
Nico Habermann �Walter Tichy (editors):

Future Directions in Software Engineering

DagstuhI-Seminar-Report; 32
17.02.-21.02.92 (9208)

Nico Habermann , Walter Tichy {editors):

Future Directions in Software Engineering

Dagstuhl-Seminar-Report; 32
17.02.-21.02.92 {9208)

ISSN 0940-1121

Copyright © 1992 by IBF l GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
TeI.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBF I) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. Jose Encarnacao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V.� Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes

W - 6600 Saarbrücken

Germany
TeI.: +49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397

e-mail: office@dag.uni-sb.de

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schlol3 Dagstuht, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das tnternationale Begegnungs- und Forschungszentrum fur tnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmal3ig wissenschaftliche Seminare, wetche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persontich
eingeladenen Gasten durchgefuhrt werden.

ve,antwortlich fur das Programm:
Prof. Dr.-lng. Jose Encama9ao,
Prof. Dr. Winfried Gorke,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saartandes,
Universitat Kaiserstautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheintand-Pfalz

Bezugsadresse: Geschaftsstelle Schlol3 Dagstuht
lnformatik, Bau 36
Universitat des Saartandes
W - 6600 Saarbrucken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail : office@dag.uni-sb.de

Dagstuhl Seminar 9208 on

Future Directions in Software Engineering

February 17 � 21, 1992., Schloß Dagstuhl

Walter F. Tichy* Nico Habermanni Lutz Prechelt*

* School of Informatics T School of Computer Science
University of Karlsruhe Carnegie-Mellon University
D-7500 Karlsruhe 1 Pittsburgh, PA 15213
Germany USA

Dagstuhl Seminar 9208 on

Future Directions in Software Engineering

February 17 - 21, 1992, Schlofi Dagstuhl

Walter F. Tichy* Nico Habermann t Lutz Prechelt*

• School of Informatics
University of Karlsrube
D-7500 Karlsruhe l
Germany

1

t School of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
USA

List of participants:

Richards Adrion, U. of Massachusettes, Amherst, Massachusettes
David Barstow, Schlumberger Laboratory, Montrouse Cedex, France
Veronique Donzeau-Gouge, CN AM, Paris, France
Phyllis Frank], Polytechnic Univ., New York
David Garlan, CMU, Pittsburgh, Pennsylvania
Morven Gentleman, National Research Council, Ottawa, Canada
A. Nico Habermann, CMU, Pittsburgh, Pennsylvania
Dan Hoffman, U of Victoria, Canada
Stefan J ahnichen, TU Berlin, Germany
Gilles Kahn, INRIA Sophia Antipolis, France
Gail Kaiser, Columbia U., New York
Bernard Lang, INRIA, Le Chesney, France
Wei Li, U des Saarlandes, Saarbrücken, Germany
Hausi Müller, U of Victoria, Canada
Axel Mahler, TU Berlin, Germany
Roland Mittermair, U Klagenfurt, Austria
Manfred N agl, RWTH Aachen, Germany
David Notkin, U of Washington, Seattle, Washington
Harold Ossher, IBM, Yorktown Heights, New York
Dewayne Perry, AT&T Bell Labs, Murray Hill, New Jersey
Erhard Ploedereder, Tartan Inc., Monroeville, Pennsylvania
Lutz Prechelt, U Karlsruhe, Germany
Dieter Rombach, U Kaiserslautern, Germany
William Schaefer, U Dortmund
Gregor Snelting, U Braunschweig, Germany
Walter Tichy, U Karlsruhe, Germany
David Wile, U of Southern California, Marina del Rey, California
Michal Young, Purdue University, West Lafayette, Indiana

List of participants:

Richards Adrion, U. of Massachusettes, Amherst , Massachusettes
David Barstow, Schlumberger Laboratory, Montrouse Cedex, France
Veronique Donzeau-Gouge, CNAM, Paris, France
Phyllis Frankl, Polytechnic Univ., New York
David Garlan, CMU, Pittsburgh, Pennsylvania
Morven Gentleman, National Research Council, Ottawa, Canada
A. Nico Habermann, CMU, Pittsburgh, Pennsylvania
Dan Hoffman, U of Victoria, Canada
Stefan Jahnichen, TU Berlin, Germany
Gilles Kahn, INRIA Sophia Antipolis, France
Gail Kaiser, Columbia U., New York
Bernard Lang, INRIA, Le Chesney, France
Wei Li, U des Saarlandes, Saarbriicken, Germany
Hausi Muller, U of Victoria, Canada
Axel Mahler, TU Berlin, Germany
Roland Mittermair, U Klagenfurt, Austria
Manfred Nag!, RWTH Aachen, Germany
David Notkin, U of Washington, Seattle, Washington
Harold Ossher, IBM, Yorktown Heights, New York
DewaY,ne Perry, AT&T Bell Labs, Murray Hill, New Jersey
Erhard Ploedereder, Tartan Inc. , Monroeville, Pennsylvania
Lutz Prechelt, U Karlsruhe, Germany
Dieter Rombach, U Kaiserslautern, Germany
William Schaefer; U Dortmund
Gregor Snelting, U Braunschweig, Germany
Walter Tichy, U Karlsruhe, Germany
David Wile, U of Southern California, Marina de! Rey, California
Michal Young, Purdue University, West Lafayette, Indiana

2

Contents

1 Summary

2 The Garmisch Conference�A Retrospective

3 Session

4 Session

5 Session

6 Session

7 Session

8 Session

9 Session

�Met hodology�

�Industrial Practice�

�Modeling and Design�

�Formal Met hods�

�Tools and Components�

�Education�

�Development Process�

11

14

18

22

27

31

Contents

1 Summary 4

2 The Garmisch Conference-A Retrospective 7

3 Session "Methodology" 8

4 Session " Industrial Practice" 11

5 Session "Modeling and Design" 14

6 Session "Formal Methods" 18

7 Session "Tools and Components" 22

8 Session "Education" 27

9 Session " Development Process" 31

3

1 Summary

The intent of the workshop was to identify promising directions for future research in
Software Engineering. The motivation for the meeting was the shared realization that
although the quantity of research in Software Engineering has been increasing, quality
has not. Emphasis on software development management and risk control has diverted
attention from important technical issues. Fresh ideas and solid, technical results are rare.
This situation has a negative impact on Software Engineering as a whole and deprives
industry of potential technical bene�ts.

The first four days of the workshop were spent in intensive discussions. The abstracts of
participants� position statements and discussion summaries follow this epitome.� During
the �nal session, each participant was given a ten minute timeslot for presenting the areas
of Software Engineering where research should be intensi�ed. Participants were speci�cally
asked to consider areas in which they were not involved personally. Below is an extract of
these presentations, compiled by the editors. The following topics emerged as crucial for

progress:

I. Software architecture as a foundation;

II. Mastering evolving systems;

III. A scienti�c basis for Software Engineering;

IV. Education based on engineering know-how.

Formal methods, domain speci�c knowledge, special purpose languages, and reuse were
seen as important approaches to software architecture and evolution, but not as ends in
themselves. There was also a fair amount of introspection of what constitutes appropriate
research methodology in Software Engineering.

Software Architecture

Designing, specifying, and evolving the overall structure of software systems is the main
challenge in Software Engineering today. The architecture of a software system repres-
ents the information with the strongest leverage for software development and evolution.
However, little is known at the present time about how to make principled design decisi-
ons, how to describe designs in useful ways, and how to rigorously analyze and compare
existing software architectures.

Research is needed in at least the following areas: (1) Formal notations and models for
describing architectures; (2) domain-speci�c architectures; and (3) tools and environments
for leveraging architectural information.

Evolving Systems

Software evolution must become a central theme of SE research. First, we must �nd effec-
tive ways of designing evolvable software, i.e., reducing the cost of (future) changes without
compromising quality. Ingredients of a solution might be ways of keeping a changing sy-
stem consistent with its design, methods for developing and maintaining system families,

1The discussions were recorded by Nico Habermann.

4

1 Summary

The intent of the workshop was to identify promising directions for future research in
Software Engineering. The motivation for the meeting was the shared realization that
although the quantity of research in Software Engineering has been increasing, quality
has not. Emphasis on software development management and risk control has diverted
attention from important technical issues. Fresh ideas and solid , technical results are rare.
This situation has a negative impact on Software Engineering as a whole and deprives
industry of potential technical benefits.

The first four days of the workshop were spent in intensive discussions. The abstracts of
participants' position statements and discussion summaries follow this epitome.1 During
the final session, each participant was given a ten minute timeslot for presenting the areas
of Software Engineering where research should be intensified. Participants were specifically
asked to consider areas in which they were not involved personally. Below is an extract of
these presentations, compiled by the editors. The following topics emerged as crucial for
progress:

I. Software architecture as a foundation;

II. Mastering evolving systems;

III. A scientific basis for Software Engineering;

IV. Education based on engineering know-how.

Formal methods, domain specific knowledge, special purpose languages, and reuse were
seen as important approaches to software architecture and evolution, but not as ends in
themselves. There was also a fair amount of introspection of what constitutes appropriate
research methodology in Software Engineering.

Software Architecture

Designing, specifying, and evolving the overall structure of software systems is the main
challenge in Software Engineering today. The architecture of a software system repres
ents the information with the strongest leverage for software development and evolution.
However, little is known at the present time about how to make principled design decisi
ons, how to describe designs in useful ways, and how to rigorously analyze and compare
existing software architectures.

Research is needed in at least the following areas: (1) Formal notations and models for
describing architectures; (2) domain-specific architectures; and (3) tools and environments
for leveraging architectural information.

Evolving Systems

Software evolution must become a central t heme of SE research. First, we must find effec
tive ways of designing evolvable software, i.e., reducing the cost of (future) changes without
compromising quality. Ingredients of a solution might be ways of keeping a changing sy
stem consistent with its design, methods for developing and maintaining system families,

1The discussions were recorded by Nico Habermann.

4

and tools and techniques for reducing the number and severity of errors introduced by

changes.

Second, the insight that there will always be old software tells us that it is sensible to deve-
lop appropriate techniques for reverse-engineering (program analysis) and re-engineering
(program quality improvement).

Scienti�c Basis

Unlike other engineering disciplines, Software Engineering has not developed an engine-
ering science for its discipline. It must do so by focussing on the fabrication of software
systems the same way that Mechanical Engineering studies the properties and application
of materials, wheels, and pulleys for the fabrication of engines of all sorts. An enginee-
ring science for Software Engineering studies software parts and fabrication tools for the
purpose of creating software systems. This kind of science results not only in the creation
of parts and tools, but also in a careful analysis and evaluation showing when and where
these parts and tools can be effectively applied.

Education

To improve the practice of Software Engineering, we must emphasize the scienti�c basis
and engineering know-how when teaching future practitioners. An academic program in
engineering has three major components: teaching the underlying basic science, teaching
the know-how of what parts, materials, and designs to use when, and teaching how to
organize and manage the creation of an artifact. In contrast to Civil and Mechanical
Engineering, Software Engineering has so far emphasized organization and management,
but neglected teaching the know-how of what designs, what parts, and what existing
software to use.

In particular, students should learn facts, models, software architectures, and even� typical
programs, so they do not have to construct everything from scratch. Skills for applying
this knowledge must also be taught. Good design is notoriously dif�cult to teach, but a
study of good examples of software architecture and design alternatives is a first step.

A great bene�t could be obtained by emphasizing a systems view. Rather than teaching
students how to design software �from the ground up,� they should learn how to integrate
their designs into existing architectures of systems and system families. Furthermore,
students need exposure to, and skill in, reuse and re-engineering.

To teach these topics, to assemble adequate teaching materials, and to write Software
Engineering handbooks that contain the data the practitioner needs, is a challenge for
educators.

Formal methods, languages, reuse, and domain speci�c knowledge

A key insight at the workshop was that formal methods, specialized languages, reuse,
and domain speci�c knowledge were not goals or solutions in themselves. Instead, they
support the more general topics of software architecture and evolvable systems. Formal
methods and languages are needed for specifying systems and for reasoning about their

5

and tools and techniques for reducing the number and severity of errors introduced by
changes.

Second, the insight that there will always be old software tells us that it is sensible to deve
lop appropriate techniques for reverse-engineering (program analysis) and re-engineering
(program quality improvement).

Scientific Basis

Unlike other engineering disciplines, Software Engineering has not developed an engine
ering science for its cLiscipline. It must do so by focussing on the fabrication of software
systems t he same way that Mechanical Engineering stucLies the properties and application
of materials, wheels, and pulleys for the fabrication of engines of all sorts. An enginee
ring science for Software Engineering stucLies software parts and fabrication tools for the
purpose of creating software systems. This kind of science results not only in the creation
of parts and tools, but also in a careful analysis and evaluation showing when and where
these parts and tools can be effectively applied.

Education

To improve the practice of Software Engineering, we must emphasize the scientific basis
and engineering know-how when teaching future practitioners. An academic program in
engineering has three major components: teaching the underlying basic science, teaching
the know-bow of what parts, materials, and designs to use when, and teaching how to
organize and manage the creation of an artifact. In contrast to Civil and Mechanical
Engineering, Software Engineering has so far em phasized organization and management,
but neglected teaching the know-how of what designs, what parts, and what existing
software to use.

In particular, students should learn facts, models, software architectures, and even typical
programs, so they do not have to construct everything from scratch. Skills for applying
this knowledge must also be taught. Good design is notoriously cLifficult to teach, but a
study of good examples of software architecture and design alternatives is a first step.

A great benefit could be obtained by emphasizing a systems view. Rather than teaching
students how to design software "from the ground up," they should learn how to integrate
their designs into existing architectures of systems and system families. Furthermore,
students need exposure to, and skill in, reuse and re-engineering.

To teach these topics, to assemble adequate teaching materials, and to wri~e Software
Engineering handbooks that contain the data the practitioner needs, is a challenge for
educators.

Formal methods, languages, reuse, and domain specific knowledge

A key insight at the workshop was that formal methods, specialized languages, reuse,
and domain specific knowledge were not goals or solutions in themselves. Instead , they
support the more general topics of software architecture and evolvable systems. Formal
methods and languag~s are needed for specifying systems and for reasoning about their

5

properties, while reuse and domain-speci�c knowledge are important for learning about
software architectures and design.

Studying domain-dependent software architectures seems attractive, because it would ena-
ble reuse at a high level. An envisaged science of software architecture would map typical
problems in application domains to typical software architectures. Little is known about
this area today.

Research Methodology

Most research in Software Engineering develops new methods, tools, or techniques to
improve an aspect of software development or maintenance. However, relatively little
evidence has been gathered on which of those are effective.

We need to take evaluation of our work seriously. To make evaluation possible, we must
de�ne the problem being addressed, specify the assumptions, and clearly state hypotheses.
We must be able to decide when existence proofs or qualitative comparisons are sufficient,
when quantitative results are required, and when quanti�cation is hopeless. We also must
increase our efforts in designing and carrying out experiments that yield quanti�able and
reproducible results. An important step forward will be the development of generally
accepted methods for measuring and comparing results.

Outlook

The key insights we gained from this workshop were the recognition of the central role of
software architecture within Software Engineering, the need to intensify research in the
area of evolvable systems, and the need to develop an engineering science for software.
Formal methods, reuse, and domain-speci�c information are promising approaches. We
also found it important to embed knowledge and experience into languages and other tools,
because such embedding is a highly effective form of reuse.

The workshop has brought the main research issues in Software Engineering into sharp
focus. We hope that this report may provide an inspiration to others and help revitalize
the �eld.

properties, while reuse and domain-specific knowledge are important for learning about
software architectures and design.

Studying domain-dependent software architectures seems attractive, because it would ena
ble reuse at a high level. An envisaged science of software architecture would map typical
problems in application domains to typical software architectures. Little is known about
this area today.

Research Methodology

Most research in Software Engineering develops new methods , tools, or techniques to
improve an aspect of software development or maintenance. However, relatively little
evidence has been gathered on which of those are effective.

We need to take evaluation of our work seriously. To make evaluation possible, we must
define the problem being addressed, specify the assumptions, and clearly state hypotheses.
We must be able to decide when existence proofs or qualitative comparisons are sufficient,
when quantitative results are required, and when quantification is hopeless. We also must
increase our efforts in designing and carrying out experiments that yield quantifiable and
reproducible results. An important step forward will be the development of generally
accepted methods for measuring and comparing results.

Outlook

The key insights we gained from this workshop were the recognition of the central role of
software architecture within Software Engineering, the need to intensify research in the
area of evolvable systems, and the need to develop an engineering science for software.
Formal methods, reuse, and domain-specific information are promising approaches. We
also found it important to embed knowledge and experience into languages and other tools,
because such embedding is a highly effective form of reuse.

The workshop bas brought the main research issues in Software Engineering into sharp
focus. We hope that this report may provide an inspiration to others and help revitalize
the field.

6

2 The Garmisch Conference��A Retrospective

Daniel Ha�man
Univc1'.sity of l"'2'ct07'2'a, Canada

In 1968. the NA T0 Conference on Software Engineering was held in Garmisch, Germany.
This conference introduced the term softwarc enginecring and signi�cantly in�uenced re-
search a.nd practice in the years to follow. Many, but not all, of the themes addressed at
(larmisch in 196R were also addressed at Dagstuhl 24 years later.

Garmisch, 1968: The Garmisch Conference was a response to the software crisis: the
demands for software far exceeded the production capability, and the delivered systems
were commonly late and over budget. There was strong support for an engineering ap-_
proach to software development, and recognition of the resistance to such an approach.
According to Perlis: �Under no stretch of the imagination can one say that ('.Iomputer
Science, at least in the U.S., is fostering software engineering.�

The importance of the software development process was clearly recognized. Many phased
development approaches were discussed and the need for feedback between phases was
repeatedly asserted. The vagueness of the design phase a.nd the lack of precise design
la.nguages was noted. The bene�ts of modularity were emphasized. Mclllroy presented a
detailed proposal for a software component industry.

There was disagreement on the signi�cance of errors in software. Dijkstra asserted that
�The dissemination of knowledge is of obvious value. The massive dissemination of error-
loaded software is frightening." Perlis disagreed: �Is bad software that important to
society?�

9

Dagstuhl, 1992: Many of the issues discussed in Garinisch were still relevant and see-
med surprisingly fresh in 1992. However, a number of new issues have emerged in the
intervening years. The Dagstuhl meeting identi�ed system evolution as a key problem, a
topic that was seen not nea.rly as important in 1968. Other new issues were the. need to
study and codify software architectures, the emphasis on proper experimental method for
evaluation, and the importance of reliability in safety critical software.

2 The Garmisch Conference- A Retrospective

Daniel Hoffmcm
University of \lidor·ia, Crrnacfo

ln I 96~. thP NATO Conference on Softwan: Engince1·ing was held in Garmisch , Germany.
This conference introdurl'd the tNm .~oftwa1'f ,:ngi1u ·cri11g and s ignificantly influenced re
S('arrh and practice in the yPa.rs to follow. Many, hut not a.II, of t he t hemi>s addressed at
(;,1.rmisch in I 96X were also a<ldressed at Da.gstuhl 24 years later.

Garmisch, 1968: The Garmisch Conference was a responsP to the softwaff crisis : tlw
clrmands for software far exceeded t he production capa bili ty, and the delive red systems
wPrr c·ommonly late and ovPr budget. Ther(' wa.s s trong support for an enginPPring ap- .
proa.ch to software dPvPlopment . and rerog11ition of t hP resis tanr.e to surh a n approach.
According to Pnlis: " UndPr no stretd1 of thP imagination can OOP sa.y t hat Computer
Sci<'ll<'P, at least i11 the U.S., is fostering software engineeriug.''

ThP importance of the software developmPnt process was clearly recognized. Many phased
development a.pproarhes were cliscussed and the need for feedback betwPen phases wa.,;
repeatPdly asserted. The vague11ess of the design pha.se and the lark of precise d esign
languagPs was 11o tPCI. TIH' benefits of mo dularity WPre emphasized. Mc.Tilroy presented a
<letailPd proposal for a softwar·c co111po11c11l indus try.

Thf'rP wa,s disagrt>e111ent 011 tht> signifir a.nr.e of errors in software. Dijks tra a.ssPrt<'d tha.t
"Tlw dissf'mi11a t io11 of kuowledge is o f obvious vahtP. Th0 massive dissemination of r rror
loacled softwa.rP is frightening." Perlis disag rrp<f: ''Is bad software that, important. to
society'!>'

Dagstuhl, 1992: Many of thP iss urs discussPcl in C a ru1isrh WPrP still rPlPvant a 11d sPC'
med surpris ingly frPsh in 1992. HowPvPr, a numher of nPw issut-s ha.v0 PmPrg<'d in tlH'
int0rvPning yea.rs . TbP Dagstuhl rnePt ing icle11 t i-fil'd syst.Plll Pvoh,t,ion as ,1. key pro hl1•111 , a
topir that. was SN ' ll not n('arly as i m pnrl.ant i II I 968. Ot:her ne w iss11<'s WN<' t h0 ll<'l'CI to
study a.nd roclify softw,HP architectmPs, t he f'mpha,sis on pro(H'r expPrimPntal met.hod fo r
0valuat ion , and t.!tP importancP of rnliahil it.v in sa.f<•ty r.ritica.1 softwarP.

7

3 Session �Methodology�

Research Methodology in Software Engineering
W. Richards Adrian,

Univcrsity of Massrzclmsettes. Amherst, Massaclmsetts

Software engineers continue to struggle. with a c.on1munity consensus on appropriate rese-
arch methodology. W ithont such a consensus, problems will remain in assessing papers,
research proposals, a.nd research programs. Similar concerns in the AI community sur-
faced in a a recent paper by (Toben (AI magazine 12(1), 1991. pp. l6��~4l) which analyzed
research methods in AI. Cohen concludes that there are two methodologies in use in Al
(system-centerecl and model-centered) and that neither alone is sufficient to meet the goals
of Al research. The lessons to be learned for SE research include the need to carefully
specify the problem being addressed and the assumptions and �environment�; to state
hypotheses; to provide methods used to address the problem; to validate the hypotheses;
a.nd to suggest or indicate what changes or modifications are necessary for future research.

ln an NSF-sponsored Workshop hel(l in 1989. four methodologies were identi�ed. The
.~:c2'cntz'jic method: observe the world, propose a model or theory of behavior, measure and
analyze. validate hypotheses of the model or theory, and if possible repe.at; the enginee-
ring method (evolutionary paradigm): observe existing solutions, propose better solutions,
build or develop, measure and analyze, repeat until no further improvements are possible;
the cmpz'rz'cal method (revolutionary paradigm): propose a. model, develop statistical or
other methods. apply to case studies, measure and analyze, validate the model, repeat;
the analytical method: propose a formal theory or set of axioms, develop a theory, derive
results am] if possible cmnpare with empirical observations.

Part of the problem with SE research methodology lies in how one defines the boundaries
of the field. While typical engineering research builds on principles from clearly defined
scientific disciplines @7�� physics, chemistry, etc. P� the boundary between SE and its
scientific bases in programming languages, data structures, algorithms, operating systems.
etc. is much less clearly defined. l\"la.n_V research �a.c,hie\-'ements" in SE could actually
be said to be advances in the underlying science base. rather than in the engineering
of software. 'l�hus. metlnulologicaI problems arise. since one is. at times, attempting
to advance bwth the science unclerlxing �- and the engineering practice sinmltaneously.
In addition. unlike many other other engineering disciplines, there is no clea.r boundary
between engineering a.nd manageinent issues in SE. To develop management. principles
and refine curl.�-neering practice together can also lead to methodological conflicts.

While it is often the case that reasonable methodology is employed in SE research, it is
not often clea.rl_v sta.t.e(l. We have a responsibility to identify the the purpose for (.ll�_«'])0i.l](-.�.~
sis, asstnnptions, environment), approach to (inethoclology), and �lessons learned" from
(validation. possible alternate approaches) our research as well as the results if we are t.o
make progress and allow other SE researchers to build on our accomplishments.

3 Session ''Methodology''

Research l\.1ethodology in Software Engineering
W. Richa1·d$ Adrion,

University of M ass"':/tu$cUes. A mlte1·$t, Massachw~ett-~

Softwa f'P <'lll?;i nei>rs rontin 11e to st rnggli~ with a. romnnrni ty ro11se11s11s 011 appropriatP rese
arrh 11H•thodolo)!;y. vVitho11t such a consc-ns11s, prohlems will rP11rni11 in assessing papers,
rrsearrl1 proposals, and researrh programs . Similar ronrerns in th@ Al com munity su r
far<'d in a a rer<'nt pa1wr h_v Cohen {A l ma.gazine l2(l), l99l. pp. 16- •1 l } which analyzed
r<'s<'arrh 11wthods in Al. Cohe11 ronrlnc!Ps t hat thN<' an• two methodologies in us@ in Al
(syst<'m-rP.ntered and modPl-rentered) and that neithPr alon@ is snfficiP.nt to mPPt the> goals
o f Al rPsPa.rd 1. Thf' lessons to hf' learnP<I for SE r<>search include t he need to carefully
specify t.he proble111 being ad<lrPssed and the a.<;su111ptions an d "envi ronmPnt"; to state
hypotheses; Lo provide methods used to aclcl rf'ss the probl1>1t1 ; to validate the hypotheses;
a11d to suggest or indfrate what. rha11ges or modifications are 11ecPssar_v for futurl' research.

lt1 an N S F-sponsorPcl workshop hPld in HlR9, fou r 111<'1.hodologies WPrP idf>11 t ifiP.cl . The
s1' irnl ijil" me/hurl: ohservP the world , propose a model or theory of he ha.vior , mea.surP and
a11a.l .vZf\. va.l icl ate hy potl1Psf's of the mod"(o r tlu~o r_v, and if possi b(P rPpeat; thP cnginn:
ri11.y mctlwrl (Pvolutiona.ry parncligm): o bsPrv,, P.xistiug so)u tlo11s, prnposc• l11~ttPr so lutions,
h11i l<I or devC>lop, nrnasurP and :rnalyzr, repeat until 110 fortbet- improvPtuents arP possihlP;
lhP rinpfriml method (revolutiouary pa ra digm): proposf' a. model, dPvclop statist ical or
othN ll1Pt l1o<is. apply to rasp studif>s, 111easure a nd a.na.lyz", validatP t he model , repeat;
t lw a1talylical 111Plhod: propose a formal theory or set of axio111s, d1:welo p a theory, derive
rPsul ts aud if possihl<> co111pa re with empiriral observations.

l'nrt. nf I It,• prohlP111 with SE res<'a.rd1 nwthodology lies in how 011e defi nes the:> bouudarif\S
,,r tli" fi"ld. WhilP typical P11~i11PNi11g rPs<'arch builds on pri11riples from dearly Jdine(I
sc-iP11 tilir disr iplinPs ph_vsirs, d 1P111 ist.ry, Pl.r . - - thP hou11d;Lry hPtWPPll SE and its
sc-ir>11I i fi r 1,asl's i II pn,g ra 111 mi 11g la.111?;11,1.11;":-, data s t. r11rt 11n•s, a.lf!._orit,h 111s. o pcrati 11g systP111s.
"''. i" 11111 rl1 IPss r l0arl_v drlinrd. l\fa11 y r<.'SParrh "arhiPvc111e11ts" in SE roulcl ;u-t11a.lly
h" s;1 i1I t n lw ad va 11n•s i II tlw 1111dr rl_v i 11g sciPnrP hasr. ra,t.hPr t han i11 t l11-' e11gi llf'Pri 11v;

111" s11ft.w,HP. Thus. 111t-t.l111dnlo)?:ira I prob(P111s a risP. si ncP 011c• is. at ti 111Ps, a.t tP.111 pti 11g
t,1 .iclva11n• h it.h th<' scil'111·p 1tll(lt•rh i11g SE a 11d th<' \>1tginP.Pri11g pract.ire sim11lt a.11<'011s l_v.
l11 additicu1. ;,11lik<' 111a11.v oth<'r nl lw• P1tgi1t<'<'ring disciplines. lh NP is 110 rl<>ar ho1111dar_v
lll'IWPl'II 0ngi•1Pl'fi11g """ 111a11agp11wut isSlll'S in SI~. To df•VPlnp 111a11agPlll<o'III principk::
a11d rPli11C' r•nr :11PPri11g prartirP lo~PlhPr ra.11 also INul t.o 111<'l hodologiral ronflirts.

Whilr it i,- oft.<'11 tlw rasp that. r«'aso11ahl,• IIIPl.hodoloj?;y is <'lllplo_vPd in SE resp;:i rch, it. is
llllf nft.1'11 rlN\.rly Rt.a,t.P<l. WP lrn.ve a rPspo11:,;ibilit_y to idP11tif_v t ill' thl' pnrposP for (h_vpntlw.
sis. assu111pt.io11s, e11viro11 111Pnt) , approach to (llll'thodology), a.nd "IPssons learnctl"' fro111
(vali,latinn. possihlP a]tP.rnatP a.pproHhes) 0 11 r researdt a.swell as th,• rPs11lts if" WP arP t.o
ma.kr progrPRS a nd allow o Hi<>r SE rrsf'a.rrhf'rs t.o huild 011 our a.1·rm11plish111ents.

Evaluation of Software Engineering Techniques
Phyllis 6'. Frank!

Polytechnic University, Brooklyn, New York

While many Software Engineering techniques have been proposed, relatively little solid
evidence has been gathered to indicate which of these are effective. New techniques are
often justi�ed only by appeals to intuition. Sometimes anecdotal evidence indicating the
effectiveness of a technique is gathered through case studies.

Ideally, new techniques should be justified through rigorous analysis or controlled experi-
ments, but it is often very difficult to do this. It is sometimes possible to facilitate expe-
rimentation by introducing some abstract modeling of the technique being investigated.
For example, experimental investigation of the fault detecting ability of software-test-data-
adequacy criteria is facilitated by using randomly generated test sets, while in reality test
data adequacy criteria are usually used with test sets which have been generated in some
non-random way. However, it is then necessary to validate that the �real world� behaves
similarly to the abstract model. Alternatively, it is sometimes possible to change the real
world (i.e. the SE technique) to conform to an analyzable model. Development of (in-
formal) standards of experiment designs for various particular problems would help make
evaluation of techniques more scienti�c. Individual experiments could then provide data
points, which, taken cumulatively, provide more compelling evidence than is currently
available to indicate which techniques are effective.

We Need To Measure The Quality Of Our Work
Gail E. Kaiser

Columbia University, New York City

There is a gaping hole in current academic-style software engineering research: We as a
community have no generally accepted methods or benchmarks for measuring and com-
paring the quality and utility of our research results.

The only metrics for environments research are the evaluation methodology promoted
by the Software Engineering Institute and the International Software Process Workshop
example problem for process-centered environments.

I see even fewer options for measuring the quality and determining the scalability of
research prototypes for parallel and /or distributed applications, programming languages,
operating systems, databases and software engineering techniques.

In addition, a perhaps fatal problem is that academic researchers are still making incremen-
S ta] improvements on I5-year-old tools such as make and RCS available on our educational
computers rather than starting from the state-of-the-practice available to industry.

9

Evaluation of Software Engineering Techniques
Phyllis C:. Frankl

Polytechnic Uniuersity, Brooklyn, New York

While mauy Software Engineering techniques bave been proposed, relatively little solid
evidence has been gathered to indicate which of these a.re effective. New techniques art>
often justified only by appeals to intuition. Sometimes anecdotal evidence indicating the
effectiveness of a t echnique is gathered through case studies.

Ideally, new techniques should he justified through rigorous analysis or controlled experi
ments, but it is often very dHficult to do this. It is sometimes possible to facilitate expe
rimentation by introducing some abstract model.ing of the technique being investigated .
For example, experimental investigatiou of the fault detecti ng ability of software-test-data.
adequacy criteria is facilitated by using randomly generated test sets, while in reality test
data. adequacy criteria are usually used witl1 test sets which have been generated in some
non-random way. However , it is then necessary to validate that the "reaJ world" behaves
similarly to the abstract model. Alternatively, it is sometimes possible to change t he real
world (i.e. the SE technique) to conform to an ana.lyzable model. Development of (in
formal) standards of experiment designs for various particular problems would help make
evaluation of techniques more scientific. Individual experiments could then provide data
points, which, ta.ken cumulatively, provide more compelling evidence than is currently
ava.ilable to indicate which techniques are effective.

We Need To Measure The Quality Of Our Work
Gail E. K aise1·

Columbia Uniuersity, New York City

There is a gaping bole in current a.ca.demic-style software engineering research: We a.s a
community have no generally accepted methods or benchmarks for measuring and com
paring the quality and utility of our research results.

The only metTics for environments research are the evaJuation methodology promoted
by the Software Engineering Institute and the International Software Process Workshop
example problem for process-centered environments.

I see even fewer options for measuring the quality and determfoing the scaJability of
research prototype.s for parallel and/or distributed a.pplica.tious, programmjug languages,
opera.ting systems, data.bases and softwa.re engineering techniques .

In a.clclition, a perhaps fatal problem is that academic researchers a.re still making incremen
tal improvements 011 15-year-old tools such as make and RCS available on our educational
computers rather than 1-1ta.rting from the state-of-the-practice available to industry.

9

Alternatives to Quantitative Evaluation

Michal Young
Purdue University, West Lafayette, Indiana

Evaluation is an important problem in our �eld, but we should not succumb to physics
envy and insist always on quantitative evaluation. Quantitative evaluation should be
encouraged where it is appropriate, but alternatives should also be developed.

If software engineering papers are becoming less credible (as I believe they are), it is not
because current papers have fewer quantitative evaluations. I would not �nd Parnas� On
the Criteria for Decomposing Systems into Modules more convincing if it reported that 100
programmers had implemented KWIC indices in each fashion, and 80% achieved greater
reuse with the new approach. I would not learn more from Liskov and Zilles� survey of ab-
stract data type speci�cations if they reported that algebraic speci�cations were on average
30% less likely than model-based speci�cations to overconstrain an implementation.

One alternative to quantitative evaluation is development of approaches and techniques
in the context of systems research, so that the examples offered as evidence are more
credible. This was a strength of early work in software engineering. One may fear that
mixing software engineering research with systems research will limit novelty and discou-
rage long-term thinking, but n1ore often challenging systems problems force reevaluation
of accepted ideas and suggest unorthodox approaches. As examples, consider the impact
of ob ject-oriented programming and the growing importance of event-based coordination
for constructing large systems, both of which grew out of systems research.

Another alternative is the �challenge problem� paradigm, in which research communities
agree on representative and appropriately diflicult problems to which a variety of approa-
ches or techniques can be applied. Even in the absence of measurement, comparison of
solutions to a single problem improves our understanding of their relative merit.

Rick Adrion, Hethodology for doing research.
Observations:

1) model-centered, without serious experimentation to validate model;
2) empirical, descriptive, lacking justification and evaluation.

Giles: our products are so temporary, models valid today are out of date
tomorrow. Industry tells us academics we are behind and can�t compete
with the products they are able to develop and market.

Nico: He lack a tradition of doing research in comparison to disciplines
such as physics, astronomy and biology.Hile: Eng�neering must be based on science. Don�t confuse engineering with
tin erin .

Dewayne: Probleg of getting people in production shops to participate in
an experiment. _

Rick: We don�t specify our experiments precisely enough and in sufficient
detail for others to repeat the experiment. . .

Bernard: Compscit�ng has close ties with industry (not so for physics and
other discip ines); they want us to work on their problems.

Phyllis Frankl, Testing.
Goal is either �detect errors� or �measure reliability�; Phyllis talks about
the first, not the second.
Observation: people design methods, but do little validation.
Look for "abstract model of reality": which model catches the most errors?
Example: branch testing versus data flow testing, which is more effective?
Wish: standardization of how to do experiments. -
Dieter: testing is often misused, e.g., apply to detect errors, but used

to make claims about reliability.
Giles: what if the design of the test software is of the same order of

magnitude as the software to be tested?
Testing might be an additional topic for separate discussion.

Gail Kaiser, Measurements.
Uhat to measure? Productivity, functionality, overhead, complexity, reliability

10

Alternatives to Quantitative Evaluation
Michal Young

Purdue University, West Lafayette, Indiana

Evaluation is an important problem in our field, but we should not succumb to physics
envy and insist always on quantitatiue evaluation. Quantitative evaluation should be
encouraged where it is appropriate, but alternatives should also be developed.

lf software engineering papers are becoming less credible (as I believe they are), it is not
because current papers have fewer quantitative evaluations. I would not find Parnas' On
the C1·iteria for Decomposing Systems into Modules more convincing if it reported that 100
programmers had implemented KWIC indices in each fashion, and 80% achieved greater
reuse with the new approach. I would not learn more from Liskov and Zilles' survey of ab
stract data type specifications if they reported that algebraic specifications were on average
30% less likely than model-based specifications to overconstrain an implementation.

One alternative to quantitative evaluation is development of approaches and techniques
in the context of systems research, so that the examples offered as evidence are more
credible. This was a strength of early work in software engineering. One may fear that
mixing software engineering research with systems research will limit novelty and discou
rage long-term thinking, but more often challenging systems problems force reevaluation
of accepted ideas and suggest unorthodox approaches. As examples, consider the impact
of object-oriented programming and the growing importance of event-based coordination
for constructing large systems, both of which grew out of systems research.

Another alternative 1s the "challenge problem" paradigm, in which research communities
agree on representative and appropriately difficult problems to which a variety of approa
ches or techniques can be applied. Even in the absence of measurement, comparison of
solut ions to a single problem improves our understanding of their relative merit.

Rick Adrion , Methodology for doing research.
Observations:

1) ■odel-centered, without serious experi■entation to validate ■odel ;
2) e.■pirical, descriptive , lacking justification and evaluation .

Giles: our products are so te■porary, ■odels valid todaf are out of date
to■orrow. Industry tells us acade■ics we are behind and can't co■pete
with the products they are able to develop and ■arket.

Nico: We lack a tradition of doing research in co■parison to disciplines
such as physics, astrono■y and biology.

Wile: Engineering ■ust be based on science. Don't confuse engineering with
tinkering.

Dewayne: Proble■ of getting people in production shops to participate in
an experi■ent.

Rick: We don 't specify our experi■ents precisely enough and in sufficient
detail for others to repeat the experi■ent. .

Bernard: Co■pScit~ has close ties with industry (not so for physics and
other disciplines); they want us to work on their proble■s.

Phyllis Frankl, Testing.
Goal is either 'detect errors • or '■easure reliability'; Phyllis talks about
the first, not the second.
Observation: people design ■ethods, but do little validation.
Look for "abstract ■odel of reality": which ■odel catches the ■ost erro,rs?
Exa■ple: branch testing versus data flow testing, which is ■ore effective?
Wish: standardization of how to do experi■ents.
Dieter: testing is often ■isused, e.g., apply to detect errors, but used

to ■ake clai•s about reliability.
Giles: what if the design of the test software is of the sa■e order of

■agnitude as the software to be tested?
Testing ■ight be an additional topic for separate discussion.

Gail Kaiser, Measure■ents.
What to ■easure? Productivity, functionality, overhead, co■plexity, reliability

10

Giles: difference between systems is hard to measure. Re uest for "hard data"
by industry is an excuse for them to use your wor s to support their
decision not to use your stuff.

Nico: you don�t want to measure on someone else�s conditions, but you want to
measure for your own sake on your own conditions, e.g. performance
improvement, memory use, etc.

Giles: but you don�t want to measure the industrial notion of �productivity�
Garlan: indeed, these measures often overlook what is really important. E.g.,

coding time or code length may be reduced, but maintenance may increase.
Erhard: what really matters is how your measurements chan e over time.
Uile: if you have to measure, you don�t understand the t ing you measure.
Bernard: examples of things to measure: space, time, frequency, .
Dewayne: must ive line manager an argument to introduce a new tool.
Notkinz is tha our task?
Bernard: two kinds of measurements: product and development process.
Gail: Productivity, reliability, portability, team co laboration, scalability

are thin s we should measure, but do not know how to yet.Rick: difficulg, because disconnect between interest groups, e.g.
real time research, practice and software engineering.

Hany: we must accept the idea that s stems may be esigned with permissible
failure in mind (compare telep one system).

Gail: complaint from industry: acad research works with outdated tools and
cannot compete with industry in making usable tools.

Michael Young, wearing my anti measurement hat.
Observation: we need particular challenges in the sense of: can you do this
and/or can you do that?
All: issue of intellectual property rights. (deserves separate discussion)
Uile: Opposite of earlier s atement is also true: if you don�t understand,

you should measure. (This sounds close to the �empirical research
approach of Rick this morning) _ _

Giles: we do (and should) measure w at we believe 18 necessary, but we must
recognize that there are things we cannot measure (in numbers) and
things we need not measure.

4 Session �Industrial Practice�

Issues for Software Engineering
David Barstow

.S'chIu1nbergcr Laboratory for Computer .S'ciencc, Paris, France

Five major issues that must be addressed by the software engineering community are:

(1) There is not yet a �rm scienti�c basis for software/hardware systems. Developing
such a basis will require decades of theoretical and practical work, including such topics
as domain analysis, formal methods, and techniques for describing system architectures
and distributed systems.

(2) There is not yet a well characterized and widely used set of �standard software engi-
neering practices�. Such a set could be developed from techniques that are already well
known, and the SEI maturity level model and the ISO 9001 standard represent good pro-
gress. Competitive pressures in the commercial world are likely to increase the use of good
practice: those groups that do not use good practice will probably fail �nancially.

(3) There is a very large base of installed software that is becoming increasingly un-
maintainable. Either we will succeed in replacing the code through restructuring and
reverse engineering, or the software (and possibly the companies that use it) will die like
old dinosaurs.

(4) The currently available systems that allow naive users to develop software (e.g. spreads-
heets, HyperCard) offer little or no support for good software engineering practice. Unless
this situation changes (which seems unlikely to 111e) we will probably have to live for many
years with a large body of badly written small programs.

11

Giles: difference betveen systeas is hard to aeasure. Request for "hard data"
by industry is an excuse for them to use your vords to support their
decision not to use your stuff.

Nico: you don ' t vant to aeasure on someone else's conditions, but you want to
mea.sure for your OIIJJ\ sake on your ollJJ\ conditions, e.g. perforaance
i■proveaent, aeaory use, etc.

Giles: but you don't vant to aeasure the industrial notion of 'productivity'
Garlan: indeed, these aeasures often overlook vhat is really iaportant . E.g.,

coding tiae or code length aay be reduced, but aaintenance aay increase.
Erhard: what really aatters is how your aeasureaents change over tiae.
Wile : if you have to aeasure , you don 't understand the tning you aeasure.
Bernard: exaaples of things to ■easure: space, tiae, frequency, ..
Devafl\e: ■ust give line ■anager an argument to introduce a nev tool.
lotkin: is that our task?
Bernard: two kinds of aeasureaents: product and developaent process.
Gail: Productivity, reliability, portability, teaa collaboration, scalability

are things ve should aeasure, but do not knov hov to yet.
Ric k: difficult, because disconnect betveen interest groups, e.g.

real tiae research, practice and software engineering.
Kany : we aust acce~t the idea that systems aay be designed with peraissible

failure in aind (coapare telephone system).
Gail: coaplaint fro• industry: acad research works with outdated tools and

cannot coapete with industry in aaking usable tools.

Kichael Young, wearing ay anti aeasureaent hat .
Observation: we need particular challenges in the sense of: can you do this
and/or can you do that?
All: issue of intellectual property rights. (deserves separate discussion)
Wile: Opposite of earlier stateaent is also true: if you don 't understand,

you should aeasure. (This sounds close to the 'eapirical research
approach of Rick this aorning)

Giles: ve do (and ~hould) aeasure vnat ve believe is necessary, but ve aust
recognize that there are things ve cannot measure (in nuabers) and
things ve need not aeasure.

4 Session "Industrial Practice"

Issues for Software Engineering
David Barstow

Schlumbe1ye1· Laboratory for Compttte1' Science, Par-is, Pmncc

Five major issues that must be addressed by the software engineering community a.re:

(1) There is not yet a firm scientific basis for software/harclware systems. Developing
such a basis wiU require decades of theoretical and practical work , including such topics
as domain analysis, formal methods, and techniques for describing system architectures
and distribute.cl systems.

(2) There is not yet a well characterized and widely used set of "standard softwan~ engi-
11eeri11g practices". Such a set could be developed from techniques t hat are al ready well
known, and the SEI maturity level model and the ISO 9001 standard represent good pro
gress. Competitive pressures in the commercial world are likely tu increase the nsf' of good
prartirn: those groups that do not use good practice will probably fail financially.

(3) There is a very large hasf' of installed software that is becoming increasingly un
maintainable. Eith<>r we will succeed in replacing the codf' through restructuring and
reverse engineering, or the softwarn (and possibly the companies that use it) will die like
old dinosaurs.

(4) The currently available systems that allow naive users to develop software (e.g. spreads
heets, HyperCard) offer Little or no support for good software engineering practice. Unless
this situation c:hanges (which seems unlikely to me) wP will probably havP to livP for many
years with a large body of badly written small programs.

11

(5) There are not yet good models of the evolutionary process that softwa.re goes through.
One important aspect for which models are needed is the interaction between evolutionary
change and customization.

Technical Software Engineering Problems
of Commercial Software Products

W. Morven (}'entleman,

Software Enginccriny Laboratory,
National Re-sazrclz (bmzcil of Canada, Ottawa, Canada

I think of Software Engineering as the use of technological means, such as theories, me-
thodologies, tools, an(l techniques, to address t.he practical problems that arise in the
development, deployment, maintenance, and evolution of software. There are many dif-
ferent practical issues software engineering cau address. and progress on any of them can

help industry.

The problems that represent barriers to success are different for different kinds of software,
or at least the relative importance of various problems are different. Much of the software
engineering literature has addressed the problems of very large custom built systems, or
of s_yste1n software, or of safety critical systems. I believe we should direct some of our
energy into solving the problems of the software products industry, where software is sold
in multiple copies that are identical or at least not to be substantially modified by the
llS(�l'.

The milieu in which such software product companies operate is quite different from the
large teams with unlimited resources in some of the more commonly studied areas. Pro-
blems in this �eld range from planning an evolution path so that a viable partial product
can l)e shipped to fill a market niche while the full intended functionality has yet to be
implemented; packaging a product for automated installation and adaptation; interopera-
bility with products independently obtained from other suppliers; and coping with product
inadequacies and failures that are revealed by shipped products in the �eld.

(liven the significant and rising economic portion that this is of the software industry as
a whole, it is quite surprising how little research has been done on these problems, even
when technological solutions seem feasible.

Industrial Practice << State of the Art

Daniel Hqlfman
Unz'vcrsity of Victoria. ("Tana-da

R.ichard llamming proposes two criteria for important research problems: (1) the solution
must offer substantial benefits and (2) there must be a reasmrable attack: an approach
likely to lead to a solution. lt is the attack that distinguishes important problems from
wishful thinking. We consider three important. probletus in software engineering and their
attacks.

Too littlrx- speci�catiorz. Today�s software is not developed �to specification�. While speci-

l�2

(!>) ThE>rP arP 11ot yet good models of the evolutionary process that software goes through.
OuP important as pect for which models are nPeded is the interaction be tween evolutionary
rhangP and cnstomization.

Technical Software Engineering Problen1s
of Conunercial Software Products

W. Mo,-vcn C:cntlf'11tan,
SoftwaT"c Engineering Labonilor·y,

National RF·search Council of Canada, Ottawa, C:rmada

think of Software EnginPPTing as tlw use of technologiral mea.ns, such as thf>ories . mP
thodologiPs, tools. and tedrniquPs, to ;.t<ldrPss t hP pra,ctira l prohlPms that arisP in th t>
dPvPlopnw11t. cleploymeut, 111a.in t<> 11ance, and Pvolu tion of soft ware. There a re many dif
fPrPn t, prnctir;.tl issues softwa rP P11gi11Peri11g can ;tdclrPss. and progn'ss on any of tbPlll can
hPlp i11d11stry.

The problPms t hat rPprest>nl bar-riers to success a re diffe rent fur different kjnds of software,
or a.t !Past the rPlative importanc<> of various problPnis arP different. Much of the software
P11gi1wPri11g li tPralllfe has addrPSSNI t hP proble111s of w ry la.rgl' r.usto111 buil t systems, or
of systPn1 software, or of safPty rrilirnl systPlllS. I hPlievP WI' should direct somf' of our
"'"'rgy i11t.o solving thP prohlPms of tlw softwa.re products industry, wherP software is sold
i11 mirltip!P copiPs t hat arP idPntira l or a.t leas t not to be substantially modified by thP
IIS<'r .

ThP 111ili1111 in whirh such softwarP produrt companiPs operate is qui tf:' different from the
la rgP t<>a111 s with 11nlimitNI rl'son rc:<>s in so1111' of th(' mon• commonly studied areas. Pr0-
hlC'rns i11 this fi(•ld rangP from planning a u evolution path so t hat a viable partial product
0111 h" shippNI to fill a market niclw while the full intended functionality has yet to be
i111plen1ent.ed; packaging a product for automated installation and adaptation ; inte ropera
bili ty with products independently obtained from other suppliers; and coping with product
i11ad<>q11a.ries and failures that are revealed by shipped produrts in the field.

CivPn 1.lw significant and rising Pconomic portiou that this is of t hP soft ware industry as
a. wholr>, it is qui tP surprising how Uttle resea.rrh has lwe 11 douP 0 11 thesP prohlems, {\Ven

whc>n 1,Prh nolny;ira.l sol u lions Sl'Plll fpasi bll'.

Industrial Practice ~ Stat(:• of the Art
Drmid ffojJmrm

l'nfoc,·.~ity of Vidm·iri. (.'anad"

Richard lla.m 111ing JHoposPs two rritPria for important rn1warrl1 problP111s: (I) t hP solution
11111 st. o ffPr :rnhstant ial lwnPfi ls a,nd ('2) t hPrl' must lw ,, rPasnuahln a1.l.ack: an a r proa.ch
likPly 1,0)Pad 1,0 a solution . It is thf' a tla.rk th,Lt disti 11g11i11hPR i111porta11t problems from
wi shful thinking. WI' ronshler thr<'e i111porta,11t 1,1·obl(•1t1s itt suft,wa.l'P Pngirweri ng and their
attacks.

Too littl<- spel'ificatio11. Today's software is not developed "to specification". While speci-

12

�cations are written, they are imprecise and incomplete. Compliance is not systematically
enforced and is therefore not achieved. Decisions that should be made by the best designers
are made instead by less-skilled implementors and maintainers. Substantial improvements
are possible, with existing speci�cation methods and unsophisticated mathematics. Ob-
ject speci�cation should be attacked �rst, because it is simpler and better understood than

requirements speci�cation.

Too little mathematics. There is disturbingly little use of mathematics in industrial soft-
ware development. The ad hoc methods used instead are expensive and ineffective. We see
three attacks on this problem. First, select a set of mathematical techniques that is small,
easily mastered, and suitable for frequent application. Second, choose the right balance
between formality and informality. The academic over-emphasis on formality has sti�ed
the industrial use of mathematics in software development. Third, adopt a proof-based
approach in software reviews. These proofs may be formal or informal, and are presented
by software developers to their peers. Tailor the software documentation to support the
proofs.

Too much old code. The installed base is huge, in poor condition, and extremely expen-
sive to maintain. Successful reengineering will be based on three principles. First, apply
the reengineering changes in small increments; wholesale replacement is rarely an option.
Second, apply the changes to code already being modi�ed, for error removal or enhance-
ment. In this way, the additional cost of the reengineering will be small, because the code
must be read, tested, and installed anyway. Third, from the start, establish the target:
speci�cation methods, code standards, etc. Otherwise, the reengineered code is likely to
have the same problems as the old code.

Dave Barstow, Industrial Practice
Observation: software development in industry is client (and profit) driven
Picked four topics:

1) practice of software engineering (SE): scientific basis is lacking
2) need applied science leading to sound engineering practice
3) judge products, tools, techniques, etc. in economic context
4) socio-economic: lar e installed base gets worse because of maintenance5) SE by the masses: B§SIC, Hypercard, etc. support the individual, but

no support for team or peo e working toget er.
Bile: good engineering needs sci asis, but is not being developed by

researchers
Giles: why should researchers change their a enda?
Iico: no change required, but there is room or people developing this

sci base comparable to chem e using chem or mech eng using physics
Barstow: need to apply cost model (no routinely taught in univ??) no
Garlan: cost model often seriously flawed: important parameters not included,

cost often amortized over many products and projects.
Eile: reverse engineering necessary to capture good ideas in old code.
Erhard: what is research doin for maintaining and evolving new software?

does research work at east on tools for this purpose?
Nico: but we develop new langu es, new concepts, tool ideas; this contributes

to basis for sup orting t e evolution of software.
Barstow: what to do wit Europe > 1992? (Industry wants to serve

European community)
uniform credit card payment? telephone? gas station service? ECU?

Gentleman, Industrial erspectiveObservation: <1990 emphasis on large systems for large companies.
2) sizable market: > $608
3) lar e number of small com anies: > 12,000
4) pro uct must evolve in or er to stay in market

a. growing sophistication of users
b. new companies that do a better job (Persuasion > Powerpoint)

5) great turnover in personnel: 30%; not known whether this applies to
all, or to the 1/8 - programers, or to sales staff.

6) interoperability is crucial for market share
7) feedback from customer and customer satisfaction must be collected

Barstow: resources must be applied at the right moment: late-to-market
implies great loss in market share.

Halter: list of issues: but what solutions do you propose?
Gentleman: SE was looked upon as a management issue for a long time.

13

fications are written , they are imprecise and incomplete. Compliance is not systematically
enforced and is therefore not achieved. Decisions that should be made by the best designers
are made instead by less-skilled implementors and maintainers. Substantial improvements
are possible, with existing specification methods and unsophisticated mathematics. Ob
ject specification should be attacked first, because it is simpler and better understood than
requirements specification.

Too little mathematics . There is disturbingly little use of mathematics in indust rial soft
ware development. The ad hoe methods used instead are expensive and ineffective. We see
three attacks on this problem. First , select a set of mathematical technjques that is small,
easily mastered , and suitable for frequen t application. Second, choose the right balance
between form ality and informality. The academic over-emphasis on formality has stifled
the industri al use of mathemati cs in software development. Thlrd, adopt a proof-based
approach in software reviews. These proofs may be formal or informal , and are presented
by software developers to thei r peers. Tailor the software documentation to support the
proofs.

Too much old code. The installed base is huge, in poor conclition , and extremely expen
sive to maintain. Successful reengineering will be based on t hree principles. First, apply
the reengi neering changes in small increments; wholesale replacement is rarely an opt ion.
Second, apply the changes to code already being morufied , for error removal or enhance
ment . In thls way, the additional cost of the reengineering will be small, because the code
must be read , tested, and instaUed anyway. Third, from the start, establish the target:
specification methods, code standards, etc. Otherwise, t he reengineered code is likely to
have the same problems as the old code.

Dave Barstov , lndu~trial Practice
Observation: software developaent in industry is cl ient (and profit) driven
Picked four topics:

1) practice of software engineering (SE): scientific basis is lacking
2) need applied science leading to sound engineering pract i ce
3) judge products, tools, techniques, etc. in econoaic context
4) socio- econoaic: large installed base gets vorse because of aaintenance
5) SE by the ■asses : BASIC, Hypercard, etc. support the indivi dual , but

no support for teaa or people vorking together.
Vile: good engineering needs sci basis, but is not being developed by

researchers
Giles: vhy should researchers change their agenda?
lico: no change required, but there is roo■ for people developing this

sci base co■parable to chea eng using che■ or aech eng using physics
Barstov: need to apply cost aodel (not routinely taught in univ??) no
Garlan: cost aodel often seriously flaved: iaportant paraaeters not included,

cost often aaortized over ■any products and projects .
Wile: reverse engineering necessary to capture good ideas in old code.
Erhard : vhat is research doing for ■aintaining and evolving nev software?

does research vork at least on tools for this p~ose?
lico: but ve develop nev languages, nev concepts, tool ideas; this contributes

to basis for supporting tlie evolution of software.
Barstow: vhat to do vith Europe> 1992? (Industry vants to serve

European co-unity)
unifor■ credit c ard payaent? telephone? gas station service? ECU?

Gentle■an , Industrial perspective
Observation: <1990 eaphasis on large systeas for large co■panies.

2) sizable aarket: > $608
3) large nuaber of s aall coapanies: > 121000
4) product aust evolve in order to stay in ■arket

a. groving sophistication of users
b. nev coapan1es that do a better job (Persuasion > Poverpoint)

5) great turnover in personnel: 30\; not knovn vhether this applies to
all, or to the 1/8 • progra■aers, or to sales staff.

6) interoperability is crucial for aarket share
7) feedback fro■ custoaer and custoaer satisfaction aust be collected

Barstov: resources aust be applied at the right ao■ent: late-to-■arket
iaplies great 101111 in aarket share.

Walter: list of issues : but vhat solution■ do you propose?
Gentleaan: SE vu looked upon a■ a ■anageaent issue for a long ti■e.

13

better: develop technolog for problems you have chance of solving.Dieter: but what kind of research would industry like to see?
answer: 1) teach systems and not programming from a blank piece of paper

2) how to et data back from users
3) how to eal with flexible customization
4) reverse engineering and support for system evolution

Barstow: add to this list
5) system architectures usable by many
6) domain modelling
7) formal methods or being precise in specs
8) think in terms of distributed systems.

Hoffman, Gap between software research and practice
Observation: Humphrey has alerted us to organizational aspects precondition

for success.
Hamming: how to do important research? 1) result must have effect 2) outline

an attack (don't undertake to solve the perpetual motion problem)
compliance: the specs that exist must be obeyed as accurately as possible;

(result of a heated discussion)
extensions or changes in specs must be discussed with all parties
involved and not be implemented on initiative of single individual

Look for mathematical tools for software development descri tion.
Garlan: not black/white choice: mixture of formal & informa is possible (2)
Frankl: specs can be for different audience: implementors, customers, users,

automatic generation of test cases, etc.
Axel: not all problems lend themselves for mathematization
Bernard: disagree: then domain must look for math specification.
Hhat to do with old code for systems that are still heavily used and operate
on large volumes of important data.
Hoffman: restructure and �picky�bag� change on the fly
Erhard: disa ee; practice shows peo le make a great mess of it. Alternative:

firs restructure and then c ange.
in favor of simultaneous approach: code is understood only once

while bei analyzed and restructured;
against: mess, and etter overview of the whole before

understandin change that is effective.
question: is incremen al change of old code possible? (no answer provided).

5 Session �Modeling and Design�

The Need for a Science of Software Architectures
David Garlan

Carnegie Mellon University, Pittsburgh, Pennsylvania

As the size of software systems increases, the design problem goes beyond the algorithms
and data structures of the computation. Designing and specifying the overall system
structure emerges as a new kind of challenge. Currently good software designers deve-
lop large-scale systems using structuring techniques that have evolved informally over the
years. But these architectural paradigms are understood only informally and idiomati-
cally. As a consequence, we see the proliferation of systems that have many of the same
architectural properties but are difficult to compare with any precision. Moreover, when
designing a new system it is almost impossible to make principled decisions about which
architecture to use for a given application.

The development of a scienti�c basis for software architecture will enable new systems
to be built, compared, and analyzed in rigorous ways. It will allow engineers to more
fully exploit existing designs. It will enable us to document and understand systems far
better than we now can. It will enable us to produce effective tools and will form the
foundation for a new discipline of large-scale system design. To achieve this goal, research
is needed in �ve areas: Notations, formal models, tools and environments, doma.in-speci�c
architectures, and education.

14

better: develop technology for problems you have chance of solving.
Dieter: but what kind of research would industry like to see?
answer: 1) teach systems and not prograJ111Ding from a blank piece of paper

2) how to get data back fro■ users
3) how to deal with flexible customization
4) reverse engineering and support for system evolution

Barstow: add to this list
5) system architectures usable by many
6) domain modelling
7) formal methods for being precise in specs
8) think in terms of distributed systems .

Hoffaan, Gap between software research and practice
Observation: H1111phrey has alerted us to organizational aspects precondition

for success.
Hamming: how to do important research? 1) result must have effect 2) outline

an attack (don't undertake to solve the perpetual motion problem)
compliance: the specs that exist must be obeyed as accurately as possible ;

(result of a heated discussion)
extensions or changes in specs must be discussed with all parties
involved and not be implemented on initiative of single jndividual

Look for matheaatical tools for software development description.
Carlan: not black/white choice: mixture of f ormal t informal is possible (z)
Frankl: specs can be for different audience: implementors, customers, users,

automatic generation of test cases, etc.
Axel : not all problems lend themselves for mathematization
Bernard: disagree: then domain must look for math specification.
What to do with old code for systems that are still heavily used and operate
on large vol1111es of important data.
Hoffman: restructure and 'picky-bag• change on the fly
Erhard: disagree; practice shows people make a great mess of it. Alternative:

first restructure and then change.
in favor of simultaneous approach: code is understood only once

while being analyzed and restructured;
against: mess, and Eetter overview of the whole before

understanding change that is effective.
question: is incremental change of old code possible? (no answer provided).

5 Session "Modeling and Design"

The Need for a Science of Software Architectures
David Carlan

Camegie Mellon University, Pittsburgh, Pennsylvania

As the size of software systems increases, the design problem goes beyond the algorithms
and data structures of the computation. Designing and specifying the overall system
structure emerges as a new kind of challenge. Currently good software designers deve
lop large-scale systems using structuring techniques that have evolved informa.lly over the
years. But these architectural paradigms are understood only informa.lly and idiomati
cally. As a consequence, we see the proliferation of systems that have many of the same
architectural properties but are difficult to compare with any precision. Moreover, when
designing a new system it is almost impossible to make principled decisions about which
architecture to use for a given application.

The development of a scientific ha.sis for software architecture will enable new systems
to be built, compared, and analyzed in rigorous ways. It will allow engineers to more
fully exploit existing designs. It will enable us to document and understand systems far
better than we now can. It will enable us to produce effective tools and will form the
foundation for a new discipline oflarge-scale system design. To achieve this goal, research
is needed in five areas: Notations, formal models, tools and environments, domain-specific
architectures, and education.

14

How to See the Forest Behind t11e Big Tree

Roland A/lz'tte1�1nair, Universz'tc'it Klagenfurt, Austria

Structured, implying tree-.s't'rm:tm'ed and Top-Down has helped Software Engineering to
overcome so many problems during the last �Z0 to 25 yea.rs that it is hard to accept that
this notion constitutes a barrier for the future development of the �eld.

We all agree that the challenges of building a l02a:yz system and the challenges of building
a 104:z:yz or 106x312 system are uncomparable (rcyz is LOC, DSI, n, or any other measure).
Nevertheless, we act as if 106 = 10"� and try to approach the new challenges with the
old cures.

Hence, my questions to our discipline: (1) how to solve 106 = 1032 in software development;
(2) when is 106 = 1032, when is it 1022-102, and when is it (102+10�+. . . 102)3; (3) what is
the notion of �approximately� in Software Engineering; (4) how to express �negotiability�
in designs formally; 0‚ how to design, specify, and maintain software in manageable pieces
for cooperation in a huge system; (6) how to maintain operating old software, integrate it
with software created according to new paradigms, and bring the whole system gradually
up to the state of the art; (7) how to integrate software developed according to different
paradigms in a neat (and efficient) way; (8) how to live with or integrate software that
satis�es its speci�cation �most of the time�; (9) how to preach the new gospel, containing
more formality, to the lovers of the quick �x & the dirty hack.

In summary: How to deal with forests of mixed nature, such that each tree �naturally�
supports the others �.7 What is a �federated software system�, what questions and what
answers are provided by such a concept ?

The State of the Art of Software En �ineering:
Analysis, Suggestions, and Steps Towar s a Solution

Manfred Nagl
RWTH Aachen, Germany

The state of the art in software engineering, even for conventional software, is rather
limited. We still do hardly understand what software is, what properties software should
have, and how it should be developed, maintained, and reused. Especially for the most
risky areas of software engineering like requirements engineering, architecture modelling,
and project planning we do not have ready and applicable solutions. The state of the art
in industry is more craftsmanship than engineering based on a scienti�c discipline.

The problem, in my opinion, besides the implications of immateriality of software is that
software problems have to be specialized in order to get deep solutions. At the moment,
software engineering is the claim of a general engineering discipline. Software engineering
has to be split into (1) an application area technology (business software, system software,
process engineering software, etc.), and into (2) a system structure technology (batch
systems, dialog systems, distributed systems, etc.).

Having these two (or more) dimensions in mind, for different working areas (requirements
engineering, architecture modelling, etc.), for software process, and con�guration control

15

How to See the Forest Behind the Big Tree
Roland Mittennair, UnivF.1·si liit [{lagenfu.rt, A ustr-ia

Stn,ctm·ed , iniplying t1·ec-strnd1wed and Top-Duwn has helped Software Engin{'ering to
overcome so many problems during the last 20 to 25 years that it is ha rd to accept that
this notion constitutes a barrier for the future developmP.nt of the field.

We all agree that the challenges of building a 102 xyz system and the challenges of builcling
a !04xyz or I06xyz system are un comparable (xyz is LOC, OSI , n, or any other measure) .
Nevertheless, we act as if 106 = 1011+1 and try to approach the new challenges with the
old cures.

Hence, my questions to our discipline: (I) how to sol ve 106 = 1032
in software development;

(2) when is 106 = 1032
, when is it 1022 -102, and wl1en is it (102+ 102 + ... 102) 3 ; (3) what is

the notion of "approximately" in Software Engineering; (4) how to express "negotiability"
in designs formaUy; (.5) how to design , specify, and maintain software in manageable pieces
for cooperation in a huge system; (6) 110w to maintain operating old software, integrate it
witl1 software created according to new paradigms, and bring th e whole system gradually
up to the state of the art; (7) how to integrate software developed according to cLifferent
paracUgms in a neat (and efficient) way; (8) bow to li ve witl1 or integrate software that
satisfie.s its specification "most of the time"; (9) how to preach the new gospel, containing
more formality, to the lovers of the quick fix & the dirty hack.

In summary: How to deal with forests of mixed nature, such that each tree "naturally"
supports the others ? What is a "federated software system", what questions and what
answers are provided by such a concept ?

The State of the Art of Software Engineering:
Analysis, Suggestions, and Steps Towards a Solution

Manfred Nagl
RWTH Aachen, Germany

The state of the art in software engiueering, even for conventional software, is rather
limited. Wt' still do hardly understand what software is, what properties softwa re should
have, and how it should be Jevelopecl , maintained, and reused. Especially for the most
risky areas of software engineering like requirements engineering, a.rcl1itecture moclelJing,
aud project planning we do not have ready and applicable solutions. The state of the a rt
in industry is more r:ra.ftsmanship than engineering based on a scientific discipline .

The problem, iu my opinion, besides the implications of immateri ality of software is that
software problems have to be specialized in order to get deep solu tions . At t he moment,
software engineering is the claim of a general engineering discipline. Software engineering
has to be split into (1) an application area technology (business software, system software,
process engineering software, etc.), and into (2) a system structure technology (batch
systems, dialog systems, distributed systems, etc.).

Having these two (or more) dimensions in mind , for different working areas (reqwrements
engi neering, architecture modelling, et c.), for software process, and configuration control

15

tailored concepts, languages, methods, and tools have to be developed. To demonstrate
this, a quality compiler (system software, batch system) was taken as an example. This
proceeding of carefully studying relevant representatives of software systems will produce
a quantum jump with respect to (a) quality of software and its realization effort, and
(b) quality, applicability of suitable means to produce and maintain this software.

Our group has made some modest progress with respect to the above approach. We
have carefully studied the representative �software development environments� (IPSEN
project) belonging to intelligent dialog systems, and we have developed special concepts,
languages, and tools for developing software development environments. As a basis for
such specializations we worked on requirements engineering, architecture modeling, and
con�guration control in general. Process control is under investigation.

Research Challenges from Reuse Technology
Erhard Ploedereder

Tartan lnc., Monroeville, Pennsylvania

In the world of compilation environments, reuse and recombination of large software com-
ponents to form new products is an economic necessity. Only through those methods,
compilation environments can be constructed and maintained that each consist of 105
to 106 LOC. Extrapolating from this experience, it appears that signi�cant leverage can
be obtained from domain-speci�c analysis in order to obtain generic system architectures
and to identify reusable components for the respective application domain. Somewhat
surprisingly, there are no commonly agreed formalisms to describe system architectures,
enabling wider accessibility of architectural experience.

Reuse poses signi�cant issues for con�guration management, as its true economic leverage
is achieved only if instances of shared components share in common maintenance. Or-
ganizational structures in a company have a fundamental impact on the ability to reuse
and share the maintenance of reused components. Also, they emphasize different aspects
of con�guration management. For example, an organization congruent to the functional
components of products will facilitate their version control; yet the integration of the com-
ponents becomes rather difficult. Alternatively, an organization structured along product
lines will generally ease the integration of reused components, but makes their version
control much more dif�cult, since temporary deviations from baselined components are
implicitly encouraged. Finding the right organizational structures and the right con�gu-
ration management approach to support large-scale reuse is a most challenging problem.
Thus, organizational aspects exert an important in�uence and need to be taken into ac-
count in research.

Today�s university graduates may be good programmers and passable designers on small-
scale problems, but often are completely unprepared to integrate their designs into larger
system architectures. What is needed is educational exposure to large system designs,
taught by examples and critical evaluation of good and bad architectural decisions. Yet,
such examples, and notations to describe them in, seem to be sorely lacking. Egocentric
designs (�I solve it all in my limited area of responsibility in the overall system�) are encou-
raged by the educational system, but are actively detrimental in commercial application
generation. An appreciation of �design-in-the-many� approaches and problems needs to be
created. While programming-in-the-many issues have been researched extensively �� but

16

tailored concepts, languages, methods, and tools bave to be developed. To demonstrate
this, a quality compiler (system software , batch system) wa.s taken as an example. This
proceeding of carefuUy studying relevant representatives of software systems will produce
a quantum jump with re.spect to (a) quality of software and its reaHzatiou effort , and
(b) quality, applicability of suitable means to produce and maintain this software.

Our group ha.'; ma.de some modest progress with respect to the above approach. We
have carefully studied the representative "software development en vironments" (IPSEN
project) belonging to intelligent dialog systems, and we have developed special concepts,
languages, and tools for developing software development environments. As a basis for
such specializations we worked on requ._irements engineering, architecture modeling, and
configuration control in general. Process control is under investigation.

Research Challenges fro1n Reuse Technology
Er·hard Ploedereder

Tartan Inc. , Monroeville, Pennsylvania

ln the world of compilation environments, reuse and recombination of large software com
ponents to form new products is an economic necessity. Only through those methods,
compilation environments can be constructed and maintained that each consist of 105

to 106 LOC. Extrapolating from this experience, it appears that significant leverage can
be obtained from domain-specific analysis in order to obtain generic system architectures
and to identify reusable components for the respective application domain. Somewhat
surprisingly, there are no commonly a.greed formalisms to describe system architectures,
enabling wider accessibility of architectural experience.

Reui:;e 1>oi:;es siguifica.ul ii:;sues for cuufiguraliuu ma.uagemeul , a:, ili:; true economic leverage
is achieved only if instances of shared components share in common maintenance. Or
ganizational structures in a. company have a. fundamental impact on the ability to reuse
and share the maintenance of reused components. Also, they emphasize different aspects
of configuration management. For example, an organization congruent to the functional
components of products will facilitate their version control; yet the integration of the com
ponents becomes rather difficult. Alternatively, an organization structured along product
lines wiU generally ease the integration of reused components, but makes their version
control much more difficult, since temporary deviations from baselined componeuts are
implicitly encouraged. Finding the right organizational structures and the right configu
ration management approach to support large-scale reuse is a most challenging problem.
Thus, organizational aspects exert an important influence and need to be taken into ac
count in research.

Today's university graduates may be good programmers and passable designers on small
scale problems, but often a.re completely unprepared to integrate their designs into larger
system architectures. What is needed is educational exposure to large system designs,
taught by examples and critical evaluation of good and bad architectural decisions. Yet,
such examples, and notations to describe them in , seem to be sorely lacking. Egoc~utric
designs ("I solve it all in my limited area of responsibility in the overall system") are encou
raged by the educational system, but are actively detrimental in commercial a.pplir.ation
generation. An appreciation of "dE>,sign-in-the-ma.ny" approaches and problems needs to be
created. While programming-in-the- many issues have been researched extensively - but

16

are not a big; problem in a highly-structured system architecture �� design-in-the-many
deserves more attention by the research comlnunity.

Dave Garlan, Software Architecture
Observations: it takes several iterations to come up with a satisfactory
s stem description;
H at matters is agreement on the architecture;
Great advantage in time and cost resulted for new generations of
products from the suitable system architecture and its formal description;agl: surprising that your architecture has such a procedural flavor.
Notkin: it is c ear that abstract data types are not the total answer to

describing systems.
Nico: what is needed in addition to functions and data types?
answer: protocols describing the connection and interaction of objects
Hoffman: why did ou show us pictures and not Z-code?
answer: because t e idea underlying the architecture can be better described

that way; the Z-code serves the purpose of being precise and as such
is the right interaction vehicle for designers and implementors.

Observation: one should expect architectures to e fairly domain specific.
lotkin: but can�t you abstract to a higher level of specs for general

architectures? (no answer)
Young: do you have to reason (from scratch) when you change the topology?
answer: no, you understand in advance what kind of changes affect properties

such as deadlock�free, etc.
Hile: do the engineers still use 2 after your departure? Do they express

their design changes this way?
answer: (vague?) the specific is not so important; it is important that they

use a formal expression and vocabulary.

Hittermeier, how to see the FOREST behind the TREE

SE issues:
1) how to introduce a scientific method into SE; (foremost: decomposition)
2) how to maintain a mana eable collection of software components;3) how to maintain old so§tware and integrate it with new
4) must allow tolerance in specifications
5) conceptual modeling must include a dynamic view

lico: is your conceptual model basically the same as Garlan�s architecture?
answer: yesGarlan: essential is that you are willing to represent more than nature of

objects, in particu ar the connection between objects.
Dewayne: these connections are described by constraints (really enough?)

lagl, State of the Art in SE

Observations:
äg goffixed äät of concepts agd/or paradggmso tware ineerin = on i ation ana ement

lotkin: do you really meang�not fixggf or do ougmean �not shared�
answer: yes, not fixed; paradigms shift all t e time
Garlan: should we look for a single framework or model for CH?
answer: no, a combination of (accepted and generally applied) methodsttools
lico: I would not like to do your CH without automation
answer: ractice does not use automated CH systems; this is reality.
Halter: challenge the statement CH 8 SE
Iotkin: it is not correct to say that there are no tools and languages for CH
Hico: some people are lookin for the unique right way to do CH, but I

count myself in with t ose who believe CH is project and company
dependent: thus CH becomes a programming prob em for which you
need good tools and languages (and a lot of automation).

Halter: can you automate a lot of CH? answer: yes
Bernard: to make an existing CH description usable for a new programmer

there must be a language to make it operational and a formalism
to make it precise and meaningful.

Iagl: we are missing an application technology. (stron ly denied by many)a1 : w; mus� helpdapplicationfwrpterskto design good anguages and too s
or t eir omain-s eci ic vor .many: the application writgrs must come to us and ask for help

(I don�t agree; in my opinion we should not start blaming each other)
lagl: use your whole setup for your existin compiler�s CH for the new

compiler pro°ect, whether for a new an ge, a new system or both.
Gentleman: but peop e do exactly that and the law is that it is often

entirely inappropriate.
lagl: don�t use buzzwords and new paradigms, but use established standards.
Bernard: obj.orient is a lot of words, but is used as an unacceptable way of

expressing sloppy semantics. This an example of lack of maturity
Halter: your CH requires incredible manpower; people should not be burdened

with this kind of work and brain overload.
lico: that is why I said you can�t do this without automation.�
Bernard: you can get a lot of reuse from your specialized language that

incorporates frequently used functions and structures.
�otkin: you seem to have a ne ative view on a multi-paradigm; it may be good

to explore new ways an be flexible about what tools or methods to add.
Axel: what is meant is: don�t adopt a fad, think twice before you change.

Erhard Ploedereder, Challenges in Reuse and Configuration Management

17

a.rP not a. big problem in a highly-strnctured system architecture - design-in- the-many
deservP.s more attention by the research community.

Dave Garlan, Softvare Architecture
Observations: it takes several iterations to co•e up vith a satisf3ctory
syste• description;
What •atters 1s agree•ent on the architecture;
Great advantage in ti•e and cost resulted for nev generations of
pr.oducts fro• the suitable syste• architecture and its fonal description;
Wagl: surprising that your architecture has such a procedural flavor.
Notkin: it is clear that abstract data types are not the total ansver to

describing syste• s.
Rico: vhat is needed in addition to function.a and data t ypes?
ansver: protocols describing the connection and interaction of objects
Hoff•.an: vhy did you shov us pictures and not Z-code?
ansver: because the idea underlying the architecture can be better described

that vay; the Z-code serves the purpose of being precise and as such
is the right interaction vehicle for designers and illplnentors .

Observation: one should expect architectures to 6e :fairly do•ain specific.
Notkin: but can't you abstract to a higher level o:f specs :for general

architectures? (no ansver)
YoWlg: do you have to reason (:fro• scratch) vhen you change the topology?
ansver: no, you understand in advance vhat kind of changes affect properties

such as deadloclr-:free, etc.
Wile : do t he engineers still use Z after your departure? Do they express

their design changes this vay?
ansver: (vague?) the specific is not so i•portant; it is i•portant that they

use a foraal expression and vocabulary.

Ritter•eier, hov to see the FOREST behind the TREE
SE issues:

1) hov to introduce a scientific •ethod into SE; (fore•ost: deco■position)
2) how to •aintain a aanageable collection o:f software co■ponents;
3) hov to aaintain old softvare and integrate it vith new
4) •ust allov tolerance in seeci:fications
5) conceptual aodeling Must include a dynaaic viev

lico: is your conceptual •odel basically the sa11e as Garlan's architecture?
ansver: yes
Garlan: essential is that you are villing to represent aore than nature of

objects, in particular the connection between objects.
Devayne: these connections are described by constraints (really enough?)

lagl, State o:f the ATt in SE
Observations :

1) no :fixed set of concepts and/or paradigms
2) Software Engineering• Confi~ation "anagnent

lotkin: do you really aean 'not fixed' or do you aean 'not shared'
answer: yes, not :fixed; paradigas shift all the tiae
Garlan: should ve look :for a single fraaework or ■odel for CM?
answer : no , a co■bination of (accepted and generally applied) ■ethodsttools
lico: I vould not like to do your CM without auto■ation
answer: practice does not use auto■ated CM syste■s ; this is reality.
Walter : I challenge the state■ent C" • SE
lotkin : it is not correct to say that there are no tools and languages for CM
lico: so■e people are looking for the unique right vay to do CM, but I

count ■ysel:f in with tfiose vho believe CM is project and co■pany
dependent: thus CM beco■es a progra.aing proble• for vhich you
need good tools and languages (and a lot of auto■ation).

Walter : can you autoaate a lot o:f C"? answer: yes
Bernard: to •ake an existing CM description usable for a nev prograa.er

there ■ust be a language to ■ake it operational and a for.al is•
to ■ake it precise and ■eaningful.

lagl : ve are •issing an application technology. (strongly denied by ■any)
all: we ■ust help application vriters to design good languages and tools

:for their {do■ain-specific) work.
■any : the application uiters •ust co■e to us and ask :for hell?

(I don't agree; in ■y opinion ve should not start blaaing each other)
lagl : use your vhole setup for your existing co■piler ' s CK :for the nev

co■piler project, whether for a nev language, a nev syste■ or both.
Gentle■an: but people do exactly that and the flav is that it is often

entirely inappropriate.
lagl : don't use buzzwords and nev paradigms, but use established standards.
Bernard: obj.orient is a lot of vords, but is used as an unacceptable vay of

expressing sloppy se■antics. This an exa■ple of lack of •aturity
Walter: your CM requires incredible ■anpover; people should not be burdened

with this kind of work and brain overload.
lico: that is vhy I said you can't do this without auto■ation. ·
Bernard: you can get a lot o:f reuse :fro■ your specialized language that

incorporates :frequently used functions and structures.
l otkin : you see■ to have a negative view on a ■ulti-paradig•; it •ay be good

to explore nev vays and be :flexible about vhat tools or ■ethods to add.
Axel: vhat is ■eant is: don't adopt a fad. think t vice before you change.

Erhard Ploedereder, Challenges in Reuse and Configuration "anage■ent

17

Observation: my company has a well defined architectural setup (compiler
technology for a family of languages close to and including Ada).

1) cost of maintaining a large collection of small reusable components
is not worth the trouble. Maintenance cost kills the idea.

Hoffman: is this going to change in the future? (No)
Bernard: but function call instruction sequence is an example of an

extremel useful small reusable com onent.
answer: sure, t ere are useful small reusa le components, but the point is

that maintaining a LARGE number of them does not pay.
2) high-leverage in domain-specific analysis of what might be reusable

Observation: a component is not esigned as a reusable component, but is
reusable when it has been reused. (really? can you not design for reusability?)
Observation: greatest value is in shared use (see also Bernard's earlier remark
abput specialized languages), because can maintain that component across
mu tip e usage groups.Gentleman: bgt must be willing to retrofit after making an improvement of a

reusa e component.
Axel: why not have parameterized reusable modules and have families of reusable

components.
answer: again, the maintenance problem kills you; so, parameterization takes
place when reusable component is reused.
Observation: if you organize by function, reuse ok but system inte ration
difficult. If you organize by product, integration�ok, but reuse di ficult.
Gentleman: these matters are a challenge for education: students need to

develop taste and common sense. Often these are developed by examplefrom senior people in a company (with potential disastrous result.)
Halter: we don�t TR IN our students in system design.
Bernard: can you teach �system architectures�? they can be very different

for various domains.
Notkin: but there are commonality in design and in issues such as space/time

trade-offs, I/O, etc.
Erhard: we come up with an isolated solution and forget to ask how this

solution fits in the larger context.

6 Session �Formal Methods�

Another look at Computer-Assisted Proofs
Gilles Kahn

INRIA, Sophia Antipolzs, France

We try to understand how to engineer proof assistants better because (1) making proofs
inay l)(�(�()llle part of a software development job, ('2) proof (�.oustru(ftion gives new ideas
on prog;rain development, (3) toda_v�s provers have an absolutely atrocious user int.e.rfa.ce.

The priuriple of the construrlion is a rlient�server approarh. Wlll(�.ll implies the design of
a promml to ifo1n1nuni(:ate with existing provers (data, control) and an open-ended user
interfare a.i�('l~_j't«\<'t.1Ire (baserl on events). The linilding of a proof is a. para.l.|el task where
the theorem dataliase is used as a S_V,s"l_I(�lIl�()lllZEttl0l| uwr.lIaulsm. (foustructing each proof
step is whorcj». many ide.as from strur.tIire editors converge to help the user.

There are inany open problems for the future such as: uiinimlzlug the tra�i(' between the
prover a.ud the front end, subcontracting work to external derision proredures, postmo-
ressing and paraphrasing the. proof.

This talk (lescribes joint work with Laurent Thery and Yves Bertot.

18

Observation: my co■pany has a vell defined architectural setup (coapiler
technology for a family of languages close to and including Aaa).

1) cost of maintaining a large collection of saall reusable coaponents
is not vorth the trouble. Maintenance cost kills the idea.

Hoffman: is this going to change in the future? (No)
Bernard: but function call instruction sequence is an exaaple of an

extremely useful small reusable coa~onent.
ansver: sure, there are useful small reusable coaponents , but the point is

that maintaining a LARGE nuaber of the.a does not pay.
2) high-leverage in doaain-specific analysis of vhat a1ght be reusable

Observation: a coaponent is not aesigned as a reusable coaponent , but is
reusable vhen it has been reused. (really? can you not des1gn for reusability?)
Observation: greatest value is i n shared use (see also Bernard's earlier reaark
about specialized languages), because can aaintain that coaponent across
aultiple usage groups.
Gentleman: but aust be villing to retrofit after aating an iaproveaent of a

reusable component.
Axel: vhy not have para■eterized reusable aodules and have faailies of reusable

components?
answer: again, the maintenance problea kills you; so, paraaeterization ta.kes
place vhen reusable component is reused.
Observation: if you organize by func tion, reuse ok , but systea intefratlun
difficult. If you organize by product, integration ok, but reuse di ficult.
Gentleman: these matters are a challenge for education: students need to

develop taste and co .. on sense. Often these are developed by exaafle
from senior people in a coapany (vith potential disastrous result.)

Walter : ve don't TRAIN our students in systea design.
Bernard: can you teach •system architectures•? they can be very different

for various doaains.
Notkin: but there are co .. onality in design and in issues such as space/tiae

trade-offs, 1/0, etc.
Erhard: ve come up vith an isolated solution and forget to ask how this

solution fits in the larger context.

6 Session "Formal Methods"

Another look at. Cotnputer-Assistecl Proofs
G'illes /(aim

INRIA, Sophia Antipolis, France

W<' t r_v l() 1111 d,, rstand l1ow to <'ngi nerr proof a.c;sist.;i.nts bPt:t:er because (I) making proofs
111a.v l11•ro111<' part. of a softw;i,rp clPwlup111t•nt job, (2) proof ro11sl.rnrtion l?;ives new ideas

1>11 pr11)'!.;ra111 d1'\'<'lopn1e11L, (:3) Lochiy's provPrs li.wr- a11 a.bsolut.Ply ,Ltrocious USN int.P.rface.

T li<' priu<'ipl<' n f t hP. ronstrnrtio11 is a rliPnt.- snvN a pp road1, whid1 i111pli cs thP dPsig11 of
a protocol to ,·11111111unicat,e with existi 11g provPrs (data, <·011trol) ,tnd ,Ln open-en ded user
i11h•rf,H·P a rTl•/ t.,l'f.un' (bas(•tl on evP11l.s). The hnilding of ,L proof is a. p,tra.Ll<~I tru;k where
I h0 tlll'urPn1 da.tabasP is usNI as a. S_\·11rhroniza.tin11 11wrl1a.11l!l t11. (:uustructing Pad1 proof
::- t<•p is wli('IT many icl<•as from s trnrt11re f'dilots cot1VPll!/' to l,"11> t.hP user.

Th<'H' ,tr<' rw1,11y opPn prohl<•ms for t hr- fut.11tP s11d1 as: 111inh11lzl11g the trallir hPtwf'e11 t hf'

IHO\"Pr and t lH' front l'nd , s11br.o11trart.i11g work to t!XtNual tl~dsl1111 pron~dlltf:'S, post.pro
n•ssing a nd para.phras ing tbe proof.

This ta.lk describes joint work with Laure.nt ThP.ry and Yves Be r tot.

18

Reuse and Declarative Formalisms

Bernard Lang
INRIA Rocqucncourt, Le Chesnay Cedex, France

Being more a computer scientist than a software engineer, I see signi�cant improvements
to current software production problems more in tools and techniques than in methods,
processes or management.

A fundamental paradigm of programming practice evolution and improvement (and, for
that matter, scienti�c practice in general) is to hide the obvious and routine in order to
concentrate on what is new and difficult. Hence, as programming techniques are ma-
stered, they get integrated (hidden?) in languages, systems, and libraries and are thus
unconsciously reused by everyone. This may concern application-speci�c know-how, which
tends to be incorporated in libraries, or architecturalsknow-how, which gets incorporated

in languages. Most people agree that ob ject-oriented techniques, though immature and
poorly identified or de�ned, have considerably improved the programming practice. This
is a strong hint for the need to further identify and analyze programming or architectu-
ral techniques that can be incorporated in our languages to permit and encourage better
practice.

Note that there is a strong relation between languages and libraries. For one thing,
components that used to be parts of languages (e.g. I/O routines, basic types) are now
to be found in associated libraries (e.g. in ADA). From a different point of view, there is
a continuum from simple reusable components, to parametric components, to component
generators (i.e. �compilers�), where the parameters have evolved in complexity into a
specialized programming language.

Another important aspect of software development is to try to emphasize what is to be
done (speci�cation) over how it. is to be done (implementation), i.e. in more formal words,
denotational formalisms over operational ones. In practice, it amounts to a direct compi-
lation of the specification, thus skipping design and coding phases (e.g. direct compilation
of grammars into parsers). Of course, this implies the development of sophisticated and
specialized compilation techniques.

At IN RIA-Rocquencourt we are developing two converging projects along those lines. The
first one concerns the study of declarative formalisms based on Horn clauses, with complete
implementations (unlike Prolog). They include context-free grammars, datalog (deductive
databases), Prolog like inference formalism, natural semantics, and a variety of natural
language syntactic formalisms. Various applications are possible in software engineering,
including notably component description languages, automatic reuse, con�guration con-
trol, man-machine interfaces.

The second project concerns the development of an extension of ML polymorphism to ab-
stract data types. The programmer simply uses functions on objetcts. The type checker
automatically infers objects signatures from the program. and appropriate implementati-
ons are then found or produced in a �library� by an inference tool.

l9

Reuse and Declarative Fonnalis1ns
Bernard Lang

INRIA Rocquwcourt, Le Ches11ay Cedex, France

Being more a. computer scientist than a software engineer, I see significant improvements
to current software production problems more in tools and techniques than in methods,
processes or management.

A fundamental paradigm of programming practice evolution and improvement (and, for
that matter, scientific practice in general) is to hide the obvious and routine in order to
concentrate on what is new and difficult. Hence, as programming techniques are ma
stered , they get integrated (hldden ?) in languages, systems, and libraries and are thus
unconsciously reused by everyone. This may concern application-specific know-how, which
tends to be incorporated in libraries, or architectural know-how, wh.ich gets incorporated
in languages. Most people agree that object-oriented techniques, though immature and
poorly identified or defined, have considerably improved the programming practice. This
is a strong hint for the need to further identify and analyze programming or architectu
ral techniques that can be incorporated in our languages to permit and encourage better
practice.

Note that there is a. strong relation between languages and libraries. For one thing,
components that used to be parts of languages (e.g. 1/0 routines, basic types) a.re now
to be found in associated libraries (e.g. in ADA). From a different point of view, there is
a. continuum from simple reusable components, to parametric components, to component
generators (i .e. "compilers"), where the parameters have evolved in complexity into a
specialized programming language.

Another important aspect of software development is to try to emphasize what is to be
done (specification) over how itis to be done (implementation), i.e. in more formal words,
denotational formalisms over operational ones. In practice, it amounts to a direct compi
lation of the specification, thus skipping design and coding phases (e.g. direct compilati~n
of grammars into parsers). Of course, this implies the development of sophisticated aqd
specialized compilation techniques.

At lNRIA-Rocquencourt we are developing two converging projects along those lines. The
first one concerns the study of declarative formal isms based on Horn clauses, with complete
implementations (unlike Prolog). They include context-free grammars, data.log (deductive
databases), Prolog like inference formalism , natural semantics , and a variety of natural
language syntactic formalisms. Various applications are possible in software ~nginecring,
including notably component description languages, automatic reuse, configuration con
trol, man-machine interfaces.

The second project concerns the development of an extension of ML polymorphism to ab
stract data types. The programmer simply uses functions on objetcts. The type checker
automatically infers objects signatur<'s from the program. and appropriate implementati
ons are then found or produced in a klihrary'· by an infcrE'ncc- tool.

19

The Challenge of Controlling Change
in Software Development.

Wilhelm Schäfer
Universität Dortmund, Germany

Software is made up for being changed. Due to its characteristics is the possibility of
changing it easily, at least physically. This mental picture of changing software easily is,
however, a major reason for a non-systematic (�trial and error�) approach for constructing
even large software systems. It is consequently also the source of many major bugs and
non-maintainable, non-documented software.

Our discipline (Software Engineering) has proposed a number of approaches to deal with
that problem. Two of them are sketched here. One is to change the CS curricula. The
university education has to include courses in team development, collaborative work with
industry, etc., such that students get aware of the problems of substantial software deve-
lopment before they start to work on it in practice.

Second, controlling change can be supported by advanced software development environ-
ments. Based on a precise executable de�nition of the software process, those environments
provide all information to a software developer (or manager) that is necessary to perform a
particular activity. This helps to foresee consequences of changes, to see effects of previous
changes, and to automatically broadcast messages about changes to all team members.

Basic technology to build such automated support is partly available in other areas of
CS and also in SE. It has to be taken and combined in an appropriate way and it has to
be improved in one way or the other. Such technology includes goal-driven (rule-driven)
descriptions of a software process combined with advanced con�guration management,
the use of ob ject-oriented database systems to support pelrsistency and safety during the
course of a software project, group transaction concepts and basic concurrency control
mechanisms (like events, triggers) to support multi-user distributed work, which in parti-
cular means access to shared information, and last but not least precise semantic models
of the description formalisms applied.

Where the Formal Approaches to Software Development Co in the
T Next Decade

Wei Li

Beijing University of Aeronautics and Astronautics, Beijing, China

Formal approaches to software development is one of the important research directions of
software engineering. ln the last decade, the research in this direction was in the stage of
program development. lt focuses on the problems of how to formally develop programs for
a given speci�cation and how to verify the developed programs to meet the speci�cation.
The mathematical machinery employed is the deduction techniques of �rst oder logic or
its varieties, such as intnitionistic logic or various kinds of modal logics.

In the next decade, it is most likely that the formal approach to speci�cation development
will become a new direction. The target will be how to formally develop a speci�cation
according to users requirements. The difficulty is that. in general, we can not describe

�20

The Challenge of Controlling Change
in Software Development.

Wilhelm Schaf er
Universitcit Dortmund, Germany

Software is made up for being changed . Due to its characteristics is the possibility of
changing it easily, at least physically. This mental picture of changing softwart' easily is,
however, a major reason for a non-systematic ("trial and error") approach for constructing
even large software systems. It is consequently also the source of many major 1.>Ugs and
non-maintainable, non-documented software.

Our discipline (Software Engineering) has proposed a number of approaches to deal with
that problem. Two of them are sketched here. One is to change the CS curricula. The
university cducatiou has to include courses in team development, collaborative work with
iudustry, etc., such t ha t students get aware of the problems of substantial software deve
lopment before t hey start to work ou it in practice.

Second, controlling change can be supported by advanced software development environ
ments. Based on a precise executable definition of the software process, those environments
provide all information to a software developer (or manager) that is necessary to perform a
particular activity. This helps to foresee consequences of changes, to see effects of previous
changes, and to automatically broadcast messages about changes to all team members.

Basic technology to build such automated support is partly available in other areas of
CS and also in SE. It has to be taken and combined in an appropriate way and it has to
be improved in one way or the other. Such technology includes goal-driven (rule-driven)
descriptions of a software process combined with advanced configuration management,
the use of object-oriented database systems to support persistency and safety during the
course of a software project, group transaction concepts and basic concurrency control
mechanisms (Uke events, triggers) to support multi-user distributed work, which in parti
cular means access to shared information, and last but not least precise semantic models
of the description formalisms applied.

Where the Formal Approaches to Software Development Go in the
Next Decade

Wei Li
Beijing University of Aeronautics and Astronautics, Beijing, China

Formal approaches to software development is one of the important research directions of
software engiueering. 111 the last decade, the research in this direction was in the stage of
program development. It focuses on the problems of how to formally de\'elop programs for
a given specification and how to \·erify the developed programs to meet the specification.
The mathematical machinery employed is the deduction techniques of first oder logic or
its varieties, sud1 as intuitionistic logic or various kinds of modal logics.

In the next decade, it is most likely t hat the formal approach to Spl'cification development
will become a new dir"ction . The target will be how to formally de\'elop a spec.ification
according to user 's requirements. The difficulty is that, in general , we can not describe

20

a user�s requirement formally, because if it were, it would be a speci�cation. To solve
this kind of problem, the deduction tools based on �rst order logic mentioned above
a.re not enough. We need a mechanism to formally describe the interaction between the
logical (mathematical) information and the empirical information about the problem to
be speci�ed. A possible solution is to employ non-monotonic logic.

In this talk, the speaker will propose a logical theory of epistemic processes which is a non-
monotonic approach to �rst order logic. In this theory, we will de�ne the basic concepts
involved in speci�cation development, such as developing sequences of speci�cations, new-
properties a.nd user�s rejections for a speci�cation and reconstruction of a speci�cation. All
these concepts will be de�ned model-theoretically in �rst order logic. Non-monotonicity
is de�ned as a characteristic of developing sequences. We will give a procedure to build
a reconstruction of a speci�cation when a new property or a user�s rejection arises. We
will further propose a paradigm of speci�cation development. The concept of complete
speci�cation will also be discussed, and the existence of complete speci�cations for a
closed speci�cation will be proved. We hope that this theory can be used to build the
next generation of proof editors. Finally, we will compare our approach with other non-
monotouic theories. W

Giles Kahn, Computer assisted proofs
The major idea is to separate the proof en ine from the Front-End.
This makes it possible to care about visua ization, o erations on the
representations of proofs separate from the prove tec ique. Horeover,
various provers can be attac ed to the Front-End.
Observations: 1) don�t have control over the language the prover is written

in => need arsers and protocols
2) the user will not be happy, so it is mandatory to design for change

Adrion: mismatch between prover speed and display.answer: not necessarily, ecause prover can build up results and history that
the user can scroll throug .

Garlan: where is the database of theorems? (in the Prover)
does that not lead to a lot of duplication?

answer: not all provers maintain a database of theorems, so facility must
also be in Front-End. (Also use a cache of most recently used theorems?)

Observation: 75% of theorems are used as rewriting rules.
post processing on proofs is done on Front-End node.

(here I forgot to take notes for a while)
Hile: it seems that in our approach the reason for activating a particular

tactic is lost. ll you do is click.
Dewayne: it seems that tactics in your approach become arbitrary programs

or rather macros. (answer?)

Bernard Lang, Reuse; Use of Deductive (or Declarative) Formalisms
Observation: going from reusable components to parameterized generic programs
means tge parameterization becomes writing a program and the reusable program
a com 1 er.

2 Prolog straddles the fence: imperative programming and proof systems.
Garlan: where is natural semantics on our sca e rom context free to your

declarative formalism? answer: decl. form.
Garlan: aren�t some of your inference rules higher order? (yes)
Other work: abstract po ymorphism, based on si natures instead of on types.
Erhard: does your inference engine automatical y generate a type hierarchy?
answer: no, a signature hierarchy.
Garlan: do your si atures basically correspond to HL structs? (yes)
Erhard: I am not t at fond of t pe inference. Redundancy can be very beneficialOssher: there are cases in which type injerence fails.
topic: database queries (and browsing?) based on signatures (like Hing et alii)
Bernard: can have inference rule that composes components.
Phyllis: how is component semantics represented? (ultimately s tactically)could lockup be based on signature + additional info. Hhgt kind of

additional info would be permissible? (no clear answer)
Dewayne: additional information can be handled in Inscape (what kind?)
Erhard: what is the ultimate goal?
Bernard: 1) object-oriented type system (for architectural reasons)

2) efficient Horn clause evaluator.
Snelting: you can infer a query?
Bernard: example: type checking of a function like �mapcar�.

Hilhelm Schaefer, Controlling Change
1) change education: interact with industry = opportunity for SE experience
2) Document change and make visible to others

Erhard: is your control of change �prescriptive� or �advisory�?
answer: �advisory�

a usN·s r@quirement formally, because if it were, it would be a specification. To solve
t his kind of problem, the deduction tools based on first order logic ment ioned above
an' 11ot Pnough. WP n@ed a mechanism to formally dPscribe the interaction between the
logical (mathematical) information and the empirical information about the problem to
h" specified. A possible solu t ion is to employ 11on-monot.onic logic.

In this talk . the sp@aker will proposP a logical theory of epistemic processes which is a nou
mouotonic approach to first order logic. In this theory, we will define the basic concepts
invo)vPd in specification d@velopment, such as developing sequences of specifications, new
properties and user's rejections for a specification and reconstruction of a specification. All
t hese conce pts will be defined model-theoretically in first order logic. Non-monotonicity
is defined as a characteristic of developing sequences. We wilJ give a procedu re to huild
a rPronstruction of a specification when a new property or a user's rejection arises. We
will forthPr propose a paradigm of specification development. The concept of complete
spPcificatiou will also be discussed , and t he existence of complete specificat ions for a
clos@cl spPcification will he prov@d. We hopP that t h.is t heory can be nsed to hnilcl thP
11Pxt generation of proof editors. Finally, we will compare our approach with other non
mo notonic theories.

Giles Kahn, Co■puter assisted proofs
The ■ajor idea 1s to separate the proof engine fro■ the Front-End.
This ■akes it possible to care about visualization, operations on the
representations of proofs separate fro■ the prove technique. Moreover,
various provers can be attached to the Front-End.
Observations: 1) don 't have rontrol over the language the prover is vritten

in•> need parsers and protocols
2) the us er vill not be happy, so it is ■andatory to design for change

Adrion: ■is■atch betveen prover speed and display.
ansver: not necessarily, because prover can build up results and history that

the user c an scroll through.
Garlan: vhere is the database of theorelll5? (in the Prover)

does that not lead to a lot of duplication?
ansver: not all provers ■aintain a database of theore■s, so fac ility ■ust

also be in Front-End. (Also use a cache of ■ost recently used theore■s?)
Observation: 75l of theorelll5 are used as revriting rules.

post processing on proofs is done on Front-End node.
(here I forgot to take notes for a vhile)
Wile: it see■s that in {our approach the reason for activating a particular

tactic is lost. 11 rou do is click.
Devayne: it see■s that tactics in your approach beco■e arbitrary progra■s

or rather ■acros . (ansver?)

Bernard Lang , Reuse; Use of Deductive (or Declarative) For■alisas
Observation: going fro■ reusable co■ponents to para■eterized generic prograas
■eans the para■eterization b~co■es vriting a progra■ and the reusable progra■
a co■piler .

2) Prolog straddles the f ence: i■perative progra■aing and proof syste■s.
Garlan: vhere i s natural se■antics on your scale fro■ context free to your

declarative for■alis■? ans ver: > decl. for■ .
Garlan: aren ' t so■e of your inference rules higher order? (yes)
Other vork : abstract polyaorphis■, based on signatures instead of on types.
Erhard: does your inference engine auto■atically generate a type hierarchy?
ansver: no, a signature hierarchy.
Garlan: do your signatures basically correspond t o KL s tructs? (yes)
Erhard : I a■ not that fond of type inference. Redundancy can be very beneficial
Ossher : there are cases in vhich type in~erence fails.
topic: database queries (and brovsing?) hased on signatures (like Wing et alii)
Bernard: can have inference rule that coMposes co■ponents.
Phyllis : hov is co■ponent se■antics represented? (ultimatel~ syntactically)

could lookup be based on signature+ additional info. What kind of
additional info would be per■issible? (no clear ansver)

Devayne: additional infor■ation can be handled in Inscape (vhat kind?)
Erhard : vhat is the ulti■ate goal?
Bernard: l) object-oriented type syste■ (for architectural reasons)

2) efficient Horn clause evaluator.
Snelting: you can infer a query?
Bernard: exa■ple: type checking of a function like '■apcar•.

Wilhel• Schaefer, Controlling Change
1) change education: interact vith industry• opportunity f or SE experience
2) Docu■ent change and ■ake visible to others

Erhard: is your control of chang~ 'prescrirtive• or 'advisory'?
ansver: 'advisory •

2 1

Giles: are we really reinventing the wheel in SE? (have seen database do this)
answer: yes, occasionally; example, process programming reinvented the

. distinction compi er/inter reter.
Nico: but sometimes close termino ogy, sli htly different meaning; example: transactions.answer: true, Gail wrote a good paper on t e difference between atomic

transactions in data ase queries and distributed systems versus
long-range transactions for software module checkin-checkout.

Observation: don�t go for an attempt to solve a problem without checking
whether other (sub)disciplines solved a similar problem.

Nagl: how is dynamic change described in the process programming model?
answer: can be expressed as a rule
Halter: Erhard, does process programming do any good?
Erhard: yes it does some good in making us aware of things to be done

without telling us how to do these things.
It is info providing, not imperative.But does not work without serious customization for particular company.

Bernard: how do you express process control? can�t imagine hat programmers
like to work under rigid task schedule demanded b system. I prefer a
declarative approach over a procedural approach. want to express the
desired end state, not in terms of how to get there.

answer: yes, agree. That is why we work with Prolog.
Notkin: fear information explosion.
answer: automation can help uninteresting stuff migrate out (is that enough?)
Dieter: is roject programming able to describe the different goals of many

peop e on a project?
Nagl: isn�t a CH description more valuable than process control information?
answer: no, I want dynamic info in the ob'ect descri tors.
Bile: yes, that is useful. (would �agl�s H not be a le to do that?)
Gentleman: what about system integration and CH across company boundaries?
Axel: it should be known in advance how relevance of info is computed or

changed. (by �role�, �responsibility� and �time�).

Hei Li, Hhereto with formal approach?
1980-1990: formal approach to pro specs and to verifying prog 8 F(spec)
future: continue this approach an predict new: forma development o
re uirement s ecs.Wile: the ro lem is not �formal rep� but indeed establishing formally that

imp em = spec (this seems counter to Garlan�s use of ormalism to
show design differences and in general being precise).

Observation: the result of the developent looks like algebraic specs.Dewayne,Notkin: odd to use programming for writing speci ications, while we
are used to write speci ications for programing. _

Young: but what good does it do to program s ecifications this way? _
Hilez the design history helps you avoid ma ing a mistake the second time

around.
Bernard: you address correctness, but not co leteness.
speaker believes you can theoretically also s ow completeness.
Dewayne: you need a deterministic pro rauher
Snelting: how do you guarantee that t e development process terminates?

7 Session �Tools and Components�

Generating two-dimensional user interfaces
out of grapl11(+al- specihrtatloiis

.S'tefa1z Jähnicrlzcn
TU Berlin, (lmvnarzy

l�rol)lelns in software engineering are increasingly formed by inclispensable quality and
m-c-essa.r_y improvement of productivity. Though research has been carried out for years, a
development method does not yet exist to achieve a concrete required degree of reliability,
much less to (:onstrnrt. software products which could satisfy correctness criteria common
in other engineering disciplines. However. as the a.c.c.eptanc.e of our systems will increa-
singly depend on quality, it is a social demand as well as a teclmical must to prove the .
funrtiona.lit_v of such systems even if only formally.

The emphasis of such work is, however, not only on teclmical issues but especially on the
education at universities and on industrial continued training.

22

Giles: are we really reinventing the wheel in SE? (have seen database do this)
answer : yes, occasionall{; example, process prograaaing reinve.nted the

distinction co■pi er/interpreter.
Nico: but so■eti■es close ter■inology. slightly different ■eaning; e1a11ple: transactions.
answer: true, Gail wrote a good paper on tfie difference betwffn ato•ic

transactions in datal>ase queries and distributed syst1111s versus
long-range transactions for software •odule checkin-checkout.

Observation: don ' t go for an atte•pt to solve a proble• without checking
whether other (sub)disciplines solved a s1■ilar proble■.

Nagl: how is dyna■ic change described in the process progra■■ing •odel?
answer: can be expressed as a rule
Walter : Erhard, does process progra1111ing do any good?
Erhard: ies it does soae good in •alting us aware of things to be done

without telling us how to do these things.
I t is info providing, not i■perative.
But does not work without serious custo■ization for particular co•pany.

Bernard: how do you express proces·s control? can't i■agine that prograa■ers
like to work under rigid task schedule de•anded bI syste■ . I prefer a
declarative approach over a procedural approach . want to express the
desired end state, not in tens of how to get there.

answer: yes, agree. That is why we work with Prolog.
Notkin: fear infonation explosion.
answer: automation can help uninteresting stuff ■igrate out (is that enough?)
Dieter: is project progra■■ing able to describe the different goals of •any

people on a proJect?
Nagl: isn't a CM description ■ore valuable than process control intor■ation?
answer: no, I want dyna■ic info in the object descriptors.
Wile: yes, that is useful. (would Nagl 's CM not be able to do that?)
GentlP.man: what about syste■ integration and CM across co■pany boundaries?
Axel : it should be known in advance how relevance of info is co■puted or

changed. (by 'role', 'responsibility' and 't i•e•) .

Wei Li, Whereto with for■al approach?
1980-1990 : for■al approach to prog specs and to verifying prog • F(spec)
future: continue this approach and predict new: tonal develop■ent of
requirement specs.
Wile: the proble■ is not 'for■al rep ' but indeed establishing formally that

i■ple■ = spec (this see■s counter to Garlan's use of foraalis■ to
show design differences and in general bei~ precise).

Observation: the result of the develop■ent looks like algebraic specs.
De wayne, Notkin: odd to use progra■■ing for writi_ng specifications, while we

are used to write specifications for pro~a■amg.
Young: but what good does it do to progra■ specifications this way?
Wile: the design history helps you a~oid •alting a •istalte the second tiae

around.
Bernard: you address correctness, but not co■pleteness.
speaker believes you can theoretically also show co•pleteness.
Dewayne: you need a dete~in.istic progra■■er
Snelting: how do you guarantee that tfie deYelop■ent process terainatea?

7 Session "Tools and Components"

GPnnating t.wo-din1ensional user interfaces
out. of graphical specifica.t.ions

Stefau Jiilmichcn
TU llPrliu, C:emiany

l' rohlP111s i II soft.war<' engi llf'<'Ti ng are i ncrf•asingly formed by i ndispensa.ble quality and
IH'r<'ss<1.r_v i111prnv<'mt•11t of productivity. Though rP.sea.rr.h bas been ca.rric!d out for yPa.rs, a.
dc>wlo pnu'n t. mf'thod does not yPt exist, to a.rltiPvf• a. ronnete reqtdred tlegree of reliability.
11111 rh Jpss to ro11strnrt soft.wan' procl11rt~ wlrich rould satisfy rorrert1wss niteria. ro111inon
i11 otlt<'r P1tJ?;i11,,erinp; disdplit1<'s. llow('VN. as tlt" accepta.nr<' of our systems will increa.
si11gl_v dPpend on quality. it is a sorial <l<ltll,\lt<I a.s WPII a.c; a tf'cl111ica.l m11st to prove the
f1111rtionalit_v of such systP.ms <'Vt'll if only formally.

Tl11' Ptnpha,sis o f such work is. however, not only on technical issues but esperially on t he
<'duration at univers ities and on industrial rontinued training.

22

New curricula must be shaped conveying a way of thinking in �systeius� and enabling
engineers to design and implement highly complex systems. lt will not only suffice to
�xate upon formal methods, but new methods must be developed and tought allowing a.
mathematical precise system description, and supporting at the same time an intuitive
comprehension of such systems and corresponding construction methods.

Summarized, the following emphasis has to be put perspectively on research:

0 Speci�cation methods which are formally substantiated and employed with graphical
support,

o transformation techniques which allow the switch between graphical and textual
presentation,

0 transformation techniques to transfer such speci�cations into executable forms.

The acceptance of such techniques will, however, depend further on the possible degree of
automization and correspondingly comfortable tool support.

After some provocative introductory remarks concerning the topic of the workshop, the
talk collapsed into an interesting and stimulating discussion. Main points were:

o Do we need to shift the software industry towards a precision industry?

0 To what extent do we have to base our research on our vision of future technology?

o To what extent do we have to take the needs of our society into account?

As the discussion was very vivid and fruitful, the author �nally cancelled his talk and
hopes for another opportunity to give the originally planned talk. i

Fine-Grained Tool Integration
Harold Ossher

IBM T.J. Watson Research Center, Yorktown Heights, New York

The goal of tool integration is to permit construction of new tools or applications from
existing, simpler ones. Not only is it important that the effort involved be signi�cantly less
than the effort needed to build the new tools from scratch, but it is also important that
the quality and usability of the resulting composite tool be as high as a custom-written
tool.

Consider a simple example: the integration of an editor and a spelling checker. Using
traditional approaches, the tools would interact infrequently. When a �le is saved, the
spelling checker would check it and present any errors to the user, probably separated
visually from the presentation used by the editor. This is much less satisfactory for the
user than, for example, having every incorrectly--spelled word in the text presented by the
editor be automatically highlighted at all times. Accomplishing this requires much tighter
cooperation between the editor and spelling checker. Writing the editor and spelling
checker separately, yet so that they can cooperate as tightly as this not only with each
other but also with uf.hf.�.T tools, written and not yet written, f" eseen and not yet foreseen.
is an interesting and important challenge .

New curricula. must be shaped conveying a way of thiu ki 11g 111 --:,yst~tus'' ,wu eua.bli Ill!,
. engineers to design and implement highJy complex systems. It will not 011ly suffice lo

fixate upon formaJ n1P.thods, but new methods must be developed and tought a llowing a
mathematical precise system description , a.nd supporting at the same time an intnit ivf•
comprehensio11 of such systems aud corresponding construction methods.

Summarized, the folJowing emphasis has to be put perspectively on research:

• Specification methods which a.re formally substantiated and employed with gra.phical
support,

• transformation techniques which alJow the switch between graphical and textual
presentation,

• transformation techniques to transfer such specifications into executable forms.

The acceptance of such techniques will, however, depend further on the possible degree of
automization and corrnspondingly comfortable tool support.

After some provocative introductory remarks concerning the topic of the workshop, tlw
talk collapsed into an itlteresting and stimulating discussion. Ma.in points were:

• Do we need to shift the software industry towards a precision industry?

• To what extent do we have to base our research on our vision of future technology?

• To what extent do we have to take the needs of our society into account?

As the discussion was very vivid and fruitful , the author finally cancelled his talk and
hopes for another opportunity to give the originally planned talk.

Fine-Grained Tool lntegTation
Harold Ossher

IBM T.J. Watson Research Center, Yorktown Heights, New York

The goal of tool integration is to per11llt construction of new tools or applications from
existing, simpler ones. Not only is it important that the effort involved he significantly less
than the effort needed to build the new tools from scratch, but it is also important that
the quality and usability of the resulting composite tool be as high as a n1stom-written
tool.

Consider a simple example: the integration of an editor and a spelJing checker. Using
traditional approaches, the tools would interact infrequently. When a file is saved, the
spelling checker would check it and present any errors to the user, probably separated
visually from the presentation used by the editor. This is much less satisfactory for the
user than, for example, having eVf~ry incorrec.tly-spelJed word in the text presented by the
editor he automatically highlighted a.ta.LI times. Accomplishing tllis requires much tighter
cooperation between the editor and spelling checker. Writing the editor and spelling
checker separately, _ret so that t.hey ca11 wo1>erat,~ a.s tight I I as this not only with <>a.rh
other but also witl1 .,th~r tools , written .1 11d not y<~t writ.tnn, f esf\f'n and not y('t fort'Sf'<'ll.

is a.n interesting a.1111 important cha.lleng, .

23

We propose a �ne-grained, ob ject-oriented approach to too] integration. Tools are made
up of individual methods and state variables of objects. Tools thus share data at the gra-
nularity of (small) objects. They are not explicitly aware of one another, but communicate
via operations and event calls on objects. Multiple tools can respond to a single operation
or event.

Tools built this way can be viewed as matrices of implementations, and can be combined
using extension and merge operators. Given suitable underlying language support, this
makes it possible to add new tools, and the new state they require, in a way that is both
separate from and yet tightly integrated with the existing tools.

Though many open questions remain, our thesis is that this is a promising approach for
building high-quality, extensible systems.

Inference Techniques Can Help a Lot

Gregor Snelting
TU Braunschweig, Germany

Automated deduction and uni�cation theory have made signi�cant progress in the last
years, but the mathematics and algorithms developed in this �eld are not utilized in
Software Engineering. One outstanding counterexample is polymorphic type inference in
functional languages, which allows for greater �exibility and reusability, while at the same
time still preserving the security of strong typing. I propose some other applications of
inference techniques, which might be useful and should be investigated:

0 use of generic type inference techniques allows for polymorphic and reusable software
components with secure interfaces even for traditional languages like Modula or C.

0 advanced uni�cation algorithms (e.g. AC1, order-sorted, higher-order) allow to use
inferred properties of software objects as search keys for_component retrieval.

0 uni�cation techniques can be the basis for inference-based con�guration control,
where consistent con�gurations can be inferred from partial speci�cations and infer-
red information can guide interactive con�guration editing.

Thus, use of uni�cation technology might be very useful.

Calculi vs. Abstraction Mechanisms

David S. Wile

Information Sciences Institute
University of Southern California, Marina del Rey, California

A primary tenet of engineering disciplines is that creativity must be limited and chan-
neled into only those areas of the problem being solved that truly distinguish it from
similar problems. Hence, engineering disciplines build up reusable artifacts � models,
analytic techniques, problem decompositions, and procedures � for each speci�c area of
engineering. Careful study of effects from combinations of models and their properties

24

We propose a fine-grained, object-oriented app roach to tool integration. Tools ar<.' made
up of individual methods and state variables of objects. Tools thus share data al tllf• gra
nularity of (small) objects. They are not explicitly a.ware of one another, but communicate
via operations and event calls on objects. Multiple tools can respond to a single operation
or event.

Tools built this way can be viewed as matrice.,; of implementations, and can be combined
using extension and merge operators. Given suitable underlying language support, this
makes it possible to add new tools, and the new state they require, in a way that is both
separate from and yet tightly integrated with the existing tools .

Though many open questions remain, our thesis is that this is a promising approach for
building high-quality, extensible systems.

Inference Techniques Can Help a Lot
Gregor Snetting

TU Braunschweig, Germany

Automated deduction and unification theory have made significant progress in the last
years, but the mathematics and algorithms developed in this field are not utilized in
Software Engineering. One outstanding counterexample is polymorphic type inference in
functional languages, which allows for greater flexibility and reusability, while at the same
time still preserving the security of strong typing. I propose some other applications of
inference techniques, which might be useful and should be investigated:

• use of generic type inference techniques allows for polymorphic and reusable software
components with secure interfaces even for traditional languages like Modula or C.

• advanced unification algorithms (e.g. ACl, order-sorted, higher-order) allow to use
inferred properties of software objects as search keys for component retrieval.

• unification techniques can be the basis for inference-based configuration control,
where consis tent configurations can be inferred from partial specifications and infer
red information can guide interactive configuratio11 editing.

Thus, use of unification technology might be very useful.

Calculi vs. Abstraction Mechanisn1S
Dauid S. Wile

Information Sciences Institute
Uniuersity of Sou.them California, Marina del Rey, California

A primary tenet of engineering disciplines is that creativity must be limited and chan
neled into only those areas of the problem being solved that truly distinguish it from
similar problems. Hence, engineering disciplines build up reusable artifacts - models,
analytic techniques, problem decompositions, and procedures - for each specific area of
engineering. Careful study of effects from combinations of models and their properties

24

are worked out in advance, cataloged in engineering "lna.mlbooks"� for each engineering
discipline. Fabrication from ��rst principles�, with untried models whose properties are
not well-understood, is entirely the purview of the scientists supporting the engineering
technology.

�Software engineering� is in it.s infancy when Ineasured against. this yardstick of limi-
ted, disciplined, focused creativity leveraged through reuse of well-iuiderstooo. models and
procedures. Software engineers have very few disciplines available to prevent them from
treating every problem totally afresh. Worse, when computer scientists are unable to esta-
blish �general purpose models� that solve all problems, they provide software engineers
with abstraction mechanisms that allow engineers to invent models that neither they nor
anyone else has used before, whose properties and consequences are completely unexplored.

Of course, good abstraction mechanisms are extremely important for computer scientists
establishing the bases for speci�c areas of software engineering, but they must be reco-
gnized as that: tools for experts to provide a sound engineering base for practitioners. I
believe that the development of domain�speci�c languages and calculi for particular areas
of software design will ultimately turn software engineering into a credible profession.

Jaenichen, societal Needs and technological Vision
Observation: Algol68 was a good research vehicle.
Conviction: sof ware industry must be made into precision industry

(attributed to Sintzoff) Focus is on correctness
Nico: but absolute correctness is not always needed and sometimes

too costly to achieve. Other issues are likely to be as
important or even more so: functionality, awkwardness,
usefulness, performance, . .

All: correctness is only one aspect and not necessarily the most im ortant.
He want � uality� which is determined by a number of factors t at maycarry different wei ht for different software products.Wile: recision is not the same as correctness: software may be correct

ut not robust (for instance)"
Nagl: is correctness achieved by precision, or precision by correctness?
speaker: challenge: focus researc of 100 peo 1e on future 10 years.

must lead them into new research areas why?) The choice is based on
NEED for society and VISION of where technology development is heading

many: doubt that this is needed, that it is useful and possi le
Erhard: technology development awfully hard to predict

(who would ave thought ten years a c that everybody would.have a VCR)
others: but no doubt about speed up, para lel com uting and networking
also: we all expect communication and computer echnology to merge
Giles: I am not so sure of this merger: I still have my separate tele hone
Vile: you don't ask society what it needs, but develop what is possi le into

opportunity.Erhard: ut there are certain needs once you introduce technology; e.g.
networking is available, but not safe. We must provide security and
privacy (and accounting?)

Hoffman: instead of NEED, wha ultimately counts is creation of market
Gentelman: NEED <> VISION; vision = antici ating possibilities
Axel: is software omnipotent? (no: FAX, VCR, . .)
Giles: society does not �need� our work; society is concerned with issues_ such as unemployment and we cause more unemplo ent.
Nico: yes, if we are concerned about �need�, we s ou d be serious about

reschooling.Erhard: �näed� is not for precision, but for a useful, usable, cost-effective
pro uct.

Notkin: about tech.vision: no vision is needed for parallel computing; it is
simply happening.

Gentelman: a new thing that is happening and we did (again) not foresee is
the laptop disconnect/reconnect operation which has an impact on
op sys data management.

Ossher: and these events influence the kind of software we write.
conclusion: it is impossible to foresee new technologies emerge. One should

_ be repared to change direction when it happens.
Dieter: et ics is an issue: we are responsible for what we produce.
lotkin: technical advances can have an impact on what we produce, but the

scientific base we all are looking for is not much driven by
technology develo ent.

Erhard: does society nee a large number of small systems or a small numberof large s stems (as T.J.Uatson thought that US would need 6 computers)
Others: large nun er of small s stems must ikely
Garlan: state again the expecta ion that communication and computer tech are

. going to mer e.
Giles: not so sure his will happen soon: we have a hard time convincing

25

are worked out in advance, cataloged i11 enginctiri11g, ··ha11dbu1,k1," for ead1 enginceri11g
discipline. Fabrication from "first pri11riples", willi u11tried 111odeb whose properties a.re
not well-understood, is entirely the purview of tlie s1·ientists su pportiug the engineering
technology.

"Software engineering" is in its infancy when measured against this yardstick of lirni
ted, disciplined, focused creativity leveraged through reuse of w'"U-un<lerstooc.i models and
procedures . Software engineers have very few disciplines available to prevent them from
treating every problem tot ally afresh. Worse, when computer scientists are unable to esta
blish "general purpose models" that solve all problems, they provide software engineers
with abstraction mechanisms that allow engineers to invent models that neither they nor
anyone else has used before, whose properties and consequences ar e completely unex plored.

Of course, good abstraction mechanisms are extremely important for computer scientists
establishing the bases for specific areas of software engineering, but they must be reco
gnized as tha.t: tools for experts to provide a. sound engineering base for practitioners. I
believe that the development of domain-specific languages and calculi for particular areas
of software design wiU ultimately turn software engineering into a credible profession.

Jaenichen, societal Reeds and technological Vision
Observation: Algol68 was a good research vehicle.
Conviction: software industry ■ust be ■ade into precision industry

(attributed to Sintzoff) Focus is on correctness
Nico: but absolute correctness is not always needed and so■eti■es

too costly to achieve. Other issues are likely to be as
i■portant or even ■ore so: functionality, awkwardness,
usefulness 1 perfor■ance, .. All: correctness is only one aspect and not necessarily the ■ost i■portant.

We want 'quality• which is deter■ined by a nu■ber of factors that ■ay
carry different weight for different software products.

Wile : precision is not tfie sa■e as correctness: software ■ay be correct
but not robust (for instance)

Nagl: is correctne33 achieved by precieion, or precision by corr e~tne8s?
speaker: challenge: focus research of 100 people on future 10 years.

■ust lead the• into nev res earch areas (why?) The choice is based on
NEED for society and VISIOI of where technology developaent is heading

■any: doubt that this is needed, that it is useful and possible
Erhard: technology developaent awfully hard to predict

(who would-have thought ten years ago that everybody would have a VCR)
others: but no doubt about speed up , parallel co■puting and networking
also: ve all expect co-unication and co■puter technology to ■erge
Giles: I a■ not so sure of this ■erger: I still have ■y separate telephone
Wile : you don't ask society what it needs, but develop what is possible into

opportunity.
Erhard: but there are certain needs once you introduce technology; e.g.

networking is available, but not safe. We ■ust provide security and
privacy (and accounting?)

Roffman: instead of NEED, vhat ulti■ately counts is creation of aarket
Gentel■an: NEED<> VISION; vision • anticipating possibilities
Axel: is software o■nipotent? (no: FAX, VCR, ..)
Giles: society does not •need' our work ; society is concerned with issues

such as une■ploy■ent and we cause ■ore une■ploy■ent.
Nico: yes, if we are concerned about ' need ' , we should be serious about

reschooling.
Erhard: ' need' is not for precision, but for a useful, usable, cost-effective

product.
Botkin: about tech.vision: no vision is needed for parallel co■puting; it is

simply happening.
Gentel■an: a new thing that is happening and ve did (again) not foresee is

the laptop disconnect/reconnect operation which has an i■pact on
op sys data ■anage■ent .

Ossher: and these events influence the kind of software we write.
conclusion: it is i■possible to foresee new technologies e■erge. One should

be prepared to change direction when it happens.
Dieter: ethics is an issue: we are responsible for what we produce.
lotkin: technical advances can have an i■pact on what we produce, but the

scientific base we all are looking for is not ■uch driven by
technology developaent.

Erhard: does society need a large nuaber of s■all syste■s or a s■all nu■ber
of large syste■s (as T .J. Wat■on thoufht that US would need 6 co■puters)

Others: large nu■ber of s■all sy■taa■ ■J■t ikely
Garlan: s~ate again the expectation that co■-unication and co■puter tech are

going to ■erfe .
Giles: not so sure his will happen ■oon: we have a hard ti■e convincing

25

industry to use something better than assembly code (let alone the idea
they developed the skill of designing good special purpose
languages).

Harold Dssher, Fine-grained Tool Inte ration
buildi _systems by composition in or er to support system evolution.
Observa ion: effort of change must be proportional to size of change, not to

size of system.
2) In current systems a tool consists of bits and pieces (data + methods)

distributed over a collection of objects. These bits and pieces
collectively determine a behavior in the environment

Nico: it seems that you introduce a form of su erclass definition. (yes, true)Erhard: but these su erclasses make the class Rierarchy a lot more complex
and a lot of e fort goes into looking for clashes. (does he pro ose
not to introduce new superclasses? yes, he advocates allowing o jects
to be declared of more than one class, which does not affect the
existin class hierarchy.)

Dssher: by in roducing the notion of �perspective� of an object, you can
determine when which (version) of a method will be applied.

Axel: afraid of your extensions because of team design: people don�t know
(or tell others) what their mates are doing.

Dssher: yes, but I am creatin enabling technology and cannot guarantee that
team mates will talk an keep each other informed.

Snelting, Inference systems can contribute to SE
example: polymorphism, introduces a form of reuse.
Unification theory can be used for various purposes, e.g. database query by

signature (not including function name)
Nico: Hhat about asking for T + 1 and getting T * 1 back?

what about getting all + functions for all types T?
Garlan: Use of Hing/Rolin system is extremely slow.Giles: cannot do without higher order, because need to express semantics inquery. I want to be a le to ask for all commutative functions for .
Bernar : I do not agree that function name does not matter.

also, you cannot derive from text that function is commutative; you
need a declarative mechanism.

Gentelman: what do you ex ect from your approach? Tplot of ATtT has 27
parameters. Search y part fixed? and what is it that you understand
when you get an answer.

Hotkin: I believe it is not helpful to work with a flat structured database
model. Hierarch helps in understanding and browsing.

Bernard: but there wi 1 always be a need for a query that traverses the
hierarchy without the user�s help (look for someone�s email address)

Young: but basing semantics on the use of names does not work; e.g. stack
and queue structures have different method names, but abstract semantics
is the same and should be found when signature-based query is issued.

Halter: drawback of approach is that I ask for a function and typically do
not know how many parameters, or their types. _

conclusion: there are different o inions about the rigid black box view and
flexible, hierarchical mode , browsing approach.

Conjecture: inference tech can be useful for C : it will e.g. answer which
particular component fits a given system version.

Halter: but the usefulness depends very much on what kind of properties i
can specify.

answer: these can be expressed as attributes and features defined by the
implementor. (are we gettin into ordinary pattern matching?)

Snelt' : languages and language eatures are a reat contribution to SE
Giles: eatures are not invented first as art 0 language. Incorporation

into a 1 uage is the end of a thi ing rocess w en the i ea is
well enoug understood to make it availab e.

Dave Eile, Calculi versus Abstraction Mechanisms
Statement: en ineering DISCIPLINE focusses and LIMITS creativity.
observation: istinguish software science, software engineering and software

craftmanship.Goal: want to captureaprocess of design.
design of speci purpose languages is desirable, but still much to
hard for software engineers.

Garlan: are you saying that abstract data types are inductive? _answer: the thing you rove about an ADT instance concerns its entire
history an is t erefore indeed an inductive argument.

Speaker shows example of not%�éon thatfmakes induction implicit.
Jaenichen: but induction is too 0 computer scientists.answer: yes, for scientists, but for engineers what has been learned must

be captured in routinely (re)usab e form.

26

industry to use something better than assembly code (let alone the idea
they developed the skill of designing good special purpose
languages) .

Harold Ossher, Fine-grained Tool Integration
building systeas by composition in order to support system evolution .
Observation: effort of change must be proportional to size of change, not to

size of system.
2) In current systems a tool consists of bits and pieces (data + methods)

distributed over a collection of objects. These bits and pieces
collectively determine a behavior in the environment

lico: it seems that you introduce a form of superclass definition. (yes, true)
Erhard: but these superclasses make the class hierarchy a lot ■ore complex

and a lot of effort goes into looking for clashes. (does he propose
not to introduce new superclasses? yes, he advocates allowing object s
to be declared of more than one class, which does not affect the
existing class hierarchy.)

Ossher: by introducing the notion of 'perspective' of an object, you can
deteraine when which (version) of a method will be applied.

Axel: afraid of your extensions because of team design: people don't know
(or tell others) what their mates are doing.

Ossher: yes, but I am creating enabling technology and cannot guarantee that
team ■ates will talk and keep each other informed.

Snelting, Inference systems can contribute to SE
examele: polymorphism, introduces a fora of reuse.
Unification theory can be used for various purposes, e.g. database query by

signature (not including function name)
lico: What about asking for T + 1 and getting T • 1 back?

what about getting all + functions for all types T?
Garlan: Use of Wing/Rolin system is extremely slow.
Giles: cannot do without higher order, because need to express semantics in

query. I want to be a6le to ask for all co-■utative functions for.
Bernard: I do not agree that function name does not matter.

also, you cannot derive from text that function is co-utative; you
need a declarative mechanism.

Gentelaan: what do you expect from your approach? Tplot of AT~T has 27
parameters. Search by ~art fixed? and what is it that you understand
when you get an answer.

lotkin: I believe it is not helpful to work with a flat structured database
model. Hierarchy helps in understanding and browsing.

Bernard: but there will alvays be a need for a query that traverses the
hierarchy without the user's help (look for soaeone•s email address)

Young: but basing semantics on the use of names does not work ; e.g. stack
and queue structures have different method naaes, but abstract semantics
is the same and should be found vhen signature-based query is issued.

Walter: drawback of approach is that I ask for a function and typically do
not knov how many parameters, or their types.

conclusion : there are different opinions about the rigid black box viev and
flexible, hierarchical model, browsing approach.

Conjecture: inference tech can be useful for CM: it will e.g. ansver which
particular component fits a given system version.

Walter: but the usefulness depends very much on vhat kind of properties i
can specify.

answer: these can be expressed as attributes and features defined by the
impleaentor. (are we getting into ordinary pattern matching?)

Snelting: languages and language :features are a great contribution to SE
Giles: features are not invented first as part of language . Incorporation

into a language is the e.nd of a thin1ti!1g process wlien the idea is
vell enough understood to make it available.

Dave Wile , Calculi versus Abstraction Mechanisas
Stateaent: engineering DISCIPLINE focusses and LIMITS creativity.
observation: distingu1s.h software science, software engineering and software

craftaanship.
Goal : want to captureJ.rocess of design.

design of speci purpose languages is desirable, but still auch to
hard for software engineers.

Garlan: are you saying that abstract data types are inductive?
answer: the thing you prove about an ADT instance concerns its entire

history and is therefore indeed an inductive arguaent.
Speaker shows example of notation that makes induction iaplicit.
Jaenichen: but induction is THE tool of computer scientists.
answer: yes, for scientists, but for engineers vhat has been learned must

be captured in routinely (re)usable form.

26

8 Session �Education�

Introductory Education in Progralmnirig
A. Nico Habermann

Carnegie Mellon (Iniversity, Pittsburgh, Pcnnsyltrania

The ultimate goal is to arrive at a theory of programs. Not just a theory of �how to
program�, but a theory that includes program models that software designers can rely
on in practice. To move in that direction, we should abandon the �programming from
scratch� approach and more attention should be paid to the result of our proofs (to what
we prove) than to the line points of our proof tech11iq11es (to how we prove). The result of
a proof is a theorem which in turn ought to be usable in subsequent proofs and in writing
programs. Properly naming and remembering these results leads to understanding and to
knowing a coherent set of facts (mostly program models, but also properties of programs
regarding space and time requirements) that software engineers can routinely apply in
their daily work. It is particularly useful to capture proven results in names and concepts,
and even in language constructs (such as functionals), so that proofs (lauft have to be
repreated from scratch for every new instance.

Of the greatest importance for building and understanding a theory of programs are the
notions of abstraction and specialization and the notion of program similarity. Students
gain insight and knowledge by investigating for every concrete program how it can be
seen as a particular instance of a more general program. This type of reasoning leads to
program schemata that can be used in program design a.nd leads to a form of reuse where
programming becomes for a large part a matter of specializing a program schema into a
concrete program that meets the speci�c requirements of the environments in which this

program will operate.

Software Analysis
Hausi A. Müller

University of Victoria, Canada

The future of software engineering critically depends on how we look at and deal with
software evolution and maintenance. We propose major re-alignments in software engi-
neering education and research to strengthen the foundations of software evolution and
maintenance.

Thesis I: Raise the status of software maintenance and evolution in the software en-

gineering community commensurate with their socio-economic implications �� software
maintenance costs constitute 60-90% of overall project costs.

Thesis H: Software engineering training programs should carefully balance the proportions
of software analysis and synthesis in their curricula.

In other engineering disciplines, the study and analysis of existing systems constitutes
a major component of the curriculum. In Computer Science recurring concepts such as
conceptual models, consistency and completeness, robustness, or levels of abstractions are

�27

8 Session "Education"

Introductory Education in Progranuning
A. Nico Habermann

Carnegie Mellon Unit1t:1"sity, Pittsbmyh, Pennsylvania

The ultimate goal is to arrive at a theory of programs . Not just a t heory of "how to
program", but a t heory that includes program models that soft ware designers can rely
on in practice. To move in that direction , we should abandon the " progrannning from
scratch" approach and more attention should be paid to the re.'1tllt of our p roofs (to what
WP prove) than tot.he tinP poiu ts of our proof techniques (to how we prove) . The rPsult of
a proof is a tbeorem which in turn ought to be usable in su bsequent proofs a.nd in writing
programs. Properly nanung and remembering these results leads to understanding and to
knowing a coherPnt set of facts (mostly progra m models, but also proper t ies of progra.ms
regarding spacP and time requirements) t hat softwarP enginPers can ro ut inely apply in
t heir daily work . It is particula rly useful to capt ure proven results in na,mes and roncc>pts,
and c>ven in langu ;;.ge construrts (such as funrtionals), so t hat pr oofs don't have to he
repreated from scratch for every new instance.

Of the greatest importa nce for bnilding and understanding a theory o f programs a.rP t he
notions o f abstraction and specialization and the. notion of program similarity. Students
gain insight and knowledge by investigating for every concrete program how it can be
sPen as a particular instancP of a mo re gC'nera.l program. This type of reasoning leads to
program schemata t hat can be usNI in program desig11 and lea<l s to a form of rPuse wlwre
programmiug becomes for a largP pa.rt a mattPr of specializing a program schema in to a
c.oncrete program that nwets tlw specific re.q1urements of thP Pnvironments in which this
program will operate.

Software Analysis
Hausi A. Miillc,·

Uniucrsity of Victoria, Canada

T ht> fnturP of software engineering criti cally cleprnds 0 11 how we> look at and deal with
software evolution ll.nd nminte.nance. We propose. major re-ll.lig11ments in softwn.re <'ngi
neering education and rnsea.rc.h to strengthe n the fou ndations o f softwll.r<' 1'volntion and
m a.intenll.nr.e.

Thesis f : Raise t he status of software maintenance and evolution in thP softwarP en
ginecrin~ comnnmi ty commenstnate with t heir socio-economic implirations - softwa.rP
ma.intena.uce costs constitute 60-90% of overall project costs .

Thesis II: Software engi neering training programs should carefully ha.lan ce> the proportions
of soft ware analysis and synthesis ill thei r curri cula.

In othPT engin~ring discipl.i nes, thP study a nd analysis of existi ng systPms constitutP'i
a major component of thP rnrrir.ulurn. ln ComputPr Sc.iP.nCP rPriirrin11: conr('pts snrh as
ronceptnal models, consistency and m mpletPness, robustnPss, o r]pvels of a hst.ractions are

27

usually taught with a construction bias. However. recognizing abstra.ctions in real-world
systems is as crucial as designing adequate. abstractions for new systems.

Tlzeszs III: Shift software engineering research efforts from software construction to soft-
ware analysis.

Methodologies, tools, and training for software analysis are clearly lagging behind software
construction. A shift in research, from construction to analysis, would allow them to
catch up. Software engineering researchers should test and validate their ideas on large,
real-world software systems. One promising avenue of research is reverse engineering or
recapture technologies which address a small. but important, part of the software analysis
problem.

Thesis IV: There will always be old software.

Being able to analyze software more effectively will make software evolution, maintenance,
and reuse more tractable.

VVhat should we teach software e11gine.ers Ü�

Walter F. Tichy
I «�nz'm.:-rsitdt I\'m'lsruhr.', Gerrmmy

The demands on software engineers are clear: they must produce more, cheaper, and
better software. The technical approaches to meet this demand include streamlining and
automating the development process, improving reuseat all levels, and developing tech-
niques, tools, and representations for specialized areas. Furthermore, we "need to find
solutions for new challenges, such as massive parallelism, man-machine interfaces (with
gesture, speech, and vision), reactive systems, mobile devices in networks, safety, secu-
rity, and privacy. But we also need to transmit knowledge to software engineers through
education.

The current teaching practice is to cover the phenomenology of software development and
the major concepts. But there is a noted absence of hard facts for software engineers to
use in their daily work. Furthermore, problem solving skills are not taught to a sufficient
degree. A sampling of software engineering texts reveals how unsuitable the problem
sections are compared to other textbooks in Computer Science. In my own exams, I �nd
that students memorize definitions faithfully and demonstrate passable understanding of
the concepts in essay questions. They do poorly when asked to apply their knowledge
to problems. I think we should emphasize problem solving skills in software engineering
courses. The question is, in which areas and how?

Do we need to train students in team work, project planning, and technical writing? In the
specification area. in what types of notations do we demand skill, and which ones should
students merely know about? In design, which examplesishould we use to teach system
architecture and train students in constructing designs, comparing designs, and modifying
them? What implementation tradeoffs do we teach? W'h:y.t testing and analysis skills a.re
adequate? How do we teach skills in software niainte1m.nce_, evolution, and reuse? What
should students know about software tools and programming environments?

The answer to all questions above is that we must t.ra.in our students in these areas. The
difficulty lies in picking those aspects that can be taught in a reasonable time frame and

28

usually ia.11ght with a construction bias. HowPver. recognizing abstractions in real-world
systems is as crucia l as <lPsigni11g adequate abstra('tions for new systems.

Thesis If I: Shjft software engineering research efforts from software construction to soft
war£' analysis .

Mf'thodologies, tools, and training for software analysis a.re clearly lagging behind software
construction . A shift in research , from construction to analysis, would allow them to
catch up. Software engineering resParrhers should tPst and valiclatP their ideas on large,
real-world software systems. One promising a.venue of resP.a.rch is revprse engilwering or
rPcapture technologies which add ress a small. hut importa.nt. pa rt of tlie software a11alysis
problem.

Thcsi.~ IV: There will a.lwa.ys be old software .

Being a.hie to ana.lyze software more effectively will makE' software evolu tion, ma.int.enance,
and reuse more tractable.

What should we teach softwn.n• eugiuePrs '?

Wnltc1· F. Tichy
{l ni11c1·.<iiliil. l\·11.1-t.~1·1thf', C:Prmuuy

Th<' demauds 011 software e ngineers are d ear: t hey must produce more, cheaper, and
ht>ttN softwarP. The technical a pproaches to meet t his demand include streamlining au<l
a.11toma.ting the development proress, improving reuse at all levels, a.ncl developing tPch
niqu es, tools, and representatio ns for speria.lizecl a.reas. Furthermore, we ·ueed to find
solutions for new challenges, su ch as massive parallelism, m an-machine interfaces (with
gPsturr, sp eE'ch, and vision), reactiv<' systems, mobile devices in networks, safety, ser.u
rity. ,t11cl p rivacy. Hut WP a lso need to transmit knowledge to softwa.rP eugineers through
Pduca.tion .

ThP rnrrt>nt teaching prartirt> is to cover the phe110111P11ology of software clevelopment a nd
thP major concepts. But there is a noted absence o f ha.rd facts for softwa.re engiueers to
11sP in their daily work. Furtbermorr, problem solving skills arc not taught to a sufficient
clPgrC'e. A sam pling of software cnginPeriug texts reveals how unsuitablf' thC' problc•m
sC'1·tions an' rolllp a.red t.o other tPxtbooks in Comput.Pr Scit>nce. In my own P.Xams, I find
that st11ch1ts memorizP d<>finitiu ns faithfully and demonstrate passable m1ders ta.nding of
t hP c·oncepts iu Pssa.y (jUf'stions. They do poorly when asked to apply their knowledge
to problems. I think Wf' shonld e mphasize proble m solving ski lls in software engiueeriug
ro11rsc1,. Th<' quC'stion is, in which an•as a nd how?

Do WP nePd to train stndN1ts in team work, projf'ct pla 1111i11g, .i,nd tech11ical writing? [11 the
spr•ri fin1,tion a.re-a., in what typPs of notations do Wf' cll'tnancl skill, a.11<1 which ones sho11ld
studPnts mNely know about? ln clPsign , which Pxa.111ples · should we nse to teach system
a.rrl1it<'rt11n• and trai11 st udents in co nstructing d<>signs, ro111p,ning designs, a.n<I modifying
tht>m '! What. i rnplementa.tiou tradeoffs do we l.t>a.cl1 '! Wh:, t testing aud a na lysis skills a re

a.dN111ate'! How do we tea.di skills in softwa.re maintC'n:inct•, r•vol 11tio11 , and reuse? What
sliouJd students know a.bout software' tools and),rogra 111111i11g t>t1vito11111e11ts'!

The a.nswer to all questions above is that we mw1t train our students in t hese area.-;. The
diffirulty lies iu picking thosP. aspects that can be taught in a. reasonable time frame and

28

with university resources, yet are of long-term value. We also need to improve our teaching
materials signi�cantly.

' Software Education Engineering�
Veronique Donzeau- Gouge
C. N. A . M Paris, France

How can we teach software in a software engineering program �.7

I want to emphasize two points. Languages are main tools in software engineering: they
were among the �rst designed tools, and many tools which are presently provided are in
fact compilers of speci�c languages (cf. parser generators, meta interpreters, and so on).
Furthermore, since they can only include mature concepts, we can say that the languages
incorporate the best of our knowledge.

The second point is about the way programming languages are taught: old and poor
languages are very often used for beginners and this does not help in beginner�s lear-
ning. As the mother tongue in�uences one�s thinking, the �rst learned computer language
determines what can be conveniently expressed. We can choose the computer language.

What can motivate the choice of a programming language? It can be its simple syntax, its
industrial use, its availability on PCs and so on. It can also be based on concepts which
are well agreed upon by all the community such as abstraction, modularity.

We have to build the right foundations if we want to be able to build over. I propose,
taking into, account the present state of the art, to chose ML (CAML-light) for its expres-
sive power, its sound foundations, and its using facilities and Ada for its good software
engineering concepts. The semantic models of ML and Ada are very closed, and the con-
cepts listed above can be explained �rst with a functional model before being immersed
into the imperative world.

Nico Habermann, Introducto Education in Pro ramming
1. Current approach to teac ing programming: ocus on syntax,
develo ent rom scratch. .

Goa : synthesis, models, families of pro rams, systems view (city
exploration analogy), emphasize tradeoffs (ime/space, quality,
reusability), theory of programming (analytic geometry analogy).

Garlan: seems like you are presenting a theory of PROGRAHS, not of SYSTEMS.
Nico: yes, focus on programs represents a limitation of this talk (but
not the approach).

2. Exam le 1: Tree walk using de th-first and breadth-first search.
Define igher-level terminology eg. permutable).

Lang: like Garbage Collection where discovered that stop-and-copy was
essentially the same as mark-sweep.
�otkin: why can�t you use the recursive version of the example?
Nico: recursive example doesn�t generalize in same kind of way.
Garlan: analysis seems to be missing the properties that would
cause you to choose one algorithm versus another.
Nico: yes, that would come up when you actually use one of these programs

in a particular situation. ,
Hoffman: Also need to state conditions under which each solution applies.

3. Program Verification: instead of verifying from scratch each time
need reusable "proof nuggets". Also want to prove theorems about_
family of algorithms which then allow you to reason about those
algorithms (eg. coloring theorem allows you to reason abouttermination). �

Garlanz " roofs as programs" would not separate roof of the theorem and the
program t at results -- they would be the same t ing.

29

with university resources, yet are of long-term value. We also need to improve our teachiug
materials significantly.

Software Education Engineering
Vc1'0nique Donzea1.1.-Gouge

C.N.A .M Pm·is, Fronce

How can we tea.eh software in a software engineering program ?

I want to emphasize two points. Languages are main tools in software enginP.ering: they
were among the first designed tools, and many tools which are presently provided are in
fact compilers of specific languages (cf. parser generators, meta interp reters, and so on).
Furthermore, since they can only include mature concepts, we can say that the languages
incorporate the best of our knowledge.

The second point is about the way programming languages are taught: old and poor
languages are very often used for beginners and this does not help in beginner's lear
ning. As the mother tongue influences one's thinking, the first learned computer language
determines what can be conveniently expressed. We can choose the computer language.

What can motivate the choice of a programming language? It can be its simple syntax, its
industrial use, its availability on PCs and so on. It can also be based on concepts which
are well agreed upon by a.U the community such as abstraction, modularity.

We have to build the right foundations if we want to be able to build over. I propose,
taking into account the present state of the a.rt, to chose ML (CA ML-light) for its expres
sive power, its sound foundations, and its using facilities and Ada for its good software
engineering conrnpts. 1'hf' semantic. models of ML and Ada are very closed, and the con
cepts listed above can be explained first with a functiona.1 model before being immersed
into the imperative world.

Nico Haber■ann, Introductory Education in Progra■aing
1. Current approach to teaching progra■aing: focus on syntax,
developaent fro■ scratch.

Goal: synthesis, ■odels, fa■ilies of progra■s, syste■s viev (city
exploration analogy), e■phasize tradeoffs (ti■e/space, quality:
reusability), theory of progra■■ing (analytic geo■etry analogyJ.

Garlan: see■s like you are presenting a theory of PROGRAIIS, not of SYSTEPIS.
lico: yes, focus on progra■s represents a lia1tation of this talk (but
not the approach).

2. Exa■ple t: Tree valk using depth- first and breadth-first search.
Define higher-level ter■inology Ceg. per■utable).

Lang: like Garbage Collection vhere discovered that stop-and-copy vas
essentially the sa■e as ■ark-sveep.
Notkin: vhy can't you use the recursive version of the exa■ple?
lico: recursive exa■ple doesn't generalize in sa■e kind of vay .
Garlan: analysis see■s to be ■issing the properties that vould
cause you to choose one algorith■ versus another.
Nico: ye~ , that •~uld co■~ up ~hen you actually use one of these progra■s

1n ~ particular situation.
Hoff■an: Also need to state conditions under vhich each solution applies.

3. Progra■ Verification: instead of verifying fro■ scratch each ti■e
need reusable "1;>roof nuggets". Also vant to prove theore■s about
fa■ily of algor1th■a which then allov you to reason about those
algo~1t~ (eg. coloring theore■ allov■ _ you to reason about
ter■1nat1on). .,

Garlan: "proofs as progra■s" vould not separate proof of the theore■ and the
progra■ that results -- they vould be the ■a■e thing.

29

Nico: but does "proofs as programs" allow you define high-level terminology?

4. Program schemata:
Current examples: generics, polymorphic types, inheritance.

Lang: Inheritance doesn't preserve correctness.
Nico: Exam le: Series example and generalization to fix-point calculation.
Lang: OK. our example preserves correctness, but it requires good-will on part
of pro rammers.
Nico: rue.
Ossher: "Next" routine normally wouldn't be a parameter, but a method
that would need to be filled in by each subclass.

5. Conclusion
Routine engineering needed
Models shared among practitioners
Modularity, Naming and Hierarchy

Notkin: I note that you went from specialization to abstraction, and not the
other way around.
Garlan: nteresting similarities to architectural level of design, except
at architectural level we do not et have similar logical foundations.
Young: Students need to see exam as to appreciate generalities.
Lang: Mathematics educators introduce abstractions only after students get
maturity from workin with examples (sometime 5-6 years of it).
lico: Research shoul be striving to reduce practice to teachable knowledge.

Hausi Mueller, Software Analysis
In hindsight, what advice would you have iven the people at the 1968 IATOSE confenerce in the light of the s ate we are in 1992?Young: by and large they s ot ed the important issues, witnessed by the fact

that many o their i eas and observations are still fresh today.
Gentleman: but they had no real appreciation for prog-in-the-large and hardly

any for prog-in-the-many.Dieter: they seem to have believed in top-down approach and that did not work.
Schaefer: we should have told them not to let mat ematicians build up CS

departments, because these guys sent us off in the wrong direction.
Bernard: another thing that did not naterialize is the �universal� programming

lan age the were striving for.
Erhard: t ey may a so not have realized that society is in 1992 dependin on

software s stems it can no longer do without.
Dewayne: the qua ity of software has not changed much in these 24 yearsHile: I disagree strongly: the software I and many other people use is farbetter than in 1 6 , particularly op sys and application progras.
Bernard: in 1968 a CS person could know t e entire field; no lo er in 1992
Nico: I would recommend them to pay serious attention to the evo ution of

systems. The typically tho t in terms of systems you build once and
for all and asically stay t e same when implemented and delivered.

Hausi: exactly!
1) maintenance and evolution (with socio-economic impact)
2) balance between synthesis 1 analysis

opinion: don't put full emphasis on construction; pay at least as much
attention to architecture, recognition of ideas and concepts by
reading programs, analysis and consider improvements.

Gentleman: but we need tools to help us read programs; text by itself is
not very helpful (I think he means multiple visualization)

Hotkin: people want their kids to read literature, not junk; reading programs
must involve well written, well respected software, otherwise a waste.

Axel: but reading lousy programs can also be instructive (I don't agree)
and, more importantly, students must review eachothers programs.

many: this is unfortunately not routinely done (claim: lack o time)
Young: require that code is written by at least two people because it

combines reading (and understanding) with writing.
Hausi: shift from construction to software analysis: read, test, validate, reengineer
Nico: would like your analysis have a specific goal and result.
answer: goal of analysis is to enhance maintenance and evolution.
Nagl: reading programs and systems is not fruitful, because the code

does not reveal the architecture.
answer: must nevertheless try to derive model from written program.
Notkin: and do you find a better way of writing maintainable software this way?Halter: I don't like reengineering; transforming a COBOL program into C++

is a job nobody should be asked to do; instead, learn o write systems
so that they can evolve over time.

Notkin: but you cannot be sure you have the right tools for evolution,
because the next eneration is bound to rewrite and change what you
did accordin to heir own style and preferences without regard for yours

Erhard: we should istinguish between �reengineering� and �reverse engineering�

Halter Tichy, The main Problems in Software Engineering
He all want more, cheaper, better software.
proposed answer: streamlining, automation, reuse. (domain) specialization +

EDUCATION
Giles: are you thinki of CS or do you also include people in other disci-

plines who do a air amount of programing?
Halter: talk about people who will do so tware evelopment (not about PhDs)

30

Nico: but does "proofs as prograas" allow you define high-level terainology?

4. Program scheaata:
Current exaaples: generics, polyaorphic types, inheritance.

Lang; Inheritance doesn't preserve correctness.
lico: Exaaple: Series exaaple and generalization to fix-point
Lang: Ol. Tour exaaple preserves correctness, but it requires
0~ prograaaers.
lhco: True.

calculation.
good-will on part

Ossher: "lext" routine noraally wouldn't be a paraaeter, but
that would need to be filled in by each subclass.

a aethod

5. Conclusion
Routine engineering needed
Models shared aaong practitioners
Modularity, laaing and Hierarchy

Notkin: I note that you vent fro• specialization to abstraction, and not the
other var around.
Garlan: nteresting siailarities to architectural level of desi.;n, except
at architectural level ve do not yet have siailar logical foundations.
Young: Students need to see exaaples to appreciate generalities.
Lang: Matheaatics educators introduce abstractions only after students get
aaturity froa working vith exaaples (soaetiae 5-6 years of it).
lico: Research should be striving to reduce practice to teachable knowledge .

Hausi Mueller, Software Analysis
In hindsight, vhat advice would you have give.n the people at the 1968 IATO

SE confenerce in the light of the state ve are in 1992?
Young: by and large they spotted the iaportant issues, witnessed bJ the fact

that aany of their ideas and observations are still fresh today.
Gentleaan: but they had no real appreciation for prog-in-the-large and hardly

any for prog-in-the-aany.
Dieter: they seea to have bel1eved in top-down approach and that did not vort.
Schaefer: ve should have told the• not to let aatheaaticians build up CS

departaents, because these guys sent -ua off in the wrong direction.
Bernard: another thing that did not aaterialize is the 'universal' progr._i.ng

language they v-ere striving for.
Erhard: tfiey aay also not have realized that society is in 1992 depending on

software systeas it can no longer do without.
Dewayne: the quality of software has not ch~ed auch in these 24 years
Wile : I disagree strongly: the software I and aany other people use is far

better than i n 1968, particularly op sys and application progrua.
Bernard; in 1968 a CS person could knov the entire f1eld; no longer in 1992
llico: I would reco-end thea to pay serious attention to the evolution of

systeas. They tn>ically tho~t in teras of systeu you build once and
for all and basically stay tlie sue vhen iapleaented and delivered.

Hausi: exactly!
1) aaintenance and evolution (vith socio-conoaic iapact)
2) balance between synthesis a analysis

opinion: don't put full eaphasis on construction; pay at least as ■uch
attention to architecture, recognition of ideas and concepts by
reading prograas, analysis and consider i■prov•ents.

Gentle■an: but we need tools to help us read erograas; text by itself is
not very helpful (I think he ■eans ault1ple visualization)

lotkin: people want their kids to read literature, not junt; reading prograu
aust involve well written, well respect~d software, otherwise a wute .

Axel: but reading lousy progra■a can also be instructive (I don ' t agree}
and, aore iaportantly, students IIWlt review eachothers prograas.

■any: this is unfortunately not routinely done (claia : lact of tiae)
Young: require that code is written by at least two e9ople because it

co■bines reading (and understanding) vith writing.
Hausi: shift fro■ construction to software analysis: read, test, validate, reengineer
lico: would like your analysis have a specific goal and result.
answer: goal of analysis is to enhance ■aintenance and eYolution.
lagl: reading prograas and systas is not fruitful, because the code

does not reveal the architecture.
answer: ■ust nevertheless try to derive aodel froa written prograa.
l otkin: and do you find a better way of writing ■aintainable software this way?
Walter: I don't like reengineering; transforaing a COBOL progru into C++

is a job nobody should be asked to do; instead, learn to write aysteas
so that they can evolve over tiae.

Notkin: but you cannot be sure you have the right tools for evolution,
because the next generation is bound to rewrite and change what you
did according to their own style and preferences without regard for yours

Erhard: we should distinguish between 'reengineeriIUJ ' and 'reverse engineering'

Walter Tichy, The aain Probleas in Software Engineering
Ve all want aore, cheaper, better software.
proposed ansve.r: streaalining, autoaation, reuse, (do■ain) specialization +

EDUCATIOI
Giles: are you thinking of CS or do you also include people in other disci

pli.nes who do a fair aaount of profr~ng?
Walter: talk about people who will do so tware develop■ent (not about Phl>a)

30

Bernard: people in other disciplines will not program in the future
(I don�t agree: ph sicist, mathematicians, astronomers will program)Observation: we teach only few hard facts (we don�t have many!)

Giles: careful: you can�t separate content from didactics: e.g. lab course
may teach qualit (and taste) by experience

Halter: should we teac team development?
Nico: absolutely yes; it is part of education and also important for improving

software quality and building communications skills.
Giles: I a ree: team work is part of software engineering education.
Gail: teac ing team work and writing documentation is too late in senior year;

students should do it from the beginning and apply it in all CS courses
Young: incorporating SE in beginner courses is not a good idea, because there

is little substance to which team work and documentation can be applied.
(I think he goes farther than Gail; she said team work, not all of SE)

Halter: should you teach an overview or take one item and go in depth?
Dieter: overview can be useful for showin what the differences are
Halter: I don�t have time to apply more t an one.
Ph llis: don�t confuse education with training
Hi e: you aversion of reverse engineering maskes it difficult for you to

let students demonstrate their understanding of how to apply methods
instead of reciting stale facts.

Garlan: formalism is important for being precise; the particular notation
is secondaryNagl: it is important to discuss the shortcomings of various methods.

Ha ter: students learn concepts such as �information hiding� but must also
practice the application of these concepts. How can they find time to
do this, and how do I grade them on it? I need lots of examples.

Halter: do I teach �optimization� as a topic?
Young: no, you teach them trade offs
Halter: how do I teach evolution t maintenance?
Eile: teach them reverse engineering!

Veronique Donzeau-Gouge Software En ineeri Education
Observation: two parts: SOFTHARE an ENGIN RING; these are the two things

on which education must be based.
opinion: programming language is THE tool for teaching SE _o servation: languages are often taught from a historical perspective.

it is not goo to let beginners struggle with the restrictions and
limitations of a language (=> don�t start with Pascal)

good choice of modern languages: HL + Ada
opinion: HL has desirable pro ramming properties, Ada is usable for systems
approach: use languages inter wined. Questions concern the way the languages are used.

9 Session �Development Process�

Software E11g'i11eeri11g As a Managed Group Process
A2761 Mahler

TU B(.�7�li7l, Germany

In the past �-�� and even today 0y
� suftxvare engineering; research is mainly fncnssed on the

problems incurred by the complex nzmire of s0ft\vare products. Engineering. however. also
implies that less formal issues, such as cominunication patterns between humans, are to
be taken into account.

Current. software engineering ideolog;y (as opposed to])ra.('ti('.e) strongly inclines the para-
digm of p7'csc1'2fpti'vr: methods. All too often, these methods suffer from poor ac('eptance
by the developers and eventually end up as �shelfware�. We need a stronger emphasis
on ¢Ic.?.s'-rt-riptzi-vc approaches towards the process of software development. There are few. if
any, formalisms that allow to capture real process characteristics.

F�inding' an adequate approach to formalize relevant aspects of the development process is
a hard problem. Part of the problem is the dynamic nature of the development process:
it consta.ntly changes in response to many parameters. Any static process description is
likely to become obsolete almost instantly. A possible solution to this problem might lie in

31

Bernard: people in other disciplines vill not prograa in the future
(I don't agree: physicist, ■atheaaticians, astronomers vill program)

Observation: ve teach only fev hard facts (ve don't have ■any!)
Giles: careful: you can 't separate content fro• didactics: e.g. lab course

aay teach quality (and taste) by experience
Walter: should ve teach tea.a developaent?
Nico: absolutely yes; it is part of education and also iaportant f~r improving

software quali t y and building conuuunications skills.
Giles: I agree: tea■ work is part of software engineering educat ion.
Gail: teaching teaia work and writing docwaentation is too late in senior year;

students should do it fro• the beginning and apply it in all CS courses
Young: incorporating SE in beginner courses is not a good idea, because there

is little substance to which tea■ work and docwaentation can be applied .
(I think he goes farther than Gail; she said teaa vork, not all of SE)

Walter: should you teach an overview or take one ite■ and go in depth?
Dieter: overviev can be useful for shoving vhat the differences are
Walter: I don't have tiae to apply ■ore tlian one.
Phillis : don ' t confuse education vith training
Wi e: you aversion of reverse engineering aaskes it difficult for you to

l et students demonstrate their understanding of hov to apply aethods
i nstead of reciting stale fact s.

Carlan: foraalisa is important for being precise; the particular notation
is secondary

l agl: it is important to discuss the shortcomings of various aethods .
Walter: students learn concepts such as 'inf ormation hiding• but aust also

practice the application of these concepts. Hov can they find time to
ao this, and hov do I grade them on it? I need lots of exa.ples .

Walter: do I teach •opti mi zation • as a topic?
Young: no, you teach the• trade offs
Walter: hov do I teach evolution t maintenance?
Wile : teach the• reverse engineering!

Veronique Donzeau-Gouge Software Engineering Education
Observation: two parts: SOFTWARE and ENGIIEERIIG; these are the tvo things

on which education aust be based.
opinion: prograaaing language is THE tool for teaching SE
observation: languages are often taught fro• a historical perspective.

it is not good to let ~eginners struggle vith the restrictions and
liaitations of a language (s> don't start vith Pascal)

good choice of a odern languages: ML+ Ada
opinion: ML has desirable prograaaing properties, Ada is usab:ie for systeas
approach: use languages intertwined. Questions concern the vay the languages are used .

9 Session " Developme nt Process"

Software Engineering As a 11anagecl Group Process
Axfl MuhlO"

TU Brrlin, C,'ennauy

111 thP pa.~t - and PV<'ll today - softwarP <•ngi11<'<'ri11g rPSearrh is ma.inly fcH'IISSPd 011 t hP
prohl<>ms incurrP.d h_v the> r0111pl<'X uat 11rt' 11f softwa.rf' products . E:ngi1lf>Pring. how,.,·<'r. abo
i111pliPs that IC'ss formal issuPs, s11rh a.s ro11111111nira.tinn patlN11s h<'lWC'l'II hu111a11s. a r<' t,11
lw ta.k,•11 into a.rcou nt.

('11rrnnt :;oft.warC' enp;inPNing idPolop;y (as oppoxPd to pra,rtin•) strongly indinPs t.lw para
di~m of 7n·c.w:1·ipfivr 111dlwds. All too oftc•n, l lrnse lll<'llwds su rfer from poor arrPpta11<·<•
hy t he dev<'lop<'rs and evPntua lly PrHI 11p as "shPlfwue''. \Np neNI a. strongn P111pltasis
on ,lon-ipli11e a.pproadlf'S towards the process of softwa.rC' devPlopment. T hPrP a.rP fP\\' . if
a.ny, formalisms that allow to ra.ptnr<' rf'al JHocess rharactNistirs.

Finding a.n a.dt>quatP a pproach to formalize rPlevant as1ll'r.ts of the dPvPlopmPnl pror':'ss i:
a hard prohlPnL Pa rt of the prob!Pm is thP dynamic na.turP of tl1f' dPvPlopment prorPs:~:
it constantly rhanges in r(:'sponsP to 111any para111PtNs . Any static proc.Pss dPscription is
likPly to become ohsolet.<' almost instant ly. A possiblP solution to this problem might Jjp i11

a(l(z])tim .s'-oftzearc (l¬�l�¬l()])7Il('1ll c-nm'romncnt.s'. Enviromnents of this sort need to be open
to easy and ra.pid extension and a.utomatization in order to serve the real needs of the
supported development. process. By constantly monitoring the characteristics of the tool
environment and by carefully analyzing the way it is used, a number of insights about the
development process can be derived.

Having a ��- �living� -- document that describes the current arc.hitecture and the current
state of a truly adaptive environment will eventually be equivalent: to having a. valid process
description.

Software Evolution

l)rwirl Notkln

I/m'ec1'.sz'ty of Washington. Scattlr-, Washington

Software evolution is a cent.ral software engineering� problem. It is nnavoi(lable._ because
its social and technological context changes. lt is more costly than is desired. It tends to
degrade desirable properties of a software system (such as efficiency, robustness, etc.).

The current softwareengineering world constantly states �l5�.volution is too costly". When
considered on a percentage, the cost of evolution relative to the total software cost is about
50 to 70 percent. But this tells us little about what would be reascmable or desirable cost.
Two properties may help. First, proportionality states that the size of applying actual
changes should be proportional to the size of the requested changes. Second, predictability
states that the size of applying actual changes should be predictal)le, with reasonable
accuracy in reasonable time. based on the size of the requested changes. Although the
terminology is imprecise, it is intuitive a.ud perhaps can be made precise. They may then
be. thought of as a lower bound on how well evolutionary techniques could work. Existing
techniques. such as information hiding, may be considered upper bounds.

A nec.essar_v condition for achieving� proportionality is that there is a strong association
between equivalent structures at the specification, design, a11(l implementation levels. A
condition like this may be consciously broken �- to achieve efliciency. for instance. But
the t.radeoll' umst he made with an understanding that evolution will not be proportional.
Such tradeoll'.~:. with subsequent properties of the resulting software. form the lu:-art, of
software engineering.

Evolving� La,1'g�e Systems:
Lessons from (over)s1111pl1�ed Develc)pme11t Processes

l.l('u.v(z_1/1.I.(' E. Perry
A7'l�?."7' Hell Lrlbo1'a.I�.o1'i('.s, /l»:Im'm._i/ Hill, New J(:7'.sry

lt. is my thesis that evolution begins very early in the development phase of a software
process and that the distinction between development. and maintenance should be aban-
doned in favor of an evolutionary process. I illtlstrate this by three simplistic views of the

development. process.

The first, example is that where we simply implement. a specification. The process is

32

adnpf i1•1 .s1J/llN11·t dn1d 1J71111n1t e1111imnmc11ts. Environnwnts of t his sort need to 1,,, o p<'n
to t'aS,\' and rapid extPnsion an<I automa.tization ill order to serve the rnal tH:'Pcls o f th,,
supportPd dPwlo prucnt prnr.rss. Ry constantly monitorillg t l1e d1aractPristics o f t hP t.ool
r11,·ironnH' t1t and by ra.n,fully analyzing thP way it is used, a 1111mbt>r of insights a.bout t h':'
clPvP}op1111'nt process ca.n hP derived.

Havi ng a - "living" - document t hat describes the rurre11t architecture a11d the current
stal.<' of a. t rnly adaptive e1l\'iro1111H'nt will eventually J)P Pqui\'alent to having a valid process
clP:--niption.

Softw,u-e Evolution

Um,id NfJfkin

l!11i11cT.~it.y of Wn.~hingto11. Srnlllr-, Washington

Snftwa r«' «'vo lutio n is a 1·p11tral softwar<' enginPNi ng prohlP111. It is unavoidable, h<>ca.tl se
its :--oci.-11 ;1.11d technological rnntrxt rl1atlgC's. IL is more• rnstly tha11 is desired . It. tm1ds to
dPgradP cl Psi rable propertiPs of a software syst.P111 (such ;u; eftiriPll<'.Y, robustness, etr.).

Tlw rurr<'11t softwa.r<• Pngin<'Ning world ro11stan tly s tatf's " Evolution is too rost.ly" . When
ro11siclN"d on a JH'fl'Pt1tag", t h<• ros t of P.volution rPlativP to t hc> total software cost is a.hout
."'>0 to 70 perrf'n 1 .. But t his t.Plls 11s li tt le' a.bout what w011ld he reasonable or desirable cost .
Two pro1wrtiPs may help. Fi n;t , JJmportionality sta.tl's that thr size of applying actual
d1a,11grs sho11l<I h<> proportional to t he si1,e o f t.Jw rf'quc>stcd cha.uges. Second , predictability
stat<'s that thP si1,<> of applyin)!; act ua l chanp;Ps should be prPdirtable, wiq1 re;u,onable
~rrnr;,try in 1N,sonahle t inw. hasPtl 011 t lw size of th<• r@questrd rhang(ls. Al though th«?
IN111i 11ology is i111pr(:'ciS<>, i t is in tu itive a11d perhaps can be made p recise. They may t hen
Ji,, tli1111ght of as a. low"r ho1111d o n how w£>11 Pvol11 tio11ary techniques rou ld work. 8xisting
t1•1·h11iq11l'S. s111"h a.s i11fnn11a.tio11 hidi1111;, may be considnC'cl upper ho1111cl s .

J\ 11<'«·1•ss;.ir,v rnn dit.ion fnr arhi<'vin11: pro portionali t.y is that there is a strong ,tssoriation
hl' lWP1•11 <'q11ivalP11t st rnrt11rPs at th,• s prcifira.tion , design , and imple111r11tatio11 l<>v<'ls . A
rnndi tin11 lik1• this may hP rnmwio11sl.v h rokP.11 · - to achi«'vc• r flk i<'nr.v. for ins tall<'<'. But
t lw I r,111'-011' 11111st lw 111 ad!' with a.11 1111d1•rsta11di11g that Pvol11t.iu11 will 1101. lw prnpnrtio11al.
S11rl1 l rad,..,ff1:. wit.Ii s11hs<'q11<'11I propPrfi,-s of tl11• n•s1111i11g :--tiftwan-, l,1n11 I.Ii,• IH•,,rl. uf
s, 1['t \\';1 rc• "11µ;i 1w<·ri11!!,.

Evol viuµ; Lar~c• Syst.<·111s:
L,·ssous fr0111 (ovl't)simplifie,l Df'v,·lop11)('11t Pro<'f'SS<'s

l .>cwny11.,· E. f', 1·1·.11
JI n ,:,7' Helf Lnbomtrwirs, ItJm.,.uy Ili ff, Nn11 .Jr-r.w·y

It is 111.v 1 llf'sis I hat <'vol11 tio11 h('gi ns Vt~r.v ('a rly i11 thr d<·velop111Pnt plias<' of a software
prnn•ss a 11d 1 hat tli«' dis I in rt ion lwtwern 1lt-•vPl011111P11t a.rul 111ni11tP11a.111·e should lw ;i,han
donPd i11 f;ivnr of an Pvol11tio11ary pr-orPss. I illtt st.rn.tr t.his h,v thtt'i' s implistir virwi; n f t he
dr\'l, Jop11J(•n1 prorl':--S.

T ii,, first. <'xa.mple is t.ha.t whP!'f> wr sitnply i111plP1UPllt a spedfication . The process 1s

�explore, decide, and validate�. This is of course too simple as there is local iteration
within that process. Two important evolutionary considerations are local dependencies
and tolerating incompleteness and inconsistencies. The basic problem with this simplistic
view of the process is that it does not account for multiple levels of software.

The second example is that of a waterfall process. Of course, we do not really do things
this way, but there is an important insight here. If, for purposes of illustration, we divide
the process into the logical steps of requirements, architecture, design, and coding, we
note that there is a well of knowledge that builds up behind each dam and only a certain
amount of that spills over into the next level. This adds an additional step to the process
for each level: rediscovery. Moreover, the evolutionary implications are that we now have
multi-level iteration, exploration, dependencies, incompleteness, and inconsistencies. The
basic problem with this simplistic view of the process is that is does not take into account
�release� evolution.

It is worth noting at this point that rediscovery is not a problem for a single developer
or even for a small group; however, it is a signi�cant problem for large group of devel-
opers. Moreover, the complexity of the process is increased signi�cantly with an increase
in scale: the product can be in multiple states concurrently, and this exacerbates the pro-
blems of coordination and synchronization with respect to the artifact, and the problems
cooperation and interaction with respect to the process.

The third example is a 3-dimensional waterfall, where successive releases are represented.
This example adds an extra step to the process: inter-release rediscovery. Each successive
release process is virtually identical to the original development process, only more highly
constrained in that there is inter-release as well as inter-level rediscovery, incompleteness,
inconsistencies, and dependencies. The fact of concurrent and possibly overlapping releases
increases the complexity of the evolutionary process. Of major importance is the problem
of multiple interdependent con�gurations. However, this view of the process does not
address the problem of multiple products based on a single base or a single release.

We need more effective processes and support for rediscovery, exploration, decisions, and
validation, and more effective support for iteration, dependency analysis and maintenance,
version management, and component composition. Some fruitful approaches are seman-
tically rich descriptions that are level and domain speci�c, codi�cation and classi�cation
of architectural elements, architectural templates and styles, and process support for gui-
dance, iteration, and automation.

Experimentation In Software Engineering
Or

How Can We Apply The Scienti�c Paradigm
To Software Engineering �.7

H. Dieter Rombach

Universität Kaiserslautern, Germany

Software engineering research has produced a large number of formal models, techniques
and tools in the past. It is long overdue to experiment with these models, techniques
and tools in order to better understand their bene�ts and limitations under varying cir-
cumstances and purposes. Such experience needs to be gathered in objective, measurable

33

"explore, decide, and validate". This is of course too simple as there is local iteration
within that process. Two important evolutionary considerations are local dependencies
and tolerating incompleteness and inconsistencies. The basic problem with this simplistic
view of the process is that it does not account for multiple levels of software.

The second example is that of a waterfall process. Of course, we do not really do things
this way, but there is an important insight here. If, for purposes of illustration, we divide
the process into the logical steps of requirements, architecture, design, and coding, we
note that t here is a well of knowledge that builds up behind each dam and only a certain
amount of that spills over into the next level. This adds an additional step to the process
for ea.eh level: rediscovery. Moreover, the evolutionary implications a.re that we now have
multi-level iteration, exploration, dependencies, incompleteness, and inconsistencies. The
basic problem with this simplistic view of the process is that is does not take into account
" release" evolution.

It is worth noting at this point that rediscovery is not a problem for a single devdoper
or even for a small group; however, it is a significant problem for large group of devel
opers. Moreover, the complexity of the process is increased significantly with an increase
in sea.le: the product can be in multiple states concunently, and this exacerbates the pro
blems of coordination and synchronization with respect to the artifact, and the problems
cooperation and interaction with respect to the process.

The third example is a 3-dimensional waterfall, where successive releases are represented.
This example adds an extra step to the process: inter-release rediscovery. Each successive
release process is virtually identical to the original development process, only more highly
constrained in that there is inter-release as well as inter-level rediscovery, incompleteness,
inconsistencies, and dependencies. The fa.et of concurrent and possibly overlapping releases
increases the complexity of the evolutionary process. Of major importance is the problem
of multiple interdependent configurations. However, this view of the process does not
address the problem of multiple products based on a single base or a single release.

We need more effective processes and support for rediscovery, exploration, decisions, and
validation, and more effective support for iteration, dependency analysis and maintenance,
version management, and component composition. Some fruitful approaches are seman
tically rich descriptions that are level and domain specific, codification and classification
of architectural elements, a rchitectural templates and styles, and process support for gui
dance, iteration, and automation .

Experimentation In Software Engineering
Or

How Can We Apply The Scientific Paradigm
To Software Engineering ?

H. Dieter Rombach
Universitat Kaiserslautern, Germany

Software engineering research bas produced a large number of formal models, techniques
and tools in the past. It is long overdue to experiment with these models, techniques
and tools in order to better understand their benefits and limitations under varying cir
cumstances and purposes. Such experience needs to be gathered in objective, measurable

33

ways; and packaged together with those models, techniques and tools for future reuse. It
is, for example, not suf�cient to have well-de�ned white-box and black-box testing tech-
niques. Instead, we need to understand which testing technique promises what results
(e.g., detect 80% of interface faults) under what circumstances (e.g., re-active systems,
designed according to ob ject-oriented design principles, implemented in C++, certain fault
pro�les). Testing techniques packaged together with such experience can be reused in
future projects run under similar circumstances.

Such experimental software engineering research requires a laboratory-kind environment
where practitioners and researchers can cooperate. I presented a framework for such
a laboratory based on experiences from the Software Engineering Laboratory (SEL), a
joint venture between N ASA�s Goddard Space Flight Center, the University of Maryland,
and- Computer Sciences Corporation. This framework is based on the scienti�c research

paradigm.

Such a paradigm shift (i.e., from purely theoretical and building-oriented to experimen-
tal software engineering research), de�nes a new class of software engineering research
topics aimed at capturing and packaging of software engineering experience. Examples
include the development of better software measurement approaches as well as techniques
for formalizing, generalizing, tailoring and packaging software engineering experience. Ad-
ditional research topics whose importance will grow over the next decade include better
notations for representing software processes, better notations for capturing domain spe-
ci�c knowledge, better understanding of the impact of architectural software patterns on
various qualities of the resulting software, and techniques and tools acknowledging evolu-
tion/ maintenance/ reuse of existing software rather than creation from scratch.

This paradigm shift should also be reflected in our software engineering curricula. They
need to be revised in order to include the teaching of analytic skills. It is time to go beyond
the teaching of languages and techniques. We need to �nd ways of teaching the skills
enabling students to reason about the usefulness and limitations of candidate techniques
and tools. It is also time to abandon the �everything is developed from scratch� syndrome.
Students should learn from existing examples (i.e., reading before construction), and start
to evolve/ maintain / reuse existing software rather than build everything themselves.

Axel Mahler, Engineering and Management
Observation: SE management has been rather disappointing and has

potential for great im rovement
2) people talk about �she fware�, process descriptions that stayon the shelf and are ignored by the implementors.
3) if management too rigi , programmers will i nore it and

resent it; if too flexible, it will not suf iciently enforce
4) great mismatch of management in the abstract and in practice
S) need balance between prescriptive and advisory (informative)

opinion: research people put too much effort in product and not
enough in studying process.

Notkin: ood products have been built with a lousy process; unfortunately
a lousy product can be the result notwithstanding a good process.
A good process (like a good language) does not uarantee a good product

Mahler: it is helpful to communicate experiences, bot good and bad.
One can learn from both success and failure stories

Gentleman: there is rigidity in the prescriptive approach; it is hard to
make changes in the rules when that becomes necessary because of
experience gained during execution of process; easier with descriptive
approach than with prescriptive a�proach.

answer: yes, being ready for changing t e rules is very important.
several: must have tools to support management and must have tools that measure

management effectiveness so that necessary improvements can be tracked.
Erhard: programmers have great fear for �big brother� phenomenon: they see

management as a personnel evaluation procedure by management.
Notkin: Japanese are much more ready to accept evaluation of their

work and gladly use critique to improve personal performance.
Schaefer: automate as much as possible for the sake of consistency and

accuracy, and also for taking away a burden from the people involved.

34

ways; and packaged together with those models, techniques and tools for future reuse. It
is, for example, not sufficient to have well-defined white-box and black-box testing tech
niques. Instead, we need to understand which testing technique promises what results
(e.g., detect 80% of interface faults) under what circumstances (e.g., re-active systems,
designed according to object-oriented design principles, implemented in C++, certain fault
profiles). Testing techniques packaged together with such experience can be reused in
future projects run under similar circumstances.

Such experimental software engineering research requires a laboratory-kind environment
where practitioners and researchers can cooperate. I presented a framework for such
a laboratory based on experiences from the Software Engineering Laboratory (SEL), a
joint venture between NASA's Goddard Space Flight Center , the Uni versity of Maryland,
and- Computer Sciences Corporation. This framework is based on the scientific research
paradigm.

Such a paradigm shift (i.e., from purely theoretical and building-oriented to experimen
tal software engineering research), defines a new class of software engineering research
topics aimed at capturing and packaging of software engineering experience. Examples
include the development of better software measurement approaches as well as techniques
for formalizing, generalizing, tailoring and packaging software engineering experience. Ad
ditional research topics whose importance will grow over the next decade include better
notations for representing software processes, better notations for capturing domain spe
cific knowledge, better understanding of the impact of architectural software patterns on
various qualities of the resulting software, and techniques and tools acknowledging evolu
tion/ maintenance/reuse of existing software rather than creation from scratch.

This paradigm shift should also be reflected in our software engineering curricula. They
need to be revised in order to include the teaching of analytic skills. It is t ime to go beyond
the teaching of languages and techniques. We need to find ways of teaching the skills
enabling students to reason about the usefulness and limitations of candidate techniques
and tools. It is also time to abandon the "everyt hing is developed from scratch" syndrome.
Students should learn from existi ng examples (i.e., reading before construction), and start
to evolve/maintain/reuse existing soft ware rather than build everything themselves.

Axel Mahler, Engineering and Manageaent
Observation: SE aanageaent has been rather disappointing and has

potential for great iaproveaent
2) people talk about 'shelfvare ' , process descriptions that stay

on the shelf and are ignored by the i•J?l eaentors.
3) if aanageaent too rigid, prograaaers v1ll ignore i t and

resent 1t; if too flexible, 1t vill not sufficiently enforce
4) great aisaatch of aanagement in the abstract and in practice
5) need balance betveen prescriptive and advisory (informative)

opinion : research peoele put too much effort i n product and not
enough in studying process .

Notkin: good products have been built vit h a lousy process; unfortunately
a lousy product can be the result notvithstanding a good process .
A good process (like a good language) does not guarantee a good product

Mahler: it is helpful to co-unicate experiences, botli good and bad.
One can learn froa both success and failure stories

Gentleaan: there is rigidity in the prescriptive approach ; i t is hard to
aake changes in the rules vhen that becoaes necessary because of
experience gained during execution of process; easier vith descriptive
approach than vith prescriptive approach.

ansver: yes, being ready for changing the rules is very i mportant .
several: must have tools to support management and must have ~ool s that measure

aanageaent effectiveness so that necessary improvements can be tracked.
Erhard: prograaaers have great fear for 'big brother ' phenoaenon: they see

aanageaent as a personnel evaluation procedure by aanagement.
Notkin: Japanese are auch aore ready to accept evaluation of their

vork and gladly use critique to improve personal performance.
Schaefer: autoaate as much as possible for the sake of consistency and

accuracy, and also for taking avay a burden from the people involved.

34

Dieter: the power of process modeling is in integrating the various �roles�
that programmers, mana�ers and others play in the development process.

Gentleman: interaction neede between team and future users (or contracting
agency). What about tools for this task?

answer: not much hope now or in the future. _
Erhard: the process has general characteristics also found in other

organizations, but we are in a favorable position with regard to the
supporting software we have (or create). _ A _

Gentleman: yes, we are in a similar situation, but we do far worse in meeting
delivery deadlines, estimating code size and cost, etc.
(people raise eyebrows, and don�t find a good explanation). _

Dewayne: w en you extend software, you don�t 'ust add more of the_same (like
doors or windows) but usually entirely ifferent functionality.

David Notkin, Software Properties _
Observation: 1) software systems are bound to need evolution because things

such as new technology and new user requirements are inevitable._
2) proportionalit idea of Ossher: effort of change must be proportionalto size(change), not to size(system)

Hoffman: like to propose refinement of Parnas: when you make a change, you
must check whether your users like it, whether it did indeed improve
performance (if that was intended), etc. Ask yourself: was its goal met?

Dssher: be careful: you cannot foresee all changes ahead of time; you must be
prepared to handle changes when the (unforeseen) need arises.

Giles: what is �small�? the user ma come to me and ask for a small change and
I may tell him/her this is a uge change, because it affects my
architecture. Should the implementor decide what is �small�? (not always)

3) we can talk about lower bounds such as proportional to size(change)
and about upper bounds, such as info hidi scope.

Hile: with your pro ortional rule you left out D TA; it is likely that a
change that a fects data is proportional to that data, not to the change

Notkin: es, I did not take that into account, and I have to think about it
Young: a though you have this upper bound, it may never be achievable;

so, even if it exists, it may not be very useful.
4) a change should not cause a disproportionate effort in one of the

various levels of system design.
Garlan: but there are cases where tools can make dis roportionate changes

tolerable, e.g. global change of a name with t e replace� command

Dewayne Perry, Evolving Large Systems
subtitle: lessons from an oversim lified software development process.
General simplistic presentation: pec -> implementation _
Observations 1) a system always has more than one (orthogonal) organization,

e.g. you may want to link all functions with a given signature, etc.
2) system consists of descriptive components which represent: requirements

architecture, design and implementation (often put together in waterfall)
3) things that s stem builders typically are involved in:

discover, exp ore, decide and validate.
4) waterfall model does not allow for �release� information. If this is

added, dimension is added and whole thing gets terribly unwieldy.
trying this gets you into parallel variants and versions of variants.

5) possi le solutions to control explosion: semantically rich descriptions,
codification & classification.

Nico: I don�t see why you could not do better when you organize by product
component (seen as a tree�structured desi of specializations of an
overall abstract architecture in Dave Gar§:n�s sense)

response: you won�t reduce the information
others: you may lose reusability or component integration gets more difficult
Schaefer: the manufacturer often does not know the architecture.

Dieter Rombach, How to apply science paradigm to Software Engineering1) most im ortant is t e experience of knowing what to ap ly when,particu arly for new pro lems (not just repetitive application)2) process modeling research is only possible in a laboratory context
and with a close interaction wit an industrial partner.

3) product model = requirement + architecture + design + code
rocess model = integration of various (project people) roles

4) oftware engineering = planning the rocess with the support of
. a source of techniques, tools and EX ERIENCE

Nico: I miss the software substance in that definition; here is Mary Shaw�s
definition of software engineering (research):
the activity of reducing to routine practice the application of
well-understood techniques, tools and software artifacts for the

_purpose of constructing and maintaining software systems
Pgyllisz don�t forget to distinguish between SE research and SE practice
M ler: where do you draw the line between �technique� and �process� ?
opinion: software engineering = the creation of a process model.

(many in the audience think this definition is too narrow)
Gail: why is �process� not part of the collection of techniques, tools, and experience?
Notkin: what kind of objects do you put in your database that represent this

collection? (answer esca ed me, I was getti tired)
5) do experiment in univ la and then repeat an test in industry.

Notkin: how often did an example work in univ and fail in industry? (50%)

35

Dieter: the power of process aodeling is in integrating the various 'roles'
that prograJU.er.s, aanagers and others play in the developaent process.

Gentleman: interaction needed between teaa and future users (or contracting
agency). What about tools for this task?

answer: not much hope nov or in the future.
Erhard: the process has general characteristics also found in other

organizations, but ve are in a favorable position with regard to the
supporting software ve have (or create).

Gentleaan: yes, ve are in a si.Jailar situation, but ve do far worse in aeeting
delivery deadlines, esti.Jaating code size and cost, etc.
(people raise eyebrows, and don't find a good explanation).

Dewayne: when you extend software, you don ' t just add aore of the saae (like
doors or windows) but usually entirely different functionality .

David Notkin, Software Properties
Observation: 1) software systems are bound to need evolution because things

such as nev technology and nev user requireaents are inevitable.
2) proportionality idea of Ossher: effort of change must be proportional

to size(change), not to size(systea)
Hoffman: like to propose refinement of Parnas: when you make a change, you

must check whether your users like it, whether it did indeed iaprove
performance (if that vas intended), etc. Ask yourself: was its goal aet?

Ossher: be careful : you cannot foresee all changes ahead of time; you aust be
prepared to handle changes when the (unforeseen) need arises.

Giles: what is 'small'? the user may coae to ae and ask for a saall change and
I may tell him/her this is a huge change, because it affects ay
architecture. Should the impleaentor decide what is 'small '? (not always)

3) ve can talk about lover bounds such as proportional to size(change)
and about upper bounds, such as info hiding scope.

Wile: with your proportional rule you left out DATA; it is likely that a
change that affects data is proportional to that data, not to the change

Notkin: yes, I did not take that into account, and I have to think about it
Young: although you have this upper bound, it aay never be achievable;

so, even if it exists, it aay not be very useful.
4) a change should not cause a disproportionate effort in one of the

various levels of systea design.
Garlan: but there are cases where tools can make disproportionate changes

tolerable, e.g. global change of a name with the replace' co-and

Dewayne Perry, Evolving Large Systems
subtitle: lessons from an oversimplified software development process.
General simplistic presentation: Spee-> iapleaentation
Observations 1) a systea always has aore than one (orthogonal) organization,

e.g. you may want to link all functions with a given signature, etc.
2) system consists of descriptive co■ponents vhich represent; require■ents

architecture, design and iaplementation (often put together in waterfall)
3) things that system builders typically are involved in:

discover, explore, decide and validate .
4) waterfall moael does not allow for 'release ' information. If this is

added , dimension is added and whole thing gets terribly unwieldy.
trying this gets you into parallel variants and versions of variants.

5) possiole solutions to control explosion: semantically rich descriptions,
codification t classification.

Nico: I don't see why you could not do better when you organize by product
component (seen as a tree-structured design of specializations of an
overall abstract architecture in Dave Garlan's sense)

response: you won't reduce the information
others: you may lose reusability or component integration gets ■ore difficult
Schaefer: the manufacturer often does not know the architecture .

Dieter Rombach, How to apply science paradigm to Software Engineering
1) most important is the experience of knowing what to apply when,

particularly for nev problems (not just repetitive application)
2) process modeling research is only possible in a laboratory context

and with a close interaction with an industrial partner.
3) product model• requirement+ architecture+ design+ code

process model = integration of various (project people) roles
4) Software engineering= planning the process with the support of

a source of techniques, tools and ElPERIEHCE
Nico : I miss the software substance in that definition; here is Mary Shaw' s

definition of ·software engineering (research):
the activity of reducing to routine practice the application of
well-understood techniques, tools and software art1facts for the
purpose of constructing and maintaining software systems

Phyllis: don't forget to distinguish between SE research and SE practice
Mahler: where do you draw the line between 'technique' and 'process' ?
opinion: software engineering= the creation of a process model.

(many in the audience think this definition is too narrow)
Gail: vhy is 'process' not part of the collection of techniques, tools, and experience?
Notkin: what kind of objects do you put in your database that represent this

collection? (answer escaped ae, I vas getting tired)
S) do experiment in univ lab and then repeat and test in industry.

Notkin: how often did an example work in wiiv and fail in industry? (50%)

35

Dagstuhl-Seminar 9208 List of Participants

W. Richards Adrlon Dan Hoffman
Universit of Massachusets University of Victoria
Lederle raduate Research Center Department of Computer Science
Computer Science P.O. Box 3055
Amherst MA 01003 Victoria B.C. V8W 3P6
USA Canada
adrion@cs.umass.edu dhoffman@uvunix.uvic.ca
teI.: +1 -41 3-545-2742 teI.: +1 -604-721 -7222

David Barstow Stefan Jähnlchen

Schlumberger Laboratory of TU Berlin
Computer cience Franklinstr. 28/29
50 ave. Jean Jaures W-1000 Berlin 10
F-92542 Montrouse Cedex Germany
France tel.: 030-31 47 32 30
barstow@slcse.sinet.sIb.com
teI.: +33-1-4746-7207 Gilles Kahn

INRIA

Véronique Donzeau-Gouge Projet Prisme
C.N.A.M. Sophia Antipolis
Mathématiques et Département 2004 Route de Lucioles
lntormatique 06565 Valbonne Cedex
292 rue Saint-Martin France
F-75141 Paris Cedex 03 tel.: +33-93-65-78-01
France
donzeau@cnam.cnam.tr Gail E. Kaiser
teI.: +33-1-40 27 22 92 Columbia University

Department of Computer Science
Ph Ilis Frankl 500 West 120th Street
Po ytechnic University New York NY 10027
Computer Science Dept. USA
333 Jay Street kaiser@union.cs.columbia.edu
LBJrSc>lc\>klyn NY 11201 tel.: +1-212-854-3856
pfrankl@prism.poly.edu/ Bernard Lang
teI.: +1 -71 8-260-3870 lNRlA

Domaine de Voluceau
David Garlan Rocquencourt
Carne ie Mellon University BP 105
Schoo of Computer Science 78153 Le Chesnay Cedex
Pittsburgh PA 15213 France
USA -

9 Wei Li
Morven Gentleman Universität des Saarlandes
National Research Council Fachbereich 14 - lnformatik
Institute for Information Technology lm Stadtwald 15 .
Software Engineering Laboratory W-6600 Saarbrücken 11
Ottawa K1 A OR6 Germany
Canada
gentleman@iit.nrc.ca Axel Mahler
teI.: +1-613-993-3857 TU Berlin

Fachbereich Intormatik
A. Nico Haberrnann Franklinstr. 28/29
Carne ie Mellon University W-1000 Berlin 10
Schoo of Computer Science Germany
Pittsburgh PA 15213 axel@cs.tu-berlin.de
USA teI.: 030-314 73 487

Dagstuhl-Seminar 9208

W. Richards Adrion
University of Massachusets
Lederle Graduate Research Center
Computer Science
Amherst MA 01003
USA
adrion@cs.umass.edu
tel. : + 1-413-545-27 42

David Barstow
Schlumberger Laboratory of
Computer Science
50 ave. Jean Jaures
F-92542 Montrouse Cedex
France
barstow@slcse.sinet.slb.com
tel.: +33-1 -47 46-7207

Veronique Donzeau-Gouge
C.N.A.M.
Mathematiques et Departement
lnformatique
292 rue Saint-Martin
F-75141 Paris Cedex 03
France
donzeau@cnam .cnam. fr
tel.: +33-1-40 27 22 92

Phyllis Frankl
Polytechnic University
Computer Science Dept.
333 Jay Street
Brooklyn NY 11201
USA
pfrankl@prism.poly.edu /
tel.: + 1-718-260-3870

David Garlan
Carnegie Mellon University
School of Computer Science
Pittsburgh PA 15213
USA

Morven Gentleman
National Research Council
Institute for Information Technology
Software Engineering Laboratory
Ottawa K1 A OR6
Canada
gentleman@iit.nrc.ca
tel. : + 1-613-993-3857

A. Nico Habermann
Carnegie Mellon University
School of Computer Science
Pittsburgh PA 15213
USA

List of Participants

Dan Hoffman
University of Victoria
Department of Computer Science
P.O. Box 3055
Victoria B.C. V8W 3P6
Canada
dhoffman@uvunix.uvic.ca
tel. : + 1-604-721 -7222

Stefan JAhnlchen
TU Berlin
Franklinstr. 28/29
W-1000 Berlin 10
Germany
tel.: 030-31 47 32 30

Gilles Kahn
INRIA
Projet Prisme
Sophia Antipolis
2004 Route de Lucioles
06565 Valbonne Cedex
France
tel.: +33-93-65-78-01

Gail E. Kaiser
Columbia University
Department of Computer Science
500 West 120th Street
New York NY 10027
USA
kaiser@union.cs.columbia.edu
tel. : + 1-212-854-3856

Bernard Lang
INAIA
Domaine de Voluceau
Rocquencourt
BP 105
781.53 Le Chesnay Cedex
France

Wei Li
Universitat des Saarlandes
Fachbereich 14 - lnformatik
Im Stadtwald 15 .
W-6600 Saarbrucken 11
Germany

Axel Mahler
TU Berlin
Fachbereich lnformatik
Franklinstr. 28/29
W-1000 Berlin 10
Germany
axel@cs.tu-berlin.de
tel.: 030-314 73 487

Roland Mittermeir Lutz Prechelt
Universität Klagenfurt Universität Karlsruhe
Institut für Informatik Fakultät für Informatik
Universitätsstraße 65-67 Vincenz-Prießnitz-Str. 1
9022 Klagenfurt W-7500 Karlsruhe
Austria Germany
mittermeir@edvz.uni-klagenfurt.ada.at
teI.: +43-463-2700-575 Dieter Rombach

Universität Kaiserslautern
Hausi A. Müller FB Informatik
University of Victoria Postfach 3049
Department of Computer Science W-6750 Kaiserslautern
P.O. Box 3055 Germany
Victoria B.C. V8W 3P6 rombach@informatik.uni-kI.de
Canada tel.: 0631 -205-2895

hausi@csr.uvic.ca
tel.: +1-604-721-7630 Wilhelm Schäfer

Universität Dortmund
Manfred Nagl Fachbereich Informatik
RWTH Aachen Postfach 500 500
Fachbereich Informatik W�4600 Dortmund 50
Ahornstr. 55 wiIhelm@udo.Informatik.uni-dortmundde
W-5100 Aachen tel.: 0231 -755-2782

Germany
nagl@rwthi3.informatik.rvvth-aachen.de Gregor Snelting
tel.: 0241-8021300 TU Braunschweig

Fachgruppe Informatik
David Notkin Postfach 3329

University of Washington W-3300 Braunschweig
Department of Computer Science Germany
and Engineering snelting@infbs.uucp
ägaßttle Washington 98195 tel.: 0531 -391-7577
notkin@cs.washington.edu Walter 'I'ichy
tel.: +1-206-685-3798 Universität Karlsruhe

Fakultät für Informatik
Harold Ossher Vincenz-Prießnitz-Str. 1
IBM T. J. Watson Research Center W-7500 Karlsruhe
P.O. Box 704 Germany
Yorktown Heights NY 10598 tichy@ira.uka.de
USA tel. : 0721 -608-3934

ossher@watson.ibmcom
tel.: +1-914-784-7975 David S. Wile

University of Southern California
Dewayne Perry Information Sciences Institute
AT&T Beil Labs 4676 Admiralty Way
600 Mountain Avenue Marina deI Rey CA 90292
Murray Hill NJ 07974 USA .
USA wile@isi.edu

tel.: +1-310-822-1511, ext. 248
Erhard Ploedereder
Tartan Inc. Michal Young
300 Oxford Drive Purdue University
Monroeville PA 15146 Computer Science Department
USA West Lafayette IN 47906
pIoedere@tartan.com USA
teI.: +1 -41 2-856-3600 young@cs.purdue.edu

teI.: +1 -31 7-494-6023

Roland Mlttermelr
Universitat Klagenfurt
lnstitut fur lnformatik
UniversitatsstraBe 65-67
9022 Klagenfurt
Austria
mitte rmei r@edvz. u ni-klagenf u rt. ada.at
tel. : +43-463-2700-575

Hausi A. MOiier
University of Victoria
Department of Computer Science
P.O. Box 3055
Victoria B.C. V8W 3P6
Canada
hausi@csr.uvic.ca
tel. : + 1-604-721 -7630

Manfred Nagl
RWTH Aachen
Fachbereich lnformatik
Ahornstr. 55
W-5100 Aachen
Germany
nag1@rwthi3.informatik.rwth-aachen.de
tel. : 0241-8021300

David Notkin
University of Washington
Department of Computer Science
and Engineering
Seattle Washington 98195
USA
notkin@cs. was hi ngton.edu
tel. : + 1-206-685-3798

Harold Ossher
IBM T. J . Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
ossher@watson. ibmcom
tel. : + 1-914-784-7975

Dewayne Perry
AT&T Bell Labs
600 Mountain Avenue
Murray Hill NJ 0797 4
USA

Erhard Ploedereder
Tartan Inc.
300 Oxford Drive
Monroeville PA 15146
USA
ploedere@tartan.com
tel.: + 1-412-856-3600

Lutz Prechelt
Universitat Karlsruhe
Fakultat fur lnformatik
Vincenz-PrieBnitz-Str. 1
W-7500 Karlsruhe
Germany

Dieter Rombach
Universitat Kaiserslautern
FB lnformatik
Postfach 3049
W-6750 Kaiserslautern
Germany
rombach@informatik.uni-kl.de
tel. : 0631-205-2895

Wilhelm SchAfer
Universitat Dortmund
Fachbereich lnformatik
Postfach 500 500
W-4600 Dortmund 50
wilhelm@udo.informatik.uni-dortmund.de
tel. : 0231 -755-2782

Gregor Snelting
TU Braunschweig
Fachgruppe lnformatik
Postfach 3329
W-3300 Braunschweig
Germany
snelting@infbs.uucp
tel.: 0531-391 -7577

Walter Tlchy
Universitat Karlsruhe
Fakultat fur lnformatik
Vincenz-PrieBnitz-Str. 1
W-7500 Karlsruhe
Germany
tichy@ira.uka.de
tel. : 0721-608-3934

David S. Wile
University of Southern California
Information Sciences Institute
4676 Admiralty Way
Marina del Rey CA 90292
USA
wile@isi.edu
tel. : + 1-310-822-1511 , ext. 248

Michal Young
Purdue University
Computer Science Department
West Lafayette IN 47906
USA
young@cs.purdue.edu
tel. : + 1-317-494-6023

P. Kiint, T. Reps� G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Dittie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar�Fleport; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

SJ. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Börger, Y. Gurevich� H. KIeine-Büning, M.M. Richter (edi1ors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th lntemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Krückeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahister (editors):
Third International Workshop on User Modeling (UM�92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk� D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Biointormatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Fleport; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schete (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report: 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Purbach, K.P. Jantke (editors):
Analogical and Inductive lnterence 1992 , Dagstuhl-Seminar-Report; 49; 05.10.�09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
' Algorithms and Cornplexity of Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-

16.10.92 (9242)

J. Encarnacao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Rammig, J. Staunstrup� G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors) :
Foundations of Information Systems Specification and Design: Dagstuhl-Seminar-Report: 35:
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Co"l)iler Technology and Parallelism; Dagstuhl-Seminar-Report: 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security: Dagstuhl-Seminar-Report ; 37: 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jat1<e (editors) :
Distributed Cooperation in Integrated Information Systems: Dagstuhl-Seminar-Report; 38; 5.4.·
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report ; 39; 22.06.-26.06.92 (9226)

E. Borger, Y. Gurevich, H. Kleine-Suning, M.M. Richter (editors) :
Computer Science Logic, Dagstuhl-Seminar-Report: 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report: 41 : 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors) :
6th I ntemational Workshop on Unification, Dagstuhl-Seminar-Report; 42: 29. 07. -31 .07 .92 (9231)

J.W. Davenport, F. Kruckeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report : 43; 03.08.·
07.08.92 (9232)

A. Cohen, A. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report : 44; 10.-
13.8 .92 (9233)

A. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45: 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report : 46; 07.09.-11 .09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report: 47; 14.-18.09.92 (9238)

Y. Dittrich, H . Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report: 48: 21 .09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992, Dagstuhl-Seminar-Report : 49: 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
· Algorithms and Complexity of Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-

16.10.92 (9242)

J. Encarna<;ao, J . Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51 ; 02.11 .-
06.11 .92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Sett-Timed Design, Dagstuhl-Seminar-Report: 52; 30.11 .-04.12.92 (9249)

B. Courcelle, H. Ehrig, G. Flozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01.-08.01.93
(9301)

A. Arnold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54; 11.01 .-15.01 .93 (9302)

W.S. Cellary, K. Vidyasankar , G. Vossen (editors):
Versioning in Data Base Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test , Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, R. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308)

H. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

J. Pustejovsky, H. Kamp (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar-
Report; 60; 29.03.-02.04.93 (9313)

W. Stral3er, F. Wahl (editors):
Graphics 8. Robotics, Dagstuhl-Seminar-Report; 61; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

R. Book, E.P.D. Pednault, D. Wotschke (editors):
Descriptional Complexity: A Multidisciplinary Perspective , Dagstuhl-Seminar-Report; 63; 03.05.-
O7.05.93 (9318) �

M. Wirsing, H.-D. Ehrich (editors):
Specification and Semantics, Dagstuhl-Seminar-Report; 64; 24.05.-28.05.93 (9321)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Algebra, Dagstuhl-Seminar-Report; 65; 07.06.-
1 1.06.93 (9323)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 66; 28.06.-02.07.93 (9326)

Ph. Flajolet, Ft. Kemp, H. Prodinger (editors):
"Average-Case"-Analyse von Algorithmen, Dagstuhl-Seminar-Report; 67; 12.07.-16.07.93 (9328)

J.W. Gray, AM. Pitts, K. Sieber (editors): _
Interactions between Category Theory and Computer Science, Dagstuhl-Seminar-Report; 68;
19.07.-23.07.93 (9329)

V. Marek, A. Nerode, P.H. Schmitt (editors):
Non-Classical Logics in Computer Science, Dagstuhl-Seminar-Report; 69; 20.09.-24.09.93
(9338)

A. Odlyzko, C.P. Schnorr, A. Shamir (editors):
Cryptography, Dagstuhl-Seminar-Report; 70; 27.09.-01.10.93 (9339)

B. Courcelle, H. Ehrig, G. Rozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01 .-08.01.93
(9301)

A. Arnold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report : 54; 11 .01.-15.01 .93 (9302)

W.S. Cellary, K. Vidyasankar , G. Vossen (editors) :
Versioning in Data Base Management Systems, Dagstuhl-Seminar-Report; 55; 01 .02.-05.02.93
(9305)

B. Becker, A. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test . Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, A. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57: 23.02.-
26.02.93 (9308)

H. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Oagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report: 59: 22.03.-26.03.93 (9312)

J. Pustejovsky, H. Kamp (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar
Report ; 60; 29.03.-02.04.93 (9313)

W. StraBer, F. Wahl (editors) :
Graphics & Robotics, Dagstuhl-Seminar-Report: 61 ; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report ; 62: 26.04.-30.04.93 (9317)

R. Book, E.P.D. Pednault, D. Wotschke (editors):
Descriptional Complexity: A Multidisciplinary Perspective . Dagstuhl-Seminar-Report: 63; 03.05.-
07.05.93 (9318) .

M. Wirsing, H.-D. Ehrich (editors):
Specification and Semantics, Dagstuhl-Seminar-Report: 64; 24.05.-28.05.93 (9321)

M. Droste. Y. Gurevich (editors):
Semantics of Programming Languages and Algebra, Dagstuhl-Seminar-Report ; 65; 07.06.·
11 .06.93 (9323)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Mo~elling, Dagstuhl-Seminar-Report: 66: 28.06.-02.07.93 (9326)

Ph. Flajolet, A. Kemp, H. Prodinger (editors) :
"Average-Case"-Analyse von Algorithmen, Dagstuhl-Seminar-Report; 67; 12.07.-16.07.93 (9328)

J.W. Gray, A.M. Pitts, K. Sieber (editors): .
Interactions between Category Theory and Computer Science, Dagstuhl-Seminar-Report; 68;
19.07.-23.07.93 (9329)

V. Marek, A. Nerode, P.H . Schmitt (editors):
Non-Classical Logics in Computer Science, Dagstuhl-Seminar-Report ; 69; 20.09.-24.09.93
(9338)

A. Odlyzko, C.P. Schnorr, A. Shamir (editors):
Cryptography, Dagstuhl-Seminar-Report: 70: 27.09.-01.10.93 (9339)

