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DAGSTUHL SEMINAR

SEMANTICS OF PROGRAMMING LANGUAGES

AND MODEL THEORY

Organized by:

Manfred Droste (Universität Dortmund and Universität Essen)
Yuri Gurevich (University of Michigan)

June 23-29, 1991

Topic of the conference was the interplay between semantics of programming areas and the
mathematical areas of model theory and ordered structures. Participation of researchers from
different but neighbouring �elds proved very fruitful. Methods from algebra, logic and order
theory were used for the solution of problems from denotational semantics of programming
languages and in domain theory. A number of talks also dealt with the quickly developing area
of evolving algebras and their applications for a complete description of the semantics of logic
programming languages. Several further talks considered topics ranging, for instance, from
functional programming languages and database models to linear logic, boolean algebras and
model theory.
The lively interest in this �eld was documented by the number 37 participants from Germany
and abroad, of which 27 presented talks. In spite of the considerable number of lectures, the
atmosphere in Dagstuhl castle offered many opportunities for the discussion of open problems
and research ideas in small groups, and stimulated new collaboration between several partici-
pants.
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Abstracts

I. Evolving Algebras

Evolving Algebras

Yuri Gurevich

We explain evolving algebras (from the �rst principles) and survey the current state of the
theory.

Evolving Algebras in Logic Programming

Egon Borger

This is a report on recent and ongoing work in semantics of logic programming languages which
is based on Gurevich�s new notion of evolving algebra (1988, see EATCS Bull. 43, Febr. 1991).
I have de�ned Prolog Algebras which give a formal semantics for the full language Prolog,
including the usual build - in predicates for control, dynamic code, manipulation of �les, input,
output, terms etc. (see SLNCS vol. 440 and 452, Springer MSRI Proc. of Berkeley 1989
Workshop on Logic from CS). These Prolog algebras yield a formal model for the forthcoming
ISO WG 17 draft proposal for a standard for Prolog. In joint work with D. Rosenzweig we
have derived a formal de�nition of the WAM - a virtual machine model underlying most of the
current Prolog Implementations - and were able to prove the correctness of Prolog compilers
(satisfying certain natural conditions) with respect to the abstract Prolog speci�cation by
Prolog Algebras (see Proc. CSL�90, to appear in SLNCS). This WAM speci�cation allowed
us to produce an exhaustive analysis and formal de�nition of the new I SO WG 17 view on
built - in predicates for dynamic code in Prolog and to suggest a formal speci�cation for
a uniform implementation of this view (see talk by D. Rosenzweig in this conference). In
joint work with P. Schmitt we could show that Prolog Algebras naturally are extended to
Prolog 3 Algebras, thus opening constraint logic programming to analysis and speci�cation
by evolving algebras (see Proc. CLS�90, SLNCS). Ongoing work with C. Beierle shows that a
correctness proof for the PAM - Protus Abstract Maschine, the WAM extension to Protus-
L, a logic programming language enriched by a polymorphic type discipline - can be given
extending the WAM correctness proof by type term representing algebras and using constraint-
functions for type conditions. Ongoing work with E. Riccobene shows that also PARLOG
- a commercially available logic programming language with parallelism features which are
transparent to the user - can be formally speci�ed by evolving algebras de�ned putting together
ideas from Prolog Algebras with ideas from Occam Algebras (developed by Y. Gurevich and
L. Moss, see CSL�89, Proc. SLNCS) (see talk by E. Riccobene in this conference).
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Analysis of Prolog Database Views and their Uniform Implementation

Dean Rosenzweig

The clarity and precision brought into the semantics of Prolog and its implementation by the
evolving algebra approach of Y. Gurevich (cf. contributions by Y. Gurevich and E.B6rger for
this meeting) allow a precise analysis of some dark corners of the language, hitherto seemingly
inaccessible to formal semantical methodologies.
Jointly with E. Béirger, we have analyzed different views of �database operations� (asserta,
assertz, retract) which the ISO WG 17 for standardization of Prolog has decided to allow
on its meeting of November 1990. We have shown that all the views can be succinctly and
uniformly expressed in a uniform way, parameterized only by a notion of a clause �being
alive�. We have also shown how they could be uniformly implemented by a modi�cation of
the �virtual copying� technique, introduced by Lindholm and O�Keefe 1987 for the logical
view. Although our framework is rather abstract, free of details of implementation, all the
�implementational tradeoffs� between different views become transparent through it. The
analysis suggests making the view transparent to the user allowing him to control it and to
link it to individual predicates, obtaining thus the right to strike his own compromises between
logic (understanding of the program) and efficiency.

Hagments of Prolog and Evolving Algebras

Petr Stépanek

It is shown that Evolving Algebras describing Algebraic Operational semantics of various frag-
ments of Prolog can be constructed incrementally. The correctness of Evolving algebras and
their extensions corresponding to larger fragments of the language is proved. In particular, the
Evolving Algebra for pure Prolog is described and compared with its extension (due to Borger)
for pure Prolog with the cut operator. It is shown that there is a homorphism that maps the
latter algebra onto the former one. This homomorphism extends to a homomorphism of the
evolution steps of both algebras during computations of pure Prolog programs. Moreover, the
cut operator can be represented as an external dynamic function (oracle) of the algebra for
pure Prolog.
(Joint work with Jan Hric.)

Some Connections between Evolvin Algebras, Syntax, and
Formal Language heory

Lawrence S. Moss

The method of evolving algebras was proposed by Yuri Gurevich as a means of specifying the
semantics of programming languages which is dynamic in a direct way, and which re�ects the
resource bounded aspects of computation. At the Dagstuhl meeting there were about �ve talks
on applications of this framework. My talk began with a discussion of the EA approach to
Occam, which I had worked out with Gurevich several years earlier. The key ideas are that
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computation in a distributed language such as Occam is essentially determined by simple com-
ponents which interact asynchronously, and that what is complicated is the de�nition of a run
of the Occam machine.

The main point of the talk is to show that similar ideas are at work concerning the formalisms
for natural language syntax. Speci�cally, several of the formalisms proposed for generating
languages between the context-free and contex-sensitive can be given more simply as evolving
algebras. Further, the EA speci�cation is closer to the intuitions than the usual one. I illus-
trated this point with a discussion of Pereira�s Extraposition Grammars.
Finally, I discussed how the EA approach was useful for me in some work with David Johnson
(IBM T.J. Watson Res. Ctr.) on a formalization of Relational Grammar called Multistratal
Axiomatic Grammar (MAG).

A Formal Speci�cation of PARLOG Based on Evolving Algebras

Elvinia Riccobene

We provide a complete mathematical semantics for the parallel logic programming language
PARLOG.

This semantics is abstract but nevertheless simple and supports the intuitive operational un-
derstanding of programs. It is based on Gurevich�s notion of Evolving Algebras and it is
obtained by adapting ideas from the description of (Standard) Prolog given by E. Börger
and the specification of functional parallel computation phenomena of Occam devoloped by
Y. Gurevich and L. Moss.

We develop a complete speci�cation of the core of PARLOG which governs the computation
of goals by user de�ned predicates. We give an explicit formalization of the two kinds of par-
allelism occurring in PARLOG: the AND- Parallelism and the (orthogonal) OR-Parallelism.
Both phenomena are described using an abstract notion of PARLOG terms and PARLOG
substitution which is unburdened by representation details and implementation constraints.
(Joint work with Egon Béirger.)
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II. Denotational semantics and domain theory

Domains and the Denotational Semantics of Nondeterminism

Michael W. Mislove

For a high level programming language L and an operational semantics for L, one can de-
fine a behaviour function B : L �-> 0S. A denotional model M : L �+ M is said to be

adequate with respect to B if (Vp�q e L) M (p) = M (q) => B(p) = B(q). Conversely, M is
said to be fully abstract with respect to B if (V p,q E L) M (p) 7¬ M (q) => (30 context )
B(C(p)) 96 B(C(q)). (These terms are due to Plotkin.) After giving a brief history of the evolu-
tion of domains as denotational models for programming languages, we focus on the question
of providing adequate and fully abstract models for �abstract� languages - i.e., ones whose
syntax is given in terms of uninterpreted atomic actions. For a prototypical such language, we
show how it is possible to craft operational models which precisely capture the three notions of
nondeterminstic choice: angelic, demonic, and conventional nondeterminism. In the case of an-
gelic nondeterminism, we show how to craft a related adequate and fully abstract denotational
model using the family of nonempty Scott-closed subsets of a domain which provides a model
for the deterministic sublanguage. Our construction uses the usual adjunction (i.e., the Hoare
powerdomain), but augments it with an application of spectral theory. This added feature
has two payoffs: �rst, it allows us to recapture the model of the deterministic sublanguage
from within the nondeterministic model, and, second, it allows us to use mappings which are
Lawson-continuous. This topology is a refinement of the Scott topology which is compact and
Hausdorff; as a result, limit points in the model are unique when they exist. Finally, we show
that none of the traditional powerdomains is adequate to model the conventional nondeter-
minism operational model. The work described comprises joint work with Frank J. Oles, IBM
Research.

Decomposition of Domains

Achim Jung

We start from the observation that various negative results imply that no single class of domains
suffices for modeling every computational paradigm. We therefore are looking for general
results which give an overview over possible and necessary classes of domains, rather than
searching for a single and universal category of domains. This goal is pursued by various
researchers with various means, we just mention the two projects �Axiomatic Domain Theory�
and �Classi�cation of maximal ccc�s�.

The present work is concerned with the question which domains can be generated from �at
domains by using hyperlimits as the single construction principle. We proceed by working
backwards, i.e. by decomposing domains. We achieve a Decomposition Theorem which does
not just give any representation but a non-redundant representation. This decomposition
meshes well with the usual domain constructions, except of course the Plotkin powerdomain.
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Coming back to the original question we �nd that �at domains generate a class .7 which is
strictly contained in the class of distributive Scott-domains and which strictly contains concrete
data structures.

Finite Axiomatizations for Universal Domains

Manfred Droste

In the theory of denotational semantics of programming languages, several authors established
the existence of particular kinds of universal domains. Here we �rst describe a category-
theoretic version of a general model-theoretic result, the Fraissé-Jénsson theorem, which gives,
for a large class of categories, a necessary and su�icient condition for the existence of a universal
homogeneous object. Moreover, such a universal homogeneous object is unique up to isomor-
phism and can, in many cases, be constructed effectively. We show for the categories of all
w-bi�nite domains, all w-bi�nite L-domains, all w-Scott- domains, and all w-algebraic lattices,
in each case with embedding-projection pairs as morphisms, that each of them contains a uni-
versal homogeneous object, (whereas the category of all coherent w-Scott-domains does not).
For each of these four categories C we introduce a �nite set of axioms Sc, formulated in a �rst
order language of predicate calculus for posets, and show that an arbitary domain (D, S) E C is
the universal homogeneous object in C if and only if its subposet of compact elements satis�es
all axioms in Se. �

(Partly joint work with R.Göbel� Essen.)

Order-theoretic Properties of Powerdomains

Kay J. Nacken

The class of all Scott-domains is not closed under the Plotkin powerdomain construction.
Hence, we are looking for an ordertheoretic property that gives a characterisation of all Scott-
domains (D, 3) whose Plotkin powerdomains, P[D],are again Scott-domains. The existence
of an embedding of one of two special �nite posets (W and M) into a Scott-domain (D, 3) is
equivalent to the condition that the powerdomain (P[D], QM) not be a Scott-domain.
It is an open problem of Plotkin whether there exists a Scott-domain (D, 3) whose Plotkin
powerdomain P[D] is universal for SFP-domains (i.e., for every SFP-domain (E, 3) there exists
an embedding projection pair of (E, 3) into P[D]). We give a partial answer to this question:
there exists a Scott-domain (D, 3) such that for any SFP-domain (E, 3) there exists a mub-
embedding of (E, 3) into P[D]; here a mub-embedding is an order-embedding which preserves
minimal upper bounds.
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Powerdomain Constructions

Reinhold Heckmann

Given at least �ve different powerdomain constructions (lower L, Smyth�s upper U, Plotkin�s
convex C, Buneman�s sandwich S, Gunter�s mixed M), one looks for a general theory of power
constructions which answers the following questions: What are power constructions? How are
different constructions related to each other? Are there more than the �ve constructions men-

tioned above? If so, how are these �ve constructions distinguished among all the others?
Powerdomain constructions are de�ned as Kleisli triples in the category of dcpo�s producing
commutative monoids. As a consequence of this de�nition, they are equipped with a �char-
acteristic� semiring which is the powerdomain of the one-point-domain. Conversely, for every
given semiring, there is an initial and a �nal power construction with just this characteristic
semiring. New power constructions may be obtained from existing ones by product formation,
core formation (removing junk), and restriction to sub-semirings.
The S constructions mentioned above may all be characterised in the framework of the general
theory. They all are either initial or �nal or both for small �logical� semirings. Moreover, they
are connected by a network of relations including products, core, and restriction. This network
also suggests further yet unknown power constructions with interesting properties.

Denotational Semantics for Speci�cation Languages

Wilfrid Hodges

A semantics is proposed for speci�cation languages in general. The interpretation of a speci-
�cation is to be a functor taking �given� systems to target systems. The class of speci�able
functors is de�ned in three ways, the �rst an abstract domain-theoretic de�nition, the second
in terms of initial models and the third in terms of the hereditarily �nite universe of sets over
the �given� system. It is shown that all three de�nitions describe the same class of functors
up to natural equivalence. It is also shown that, although the speci�cation language Z has no
particular connection with this class of functors, real-life speci�cations in Z virtually always
lie within a fragment of Z which closely matches the third de�nition above. In principle this
yields a systematic translation from Z speci�cations into algebraic speci�cation languages.

A Cartesian Closed Category of Parallel Algorithms between.
Scott Domains

Stephen Brookes

We present a category-theoretic framework for providing intensional semantics of programming
languages and establishing connections between semantics given at different levels of intensional
detail. We use a comonad to model an abstract notion of computation, and we obtain an in-
tensional category from an extensional category by the co-Kleisli construction; thus, while
an extensional morphism can be viewed as a function from values to values, an intensional
morphism is akin to a function from computations to values. We explore the properties of
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the particular example in which the underlying extensional category is the category of Scott-
domains and continuous functions, and the notion of computation corresponds to an increasing
sequence of data values. The resulting intensional category, whose morphisms we call algo-
rithms, is cartesian closed. Application, currying and composition are continuous operations
on algorithms, with respect to the pointwise order. Every algorithm has a continuous input-
output function, and every continuous function is the input-output function of some algorithm.
In fact, the algorithms for a given function form a complete lattice under the pointwise order.
We define an intensional semantics for the A-calculus and show that the extensional content of

the meaning of each term is exactly the standard meaning of that term in the Scott model of
the »\-calculus.

(This is joint work with Shai Geva.)

Adjunctions between Categories of Cpos

Frank J. Oles

In the hope of �nding a way to turn the Plotkin powerdomain of a Scott domain back into S
a Scott domain, we investigate the possibilities for various adjunctions between categories of
algebraic cpos and consistently complete algebraic cpos. As a negative result, we prove that
Scott domains do not form a full reflective subcategory of SFP-objects. For an algebraic cpo
D, possibly satisfying Property M, we consider four constructions:
(1) all Scott-closed subsets of D,
(2) all nonempty, Scott-closed subsets of D,
(3) all nonempty, Scott-compact, saturated subsets of D,
(4) all bounded, Scott-closed subsets of D
Each construction is described as a left adjoint. The first construction is left adjoint to the
spectrum (i.e., V-primes) of a completely distributive complete algebraic lattice. The third con-
struction does not always give a consistently complete cpo, but it does if D satis�es Property
M. The last construction shows the most promise as a means of making the Plotkin power-
domain consistently complete because the application of this functor to a nondeterministic
algebra gives a Scott semigroup (a consistently complete algebraic cpo with a Scott-continuous
semigroup operation). This is joint work with Michael W. Mislove, Tulane Univ. and Oxford
Univ.

Completion of Quasi-Uniform Spaces

Philipp Siinderhauf

According to Samson Abramsky, one can do domain theory just by considering the lattice
of Scott-open sets. Now the Scott-topology of a continuous domain is induced by a quasi-
uniformity in a natural fashion. We ask for a generalisation of the notions �complete� and
�completion� from the theory of uniform spaces to the quasi-uniformities. It turns out that
there is no completion of quasi-uniform spaces. In a slight modi�cation of an idea of Michael
Smyth we introduce topological ouasi-uniform spaces; these are quasi-uniform spaces carrying
an additional topology. For these structures we are able to present a notion of completeness
and to construct a completion.
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Bi�nite Domains: Stable Case

Roberto M. Amadio

Let C&#39;poA be the ccc of complete partial orders with �continuous glbs� of compatible pairs,
and stable maps. We introduce the full subccc Bif,\ of stable bi�nites (or equivalently sfp)
over C&#39;po,,. Its objects are characterized as w-algebraic C&#39;pos,, satisfying a �combination� of
property M, as in Smyth theorem, and property I, as introduced by Berry, that we call property
(MI)*.
We �test� the category BifA via a series of classical constructions in domain theory. I nteralia
we show that:

(1) Bi fA is an w-algebroidal category and it has a universal, homogeneous object. (2) The
image of stable retraction over a stable bi�nite is again a stable bi�nite. (3) If D 6 BifA, and
Prj(D) denotes the collection of projections over D then Prj(D) E Bz&#39;f,,.
Next we investigate which full, cartesian closed, sub-categories of w- algebraic C poA and stable
maps are contained in Bif,\ . It is shown that property M and �2 / 3� of property I are necessary
for preserving the w-algebraicity of the functional space. The remaining �1/3� of property I is
also necessary under rather mild hypothesis. As a fall out we show a stable, countably based,
version of L-domains, introduced by Coquand, is contained in Bi f,\ and that such L�domains
are the �largest ccc� under the assumption that principal ideals of domains are distributive.

Spaces of Retractions on Domains and Universal Retractions

Klaus Keimel

Let P be a domain, i.e. a directed complete partially ordered set with .L . Let
[P �+ P] denote the domain of all continuous (i.e. directed join preserving) maps
f : P �> P and Ret(P) the subdomain of all retractions r e [P �> P]. The question is
whether there is a universal retraction, i.e. a retraction p : [P -+ P] �> Ret(P). The following
results are due to M. Rothe (Diplomarbeit, Darmstadt 1991): Let P be a continuous domain
such that [P -+ P] also is continuous. a) If Ret(P) is a retract of [P �+ P], then Ret(P) is
continuous and every retraction r E Ret(P) is algebraic (i.e. the image r(P) is an algebraic
domain). b) Every retraction of P is algebraic iff P does not contain a chain order isomorphic
to the rationals. These results tell us that one should consider the domain AlgRet(P) of all
algebraic retractions instead of Ret(P). One then has: c) Is P bi�nite (or a retract of a bi�-
nite domain), then AlgRet(P) also is bi�nite ( or a retract thereof) and there is a universal
retraction p : [P -> P] �-> AlgRet(P). d) If L is an algebraic (or continuous) L�domain, then
the same hold for the domain AIgRet(P); but a universal retraction need not exist. These
investigations are motivated by constructions of models for the polymorphic Lambda Calculus,
where universal retractions are needed.
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A Simple Method for Solving Domain Equations Effectively

Klaus Weihrauch

Let D; be the set of all fb-complete partial orders p Q E" x E� with minimum, where
p is fb-complete iff max,,E exists for all �nite E Q A, := {as : (:::,a:) E p}. Every Scott-
domain is isomorphic to the completion cpl(p) for some p e D_&#39;�. With an appropriate order
D, := {Ü} UD; becomes a cpo D, = (D� 5) with algebraic basis K(-D4,) = {p E D, : p �nite  -b�
It is now easy to de�ne a function sum : D, X D, �> D, such that f is continuous and
cpl(sum(p1,pg)) can be called the sum of cpl(p1) and cpl_(pg) (correspondingly for product,
function space, etc.). For f(p) := sum(p, p) let pf := V; f&#39;(0) and D := cpl(pf) (which exists
since p I 7E 0). Then D = D+D. More complicated domain equations can be solved accordingly,
whenever p f 9¬ 0. If, however, p f = 0 then a simple trick leads to isomorphisms, eg. D E� D X D
or D �E D �+ D. The method is formulated with �constructive cpos� and is fully effective. It
can applied correspondingly to bi�nite domains.

III. Other topics

Deciding Boundedness for Uniformly Connected Datalog Programs

Irene Guessarian

A Datalog program is said to be bounded if the number of nested recursive calls needed to
evaluate a given recursive query is bounded independently of the size of the input data base.
We prove that boundedness is decidable for uniformly connected Datalog programs and some
of their generalizations. Uniformly connected programs generalize chain programs, and, as in
the case of chain programs, decidability of boundedness for uniformly connected programs can
be reduced to �niteness of a context-free language.

Reasonable Extentions of the ML Type Discipline

A.J. Kfoury

The type discipline of ML does not allow various natural programs to be typed. These anoma-
lies are mostly the result of two distinctive features of the discipline. The �rst is that ML
forces all the occurrences of a A-bound variable to have the same type and, even though let
z: = N i_r_1_ M is considered syntactic sugar for (»\:c.M)N, ML allows the occurrences of a l_e1-
bound variable to have different types. Put differently, ML treats A-bound variables monomor-
phically while it treats l<_e_t_-bound variables polymorphically.
The second feature causing these anomalies is the monomorphic treatment of recursively de-
�ned functions. That is, ML restricts all the occurrences of a recursively de�ned function F
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on both sides of its de�nition to have the same type.
We propose ways of extending the rules ABS, LET, and FIX in order to remedy these problems.
In some cases the type-reconstruction remains decidable, in others it becomes undecidable, and
in others still whether type-reconstruction is decidable is open.

Logical Systems are Pure Type Systems

Hans Tonino

For some time it is known that logics can be interpreted in type systems. This interpretation
assigns types to formulae and lambda terms to proof-trees and is such that the derivability
relation is preserved, the terms representing the proofs becoming inhabitants of the types
representing the formulae. This phenomenon has become known as the Curry-Howard-De
Bruyn isomorphism. Strictly speaking we are only entitled to speak of an isomorphism if the
interpretation is bijective. In that case it would also be possible to reconstruct the formulae
from the types and the proof-trees from the terms. This is however not always possible. It
has for instance been shown that the calculus of constructions is not conservative over higher
order, many sorted intuitionistic logic.
F�ujita (1989) devised a type system which is isomorphic (in the Curry-Howard-De Bruyn
sense) to the aforementioned higher order logic. This type system can easily be projected in
the calculus of constructions. However, the proof of Fujita was not complete.
In my talk I will indicate in which way the isomorphism can effectively be de�ned, generalizing
the result of Fujita, and completing his proof. My presentation of the type system uses the
notion of a Pure Type System, introduced independently by Berardi (1988) and Testouw (1989).
This makes the proofs mathematically easier to understand and more precise.

Computations as Proofs in Propositional Linear Logic

Andre Scedrov

Linear logic, introduced by Girard in 1986, is a re�nement of classical logic, with a natural,
intrinsic accounting of resources. It may be derived from a Gentzen-style sequent calculus for
classical logic in three steps.
The first step is to eliminate two structural rules, contraction and weakening. We may view
hypotheses as resources, and conclusions as requirements to be met by using the resources.
Thus the formula �A implies A� means that the resource A can be used to meet the require-
ment A. Contraction rule allows any property that follows from two assumptions of a formula
to be derived from a single assumption of that formula. Weakening allows deductions that do
not use all of their hypotheses. Since contraction and weakening make it possible to use an
assumption as little or as often as desired, these rules are responsible for what one may see in
hindsight as a loss of control of resources in both classical and intuitionistic logic. Excluding
these rules produces a linear system in which each assumption must be used exactly once. In
the resulting linear logic, formulas indicate bounded or �nite resources that cannot necessarily
be discarded or duplicated.
The second step in deriving linear logic involves the propositional connectives. Briefly, the
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change in structural rules leads naturally to two forms of conjunctions, one called �multiplica-
tive� and the other �additive�; and similary two forms of disjunction. The multiplicative form
requires partitioning of resources, while the additive form requires resource sharing.
Finally, in order to recover the full deductive power of classical logic, a storage or reuse oper-
ator, i, is added. Intuitively, the formula !A provides unlimited use of the resource A. Using
a computational metaphor, the formula !A means that �the datum A is stored in the memory
and may be referenced an unlimited number of times�. There is also a dual modal operator,
?, de�nable from ! by using linear negation. The formula ?B allows the unlimited consumption
of B.

Since the basic framework remains linear, unbounded reuse or consumption is only allowed
�locally�, at formules speci�cally marked with l and ?. The resulting logic is natural from
both proof�theoretic and computational standpoints.
In this joint work with P. Lincoln (Stanford and SRI), J. Mitchell (Stanfort), and N. Shanker
(SRI) we establish an exact match between computations on generic machines and proofs in
fragments of propositional linear logic. As a consequence, we obtain the results on complexity
of provability for several fragments of propositional (quanti�er-free) linear logic. This work has
appeared in FOCS�90.
Perhaps our most notable result is that full propositional linear logic is undecidable. However,
let us describe our results starting with the smallest fragment considered, the multiplicative
fragment. We show that the decision problem for this fragment is NP. Moreover, if unre-
stricted weakening is allowed, then the multiplicative fragment becomes NP�complete. [The
NP-completeness for the pure multiplicative fragment was obtained recently by M. Kanovich
(Tver, USSR).]
There are two natural fragments extending pure multiplicative linear logic. We show that the
�rst extension, with both multiplicative and additive connectives but not the modalities ! and
?, is PSPACE-complete. This fragment may be called core linear logic.
Let us note in passing that the second extension, with only multiplicative connectives and the
modalities ! and ?, is at least as hard as the reachability problem for Petri nets (or, equivalently,
commutative semi-Thue systems or vector addition systems). This follows from conservativity
properties established in this work together with previous work of Asperti and Gunter-Gehlot
relating linear logic and Petri nets. Although reachability is decidable (Kosarajn, STOCS�82),
the best known lower bound is EXPSPACE (Lipton 1976, Mayr-Meyer 1982). A likely upper
bound is primitive recursive in the Ackermann function (McAloon, Clote). i
Finally we show that the provability in full propositional linear logic is undecidable (provability
is trivially r.e. since the proof system is effective.) We also establish the undecidability of a
noncommutative variant of linear logic (even without additive connectives).
The main open problems are the decidability of the multiplicatives with the modal operators ! ,
?, and the decidability of core linear logic extended with second-order propositional quanti�ers.
(Adding first-order quanti�ers only does not change the complexity of the fragments discussed
here.)
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(Adding first-order quantifiers only does not change the complexity of the fragments discussed 
here.) 
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Alternative Characterizations of Finitary Boolean Algebras

Lutz Heindorf

Roughly speaking a Boolean algebra is �nitary iff it is almost countable and has a �nite
description up to isomorphism. This becomes a precise de�nition after a method of describing
Boolean algebras is �xed.
In the talk we discuss three possibilities connected with the names of Hauf, Paljutin and
Ketonen. The main result is that in all three cases the same class of �nitary algebras is
de�ned.

A Theory of Unary Pairfunctions

Burkhard Wald

We consider a class of functions which has pairs or nested pairs as their argument and pairs or
nested pairs as their results. Examples for such Pairfunctions are the functions L, R, S, D, and
B where L(<a9b)) = a&#39;9R(<aab)) = b: S(<a9b)) = <bva)vD(a) = lava)» B((a&#39;v (b: = ((avb)9c)°
Because we view these functions as unary functions, the set of all those functions becomes a
semigroup with the usual composition of functions as the multiplication. The result is, that
this semigroup is �nitely presented. The presentation is given by 69 explicit equations over the
generators L, S, D, and B.

How to Design Ef�cient Al orithms for Graphs Using Minors and
Monadic econd Order Logic?

Detlef Seese

Many algorithmic problems in graph theory are NP-hard and (at least till now) have no solu-
tions in polynomial time. A great number of them remain even NP-hard if they are restricted
to smaller and simpler classes of graphs. But if the regarded class of graphs is very simple, as
for instance the class of trees, or the class of series-parallel graphs, then some of the NP-hard
problems have solutions in polynomial or even in linear time. This suggests the problem to
�nd a structural reason for this �change in complexity�.
In the talk it is tried to shed some light into this area.
Using tiling problems it is pointed out that the containment or de�nability of large grids is one
of the reasons for high complexity.
This together with the fundamental results of N. Robertson and P.D. Seymour concerning the
structure of graphs avoiding a given minor implies that one can concentrate the attention in
the �rst step to graphs which are similar to trees, or more exactly have universally bounded
tree width.

For the discription of the algorithmic problems it is used an extension of the very powerful
monadic second order logic. Such problems are denoted as EMS problems. Using a variant of
the machinery of interpretations it can be proved that each EMS problem over a class K of
graphs of universally bounded tree width can be reduced to another EMS problem on a class
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of binary trees. EMS problems for binary trees can be easily solved in polynomial time by
automata theoretical methods.

Lattice Interpretation of Database Dependencies

Christian Herrmann

We report about a paper of the late Alan Day interpreting functional and multivalued depen-
dencies into lattice word problems. By these means an undecidability proof for the implica-
tion problem of (functional dependencies and) embedded multivalued dependencies comes into
reach.

Semantics in Database Models

Bernhard Thalheim

1. Semantic database models

Database design could be de�ned as the design of the logical and physical structure of a database
in a given database management system to contain all the information required by the user
in an organization and required for an effective behavior according to the complexity
measures storage and read/ write representation, computational simplicity and transparency.
Goals of database design support are: to support clear de�nition by ordinary designers, to
support reasoning about system properties, to support redesign and re�nement, to support
effective implementation and to support orthogonality.
For that different important database concepts (complex objects and associations, integrity
constraints, operations, behavior, views and distribution, accomodation of declarative, graphi-
cal and procedural declaration, persistence) should be used integrated and should be based on
concepts of programming languages too (concurrency, abstraction (modularity, classes, types,
clustering, grouping), hierarchies, inheritance). Therefore, fundamental components of seman-
tic database models are: mechanisms for structuring data (objects, attributes, associations
(aggregation, IsA-relationships, memberships, summarization)), logical constraints (local or
global, static or dynamic), operations and behavior. Different semantic database models meet
these requirements in a different manner. Most �of them use graphical representation of parts.
The common disadvantage of almost all semantical database models is the lack of operations.

2. An extended entity-relationship model

The entity-relationship model is one of the most important semantic database models. But
it has several weaknesses (only first-order relationships, no theoretical basis for weak enti-
ties, unnatural IsA representation, shortcoming inherited from the network and the relational
model). Based on the theoretical results of the relational theory (see for instance [4]) the entity-
relationship model is extended to the Higher-order Entity-Relationship Model (HERM)
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[5] by adding several constructs: nesting for attributes, relationships on relationships (higher-
order relationships), clusters, integrity constraints, operations with pre- and postconditions,
dynamic constraints for the description of the behavior.
It is based on the object-oriented approach to design. Objects are represented in the database
by identi�ers and values (according a prede�ned structure), have a global and a local seman-
tics and use operations. Classes are collections of objects with the same structure, general
semantics and operations. The type describes the structure, semantics and operations of a
class. Since objects do not exist independently they should be considered by their dependence
relation. Kernel objects are objects which exist independently from the others. Characteristic
objects are objects characterizing or characterized by other objects. Furthermore there exist
relationships among objects.
Integrity constraints introduced for the HERM are: classical constraints like functional, inclu-
sion, exclusion, and multivalued dependencies and graphical constraints like path dependencies.
The treatment of integrity contraints is based on the identi�er and the generalized key concept.
The HERM algebra uses classical (generalized relational) operations as generic operations and
encorporate user-de�nable operations with pre- and postconditions. Furthermore, query forms
are de�nable in order to specify the behavior of the database. These are used for deriving
decomposition restrictions.
This model allows the development of other design methods like, for instance, the design based
on decomposition on units which is the pedant of the modular design method known in pro-
gramming languages.
Another advantage of the HERM design is that schemes are simpler. For instance, the design
example modelling the database used for the Mathematical Reviews of Teorey [3] uses 54 entity
types and 58 relationship types. The HERM design of the same example is based on 11 entity
types and 16 relationship types.
Furthermore, it can be shown that normalized HERM schems can be translated to normalized
relational or normalized network schemes directly. The ERM-translation to relational schemes
needs afterwards normalization and additional modeling of integrity constraints.

3. The application of constraints

The modeling capability is to be illustrated on three application areas.
First, the application of constraints to equivalence problems is discussed. Generally, the equiv-
alence problem is undecidable. There is no �nite axiomatization of scheme equivalence. But
for several classes of schemes rules for equivalent restructuring can be developed.
Second, the translation of HERM schemes to network and relational schemes is based on four
different approaches: the event-nonseparation, the event-separation, the union and the weak
universal relation approach. Integrity constraints and operations are to be translated according
to these approaches. The translations can be used for the recompilation of operations de�ned
in the translated schemes to other translated schemes.

Third, it is shown how the integrity constraints can be used for derivation of correct imple-
mentations of the generic operations Insert, Delete, Atomar-Update and Update.
It should be noticed that these three capabilies are implementable. There was developed a
prototype of a design system based on HERM.
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Traces and Pomsets: a. Categorical View

S. Kasangian, G. Mauri, N. Sabadini

In this paper we consider two formalisms for describing concurrent processes, i.e. Mazurkiewicz�s
traces and pomsets. Pomsets are a generalization of traces, because the concurrency relation
is not given a priori. Two actions may be concurrent or dependent according to different con-
texts, times and situations. In this paper we deal mainly with traces, discussing the relation
between concurrency and causal independency among actions. Furthermore, we give a categor-
ical treatment of traces and pomsets, introducing both traces or pomsets as enriched categories
over 2-categories of trace observers (or pomsets observers). Abstractions and re�nements are
the effect of �change of base� of 2-categories.
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