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Introduction

The goal of research on programming environments is to increase the productivity of the

software development process by providing better tools for creating, manipulating, and
understanding programs. Originating in the late 70�s (and then mainly concemed with
language-speci�c editors), the �eld has grown considerably, covering a wide variety of
software development activities today. Recently, some systems and tools originating in
academia have become available commercially.

During the week of March 9-13, 1992, a workshop on programming environments was held
at the International Conference and Research Center for Computer Science at Dagstuhl Castle.
The workshop brought together thiity active researchers in the area. It focused on new and
recent developments, with emphasis on the following topics:

- Single-programmer language-based environments
° Generation of programming environments
- Tool-integration mechanisms
- Debugging

- Merging and restructuring of systems
- Projection and understanding of systems
0 Incremental computation.

The intention of the workshop was to stimulate intellectual ferment among the participants.

The workshop�s format made it possible for participants to give more in-depth presentations
than is customary at conferences. The list of researchers invited contained people from both
the United States and Europe, covering academia as well as industry. In addition to a number
of prominent researchers, it included a number of students and recent Ph.D.s.

This report contains the abstracts of the talks presented at the workshop. They are direct
transcripts of the hand�written abstracts that the participants entered into the Dagstuhl seminar
book - only only light copy-editing has been performed.

In addition to the talks, several systems have been demonstrated, namely the Wisconsin
Program Integration Ssystem, the FIELD system, the Synthesizer Generator, the SAMPAE
language and environment, the ASF+SDF meta-environment, the partial evaluator Similix,
and the PSG system.

Dagstuhls excellent facilities, as well as the nice setting, made this a particular interesting and
stimulating week. Special thanks go to the Dagstuhl personnel for taking good care of us.

Paul Klint

Thomas Reps
Gregor Sneltin g
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Abstracts

Program Visualization: Where We Go From Here

Steven P. Reiss

Brown University

Modem technology allows us to view our programs through the visual representation that we
normally use to describe and understand them. Our experience with program visualization
started with multiple views in the program development system Pecan and with algorithm
animation in Balsa and later Tango. It continued with the programming system Garden and
has culminated with the Field programming environment. Building on these efforts, we are

currently developing a new visualization system that will take advantage of today�s technology
to provide a flexible interface to a variety of program visualizations. The system will allow
the programmer to define visualizations as abstractions using queries over an object-oriented
database of information about the program. These abstractions can then be visualized and

browsed using easily defined type-based mappings and a generic �ltering mechanism.

Tool Integration Technologies Through the 90�s

William H. Harrison

IBM Thomas J. Watson Research Laboratory

The problem of integrating separately written tools so that they work together cooperatively
is recognized as a key issue in CASE frameworks. The existing model for building tools

emphasizes separate large components, sharing rigid models of the data they manipulate. In
order to construct tools which can be more readily mixed and which can meet the demand
for more well-integrated visual environments, we see trends toward a �ner grain-size for both
data elements and control elements and from a procedural control-�ow approach toward a

compositional, object-oriented tool construction.
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The Computational Complexity of Incremental Algorithms

Thomas Reps�
University of Wisconsin Madison

A common way to evaluate the time complexity of an algorithm is to use asymptotic worst-
case analysis and to express the cost of the computation as a function of the size of the input.
However, for an incremental algorithm this kind of analysis is often not very infonnative.
(By an "incremental algorithm", we mean an algorithm that makes use of the solution to one
problem instance to �nd the solution to a "nearby" problem instance.) When the cost of the
computation is expressed as a function of the size of the (current) input, many incremental
algorithms that have been proposed run in time asymptotically no better in the worst case
than the time required to perform the computation from scratch. Unfortunately, this kind
of information is not very helpful if one wishes to compare different incremental algorithms
for a given problem.

We have explored a different way to analyze incremental algorithms. Rather than express
the cost of an incremental computation as a function of the size of the current input, we
measure the cost in terms of the sum the sizes of the changes in the input and the output.
This change in approach allows us to develop a more informative theory of computational
complexity for incremental problems.

In our work, we have developed new upper-bound results as well as new lower-bound results.

First, three problems -� the single-sink shortest-path problem with positive edge weights, the
all�pairs shortest-path problem with positive edge weights and the circuit-value problem -
are shown to have bounded incremental complexity (i.e., incremental complexity bounded
by a function of the sum of the sizes of the changes in the input and the output). The

single-sink shortest-path problem with positive edge weights and the all-pairs shortest-path
problem with positive edge weights are shown to be P-time incremental; the circuit-value
problem is shown to be Exp-time incremental. We have also established a number of lower

bounds with respect to a class of algorithms called the locally persistent algorithms. We
demonstrated the existence of a non-incremental problem (i.e., a problem for which no
bounded locally persistent incremental algorithm exists). We also demonstrated that a number
of other problems, including the closed-semiring path problems in directed graphs and the
meet-semilattice data-llow analysis problems, are non-incremental with respect to the class

of locally persistent algorithms.

joint work with G. Ramalingam
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ObjectMath - A Very High Level Programming Environment and
Language for Equation-based Modeling in Scienti�c Computing.

Peter Fritzson�

Linköping University

We present the �rst programming environment and language which integrates inheritance
within a computer algebra language. This environment and language, called ObjectMath
(Object Oriented Mathematical Language for Scienti�c Computing), is currently being used
for applications in advanced mechanical analysis, but is generally applicable to other areas.
Using ObjectMath, it is possible to model classes of equation objects, to support inheritance
of equations, and to solve systems of equations. The ObjectMath environment is designed to
handle realistic problems. This is achieved by allowing the user to specify transformations
and simpli�cations of formulae in the model, in order to arrive at a representation which
is ef�ciently solvable. Such algebraic transformations can conveniently be supported since
ObjectMath models are translated into the Mathematica computer algebra language. When
necessary, equations can be transformed to C++ code for ef�cient numerical solution. The
motivation for this work is the current low-level state of the art in programming for scienti�c

computing. Much numerical softwareis still being developed the traditional way in FOR-
TRAN. This is especially true in application areas such as machine elements analysis, where
complex non-linear problems are standard.

We also report some experience from successful use of a prototype version of ObjectMath
in representing and solving a 3-dimensional example made of 200 equations describing a
rolling bearing. The re-use of equations through inheritance reduced the model by a factor of
two, compared to a direct representation of the model in the Mathematica computer algebra

language.

Graphs as Central Data Structures in a Database Design Environment

Gregor Engels�
Leiden University

The talk illustrates that graphs are a well-suited data structure to be used for the modelling,
i.e., external representation, as well as for the internal representation of database schemas.

We present the database design environment CADDY (Computer-Aided conceptual Design
of non-traditional Databases) which offers an integrated tool set for editing, and prototyping
a conceptual database schema. The theoretical background is given by a semantically well-
de�ned data model which enables the speci�cation of the static structure of an application area
by an Extended Entity-Relationship diagram and the speci�cation of the dynamic behaviour
by temporal integrity constraints and extended data �ow graphs. The tool set of CADDY
comprises language-sensitive editors for all these speci�cation paradigms and prototyping

joint work with Dag Fritzson. Lars Villand. and Johan Herber
&#39; joint work with U. Hiilsmann. P. Löhr-Richter
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tools like a query interpreter or a graphical database browser to join experiences with partly

developed conceptual database schemata.

All developed documents within CADDY are internally represented by attributed abstract
syntax graphs. These are extensions of abstract syntax trees, where in addition to context-
free interrelations also context�sensitive interrelations are expressed by nodes and edges. The
classes of these syntax graphs are speci�ed by an operational speci�cation approach which
is based on programmed graph representation systems. These graph grammar speci�cations
serve as guideline for an efficient implementation of all CADDY-tools.

Object-Oriented Techniques for Replacing
Components on the Fly in a Running Software System

Manfred Stadel

Siemens Nixdorf

In an object oriented programming language virtual classes can be used to de�ne interfaces.
Implementations are then subclasses of the corresponding virtual classes. This also supports
the coexistence of several implementation variants for the same interface. Clients should now

call methods only via the virtual superclass..

To replace an implementation by a new version in a running program we need a dynamic
link loader. The dynamic link loader loads the new code and class descriptor and links it as
a subclass of the already existing virtual superclass. Since only the link loader knows the
address of the new class, creation of objects can be done by the link loader, i.e., the link

loader provides a create method to create objects of a new class.
If for a certain class objects are frequently created and destroyed, after a new implementation
has been loaded further objects are created from the new implementation and we can wait until
all objects of the old implementation have died out. Then the code of the old implementation
can be unloaded.

This will not work for long-living objects. Such objects must be converted to objects of the
new implementation. To do this each class should provide a method

clone(new_version: virtual_interface_class) is

require -- new version has just been created

do

ensure -- new version is in the same state as current

~end;

�clone� copies its internal state to new_version by using the (constructor) methods provided�
by the class. Aftevi-cloning, the new_version can be used instead of the current one and the
current one can be discarded.

A programming environment should support this style of programming, e.g., it should
automatically generate dynamic link loaders, garbage collectors to unload unused code, and
should clone long-living objects.
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Current Developments in the Synthesizer Generator

Trm Teitelbaum

Cornell University & GrammaTech, Inc.

The Synthesizer Generator is a system for generating language-sensitive editing environments
from high-level descriptions. It has been licensed as o_f now to over 330 sites worldwide,
50%/50% US/non-US, 5()%/50% university/industry. Current work enhancing the Synthesizer
Generator at GrammaTech is directed toward providing:

° Better Support for Tool Integration and Multilingual Environments

an editor command language: a uniform input abstraction allowing full control and
command extensibility of an editor by extemal tools, with support for the editor-
server model and batch use.

Events: a uniform output abstraction allowing full control of data exchanges with
extemal tools through broadcast messages.
Message server: Adoption of emerging industrial selective-broadcast messaging
platforms. A

Data Exchange Representations.� Improved compact linear representations of struc-
tural data and generation of code stubs for use by extemal tools exchanging such
data.

Imported and Exported Attributes: Exchange of attribute data among disjoint objects
in the same process, different processes, or data repositories.
Annotations: Opening of the object base for associated data of extemal tools.

Grammar modules: Support for multilingual languages within one editing process.

- Better Engineered Editing Interfaces

Strengthening the Textual Vrewpoint: adoption of an editing paradigm more compati-
ble with standard text-editing paradigms. A seamless integration of text and structure
editing.

- A better Speci�cation System

Higher-Order Attribute Grammars: Support for macros and more powerful pret-

typrinting.
More Powerful Transformation capabilities
Compact Notatitms
Separate Compilation: maturing environments faster to generate.

A demonstration of the new system under development was presented.
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How We Can Work Together

Mark Wegman
IBM Thomas J. Watson Research Center

I started out by describing environments work at Watson. This consists of work on tools and
an infrastructure that makes the whole greater than the sum of the parts. The infrastructure
consists of components like an object-oriented data base to store all the data passed around,
control systems, and user interfaces. I mentioned two tools - an inforrnation-retrieval system,
and a program-transformation tool. I

I then discussed that tools or interfaces separately were of little value and" that taking a big
step� forward requires re-doing many components. No one group can afford to take as radical
a step as several groups together could.

Based on this we discussed the creation of the Environment Consortium. If groups create

components with well-de�ned interfaces they can put these components on the net. Different
groups could provide competing components.

Some problems that need to be addressed are licensing, dependencies on other groups, and
the fact that de facto standards may inhibit progress.

Fine-Grain Implementation of Algebraic Speci�cations

Emma van der Meulen

CWI Amsterdam

An incremental implementation can be derived from algebraic speci�cations belonging to the
subclass of well-presented primitive recursive schemes with parameters. The implementation
is based on the result by Courcelle & Franchi-Zanettaci that this class of speci�cations is
equivalent to strongly noncircular attribute grammars. Attributes are associated with �incre-
mental� functions and attribute update strategies are transferred to be used in incremental
term rewriting. E.g., typecheck functions can typically be implemented incrementally.

Considering symbol tables as aggregate (attribute) values, however, hinders the incremental
evaluation. In this presentation we addressed the problem of expensive operations on
tables. The solution we presented is to apply the incremental technique for operations like
typechecking to operations on auxiliary data as well. Thus we obtain �ne-grain incremental
implementations. This line-grain incrementality can be derived from a subclass of algebraic
specifications that we will call layered primitive recursive schemes.
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Automated Assistance for Program Restructuring

William Griswold

University of California, San Diego

Maintenance tends to degrade the structure of software, ultimately making maintenance more
costly. - At times, then, it is worthwhile to manipulate the structure of a system to make
changes easier. However, manual restructuring is an error-prone and expensive activity. By
separating structural changes from other maintenance activities, the semantics of a system
can be held constant by a tool, assuring that no errors are introduced by restructuring.
To allow the maintenance team to focus on the aspects of restructuring and maintenance
requiring human judgment, a transformation-based tool can be provided - based on a model
that exploits preserving data �ow-dependence and control �ow-dependence � to automate
the repetitive, error-prone, and computationally-demanding aspects of restructuring. A set
of automatable transformations is introduced; their impact on structure is described, and
their usefulness is demonstrated in examples. A model to aid building meaning-preserving
restructuring transformations is described, and its realization in a functioning prototype tool
for restructuring Scheme programs is discussed.

Program Dependance Graphs for the Rest of Us

Robert A. Ballance�
The University of New Mexico

Fully general algorithms for computing control dependence information construct both the
reverse control �ow graph and its domination tree. The domination tree encodes the global
program �ow information needed to compute a control dependence graph (CDG).

However, for most programs, the postdominator information can be inferred directly from
the abstract syntax tree. In this talk, we present a succession of algorithms for computing
CDG�s from the AST. The �rst algorithm handles structured programs consisting of single-
entry, single-exit control constructs. The language is then extended to include C-style exit
constructs (break, continue, return) and the algorithm is extended to handle such constructs.
Finally, in the presence of arbitrary control �ow, we show how to derive a reverse control
�ow graph in which each node will be a region in the �nal CDG. From the reverse control
�ow graph, conventional algorithms can be used to compute the CDG. Simple algorithms for
data How analysis using the CDC will also be discussed. "

Work performed in collaboration with Arthur B. Maccahe
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Language-based Document Processing

Isabelle Attali*

INRIA Sophia Antipolis

This work proposes an application of programming environment generation to structured
document manipulation. We use Centaur as a formal tool to model and implementlogical
and physical structure, logical editing and layout processing, document analysis, re-use
applications and document conversion for a sample class of documents: scienti�c articles

including equations and �gures. To make connections with real document systems, we choose
to give two particular external forms to the logical structure: Tioga source and LaTeX source.

From the speci�cations of the logical and physical structure of the article document class on

one hand, and, on the other hand, the speci�cation of the layout processing (including its
semantics according to the Tioga or the LaTeX layout) and other semantic tools, the Centaur
system automatically generates structured environments for Tioga and LaTeX documents and
conversions between them.

SAMP/\E � An Environment for Lazy Functional Programming

Stefan Kaes

Technische Hochschule Darmstadt

The programming language SAMPAE and its programming environment are the outcome of
the DFG-project �Environment for constructive speci�cations� at the Technical University
of Darmstadt. The primary goals of the project were the design of a high-level functional
programming language and the implementation of a programming environment to support the
development of large systems written in that language.

SAMP/\E is a modern language with a simple, Modula-2�like module concept. The language
features non-strict, higher-order functions and data constructors, pattern matching and fully
static typing, which prevents type errors at runtime. The type system extends parametric

polymorphism by overloading, implicit coercions, and recursive types, based on the theory
of constrained types.

SAMPAE is embedded into a language dependent, fully integrated interactive programming
environment, consisting of a syntax-oriented editor, a type-inference component, an inter-
preter, a compiler, a debugger, and a library system. All components are controlled by a
window-oriented, menu-driven user interface. Management of module dependencies, type in-
ference and recompilation is fully automated. Special care has been taken to provide facilities
for interactive type error correction and debugging of lazy functional programs.

Joint work with Dennis Arnon and Paul Franci-Zanettaci
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Pregmatic - A Generator for Incremental Programming Environments

Mark van den Brand

Katholieke Universiteit Nijmegen

The main goal of this research was the development of a complete system for the generation
of incremental interactive programming environments from extended Af�x Grammars. Fur-
thermore we did not want to extend or restrict the given formalism. The research objectives
were incremental evaluation, af�x-directed parsing, ambigous context-free grammars, implicit
derivation of unparsing rules, and derivation of an execution tool. We concentrate on the in-
tegration of the �rst three points, and now only the af�x-directed parsing and ambiguous
grammars will be discussed.

The principle of af�x-directed parsing for semantic-directed parsing was not yet used in a
programming environment. The bene�ts of af�x-directed parsing are:

� detecting typechecking errors as soon as possible
� parsing context-depending language constructs, such as the offside rule in Miranda
� disambiguate (local) ambiguous context-free grammar rules.

The drawback is the reduction in the incrementality in case the input sentence contains an
error. Af�x-directed parsing is obtained by altemating parsing and propagation.�

Ambiguous grammars increase the �exibility of specification and allow us to introduce a new
language construct: untyped placeholder. The multiple subtrees found in case of ambiguity
are combined into a 3-dimensional tree.

Term Rewriting as Unifying Principle in the ASF+SDF Meta-Environment

Paul Klint

CWI & UvA Amsterdam

Have Programming Environment Generators a future? The success of current systems like the
Synthesizer Generator shows that the generation of programming environments from formal
language de�nitions is feasible. However, now writing large language de�nitions becomes
the bottleneck. We have been working on a "meta-environment" that solves (parts of) the
software engineering problem for language de�nition development.

In the talk I have presented ASF+SDF: an integrated formalism for de�ning both syntax and
semantics. Interesting aspects are:

- the �xed mapping between concrete and abstract syntax.

_� the close integration of syntax and semantics.

After presenting some examples and showing how language de�nitions can be developed
interactively in the ASF+SDF meta-environment, I have concentrated on the main topic of
the talk, the unifying role of term rewriting in our system: I
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(i) Simple operational semantics where the editing paradigm is equal to the execution

paradigm (i.e., term replacement);
(ii) Syntactic functions (e.g. the constructor for an assignment statement) and auxiliary

functions (e.g. lookup) are treated uniformly. This permits the use of incremental
evaluation techniques at all these levels.

(iii) Genetic debugging can be obtained by interrupting the rewrite process when the current
redex matches a given pattem. In this way, language-speci�c breakpoints can be
obtained.

A notion of "origins" can be de�ned which effectively summarizes the history of the
rewriting process. It constructs breakpoints from subterms that occur during rewriting
to the original term. This can be used for animation and precise error indications.

(iv) Finally, I showed how the notion of terms helps to solve the problem of specifying
how functions in the language de�nition can be applied to the current "program" in a

(generated) syntax-directed editor. We propose a generic approach where
� "buttons" in the interface can be enabled/disabled depending on speci�ed conditions;
- on activation of a button, speci�ed subterms from various windows are assembled

into anew term which is then reduced. The result can be put in a speci�ed place in
the user interface (e.g. a new window, the current focus, etc.).

To conclude, yes Programming Environment Generators have a future, but then we need to

solve the "1anguage-de�nition engineering problem". Our system is one step in that direction.

Empirical Experience with a New Interprocedural
Pointer Aliasing Approximation Algorithm

Barbara Ryder

Rutgers University

Compile-time analysis of C programs is useful for optimization and parallelization of code,
semantic change analysis of evolving systems, and tools for debugging and testing of
programs. Aliasing occurs when more than one name -exists simultaneously for the same

memory location. Existing aliasing algorithms for pointers are quite imprecise. The extensive
use of pointers in languages like C has rendered such analyses impractical. Aliasing induced
through pointers also has been studied in dealing with dynamically growing structures in
parallelization of codes.

Our new aliasing analyses (i) have determined the theoretical complexity of intraprocedural
and interprocedural aliasing problems induced through pointers and (ii) have resulted in a
new approximation technique for interprocedural, program-point-speci�c aliases. In empirical
experiments our method seems much more precise than previous techniques. We will explain
our approach, present our empirical experiments and discuss the utilization of these methods

in our semantics change analysis project.

This work was done jointly with Dr. William Landi and appears in his dissertation (November

1991).
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A Rewriting Semantics for Imperative Programs
and its Use in Programming Environments

John H. Field

IBM Thomas J. Watson Research Center

We present Pim, a formal system for reasoning about programs written in realistic imperative
programming languages. Pim consists of a term language and a nested set of equational
logics. The core of Pim is a con�uent rewriting system formed by orienting the equations of a
subsystem designated by Pim". The full equational logic (i.e. Pim) adds rules for reasoning
about observational congruence of Pim terms with respect to the semantics defined by Pim"�,
and includes rules foriperforming inductive reasoning.
Pim is intended to be used to de�ne the operational semantics of imperative programming

languages incorporating "problematic" constructs such as pointers, arrays, procedures with
various calling conventions, inde�nite loops, and arbitrary control �ow. Pim is distinguished
in particular by its ability to reason about the address-generating constructs that result in
aliasing - a phenomenon that often bedevils many analysis algorithms.

Our principal application of Pim is as an intermediate representation for semantics-based
programming tools. By "semantics-based", we mean capable of taking advantage of the
program�s behavior, rather than just its syntax. We illustrate the utility of Pim in this context

by showing that program slicing in the presence of pointer constructs can be performed easily
by partially evaluating the program�s corresponding Pim representation, then perfonning a
simple graph traversal.

A Visual Environment for Distributed Object-Oriented Multi-Applications

Daniel Yellin&#39;
IBM Thomas J. Watson Research Center

We describe a new graphical, object�oriented environment for distributed interacting multi-
applications. The end-user�s view is a collection of active objects represented as windows or
icons decorated with input and output slots, and plug socket connectors. These active objects
represent a particular user&#39;s view of those applications on the network currently accessible to
him. Objects can be created, destroyed, deposited in other objects, and emitted from other

objects. Objects can be packaged together to form composite objects. Composite objects
can be packaged into single objects and later unpackaged to reveal their internal detail. A
prototype of this environment has been implemented in Hermes.

This work has been done jointly with Robert Strom (IBM).
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Origin Tracking

Frank Tip
CWI Amsterdam

Origin tracking is a method for relating (partially) rewritten terms to an initial term, given
a conditional rewriting system. When a rewrite rule is applied, relations between �equal�
subterms in a redex and contractum are automatically derived from the syntactic shape of that
rule. The origin of a term, which is a set of related subterms in the initial term, is de�ned as
the transitive and re�exive closure of this relation.

Whereas rewriting according to an uncontidional TRS must be considered as a linear sequence
of rewrite steps, this is no longer the case when conditions are allowed. Rewriting according
to a CTRS is modeled as a tree of reduction sequences, containing one node per normalization
of a condition side. Consequently, in addition to the previously described relations for
unconditional TRS�s, relations between terms in different reduction sequences need to be
de�ned.

Some properties of the origin function are described, and the effects of allowing lists, and of
representing terms as DAG�s are considered.

An efficient implementation of origin tracking is presently based on several optimizations
of the basic algorithm. Finally, several applications of origin tracking are considered:
visualization of execution, generic debugging, and localization of errors.

Demand-Driven Data Flow Analysis for Program Debugging
Jong-Deok Choi

IBM Thomas J. Watson Research Center

[no written abstract available]
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An Environment for Developing by Transformation

Burkhart Wolff

Universität Bremen

The main goal for this research is the construction and foundation of a transformation- and

software-development system based on the experiences made with the PROSPECTRA system.

Three major points were outlined:

� The theoretical background (the object language SPECTRAL and its relation to the
transformation system)

� The methodological background (outlining the methodological framework of KORSO,
the BMFI�-founded research programme for c_o_r_rect software

- The technical background (the transformation engine)

Because of the wish to use incremental evaluation, the transformation engine is based on
attributes.

For this purpose, the concept of attribute speci�cations has to be extended by well-known

decomposition theorems of algebraic speci�cations, namely

- Signature morphisms on the abstract syntax (�Views�)
- Parametrization (of �Layers� with sorts, functions, and even attributes)
� Extension (hierarchical organization of layers)

Inference-Based Support for Programming in the Large

Gregor Snelting
Technische Universität Braunschweig

The experimental NORA Inference Based Software ENvironment&#39; can handle incomplete,
missing or inconsistent information about a software project. NORA comprises an incremental
interface checker for software component libraries, support for polymorphic component
reuse, an inference-based interactive con�guration system, and retrieval algorithms based
on usage patterns. We make heavy use of automated deduction techniques such as order-
sorted uni�cation or AC1 uni�cation. All tools are generic and parameterized with language-
speci�c information. NORA is an interactive environment currently under development; it
can complete panial information by itself and detect errors earlier than conventional tools.

NORA is no real acronym. It is a drama by the Norwegian writer H. Ibsen.
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The Self-Applicable Partial Evaluator Similix

Anders Bondorf

DIKU, University of Copenhagen

Similix is an autoprojector (self-applicable partial evaluator) for a higher-order subset of the
strict functional language Scheme. We present and demonstrate some applications of Similix:
generating deterministic �nite automata from regular expressions by partial evaluating a
regular-expression matcher written in Scheme; compiling a lazy functional language into
Scheme by partially evaluating an interpreter (written in Scheme) for the lazy language.

Partial evaluation does not always give good results. One often has to rewrite the source
program into a form that makes more expressions static, that is, reducible at partial evaluation
time. We illustrate this by the regular-expression matcher example.

A Logical Framework as the Basis for Language De�nition

Frank Pfenning

Carnegie Mellon University

We begin with a brief review of the LF logical framework and show how it can be used to

specify the (abstract) syntax and (operational) semantics of programming languages. We then
introduce Elf, a logic programming language providing an operational semantics to LF, e.g.,
to implement an interpreter or type checker. Finally we sketch how one can also employ
the same framework to implement the meta-theory of deductive systems and thus prove
properties of the programming languages which have been axiomatized. The language has
been implemented in Standard ML and is available via anonymous ftp on the Intemet.
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program into a form that makes more expressions static, that is, reducible at partial evaluation 

time. We illustrate this by the regular-expression matcher example. 

A Logical Framework as the Basis for Language Definition 

Frank Pfenning 

Carnegie Mellon University 

We begin with a brief review of the LF logical framework and show how it can be used to 

specify the (abstract) syntax and (operational) semantics of programming languages. We then 
introduce Elf, a logic programming language providing an operational semantics to LF, e.g., 

to implement an interpreter or type checker. Finally we sketch how one can also employ 
the same framework to implement the meta-theory of deductive systems and thus prove 

properties of the programming languages which have been axiomatized. The language has 
been implemented in Standard ML and is available via anonymous ftp on the Internet. 
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A Tool for Software Migration

Mooly Sagiv
IBM Scienti�c Center Haifa

[No written abstract available. This is due to the fact that the work described is still

con�dential, and Mooly received clearance for his oral presentation only immediately prior to
his talk. His system transforms machine-dependent PL/I programs (such as operating system
code) into equivalent PL/I programs which are to run on a new architecture. The problem
is not the overall program structure. but low-level details like word sizes, overlays, and
strings used as pointers (yes, in PUI this is possible). Types and intended uses of objects are
inferred from the abstract syntax tree, and rules specify how to transform certain constructs.
The method is not completely automatic and very slow, but it works. GS]

Logical Views, Feature Contexts, and Animation of Object-Oriented Design

John Shilling
Georgia Institute of Technology

Logical Views is a technology for interactive tools in a software-development environment.

The paradigm extends the object-oriented paradigm in three steps:

1) Allow multiple interfaces to a class
2) Allow visibility control over instance variables by interface
3) Allow multiple activations of the same interface

This allows tools to share data without interfering.

Feature contexts are a way to tie concise design decisions to their distributed implementation.
Features can be extracted and replaced. Feature interaction is detected. This system was

implemented on top of Gandalf.

Groove allows animation and captures object-oriented design protocols.
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Mooly Sagiv 
IBM Scientific Center Haifa 

[No written abstract available. This is due to the fact that the work described is still 
confidential, and Mooty received clearance for his oral presentation only immediately prior to 
his talk. His system transforms machine-dependent PLJI programs (such as operating system 
code) into equivalent PUI programs which are to run on a new architecture. The problem 
is not the overall program structure, but low-level details like word sizes, overlays, and 
strings used as pointers (yes, in PLJI this is possible). Types and intended uses of objects are 
inferred from the abstract syntax tree, and rules specify how to transform certain constructs. 
The method is not completely automatic and very slow, but it works. GS] 

Logical Views, Feature Contexts, and Animation of Object-Oriented Design 

John Shilling 
Georgia Institute of Technology 

Logical Views is a technology for interactive tools in a software-development environment 
The paradigm extends the object-oriented paradigm in three steps: 

I) Allow multiple interfaces to a class 
2) Allow visibility co,Hrol over instance variables by interface 
3) Allow multiple activations of the same interface 

This allows tools to share data without interfering. 

Feature contexts are a way to tie concise design decisions to their distributed implementation. 
Features can be extracted and replaced. Feature interaction is detected. This system was 
implemented on top of Gandalf. 

Groove allows animation and captures object-oriented design protocols. 
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