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A Uniform Circuit Lower Bound
for the Permanent

Eric Allender

Rutgers University
(Joint work with V. Gore, Rutgers University)

We show that there are sets in PP that are not accepted by uniform AC� C circuits of subex-
ponential size, and that there are no subexponential-size uniform ACC circuits computing
the permanent.
This is in contrast to the fact that it remains an open question if Dtime(2"°" ) is contained
in non-uniform ACC. This seems to be the first proof of a lower bound in circuit comple-
xity where uniformity plays an essential role.

On the Theory of the Polynomial
Degrees of Exponential Time Sets

Klaus Ambos-Spies
University of Heidelberg

We show that the theory of the polynomial Turing degrees of the Exponential Time sets
has in�nitely many 1�types. As a consequence this theory - and, relative to some oracle,
the theory of the p-T-degrees of the N P-sets - have a nonstandard model.
We obtain the types by considering a hierarchy of bounded distributivity notions. To rea-
lize these types we consider a hierarchy of very sparse sets - called Ic-supersparse (k 2 1)
- which automatically induce some distributivity but leave enough room for enforcing cer-
tain nondistributive con�gurations by diagonalization.

Conjunctive (and other) Reductions to Sparse Sets

Vikraman Arvind

Indian Institute of Technology, Delhi
(Joint work with J. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk,

M. Ogiwara, U. Schöning, T. Thierauf)

We study the consequence of complete sets for various complexity classes reducing conjunc-
tively in polynomial time to a sparse set. One such central result is that if an N P-complete
set conjunctively reduces in polynomial time to a sparse set then P =-- N P. Indeed, we
establish similar consequences with far more �exible, polynomial time reductions. Another
problem we study is: if a set A is reducible to a sparse set then how hard need the sparse set
be relative to the set A? We partially answer this question by giving upper-bound results
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for various types of truth-table reductions. Turning to a different, but related, problem
we give a complete characterization of I C [log, poly] (languages of low instance comple-
xity) as the intersection of polynomial-time conjunctive and disjunctive closure of tally sets.

Characteriazations of Logarithmic
Advice Complexity Classes

J osé L. Balcazar

U. Politecnica de Catalunia, Barcelona
(Joint work with Montserrat Hermo and Elvira Mayordomo)

The complexity classes P / log and Full-P / log, corresponding to the two standard forms of
logarithmic advice for polynomial time, are studied. The novel proof technique of �doubly
exponential skip� is introduced, and characterizations for these classes are found in terms
of several other concepts, among them easy-to-describe boolean circuits and reduction clas-
ses of tally sets with high regularity. Similar results hold for many other complexity classes.

On Languages with High Information Content

Ronald V. Book

University of Santa Barbara
(Joint work with Jack Lutz)

Language B is in HIGH if for every polynomial q, K S"�(B5,.) > 2"� � 2n a.e.
Languages in HIGH have essentially maximal information content. Almost every language
is in HIGH, that is, PROBA[A 6 HIGH] = 1.

Mam  Let A E DSPACE(2"") and let Ic > 0 be an integer. If there exists
B 6 HIGH such that A S&#39;,&#39;;_,, B, then there exists a sparse set S� such that A §&#39;,&#39;;_,, S .

Corollary Let K 6 {NP,PP, MOD,,P(q 2 1), PSPACE). If there exists B 6 HIGH such
that B is _<_f,��-hard for K, then K = P.

Corollary No set in HIGH is sf�-hard for Dtime (2"").
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Structure of Complete Sets for Exponential Time

Harry Buhrman
University of Amsterdam / ILLC

We investigated the structure of exponential time complete sets. We considered the ro-
bustness of the completeness notion, with respect to substraction of �sparse� easy to
compute sets. We proved that for S2� - complete sets� this does 115g destroy the comple-
teness. Furthermore we look at the mitoticity of exponential time complete sets; can we
split a complete set A into A0 and A1, A1 0 A0 = 0, A; U A0 = A and A0 and A1 are both
complete again.
We prove that this is indeed the case for 3?" - complete sets. Furthermore we showed the
existence of a $3,, - complete set that is not m-mitotic.
These results can be found in the paper: �ROBUSTNESS AND SPLITTINGS OF EX-
PONENTIAL TIME COMPLETE SETS�

Buhrman, H.; Hoene, A.; Torenvliet, L. (Manuscript, avialable via email from: buhr-
man@fwi.uvd.nl).

A Completeness Theory for Parameterised Intractability

Rod Downey
Victoria University of Wellington, New Zealand

This work, jointly with Mike Fellows of the University of Victoria, British Columbia,
concerns the structure of P-time. Some of the work is also with Karl Abrahamson of Was-

hington state. It is meant to capture the fact that many classically intractable problems
such as graph genus have tractable parameterised versions (fix k ; does g have genus k, is
O(|g|3) by the Robertson-Seymour theorem), and there are other problems such as 2CNF-
SAT having intractable parameterised versions (�x k; does X have a satisfying asignment
with exaclty k literals true?).
Furthermore virtually all classical NP reductions do not carry the structure of the pro-
blems, that is they show that problems one has a solution if problem two does, but say
nothing about the spectrum of solutions.
We have a completeness theory to explain the above phenomena. It seems to be very rich
and widely applicable. It is still full of open questions.
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Gap-De�nable Counting Classes

Lance Fortnow

University of Chicago
(Joint with Steve Fenner, Stuart Kurtz)

The function class #P lacks an important closure property; it is not closed under sub-
traction. To remedy this problem, we introduce the function class Gap-P as a natural
alternative to #P. Gap-P is the closure of #P under subtraction, and has all the other
useful closure properties of #P as well. We show that most previosly studied counting
classes, including PP, C=P, and M od�P are �gap-de�nable�, i. e. de�nable using the va-
lues of Gap-P functions alone. We show that there is a smallest gap-de�nable class, 5 PP,
which is still large enough to contain Few. We also show that S PP consists of exactly
those languages low for Gap-P and thus 5 PP languages are low for any gap-de�nable
class. These results unify and improve earlier desparate results of Cai & Hemachandra
and Köbler, Schöning, Toda & Toran. We show further that any countable collection of
languages is contained in a unique minimum gap-de�nable class, which implies that the
gap-de�nable classes form a lattice under inclusion. Subtraction seems necessary for this
result, since nothing similar is known for the #P-definable classes.

Some Open Problems in Concrete Complexity

Willian I. Gasarch

University of Maryland, U.S.A.

Let F (2.-, . . . ,:z,,,) be a boolean formula. Normally it takes m probes to evaluate. Are
there natural example that can be evaluated in less than m probes? Yes! (That wasn�t
the open problem.) The thing to look at is the group of permutations that preserve the
function. Let Pp = {O E Sm : F(:z1,... �x��) = F(a:o(1),. . . ,:1:o(,,,))} We can study what
happens, if Pp has certain properties. If Pp is transitive then the following is known

1. 3 F(:c1, . . . , mm) can be evaluated in�/17: probes.

2. If F(0) 96 F(1), m is prime power, requires m probes.

3. Monotone graph properties require �(n�)(n = # of vertices). We have looked at
Pp = Z,,.. We have

1. 3 F(z1� . . . �z,�) can do &#39;-;�- + 0(\/77) probes.
2. if n = pq, p << q, F(O) # F(1), require n probes.
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Majority Gates vs. General Weighted Threshold Gates

Johan Hastad

(Joint work with Mikael Goldmann and Alexander Razborow)

We study small-depth polynomial size circuits that contain threshold gates (with or without
weights) and parity gates. We prove

1. A single threshold gate with weights cannot in general be replaced by a polynomial
fan-in unweighted threshold gate of parities.

2. On the other hand it can be replaced by a depth 2 unweighted threshold circuit at
polynomial size. In general can depth d weighted threshold circuit be computed by
depth d + 1 unweighted threshold circuits (constant d).

3. A polynomial fan-in threshold gate (with weights) at parity gates cannot in general
be replaced by a depth 2 unweighted threshold circuit of polynomial size.

Access to Unambiguous Computation

Lane A. Hemachandra

University of Rochester
(Joint work with J. Cai and J. Vyskoé )

We study the power of three types of access to unambiguous computation: nonadaptive
access, fault-tolerant access, and guarded access. Though for NP it is known that no-
nadaptive access has exponentially succinct adaptive simulations, we show that UP does
not robustly admit a_n_y non-trivial simulations. Though fault-tolerant access to NP is
known to be no more powerful than NP itself, we give structural and relativized evidence
that fault-tolerant access to UP suffices to recognize even sets beyond UP. Finally, we
show that promise probabilistic classes, under fault-tolerant access, are characterized as
standard probabilistic classes, and we show that �guarded� access to unambiguous com-
putation seems to bestow great power upon adaptive reductions.

Locally De�nable Acceptance Types

Ulrich Hertrampf
University of Würzburg

We introduce k-valued locally definable acceptance types, a new model generalizing the
idea of alternating machines and their acceptance behaviour. The model can be described
as follows:
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Let F be a set of functions from Ic-valued logic. Let M be an F -machine, i.e. a machine
where the computation tree on a given input a: associates with each node a function from
F U {id}U constant functions, such that the arity coincides with the number of successors.
Evaluate the tree from the leaves to the root. Let L(M) := {z : the root evaluates to 1}.
De�ne F(P) :=  : M is an F-machine p

€
We prove a normal form theorem for �nite sets F:
V F 3 g : g is a binary function and (F)P = �€

If F is a set of boolean functions, i. e. k = 2, then (F)P is one of P, NP, coN P, EBP, PS PACE .
(Post 1921, Goldschlager, Parberry 1986.)

We show for g : {0, 1, 2}� -> {0, 1, 2} that ({g})P is one of 20 classes including E2, H2, A3, 3,
as well as PNP[1] or MOD3P.
We give several closure properties of the system of classes de�nable as (F )P for some set F,
including closure under the operations co�, 3,V, but also restricted types of §�_,,-closure
and several types of Turing-closure.

Reductions to Sparse and Almost-Sparse Sets

Steven Homer

University of Boston
Joint work with Luc Longpré and Harry Buhrman

The consequences of polynomial-time reductions from N P-complete sets to sets of poly-
nomial and other subexponential densities are considered. For 51;, and Sf� reductions the
methods of Ogiwara and Watanabe and of Homer and Longpré are used to show that if
SAT 33,, S and S has subexponential density then NP is contained in subexponential
time. Next the results of Karp and Lipton concerning $3»-reductions to sparse sets are
extended. In particular, if SAT S3- S and HS S 2&#39;°����°° then the exponential-time hier-
archy collapses to the second level. Finally, it is suggested that a single approach might be
found which yields both the theorem of Ogiwara and Watanabe and the results of Karp
and Lipton.

Tradeoffs in Descriptive Complexity

Neil Immerman

University of Massachusetts, Amherst

In descriptive complexity one analyzes the computational complexity of a property in
terms of the complexity of describing the property in �rst-order logic. A property is a
set of �nite, ordered structures of some vocabulary. The quanti�er-depth and number of
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variables needed to express the property is closely related to the parallel time and amount
of hardware needed to check whether an input has the property. For a long time, the basic
question of complexity � namely what are the trade-offs between time and hardware � has
remained quite open. We have been attempting to understand this question in terms of the
trade�off between number of variables and quanti�er-depth. In this talk we demonstrate a
tight relationship between number of variables and deterministic space. We show that the
set of properties checkable by a Turing machine in DSPACE[n"] is exactly equal to the set
of properties describable by a uniform sequence of first-order sentences using at most k + 1
distinct variables. We suggest some directions for exploiting this result to derive trade-offs
between the number of variables and the quanti�er-depth in descriptive complexity.

A Note on LOGSPACE OPTIMIZATION

Birgit Jenner
Technische Universität München

Logspace optimization functions compute the maximum of all output values of an NL-
transducer. The corresponding class optL was shown to lie between N L�, the class of NL-
functions, and AC�. Some characterizations of N L� in terms of restricted optL-functions
were discussed and it was claimed that optL could be a candidate of a fairly natural fun-
ction class in AC1 that might not be contained in LOGCFL". It was shown that the
problem of computing the (MAX, o) iterated matrix product of wordmatrices with entries
from {O, 1}"&#39;U .L (where .L is an additional absorbing element for o) is complete for optL.
This nicely contrasts optL with the logspace country class # L for which computing the
iterated matrix product of positive integer matrices is complete.

The Power of the Middle Bit

J oharmes Köbler

Universität Ulm

(Joint work with Frederic Green a. Jacobo Torén)

We study the class of languages that can be recognized in polynomial time with the ad-
ditional information of one bit from a # P function. In particular we show that every
M OD; class and every class contained in PH are low for this class.
We translate these results to the area of circuit complexity using MidBit (middle bit)
gates. A MidBit gate over m inputs $1, . . . �mm is a gate which outputs the value of the
|_log(m)/2] the bit in the binary representation of the number 22:,-. We show that every
language in ACC can be computed by a family of depth-2 deterministic circuits of size
2"°����°° with a MidBit gate at the root and AN D-gates of famin POLYLOG at the leaves.
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I�equency Computation and Bounded Queries

Martin Kummer

Universität Karlsruhe

We presented an overview of some recent results from [1], [2], concentrating on the in-
clusion structure of the classes of (m, n)-recursive and (m, n)-verbose sets. Also their
polynomial-time analogs were treated. For the verbose-classes, a complete description of
the inclusion relation and an explicit description of the quality relation is obtained. For
frequency-classes, we have an explicit solution of the equality in the general recursive case,
and a decision procedure for the inclusion problem in the polynomial-time case. The
complementary question are still open.

[1] Kummer, M., Stephan, F.
Some aspects of frequency computation
Interner Bericht Nr. 21/91, Fak. für Informatik, Univ. Karlsruhe (1991)

[2] Beigel, R., Kummer, M., Stephan, F.
Quantifying the amount of verboseness
Manuscript (�LaTeX version available via email from: kummer@ira.uka.de) (1992)

Oblivious PRAMs Characterize P, N C�, and DSPACE(log n)

Klaus-Jörn Lange
Technische Universität München

Usually, PRAMs are classi�ed according to their ability to access the global memory si-
multaneously. A new classi�cation concerning the communication structure and its depen-
dence of the input is introduced. By requiring oblibious CRCW-PRAMS to use indirect
addressing in read and/or write statements independently of the actual input, we get new
characterizations of classes like P, N C " , and DSPACE(log n). These investigations were
motivated by some attempts to classify those PRAM algorithms which are efficiently im-
plementable on existing parallel machines.

The Structure of the Extended Low Hierarchy

Timothy J. Long
Ohio State University

Balcaizar, Book, and Schöning introduced the extended low hierarchy based on the 2-
levels of the polynomial-time hierarchy as follows: for k Z 1, level k of the extended
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low hierarchy is the set ELSE = {A|Ef (A) Q Z3f_1(A 69 SAT)}. Allender and Hemach-
andra and Long and Sheu introduced re�nements of the extended low hierarchy based on
the A and 9-levels, respectively, of the polynomial-time hierarchy: for k 2 2, ELf�2 =
{A | Af(A) g Af_�(�4 a; SAT)} and ELf&#39;9 = {A | efu) g e,{�_�(A ea SAT)}. In this
paper we show that the extended low hierarchy is properly in�nite by showing, for k 2 2,
that ELf�2 C EL,f�+91 C ELf� C ELf�. Our proofs use in circuit lower bound techniques
of Hastad and Ko. As corollaries to our constructions, we obtain, for k 2 2, oracle sets

Bk(.iCI&#39;1;HaE11C;)Dk, :)11If(hDt};3;;§((B5))= Ef(Bk) 7� Af(Bk)aPH(Ck) = Af(Ck) ?é 9f(Ck),
311 k = k I: 5-1 I: -

Separating Complexity Classes Related to Bounded Alternating
w-Branching Programs

Christoph Meinel
Universität Trier

(Joint work with Stephan Waack)

We develop a theory of communication within branching programs that provides exponen-
tial lower bounds on the size of branching programs that are bounded alternating. Our
theory is based on the algebraic concept of co-branching programs, w : W -» R serniring
homomorphism, that generalizes ordinary branching programs, SL-branching programs
and M OD,-branching programs.
Due to certain exponential lower and polynomial upper bounds on the size of bounded
alternating cu-branching programs we are able to separate the corresponding classical com-
plexity classes N 25a, co � N 25.� 6321m, M OD, - 25. (p prime) from each other and from that
classes corresponding to oblivious linear length-bounded branching programs investigated
in the past. i

The Theory of the Polynomial Many-one Degrees of Recursive
Sets is Undecidable

Andre Nies

Universität Heidelberg e
(Joint work with Klaus Ambos-Spies)

To obtain undecidability of the polynomial m-degrees of recursive sets, we show that the
lattice of E�; sets under inclusion is elementary de�nable with parameters. The model theo-
retic and algebraic tools are the same as in a previous paper (joint work with R. Shore)
where we show undecidablity of the recursively enumerable weak truth table degrees. To
get a uniformly recursive independent sequence which is definable, we apply results of
Ambos-Spies on polynomial m-degrees: an exact pair theorem as well as the fact that, for
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each a 5:6 0 there is a degree b such that a, b form a minimal pair and b is not the supremum
of a minimal pair.

Parsimonious and Truly Linear Time Computation

Kenneth Regan
SUNY Buffalo

The standard multitape Thring Machine model provides only a very restricted form of
access to data stored in its one-dimensional types. This becomes very noticeable when
one studies linear-time computation. Unit-cast RAM models remove this restriction, but
these assume that every individual memory register can be addressed in the same unit
time. B. Alpern, A. Aggarwal, A. Chandra, and M. Snir introduced a �more-realistic�
model based on the concept of a �hierarchical memory� , whereby some memory close
to the CPU is "fast� (such as in a processor cache), and other memory B more distant
and �slow� (such as on a disk drive). Generally, they considered an access time charge
function M on register number i, such as M = Iog(i) (S. Cook�s log-cost criterion),
&Á = W, = W, or @�� = i (similar to a TM tape).
A computation is parsimonious in the cost measure p (Alpern, Carter, Fery, FOCS 1990)
if its runtime under p(i) access charges is still within a constant factor of its runtime under
unit cost � intuitively, such a computation uses a processor cache efficiently. Aggarwal,
Chandra, and Snir [FOCS 1987] enhanced their model by allowing blocks of data to be
copied, with the p charge applied only for addressing the block and not for each data item
inside. All of their models are still based on RAMs with unlimited-size registers.
We introduce an analogue �BM� of the HMM�Block Transfer model for �xed-size registers,
where any �nite transduction (not just �copy�) can be applied to data in a block-move.
We show that several list-processing operations, among them ;_r_1ember, shuttle, ugshuttle,
maximum element, and normalize can be canied out in linear time on this model, even
under the strictest cost measure p(i) = 2&#39;. These operation are not linear time on the
HMM-BT model (no nontrivial operation is), and really use tricks on individual bits of
the data. For this reasons it is interesting to study to what extent other lower bounds on
the HMM-BT model carry over.

Graph Isomorphism is Low for PP

Uwe Schöning
Universität Ulm

(Joint work with Johannes Köbler und Jacobo Toran)

It is shown that the graph automorphism problem is located in the class 5 PP (introdu-
ced by Fenner�Fortnow-Kurtz) implying that this problem is low for $P, C=P, and PP.
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Similarly, but a little weaker, the graph isormorphism problem is located in LWPP, and
therefore low for C =P and PP. These results show an interesting difference between the

graph automorphism and isomorphism problems, and both problems are very unlikely to
be N P-complete.

On the Power of One Bit of a #P-Function

Thomas Schwentick

Universität Mainz

(Joint work with Ken Regan, SUNY/ Buffalo)

We introduce the class MP of languages L which can be solved in polynomial time with
an oracle for one selected bit of the value f(y) of a #P-function on a selected argument
y. This extends the much-studied language classes EDP and PP, which correspond to the
power of the least and most signi�cant bits, respectively. We show that MP is captured
by the power of the middle bit; namely a language L is in MP if for some #P-function f�
and all x, a: E L <=$ the middle bit of f�(:r) in binary notation is �1�. Also S. Toda�s proof
that PH Q P�, actually gives

PHQBPEBPQCEBPQMP

The class MP has complete problems, and is closed under complements and under polynomial-
time many-one reducibility.
We examine the subclass AmpM P of languages whose MP representations can be �am-
pli�ed�, showing that BP 6 P Q AmpM P, and that for any gm-closed subclass C of
AmpMP, MPG = MP. Hence BP $ P is low for MP, and if C&#39;=P Q AmpMP, then
PPP? = M P. Finally our work leads to a purely mathematical question about the size
of integer-valued polynomials p(a:, y) which satisfy certain congruence relations, one which
also matters to the theory of bounded-depth circuits.

A Taxonomy of Complexity Classes of Functions

Alan L. Selman

SUNY Buffalo

This paper comprises a systematic comparison of several complexity classes of functions
that are computed nondeterministically in polynomial time or with an oracle in N P. There
are three components to this work.

o A taxonomy is presented that demonstrates all known inclusion relations of these
classes. For (nearly) each inclusion that is not shown to hold, evidence is presented
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to indicate that the inclusion is false. As an example, consider FewPF, the class of
multivalued functions that are nondeterministically computable in polynomial time
such that for each 1:, there is a polynomial bound on the number of distinct output
values of f(a:). We show that FewPF _C_ PF�,�,"P. However, we show PF,�,��° <_I FewPF
if and only if NP = co � NP, and thus PPS�) Q FcwPF is likely to be false.

0 Whereas it is known that PNP(0(Iog n)) = P3�? Q PNP [Hem87, Wagb, BH88], we
show that PFNP(0(log n)) = P1512") implies P = FewP and R = NP. Also, we
show that PPS�, = PFNP if and only if P3�, = PNP.

o We show that if every nondeterministic polynomial-time multivalued function has
a single-valued nondeterministic re�nement (equivalently, if every honest function
that is computable in polynomial-time can be inverted by a single-valued nondeter-
rninistic function), then there exists a disjoint pair of N P-complete sets such that
every separator is N P-hard. The latter is a previously studied open problem that is
closely related to investigations on promise problems. This result motivates a study
of reductions between partial multivalued functions.

On The Complexity Types of Recursive Sets

Theodore A. Slaman

University of Chicago

For recursive sets A and B say that A 5,, B if for every time constructible f, A E
DTIMERAM(f) 4-» B E DTIME&#39;RAM(f). Say A 2� B if only the forward implication
holds. Let C be the induced ordering of EC-equivalence classes by �e.

Theorem (Groszek-Slaman). For every nonlinear A and every recursive function f, there
is an automorphism 1r of C sending the equivalence class of A to that of a set 1r A such
that 7r A g p�u�

Corollary PTI M E , EXP, . . . are not de�nable in C.

On the Non-uniform Complexity of the Graph Isomorphism
Problem

Jacobo Toran

U. Politecnica de Catalunia, Barcelona
(Joint work with Antoni Lozano)

We study the non-uniform complexity of the graph isomorphism (GI) and graph automor-
phism (GA) problems considering the implications of different types of polynomial time
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ministic function), then there exists a disjoint pair of NP-complete sets such that 
every separator is NP-hard. The latter is a previously studied open problem that is 
closely related to investigations on promise problems. This result motivates a study 
of reductions between partial multivalued functions. 

On The Complexity Types of Recursive Sets 

Theodore A. Slaman 
University of Chicago 

For recursive sets A and B say that A =c B if for every time constructible / , A E 
DTIMERAM(/) - B E DTIMERAM(f). Say A ~c B if only the forward implication 
holds. Let C be the induced ordering of =c-equivalence classes by ~c-

Theorem (Groszek-Slaman). For every nonlinear A and every recursive function f, there 
is an automorphism 1r of C sending the equivalence class of A to that of a set 1r A such 
that 1r A(! DTIMERAM(f). 

Corollary PT/ME, EXP, ... are not definable in C. 

On the Non-uniform Complexity of the Graph Isomorphism 
Problem 

Jacobo Toran 
U. Politecnica de Catalunia, Barcelona 

( Joint work with Antoni Lozano) 

We study the non-uniform complexity of the graph isomorphism (GI) and graph automor­
phism (GA) problems considering the implications of different types of polynomial time 
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reducibilities from these problems to sparse sets. We show that if GI (or GA) is bounded
truth-table or oonjunctively reducible to a sparse set then it is in P, while if we suppose
that it is in P/ poly then the problem is low for MA, the class of sets with publishable
proofs. These results are proved using graph constructions that show new properties of
the GI and GA problems.

Embedding is as Hard as Separation

Peter van Emde Boas

University of Amsterdam

It is a know classical result that the partial order of complexity classes ordered under inclu-
sion is a universal partial order, i. e. all countable partial orders can be represented in this
structure. The classical formulation for this result is the Embedding theorem as presented

by E. M. McCreight in his thesis at 1969. His proof uses an intricate diagonalization and
the recursion theorem. In fact he proves a stronger theorem since his result states that the
system of recursive functions ordered by their complexity already represents a universal
partial order. In this order f 2 g provided f is computed by some program <I>,- computing
g. The standard embedding theorem follows by selecting the classes generated by the
individual functions used in McCreight embedding.
We show that for the universality property of the system of classes a standard diagonaliza-
tion suffices, provided it is invoked in a localized way. The resulting machine independent
proof shows moreover that neither the names of the embedding classes, nor the operator
which actually performs the embedding needs to be arbitrary complex.
I obtained this improvement some 20 years ago while doing research leading towards my
ph. d. thesis. It remained an unpublished manuscript since.

Learning Simple Concepts under Simple Distributions

Paul Vita&#39;.nyi
CWI & University of Amsterdam

(Joint work with Ming Li (SIAM J. Comp. 91)

We develop a learning theory were �simple� concepts are easily learnable. In Valiant�s
distribution-free learning model, many concepts turn out to be too hard (like N P-hard) to
learn. Relatively few concept classes were shown to be learnable polynomially. In real life,
almost nothing we have to learn appears to be not (polynomially) learnable. It is known
that leaning under one �xed distribution (like the uniform one) is often easy. Hence we
look for a class of distributions which is wide enough to be interesting, and small enough to
be usable. We first prove two completeness results. De�ne a distribution P to be ggjyggsal
for a distribution class &#39;17 if V gp E 73 3c > 0V2: 6 S[P(a:) 2 c<p(:z:)], where S is the simple
space.
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(i) S is a discrete (countable) simple space. Then a concept class C is polynomially
pac (probably approximately correct) learnable under all distributions in a class X,
provided we sample according to a X -universal distribution P, if C is polynomially
pac learnable under P.

(ii) 8 is a continous sample space. A concept class C is pac learnable under all distributions
in a class X if C is pac learnable under an X -universal distribution.

If we take X the class of all distributions (discrete) which are computable or semi-
computable (can be approximated from below by a computable process), then m(a:) =
2&#39;K(�), K (x) is the self-delimiting Kolmogorov complexity of 2:, is universal for X. Simi-
lary, M (x) is the continous version of m(:z:) and is universal for the class of computable
or semi-computable measures. We call such distributions or measures simple. We develop
several new learning algorithms under m(:z:) and M (z), and show for several new concept
classes that they are (polynomially) learnable in our sense, while it is not known that they
are polynomially learnable in Valiant�s sense only if RP = P. Finally, we exhibit a concept
class which is PAC� learnable in our sense while it has in�nite Vapnik-Chervonenko dimen-
sion, that is, it is not pac learnable in Valiant�s pac distribution free (over all distributions)
sense.

As a �nal curiosity we mention that, for all algorithms, the average case running time un-
der the universal distribution equals the worst-case running time. Similary for the space

complexity.

Complexity of Functions vs. Complexity of Sets

Klaus W. Wagner
Universität Würzburg

(Joint work with Heribert Vollmer)

A complexity theory of functions is developed systematically. A relation f� 2 cp between
classes .7 of functions and classes cp of sets is established which preserves inclusional re-
lationships (i. e. .7 2 (p and .7� 2 gp� implies .7 Q .7� <=> cp Q cp�). By this relation the
operators 3 and V on classes correspond to the operators Max and Min, resp., on classes
of functions (i. e. .7 2 cp implies Max.7 2 3 cp and Min.7 Q Vcp). A slightly weaker cor-
respondence holds between the set theoretic operator C and the function operator Med
(median). The number-of-query hierarchy collapses in the function case because .7 2 «p
implies FF}- = FPf[1] = .7 � f� 2 P�. The counting hierarchy of functions built by Med
is strongly connected to the hierarchy of counting functions built by #P#P#Pm . As conse-
quences we obtain besides others #P Q M edFP and FPMedFP = M edFP - M edFP.
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