
Paul Klint, Thomas Reps,
Gregor Snelting (editors):

Programming Environments

Dagstuhl-Seminar-Report; 34
9.-13.3.92 (9211)

Paul Klint, Thomas Reps,
Gregor Snelting (editors) :

Programming Environments

Dagstuhl-Seminar-Report; 34
9.-13.3.92 (9211)

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern� Germany
TeI.: +49-6871 - 245a
Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. José Encarnagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V.� Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz
Bezugsadresse: Geschäftsstelle Schloß Dagstuhl

Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
TeI.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-mail: office@dag.uni�sb.de

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lnternationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein­
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und B~utachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefuhrt werden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encamayao,
Prof. Dr. Winfried Gorke,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph.D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Kartsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
w - 6600 Saarbrucken
Germany
Tel. : +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Report on the Dagstuhl Seminar on

Programming Environments

organized by

Paul Klint (Centrum voor Wiskunde en Informatica Amsterdam)

Thomas Reps (University of Wisconsin-Madison)
Gregor Snelting (Technische Universität Braunschweig)

March 9-13, 1992

Report on the Dagstuhl Seminar on

Programming Environments

organized by

Paul Klint (Centrum voor Wiskunde en Informatica Amsterdam)
Thomas Reps (University of Wisconsin-Madison)

Gregor Snetting (Technische Universitat Braunschweig)

March 9-13, 1992

Introduction

The goal of research on programming environments is to increase the productivity of the

software development process by providing better tools for creating, manipulating, and
understanding programs. Originating in the late 70�s (and then mainly concemed with
language-speci�c editors), the �eld has grown considerably, covering a wide variety of
software development activities today. Recently, some systems and tools originating in
academia have become available commercially.

During the week of March 9-13, 1992, a workshop on programming environments was held
at the International Conference and Research Center for Computer Science at Dagstuhl Castle.
The workshop brought together thiity active researchers in the area. It focused on new and
recent developments, with emphasis on the following topics:

- Single-programmer language-based environments
° Generation of programming environments
- Tool-integration mechanisms
- Debugging

- Merging and restructuring of systems
- Projection and understanding of systems
0 Incremental computation.

The intention of the workshop was to stimulate intellectual ferment among the participants.

The workshop�s format made it possible for participants to give more in-depth presentations
than is customary at conferences. The list of researchers invited contained people from both
the United States and Europe, covering academia as well as industry. In addition to a number
of prominent researchers, it included a number of students and recent Ph.D.s.

This report contains the abstracts of the talks presented at the workshop. They are direct
transcripts of the hand�written abstracts that the participants entered into the Dagstuhl seminar
book - only only light copy-editing has been performed.

In addition to the talks, several systems have been demonstrated, namely the Wisconsin
Program Integration Ssystem, the FIELD system, the Synthesizer Generator, the SAMPAE
language and environment, the ASF+SDF meta-environment, the partial evaluator Similix,
and the PSG system.

Dagstuhls excellent facilities, as well as the nice setting, made this a particular interesting and
stimulating week. Special thanks go to the Dagstuhl personnel for taking good care of us.

Paul Klint

Thomas Reps
Gregor Sneltin g

Introduction

The goal of research on programming environments is to increase the productivity of the

software development process by providing better tools for creating, manipulating, and
understanding programs. Originating in the late 70's (and then mainly concerned with
language-specific editors), the field has grown conside rably, covering a wide variety of
software development activities today. Recently, some systems and tools originating in

academia have become available commercially.

During the week of March 9-13, 1992, a workshop on programming environments was held

at the International Conference and Research Center for Computer Science at Dagstuhl Castle.
The workshop brought together thi1ty active researchers in the area. It focused on new and

recent developments, with emphasis on the following topics:

• Single-programmer language-based environments

• Generation of programming environments
• Tool-integration mechanisms
• Debuggin·g

• Merging and restructuring of systems
• Projection and understanding of systems

• Incremental computation.

The intention of the workshop was to stimulate intellectual ferment among the participants.
The workshop's format made it possible for participants to give more in-depth presentations

than is customary at conferences. The list of researchers invited contained people from both

the United States and Europe, covering academia as well as industry. In addition to a number
of prominent researchers, it included a number of students and recent Ph.D.s.

This report contains the abstracts of the talks presented at the workshop. They are direct
transcripts of the hand-written abstracts that the participants entered into the Dagstuhl seminar

book - only only light copy-editing has been performed.

In addition to the talks, several systems have been demonstrated, namely the Wisconsin
Program Integration Ssystem, the FIELD system, the Synthesizer Generator, the SAMP >.E

language and environment, the ASF+SDF meta-environment, the partial evaluator Similix,

and the PSG system.

Dagstuhls excellent facilities, as well as the nice setting, made this a particular interesting and
stimulating week. Special thanks go to the Dagstuhl personnel for taking good care of us.

Paul Klint

Thomas Reps
Gregor Snelling

Abstracts

Program Visualization: Where We Go From Here

Steven P. Reiss

Brown University

Modem technology allows us to view our programs through the visual representation that we
normally use to describe and understand them. Our experience with program visualization
started with multiple views in the program development system Pecan and with algorithm
animation in Balsa and later Tango. It continued with the programming system Garden and
has culminated with the Field programming environment. Building on these efforts, we are

currently developing a new visualization system that will take advantage of today�s technology
to provide a flexible interface to a variety of program visualizations. The system will allow
the programmer to define visualizations as abstractions using queries over an object-oriented
database of information about the program. These abstractions can then be visualized and

browsed using easily defined type-based mappings and a generic �ltering mechanism.

Tool Integration Technologies Through the 90�s

William H. Harrison

IBM Thomas J. Watson Research Laboratory

The problem of integrating separately written tools so that they work together cooperatively
is recognized as a key issue in CASE frameworks. The existing model for building tools

emphasizes separate large components, sharing rigid models of the data they manipulate. In
order to construct tools which can be more readily mixed and which can meet the demand
for more well-integrated visual environments, we see trends toward a �ner grain-size for both
data elements and control elements and from a procedural control-�ow approach toward a

compositional, object-oriented tool construction.

Abstracts

Program Visuali,zation: Where We Go From Here

Steven P. Reiss

Brown University

Modem technology allows us to view our programs through the visual representation that we

nonnally use to desc1ibe and understand them. Our experience with program visualization

started with multiple views in the program development system Pecan and with algorithm

animation in Balsa and later Tango. It continued with the programming system Garden and

has culminated with the Field programming environment. Building on these effo11S, we are

currently developing a new visualization system that will take advantage of today's technology

to provide a flexible interface to a variety of program visualizations. The system will allow

the programmer to define visualizations as abstractions using queries over an object-oriented

database of information about the program. These abstractions can then be visualized and

browsed using easily defined type-based mappings and a generic filtering mechanism.

Tool Integration Technologies Through the 90's

William H. Harrison

IBM Thomas J. Watson Research Laboratory

The problem of integrating separately w1itten tools so that they work together cooperative ly

is recognized as a key issue in CASE frameworks. The existing model for building tools

emphasizes separate large components, sharing rigid models of the data they manipulate. In

order to construct tools which can be more readily mixed and which can meet the demand

for more well-integrated visual environments, we see trends toward a finer grain-size for both

data elements and control elements and from a procedural control-flow approach toward a

compositional, object-oriented tool construction.

2

The Computational Complexity of Incremental Algorithms

Thomas Reps�
University of Wisconsin Madison

A common way to evaluate the time complexity of an algorithm is to use asymptotic worst-
case analysis and to express the cost of the computation as a function of the size of the input.
However, for an incremental algorithm this kind of analysis is often not very infonnative.
(By an "incremental algorithm", we mean an algorithm that makes use of the solution to one
problem instance to �nd the solution to a "nearby" problem instance.) When the cost of the
computation is expressed as a function of the size of the (current) input, many incremental
algorithms that have been proposed run in time asymptotically no better in the worst case
than the time required to perform the computation from scratch. Unfortunately, this kind
of information is not very helpful if one wishes to compare different incremental algorithms
for a given problem.

We have explored a different way to analyze incremental algorithms. Rather than express
the cost of an incremental computation as a function of the size of the current input, we
measure the cost in terms of the sum the sizes of the changes in the input and the output.
This change in approach allows us to develop a more informative theory of computational
complexity for incremental problems.

In our work, we have developed new upper-bound results as well as new lower-bound results.

First, three problems -� the single-sink shortest-path problem with positive edge weights, the
all�pairs shortest-path problem with positive edge weights and the circuit-value problem -
are shown to have bounded incremental complexity (i.e., incremental complexity bounded
by a function of the sum of the sizes of the changes in the input and the output). The

single-sink shortest-path problem with positive edge weights and the all-pairs shortest-path
problem with positive edge weights are shown to be P-time incremental; the circuit-value
problem is shown to be Exp-time incremental. We have also established a number of lower

bounds with respect to a class of algorithms called the locally persistent algorithms. We
demonstrated the existence of a non-incremental problem (i.e., a problem for which no
bounded locally persistent incremental algorithm exists). We also demonstrated that a number
of other problems, including the closed-semiring path problems in directed graphs and the
meet-semilattice data-llow analysis problems, are non-incremental with respect to the class

of locally persistent algorithms.

joint work with G. Ramalingam

The Computational Complexity of Incremental Algorithms

Thomas Reps•

University of Wisconsin Madison

A common way to evaluate the time complexity of an algorithm is to use asymptotic worst­

case analysis and to express the cost of the computation as a function of the size of the input.
However, for an incremental algorithm this kind of analysis is often not very informative.
(By an "incremental algorithm", we mean an algorithm that makes use of the solution to one

problem instance to find the solution to a "nearby" problem instance.) When the cost of the
computation is expressed as a function of the size of the (current) input, many incremental

algorithms that have been proposed run in time asymptotically no better in the worst case

than the time required to perform the computation from scratch. Unfortunately, this kind
of information is not very helpful if one wishes to compare different incremental algorithms

for a given problem.

We have explored a different way to analyze incremental algorithms. Rather than express
the cost of an incremental computation as a function of the size of the current input, we

measure the cost in te1ms of the sum the sizes of the changes in the input and the output

This change in approach allows us to develop a more informative theory of computational

complexity for incremental problems.

In our work, we have developed new upper-bound results as well as new lower-bound results.

First, three problems - the single-sink shortest-path problem with positive edge weights, the
all-pairs shortest-path probkm with positive edge weights and the circuit-value problem -

are shown to have bounded incremental complexity (i.e .. incremental complexity bounded
by a function of the sum of the sizes of the changes in the input and the output). The

single-sink shortest-path problem with positive edge weights and the all-pairs shortest-path

problem with positive edge weights are shown to be P-time incremental; the circuit-value
problem is shown to be Exp-time incremental. We have also established a number of lower

bounds with respect to a c lass of algo1ithms called the locally persistent algorithms. We

demonstrated the existence of a non-incremental problem (i. e .• a problem for which no

bounded locally persistent incremental algorithm exists). We also demonstrated that a number
of other problems. including the closed-semiring path problems in directed graphs and the

meet-semilattice data-tlow analysis problems. are non-incremental with respect to the class

of locally persistent algo1ithms.

joint work with G. Ramalingam

ObjectMath - A Very High Level Programming Environment and
Language for Equation-based Modeling in Scienti�c Computing.

Peter Fritzson�

Linköping University

We present the �rst programming environment and language which integrates inheritance
within a computer algebra language. This environment and language, called ObjectMath
(Object Oriented Mathematical Language for Scienti�c Computing), is currently being used
for applications in advanced mechanical analysis, but is generally applicable to other areas.
Using ObjectMath, it is possible to model classes of equation objects, to support inheritance
of equations, and to solve systems of equations. The ObjectMath environment is designed to
handle realistic problems. This is achieved by allowing the user to specify transformations
and simpli�cations of formulae in the model, in order to arrive at a representation which
is ef�ciently solvable. Such algebraic transformations can conveniently be supported since
ObjectMath models are translated into the Mathematica computer algebra language. When
necessary, equations can be transformed to C++ code for ef�cient numerical solution. The
motivation for this work is the current low-level state of the art in programming for scienti�c

computing. Much numerical softwareis still being developed the traditional way in FOR-
TRAN. This is especially true in application areas such as machine elements analysis, where
complex non-linear problems are standard.

We also report some experience from successful use of a prototype version of ObjectMath
in representing and solving a 3-dimensional example made of 200 equations describing a
rolling bearing. The re-use of equations through inheritance reduced the model by a factor of
two, compared to a direct representation of the model in the Mathematica computer algebra

language.

Graphs as Central Data Structures in a Database Design Environment

Gregor Engels�
Leiden University

The talk illustrates that graphs are a well-suited data structure to be used for the modelling,
i.e., external representation, as well as for the internal representation of database schemas.

We present the database design environment CADDY (Computer-Aided conceptual Design
of non-traditional Databases) which offers an integrated tool set for editing, and prototyping
a conceptual database schema. The theoretical background is given by a semantically well-
de�ned data model which enables the speci�cation of the static structure of an application area
by an Extended Entity-Relationship diagram and the speci�cation of the dynamic behaviour
by temporal integrity constraints and extended data �ow graphs. The tool set of CADDY
comprises language-sensitive editors for all these speci�cation paradigms and prototyping

joint work with Dag Fritzson. Lars Villand. and Johan Herber
' joint work with U. Hiilsmann. P. Löhr-Richter

ObjectMath - A Very High Level Programming Environment and
Language for Equation-based Modeling in Scientific Computing.

Peter Fritzson •

LinkOping University

We present the first programming environment and language which integrates inheritance

within a computer algebra language. This environment and language, called ObjectMath
(Object Oriented Mathematical Language for Scientific Computing), is currently being used
for applications in advanced mechanical analysis, but is generally applicable to other areas.
Using ObjectMath. it is possible to model classes of equation objects, to support inheritance

of equations, and to solve systems of equations. The ObjectMath environment is designed to
handle realistic problems. This is achieved by allowing the user to specify transformations

and simplifications of formulae in the model. in order to arrive at a representation which
is efficiently solvable. Such algebraic transformations can conveniently be supported since

ObjectMath modds are translated into the Mathematica computer algebra language. When

necessary, equations can be transfo1med to C++ code for efficient numerical solution. The
motivation for this work is the current low-level state of the art in programming for scientific

computing. Much numerical software is still being developed the traditional way in FOR­

TRAN. This is especially true in application areas such as machine elements analysis, where
complex non-linear problems are standard.

We also report some expe1ience from successful use of a prototype version of ObjectMath

in representing and solving a 3-dimensional example made of 200 equations describing a

rolling bearing. The re-use of equations through inheritance reduced the model by a factor of
two, compared to a direct representation of the model in the Mathematica computer algebra
language.

Graphs as Central Data Structures in a Database Design Environment

Gregor Engels t
Leiden University

The talk illustrates that graphs are a well-suited data structure to be used for the modelling,

i. e .• external representation. as well as for the internal representation of database schemas.

We present the database design environment CADDY (Computer-Aided conceptual Design

of non-traditional Databases) which offers an integrated tool set for editing, and prototyping

a conceptual database schema. The theoretical background is given by a semantically well­

defined data model which enables the specification of the static structure of an application area
by an Extended Entity-Relationship diagram and the specification of the dynamic behaviour

by temporal integ1ity constraints and extended data flow graphs. The tool set of CADDY

comprises language-sensitive editors for all these specification paradigms and prototyping

joint work with Dag Fritzson. Lars Villand. and Johnn Herber
joint work w ilh LI . HUlsmann. P. Lllhr-Richter

4

tools like a query interpreter or a graphical database browser to join experiences with partly

developed conceptual database schemata.

All developed documents within CADDY are internally represented by attributed abstract
syntax graphs. These are extensions of abstract syntax trees, where in addition to context-
free interrelations also context�sensitive interrelations are expressed by nodes and edges. The
classes of these syntax graphs are speci�ed by an operational speci�cation approach which
is based on programmed graph representation systems. These graph grammar speci�cations
serve as guideline for an efficient implementation of all CADDY-tools.

Object-Oriented Techniques for Replacing
Components on the Fly in a Running Software System

Manfred Stadel

Siemens Nixdorf

In an object oriented programming language virtual classes can be used to de�ne interfaces.
Implementations are then subclasses of the corresponding virtual classes. This also supports
the coexistence of several implementation variants for the same interface. Clients should now

call methods only via the virtual superclass..

To replace an implementation by a new version in a running program we need a dynamic
link loader. The dynamic link loader loads the new code and class descriptor and links it as
a subclass of the already existing virtual superclass. Since only the link loader knows the
address of the new class, creation of objects can be done by the link loader, i.e., the link

loader provides a create method to create objects of a new class.
If for a certain class objects are frequently created and destroyed, after a new implementation
has been loaded further objects are created from the new implementation and we can wait until
all objects of the old implementation have died out. Then the code of the old implementation
can be unloaded.

This will not work for long-living objects. Such objects must be converted to objects of the
new implementation. To do this each class should provide a method

clone(new_version: virtual_interface_class) is

require -- new version has just been created

do

ensure -- new version is in the same state as current

~end;

�clone� copies its internal state to new_version by using the (constructor) methods provided�
by the class. Aftevi-cloning, the new_version can be used instead of the current one and the
current one can be discarded.

A programming environment should support this style of programming, e.g., it should
automatically generate dynamic link loaders, garbage collectors to unload unused code, and
should clone long-living objects.

tools like a query interpreter or a graphical database browser to join experiences with panly

developed conceptual database schemata.

All developed documents within CADPY are internally represented by attributed abstract

syntax graphs. These are extensions of abstract syntax trees, where in addition to context­
free interrelations also context-sensitive interrelations are expressed by nodes and edges. The

classes of these syntax graphs are specified by an operational specification appro~h which
is based on programmed graph representation systems. These graph grammar specifications
serve as guideline for an efficient implementation of all CADDY -tools.

Object-Oriented Techniques for Replacing
Components on the Fly in a Running Seftware System

Manfred Stadel
Siemens Nixdorf

In an object oriented programming language virtual classes can be used to define· interfaces.
Implementations are then subclasses of the corresponding virtual classes. This also supports

the coexistence of several implementation variants for the same interface. Clients should now
call methods only via the vinual superclass.

To replace an impleme ntation by a new version in a running program we need a dynamic

link loader. The dynamic link loader loads the new code and class descriptor and links it as

a subclass of the already existing virtual superclass. Since only the link loader knows the

address of the new class, creation of objects can be done by the link loader, i.e., the link
loader provides a create method to create objects of a new class.

ff for a cenain class objects are frequently created and desuoyed, after a new implementatioo

has been loaded further objects are created from the new implementation and we can wait until

all objects of the old implementation have died out. The n the code of the old implementation
can be unloaded.

This will not work for long-living ot,:jects. Such objects must be convened to objects of the
new implementation. To do this each class should provide a method

clone(new_version: virtual_ interface_class) is
require -- new version has just been created
do
ensure -- new version is in the same state as current

·end;

"clone" copies its internal state to new_version by using the (consl'nlctor) methods prov.ided
by the class. Afte\".:loning, the new_ version can be used instead of the current one and the
current one can be dis"arded.

A programming e n,vironment should suppon this style of programming, e.g., it should

automatically generate dynamic link loaders, garbage collectors to unload unused &ode, and
should clone long-living objects.

5

Current Developments in the Synthesizer Generator

Trm Teitelbaum

Cornell University & GrammaTech, Inc.

The Synthesizer Generator is a system for generating language-sensitive editing environments
from high-level descriptions. It has been licensed as o_f now to over 330 sites worldwide,
50%/50% US/non-US, 5()%/50% university/industry. Current work enhancing the Synthesizer
Generator at GrammaTech is directed toward providing:

° Better Support for Tool Integration and Multilingual Environments

an editor command language: a uniform input abstraction allowing full control and
command extensibility of an editor by extemal tools, with support for the editor-
server model and batch use.

Events: a uniform output abstraction allowing full control of data exchanges with
extemal tools through broadcast messages.
Message server: Adoption of emerging industrial selective-broadcast messaging
platforms. A

Data Exchange Representations.� Improved compact linear representations of struc-
tural data and generation of code stubs for use by extemal tools exchanging such
data.

Imported and Exported Attributes: Exchange of attribute data among disjoint objects
in the same process, different processes, or data repositories.
Annotations: Opening of the object base for associated data of extemal tools.

Grammar modules: Support for multilingual languages within one editing process.

- Better Engineered Editing Interfaces

Strengthening the Textual Vrewpoint: adoption of an editing paradigm more compati-
ble with standard text-editing paradigms. A seamless integration of text and structure
editing.

- A better Speci�cation System

Higher-Order Attribute Grammars: Support for macros and more powerful pret-

typrinting.
More Powerful Transformation capabilities
Compact Notatitms
Separate Compilation: maturing environments faster to generate.

A demonstration of the new system under development was presented.

Current Developments in the Synthesizer Generator

Tim Teitelbaum

Cornell University & GrammaTech, Inc.

The Synthesizer Generator is a system for generating language-sensitive editing environments

from high-level descriptions. It has been licensed as of now to over 330 sites worldwide,
50%150% US/non-US, 50%150% university/industry. Current work enhancing the Synthesizer
Generator at GrammaTech is directed toward providing:

• Better Support for Tool Integration and Multilingual Environments

- an editor command language: a uniform input abstraction allowing full control and

command extensibility of an editor by external tools, with support for the editor­
server model and batch use.

- Events: a uniform output abstraction allowing full control of data exchanges with

external tools through broadcast messages.
- Message server: Adoption of emerging indusuial selective-broadcast messaging

platforms.
- Data Exchange Representations: Improved compact linear representations of s truc­

tural data and generation of code stubs for use by external tools exchanging such
data.

- Imported and E'Kporr.ed Attributes: Exchange of attribute data among disjoint objects
in the same process, different processes, or data reposito1ies.

- Annotations: Opening of the object base for associated data of external tools.

- Grammar modules: Support for multilingual languages within one editing process.

• Better Engineered Editing Interfaces

- Strengthening the Textual Viewpoint: adoption of an editing paradigm more compati­

ble with s tandard text-editing paradigms. A seamless integration of text and structure
editing.

• A better Specification System

- Higher-Order Artribure Grammars: Support for macros and more powerful pret­
typrinting.

- More Powerful Transformarion capabiliries
Compact Notations

- Separate Compilarion: maturing environments faster to generate.

A demonstration of the new system under development was presented.

6

How We Can Work Together

Mark Wegman
IBM Thomas J. Watson Research Center

I started out by describing environments work at Watson. This consists of work on tools and
an infrastructure that makes the whole greater than the sum of the parts. The infrastructure
consists of components like an object-oriented data base to store all the data passed around,
control systems, and user interfaces. I mentioned two tools - an inforrnation-retrieval system,
and a program-transformation tool. I

I then discussed that tools or interfaces separately were of little value and" that taking a big
step� forward requires re-doing many components. No one group can afford to take as radical
a step as several groups together could.

Based on this we discussed the creation of the Environment Consortium. If groups create

components with well-de�ned interfaces they can put these components on the net. Different
groups could provide competing components.

Some problems that need to be addressed are licensing, dependencies on other groups, and
the fact that de facto standards may inhibit progress.

Fine-Grain Implementation of Algebraic Speci�cations

Emma van der Meulen

CWI Amsterdam

An incremental implementation can be derived from algebraic speci�cations belonging to the
subclass of well-presented primitive recursive schemes with parameters. The implementation
is based on the result by Courcelle & Franchi-Zanettaci that this class of speci�cations is
equivalent to strongly noncircular attribute grammars. Attributes are associated with �incre-
mental� functions and attribute update strategies are transferred to be used in incremental
term rewriting. E.g., typecheck functions can typically be implemented incrementally.

Considering symbol tables as aggregate (attribute) values, however, hinders the incremental
evaluation. In this presentation we addressed the problem of expensive operations on
tables. The solution we presented is to apply the incremental technique for operations like
typechecking to operations on auxiliary data as well. Thus we obtain �ne-grain incremental
implementations. This line-grain incrementality can be derived from a subclass of algebraic
specifications that we will call layered primitive recursive schemes.

How We Can Work Together

Mark Wegman

IBM Thomas J. Watson Research Center

I started out by describing environments work at Watson. This consists of work on tools and

an infrastructure that makes the whole greater than the sum of the parts. The infrastructure

consists of components like an object-oriented data base to store all the data passed around.

control systems, and user interfaces. I mentioned two tools - an information-retrieval system.

and a program-transfo1mation tool.

I then discussed that tools or interfaces separately were of little value and· that taking a big

step forward requires re-doing many components. No one group can afford to take as radical

a step as several groups together could.

Based on this we discussed the creation of the Environment Consortium. If groups create

components with well-defined interfaces they can put these components on the net. Different

groups could provide competing components.

Some problems that need to be addressed are licensing, dependencies on other groups. and

the fact that de facto standards may inhibit progress.

Fine-Grain Implementation of Algebraic Specifications

Emma van der Meulen

CWI Amsterdam

An incremental implementation can be derived from algebraic specifications belonging to the

subclass of well-presented p1imitive recursive schemes with parameters. The implementation

is based on the result by Courcelle & Franchi-Zanettaci that this class of specifications is
equivalent to strongly noncircular attribute grammars. Attributes are associated with "incre­

mental" functions and attribute update strategies are transferred to be used in incremental

term rewriting. E.g .• typecheck functions can typically be implemented incrementally.

Considering symbol tables as aggregate (attribute) values, however, hinders the incremental

evaluation. In this presentation we addressed the problem of expensive operations on

tables. The solutio n we presented is to apply the incremental technique for operations like

typechecking to operations on auxiliary data as well. Thus we obtain fine-grain incremental

implementations. This line-grain incrementality can be derived from a subclass of algebraic

specifications that we will call layered primitive recursive schemes.

7

Automated Assistance for Program Restructuring

William Griswold

University of California, San Diego

Maintenance tends to degrade the structure of software, ultimately making maintenance more
costly. - At times, then, it is worthwhile to manipulate the structure of a system to make
changes easier. However, manual restructuring is an error-prone and expensive activity. By
separating structural changes from other maintenance activities, the semantics of a system
can be held constant by a tool, assuring that no errors are introduced by restructuring.
To allow the maintenance team to focus on the aspects of restructuring and maintenance
requiring human judgment, a transformation-based tool can be provided - based on a model
that exploits preserving data �ow-dependence and control �ow-dependence � to automate
the repetitive, error-prone, and computationally-demanding aspects of restructuring. A set
of automatable transformations is introduced; their impact on structure is described, and
their usefulness is demonstrated in examples. A model to aid building meaning-preserving
restructuring transformations is described, and its realization in a functioning prototype tool
for restructuring Scheme programs is discussed.

Program Dependance Graphs for the Rest of Us

Robert A. Ballance�
The University of New Mexico

Fully general algorithms for computing control dependence information construct both the
reverse control �ow graph and its domination tree. The domination tree encodes the global
program �ow information needed to compute a control dependence graph (CDG).

However, for most programs, the postdominator information can be inferred directly from
the abstract syntax tree. In this talk, we present a succession of algorithms for computing
CDG�s from the AST. The �rst algorithm handles structured programs consisting of single-
entry, single-exit control constructs. The language is then extended to include C-style exit
constructs (break, continue, return) and the algorithm is extended to handle such constructs.
Finally, in the presence of arbitrary control �ow, we show how to derive a reverse control
�ow graph in which each node will be a region in the �nal CDG. From the reverse control
�ow graph, conventional algorithms can be used to compute the CDG. Simple algorithms for
data How analysis using the CDC will also be discussed. "

Work performed in collaboration with Arthur B. Maccahe

Automated Assistance for Program Restructuring

William Griswold

University of California. San Diego

Maintenance tends to degrade the structure of software, ultimately making mainttnance more
costly . . At times. then, it is worthwhile to manipulate the structure of a system to make
changes easier. However, manual restructuring is an error-prone and expensive activity. By

separating structural changes from other maintenance activities, the semantics of a system

can be held constant by a tool, assuring that no errors are introduced by restructuring.
To allow the maintenance team to focus on the aspects of restructuring and maintenance
requiring human judgment, a transformation-based tool can be provided - based on a model
that exploits preserving data flow-dependence and control flow-dependence - to automate

the repetitive, error-prone, and computationally-demanding aspects of restructuring. A set

of automatable transformations is introduced; their impact on structure is described, and
their usefulness is demonstrated in examples. A model to aid building meaning-preserving
restructuring transfonnations is described, and its realization in a functioning prototype tool
for restructuring Scheme programs is discussed.

Program Dependance Graphs for the Rest of Us

Robert A. Ballance•

The University of New Mexico

Fully general algorithms for computing control dependence information construct both the

reverse control flow graph and its domination tree. The domination tree encodes the global
program flow info1mation needed to compute a control dependence graph (COO).

However, for most programs. lhe postdominator information can be inferred directly from

the abstract syntax tree. In this talk. we present a su.ccession of algorithms for computing
COO's from the AST. The first algorithm handles structured programs consisting of single­
entry, single-exit control constructs. The language is then extended to include C-style exit
constructs (break, continue, re turn) and the algorithm is extended to handle such constructs.

Finally, in lhe presence of arbitrary control flow, we show how to derive a reverse control

flow graph in which each node will he a region in the final COO. From the reverse control

flow graph. conventional algo1ithms can be used to compute the COG. Simple algorithms for
data flow analysis using the COO will also be discussed.

Work performed in rnllahoralion with Arthur D. Maccabe

8

Language-based Document Processing

Isabelle Attali*

INRIA Sophia Antipolis

This work proposes an application of programming environment generation to structured
document manipulation. We use Centaur as a formal tool to model and implementlogical
and physical structure, logical editing and layout processing, document analysis, re-use
applications and document conversion for a sample class of documents: scienti�c articles

including equations and �gures. To make connections with real document systems, we choose
to give two particular external forms to the logical structure: Tioga source and LaTeX source.

From the speci�cations of the logical and physical structure of the article document class on

one hand, and, on the other hand, the speci�cation of the layout processing (including its
semantics according to the Tioga or the LaTeX layout) and other semantic tools, the Centaur
system automatically generates structured environments for Tioga and LaTeX documents and
conversions between them.

SAMP/\E � An Environment for Lazy Functional Programming

Stefan Kaes

Technische Hochschule Darmstadt

The programming language SAMPAE and its programming environment are the outcome of
the DFG-project �Environment for constructive speci�cations� at the Technical University
of Darmstadt. The primary goals of the project were the design of a high-level functional
programming language and the implementation of a programming environment to support the
development of large systems written in that language.

SAMP/\E is a modern language with a simple, Modula-2�like module concept. The language
features non-strict, higher-order functions and data constructors, pattern matching and fully
static typing, which prevents type errors at runtime. The type system extends parametric

polymorphism by overloading, implicit coercions, and recursive types, based on the theory
of constrained types.

SAMPAE is embedded into a language dependent, fully integrated interactive programming
environment, consisting of a syntax-oriented editor, a type-inference component, an inter-
preter, a compiler, a debugger, and a library system. All components are controlled by a
window-oriented, menu-driven user interface. Management of module dependencies, type in-
ference and recompilation is fully automated. Special care has been taken to provide facilities
for interactive type error correction and debugging of lazy functional programs.

Joint work with Dennis Arnon and Paul Franci-Zanettaci

9

Language-based Document Processing

Isabelle Attali*
INRIA Sophia Antipolis

This work proposes an application of programming environment generation to structured

document manipulation. We use Centaur as a formal tool to model and implement logical
and physical structure, logical editing and layout processing, document analysis, re-use

applications and document conversion for a sample class of documents: scientific articles

including equations and figures. To make connections with real document systems, we choose
to give two particular external forms to the logical structure: Tioga source and LaTeX source.

From the specifications of the logical and physical structure of the article document class on
one hand, and, on the other hand. the specification of the layout processing (including its
semantics according to the Tioga or the LaTeX layout) and other semantic tools. the Centaur
system automatically generates structured environments for Tioga and LaTeX documents and

conversions between them.

SAMP AE - An Environment for Lazy Functional Programming

Stefan Kaes

Technische Hochschule Darmstadt

The programming language SAMP .>tE and its programming environment are the outcome of
the DFG-project "Environment for constructive specifications" at the Technical University

of Dannstadt. The p1imary goals of the project were the design of a high-level functional
programming language and the implementation of a programming environment to support the

development of large systems wriuen in that language.

SAMP>.E is a modern language with a simple, Modula-2-like module concept. The language
features non-stric t, higher-order functions and data constructors. pattern matching and fully
static typing, which prevents type errors at runtime. The type system extends parametric

polymorphism by overloading. implicit coercions. and recursive types, based on the theory
of constrained types.

$AMP >.E is embedded into a language dependent, fully integrated interactive programming

environment, consisting of a syntax-oriented editor. a type-inference component, an inter­

preter, a compiler, a debugger. and a library system. All components are controlled by a
window-oriented, menu-driven user interface. Management of module dependencies, type in­

ference and recompilation is fully automated. Special care has been taken to provide facilities

for interactive type error correction and debugging of lazy functional programs.

Joint work wilh Dennis Amon and Paul Franci-Zanettaci

9

Pregmatic - A Generator for Incremental Programming Environments

Mark van den Brand

Katholieke Universiteit Nijmegen

The main goal of this research was the development of a complete system for the generation
of incremental interactive programming environments from extended Af�x Grammars. Fur-
thermore we did not want to extend or restrict the given formalism. The research objectives
were incremental evaluation, af�x-directed parsing, ambigous context-free grammars, implicit
derivation of unparsing rules, and derivation of an execution tool. We concentrate on the in-
tegration of the �rst three points, and now only the af�x-directed parsing and ambiguous
grammars will be discussed.

The principle of af�x-directed parsing for semantic-directed parsing was not yet used in a
programming environment. The bene�ts of af�x-directed parsing are:

� detecting typechecking errors as soon as possible
� parsing context-depending language constructs, such as the offside rule in Miranda
� disambiguate (local) ambiguous context-free grammar rules.

The drawback is the reduction in the incrementality in case the input sentence contains an
error. Af�x-directed parsing is obtained by altemating parsing and propagation.�

Ambiguous grammars increase the �exibility of specification and allow us to introduce a new
language construct: untyped placeholder. The multiple subtrees found in case of ambiguity
are combined into a 3-dimensional tree.

Term Rewriting as Unifying Principle in the ASF+SDF Meta-Environment

Paul Klint

CWI & UvA Amsterdam

Have Programming Environment Generators a future? The success of current systems like the
Synthesizer Generator shows that the generation of programming environments from formal
language de�nitions is feasible. However, now writing large language de�nitions becomes
the bottleneck. We have been working on a "meta-environment" that solves (parts of) the
software engineering problem for language de�nition development.

In the talk I have presented ASF+SDF: an integrated formalism for de�ning both syntax and
semantics. Interesting aspects are:

- the �xed mapping between concrete and abstract syntax.

_� the close integration of syntax and semantics.

After presenting some examples and showing how language de�nitions can be developed
interactively in the ASF+SDF meta-environment, I have concentrated on the main topic of
the talk, the unifying role of term rewriting in our system: I

10

Pregmatic - A Generator for Incremental Programming Environments

Mark van den Brand

Katholieke Universiteit Nijmegen

The main goal of this research was the development of a complete system for the generation

of incremental interactive programming environments from extended Affix Grammars. Fur­

thermore we did not want to extend or restrict the given formalism. The research objectives

were incremental evaluation, affix-directed parsing, ambigous context-free grammars, implicit

derivation of unparsing rules, and derivation of an execution tool. We concentrate on the in­
tegration of the first three points, and now only the affix-directed parsing and ambiguous

grammars will be discussed.

The principle of affix-directed parsing for semantic-directed parsing was no t yet used in a

programming environment. The benefits of affix-directed parsing are:

- detecting typecheck.ing errors as soon as possible

- parsing context-depending language constructs, such as the offside rule in Miranda

- disambiguate (local) ambiguous context-free grammar rules.

The drawback is the reduction in the incrementality in case the input sentence contains an

error. Affix-directed parsing is obtained by alternating parsing and propagation.

Ambiguous grammars increase the flexibility of specification and allow us to introduce a new

language construct: untyped placeholder. The multiple subtrees found in case of ambiguity

are combined into a 3-dimensional tree.

Term Rewriting as Unifying Principle in the ASF+SDF Meta-Environment

Paul Klint

CWI & UvA Amsterdam

Have Programming Environment Generators a future? The success of current systems like the
Synthesizer Generator shows that the generation of programming environments from formal

language definitions is feasible. However, now writing large language definitions becomes

the bottleneck. We have been working on a "meta-environment" that solves (parts of) the

software engineering problem for language definition development.

In the talk I have presented ASF+SDF: an integrated formalism for defining both syntax and

semantics. Interes ting aspects are:

•
•

the fixed mapping between concrete and abstract syntax .

the close integration of syntax and ~emantics .

After presenting some examples and showing how language definitions can be developed

interactively in the ASF+SDF meta-environment, I have concentrated on the main topic of

the talk, the unifying role of te1m rew1iting in our system:

10

(i) Simple operational semantics where the editing paradigm is equal to the execution

paradigm (i.e., term replacement);
(ii) Syntactic functions (e.g. the constructor for an assignment statement) and auxiliary

functions (e.g. lookup) are treated uniformly. This permits the use of incremental
evaluation techniques at all these levels.

(iii) Genetic debugging can be obtained by interrupting the rewrite process when the current
redex matches a given pattem. In this way, language-speci�c breakpoints can be
obtained.

A notion of "origins" can be de�ned which effectively summarizes the history of the
rewriting process. It constructs breakpoints from subterms that occur during rewriting
to the original term. This can be used for animation and precise error indications.

(iv) Finally, I showed how the notion of terms helps to solve the problem of specifying
how functions in the language de�nition can be applied to the current "program" in a

(generated) syntax-directed editor. We propose a generic approach where
� "buttons" in the interface can be enabled/disabled depending on speci�ed conditions;
- on activation of a button, speci�ed subterms from various windows are assembled

into anew term which is then reduced. The result can be put in a speci�ed place in
the user interface (e.g. a new window, the current focus, etc.).

To conclude, yes Programming Environment Generators have a future, but then we need to

solve the "1anguage-de�nition engineering problem". Our system is one step in that direction.

Empirical Experience with a New Interprocedural
Pointer Aliasing Approximation Algorithm

Barbara Ryder

Rutgers University

Compile-time analysis of C programs is useful for optimization and parallelization of code,
semantic change analysis of evolving systems, and tools for debugging and testing of
programs. Aliasing occurs when more than one name -exists simultaneously for the same

memory location. Existing aliasing algorithms for pointers are quite imprecise. The extensive
use of pointers in languages like C has rendered such analyses impractical. Aliasing induced
through pointers also has been studied in dealing with dynamically growing structures in
parallelization of codes.

Our new aliasing analyses (i) have determined the theoretical complexity of intraprocedural
and interprocedural aliasing problems induced through pointers and (ii) have resulted in a
new approximation technique for interprocedural, program-point-speci�c aliases. In empirical
experiments our method seems much more precise than previous techniques. We will explain
our approach, present our empirical experiments and discuss the utilization of these methods

in our semantics change analysis project.

This work was done jointly with Dr. William Landi and appears in his dissertation (November

1991).

ll

(i) Simple operational semantics where the editing paradigm is equal to the execution

paradigm (i.e. , term replacement);

(ii) Syntactic functions (e.g. the constructor for an assignment statement) and auxiliary

functions (e.g. lookup) are treated uniformly. This pennits the use of incremental

evaluation techniques at all these levels.

(iii) Generic debugging can be obtained by interrupting the rewrite process when the current

redex matches a given pattern. In this way, language-specific breakpoints can be

obtained .

A notion of "origins" can be defined which effectively summarizes the history of the

rewriting process. It constructs breakpoints from subterms that occur during rewriting

to the original term. This can be used for animation and precise error indications.

(iv) Finally. I showed how the notion of terms helps to solve the problem of specifying

how functions in the language definition can be applied to the current "program" in a

(generated) syntax-directed editor. We propose a generic approach where

- "buttons" in the interface can be enabled/disabled depending on specified conditions;

- on activation of a button, specified subterms from various windows are assembled

into a. new te1m which is then reduced. The result can be put in a specified place in

the user interface (e.g. a new window, the current focus, etc.).

To conclude, yes Programming Environment Generators have a future, but then we need to

solve the "language-definition engineering problem". Our system is one step in that direction.

Empirical Experience with a New Interprocedural
Pointer Aliasing Approximation Algorithm

Barbara Ryder

Rutgers University

Compile-time analysis of C programs is useful for optimization and parallelization of code,

semantic change analysis of evolving systems, and tools for debugging and testing of

programs. Aliasing occurs when more than one name ·exists simultaneously for the same

memory location. Existing aliasing algorithms for pointers are quite imprecise. The extensive

use of pointers in languages like C has rendered such analyses impractical. Aliasing induced

through pointers also has been studied in dealing with dynamically growing structures in

parallelization of codes.

Our new aliasing ana lyses (i) have determined the theoretical complexity of intraprocedural

and interprocedural aliasing problems induced through pointers and (ii) have resulted in a

new approximation technique for interprocedural, program-point-specific aliases. In empirical

experiments our method seems much more precise than previous techniques. We will explain

our approach, present our empirical experiments and discuss the utilization of these methods

in our semantics change analysis project.

This work was done jointly with Dr. William Landi and appears in his dissertation (November
1991).

11

A Rewriting Semantics for Imperative Programs
and its Use in Programming Environments

John H. Field

IBM Thomas J. Watson Research Center

We present Pim, a formal system for reasoning about programs written in realistic imperative
programming languages. Pim consists of a term language and a nested set of equational
logics. The core of Pim is a con�uent rewriting system formed by orienting the equations of a
subsystem designated by Pim". The full equational logic (i.e. Pim) adds rules for reasoning
about observational congruence of Pim terms with respect to the semantics defined by Pim"�,
and includes rules foriperforming inductive reasoning.
Pim is intended to be used to de�ne the operational semantics of imperative programming

languages incorporating "problematic" constructs such as pointers, arrays, procedures with
various calling conventions, inde�nite loops, and arbitrary control �ow. Pim is distinguished
in particular by its ability to reason about the address-generating constructs that result in
aliasing - a phenomenon that often bedevils many analysis algorithms.

Our principal application of Pim is as an intermediate representation for semantics-based
programming tools. By "semantics-based", we mean capable of taking advantage of the
program�s behavior, rather than just its syntax. We illustrate the utility of Pim in this context

by showing that program slicing in the presence of pointer constructs can be performed easily
by partially evaluating the program�s corresponding Pim representation, then perfonning a
simple graph traversal.

A Visual Environment for Distributed Object-Oriented Multi-Applications

Daniel Yellin'
IBM Thomas J. Watson Research Center

We describe a new graphical, object�oriented environment for distributed interacting multi-
applications. The end-user�s view is a collection of active objects represented as windows or
icons decorated with input and output slots, and plug socket connectors. These active objects
represent a particular user's view of those applications on the network currently accessible to
him. Objects can be created, destroyed, deposited in other objects, and emitted from other

objects. Objects can be packaged together to form composite objects. Composite objects
can be packaged into single objects and later unpackaged to reveal their internal detail. A
prototype of this environment has been implemented in Hermes.

This work has been done jointly with Robert Strom (IBM).

12

A Rewriting Semantics for Imperative Programs
and its Use in Programming Environments

John H. Field

IBM Thomas J. Watson Research Center

We present Pim, a formal system for reasoning about programs written in realistic imperative
programming languages. Pim consists of a term language and a nested set of equational
logics. The core of Pim is a confluent rewriting system formed by orienting the equations of a

subsystem designated by Pim-. The full equational logic (i.e. Pim) adds rules for reasoning
about observational congruence of Pim terms with respect to the semantics defined by Pim-,

and includes rules for performing inductive reasoning.

Pim is intended to be used to define the operational semantics of imperative programming
languages incorporating "problematic" constructs such as pointers, arrays, procedures with

various calling conventions. indefinite loops. and arbitrary control flow. Pim is distinguished
in particular by its ability to reason about the address-generating constructs that result in
aliasing - a phenomenon that often bedevils many analysis algorithms.

Our principal application of Pim is as an intermediate representation for semantics-based

programming tools. By "semantics-based", we mean capable of taking advantage of the
program's behavior, rather than just its syntax. We illustrate the utility of Pim in this context

by showing that program slicing in the presence of pointer constructs can be performed easily
by partially evaluating the program· s corresponding Pim representation, then performing a
simple graph traversal.

A Visual Environment for Distributed Object-Oriented Multi-Applications

Daniel Yellin •

IBM Thomas J. Watson Research Center

We describe a new graphical, object-oriented environment for distributed interacting multi­
applications. The end-user's view is a collection of active objects represented as windows or

icons decorated with input and output slots, and plug socket connectors. 1bese active objects

represent a particular user's view of those applications on the network currently accessible to
him. Objects can be created, destroyed, deposited in other objects, and emitted from other

objects. Objects can be packaged together to form composite objects. Composite objects
can be packaged into single objects and later unpackaged to reveal their internal detail. A

prototype of this e nvironment has been implemented in Hermes.

This work has heen done joinUy wilh Roherl Strom (IBM).

12

Origin Tracking

Frank Tip
CWI Amsterdam

Origin tracking is a method for relating (partially) rewritten terms to an initial term, given
a conditional rewriting system. When a rewrite rule is applied, relations between �equal�
subterms in a redex and contractum are automatically derived from the syntactic shape of that
rule. The origin of a term, which is a set of related subterms in the initial term, is de�ned as
the transitive and re�exive closure of this relation.

Whereas rewriting according to an uncontidional TRS must be considered as a linear sequence
of rewrite steps, this is no longer the case when conditions are allowed. Rewriting according
to a CTRS is modeled as a tree of reduction sequences, containing one node per normalization
of a condition side. Consequently, in addition to the previously described relations for
unconditional TRS�s, relations between terms in different reduction sequences need to be
de�ned.

Some properties of the origin function are described, and the effects of allowing lists, and of
representing terms as DAG�s are considered.

An efficient implementation of origin tracking is presently based on several optimizations
of the basic algorithm. Finally, several applications of origin tracking are considered:
visualization of execution, generic debugging, and localization of errors.

Demand-Driven Data Flow Analysis for Program Debugging
Jong-Deok Choi

IBM Thomas J. Watson Research Center

[no written abstract available]

l3

Origin Tracking

Frank Tip

CWI Amsterdam

Origin tracking is a method for relating (partially) rewritten terms to an initial term, given

a conditional rewriting system. When a rewrite rule is applied, relations between "equal"

subtenns in a redex and contractum are automatically derived from the syntactic shape of that

rule. The origin of a term, which is a set of related subterms in the initial tenn, is defined as

the transitive and reflexive closure of this relation.

Whereas rewriting according to an uncontidional TRS must be considered as a linear seque nce

of rewrite steps, this is no longer the case when conditions are allowed. Rewriting according

to a CTRS is modeled as a tree of reduction sequences, containing o ne node per normalization

of a condition side. Consequently, in addition to the previously described relations for

unconditional TRS's, relations between terms in different reduction sequences need to be

defined.

Some properties of the origin function are described, and the effects of allowing lists, and of

representing terms as DAG's are considered.

An efficient implementation of origin tracking is presently based on several optimizations

of the basic algorithm. Finally, several applications of origin tracking are considered:

visualization of execution, generic debugging, and localization of errors.

Demand-Driven Data Flow Analysis for Program Debugging

Jong-Deok Choi

IBM Thomas J. Watson Research Center

[no written abstract available]

13

An Environment for Developing by Transformation

Burkhart Wolff

Universität Bremen

The main goal for this research is the construction and foundation of a transformation- and

software-development system based on the experiences made with the PROSPECTRA system.

Three major points were outlined:

� The theoretical background (the object language SPECTRAL and its relation to the
transformation system)

� The methodological background (outlining the methodological framework of KORSO,
the BMFI�-founded research programme for c_o_r_rect software

- The technical background (the transformation engine)

Because of the wish to use incremental evaluation, the transformation engine is based on
attributes.

For this purpose, the concept of attribute speci�cations has to be extended by well-known

decomposition theorems of algebraic speci�cations, namely

- Signature morphisms on the abstract syntax (�Views�)
- Parametrization (of �Layers� with sorts, functions, and even attributes)
� Extension (hierarchical organization of layers)

Inference-Based Support for Programming in the Large

Gregor Snelting
Technische Universität Braunschweig

The experimental NORA Inference Based Software ENvironment' can handle incomplete,
missing or inconsistent information about a software project. NORA comprises an incremental
interface checker for software component libraries, support for polymorphic component
reuse, an inference-based interactive con�guration system, and retrieval algorithms based
on usage patterns. We make heavy use of automated deduction techniques such as order-
sorted uni�cation or AC1 uni�cation. All tools are generic and parameterized with language-
speci�c information. NORA is an interactive environment currently under development; it
can complete panial information by itself and detect errors earlier than conventional tools.

NORA is no real acronym. It is a drama by the Norwegian writer H. Ibsen.

14

An Environment for Developing by Transformation

Burkhart Wolff
Universitat Bremen

The main goal for this research is the construction and foundation of a transformation- and

software-development system based on the experiences made with the PROSPECTRA system.

Three major points were outlined:

- The theoretical background (the object language SPECTRAL and its relation to the

transformation system)
- The methodological background (outlining the methodological framework of KORSO,

the BMFf-founded research programme for correct software

- The technical background (the transformation engine)

Because of the wish to use incremental evaluation, the transformation engine is based on

attributes.

For this purpose, the concept of attrihute specifications has to be extended by well-known

decomposition theorems of algehraic specifications, namely

Signature morphisms on the abstract syntax ("Views")

Parametrization (of "Layers" with sorts, functions, and even attributes)
- Extension (hierarchical organization of layers)

Inference-Based Support for Programming in the Large

Gregor Snelling

Technische Universittit Braunschweig

The experimental NORA Inference Based Software ENvironment• can handle incomplete,

missing or inconsistent info1mation about a software project. NORA comp1ises an incremental

interface checker for software component libraries, support for polymorphic component
reuse, an inference-based interactive configuration system, and retrieval algorithms based

on usage patterns. We make heavy use of automated deduction techniques such as order­

sorted unification or AC l unification. All tools are generic and parameterized with language­
specific information. NORA is an interactive environment currently under development; it
can complete partial information by itself and detect e1Tors earlier than conventional tools.

NORA is no real acronym. ii is a drama hy the Norwegian writer H. lhst:n.

14

The Self-Applicable Partial Evaluator Similix

Anders Bondorf

DIKU, University of Copenhagen

Similix is an autoprojector (self-applicable partial evaluator) for a higher-order subset of the
strict functional language Scheme. We present and demonstrate some applications of Similix:
generating deterministic �nite automata from regular expressions by partial evaluating a
regular-expression matcher written in Scheme; compiling a lazy functional language into
Scheme by partially evaluating an interpreter (written in Scheme) for the lazy language.

Partial evaluation does not always give good results. One often has to rewrite the source
program into a form that makes more expressions static, that is, reducible at partial evaluation
time. We illustrate this by the regular-expression matcher example.

A Logical Framework as the Basis for Language De�nition

Frank Pfenning

Carnegie Mellon University

We begin with a brief review of the LF logical framework and show how it can be used to

specify the (abstract) syntax and (operational) semantics of programming languages. We then
introduce Elf, a logic programming language providing an operational semantics to LF, e.g.,
to implement an interpreter or type checker. Finally we sketch how one can also employ
the same framework to implement the meta-theory of deductive systems and thus prove
properties of the programming languages which have been axiomatized. The language has
been implemented in Standard ML and is available via anonymous ftp on the Intemet.

15

The Self-Applicable Partial Evaluator Similix

Anders Bondorf
DIKU, University of Copenhagen

Similix is an autoprojector (self-applicable partial evaluator) for a higher-order subset of the

strict functional language Scheme. We present and demonstrate some applications of Similix:
generating deterministic finite automata from regular expressions by partial evaluating a

regular-expression matcher written in Scheme; compiling a lazy functional language into

Scheme by partially evaluating an interpreter (written in Scheme) for the lazy language.

Partial evaluation does not always give good results. One often has to rewrite the source
program into a form that makes more expressions static, that is, reducible at partial evaluation

time. We illustrate this by the regular-expression matcher example.

A Logical Framework as the Basis for Language Definition

Frank Pfenning

Carnegie Mellon University

We begin with a brief review of the LF logical framework and show how it can be used to

specify the (abstract) syntax and (operational) semantics of programming languages. We then
introduce Elf, a logic programming language providing an operational semantics to LF, e.g.,

to implement an interpreter or type checker. Finally we sketch how one can also employ
the same framework to implement the meta-theory of deductive systems and thus prove

properties of the programming languages which have been axiomatized. The language has
been implemented in Standard ML and is available via anonymous ftp on the Internet.

IS

A Tool for Software Migration

Mooly Sagiv
IBM Scienti�c Center Haifa

[No written abstract available. This is due to the fact that the work described is still

con�dential, and Mooly received clearance for his oral presentation only immediately prior to
his talk. His system transforms machine-dependent PL/I programs (such as operating system
code) into equivalent PL/I programs which are to run on a new architecture. The problem
is not the overall program structure. but low-level details like word sizes, overlays, and
strings used as pointers (yes, in PUI this is possible). Types and intended uses of objects are
inferred from the abstract syntax tree, and rules specify how to transform certain constructs.
The method is not completely automatic and very slow, but it works. GS]

Logical Views, Feature Contexts, and Animation of Object-Oriented Design

John Shilling
Georgia Institute of Technology

Logical Views is a technology for interactive tools in a software-development environment.

The paradigm extends the object-oriented paradigm in three steps:

1) Allow multiple interfaces to a class
2) Allow visibility control over instance variables by interface
3) Allow multiple activations of the same interface

This allows tools to share data without interfering.

Feature contexts are a way to tie concise design decisions to their distributed implementation.
Features can be extracted and replaced. Feature interaction is detected. This system was

implemented on top of Gandalf.

Groove allows animation and captures object-oriented design protocols.

l6

A Tool for Software Migration

Mooly Sagiv
IBM Scientific Center Haifa

[No written abstract available. This is due to the fact that the work described is still
confidential, and Mooty received clearance for his oral presentation only immediately prior to
his talk. His system transforms machine-dependent PLJI programs (such as operating system
code) into equivalent PUI programs which are to run on a new architecture. The problem
is not the overall program structure, but low-level details like word sizes, overlays, and
strings used as pointers (yes, in PLJI this is possible). Types and intended uses of objects are
inferred from the abstract syntax tree, and rules specify how to transform certain constructs.
The method is not completely automatic and very slow, but it works. GS]

Logical Views, Feature Contexts, and Animation of Object-Oriented Design

John Shilling
Georgia Institute of Technology

Logical Views is a technology for interactive tools in a software-development environment
The paradigm extends the object-oriented paradigm in three steps:

I) Allow multiple interfaces to a class
2) Allow visibility co,Hrol over instance variables by interface
3) Allow multiple activations of the same interface

This allows tools to share data without interfering.

Feature contexts are a way to tie concise design decisions to their distributed implementation.
Features can be extracted and replaced. Feature interaction is detected. This system was
implemented on top of Gandalf.

Groove allows animation and captures object-oriented design protocols.

16

Dagstuhl-Seminar 9211

Isabelle Attall
INRIA p
Sophia Antipolis
2004 Route de Lucioles
F-O6565 Valbonne Cedex
France
ia@trinidad.inria.fr
teI.: +33-93657804

Rolf Bahlke
Software AG
Uhlandstr. 12
W-6100 Darmstadt
Germany
teI.: +49-6151-921706

Robert A. Ballance
University of New Mexico
Department of Computer Science
Albuquerque NM 87131
USA
balIance@unmvax.cs.unmi.edu
teI.: +1-505-277-6509

Anders Bondorf
Universi of Copenhagen
Dept. of omputer Science I DIKU
Umversitetsparken 1
21 O0 Copenhagen O
Denmark
anders@diku.dk
teI.: +45-31396466

Mark v.d. Brand
Katholieke Universiteit Nijmegen
Department of Informatica
Toernooiveld
NL-6525 ED Ni'megen
The Netherlan s
mark@cs.kun.nl
teI.: +31 -80-65 32 96

Jong-Deok Choi
IBM T.J. Watson Research Center
P.O. Box 704 �
Yorktown Heights NY 10598
USA
jdchoi@watson.ibm.com
teI.: +1-914-784-7961

Gregor Engels
University of Leiden
Department of Computer Science
P.O. Box 9512
NL-2300 RA Leiden
The Netherlands
engels@rulwi.LeidenUniv.n|
teI.: +31 -71 -277069

Participants

John H. Field
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
jfield@watson.ibm.com
teI.: +1 -91 4-784-6650

Peter Frltzson

Linkopin%University
Dept. of omputer and
Information Science
S-58183 Linkoping
Sweden
paf@ida.liu.se
teI.: +46-1 3-281484

William Griswold

Universi
Dept. of omputer Science and
Engineering
La Jolla CA 92093
USA
w g@cs.ucsd.edu
te .: +1-619-534-6898

William Harrison
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
harrisn@ibm.com
teI.: +1-91 4-784-7631

Stefan Kaes
Technische Hochschule Darmstadt
Praktische lnformatik
Magdalenenstr. 1 1 c
D-6100 Darmstadt
Germany

of California at San DiegO

kaes@pi.informatik.th.darmstadt.de
teI.: +49-6151-16-3414

Paul Klint
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
paulk@cwi.nl
teI.: +3/-20-5924126

Wojtek Kozaczynski
Andersen Consulting
Center for Strategic Technology
Research
100 S. Wacker
Chicago IL 60606
USA
wojtek@andersen.com
teI.: +1 -312-507-6682

Dagstuhl-Semlnar 9211

Isabelle Attall
INRIA
Sophia Antipolis
2004 Route de Lucioles
F-06565 Valbonne Cedex
France
ia@trinidad.inria.fr
tel. : +33-93657804

Rolf Bahlke
Software AG
Uhlandstr. 12
W-6100 Darmstadt
Germany
tel.: +49-6151 -921706

Robert A. Ballance
University of New Mexico
Department of Computer Science
Albuquerque NM 87131
USA
ballance@unmvax.cs.unmi.edu
tel. : + 1-505-277-6509

Anders Bondorf
University of Copenhagen
Dept. of Computer Science I DIKU
Untversitetsparken 1
21 oo Copenhagen o
Denmark
anders@diku.dk
tel.: +45-31396466

Mark v.d. Brand
Katholieke Universiteit Nijmegen
Department of lnformatica
Toernooiveld
NL-6525 ED Nijmegen
The Netherlands
mark@cs.kun.nl
tel.: +31-80-65 32 96

Jong-Deok Chol
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 1 0598
USA
jdchoi@watson.ibm.com
tel. : + 1-914-784-7961

Gregor Engels
University of Leiden
Department of Computer Science
P.O. Box 9512
NL-2300 RA Leiden
The Netherlands
engels@rulwi.LeidenUniv.nl
tel.: +31-71-277069

Participants

John H. Field
IBM T.J. Watson Research Center
P.O. Box704
Yorktown Heights NY 10598
USA
jfield@watson.ibm.com
tel.: + 1-914-784-6650

Peter Frltzson
Llnk0ping University
Dept. of Computer and
Information Science
S-58183 Llnk0ping
Sweden
paf@ida.liu.se
tel.: +46-13-281484

William Griswold
University of California at San Diego
Dept. of Computer Science and
Engineering
La Jolla CA 92093
USA
wgg@cs.ucsd.edu
tef.: + 1-619-534-6898

William Harrison
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
harrisn@ibm.com
tet.: + 1-914-784-7631

Stefan Kaea
Technische Hochschule Darmstadt
Praktische lnformatik
Magdalenenstr. 11 c
0-6100 Darmstadt
Germany
kaes@p1 .informatik. th.darmstadt.de
tel. : +49-6151-16-3414

Paul Klint
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
paulk@cwi.nl
tel .: +3/-20-5924126

Wojtek Kozaczynski
Andersen Consulting
Center for Strategic Technology
Research
100 S. Wacker
Chicago IL 60606
USA
wojtek@andersen.com
tel. : + 1-312-507-6682

Arun Lakhotia
University of Southwestern Louisiana
Center for Advanced Computer Studies
P.O. Box 44330
Lafayette LA 70504
USA
arun@cacs.usl.edu '

teI.: +1-318-231-6766

Emma van der Meulen
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
emma@cwi.nl
teI.: +31 -20-592 4007

Frank Pfenning
Carnegie Mellon University
School of Computer Science
Pittsburgh PA 15213
USA
fp@cs.cmu.edu
teI.: +1-412-268-6343

Steven Reiss
Brown University
Dept. of Computer Science
Box 1910
Providence RI 02912
USA

spr@cs.brown.edu
teI.: +1-401-863-7641

Tom Reps
University of Wisconsin-Madison
Computer Sciences Department
1210 W. Dayton St.
Madison WI 53706
USA

reps@cs.wisc.edu
teI.: +1-608-262-1204

Barbara Ryder
Rutgers University
Dept. of Computer Science
Hill Center / Busch Campus
New Brunswick NJ 08903
USA

ryder@cs.rutgers.edu
teI.: +1-908-932-3699

Mool Sagiv
IBM cientific Center
Technion City
Haifa 32000
Israel

sagiv@haifasc3.vnet.ibm.com
teI.: +972-4-296-283

John Shilling
Georgia Institute of Technology
College of Computing

Atlanta GA 30332
USA

shiIIing@cc.gatech.edu
teI.: +1 -404-894-7512
Gre or Sneltlng
TU raunschweig
lnstitut für Programmiersprachen und
Informationssysteme
Gau ßstraße 17
W-3300 Braunschweig
Germany
snelting@infbs.uucp
teI.: +49-531 -391 -7577

Manfred Stadel
SNI AG - STM SD 21
Otto-Hahn-Ring 6
W�8000 München 83

Germany
teI.: +49-89-636-45505

Tim Teitelbaum
Cornell University
Department of Computer Science
Upson Hall
Ithaca NY 14853
USA
tt@cs.cornel.edu
tel.: (607)255-7573

Frank Tip
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands

tip@cwi.nI
teI.: +31 -20-5924007

Mark We man
IBM T. J. atson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA

wegman@watson.ibm.com
teI.: +1 -914-984-7809

Burkhart Wolff
Universität Bremen
Fachbereich Mathematik/Informatik
Postfach 33 O4 40
W-2800 Bremen 33

Germany
bu@informatik.uni-bremen.de
teI.: +49-421 -218-4228

Daniel Yellin
IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA

dmy@watson.ibm.com
teI.: +1 -914-784-7699

Arun Lakhotla
University of Southwestern Louisiana
Center for Advanced Computer Studies
P.O. Box 44330
Lafayette LA 70504
USA
arun@cacs.usl.edu ·
tel. : + 1-318-231 -6766

Emma van der Meulen
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
emma@cwi.nl
te.1.: +31 -20-592 4007

Frank Pfenning
Carnegie Mellon University
School of Computer Science
Pittsburgh PA 15213
USA
fp@cs.cmu.edu
tel.: + 1 -412-268-6343

Steven Reiss
Brown University
Dept. of Computer Science
Box 1910
Providence Al 02912
USA
spr@cs.brown.edu
tel.: + 1-401 -863-7641

Tom Reps
University of Wisconsin-Madison
Computer Sciences Department
121 o W. Dayton St.
Madison WI 53706
USA
reps@cs.wisc.edu
tel.: + 1-608-262-1204

Barbara Ryder
Rutgers University
Dept. of Computer Science
Hill Center / Busch Campus
New Brunswick NJ 08903
USA
ryder@cs.rutgers.edu
tel. : + 1-908-932-3699

Mooly Sagiv
IBM Scientific Center
Technion City
Haifa 32000
Israel
sagiv@haifasc3.vnet.ibm.com
tel. : +972-4-296-283

John Shilling
Georgia Institute of Technology
College of Computing

Atlanta GA 30332
USA
shilling@cc.gatech.edu
tel. : + 1-404-894-7512

Gregor Sneltlng
TU Braunschweig
lnstitut f0r Programmiersprachen und
lnformationssysteme
GauBstraBe 17
W-3300 Braunschweig
Germany
snelting@infbs. uucp
tel. : +49-531 -391-7577

Manfred Stadel
SNI AG - STM SD 21
Otto-Hahn-Ring 6
W-8000 MOnchen 83
Germany
tel.: +49-89-636-45505

Tim Teitelbaum
Cornell University
Department of Computer Science
Upson Hall
Ithaca NY 14853
USA
tt@cs.cornel.edu
tel.: (607)255-7573

Frank Tip
CWI - Mathematisch Centrum
Kruislaan 413
NL-1098 SJ Amsterdam
The Netherlands
tip@cwi.nl
tel. : +31 -20-5924007

Mark Wegman
IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
wegman@watson.ibm.com
tel. : + 1 -914-984-7809

Burkhart Wolff
Universitat Bremen
Fachbereich Mathematik/lnformatik
Postf ach 33 04 40
W-2800 Bremen 33
Germany
bu@informatik.uni-bremen.de
tel. : +49-421 -218-4228

Daniel Yelltn
IBM T. J. Watson Research Center
P.O. Box 704
Yorktown Heights NY 10598
USA
dmy@watson.ibm .corn
tel .: + 1-914-784-7699

Zuletzt erschienene und geplante Titel:

J. Berstel , J.E. Pin, W. Thomas (editors):
Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar-Report; 5, 14.-
18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerfen, Prüfen, Testen, DagstuhI-Seminar-Report; 6, 18.-22.2.1991 (9108)

J. P. Finance. S. Jahnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-1.3.1991 (9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 8, 4.-8.3.1991 (9110)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Specification, and Synthesis, Dagstuhl-Seminar-Report; 9, 11.-
15.3.1991 (9111)

K. Apt, K. Indermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10, 18.-22.3.1991
(9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 11, 15-
19.4.1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5.-18.5.1991 (9119)

R. Giegerich, s. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13, 20.-24.5.1991
(9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex-Object and Nested Relation Databases, Dag-
stuhl-Seminar-Report; 15, 17.-21.6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Report; 16, 24.-
28.6.1991 (9126)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 17, 1.-5.7.1991 (9127)

A. Karshmer, J. Nehmer (editors):
Operating Systems of the 90s and Beyond, Dagstuhl-Seminar-Report; 18, 8.-12.7.1991 (9128)

H. Hagen, H. Müller, G.M. Nielson (editors):
Scientific Visualization, Dagstuhl-Seminar-Report; 19, 26.8.-30.8.91 (9135)

T. Lengauer, R. Möhring, B. Preas (editors):
Theory and Practice of Physical Design of VLSI Systems, Dagstuhl-Seminar-Report; 20, 2.9.-
6.9.91 (9136)

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directions of Future Database Research, Dagstuhl-Seminar-Report; 21, 9.9.-12.9.91 (9137)

_.H. Alt , B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 22, 07.10.-1 1.10.91 (9141)

F.J. Brandenburg . J. Berstel, D. Wotschke (editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10.-
18.10.91 (9142)

Zuletzt erschlenene und geplante Tltel:
J. Berstel , J.E. Pin, W. Thomas (editors):

Automata Theory and Applications in Logic and Complexity, Dagstuhl-Seminar-Report; 5, 14.-
18.1.1991 (9103)

B. Becker, Ch. Meinel (editors):
Entwerten, PrOfen, Testen, Dagstuhl-Seminar-Report; 6, 18.-22.2.1991 (91 08)

J. P. Finance, S. Jahnichen, J. Loeckx, M. Wirsing (editors):
Logical Theory for Program Construction, Dagstuhl-Seminar-Report; 7, 25.2.-1.3.1991 (9109)

E. W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 8, 4.-8.3.1991 (911 O)

M. Broy, P. Deussen, E.-R. Olderog, W.P. de Roever (editors):
Concurrent Systems: Semantics, Specification, and Synthesis, Dagstuhl-Seminar-Report; 9, 11 .-
15.3.1991 (9111)

K. Apt, K. lndermark, M. Rodriguez-Artalejo (editors):
Integration of Functional and Logic Programming, Dagstuhl-Seminar-Report; 10, 18.-22.3.1991
(9112)

E. Novak, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 11, 15-
19.4 .1991 (9116)

B. Nebel, C. Peltason, K. v. Luck (editors):
Terminological Logics, Dagstuhl-Seminar-Report; 12, 6.5 .-18.5.1991 (9119)

R. Giegerich, S. Graham (editors):
Code Generation - Concepts, Tools, Techniques, Dagstuhl-Seminar-Report; 13, 20.-24.5.1991
(9121)

M. Karpinski, M. Luby, U. Vazirani (editors):
Randomized Algorithms, Dagstuhl-Seminar-Report; 14, 10.-14.6.1991 (9124)

J. Ch. Freytag, D. Maier, G. Vossen (editors):
Query Processing in Object-Oriented, Complex-Object and Nested Relation Databases, Dag­
stuhl-Seminar-Report; 15, 17.-21 .6.1991 (9125)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Model Theory, Dagstuhl-Seminar-Report; 16, 24.-
28.6.1991 (9126)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 17, 1.-5 .7.1991 (9127)

A. Karshmer, J. Nehmer (editors):
Operating Systems of the 90s and Beyond, Dagstuhl-Seminar-Report; 18, 8.-12.7.1991 (9128)

H. Hagen, H. Muller, G.M. Nielson (editors) :
Scientific Visualization, Dagstuhl-Seminar-Report; 19, 26.8.-30.8.91 (9135)

T. Lengauer, R. Mohring, B. Preas (editors):
Theory and Practice of Physical Design of VLSI Systems, Dagstuhl-Seminar-Report; 20, 2.9.-
6.9.91 (9136)

F. Bancilhon, P. Lockemann, D. Tsichritzis (editors):
Directions of Future Database Research. Dagstuhl-Seminar-Report: 21, 9 .9.-12.9 .91 (9137)

.H. Alt , B. Chazelle, E . Welzl (editors):
· Computational Geometry, Dagstuhl-Seminar-Report; 22, 07.10.-11 .10.91 (9141)

F.J. Brandenburg , J . Berstel, D. Wotschke (editors):
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report: 23, 14.10.-
18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez �G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier,T. Ottmann, D. Wood (editors):
Data Structures, Dagstuhl-Seminar-Report; 25, 4.11.-8.1 1.91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficient interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149)

B. Buchberger, J. Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Fleport; 27, 16.-20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: lntinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction � Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. Booß, W. Coy, J.-M. Pflüger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Fleport; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin � W. Thomas (editors):
Automata Theory: infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Stmcture and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3-72.92 (9206)

B. Booß, W. Coy, J.-M. Pflüger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

H. Cole, E.W. Mayr� F. Meyer aut der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snetting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of lnfonnation Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diftie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

H. Comon, H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Structures, Dagstuhl-Seminar-Report; 25, 4.11 .-8.11.91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficient lnterpolati9n Algorithms, Dagstuhl-Seminar-Report ; 26, 2.-6.12.91 (9149)

B. Buchberger, J. Davenport, F. Schwarz (editors) :
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report; 27, 16.-20.12.91 (9151)

K. Cor1'1)ton, J.E. Pin • W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13 .. -17.1 .92
(9203)

K. Ambos-Spies, S . Homer, U. Sch0ning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. BooB, W. Coy, J.-M. PflOger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction • Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1 .92
(9203)

K. Ambos-Spies, S . Homer, U. SchOning (editors) :
Structure and Cor11>lexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. BooB, W. Coy, J .-M. PflOger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report: 31 , 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report: 32; 17.2.-21 .2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3 .92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3 .9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie , G .J. Simmons (editors):
System Security; Dagstuhl-Seminar-Repon; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

