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Report p
of the Second Dagstuhl Seminar on

Computational Geometry
October 7th - October 11th, 1991

The second Dagstuhl Seminar on Computational Geometry was organized by Hel-
mut Alt (FU Berlin), Bernard Chazelle (Princeton University) and Emo Welzl (FU
Berlin). The 31 participants came from 8 countries, 12 of them came from North
America and Israel.

29 lectures were given at the seminar, covering quite a number of topics in com-
putational geometry. Unlike last year, there was no special concentration on any
subject. In fact, there were talks on graph algorithms, parallel algorithms, mo-
tion planning, application-oriented problems, numerical robustness, similarity and
congruence, randomized algorithms, dynamic algorithms, and a talk on implemen-
tations.

As last year, an open problem session was held on Monday evening, chaired by
Micha Sharir. It was stated that most of the problem discussed in last year&#39;s session
had been solved (or at least some progress had been made). Let us hope that this
year�s session (reported here by Micha Sharir) will prove as fruitful.

Berichterstatter: Otfried Schwarzkopf
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A Simpleand Correct Proof of the Zone Theorem and its
Generalizations

Micha Sharir (Tel Aviv University and Courant Institute, NYU)

Let H be a collection of n hyperplanes in d-space. The arrangement A(H) is the de-
composition of d-space into cells (of various dimensions) induced by the hyperplanes
of H. Given another �base hyperplane� b, the zone of b in A(H) is the collection
of cells of A(H) crossed by b, and the complexity of the zone is the total number
of faces of all dimensions bounding the zone cells. The Zone Theorem states that
the complexity of the zone of a hyperplane in an arrangement of n hyperplanes
in d-space is O(n��) (with the constant of proportionality depending on d). As
announced in the �rst Dagstuhl Seminar on Computational Geometry, a year ago,
the original proof of the theorem, by Edelsbrunner, O&#39;Rourke and Seidel, contains
an error for d Z 3. The talk presents a new proof, which is much simpler (and
hopefully correct), and is based on a simple induction scheme [Edelsbrunner, Seidel,
Sharir, to appear in SIAM J. Computing]. The talk also reviews several extensions
of the technique, including: Â A bound of (&#39;)(n�&#39;&#39;1 log n) on the complexity of the
zone of a bounded-degree algebraic surface (or convex surface) in an arrangement
of hyperplanes; �€ A bound of 0(nl(��"&#39;)/�J logd"� ("M 2) n) on the complexity of
the zone of a I:-dimensional algebraic or convex surface in such an arrangement; and
 A bound of O(n� log W 2J" n) on the sum of squares of cell complexities in a
hyperplane arrangement. The talk also mentions several algorithmic applications
of the new results, to translational motion planning in 3-space, to point location
among hyperplanes, and to ray-shooting among triangles in 3-space. [The results
reported are by many authors, including B. Aronov, J. Matousek, M. Pellegrini, M.
Houle, T. Tokuyama, B. Chazelle, J. Friedman, and others]

Two Applications of Power Diagrams

Franz Aurenhammer (FU Berlin)

Let S be a set of n points (called sites) in IR�. The Voronoi diagram of S is the
partition of IR� into regions such that all points within a �xed region have the same
closest site. The power diagram of S is the generalization of the Voronoi diagram
where closeness is speci�ed by the power function pow(z,s) = d�(a:, s) � 10(3) of a
point a: w. r. t. a site s, 10(3) denoting the weight of s, a real number. Given some
�nite set X of points, a power diagram of S de�nes an assignment X v-> S in a
natural way (according to the partition of X induced by the regions). The following
general theorem can be shown to hold:
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natural way (according to the partition of X induced by the regions). The following 
general theorem can be shown to hold: 

3 



Let S be any set of sites, let X be any set of points (both finite), and
choose any capacities c(s) 6 No for the sites .9 E S such that 2.65 c(s) =
IX There always exists weights w(s) such that

IX n rcgion(s)| = c(s), Va 6 S

In other words, a partition of a given point set X into clusters of given size always
can be realized by a power diagram of a given set S of sites. The proof is algorithmic
and yields a method for �nding suitable weights in polynomial time. Among the
applications of the theorem (resp. the algorithm) is a method for �nding clusters
with minimum sum of variances and a method for optimum matching of point sets
under the least squares measure.

Another theorem states that, for any simple cell complex C in B�, d Z 3, there
are sites and weights such that the resulting power diagram coincides with C. This
allows one to specify any simple cell complex using only 0(n) objects of constant
complexity. (C has n convex cells, d is considered a constant.) As one application,
point location can be performed in an easy way.

Determining the Convex Hull of a Simple Polygonal Chain
in Sublogarithmic Parallel Time

Hubert Wagener (Techn. Univ. Berlin)

Let C be a simple polygonal path in the plane. A new implicit data structure
representing the convex hull of C was introduced. Using this datastructure several
queries concerning the convex hull can be answered e�iciently. For example, given
a point p, it is possible to determine whether the point lies within the convex hull
or outside in time 0(log n/ log k) using k processors of a CRCW-PRAM, where n
denotes the length of C. In case the point p lies outside, the supporting lines to the
convex hull passing through p can be found within this time bound, too.

Using this data structure an algorithm for computing the convex hull of C was
given, that runs in time 0(n/lc + log log n) using k processors of a CRCW-PRAM.
The computed convex hull can be represented either by the implicit data structure
mentioned above or as a linked list of vertices in the order they appear around the
convex hull.

The methods used in this solution of the convex hull problem can be applied to
related problems, e. g. to the problem of computing the visibility region from a point
with respect to a polygonal chain.
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Computing and Verifying Depth Orders
Mark de Berg (Utrecht University)

joint work with Mark Overmars and Otfried Schwarzkopf

A depth order on a set of objects is an order such that object z comes before object
z� in the order when z lies behind z�, or, in other words, when z is (partially) hidden
by z�. We present e�icient algorithms for the computation and veri�cation of depth
orders on sets of n rods in 3-space. Our algorithms run in time 0(n�/�*�), for any
�xed e > 0. If all rods are axis-parallel, or, more generally, have only c different
orientiations for some constant c, then the sorting algorithm runs in time O(n log� n)
time, and veri�cation takes O(n log� n) time. The algorithms can be generalized to
handle triangles and other polygons instead of rods. They are based on a general
framework for computing and verifying linear extensions of implicitly de�ned binary
relations.

Description of the Connected Components of a
Semi-Algebraic Set

Marie-Francoise Roy (Université de Rennes I)
joint work with J oos Heintz and P. Solerno

The connected components of a semi-algebraic set S are semi-algebraic sets.

Given a semi-algebraic set described by s polynomials of degree d in n variables,
it is possible to design algorithms with complexity polynomial in d and s, single
exponential in n, well parallelizable (with parallel complerdty polylog in d and s,
polynomial in n), solving the following problems

1. given two points z and so, decide if they belong to the same connected com-
ponent of S

2. if they do, �nd a connected path connecting them

3. describe (as semi-algebraic sets) the connected components of S

If problem 2 is replaced (in the case when S is open) by problem 2�: �nd a piecewise
linear path connecting them, a very easy counterexample (due to Heintz, Kuich, Slis-
senko, Solerno) shows that the complexity is completely different, and intrinsically
exponential in the degree d.

Computing and Verifying Depth Orders 

Mark de Berg (Utrecht University) 
joint work with Mark Overmara and Otfried Schwar1kop( 
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Convex Sets of Lines in Space

Ricky Pollack (Courant Institute, NYU)
� joint work with J .E. Goodman, CUNY

Let L be a set of lines in B�, wede�ne L� = {C | C convex, In C� 7�- 0 Vl E L} and
for K a family of convex sets XI� = {l I l n C 7E 0 VC e IC}. The convex hull of L
is de�ned to be the set L� and a set of lines is convex if it is its own convex hull.

This is a natural generalization of convex sets of points (let L be a set of points and
use the same de�nition). Weobserve

1. The Helly number and Caratheodory number of this convexity space is co.

. Any �nite set of lines without parallels is convex.

. If L is the set of lines tangent to a convex body K, then L� = K�.#0910. Let L be the set ruling a hyperbolic paraboloid H then L� = {l | l n H =
0} U L, but if l� E L then L \ l� is convex.

Numerical Stability of Algorithms for 2D Delaunay
&#39;I�riangulations and Voronoi Diagrams

Steven Fortune (ATT Bell Labs)

Consider geometric algorithms implemented using �oating point arithmetic. There
are versions of the �ipping, incremental, and sweepline algorithms for Delaunay
triangulations in 2D with the following correctness properties. Let S be a set of n
point sites. A circle inscribed in three sites is a-empty if the pseudodisc consisting
of three circular arcs connecting the sites, each are making angle a with the circle,
is empty. The �oating point Delaunay triangulation algorithms produce triangles
with 0(ne)-empty circumcircles. The worst-case running time of the algorithms is
unchanged. From the approximate Delaunay triangulation, an approximate Voronoi
diagram can be produced in linear time. It can be used to anwer nearest-neighbor
queries: the answer to the nearest-neighbor query is not always the true nearest
neighbor, but is always within a relative amount of 0(ne) of being the true nearest
neighbor.

Convex Sets of Lines in Space 

Ricky Pollack ( Courant Institute, NYU) 
. joint work with J .E. Goodman, CUNY 

Let C, be a set of lines in R3
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is defined to be the set c,•• and a set of lines is convex if it is its own convex hull. 
This is a natural generalization of convex sets of points (let C, be a set of points and 
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1. The Belly number and Caratheodorr number of this convexity space is oo. 

2. Any finite set of lines ~thout parallels is convex. 

3. If C, is the set of lines tangent to a convex body K , then c,•• = K•. 

4. Let C, be the set ruling a hyperbolic paraboloid H then c,•• = { l I l n H = 
0} U C, but if l' E C, then C, \ l' is convex. 
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Consider geometric algorithms implemented using floating point arithmetic. There 
are versions of the flipping, incremental, and sweepline algorithms for Delaunay 
triangulations in 2D with the following correctness properties. Let S be a set of n 
point sites. A circle inscribed in three sites is a-empty if the pseudodisc consisting 
of three circular arcs connecting the sites, each arc making angle a with the circle, 
is empty. The floating point Delaunay triangulation algorithms produce triangles 
with 0( nE )-empty circumcircles. The worst-cue running time of the algorithms is 
unchanged. From the approximate Delaunay triangulation, an approximate Voronoi 
diagram can be produced in linear time. It can be used to anwer nearest-neighbor 
queries: the answer to the nearest-neighbor query is not always the true nearest 
neighbor, but is always within a relative amount of O(nE) of being the true nearest 
neighbor. 
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C1-Smoothing of Polyhedra
Chanderjit L. Bajaj (Purdue University)

Polyhedra �Smoothing� is an e�icient construction scheme for generating complex
boundary models of solid physical objects. This talk presents efficient algorithms
for generating families of curved solid objects with boundary topology related to
the input polyhedron. Individual facets of a polyhedron are replaced by degree �ve
implicit algebraic surface patches having local support. These degree �ve patches
replace the 0° contacts of planar facets with C1 continuity along all interpatch
boundaries. Selection of suitable instances of implicit surfaces as well as local control
of the individual surface pathes are achieved via simultaneous interpolation and
weighted least squares approximation.

The Cartographers� Line Simpli�cation Problem
Jack Snoeyink, University of British Columbia

A portion of the cartographer�s art is to distill the crucial information from a large
amount of data and preset it on a map. One of their subproblems is a geometric
approximation problem that they call �line simpli�cation�: given a polygonal chain
C on n vertices, �nd a chain C� with fewer vertices that approximates C� well. Of
course, this problem crops up in many applications � the distinguishing features in
cartography are a large amount of initial data, desire for fast algorithms, and some
freedom in de�ning measures of similarity.

We have begun looking at greedy algorithms based on �fattening� the original chain
and �nding an approximation within the fattened region. Computing minimum-
link paths of agiven homotopy class or computing ordered stabbing chains are two
examples. These algorithms avoid minimization and have subquadratic behavior;
yet they still give some guarantee on the goodness of the approximation�unlike
many of the heuristics in practical use.

We also mentioned that the cartographers� favorite algorithm, a simple recursive
procedure by Douglas and Peucker, can be improved from 9(n�) worst case to
@(n log n).

C 1-Smoothing of Polyhedra 

Chanderjit L. Bajaj (Purdue University) 

Polyhedra "Smoothing" is an efficient construction scheme for generating complex 
boundary models of solid physical objects. This talk presents efficient algorithms 
for generating families of curved solid objects with boundary topology related to 
the input polyhedron. Individual facets of a polyhedron are replaced by degree five 
implicit algebraic surface patches having local support. These degree five patches 
replace the C0 contact s of planar facets with 0 1 continuity along all interpatch 
boundaries. Selection of suitable instances of implicit surfaces as well as local control 
of the individual surface pathes are achieved via simultaneous interpolation and 
weighted least squares approximation. 

The Cartographers' Line Simplification Problem 

Jack Snoeyink, University of British Columbia 

A portion of the cartographer's art is to distill the crucial information from a large 
amount of data and preset it on a map. One of their subproblems is a geometric 
approximation problem that they call "line simplifi:ation": given a polygonal chain 
C on n vertices, fi.nd a cha.in C' with fewer vertices that approximates C well. Of 
course, this problem crops up in many applications - the distinguishing features in 
cartography are a large amount of initial data, desire for fast algorithms, and some 
freedom in defining measures of similarity. 

We have begun looking at greedy algorithms based on "fattening" the original chain 
and finding an approximation within the fattened region. Computing minimum
link paths of a.given homotopy class or computing ordered stabbing chains are two 
examples. These algorithms avoid minimization and have subquadratic beha.vior; 
yet they still give some guarantee on the goodness of the approximation- unlike 
many of the heuristics in practical use. 

We also mentioned that the cartographers' fa.vorite algorithm, a simple recursive 
procedure by Douglas and Peucker, can be improved from 8(n2

) worst case to 
9(nlog n). 
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Drawing Graphs
J anos Pach �qk� Academy of Sciences and Courant Institute, NYU)

A geometric graph is a graph drawn in the plane by straight-line segments (which
may cross each other). Given a class H of so-called forbidden geometric subgraphs let
t(?&#39;(, n) (t.,(&#39;}&#39;{, n)) denote the maximum number of edges that a (convex) geometric
graph with n vertices can have without containing a subgraph from �H. Let C),
denote the class of all geometric graphs consisting of k pairwise crossing edges. Of
course, t(C;,n) = 3n - 6, t.,(C3,n) = 2n � 3. For any fixed k, n �-> oo, we have
t.(C;.,n) = 0(n). Moreover, we have

Theorem 1 Every convez geometric graph with n vertices and m 2 (2k � 1)n
edges contains at least [c;.m""1/n""�j I:-tuples of pairwise crossing edges (for some
C]. > 0).

Does this statement remain true for not necessarily convex geometric graphs? It
should be not too difficult to beat the following bound.

Proposition 2 t(C3,n) = 0(n�/2)

Let 7;, denote the class of all planar drawings of a given tree of n vertices with
noncrossing straight-line segments. Then every complete geometric graph with n
vertices contains a subgraph from 7;. Moreover, we have

Theorem 3 (P.-Tiiriicsik) Given any rooted tree T of n vertices, and any set S of
n points in the plane in general position, s1, 83 E S, we can draw T by noncrossing
straight-line segments on the vertex set S� such that the image of the root is either
s1 or 83. This embedding can be found in time o(n3/�).

Shortest Paths on Convex Polytopes

Boris Aronov (Polytechnic University, New York)

We survey several results concerning shortest paths on the surface of a convex poly-
tope.

The object at the center of our investigation is the so-called �star-unfolding� of the
surface of the polytope, obtained by cutting this surface by shortest paths connecting
a given point (�source�) to all the vertices of the polytope. We show that this
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�unfolding� indeed unfolds in the plane without self-overlap. Moreover, the structure
of shortest paths emanating from the source is fully described by a certain Voronoi
diagram computed in the plane and restricted to the unfolding. This fully justifies
the relatively recent elegant algorithm of Chen and Han for computing shortest
paths between the source and all other points on the polytope surface. In addition,
the non-overlap of the unfolding and its relation to Voronoi-diagrams imply some
improvements in a number of other shortest-path algorithms.

All Pairs Shortest Paths

Raimund Seidel (University of California, Berkeley)

The following algorithm solves the all-pairs-shortest-path problem on undirected
graphs with unit edge weights in time 0(M (n) log n), where M (n) is the time nec-
essary to compute the product of two n X n matrices. Currently M (n) is known to
be 0(n2.37...).

Input: undirected graph with vertex set {l,2, . . . ,n} represented by adjacency
matrix.

Output: distance matrix D, where D[i, j] = number of edges on shortest i � j
path.

Function APSP (A: adjacency matrix) : distance matrix
Z := A - A

LetBbenxn0-1matrixs.t.B[i,j]:=1i�&#39;i;¬jand (A[i,j]=1or Z[i,j]>0)
If B[i,j] = 1 for all i #3� then return matrix 2B � A
T := 2 - APSP(B)
X := T - A

TIM] if Xltkil 2 T[i,.1&#39;] ° d¬9"&#39;39(j)return matrix D where D[i, j] := { T[i�J.] _ 1 otherwise

Convex Hulls and Range Searching

Bernard Chazelle (Princeton University)

Convex Hulls: We sketch an algorithm for computing the convex hull of n points
in IR� (d �xed) in deterministic 0(nl"/�J + nlog n) time, which is optimal. The
method is derived by derandomizing a probabilistic algorithm of Clarkson and Shor,
using cs-net theory.
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Range Searching: (joint work with Hervé Bronniman) We outline the proof of an
Q(n1&#39;3"?�5 /m�/�&#39;) lower bound on the time to answer a halfspace range query in R�,
given n points and m storage cells. This lower bound holds in the Fredman/Yao
arithmetic model of computation.

0(n2) problems in Computational Geometry
Mark H. Overmars (Utrecht University)

There exist many problems in Computational Geometry for which 0(n�) are the
best known time bounds. Examples are:

0 Given a set of points, are three points collinear?

0 Given a set of triangles, does their union contain a hole?

o Given a set of line segments, does there exist a non-trivial separating line?

0 Given a set of halfplanes, �nd a point that is covered by most of them

We show that all these problems can be solved by one general technique in time
0(n�). Moreover, we establish strict relations between the complexity of the prob-
lems. In particular, we show that all these problems are at least as difficult as the
problem:

0 Given three setsof reals A, B, and 0, do a E A, b e B, and c E C� exist with
a+b=c?

Also for this problem 0(n�) is the best known bound. Hence, there is no hope of
improving the time bound of any of the other problems, without improving this base
problem.

Measuring the Distance between Curves
Helmut Alt (FU Berlin)

joint work with Michael Godau

We consider the so-called F¥&#39;e&#39;chet-Metric between curves, which is compatible with
parametrizations and thus expresses resemblance between curves better than the
Hausdorff-metric. For the case of polygonal chains P, Q with p, q edges respectively,
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we give an 0(pq) algorithm, which given P, Q, and e > O decides whether the
Fréchet-distance 6p(P,Q) 5 e. For actually computing 6;-(P,Q), given P, Q, we
obtain an 0(pq log� pq) algorithm using parametric search directed by an efficient
parallel sorting algorithm.

Variants of the problem are the closed Fréchet-metric de�ned for closed polygons P,
Q, and the non-monotone Fréchet-metric allowing parametrizations to move on the
curve in a nonmonotone way. Runtimes for these variants of the problem are nearly
the same as for the original version.

Approximate Decision Algorithms for Approximate Point
Set Congruence

Stefan Schirra (Max-Planck-Institut �ir Informatik, Saarbrücken)
joint work with Paul J. Heffernan

We consider the decision problem whether two sets of points A = {a1, . . . , a,,} and
B = {b1, . . . , b,,} in the plane are e-congruent by a set T of allowed transformations,
i.e. whether 1 E T and a permutation 1r exist, such that dist(1&#39;(a,-),b,,(,-)) _<_ e.
The best known decision algorithms for this problem have running time far from
being practical. For T = set of translations, the best bound is 0(n°), and for T =
set of isometries, the best bound is 0(n�). Therefore (a, ß)-approximate decision
algorithms for these problems become interesting. An algorithm is called (a, ß)-
approximate if it solves the decision problem of e-congruence of A and B, if e Q
[efp,(A, B) � a, eZ;,(A, B) + ß], otherwise the output of the algorithm is Don�t
Know. Here 53,, = inf{e I A and B are e-congruent by a transformation in T}.
We give (7,7)-approximate decision algorithms (7 is an additional input parameter
of the algorithms) with running time 0(n1°�(e/1)�) for translations and 0(n�(e/7)�)
for general isometries. So for 7 = e/c, c a constant, the running times are 0(n�°�)
and 0(n"�) compared to 0(n°) and O(n�) resp. The algorithms are much faster
than the best known complete decision algorithms, if e is not near ez;,,(A, B

An 0(n lognlog log n) Algorithm for the On-line Closest
Pair Problem

Michiel Smid (MPI Saarbrücken)
joint work with Christian Schwarz

Let V be a set of n points in k-dimensional space. It is shown how the closest pair
in V can be maintained under insertions in 0(log nlog log n) amortized time, using
O(n) space. Distances are measured in an arbitrary L,-metric, where 1 _<_ p 5 oo.
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This gives an O(n lognlog log n) time on-line algorithm for computing the closest
pair. The algorithm is based on Bentley&#39;s logarithmic method for decomposable
searching problems. It uses a non-trivial extension of fractional cascading to k-
space.

Shortest Paths of Bounded Curvature in the Plane

Jean-Daniel Boissonnat (INRIA Sophia-Antipolis)
joint work with André Cérézo and Juliette Leblond

Given two oriented points (M,-,9,-), (M ,,0,), in the plane, we want to compute
the shortest piecewise regular paths joining them, along which the curvature is
everywhere bounded by a given 1/}! > 0. Minimizing the length is meaningful both
in the class of paths which are C� and piecewise C�, and in the slightly larger class
of paths admitting a �nite number of cusps.

Though the problem has been solved recently (Reeds 8: Shepp, Pacific J. of Math,
Dec. 90), we propose an entirely different solution, both much simpler and better
adapted to further generalizations. The essential tool we use is the powerful result
of optimal control theory known as the �minimum principle of Poutryagin�. We
insist on local proofs in view of further work dealing with obstacles.

Point Location in Zones of k-Flats in Arrangments

Marc van Kreveld (Utrecht University)
joint work with Mark de Berg, Otfried Schwarzkopf, and Jack Snoeyink

Let .A(H) be an arrangement of a set H of n hyperplanes in d-dimensional space. A
k-�at is de�ned to be a k-dimensional a�ine subspace of d-space. The zone of a k-�at
f with respect to H is the closure of all cells of A(H) that intersect f. It is known
that this zone has complexity 9(nl(��"�)/3]). In this tall: we show that we can do
point location in the zone with considerably less storage, namely 0(nl"/21+� + M�),
for arbitrarily small constant e > 0. For any point q in d�space, we can determine
whether q lies in the zone of the lc-�at or not. If it lies in the zone, then we can
identify the cell of the zone that contains q. Such a query takes 0(log� n) time.

We also show how to test whether two �ats are visible for each other with respect
to H. To this end, we apply multidimensional parametric search, and obtain for a
kl-�at and a kg-�at an 0(n"1+�) time algorithm if k; 5 kg _<_ 21:1 + 1, and the time
bound is o(n"*+� 3 311+�) if k, > 2k, + 1.
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Planar Convex Embeddings of Graphs

Jörg-R. Sack (Carleton University, Ottawa)
joint work with F. Dehne and H. Djidjev

We present an algorithm to determine whether a graph can be convexly embedded
and if so, for constructing such a convex embedding. An embedding is convex if
each face of the graph (except the unbounded) is a convex polygon.

Our parallel algorithm runs in 0(log n) time and 0(n) space and with the same
number of processors as graph connectivity. The algorithm also provides a new
linear time sequential method for the problem. The solution is based on two novel
concepts, an optimal hierarchical graph decomposition scheme, and the notion of
pseudo-complexity.

The Complexity and Construction of a Single Cell in
Certain 3D Arrangements

Dan Halperin (Tel-Aviv University)

Given a collection of surfaces in 3-space, we wish to determine the maximum number
of features bounding any single cell in the partitioning of space de�ned by these
surfaces, i.e., what is the maximum number of vertices, edges and faces bounding
a single three-dimensional component of the partitioning. We present a series of
results, using various techniques, that give near-quadratic upper bounds on the
complexity of a single cell in certain arrangements of surface patches. Most of our
results relate to arrangements of �constraint surfaces� in the free con�guration space
of a �robot� moving among obstacles, where the single cell of interest is the cell that
contains a point representing the initial free placement of the robot. The complexity
of the entire arrangement in each case that we consider may be 9(n3) in the worst
case and a single cell may have complexity fl(n�) or slightly larger.

We start with a near-tight bound 0(n�a(n)) on the complexity of a single cell in the
arrangement related to the motion of a so-called telescopic arm. Then we present a
theorem that identi�es a collection of topological and combinatorial conditions for
a set of surface patches in space, which make the complexity of a single cell in an
arrangement induced by these surface patches near-quadratic. Applying this result
to speci�c arrangements we get bounds of the form O(n� log n) or 0(n�a(n) log n).
Finally, we mention a bound of O(n� log� n) by Aronov and Sharir on the complexity
of a single cell in an arrangement of triangles and we show an extension of their
result to arrangements of curved surfaces induced by the motion planning problem
for certain rigid non-convex bodies moving among obstacles in the plane. For some
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of the arrangements that we study, we describe near-quadratic time algorithms to
compute one cell.

Guard Algorithms Answer Stabbing and Intersection
Queries on Fat Spatial Objects

Jiirg Nievergelt (ETH Zürich)
joint work with Peter Widmayer

The variety of spatial data structures and retrieval algorithms developed in recent
years suggests that it is di�icult or impossible to design general-purpose structures
that perform well across the entire spectrum of objects to be stored and queries
to be processed�generality comes at the cost of performance and increased algo-
rithm complexity. Thus simple algorithms that perform well on a restricted class of
problems are clearly of interest.

Guard Algorithms answer stabbing and intersection queries on a dynamic collec-
tion of spatial objects embedded in R� that satisfy a shape constraint. The objects
stored must be fat in a technical sense that can be made precise in several ways,
but always implies 2 requirements:

0 convex, and

o �width�/ �length� 2 f > 0, where the fatness constant f is characteristic of
the class of objects to be stored.

Guard algorithms partition space in a hierarchical grid of cells and guard points.
Objects are attached to cells and guard points in such a way that a stabbing query q
is answered in a single path from a leaf to the root of the radix treee that represents
the hierarchical grid.

Bicriteria Path Problems

Joe Mitchell (SUNY, Stony Brook)
joint work with E. Arkin and C. Piatko

We want to �nd paths between points s and t in a planar environment (e.g., among
a set of polygonal obstacles). Much has been done to devise algorithms that �nd a
shortest path according to a single criterion (e.g., Euclidean length, link distance,
etc.). We study a broad class of bicriteria path problems, in which one asks if there
exists a path whose length (according to criterion 1) is at most X, and whose length
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to be proceBSed-generality comes at the cost of performance and increased algo
rithm complexity. Thus simple algorithms that perform well on a restricted class of 
problems are clearly of interest. 

Guard Algorithms answer stabbing and intersection queries on a dynamic collec
tion of spatial objects embedded in 'R.4 that satisfy a shape constraint. The objects 
stored must be fat in a technical sense that can be made precise in several ways, 
but always implies 2 requirements: 

• convex, and 

• "width" /"length" ~ / > 0, where the fatness constant / is characteristic of 
the class of objects to be stored. 

Guard algorithms partition space in a hierarchical grid of cells and guard points. 
Objects are attached to cells and guard points in such a way that a stabbing query q 
is answered in a single path from a leaf to the root of the radix treee that represents 
the hierarchical grid. 

Bicriteria Path Problems 

Joe Mitchell (SUNY, Stony Brook) 
joint work with E. Arkin and C. Piatko 

We want to find paths between points a and t in a planar environment (e.g., among 
a set of polygonal obstacles). Much has b~n done to devise algorithms that find a 
shortest path according to a aingle criterion (e.g., Euclidean length, link distance, 
etc.). We study a broad class of hicriteria path problems, in which one asks if there 
exists a path whose length (according to criterion 1) 11 at most X, and whose length 
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(according to. criterion 2) is at most Y. In graphs, such problems are known to be
NP-complete.

We show that many such problems are NP-complete in their geometric versions.
In some cases (e.g., with �total turn� and Euclidean length as criteria), we give
pseudo-polynomial time algorithms.

We look in more detail at the problem with criteria (number of links, Euclidean
length). In this case, we give a fully-polynomial approximation scheme for general
polygonal environments, and give a potentially faster algorithm for the case of sim-
ple polygons without holes. this algorithm relies on a careful analysis of the local
structure of optimal paths (shortest k-link paths), in order to devise a binary search
strategy.

A Method for Obtaining Randomized Algorithms with
Small Tail Probabilities

Kurt Mehlhorn

joint work with H. Alt, L. Guibas, D. Karp, A. Wigderson

Let X1, X 3, . . . be independent, identically distributed nonnegative random variables
with common distribution function f(:c). For (Y1, I6, . . �@ E U229)�, let i0 be the
least i such that X; 5 Y}. Let T := Y; + Y; + `0(� + Y.-0-1 +X,-0. A strategy Sis a
probability measure on (�R_>_o)°°. Let b5_;(t) = prob(T 2 t) and let b; = sup{b5�(t) I
f is such that few a:f(z)da: = 1}. Then

1. b,<,-(t) 2 e� for all S and t

2. 38 : b�g(t) 5 e - e" for all t

3. 3 deterministic S : b�g(t) _<_ e�("°(��l°�)

Hierarchical Marching Cube Algorithms

Heinrich Miiller (University of Ereiburg)
joint work with Michael Stark

Marching Cube Algorithms (Wyvill, McPheeters, Wyvill, The Visual Computer,
1986, Lorensen� Cline, SIGGRAPH 1987) calculate a polygonal approximation of the
surface of a volume. The volume has to have the property to decide for every point
in space whether it belongs to the volume. Examples are implicitly de�ned volumes,
CSG volumes based on implicitly represented primitives, and rasterized volumes
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occuring in image processing and computer tomography. Usually, the resulting
polygonal surface consists of a huge number of polygons limiting the speed of display
on current rendering machines. We present two improvements, called hierarchical
marching cube algorithms, which carry out an adaptive approximation of the surface.
Experiments with medical data sets performed with a first implementation show a
reduction to 50%-60% compared with the original approach even when allowing the
new surface not to differ more than the sampling distance from that of the simple
marching cube. Further, the new approaches solve the crack problem with only a
constant amount of context information, thus carrying over an important property
of the simple algorithm which allows an easy parallelization.

On the Post Office Problem

Otfried Schwarzkopf (Freie Universität Berlin)

The post office problem is one of the oldest query type problems in Computa-
tional Geometry. While the planar and three-dimensional versions are quite well
understood, the only previous solution to the higher dimensional problem gives a
data structure with space 0(nl"/21+�) and query time 0(log n) (Clarkson). We
show, following ideas by Chazelle & Friedman, that this can be reduced to space
O(nl"/ 21/ polylog n) and time 0(log� n). Using the recent Shallow-Cutting-Lemma
by Matouéek, we can do so with only three levels of bootstrapping (instead of �ve
as in Chazelle & Friedman�s paper). The problem that combining two solutions
requires a more powerful query than in the original problem is resolved by using
Agarwal & Matou§ek�s Ray Shooting by Parametric Search, which, however, in-
creases the query time to 0(log� n). It is left as an open problem to improve this to
O(log n).
Furthermore, it is argued that Chazel1e�s �antenna� of a query point can be used
for the dynamic version of the post o�ice problem. It is shown that it is sufficient
to build a (static) point location structure for the cell of a newly inserted point
site. Since this is possible by the above for all odd dimensions, we get a dynamic
algorithm in the Mulmuley-Schwarzkopf setting with update time 0(nl"/�l"1) and
query time O(log� n) for every odd dimension d 2 5.

Using another technique, the problem can also be solved for dimension 6 (dimen-
sions 2 and 4 were known before).
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. LEDA
A Library of E�icient Data Types 8L Algorithms

Stefan Näher (MPI Saarbrücken)

LEDA is a software components library that makes the results (data structures
and algorithms) from the area of combinatorial computing available to non-expert
programmers. The main features of LEDA are

o it gives precise and readable speci�cations

o it contains efficient implementations

o it offers a very comfortable graph data type

o it helps turning algorithms into e�icient and elegant programs

We hope that LEDA will narrow the gap between algorithms research, teaching, and
implementation.

Best Enclosures of Rectangles by Two Rectangles

Peter Widmayer (Universität Freiburg)
joint work with B. Becker, P. G. Eranciosa, S. Gschwind, T. Ohler, and G. Thiemt

The page split operation in spatial data structures (such as the R-tree) motivates a
family of geometric problems, two of which we solve here.

First, for a set of rectangles (parallel to the coordinate axes) we aim at �nding two
rectangles S , T such that

o each given rectangle is contained in S or in T

o each of S and T contains at least b of the given rectangles

o some measure of S and T is minimized

The measure minimization serves to achieve a good data structure performance;
typical measures are the sum of the areas of S and T, the area of the intersection
of S and T, etc. For the d-dimensional case and any measure function mf for
which mf(S, T) = mf(T, S) and mf(S&#39;, T) _>_ mf(S� T) for S� Q S, we propose an
algorithm that runs in time 0(dn log n + d�n""�) for n d-dimensional rectangles in
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the worst case. In the plane, the O(n3) behavior occurs only in one particular case
that will not always be of interest.

Second, if we change the problem formulation such that each given rectangle needs
to be in S U T (but not necessarily in S or T), we set b = 0, and we minimize the
sum of the areas of S and T, the problem can be solved in optimal time O(n log n)
for n rectangles in the plane.

Flipping Works for Regular �IX-iangulations
Herbert Edelsbrunner (University of Illinois at Urbana-Champaign)

joint work with Nimish Shah i

Let S be a set of n points in R�, each with a real weight. The regular triangulation
72(5) defined by S is the dual of its power diagram, also known as the Dirichlet
tessellation and the Voronoi diagram under the Laguerre metric of S. In the assumed
non-degenerate case 72(5) is indeed a triangulation, that is, a simplicial cell complex
that decomposes the convex hull of S. We prove the correctness of an incremental
algorithm that, after adding the i� point, uses an arbitrary sequence of �ips to
restore the regularity of the triangulation. This generalizes a result of Barry Joe who
proved the correctness of the incremental �ip paradigm for Delaunay triangulations
(regular triangulations for points with equal weights) in R3. We also show that
a non-incremental version of the �ip paradigm can get stuck without reaching the
regular triangulation, already in R�.

For 5 points in convex position in R3, a �ip replaces 3 tetrahedra by 2, or
vice versa. &#39;

The worst-case complexity of the incremental �ip algorithm, not counting the time
for �nding the d-simplex that contains the new point p,-, is 0(nl!&#39;;�ll), and if
the points are added in a random sequence the expected time/number of �ips is
Ohm� + nlog n). There are ways to, do the point location step without increasing
the complexity. &#39;
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Open Problem Session

(reported by Micha Sharir)

Bernard Chazelle: Given a chain-complex induced by a collection of unit-radius
balls in d-space, compute its homology e�iciently by using �direct� methods (e.g.
divide-and-conquer via Mayer-Vietoris sequences).

J énos Pach: What is the maximum f(n) such that, given n segments in the
plane, one can always �nd at least f(n) of them which are either pairwise disjoint
or pairwise crossing.

Ramsey�s theory implies f(n) 2 clog n, and a simple construction (of (/5 families,
each consisting of �/17 pairwise crossing segments) shows that f (n) _<_ @kj� What is
the correct bound?

Marl: Overmars: (1) Given a planar convex subdivision (of the entire plane), let
G denote its dual graph. Does there always exist a spanning tree of G which has
bounded degree? The problem is open even for an arrangement of n lines in the
plane. The statement is false for nonconvex subdivisions, as can be seen by taking
a large convex polygon, attaching triangles to each of its sides and considering the
resulting subdivision.

(2) Let V be a set of n non-intersecting axis-parallel cubes in 3-space. Can the
complement of V be decomposed into a collection W of O(n) axis-parallel boxes?

(3) (This is a simple case of �curve shooting� in the plane.) Given a set of n arcs
in the plane (of �simple� shape, e.g. algebraic of low degree, etc.), preprocess it so
that, given any point on one of the curves, one can quickly �nd the two neighboring
intersections along the curve (the two endpoints of the edge of the arrangement of
the curves which contains the query point).

(4) Devise an output-sensitive hidden surface removal algorithm that receives as
input m pairwise disjoint convex polyhedra, consisting of n faces altogether, so that
the running time of the algorithm is something roughly like 0(m�/3k�/3 + - - -), where
k is the output size. There are algorithms with running time close to 0(n�/31¢�/3 +
- - -), and the challenge is to replace n by m in the leading term (when approximating
curved objects by polyhedra, this can make a lot of difference).

Emo Welzl: (This problem arises in surface reconstruction.) Given a sequence
A = (a1,a2,. . . ,a,,) of real numbers, de�ne L(A) = 22:11 |a.,-+1 - a..-|. Given two
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sequences A = (a,- f�__.,, B = (b,-);&#39;.�=,, we de�ne a shu�le of A und B as a sequence
C� whose m + n elements are the elements of A and of B, so that the elements
of A appear in C in the same order that they appear in A, and similarly for B.
The problem is: Given two sequences A and B, �nd a shuffle C� of A and B which
minimizes L(C (As an exercise, one can verify that if A and B are sorted, then
the desired shuf�e is the merged sorted sequence of A and B The problem can be
solved in 0(mn) time, using dynamic programming. Can this be improved?

Joe Mitchell: (1) Given a set S of axis-parallel rectangles in the plane, and a set
P of points, find a smallest subset T of S with the property that P Q UT, and
that T is pairwise disjoint. Given that this problem is hard, one is interested in
approximating solutions (and one can assume that there always exists a subset T
with the desired property, e.g. each point is enclosed by a small rectangle).

(2) What is the maximum complexity of the zone of a line in an arrangement of
n ruys that have only h endpoints? One can show that the complexity in question
is Q(n + ha(h)), und u trivial upper bound is O(na(n)); u less trivial bound is
O(n + h�).

(3) Given n segments in the plane with h endpoints, how many segments can ap-
pear on the boundary of the unbounded cell of their arrangement? Mitchell et al.
showed that the answer is O(h), und the question is to calibrate the constant of
proportionality. They have shown an upper bound of 16h � 2 und u lower bound of
2h, which can probably be improved to 2.5h.

Pankaj Agarwal (communicated by Micha Sharir): Given n lines in the
plane, preprocess them into a data structure, so that, given any query abscissa
a, we can compute the number of line intersections that lie to the left of z = a.
Find uny reasonable trade-o�&#39; between storage of the data structure and the query
time. Allowing quadratic storage, a query can be trivially answered in 0(log n) time
(store all intersections in a sorted array). If only subquadratic storage is given, can
queries be answered in sublinear time? The only other known approach requires
linear storage and takes O(n log n) time per query� by sorting the line intercepts
along z = a. und counting inversions between this permutation and the similar
permutation at z = �oo.

Michu Shurir: Given n surfaces F; = 0,...,F,. = 0 in 4-space (the F�s are
algebraic functions of low bounded degree), and m points p1, . . . , pm, determine
whether there exist a pair i, j such thut F.-(p,-) > 0.

This cun be solved in time roughly O(n�/�m�/°), and the goal is to improve it to
close to 0(n�/�m4/5). The technique is based on triangulating the arrangement of a
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random sample of r of the given surfaces which can be done with roughly 0(r�) cells,
as shown by Chazelle et al., and the challenge is to find such a triangulation with
only close to 0(r�) cells. However, any solution of the stated problem, regardless
of the technique used, is desired. The problem arises, e.g. in computing the closest
pair of lines in a collection of n lines in space and other problems involving lines in
space.
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