and executing them in parallel.

An increasing number of future applications will be written in database pro
gramming languages. In the discussed environment, physical data independence
of programs mandates the use of powerful program compilers, parallelizers, and
optimizers. We provide a foundation for compile-time scheduling of such programs
by developing a suitable notion of iteration space. Based on the iteration space
description of programs we suggest a compilation scheme into queries processed by
the elevator algorithm.

ADT-Based Type Systems for SQL
Krishna Kulkarni, DEC, USA

Currently, most data.base vendors support the Structured Query Language (SQL),
relational query language adopted by both ANSI and ISO as the database language
standard. An examination of the type system associated with the SQL language
reveals many serious shortcomings. This talk reports on an effort to add an ex
tensible type system to SQL that is based on the notion of abstract data types
(ADTs) and query language extensions that deal with the new type system while
maintaining upward compatibility. The types in this system are abstract (obey
strict encapsulation) and orthogonal (allow arbitrarily complex types to be built).
In addition, the type system supports both value and object semantics, and sup
ports the usual notions of inheritance, polymorphic functions and dynamic binding.
The talk also covers the initial change proposals that have been submitted to both
ANSI and ISO for incorporation into SQL3.

This work was done jointly with with Umesh Dayal, Jim Melton, Jonathan
Bauer a.nd Mike Kelley, all from Digital Equipment.

15

An Object-Oriented View on a Deductive Database
Georg Lausen, University of Mannheim, FRG

A subset of the F-logic language is considered which can be encoded in first-order
logic. For the encoding Data.log with function symbols is sufficient. To make query
evaluation more e�icient, a parallelization is discussed. The proposed techniques
generalize previous work by Wolfson et al. and are based on rewriting the original
program. These techniques seem to be promising for the implementation of a
rule-based, ob ject-oriented language on top of a deductive database.

Supporting Access Control in an Object-Oriented Database Language
Peter Lyngbaek, HP Labs, USA

An important functionality of a DBMS is its support of access control. Most rela-
tional DBMSs have security subsystems that support some form of discretionary
access control. However, little work has been reported on authorization features
in database systems based on newer database models, e.g. semantic, functional,
logic, and ob ject-oriented models. Such high-level models may support more �exi-
ble authorization and �ner levels of access control than the relational model. This

talk presents an approach for providing access control in QSQL, an object-oriented
database language that supports, among others, user-de�ned abstract data types,
multiple inheritance and late binding. The authorization scheme is based on a
single concept: that of controlling function evaluation. The talk discusses how the
authorization model can be realized using existing QSQL mechanisms, i.e. sub-
typing, user-de�ned operations, and function resolution. It also presents two novel
constructs: guard functions and proxy functions, which are useful in providing
database security in a �exible and non-invasive manner. Various issues related to
the language semantics are examined.

This work was done together with R. Ahad and E. Onuegbe, both Hewlett-
Packard Company.

16

An Object-Oriented View on a Deductive Database
Georg Lausen, University of Mannheim, FRG

A subset of the F-logic language is considered which can be encoded in first-order
logic. For the encoding Datalog with function symbols is sufficient. To make query
evaluation more efficient, a parallelization is discussed. The proposed techniques
generalize previous work by Wolfson et al. and are based on rewriting the original
program. These techniques seem to be promising for the implementation of a
rule-baaed, object-oriented language on top of a deductive database.

Supporting Access Control in an Object-Oriented Database Language
Peter Lyngbaek, HP Labs, USA

An important functionality of a DBMS is its support of access control. Most rela
tional DBMSs have security subsystems that support some form of discretionary
access control. However, little work has been reported on authorization features
in database systems based on newer database models, e.g. semantic, functional,
logic, and object-oriented models. Such high-level models may support more flexi
ble authorization and finer levels of access control than the relational model. This
talk presents an approach for providing access control in QSQL, an object-oriented
database language that supports, among others, user-defined abstract data types,
multiple inheritance and late binding. The authorization scheme is based on a
single concept: that of controlling function evaluation. The talk discusses how the
authorization model can be realized using existing QSQL mechanisms, i.e. sub
typing, user-defined operations, and function resolution. It also presents two novel
constructs: guard functions and proxy functions, which are useful in providing
database security in a flexible and non-invasive manner. Various issues related to
the language semantics are examined.

This work was done together with R. Ahad and E. Onuegbe, both Hewlett
Packard Company.

16

The Revelation Project: Query Processing in Object-Oriented
Databases

David Maier, Oregon Graduate Institute

There is an abundance of new types of database system on the horizon: behavioral
and structural object-oriented database systems, extended relational databases,
multimedia databases and database systems based on semantic data models. These
efforts have yielded more than just new data models or paper systems. All the types
of systems mentioned are represented by working prototypes or even initial com-
mercial offerings. The initial focus of these systems has been greater expressivity
and supporting modes of access of new database applications, such as CAD and
CASE. However, on the whole these new systems are weak in an area where current
relational systems excel: efficient querying via a declarative language.

Relational query processing exploits the homogeneity of large collections of data
to carry out set-at-a-time processing. While these new database systems intend to
support large collections, heterogeneity creeps in from a variety of sources: different
levels of nesting or repetition, multiple implementations for a type or a method,
subtype hierarchies and union types to name a few. There are also new data
model features to consider: added base types, ordered type constructors (e.g., lists
and arrays), object identi�ers and encapsulation. The Revelation project being
conducted at OGI and University of Colorado at Boulder seeks to extend set-at-a-
time processing to handle such variations.

This talk explains the goals, top-level architecture and initial results of the
Revelation project. One main topic will be the design of the type definition and
implementation description portions� of the data model, and how they interact with
the �revealer�, a trusted system component that is allowed to break the encapsu-
lation of abstract data types. Another main topic will be an �assembly� operator
added to the Volcano query evaluation system to support access to complex objects.

Design and Implementation of SQL/XNF in Starburst�s Extensible
Database System

Bernhard Mitschang, University of Kaiserslautern, FRG

Complex applications, such as design applications, multi-media and AI applica-
tions, and even enhanced business applications can bene�t significantly from a
database language that supports complex objects. The data used by such applica-
tions are often shared with more traditional applications, such as cost accounting,
project management, etc. Hence, sharing of the data among traditional applica-
tions and complex object applications is important.

Our approach, called SQL Extended Normal Form (short SQL/XNF), enhances
the relational language SQL towards a complex object concept that supports

17

The Revelation Project: Query Processing in Object-Oriented
Databases

David Maier, Oregon Graduate Institute

There is a.n abundance of new types of database system on the horizon: behavioral
and structural object-oriented database systems, extended relational databuea,
multimedia databases and database systems based on semantic data models. These
efforts have yielded more than just new data models or paper systems. All the typea
of systems mentioned are represented by working prototype, or even initial com
mercial offerings. The initial focus of these systems has been greater expreaaivity
and supporting modes of access of new database applications, such as CAD and
CASE. However, on the whole these new systems are weak in an area where current
relational systems excel: efficient querying via a declarative language.

Relational query processing exploits the homogeneity oflarge collections of data
to carry out set-at-a-time processing. While these new database systems intend to
support large collections, heterogeneity creeps in from a variety of sources: different
levels of nesting or repetition, multiple implementations for a type or a method,
subtype hierarchies and union types to name a few. There are also new data
model features to consider: added base types, ordered type constructors (e.g., lists
and arrays), object identifiers and encapsulation. The Revelation project being
conducted at OGI and University of Colorado at Boulder seeks to extend set-at-a
time proceHing to handle such variations.

This talk explains the goal.s, top-level architecture and initial results of the
Revelation project. One main topic will be the design of the type definition and
implementation description portions' of the data model, and how they interact with
the "revealer", a trusted system component that is allowed to break the encapsu
lation of abstract data types. Another main topic will be an "assembly" operator
added to the Volcano query evaluation system to support access to complex objects.

Design and Implementation of SQL/XNF in Starburst's Extensible
Database System

Bernhard Mitschang, University of Kaiserslautern, FRG

Complex applications, such as design applications, multi-media and AI applica
tions, and even enhanced business applications can benefit significantly from a
database language that supports complex objects. The data used by such applica
tions are often shared with more traditional applications, such as cost accounting,
project management, etc. Hence, sharing of the data among traditional applica
tions and complex object applications is important.

Our approach, called SQL Extended Normal Form (short SQL/ XNF), enhances
the relational language SQL towards a complex object concept that supports

17

Entity-Relationship (E-R) model as well as Object Oriented concepts. The lan-
guage allows sharing of the database among normal form SQL applications and
complex object applications. SQL/XNF provides sub-object sharing and recur-
sion, all based on its powerful complex object constructor concept, which is closed
under the language operations. SDQL/XNF DDL and DML are superset of SQL,
and are downward compatible with SQL.

In this talk we concentrate on the main ideas underlying intergration of SQL/XNF
into the Starburst DBMS. We present extensions to the catalog and QGM struc-
tures for XN F. We discuss the semantic routines used to generate such structures
from XNF queries. At the end we present the translation / optimization algorithms
for conversion of XNF QGM to NF QGM. Enough background information on
internals of Starburst, including QGM, will be provided to make the talk useful
for general audience.

This work was done together with H. Pirahesh at the IBM Almaden Research
Center while the author was on leave from University of Kaiserslautern to IBM
Almaden Research Center, San Jose, California.

Query Processing in GOM
Guido Moerkotte, Universität Karlsruhe, FRG

Ob ject-oriented database systems are emerging as the next generation databases for
non-standard applications, e.g., VLSI-design, mechanical CAD / CAM, software en-
gineering, etc. While the large body of knowledge of relational query optimization
techniques can be utilized as a starting point for ob ject-oriented query optimization
the full exploitation of the ob ject-oriented paradigm requires new, customized opti-
mization techniques�not merely the assimilation of relational methods. This talk
describes such an optimization strategy used�in the GOM project which combines
established relational methods with new techniques designed for object models.
The optimization method unites two concepts: (1) access support relations and
(2) rule-based query optimization. Access support relations constitute an index
structure that is tailored for accessing objects along reference chains leading from
one object to another via single-valued or set-valued attributes. The idea is to
redundantly maintain frequently traversed reference chains separate from the ob-
ject representation. The rule-based query optimizer generates for a declaratively
stated query an evaluation plan that utilizes as much as possible the existing access
support relations. This makes the exploitation of access support relations entirely
transparent to the database user. The rule-based query optimizer is particularly
amenable to incorporating search heuristics in order to prune the search space for
an optimal (or near-optimal) query evaluation plan.

What Results and Models Would Speed Progress for other Researchers

18

Entity-Relationship (E-R) model as well as Object Oriented concepts. The lan
guage allows sharing of the database among normal form SQL applications and
complex object applications. SQL/ XNF provides sub-object sharing and recur
sion, all based on its powerful complex object constructor concept, which is closed
under the language operations. SDQL/ XNF DDL and DML are superset of SQL,
and are downward compatible with SQL.

In this talk we concentrate on the main ideas underlying intergration of SQL/ XNF
into the Starburst DBMS. We present extensions to the catalog and QGM struc
tures for XNF. We discuss the semantic routines used to generate such structures
from XNF queries. At the end we present the translation/ optimization algorithms
for conversion of XNF QGM to NF QGM. Enough background information on
internals of Starburst, including QGM, will be provided to make the talk useful
for general audience.

This work was done together with H. Pirahesh at the IBM Almaden Research
Center while the author was on leave from University of Kaiserslautern to IBM
Almaden Research Center, San Jose, California.

Query Processing in GOM
Guido Moerkotte, Universitiit Karlsruhe, FRG

Object-oriented database systems are emerging as the next generation databases for
non-standard applications, e.g., VLSI-design, mechanical CAD/ CAM, software en
gineering, etc. While the large body of knowledge of relational query optimization
techniques can be utilized as a starting point for object-oriented query optimization
the full exploitation of the object-oriented paradigm requires new, customized opti
mization techniques- not merely the assimilation of relational methods. This talk
describes such an optimization strategy used 'in the GOM project which combines
established relational methods with new techniques designed for object models.
The optimization method unites two concepts: (1) access support relations and
(2) rule-based query optimization. Access support relations constitute an index
structure that is tailored for accessing objects along reference chains leading from
one object to another via single-valued or set-valued attributes. The idea is to
redundantly maintain frequently traversed reference chains separate from the ob
ject representation. The rule-based query optimizer generates for a declaratively
stated query an evaluation plan that utilizes as much as possible the existing access
support relations. This makes the exploitation of access support relations entirely
transparent to the database user. The rule-based query optimizer is particularly
amenable to incorporating search heuristics in order to prune the search space for
an optimal (or near-optimal) query evaluation plan.

What Results and Models Would Speed Progress for other Researchers

18

Arnon Rosenthal, Xerox AIT, USA

We �rst describe ambitious problems that could serve as goals to motivate archi-
tectures and research plans: Optimization for OODB programming languages, and
extensible optimization for OODBMS query languages. For DBPL�s, our goal is
to provide adequate performance for high-level expressions that ignore issues such
as representations. For extensibility, we emphasize building optimizers that have
a controller which coordinates expertise (collections of transformations) obtained
from diverse sources. We discuss how theory might be used to simplify parts of
complex optimizers, making it more �exible to add new functionality; we also dis-
cuss the need for these formalizations to represent the largest possible fraction of
the query compilation process. Finally, we discuss challenges added by object-
orientation, such as multiple levels of abstraction, cost models that are unde�ned
for certain operators, and a �projection server� that models access to parts of data
clusters.

Optimization of Complex-Object Queries in PRIMA � Statement of
Problems

Harald Schöning, University of Kaiserslautern, FRG

The MAD (molecule-atom data) model allows the dynamic construction of complex
objects via implicit joins (using an identi�er/reference concept). Binary relation-
ships among basic objects (called atoms, which correspond to tuples in the rela-
tional model) are represented symmetrically by a. pair of reference attributes. The
MAD model allows network-like and recursive object structures, which are formed
from hierarchical ones by specialized operators. The basic operator is Construction
of simple molecules, which builds up a set of hierarchical molecules and performs
selections that can be evaluated on a single molecule (i.e. no query nesting). It is
also able to perform projections on atoms and attributes. All other operators get
their input from this operator in a pipelined way. Often, however, Construction of
simple molecules is the only operator representing a query, since in many cases the
complex object facilities are sufficient to model the application�s objects without
explicit join ro other higher operators. Therefore, it is necessary to direct one�s
attention to the optimization of the execution of Construction of simple molecules.

Some optimization problems occurring in connection with this operator are
identified:

0 The classical join order and join method problems do not apply to the MAD
model; here we have to solve the hierarchical join schedule problem.

19

Amon Rosenthal, Xerox AIT, USA

We first describe ambitious problems that could serve as goals to motivate archi
tectures and research plans: Optimization for OODB programming languages, and
extensible optimization for OODBMS query languages. For DBPL's, our goal is
to provide adequate performance for high-level expressions that ignore issues such
as representations. For extensibility, we emphasize building optimizers that have
a controller which coordinates expertise (collections of transformations) obtained
from diverse sources. We discuss how theory might be used to simplify parts of
complex optimizers, making it more flexible to add new functionality; we also dis
cuss the need for these formalizations to represent the largest possible fraction of
the query compilation process. Finally, we discuss challenges added by object
orientation, such as multiple levels of abstraction, cost models that are undefined
for certain operators, and a "projection server" that models access to parts of data
clusters.

Optimization of Complex-Object Queries in PRIMA - Statement of
Problems

Harald Schoning, University of Kaiserslautern, FRG

The MAD (molecule-a.tom data.) model allows the dynamic construction of complex
objects via implicit joins (using an identifier/reference concept). Binary relation
ships among basic objects (called atoms, which correspond to tuples in the rela
tional model) are represented symmetrically by a pair of reference attributes. The
MAD model allows network-like and recursive object structures, which are formed
from hierarchical ones by specialized operators. The basic operator is Construction
of simple molecules, which builds up a set of hierarchical molecules and performs
selections that can be evaluated on a single molecule (i.e. no query nesting). It is
also able to perform projections on atoms and attributes. All other operators get
their input from this operator in a pipelined way. Often, however, Construction of
simple molecules is the only operator representing a query, since in many cases the
complex object facilities are sufficient to model the application's objects without
explicit join ro other higher operators. Therefore, it is necessary to direct one's
attention to the optimization of the execution of Construction of simple molecules.

Some optimization problems occurring in connection with this operator are
identified:

• The classical join order and join method problems do not apply to the MAD
model; here we have to solve the hierarchical join schedule problem.

19

o This problem covers the question of entry point selection and search strategies
as well as the amount of parallelism to be exploited within each hierarchical
join.

o Join sequences can be replaced by cluster accesses. This must be covered
by the plan generation within the optimizer. On the other hand, the system
should propose clustering structures which are useful for as many queries as
possible.

o It is not clear, whether every possible kind of parallelism really should be
exploited, when the amount of parallelism supported by the hardware can be
reached without doing so.

0 The kind of information to be kept in the system statistics must be deter-
mined.

o A language for the formulation of optimization rules has to be developed.

Query Optimization in COOL � An Object-Oriented Database Query
Language Based on Nested Relations

Marc Scholl, ETH Zurich, Switzerland

COOL (Complex-Object-Oriented Language) is the query language of the object-
oriented database system currently being developed at ETH Zurich. It is � based
on nested relations� in two ways: (1) it can be seen as an extension of the nested
relational algebra that has been developed within the DASDBS project, and (2)
the target system for the implementation is the DASDBS nested relational storage
manager. a

The talk gives a short overview of the data model, particularly we emphasize
object-preserving query semantics (that is, the query results are sets of existing
objects) and the separation between the notions of a type (a set of functions that
can be applied to the type�s instances) and that of a class (an object representing
a collection of objects that are instances of the type associated with the class).

The second part of the talk illustrates the various choices we have in repre-
senting the physical database layout for a given COOL schema in the form of
nested relations. The basic options provided include (1) objects for ob ject-valued
functions, (2) references versus objects for object valued functions, (3) with ver-
sus without backward references, and (4) with versus without physical references
(TIDs) in addition to logical references (OIDs). We then report on a first prototype
implementation of a � physical DB design expert system� exploiting some (but not
yet all) of the options. The systems takes as input a COOL schema, a description

20

• This problem covers the question of entry point selection and search strategies
as well as the amount of parallelism to be exploited within each hierarchical
join.

• Join sequences can be replaced by cluster accesses. This must be covered
by the plan generation within the optimizer. On the other hand, the system
should propose clustering structures which are useful for as many queries as
possible.

• It is not clear, whether every possible kind of parallelism really should be
exploited, when the amount of parallelism supported by the hardware can be
reached without doing so.

• The kind of information to be kept in the system statistics must be deter
mined.

• A language for the formulation of optimization rules has to be developed.

Query Optimization in COOL - An Object-Oriented Database Query
Language Based on Nested Relations

Marc Scholl, ETH Zurich, Switzerland

COOL (Complex-Object-Oriented Language) is the query language of the object
oriented database system currently being developed at ETH Zurich. It is "based
on nested relations" in two ways: (1) it can be seen as an extension of the nested
relational algebra that has been developed within the DASDBS project , and (2)
the target system for the implementation is the DASDBS nested relational storage
manager.

The talk gives a short overview of the data model, particularly we emphasize
object-preserving query semantics (that is, the query results are sets of existing
objects) and the separation between the notions of a type (a set of functions that
can be applied to the type's instances) and that of a class (an object representing
a collection of objects that are instances of the type associated with the class).

The second part of the talk illustrates the various choices we have in repre
senting the physical database layout for a given COOL schema in the form of
nested relations. The basic options provided include (1) objects for object-valued
functions, (2) references versus objects for object valued functions, (3) with ver
sus without backward references, and (4) with versus without physical references
(TIDs) in addition to logical references (OIDs). We then report on a first prototype
implementation of a "physical DB design expert system" exploiting some (but not
yet all) of the options. The systems takes as input a COOL schema, a description

20

of the anticipated (or observed) transaction load, and information on the cardinal-
ity and size of the DB objects. The output is a set of proposed physical designs
based on cost estimates for the trans- action mix obtained from a cost model.

Finally, we present two approaches to the query optimization problem arising
from the �exible storage structures: depending on the design optimizer�s (or hu-
man DBA�s) choice, different internal (nested relational) query formulations have
to be generated for the same COOL query against the logical COOL schema. The
first approach is an algebraic query rewrite one: COOL queries are first mapped
to a (hypothetical) nested relation that corresponds to the default physical de-
sign. In particular, this query will contain joins (over OID attributes) for all the
(ob ject-valued) function applications (traversals between object types). The chal-
lenge then is to eliminate those joins, that have internally been materialized in a
hierarchical cluster. The second approach uses the COOL query graph, where each
edge represents a function application. Now we start marking the query graph by
attaching labels to the edges indicating whether they are supported by either of:
references, materialization, � join indices�, or not at all (which means it has to be
executed as a value-based join).

21

of the anticipated (or observed) transaction load, and information on the cardinal
ity and size of the DB objects. The output is a set of proposed physical designs
based on cost estimates for the trans- action mix obtained from a cost model.

Finally, we present two approaches to the query optimization problem arising
from the flexible storage structures: depending on the design optimizer,s (or hu
man DBA's) choice, different internal (nested relational) query formulations have
to be generated for the same COOL query against the logical COOL schema. The
first approach is an algebraic query rewrite one: COOL queries are first mapped
to a (hypothetical) nested relation that corresponds to the default physical de
sign. In particular, this query will contain joins (over O1D attributes) for all the
(object-valued) function applications (traversals between object types). The chal
lenge then is to eliminate those joins, that have internally been materialized in a
hierarchical cluster. The second approach uses the COOL query graph, where each
edge represents a function application. Now we start marking the query graph by
attaching labels to the edges indicating whether they are supported by either of:
references, materialization, "join indices", or not at all (which means it has to be
executed as a value-based join).

21

4 Speci�c Discussion Topics

The organizers considered it important to get discussions on specific topics in the
area of query processing started early on, and to provide enough opportunities to
keep them going. Two things were done in this respect: First, every participant
was asked to answer the following question at the beginning of the first morning:

If there was one question you would like to have answered during this
week, what would it be?

Second, on Tuesday and Thursday afternoon, several small groups met for
discussing a variety of special query processing topics, which will be listed below
together with a brief statement of their results.

The questions that were raised by participants at the beginning of the workshop
were the following (in the order they were posed):

1. What is conceptually new in query processing and optimization in object-
oriented, complex-object, and nested relational databases? (Vossen)

2. What is a general mechanism for optimizing queries on ADTs? (Kulkarni)

3. What does it mean in a CAD or CIM context to have complex queries and
how can database query processing help to optimize and evaluate them?
(Freytag)

4. Is there a convergence of the nested relational, complex object, and object-
oriented directions? (Freytag)

5. Will there be a common foundation for query processing in new systems?
(Lyngbaek)

6. Is it useful to work at an abstract level, or can we do everything in a �at
implementation? (van den Bussche)

7. What new insights are possible into the problem of duplicate elimination?
(Gyssens)

8. How to compile and efficiently implement database programming languages?
(Kornatzky)

9. Can there be a good benchmark for a query optimizer? (Cluet)

10. Must an optimizer be messy or clean? (Cluet)

22

4 Specific Discussion Topics

The organizers considered it important to get discussions on specific topics in the
area of query processing started early on, and to provide enough opportunities to
keep them going. Two things were done in this respect: First, every participant
was asked to answer the following question at the beginning of the first morning:

If there was one question you would like to have answered during this
week, what would it be~

Second, on Tuesday and Thursday afternoon, several small groups met for
discussing a variety of special query processing topics, which will be listed below
together with a brief statement of their results.

The questions that were raised by participants at the beginning of the workshop
were the following (in the order they were posed):

1. What is conceptually new in query processing and optimization in object
oriented, complex-object, and nested relational databases'? (Vossen)

2. What is a general mechanism for optimizing queries on ADTs'? (Kulkarni)

3. What does it mean in a CAD or CIM context to have complex queries and
how can database query processing help to optimize and evaluate them'?
(Freytag)

4. Is there a convergence of the nested relational, complex object, and object
oriented directions'? (Freytag)

5. Will there be a common foundation for query processing in new systems?
(Lyngbaek)

6. Is it useful to work at an abstract level, or can we do everything in a :flat
implementation'? (van den Bussche)

7. What new insights are possible into the problem of duplicate elimination'?
(Gyssens)

8. How to compile and efficiently implement database programming languages'?
(Kornatzky)

9. Can there be a good benchmark for a query optimizer'? (Cluet)

10. Must an optimizer be messy or clean? (Cluet)

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Is there a general framework connecting the approaches to query processing in
deductive, nested relational, and complex object databases, and what degrees
of freedom are needed in each? (Mitschang)

How to do query processing on bulk data types that are not sets? (Maier)

Why just look at object-orientation, instead of looking at query optimiza-
tion in a multi-paradigm (ob ject-oriented, logic-oriented, functional) context?
(Apers)

Does traditional query processing technology work in a parallel environment?
(Kersten)

What are the limits on query processing techniques that rely on term rewrit-
ing? (Kersten)

How to do query optimization in logic-oriented / ob ject-oriented database sys-
tems? (Bertino)

What are good ideas to generalize known processing approaches to queries
with nesting, subobjects, type hierarchies, behavior, recursion? (Demuth)

How to implement an ob ject-oriented query optimizer on a database kernel?
(Gorchs)

Is there a unified framework for query languages, especially algebraic ones?

(Geppert)

How to use indexes to access complex data, and which cost formulas are
appropriate for selecting query plans? (Kessler)

Is there an easy. connection between deductive and ob ject-oriented query
processing? (Jaeger)

Will ob ject-oriented database systems be simpler or more complicated than
relational systems? (Jeusfeld)

Are these powerful languages really needed and, if so, by what applications?
(Schöning)

How to implement complex object database systems with reasonable perfor-
mance, how to index, manage main memory, put them on disk? (Ley)

Which new approaches can be obtained for efficient query processing of nested
relations? (Rich)

23

11. Is there a general framework connecting the approaches to query processing in
deductive, nested relational, and complex object databases, and what degrees
of freedom are needed in each? (Mitschang)

12. How to do query processing on bulk data types that are not sets? (Maier)

13. Why just look at object-orientation, instead of looking at query optimiza
tion in a multi-paradigm (object-oriented, logic-oriented, functional) context?
(Apers)

14. Does traditional query processing technology work in a parallel environment?
(Kersten)

15. What are the limits on query processing techniques that rely on term rewrit
ing? (Kersten)

16. How to do query optimization in logic-oriented/object-oriented database sys
tems? (Bertino)

17. What are good ideas to generalize known processing approaches to queries
with nesting, subobjects, type hierarchies, behavior, recursion? (Demuth)

18. How to implement an object-oriented query optimizer on a database kernel?
(Gorchs)

19. Is there a unified framework for query languages, especially algebraic ones?
(Geppert)

20. How to use indexes to access complex data, and which cost formulas are
appropriate for selecting query plans? (Kessler)

21. Is there an easy connection between deductive and object-oriented query
processing? (Jaeger)

22. Will object-oriented database systems be simpler or more complicated than
relational systems? (Jeusfeld)

23. Are these powerful languages really needed and, if so, by what applications?
(Schoning)

24. How to implement complex object database systems with reasonable perfor
mance, how to index, manage main memory, put them on disk? (Ley)

25. Which new approaches can be obtained for efficient query processing of nested
relations? (Rich)

23

26. What is the right level of generality in algebraic approaches that gets perfor-
mance? (Graefe)

27. What should a query language for ob ject-oriented database look like? (Mo-
erkotte)

28. How do top-down techniques relate to bottom-up ones in parallelization of
deductive languages? (Lausen)

29. How can algebraic optimization be extended, how can indexes, link �elds be
included, how can their elimination as being redundant be avoided? (Schek)

30. How to organize an optimizer in a heterogeneous environment? (Rosenthal)

31. How can we build real systems instead of leading isolated discussions? (Dadam)

The Tuesday and Thursday discussion groups came to conclusions on the fol-
lowing topics:

1. Views and derived information:

Views are useful and necessary; they should be de�nable via queries. Hence it
is important to look at the underlying language first, which should be capable
of returning objects; as a consequence, views will be updatable. Related
aspects include object identi�er generation in rule-based languages, which �
consider views as derived classes.

2. Selectivity and cost models:
In the best case, estimations will be robust, a requirement that is not unrea-
sonable. Something like this would typically be based on estimating transitive
closure computations. Dynamic plans might be a feasible solution.

3. Result formatting and distribution:
A better understanding is needed of how the programming language in which
a request is formulated uses the data that is returned; for example, that data
maybe a byte-stream-like video data.

4.. Imperative vs. logical vs. functional languages:
The motivation for �having languages that are complete with respect to all
these paradigms seems doubtful; keeping query languages and programming
languages. separate is reasonable in many applications. A study of functional
languages in the context of new database systems makes sense; studies need
also be conducted on uniform vs. multilingual environments. L

. 5. Optimizer organization:
Rules are good building blocks for an optimizer, in particular rules which are

24

26. What is the right level of generality in algebraic approaches that gets perfor
mance? (Graefe)

27. What should a query language for object-oriented database look like? (Mo
erkotte)

28. How do top-down techniques relate to bottom-up ones in parallelization of
deductive languages? (Lausen)

29. How can algebraic optimization be extended, how can indexes, link fields be
included, how can their elimination as being redundant be avoided? (Sebek)

30. How to organize an optimizer in a heterogeneous environment? (Rosenthal)

31. How can we build real systems instead of leading isolated discussions? (Dadam)

The Tuesday and Thursday discussion groups came to conclusions on the fol
lowing topics:

1. Views and derived information:
Views are useful and necessary; they should be definable via queries. Hence it
is important to look at the underlying language first , which should be capable
of returning objects; as a consequence, views will be updatable. Related
aspects include object identifier generation in rule-based languages, which
consider views as derived classes.

2. Selectivity and cost models:
In the best case, estimations will be robwt, a requirement that is not unrea
sonable. Something like this would typically be based on estimating transitive
closure computations. Dynamic plans might be a feasible solution.

3. Result formatting and distribution:
A better understanding is needed of how the programming language in which
a request is formulated uses the data that is returned; for example, that data
maybe a byte-stream-like video data.

4. Imperative vs. logical vs. functional languages:
The motivation for ·having languages that are complete with respect to all
these paradigms seems doubtful; keeping query languages and programming
languages. separate is reasonable in many applications. A study of functional
languages in the context of new database systems makes sense; studies need
also be conducted on uniform vs. multilingual environments .

. 5. Optimizer organization:
Rules are good building blocks for an optimizer, in particular rules which are

24

based on notions of equivalence and / or rules for re�nement, but control is also
needed (and more difficult). Not yet well understood is the in�uence of low-
level optimization on high-level optimization. Also, organizing an optimizer
as a multiple-inheritance hierarchy seems reasonable (where an optimizer is
considered as an object receiving a query and returning an optimized one),
but that alone will not be good enough.

. Physical representations suited for OODBs:
Pros_ and cons can be found for (nested) relational tuples and ob ject-oriented
pointers. Other structures to be considered include main-memory graph
structures and �optical object-oriented storage systems� (�03S'3�), which
might be available in the near future.

. Handling of bulk types other than sets:
Important aspects seem to be order and topology. An adequate notation is
needed for corresponding query languages.

. How many different algebras are needed:
Three different classes exist: �at, nested, and object algebras. These have
some transformation rules in common, but differ considerably in their rewrit-
ing strategies; a goal is to design the algebra which is powerful enough to ex-
press complex execution plans and that rules can be be derived for improving
transformations.

. Complex object assembly and application program interfaces:
Assembly of objects should either exist as an operator or be based on �pulling
together� relevant parts. The main question for APIs is to what extent a
DBMS should have to rework data so that an application can easily use it;
current approaches include precompilers and call-interfaces. Experience with
real applications is needed.

25

based on notions of equivalence and/ or rules for refinement, but control is also
needed (and more difficult). Not yet well understood is the influence of low
level optimization on high-level optimization. Also, organizing an optimizer
as a multiple-inheritance hierarchy seems reasonable (where an optimizer is
considered as an object receiving a query and returning an optimized one),
but that alone will not be good enough.

6. Physical representations suited for OODBs:
Pros.and cons can be found for (nested) relational tuples and object-oriented
pointers. Other structures to be considered include main-memory graph
structures and "optical object-oriented storage systems" ("03S2"), which
might be available in the near future.

7. Handling of bulk types other than sets:
Important aspects seem to be order and topology. An adequate notation is
needed for corresponding query languages.

8. How many different algebras are needed:
Three different classes exist: ft.at, nested, and object algebras. These have
some transformation rules in common, but differ considerably in their rewrit
ing strategies; a goal is to design the algebra which is powerful enough to ex
press complex execution plans and that rules can be be derived for improving
transformations.

9. Complex object assembly and application program interfaces:
Assembly of objects should eithet exist as an operator or be based on "pulling
together" relevant parts. The main question for APis is to what extent a
DBMS should have to rework data so that an application can easily use it;
current approaches include precompilers and call-interfaces. Experience with
real applications is needed.

25

2. Elisa Bertino

7. Johann Christoph FreytagLlst of Partlclpants Database Systems Research Group/ Munich
1. Peter M.G. Apers Digital Equipment GmbH

- - Rosenheimerstr. 116b
University of Twente �
Computer Science Department V�/-8000 München 80� FRG
Postbus 217 freytag@dunant.enet.dec.com
NL-7500 AE Enschede, The Netherlands 8_ Andreas Geppert
3Pe1'5@C5-utwente-nl Institut für Informatik

Universität Zürich

Winterthurerstr. 190Dipartimento di Matematica CH-8057 Zürich, Switzerland
Universita di Genova

Via 143- Albertia 4 9. Thorsten Gorchs
146132 Geno�: I153-1}� Siemens-Nixdorf
b¬1'tiIl0@iS¬C1lI1iV-bitn�t Microprocessor Engineering GmbH

AP 44
3. Jan van den Bussche

G t -M -All 1Dept. of Computer Science us av eyer Ce
W-1000 Berlin 65, FRG

Universitxof Ailtwerp gorchs.bln@sni.de
Umversiteitsplein 1
B-2610 Wilrijk, Belgium 10. Götz Graefe
vdbuss@ccu.uia.ac.be University of Colorado

_ Dept. of Computer Science
4- 5°P1��* Clue� Boulder, CO 80309-0430, USA

GIP Altar graefe@cs.Colorado.EDU
Domain de Voluceau � Rocquencourt
B.P. 105 11. Margret Gross-Hardt
F-78153 Le Chesnay Cedex, France Institut fiir Informatik
cluet@bdblues.altair.£r Universität Koblenz-Landau

5° fleter Dadmgl 3&1-:l:0ailu Iiolilenz, FRG
niversität m

Fakultät fur Informatik 12- M310 G)� 533115
Oberer Eselsberg Dept. of Computer Science
W-7900 Ulm, FRG University of Limburg
da,dam@1-z,unj-u1m_dbp,de B-3610 Diepenbeek, Belgium

6 B. �t D th gyssens@bdiluc01.bitnet. 1r emu

Tecilnische Universität Dresden 13- Ulrike J 33831"
Fakultät Informatik FORWISS Institut
Institut für Datenbanken und KI O1'1ea-1153tT- 34
Mommsenstra�e 13 W-8000 München 80, FRG
Q_g027 Dresden, FRG jaeger@forwiss.tu-muenchen.de

5 List of Participants 7. Johann Christoph Freytag
Database Systems Research Group/ Munich

1. Peter M.G. Apers Digital Equipment GmbH

University of Twente Rosenheimerstr. 116b

Computer Science Department W-8000 Munchen 80, FRG

Postbus 217 freytag@dunant.enet.dec.com

NL-7500 AE Enschede, The Netherlands 8. Andreas Geppert
apers@cs.utwente.nl Institut fiir lnformatik

2. Elisa Bertino Universitat Zurich

Dipartimento di Matematica Winterthurerstr. 190
CH-8057 Zurich, Switzerland Universita di Genova

Via L.B. Alberti, 4 9. Thorsten Gorchs
1-16132 Genova, Italy Siemens-Nixdorf
bertino@igecuni v. bi tnet Microprocessor Engineering GmbH

3. Jan van den Bussche
AP 44
Gustav-Meyer-Allee 1

Dept. of Computer Science
W-1000 Berlin 65, FRG

University of Antwerp
gorchs. bln@sni .de

Universiteitsplein 1
B-2610 Wilrijk, Belgium 10. Getz Graefe
vdbuss@ccu.uia.ac. be University of Colorado

4. Sophie Cluet
Dept. of Computer Science
Boulder, CO 80309-0430, USA

GIP Altair graefe@cs. Colorado. EDU
Domain de Voluceau - Rocquencourt
B.P. 105 11. Margret Gross-Hardt
F-78153 Le Chesnay Cedex, France Institut fiir lnformatik
cluet@bdblues.altair.fr Universita.t Koblenz-Landau

Rheinau 3-4
5. Peter Dadam W-5400 Koblenz, FRG

Universitiit Ulm
Fakultiit fur Informatik 12. Marc Gyssens
0 berer Esels berg Dept. of Computer Science
W-7900 Ulm, FRG University of Limburg
dadam@rz.uni-ulm.dbp.de B-3610 Diepenbeek, Belgium

6. Birgit Demuth
gyssens@bdiluc0l.bitnet

Technische Universitiit Dresden 13. Ulrike Jaeger

Fakultiit Informatik FORWISS Institut

lnstitut fiir Datenbanken und Kl Orleansstr. 34

Mommsenstra8e 13 W-8000 Miinchen 80, FRG

0-8027 Dresden, FRG jaeger@forwiss.tu-muenchen.de

14. Manfred Jeusfeld

15.

16.

17.

18.

19.

20

Universität Passau

Lehrstuhl für Dialogorientierte Systeme
Postfach 2540

W-8390 Passau, FRG
jeusfeld@andorfer.fmi.uni-passau.de

Martin Kersten

CWI

Kruislaan 413

NL-1098 SJ Amsterdam, The Netherlands
mk@cwi.nl

Ullrich Kessler

Universität Ulm

Abt. Betriebliche Informationssysteme / CIM
Oberer Eselsberg
W-7900 Ulm, FRG
kess.ull@rz.uni-ulm.dbp.de

Yoram Kornatzky
Dept. of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
yoramk@cs.huji.ac.il

Krishna Kulkarni

Database Systems Research
Digital Equipment Corp. CXN1/2
1175 Chapel Hills Drive

I Colorado Springs, CO 80920, USA
kulkarni@cookie.dec.com

Georg Lausen
Praktische Informatik III

Universität Mannheim

Seminargebäude A5
W-6800 Mannheim, FRG
lausen@pi3.informatik.uni-mannheim.dbp�de

. Michael Ley
Fachbereich 4 � Informatik

Universität Trier

21.

22.

23.

24.

25.

26.

Postfach 3825

W-5500 Trier, FRG
ley@uni-trier.dbp.de

Peter Lyngbaek
HP Labs

DB Technology Department
1501 Page Mill Road
Palo Alto, CA 94304-1181, USA
lyngbaek@hplabs.hp.COM

David Maier

Oregon Graduate Institute
Department of Computer Science
19600 von Neumann Dr.

Beavertion, OR 97006, USA
maier@cse.ogi.edu

Ute Masermann

Institut fiir Informatik

Universität Koblenz-Landau

Rheinau 3-4

W-5400 Koblenz, FRG
maserman@degas.uni-koblenz.de

Bernhard Mitschang
Universität Kaiserslautern

Fachbereich Informatik

Erwin-Schrödinger-Str.
W-6750 Kaiserslautern, FRG
mitsch@informatik.uni-kl.de

Guido Moerkotte

IPD

Fakultät für Informatik

Universität Karlsruhe

W- 7500 Karlsruhe, FRG
moer@ira.uka.de

Christian Rich 6
Institut für Infomationssysteme
ETH Zürich

ETH-Zentrum

14. Manfred Jeusfeld Postfach 3825
Universitat Passau W-5500 Trier, FRG
Lehrstuhl fiir Dialogorientierte Systeme ley@uni-trier. d bp. de
Postfach 2540
W-8390 Passau, FRG 21. Peter Lyngbaek

jeusfeld@andorfer.fmi.uni-passau.de HP Labs
DB Technology Department

15. Martin Kersten 1501 Page Mill Road
CWI Palo Alto, CA 94304-1181, USA
Kruislaan 413 lyngbaek@hplabs.hp.COM
NL-1098 SJ Amsterdam, The Netherlands

22. David Maier mk@cwi.nl
Oregon Graduate Institute

16. Ullrich Kessler Department of Computer Science
Universitii.t Ulm 19600 van Neumann Dr.
Abt. Betriebliche Informationssysteme/ CIM Beaverton, OR 97006, USA
Oberer Eselsberg maier@cse.ogi.edu
W-7900 Ulm, FRG

23. Ute Masermann kess_ull@rz.uni-ulm.dbp.de
lnstitut fii.r Informatik

17. Yoram Kornatzky Universitii.t Koblenz-Landau
Dept. of Computer Science Rheinau 3-4
The Hebrew University of Jerusalem W-5400 Koblenz, FRG
91904 Jerusalem, Israel maserman@degas.uni-koblenz.de
yoramk@cs.huji.ac.il

24. Bernhard Mitschang
18. Krishna Kulkarni Universitii.t Kaiserslautern

Database Systems Research Fachbereich lnformatik
Digital Equipment Corp. CXNl/2 Erwin-Schrodinger-Str.
1175 Chapel Hills Drive W-6750 Kaiserslautern, FRG
Colorado Springs, CO 80920, USA mitsch@informatik.uni-kl.de
kulkarni@cookie.dec.com

25. Guido Moerkotte
19. Georg Lausen IPD

Praktische lnformatik III Fakultii.t fiir Informatik
Universitat Mannheim Universitat Karlsruhe
Seminargebii.ude A5 W-7500 Karlsruhe, FRG
W-6800 Mannheim, FRG moer@ira.uka.de
lausen@pi3.informatik.uni-mannheim.dbp.de

26. Christian Rich
20. Michael Ley Institut fiir Infomationssysteme

Fachbereich 4 - lnformatik ETH Zurich
Universitat Trier ETH-Zentrum

27.

CH-8092 Ziirich, Switzerland
rich@inf.ethz.ch

Arnie Rosenthal

Xerox Advanced Information Technology
Four Cambridge Center
Cambridge, MA 02142, USA
arm°e@xait.xerox.CCM

. Hans-Jörg Schek

29.

Institut für Informationssysteme
ETH Zürich

CH-8092 Zürich, Switzerland
schek@inf.ethz.ch

Harald Schöning
Universität Kaiserslautern

Fachbereich Informatik

Postfach 3049

W-6750 Kaiserslautern, FRG
schoenin@informatik.uni-kl.de

. Marc Scholl

Institut für Informationssysteme
ETH Zürich

CH-8092 Zürich, Switzerland
scholl@inf.ethz.ch

. Bernhard Thalheim

Institut für Informatik

Universität Rostock

Albert-Einstein-Str. 21

O-2500 Rostock, FRG
thalheim@informatik.uni-rostock.dbp.de

. Gottfried Vossen

Lehrstuhl fur Angewandte Mathematik
RWTH Aachen

Ahornstr. 55

W-5100 Aachen, FRG
vossen@informatik.rwth-aachen.de

CH-8092 Zurich, Switzerland
rich@inf.ethz.ch

27. Arnie Rosenthal
Xerox Advanced Information Technology
Four Cambridge Center
Cambridge, MA 02142, USA
arnie@xait.xerox.COM

28. Hans-Jorg Schek
Institut fiir Informationssysteme
ETH Zurich
CH-8092 Zurich, Switzerland
schek@inf.ethz.ch

29. Harald Schoning
Universitii.t Kaiserslautern
Fachbereich Informatik
Postfach 3049
W-6750 Kaiserslautern, FRG
schoenin@informatik. uni-kl. de

30. Marc Scholl
Institut fiir lnformationssysteme
ETH Zurich
CH-8092 Zurich, Switzerland
scholl@inf.ethz.ch

31. Bernhard Thalheim
Institut fur Informatik
Universitii.t Rostock
Albert-Einstein-Str. 21
0 -2500 Rostock, FRG
thalheim@informatik. uni-rostock. dbp. de

32. Gottfried Vossen
Lehrstuhl fur Angewandte Mathematik
RWTH Aachen
Ahornstr. 55
W-5100 Aachen, FRG
vossen@informatik.rwth-aachen.de

Bisher erschienene und geplante Titel:

W. Gentzsch, W.J. Paul (editors):
Architecture and Performance, Dagstuhl-Seminar-Report; 1,
18.-20.6. 1990; (9025)

K. Harbusch, W. Wahlster (editors): 6
Tree Adjoining Grammars, 1st. International Worshop on TAGs: Formal Theory
and Application, Dagstuhl-Seminar-Report; 2, 15.-17.8.1990 (9033)

Ch. Hankin, R. Wilhelm (editors):
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report; 3,
3.-7.9.1990 (9036)

H. Alt, E. Welzl (editors):
Algorithmic Geometry, Dagstuhl-Seminar-Report; 4, 8.-12.10.1990 (9041)

J. Berstel , J �E. Pin, W. Thomas (editors):
Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar-
Report; 5, 14.-18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prüfen, Testen, Dagstuhl-Seminar-Report; 6, 18.-22.2.1991 (9108)

J. P. Finance, S. Jähnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-
1.3.1991 (9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 8, 4.-8.3.1991
(9110)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Speci�cation, and Synthesis, Dagstuhl-Seminar-
Report; 9, 11.-15.3.1991 (9111)

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10,
18.-22.3.1991 (9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report;
11, l5�l9.4.1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5. 1991 (9119)

R. Giegerich, S. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13,
20.-24.5.1991 (9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex Object, and Nested Relation Data-
bases, Dagstuhl-Seminar-Report; 15, 17.-21.6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Re-
port; 16, 24.-28.6.1991 (9126) '

Bisher erschienene und geplante Titel:

W. Gentzsch, W.J. Paul (editors):
Architecture and Performance, Dagstuhl-Seminar-Report; 1,
18.-20.6.1990; (9025)

K. Harbusch, W. Wahlster (editors):
Tree Adjoining Grammars, 1st. International Worshop on TAGs: Formal Theory
and Application, Dagstuhl-Seminar-Report; 2, 15.-17.8.1990 (9033)

Ch. Hankin, R. Wilhelm (editors):
Functional Languages: Optimization for Parallelism, Dagstuhl-Seminar-Report; 3,
3.-7.9.1990 (9036)

H. Alt, E. Welzl (editors):
Algorithmic Geometry, Dagstuhl-Seminar-Report; 4, 8.-12.10.1990 (9041)

J. Berstel, J .E. Pin, W. Thomas (editors):
Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar
Report; 5, 14.-18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prilfen, Testen, Dagstuhl-Seminar-Report; 6, 18.-22.2.1991 (9108)

J. P. Finance, S. Jahnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-
1.3.1991 (9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 8, 4.-8.3.1991
(9110)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Specification, and Synthesis, Dagstuhl-Seminar
Report; 9, 11.-15.3.1991 (9111)

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10,
18.-22.3.1991 (9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report;
11, 15-19.4.1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5.1991 (9119)

R. Giegerich, S. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13,
20.-24.5.1991 (9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex Object, and Nested Relation Data
bases, Dagstuhl-Seminar-Report; 15, 17.-21.6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Re
port; 16, 24.-28.6.1991 (9126)

