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Algorithms of Computeralgebra
December 16-20, 1991

Schloß Dagstuhl

Organizers: Bruno Buchberger, James Davenport, Fritz Schwarz

Foreword

Computer algebra has been established as a new �eld on the borderline between mathematics
and computer science for about 20 years now. It has been the goal of this seminar to get
together researchers from various sub�elds in a well balanced mixture. There have been two
talks on polynomial factorization (Kaltofen, von zur Gathen), two on number theory (Pethö,
Zimmer), �ve on Gröbner base theory and elimination (Lazard, Möller� Pedersen an.d Sturmfels,
Traverso, Weispfenning), three talks on differential equations (Bronstein, Singer, Schwarz),
a talk on Lie algebras (La�ner), on group theory (Michler), on arithmetic (Schonhage), on
asymptotic analysis (Gonnet), on algbraic geometry (Giusti and Heintz) and on polynomial
zeros (Krandick).

There will be hardly any other field where researchers with such a wide range of interests
and different backgrounds have joined to form a new community as it is true for computer
algebra. This becomes obvious just by looking at the contents of this brochure. In this situation
it is especially important to get together in an informal manner such that new relations between
researchers from these various sub�elds hopefully will be established. With this goal in mind,
Schloß Dagstuhl is the ideal place to go. Therefore it will be an important aim to repeat these
seminars on a two year schedule.

F. Schwarz
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Vorträge

VI. Singer: Bounds and Necessary Conditions for Liouvillian Solutions of (third order) Linear
Differential Equations

This is a report on joint work with F. Ulmer. We show how group theoretic techniques
yield the best possible bound for the degree of the minimal polynomial of an algebraic
solution of the Riccati equation associated to a linear differential equation L(y) = O.
For an irreducible third order equation, this degree belongs to {3, 6, 9, 21, 36}. We also
derive a set of necessary conditions on the coefficients of L(y) = 0 for L(y) = O to
have a Liouvillian solution (a solution expressible in terms of integrals, exponentials and
algebraic functions). These improve the necessary conditions of the Kovacic algorithms
and extend them to third order equations. We also show that if the differential Galois
group of L(y) = O is primitive and unimodular, then there is an algebraic solution such
that the number of non�zero coefficients of the minimal polynomial of 2 does not exceed
the smallest degree of an algebraic solution of the Riccati equation. Finally, we derive
a bound for the degree of the minimal polynomial of z and show that for third order
equations, contrary to the second order case, this degree is always less than the order of
the differential Galois group ofL(y) = 0.

VI. Bronstein: Algorithms for linear ordinary differential equations

Let K be a field of characteristic 0 with algebraic closure Ii�, a: be an inderminate over
K and L = 23a,-8; E Ii"[a:][8x] be an n"�-order linear ordinary differentialoperator with
polynomial coefficients. Algorithms that either factor L over K or compute the Liou-
villian (i. e. closed form) solutions of Ly = 0 both reduce to the following question: given
an mt�-order I: E K[;r][3_.,,] (with m 2 n), does Äy = O have a solution it such that
du/da: E [Um]. This question must be answered for several operators of ever-increasing
order. While a decision procedure for this subproblem was known in the 19th century, it
requires factoring polynomials over Ii� and has not been implemented in full generality.
We present an efficient algorithm for this question which has been implemented in the
AXIOM computer algebra system for operators of arbitrary order over arbitrary �elds
of characteristic O. The algorithm is �rational� in the sense that algebraic numbers are
introduced only if they appear in potential solutions, and not in the singularities of the
equation as was previously done. Implementation of the complete Singer algorithm for
n = 2, 3 based on this building block is in progress.

Vortrage 
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E. Kaltofen: Factoring Polynomials over Algebraically Closed Fields

A polynomial is absolutely irreducible if the polynomial cannot be factored in any ex-
tension, algebraic or otherwise, of the coef�cient �eld. When decomposing a multivariate
polynomial into its absolutely irreducible factors several questions arise: How are the co-
ef�cients of the factors represented? Can the complexity of the algorithm be estimated
without regard to the representation of elements in the coef�cient-�eld? How is the pro-
blem related to factoring over the coefficient �eld?
A theorem by Emmy Noether shows that testing for absolute irreducibility can be de-
cided purely by arithmetic in the coefficient �eld. We show that for coef�cients in the
usual domains, say the rationals, and with a suitable representation, factorizations over
the algebraic closure can be performed within the complexity class N C. More import-
antly we give new effective versions of certain irreducibility theorems, such as Noether�s
or Hilbert�s. The proofs of these theorems also answer the question on the bit complexity
of our algorithm viewed for abstract coef�cient �elds.

A. Schönhage: Real and Complex High Precision Squareroot Computations
Reports on a fast routine SQRT for given (l? > 0,5 = A&#39;5(A = 232) to �nd a such that
Ia: � 112| < 5. Typical cases (llogxl small) require computation of m words in u, where
m ~ s.

For moderate in (m < 676) a wordwise method W ROOT analogous to the school method
is used, with im� inner loops (one *� one +) plus a linear overhead. For large values of N
bits precision the FF T-based integer multiplication yields running times for �SROOT� of
about 7.5 - N - lgN - lglgN time units (1 unit &#39;32� 0.2asec on a SUN 3/80), like 41 sec for
N = 320000. &#39;

Similar methods are possible for \/a + ib, with 4- imz loops wordwise, 15- N - lgN- lglgN
units asymptotically.

C. Traverso: Grobner bases and integer programming

The linear programming problem is: given A = (a,-,,-) E Z""", cJ- E R", �nd f,- E Z",.§,- _>_ 0,
such that Ea,-J-{j = 0 and Zc,-{j minimal.
We give two algorithms for the solution, using Gröbner bases.
NotationslfnEZletn+=nor0,n" =0or17if17Z0orn<0.

First algorithm Consider indeterminates K, X j, T and

fj =HYa$ -Xil-I}/ai-fa fo=HK -1
Consider a term ordering such that)�;-, T > X)�, and H X?� > HXE� implies Z Cjaj >
Z cj�j; (theorem: it exists iff no descending chains of solutions of AX = 0 exist). Consider
a Gröbner basis G of  Let b0 :: m.in b,-, and let g = Tb; H l/I-b�T+b&#39;. Let the normal form
of g be T4� I-1)�;-7], H �X15; then a solution exists iff d), 17,- :-. 0, and the minimal solution is �	C�
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Second. algorithm Let {S1}, S1 = (SH) be a basis of the lattice of integer solution of AX
== 0, and 02 a solution in Z of AX = B. Assume that the S; are positive in term-ordering.
Let

+
f, = x5" � I-12:2�-",fo = THXj � 1

1 Consider a Gröbner basis of (f1) (same term-ordering. as above). Let Eo = minf,-, g =
T5� H Xf�ä"; let T� n Xf� be the normal form of g. Then a solution exists iff {o = 0,
and the minimal solution is `���

Buchberger algorithm can be modi�ed with some special features that take care of the
special form of the ideal basis (difference of monic monomials, all monomials are inverti-
ble): common factors can be divided, multiple reductions can be performed easily, special
data structures can be used. A dedicated implementation is planned. This is a joint work
with P. Conti.

References: P. Conti, C. Traverso, Buchberger Algorithm and Integer Programming, Proc.
AAECC9, 1991, LNCS, Springer Verlag

F. Ollivier, Canonical Bases: Relations with Standard Bases, F initeness Conditions and
Application to Tame Automorphisms in: Mega-90, proceedings, Birkhauser, Progress in
Mathematics, 379-400, 1991

L. Pottier, Minimal solutions of linear diophantine systems: bounds and algorithms, in:
Proceedings RTA �91� Como� LNCS 488, Springer Verlag

Pethö: Computation of all inequivalent, cubic polynomials up to discriminant 50.000

My talk is based on a joint work with N. Schulte. The polynomials P, Q E Z are called
equivalent if there exist 6,77 ¬{- 1,1}, h E Z with Â =6 R(17a: + h). Let h(n, D) denote
the number of classes of polynomials ofdegree n and discriminant D.

Delone (1928) proved that h(3, D) is finite for any D E Z In the talk we have given an
algorithm for computing representatives of equivalence classes for cubic polynomials with
given discriminant. Our method is based on the resolution of cubic index form equations.
We applied the method for all D S 50.000.

Based on the result of the computation we conjecture that

_ 1
zzmßm; Z h(3, D)

0<DSx

exists.
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� Lazard: About Stewart Platforms

A Stewart platform is a robot with 6 legs, the position of which is commanded by acting
on the length of the legs. Computing the position of the platform from the lengths of
the legs is a difficult task which appears to be a good test for Gröbner base algorithms.
By using various softwares related to Grobner bases and geometric considerations, it is
proved that the number of positions of a planar Stewart platform, if �nite, is at most 40.
Three open problems are left.

1. Extend the result to non-planar platforms.

2. Explain why in each speci�c case the number of complex positions is 8, 16, 24 32 or
40.

3. Determine the maximal number of real positions which is between 16 and 40 and
guessed to be 16.

. Möller: Gröbner Bases Computation using Syzygies

Together with C. Traverso (Pisa) and T. Mora (Geneva), I developed an algorithm, which
based on Buchberger�s algorithm computes a Gröbner basis (G. B.) for an ideal and
simultaneously a G. B. for its module of syzygies. This simultaneous computation has
advantages since it allows to detect many more super�uous S-polynomial reductions than
the existing variants of Buchberger�s algorithm. Simpli�ed versions of this new algorithm
do not compute the syzygies completely - and hence compute only the G. B. for the
ideal - but produce still some additional criteria for avoiding super�uous S-polynomial
reductions. These simpli�ed versions are also useful for controlling the output of the
algorithm when instead of exact arithmetic �oating point arithmetic is employed.

. Giusti and J. Heintz: The determination of isolated points and dimension of an alge-
braic variety can be computed in polynomial time

We show that the dimension of an algebraic (affine or projective) variety can be computed
by a well parallelizable arithmetical network in non-uniform polynomial sequential time
in the size of the input. This input is given by a system of polynomial equations written
in dense representation. The coordinates of the ambient space can be put in Noether
position w. r. t. the variety within the same time bounds.

By the way, we consider as an intermediate problem the determination of the isolated
points of the given variety, which is of obvious practical interest. We suppose that the
base domain, from where the coeflicients of the input polynomials are taken, is in�nite
and, in the case of an affine variety, that its �eld of fractions is perfect. If this domain
consists of the integers, our algorithms can be realized by boolean networks of the same
complexity type (however these networks are not uniform W. r. t. the number of variables
occuring in the input polynomial). Our results imply an effective version of the affine
Nullstellensatz in terms of degrees and straight line programs.
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G. Michler: Fast Fourier Transforms on Symmetric Groups

This lecture is a report on a joint paper with S. Linton (University of Cambridge) and J.
B. Olsson (University of Copenha.gen). According to Diaconis and Rockmore (J. Amer.
Math. Soc. 3 (1990)) new efficient algorithms are mandatory for applications in statistics.
In particular, they are needed for statistical ranking problems. In my joint article with
Linton and Olsson new and practical algorithms are introduced for the computation of
the Fourier transforms

f: Z f(s)p(s) e Gum. F)
363,,

of a function f : 5,, -�+ F from the symmetric group 3,, into a �eld F at all the irreduci-
ble representations p of 5,, are introduced. These algorithms use the model of monomial
representations for the irreducible representations p of 5,, described recently by Inglis,
Richardson a.nd Saxl. They are also practical tools for computing inverse Fourier trans-
forms. These algorithms have been implemented and tested for the symmetric groups 5,.
with 6 S n S 10. The CPU times of the computations on an IBM RISC 6000-540 are
given in the talk. Our algorithm is easy to implement and requires only small storage
place and low start up costs.

. z. Gathen: Factoring polynomials over �nite �elds

A new probabilistic algorithm for factoring univariate polynomials over �nite �elds is
presented. To factor a polynomial of degree n over Fq, the number of arithmetic operations
in Fq - ignoring factors of logn - is 0(n2 + nlog q). The main technical innovation is a
new way to compute Frobenius and trace maps in the ring of polynomials modulo the
polynomial to be factored.

V. Weispfenning: Parametric Grobner bases - Theory and practice

Gröbner bases for polynomials with parametric coefficients are well-known to be unsta-
ble under specialization of the parameters. We present the construction of comprehen-
sive Gröbner bases that overcome this problem and hence can be used for fast elimina-
tion theory. The construction has been implemented in ALDES/SAC-2 and AXIOM by
E. Schönfeld and W. Faas at the University of Passau. Let K be an integral domain,
R = [U1....,U,,,], S = [X1,...X,,]. We regard the U.- as parameters and the X,- as the
main variables. A specialization is a� homomorphism a �> K � [X 1, . . . , X,,], where K� is an
arbitrary �eld; a extends canonically to s : S� -> K&#39;[X1,...,X,,].

Theorem. Let < be a term order on the set of terms in X1,...,X,,. There exists an
algorithm that from a given �nite F Q S computes a �nite G Q S with the following
property: For every specialization 0,: R -+ K� , a(G) is a Gröbner basis of Id(o&#39;(F G� is
called a comprehensive Gröbner basis of Id(F

For moderate size examples n 5 4, m S 4, degree _<_ 3) the implementation produces a
moderate size comprehensive Gröbner basis in running times from a second to about 3
minutes.
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In particular, they are needed for statistical ranking problems. In my joint article with 
Linton and Olsson new and practical algorithms are introduced for the computation of 
the Fourier tran~forms 

J = L J(s)p(s) E GL(m, F ) 
~esn 

of a function f : Sn - F from the symmetric group Sn into a field F at all the irreduci­
ble representations p of Sn are introduced. These algorithms use the model of monomial 
representations for the irreducible representations p of Sn described recently by Inglis, 
Richardson and Saxl. They are also practical tools for computing inverse Fourier trans­
forms. These algorithms have been implemented and tested for the symmetric groups S,1 

with 6 :5 n :5 10. The CPU times of the computations on an IBM RISC 6000-540 are 
given in the talk. Our algorithm is easy to implement and requires only small storage 
place and low start up costs. 

J. v . z. Gathen: Factoring polynomials over finite fields 

A new probabilistic algorithm for factoring univariate polynomials over finite fields is 
presented. To factor a polynomial of degree n over Fq , the number of arithmetic operations 
in Fq - ignoring factors of logn - is O(n2 + nlogq). The main technical innovation is a 
new way to compute Frobenius and trace maps in the ring of polynomials modulo the 
polynomial to be factored. 

V. Weispfenning: Parametric Grobner bases - Theory and practice 

Grabner bases for polynomials with parametric coefficients are well-known to be unsta­
ble under special ization of the parameters. We present the construction of comprehen­
sive Grebner bases that overcome this problem and hence can be used for fast elimina­
tion theory. T he construction has been implemented in ALDES/SAC-2 and AXIOM by 
E. Schonfeld and W. Faas at the University of Passau. Let 1( be an integral domain, 
R = [U1, ... , Um], S = [Xi, ... Xn] - We regard the Vi as parameters and the X; as the 
main variables. A specialization is a homomorphism a - K'[X1 , •.• , Xn], where K ' is an 
arbitrary field; a extends canonically to s : S - K'[X1 , ... , Xn]-

Theo1·em. Let < be a term order on the set of terms in X 1 , ... , Xn. There exists an 
algorithm that from a given finite F ~ S computes a finite G ~ S with the following 
property: For every specialization a: R -+ K', a(G) is a Grobner basis of /d(a(F)). G is 
ea.lied a comp·rehe12.si11e Grobner basis of Id(F). 

For moderate size examples n :5 4, m :5 4, degree :5 3) the implementation produces a 
moderate size comprehensive Grabner basis in running times from a second to about 3 
minutes. 
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B. Sturmfels: Sparse Elimination Theory

The A-resultant �R,,4(c.-J-) is the unique irreducible polynomial in the generic coef�cients
of a polynomial system

Cain� +0525?� + ...+C,�,,.�Ea" = Ü 0°� = l,...,1\�+ 1,./l = {a1,...a,,} _C_  54

which vanishes whenever this systemhas a zero in (C*)K. In this talk we discuss the A-
resulta.nt for the case where A = d1 A1, x . . . X d,.A;, is the vertex set of a product of scaled
standard simplices. The corresponding polynomial system consists of Z1 +. . .+ l, +1 equa-
tions which are multihomogeneous of degree (d1, . . .d,) in variables 12,- = (cc,-1, zr,-2, . . . , arm),
i = 1, 2, . . . r.

We present a joint result with Andrei Zelevinsky, stating that RA has at least r! distinct
formulas of Sylvester type if (I.- = 1 or d.- = 1) for i = 1, 2,. . �r. Special cases of particular
interest are the hyperdeterminant (all d, = 1) and the Dixon resultant (all I,- = 1).

P. Pedersen joint with B. Sturmfels: Sparse Resultants

It is possible to generalize the familiar formula Res( f, g) = a3� Hf(a):0 g(oz) to the case of
n + 1 mixed, generic Laurent polynomials f,- = Egg� cqrrq, i = 0,. . . ,n, where A; Q Z",

9.. 91 <1a: �:r1 ...a:,,&#39;�.

Following Bernstein (Fun. Anal.& its applications 9 (1975)) we de�ne:

S.- = conv(A.-),

S.-,, = minimal supporttree in the direction 1/ E 5"",

< u >�L= lattice perpendicular to u,

Ly = factor lattice Z"/ < 1/ >1�,

/2, = height of So, from an arbitrary origin 0 with respect to L�.

Then there exists an a�ine resultant R(fo, f1,. . . f,,) such that

30: E (C*)" fo(oz) = f1(a) = �7 � = f,,(a) = O <=> R(fo,f1,...f,,) = 0

M R(fo,f1.-.-.fn)= II fo(a)-( H R(f1.�...�f��)"")�
)0161/(fl.---ofn

(1) All but �nitely many factors in the product HV+S,._., are equal to 1.

(2) R(fo,f1, . . . f,,) is irreducible.

(3) degf..(fo,f1, . ..,f,,) = V(fo,f1, . . . �f2, . . . ,f�) = Minkowski mixed volume.
(4) R(fo�f1�---.fe. .~&#39;,---sf») = R(foaf1.---fa�,---, n.)R(fo,f1,---ff»---afnl
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G. Gonnet: New algorithms for asymptotic and series computations

Computing asymptotic series is an important area in computer algebra systems. Whether
these are used directly or whether they are used to determine limits, they are needed by
various other functions (e.g. de�nite integration, summation, differential equations).

Most (all?) available computer algebra systems will fail to compute asymptotic expansions
for expressions as simple as

e" (sin(-1- + 6"") .. sin(-1-))T1. T2

when n -�> oo, or
_2 2e n (ean__ebn+en)

In this talk we will review some previous algorithms and propose new ones, which by
classifying functions in a hierarchy reminiscent of the Risch algorithm, can compute a
much wider class of expansions. This new algorithm includes each subexpression in a
class. Expressions in a class can be bounded polynomially by any other expression in the
same class. Computation of series proceeds by computing a series with respect to the
most rapidly varying class �rst, leaving the others as constants, and recursively so on the
leading term. Examples of this algorithm implemented in Maple will be shown.

W. Laßner: Computer-algebra and Lie-algebras: classi�cation and identi�cation of Lie�algebras

Symmetry analysis of differential equations by Computer algebra systems produces auto-
matically the generators of the symmetry algebra, i. e. their structure constants. If the
symmetry is determined as a �nite dimensional Lie algebra it remains the identi�cation
among Lie algebras from known classi�cation tables. The problem whether two Lie alge-
bras are isomorphic can be decided by the existence of solutions of a system of quadratic
equations. The Gröbner bases methods is recommended for an algorithmic treatment. If
a complete table of all Lie algebras up to a certain dimension is known then the Gröbner
bases method allows in principle an identi�cation for complex Lie algebras. Special techni-
ques are necessary to decide the existence of real solutions in the case of real Lie algebras.
Interesting relations exist between the formulation of facts and algorithms in the three
theories under consideration, i. e. the symmetry analysis of differential equations, the Lie
algebra classi�cation, and the Gröbner bases method. If two Lie algebras are isomorphic
and therefore solutions of the quadratic equations exist then there exist always in�nitely
many solutions due to automorphisms of the Lie algebra. Special algorithms determine
independent sets of parameters and the Gröbner bases problem can be reduced. Homo-
geneity properties of the system under consideration allow an essential speed up of the
calculations. Unfortunately, the number of variables depends quadratically on the Lie al-
gebra dimension. The number of equations increases with the third order. At present the
method was applied up to seven dimensional Lie algebras. Complete tables of Lie algebras
are known up to dimension �ve. Ef�cient algorithms and computer aided methods for the
representation of mathematical knowledge in the �eld of Lie algebras classi�cation help
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method was applied up to seven dimensional Lie algebras. Complete tables of Lie algebras 
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to solve the identi�cation problem for higher dimensional Lie algebras. In addition to the
identi�cation problem there was reported an application of the Gröbner bases method to
quantum groups.

F. Schwarz: Reduction and Completion Algorithms for Partial Di�erential Equations

Originating from the theory of Riquier and Janet of pde�s, an algorithm is described,
that takes as input a system of algebraic pde�s and returns the corresponding completely
involutive, systems, i.e. a universal differential Gröbner base. This algorithm is applied
to several problems, e. g. determining the size of symmetry groups and �nding certain
Bäcklund transformations.

H. G. Zimmer: Algorithms for Elliptic Curves

By the Mordell-Weil theorem, the group E(K) of rational points of an elliptic curve E
over an algebraic number �eld K is �nitely generated, and hence

E(K) = E,,,,,(Ix�)E,,(Ix�)

is the direct sum of the group of all rational points of finite order, the �nite torsion group
Eto,.,(K), and a free group Ef,.(K) of �nite rank r, so that Ef,.(K) E� Z� (r 2 O). The
algorithms to be discussed concern:

1. The determination of elliptic curves E over number �elds K of small degree having
largetorsion groups Etm(K).

2. The determination of all possible torsion groups Et0,.,(K) of elliptic curves E with
integral j-invariants over number �elds K of small degree.

3. The construction of elliptic curves E over K = Q with large rank r.

4. The determination of the rank r and the computation of a basis of the free group
E �(K ) for certain classes of elliptic curves E over K = Q (�Manin�Algorithm�).

The algorithms concerning 1), 2) are of interest, e. g., with respect to the boundedness
conjecture for the order of the torsion group Eto,.,(K); the algorithms concerning 3), 4) are
relevant, e. g., in View of the conjecture that the rank r of E over K (= Q) is unbounded
and in View of the famous conjectures of Birch and Swinnerton-Dyer.

W. Krandick: Isolation of polynomial complex roots

Applying the �principle of the argument� from complex analysis to rectangles provides
an efficient algorithm for polynomial complex root isolation. The algorithm reduces com-
plex root isolation to real root isolation, and uses the coefficient-sign variation method to
accomplish the latter. Computing time experiments suggest that the presented algorithm
can be recommended as an ef�cient �rst step in a complex root calculation scheme, na-
mely to provide starting points for a rapidly converging root approximation method. The
average computing time of the algorithm seems to be approximately cubic in the clegree
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of A and linear in the length of its coeflicients. The algorithm uses the method described
in G. E. Collins, �Infallible calculation of polynomial zeros to speci�ed precision�, Ma-
thematical Software, Academic Press, New York, pages 35-68, 1977. However� some �aws
are corrected and various non-trivial improvements are made. The corrected algorithm
accounts for the possibility that certain polynomials which arise in the computation eit-
her have multiple roots or vanish identically. A bisection strategy can be chosen so as
to minimize the memory requirements of the algorithm. One of the basic computational
.steps can be avoided for almost all input polynomials without compromising infallibility.
In case the input polynomial is real, degrees of certain polynomials which arise in the
computation can be reduced to obtain a speed-up. The computing time might be further
reduced by using interval arithmetic.
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