
Werner Damm, Chris Hankin,
John Hughes (editors):

Functional Languages: Compiler
Technology and Parallelism

Dagstuhl-Seminar-Report; 36
23.-27.3.92 (9213)

Werner Damm, Chris Hankin,
John Hughes (editors) :

Functional Languages: Compiler
Technology and Parallelism

Dagstuhl-Seminar-Report; 36
23.-27.3.92 (9213)

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
Tel.: +49�6871 - 2458
Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-lng. José Encarnagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz
Bezugsadresse: Geschäftsstelle Schloß Dagstuhl

Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
Tel.: +49 �681 - 302 - 4396

Fax: +49 -681 � 302 - 4397

e-mail: office@dag.uni-sb.de

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 · 2458
Fax: +49-6871 · 5942

Das lnternationale Begegnungs- und Forschungszentrum fur lnformatik {IBFI} ist eine gemein
n0tzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefuhrt werden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encarna9ao,
Prof. Dr. Winfried Gorka,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph.D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor}

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle Sch lo B Dagstu hi
lnformatik, Bau 36
Universitat des Saarlandes
W • 6600 Saarbr0cken
Germany
Tel.: +49 -681 · 302 - 4396
Fax: +49 -681 · 302 - 4397
e-mail : office@dag.uni-sb.de

Dagstuhl-Seminar

Functional Languages: Compiler Technology

and Parallelism

Organized by:

Werner Damm (Universität Oldenburg)
Chris Hankin (Imperial College, London)

John Hughes (University of Glasgow)

March 23-27, 1992

Dagstuhl-Seminar

Functional Languages: Compiler Technology

and Parallelism

Organized by:

Werner Damm (Universitat Oldenburg)

Chris Hankin (Imperial College, London)

John Hughes (University of Glasgow)

March 23-27, 1992

Overview

Werner Da.1nm, Chris Hankin and John Hughes

The seminar emphasized four issues:

o sta.tic program analysis

o extensions for progra.mmer control of pa.ra.llelism

o functional+logic languages and constraints

o implementa.tion of functiona.l la.ngua.ges

There were two formal discussion sessions, which a.ddressed the problems
of input/output in functional la.nguages, and the utility of static program
analysis.

It is gratifying that the first Dagstuhl seminar in this area. (Functional
Languages: Optimization for Parallelism) had stimulated many develop-
ments which were reported a.t this one.

A particular feature of this seminar was the la.rge number of prototypes
which were demonstrated a.nd which vividly illustrated the issues raised in
discussions and presentations.

Static Program Analysis

Static program analysis has been thoroughly investigated for optimising se-
quential implementations, but parallel ones offer new problems. Discovering
properties of synchronisation, for example, requires richer domains than those
used in the sequential setting, lea.ding to a combinatorial explosion in cost.
Current sequential analyses operate at or beyond the limits of today�s algo-
rithm technology. The most expensive aspect is computing �xpoints, which
requires a convergence test am] therefore a decision procedure for equality of
abstract values. New work reported here helps reduce the need for conver-
gence tests.

Overview

Werner Damm, Chris Hankin and John Hughes

The seminar emphasized four issues:

• static program analysis

• extensions for programmer control of parallelism

• functional+logic languages and constraints

• implementation of functional langua.ges

There were two formal discussion sessions, which addressed the problems
of input/output in functional languages, and the utility of static program
analysis.

It is gratifying that the first Dagstuhl seminar in this area (Functional
Languages: Optimization for Parallelism) ha.cl stimulated many develop
ments which were reported at this one.

A particular feature of this seminar was the large number of prototypes
which were demonstrated and which vividly illustrated the issues raised in
discussions and preseatations.

Static Program Analysis

Static program analysis has been thoroughly investigated for optimising se
quential implementations, but pa.rallel ones offer new problems. Discovering
properties of synchronisation, for example, requires richer domains than those
used in the sequential setting, leading to a combina.toria.l explosion in cost.
Current sequential analyses operate at or beyoricl the limits of today's algo
rithm technology. The most expensive aspect is comput ing fi xpoints, which
requires a convergence test and therefore a decision procedure for equali ty of
abstract values. New work reported here helps reduce the need for conver
gence tests.

2

Much progress has been made in vectorising imperative programs, and it
is important that we ca.pita.lise on this. At this seminar we saw how to apply
these techniques to the parallelisation of array expressions.

Extensions for Programmer Control of Parallelism

There are two approaches to parallel functional programming: the implicit
approach requires the compiler to identify suitable opportunities for paral-
lelism, while the explicit approach places this responsibility on the program-
mer. In discussions a strong feeling emerged that the implicit approach is
intractable at present, which motivates an active interest in the explicit al-
ternative.

One way toadd explicit parallelism is to integrate functional la.ngua.ges
with process notations such as CCS. We heard of two efforts in this direction,
one focussing on congruence properties a.nd algebraic la.ws, a.nd the other on
type systems that can represent comrm1nica.tion. But this approach risks
compromising r-e_fe1'entia.l transpa.rency.

Quite a different direction is to add new da.ta.types that support paral-
lelism, such as the multiset. The Gamma formalism can express multiset
programs with a minimum of implied sequencing. Multiset programs risk
indeterminacy, but new work on con�uence in Gamma. promises to control
this risk.

Functional+Logic Languages and Constraints

The integration of functional and logic programming aims at a well-founded
combination of two important declarative programming paradigms in a. single
framework. The main research directions inthis field a.re la.ngua.ge design a.nd
implementation. Some efforts in language design were reported on a further
integration of functional+logic languages a.nd Constraints. Implementations
of functional+logic la.ngua.ges a.re based on the implementing techniques for
logic programming such as W.#\l\/�I (Warren Abstract l\�lachine) a.nd functional
languages such as graph reduction. Both sequential a.nd parallel implemen-
tation techniques were presented. An interesting issue was raised: how to

Much progress has been made in vectorising imperative programs, and it
is important that we capitalise on this . At th is seminar we saw how to apply
these techniques to the parallelisation of array expressions.

Extensions for Programmer Control of Parallelism

There are two approaches to parallel functional programming: the implicit
approach requires the compiler to identify suitable opportunities for paral
lelism, while the e:i:plicit approach places this responsibility on the program
mer. In discussions a strong feeling emerged that the implicit approach is
intractable at present, which motivates an active interest in the explicit al
ternative.

One way to · add explicit parallelism is to integra.te functional languages
with process notations such as CCS. We heard of two efforts in thi:, direction,
one focussing on congruence properties and algebra.ic laws, and the other on
type systems that can represent communication. But this approach risks
compromising referential transparency.

Quite a different direction is to add new data.types that support paral
lelism, such as the nrnltiset. The Gamma. formalism can express multiset
programs with a minimum of implied sequencing. Multiset programs risk
indeterminacy, but new work on confluence in Gamma promises to control
this risk.

Functional+Logic Languages and Constraints

The integration of functional and logic progrnmming aims at a well-founded
combination of two important declarative programming pa.;·adigms in a single
framework . The ma.in research directions in this field are language design and
implementation. Some effol'ts in language design were reported on a further
integration of functional+logic la.ngua.ges and constraints. Implementations
of functional+logic languages are based on the implementing techniques for
logic programming such as \1/AM (\\'a.rren Abstract Ma.chine) and functional
languages such as graph reduction. Both sequential and parallel implemen
tation techniques were presented. An interesting issue was raised: how to

3

apply and combine the existing functiona.l a.nd logic static a.nalysis in a func-
tiona.l+logic framework.

Implementation of Functional Languages

A perennial issue in the implementation offunctional languages is input / output.
Early imple1nenta.tions offered only weak and inefficient I/O interfaces. At
this seminar two new a.pproa.ches were presented, both enabling functional
programs to perform arbitrary I/ O opera.tions with the same efficiency as
any other program. Both however force the sequentialisa.tion of I/ O, which
may be inconvenient a.nd. in a parallel context, inappropriate.

In the two years since the first Seminar commercial parallel machines have
become much more common, a.nd there ha.s been a corresponding shift away
from designing new architectures towards exploiting stock hardware. Good
sequential technology is a prerequisite for good parallel implementations, a.nd
both sequential a.nd parallel implementation work was well represented.

An exciting new development a.t this seminar was the emergence of pro-
filing a.nd monitoring tools a.s a.n essential c.o1nponent of the programmer�s
workbench. Historically the very�l1igh-level nature of functional programs
ha.s ma.de it difficult to understa.nd their space a.nd time behaviour. A truly
rema.rl<able result presented at the seminar showed that, using profiling tools,
a few small modifications led to a 440-fold improvement in the cost of a
medium-sized program.

Acknowledgements

Thanks are due to the staff a.t Schlo/3 Dagstuhl, who ensured that everything
ran smoothly, a.nd Fei.\'iong Liu for coordinating the production of this report.

apply and combine t he existing fun ctional and logic static analysis in a func
tional+logic framework.

Implementation of Functional Languages

A perennial issue in the implementation of functional languages is input/output.
Early implementations offered only weak and inefficient I/O interfaces. At
this seminar two new approaches were presented, both enabling functional
programs to perform arbitrary 1/ 0 operations with the same efficiency as
any other program. Bot h however force the sequentialisation of I/0, which
may be inconvenient and. in a parallel context, inappropriate.

In the two years since t he first seminar commercial parallel machines have
become much more common, and there has been a corresponding shift away
from designing new architectures towards exploiting stock hardware. Good
sequential t echnology is a prerequisite for good parallel implementations, and
both sequentia.l and para.lie! implementation work was well represented.

An exciting new development at t his seminar was the emergence of pro
filing and monitoring tools as an essential com ponent of the programmer's
workbench. Historically the very-high-level nature of funct ional programs
has made it difficult to understand t heir space and time behaviour. A truly
remarkable result presented at the seminar showed that, using profiling tools,
a few small modifications led to a 440-fold improvement in the cost of a
medium-sized program.

Acknowledgements

Thanks are due to the staff at Schlo/3 Dagstuhl , who ensured t hat every~hing
ran smoothly, and Feixiong Liu for coordinating the production of this report.

4

Programme of the Workshop

Monday, March 23

Session 1 : 1/ O Functional La.ngua.ges

8.45 - 9.45 Rinus Plasmeijer: I/ O in functional languages

9.45 - 10.45 Kevin Hammond: Monacls a.nd I/O

Session '2 : Implementation of Functional La.ngua.ges I

11.15 � 12.15 David Walkeling: Hea.p profiling of la.zy functional la.nguages

14.00 - 14.30 Denis Howe: Implementation of eva.lua.tion-transformers

14.30 - 15.30 Guido Hogen: Automatic pa.ralleliza.tion of lazy functional

programs

Session 3 : Implementation of Functional Languages II

16.00 - 16.30 Lennart Augustsson: Splitting in�nite sets of unique names
by hidden state chabges

16.30 - 17.15 Peter Wentworth: Code generation for a lazy functional

language

17.15 - 18.00 Discussion session: I/ O in functional langua.ges

Tuesday, March '24

Session 4 : Abstract Interpretations

9.00 - 9.45 Fritz Henglein: Straight-line code generation and evaluation by
partial evaluation

9.45 - 10.45 John Hughes: Abstract interpretation of parallel functional

programs

Programme of the Workshop

Monday, March 23

Session 1 : 1/0 Functional Languages

8.45 - 9.45 Rinus Plasmeijer: I/O in functional languages

9.45 - 10.45 Kev.in Hammond: Monads and 1/0

Session 2 : Implementation of Functional Languages I

11.15 - 12.15 David Walkeling: Heap profiling of lazy functional languages

14.00 - 14.:JO Denis Howe: Implementation of evaluation-transformers

14.30 - 15.30 Guido Hogen: A utoma.tic para.llelization of lazy functional
programs

Session 3 : Implementation of Functional Languages II

16.00 - 16.30 Lennart Augustsson: Splitting infinite sets of unique names
by hidden state chabges

16.30 - 17.1.5 Peter Wentworth: Code generation for a lazy functional
language

17.15 - 18.00 Discussion session: 1/0 in functional languages

Tuesday, l'vla.rch 24

Session 4 : Abstract Interpretations

9.00 - 9.45 Fritz Henglein: St.might-line code generation and evaluation by
partial evaluation

9.45 - 10.4-5 John Hughes: Abstract interpretation of parallel functional
programs

,5

11.15 - 12.15 Hanne Nielson: Computing �xed points in static program
analysis

Session 5: Compile-time Optimisations

14.00 � 15.00 Paul Kelly: Dependency analysis in array computations

15.30 - 16.30 Manuel Chakravarty: The structure of a back-end to compile
functional languages

16.30 - 17.15 Martin Raber: Small functions should be evaluated

17.15 - 18.00 Demonstrations: I / O in concurrent clean by Rinus Plasmeijer
and I/ O with Mona.ds by Kevin Hammond

Wednesday, March 25

Session 6 : Logic + Functional Languages and Constraints

8.30 - 9.20 Peter van Roy: Constraints + control = compilations; or How
to compile matching and resolution in LIFE

9.20 - 10.10 Feixiong Liu: An OR.-pa.ra.llel implementation of K-LEAF
based on graph rewriting

10.40 - 11.25 Francisco Lopez-Fraguas: A scheme for constraint functionl
logic programming

11.25 - 12.15 Herbert Kuchen: Implementing a la.zy functional-logic lan-
guage with disequa.lity constraints

Thursday, l\�Iarch 26

Session 7 : Lambda. Calculus and Processes I

9.00 - 9.45 FACILE: Bent Thomsen: A functional la.ngua.ge for parallel

programming

9.45 - 10.30 Lone Leth Thomsen: A new direction in functions as processes

11.15 - 12.15 Hanne Nielson: Computing fixed points in static program
analysis

Session 5: Compile-time Optimisations

14.00 - 15.00 Paul Kelly: Dependency analysis in array computations

15.30 - 16.30 Manuel Chakravarty: The structure of a back-end to compile
functional languages

16.30 - 17.15 Martin Raber: Small functions should be evaluated

17.15 - 18.00 Demonstrations: 1/ 0 in concurrent clean by Rinus Plasmeijer
and 1/ 0 with Monads by Kevin Hammond

Wednesday, March 2,5

Session 6 : Logic + Functional Languages and Constraints

8.30 - 9.20 Peter van Roy: Constraints + control = compilations; or How
to compile matching and resolution in LIFE

9.20 - 10.10 Feixiong Liu: An OR-parallel implementation of I<-LEAF
based on graph rewriting

10.40 - 11.25 Francisco Lopez-Fraguas: A scheme for constraint function!
logic programming

11.25 - 12.15 Herbert Kuchen: Implementing a lazy functional- logic lan
guage with disequaJity constraints

Thursday, March 26

Session 7 : Lambda Calculus and Processes I

9.00 - 9.45 FACILE: Bent Thomsen : A functional language for parallel
programming

9.45 - 10.30 Lone Leth Thomsen: A new direction in functions as processes

6

11.00 - 12.00 ohn Glauert: Process networks and graph rewriting
14.00 - 15.00 Flemming N ielson TPL : the typed A-calculus with �rst-class

processes

Session 8 Lambda Ca.lculus a.nd Processes II

15.30 - 16.30 Daniel le Metayer: Programming by multiset transformation

16.30 -17.15 Chris Hankin Con�uence properties of gamma-programs

17.15 - 18.00 Demonstrations : LIFE by Peter Van Roy and Haskell-style
by Lennart Augustsson 1

Friday, M a.rc.h �27

Session 9 : Implementation of Functional Languages III

9.00 - 9.45 Heiko Dörr: Graph-Grammar based monitoring of parallel graph
reduction machines

9.45 - 10.45 David Lester: Garbage collection

11.15 -12.15 Discussion Session: Is Automatic program analysis of any use �.7

11.00 - 12.00 John Glauert: Process networks and graph rewriting

14.00 - 15.00 Flemming Nielson TPL : the typed A-calculus with first-class
processes

Session 8 Lambda Calculus and Processes II

15.30 - 16.:30 Daniel le Metayer: Programming by multiset transformation

16.30 -17.15 Chris Hankin Confluence properties of gamma-programs

17.15 - 18.00 Demonstra.tions : LIFE by Peter Van Roy and Haskell-style
by Lennart Augustsson

Friday, March 27

Session 9 : Implementation of Functional Languages III

9.00 - 9.45 Heiko Dorr: Graph-Grammar based monitoring of parallel graph
reduct ion machines

9.45 - 10.45 David Lester: Garbage collection

11.15 -12.1-5 Discussion Session: Is Automatic program analysis of any use?

7

I/ O in Functional Languages

Rinus Plasmeijer
Univeristy of Nijmegen

The specification of I/ O a.lwa.ys has been one of the weakest points of func-
tional languages. I/ O needs side-effects a.nd precise order of evaluation which
is not easy to realize. In the talk a new method for the handling and spec-
ification of I/ O is presented ba.sed on a.n environment passing scheme and
a structured, object oriented progra.mming style. This combination yields a
high level and elegant functional speci�cation method for I/O, called event
I/ O. An I / O system based on this method ha.s been implemented in the lazy
functional graph rewriting language Concurrent Clean, developed at the Uni-
versity of N ijmegen. The results are very encouraging: interactive programs
written in Concurrent Clean are concise, easy to write and comprehend as
well as ef�cient. The presented solution ca.n be applied for any other func-
tional language as well.

Monads and I/O

The GRASP team, Glasgow University.

Taking the concept of mona.cls from category theory (as espoused by Moggi
or Wadler), we have developed a structure for general procedure call within
a pure functional language. Our model allows almost any imperative func-
tion to be called from a pure functional language without loss of referential
transparency.

Cb

1/0 in Functional Languages

Rinus Plasmeijer
Univeristy of Nijmegen

The specification of I/O always has been one of the weakest points of func
tional languages. I/O needs side-effects and precise order of evaluation which
is not easy to realize. In the talk a new method for the handling and spec
ification of I/0 is presented based on an environment passing scheme and
a structured, object oriented programming style. This combina.tion yields a
high level and elegant functional specification method for 1/0, called event
1/0. An 1/0 system based on this method has been implemented in the lazy
functional graph rewriting language Concurrent Clean, developed at the Uni
versity of Nijmegen. The results are very encouraging: interactive programs
written in Concurrent Clean are concise, easy to write and comprehend as
well as efficient. The presented solution ca.n be applied for a.ny other func
tional language as well.

Monads and I/ 0

The GRASP team, Glasgow University.

Taking the concept of monads from category theory (as espoused by Moggi
or Wadler), we have developed a structure for general procedure call within
a pure functional language. Our model a llows si.lmost any imperative func
tion to be called from a pure functional language without loss of referential
transparency.

8

The key to ourapproach is to view imperative procedures as actions op-
erating on an implicit state. Actions are sequenced by the monadic structure
of our program, and are full �rst-class citizens: they may be passed to func-
tions, returned as the result of a function, included in data structures etc.
exactly as other values in a functional program.

data C a = C (a.,State); data State = State
unitC :: a �> C a

unitC a = C (a,State)
bindIO:: Ca��>(a�>Cb)�->Cb
x �bindC� k =

\s �+ ca.se Á s of
C (a,s�) ��+ k as�

Although this system is strictly no more powerful than the Hope+ continuation-
style, a major contribution of our work is to make it possible to program
arbitrary IO a.nd other operations entirely in a functional language. Unlike
other approaches, there is no magic �wrapper� which interprets IO requests.
Consequently, imperative calls are entirely open to our functional transfor-
mation system, and may be freely manipulated using higher-order functions.
For example, the Haskell

copy�le :: File �-> File �> C)
copy�le fl f- =

getc fl �bindC� $` c �+
if c == eof then

unitC ()
else putc c f2 �bindC� (_ �+

copyfile fl f�2))

can be compiled into C code which approximates the following:

{ int c;
copy: c = getc(f1);
if c == -1 then

return; �

else { _
putc(c,f�2);
goto copy;

The key to our approach is to view imperative procedures as actions op
erating on an implicit state. Actions are sequenced by the monadic structure
of our program, and are full first-class citizens: they may be passed to func
tions, returned as the result of a function, included in data structures etc.
exactly as other values in a functional program.

data Ca= C (a,State); data State= State
unitC :: a-+ C a
unitC a= C (a,State)
bindIO :: Ca-+ (a-+ C b) -+ C b
x 'bindC' k =

\s -+ case x s of
C (a,s') -+ k as'

Although this system is strictly no more powerful than the Hope+ continuation
style, a major contribution of our work is to make it possible to program
arbitrary IO and other operations entirely in a functional language. Unlike
other approaches, there is no magic "wrapper" which interprets IO requests.
Consequently, imperative calls are entirely open to our functional transfor
mation system, and may be freely manipulated using higher-order functions.
For example, the Haskell

copyfile :: File-+ File -+ C ()
copyfile fl f2 =

getc fl 'bindC' (\ c -+
if c == eof then

unitC ()
else putc c f2 •bindC' (\--+

copyfile fl f2))

can be compiled into C code which approximates the following:

{ int c;
copy: c = getc(fl);
if c == -1 then
return;

else { _
putc(c,f2);
goto copy;

9

Heap Pro�ling of Lazy Functional Programs

Colin Runciman and David Wakeling
University of York

The extensional properties of a functional program (what it computes as its
result) are usually far easier to understand than those of the corresponding
imperative one. However, the intensional properties of a functional program
(how it computes its result) can often be much harder to understand than
those of an imperative one, especially in the presence of higher order func-
tions and lazy evaluation. We have developed a tool for pro�ling the space
consumption of lazy functional programs by heap pro�ling. This talk de-
scribes some aspects of an LML implementation of heap pro�ling, and how
heap pro�les can be drawn as graphs. An example shows how heap pro�ling
can be used to dramatically improve the space behaviour of a lazy functional
program. "

Implementation of Evaluations Transformers

Denis Howe and Geoff Burn

Imperial College, London

Evaluation Transformers use strictness information to execute lazy func-
tional programs more ef�ciently or in parallel. For example, when reducing

10

}
}

Heap Profiling of Lazy Functional Programs

Colin R.unciman and David Wakeling
University of York

The extensional properties of a functional program (what it computes as its
result) are usually far easier to understand than those of the corresponding
imperative one. However, the intensional prope1·ties of a functional program
(how it computes its result) can often be much harder to understand than
those of an imperative one, especially in the presence of higher order func
tions and lazy evaluation. We have developed a tool for profiling the space
consumption of lazy functional programs by heap profiling. This talk de
scribes some aspects of an LML implementation of heap profiling, and how
heap profiles can be drawn as graphs. An example shows how heap profiling
can be used to dramatically improve the space behaviour of a lazy functional
program. I•

Implementation of Evaluations Transformers

Denis Howe and Geoff Burn
Imperial College, London

Evaluation Transformers use strictness information to execute lazy func
tional programs more efficiently or in parallel. For example, when reducing

10

the expression �length l�, we know that we must evaluate the structure of
1. We can therefore compile code to do this rather than build a closure to
represent the unevaluated list.

We introduce four evaluators for lists: EO does no evaluation, E1 evalu-
ates the first constructor (NIL or CONS), E2 and E3 recurse down the ta.il of
the list and E3 also evaluates each element of the list. An evaluation trans-

former says how much evaluation is safe for an argument given the amount
of evaluation which is safe for an application. �Safe� in this context means
that evaluation will terminate if and only if lazy evaluation of the program
would have. A

A static program analysis annotates each application of a known func-
tion with an evaluation transformer based on the strictness properties of the
function and arguments. We compile versions of each function which evalu-
ate the result to El, E2 or E3. If the function being applied is not known
until run-time (because it is a parameter of some other function) then we
may still be able to initiate evaluation of some arguments once the function
is entered. Also, more evaluation of a.n argument may become possible at
run-time than was allowed a.t compile-time. We associate a. �current degree
of evaluation� with each node in the graph so we can force more evaluation
at run-time when it is sa.fe to do so.

We have started to implement these ideas in GHC, the Haskell compiler
being produced by Glasgow University. This has involved some rethinking
of the original implementation proposals which were expressed in terms of
the Chalmers G-Machine. GHC is based on the STG Machine where CASE

expressions perform evaluation a.ncl LET expressions build closures. Function
arguments are constrained to be simple variables, anything else is bound to
a new variable in a LET. The idea then is to turn these LETS into CASES
where this is allowed by the evaluation transformers.

Automatic Parallelization of Lazy Functional Programs

Guido Hogen, Andrea Kincller a.nd Rita. Loogen
RVV TH Aachen

11

the expression " length l", we know that we must evaluate the structure of
l. We can therefore compile code to do this rather than build a closure to
represent the unevaluated list.

We introduce four evaluators for lists: E0 does no evaluation, El evalu
ates the first constructor (NIL or CONS), E2 and E3 recurse down the tail of
the list and E3 also evaluates each element of the list. An evaluation trans
former says how much evaluation is safe for an argument given the amount
of evaluation which is safe for an application. "Safe" in this context means
that evaluation will terminate if and only if lazy evaluation of the program
would have.

A static program analysis annotates each application of a known func
tion with an evaluation transformer based on the strictness properties of the
function and arguments. We compile versions of each function which evalu
ate the result to El, E2 or E3. If the function being applied is not known
until run-time (because it is a parameter of some other function) then we
may still be able to initiate evaluation of some arguments once the function
is entered. Also, more evaluation of an argument may become possible at
run-time than was allowed at compile-time. We associate a "current degree
of evaluation" with each node in the graph so we can force more evaluation
at run-time when it. is safe to do so.

We have started to implement these ideas in GHC, the Haskell compiler
being produced by Glasgow Univetsity. This has involved some rethinking
of the original implementation proposals which were expressed in terms of
the Chalmers G-Machine. GHC is based on the STG Machine where CASE
expressions perform evaluation and LET expressions build closures. Function
arguments are constrained to be simple variables, anything else is bound to
a new variable in a LET. The idea then is to turn these LETs into CASEs
where this is allowed by the evaluation transformers.

Auton1atic Parallelization of Lazy Functional Programs

Guido Hogen, Andrea. Kindler and Ri ta Loogen
R\VTH Aachen

11

We present a para.llelizing compiler for lazy functional programs that uses
strictness analysis to detect the implicit parallelism within programs. It
generates an intermediate functional program, where a special syntactic con-
struct �letpar�, which is semantically equivalent to the well-known let-construct,
is used to indicate subexpressions for which a parallel execution is allowed.
Only for sufficiently complex expressions a parallelization will be worthwhile.
For small expressions the communication overhead may outweigh the bene-
fits of the parallel execution. Therefore, the parallelizing compiler uses some
heuristics to estima.te the complexity of expressions.

The distributed implementation of pa.rallelized functional programs de-
scribed by Rita Loogen a.t the PA RLE 89 enabled us to investigate the impact
of various pa.ra.lleliza.tion strategies on the runtimes and speedups. The strat-
egy, which only allows the parallel execution of non-prede�ned function calls
in strict positions, shows the best runtimes and reasonable speedup results.

Splitting in�nite sets of unique names by hidden state changes

Lenna.rt Augustsson, Mikael Rittri and Dan Synek
Chalmers University of Technology

Counter passing is the traditional method of generating unique names in a
purely functional language, but it is awkward t.o use and imposes unneces-
sary data dependencies which ca.n destroy opportunities for lazy or parallel
evaluation. A method of Hancock does not ha.ve this drawback, but instead
wastes la.rge portions of the name space, so that the generated names cannot
be trusted to fit inside a machine word. We implement Hancock�s opera-
tions in the lazy la.ngua.ge Haskell without wasting names, using hidden state
changes a la Burton�s deci.sz'on.s. Measurements show that this can be faster
than counter passing even when no la.ziness or parallelism is gained.

We present a parallelizing compiler for lazy functional programs that uses
strictness analysis to detect the implicit parallelism within programs. It
generates an intermediate functional program, where a special syntactic con
struct 'letpar', which is semantically equivalent to the well-known /et-construct,
is used to indicate subexpressions for which a parallel execution is allowed.
Only for sufficiently complex expressions a parallelization will be worthwhile.
For small expressions the communication overhead may outweigh the bene
fits of the parallel execution. Therefore, the parallelizing compiler uses some
heuristics to estimate the complexity of expressions.

The distributed implementation of pa.rallelized functional programs de
scribed by Rita Loogen at the PARLE 89 enabled us to investigate the impact
of various para.llelization strategies on the run times and speedyps. The strat
egy, which only allows the parallel execution of non-predefined function calls
in strict positions, shows the best runtimes and reasonable speedup results.

Splitting infinite sets of unique names by hidden state changes

Lenna.rt Augustsson, Mika.el Rittri and Dan Synek
Chalmers University of Technology

Counter passing is the traditional method of generating unique names in a
purely functional language, but it is awkward to use and imposes unneces
sary data dependencies which can destroy opportunities for lazy or parallel
evaluation . A method of Hancock does not have this drawback, but instead
wastes large portions of the name space, so tha.t the generated names cannot
be trusted to fit inside a ma.chine word. We implement Hancock's opera
tions in the lazy language Haskell without wasting names, using hidden state
changes a. la Burton's decisions. Measurements show that this can be faster
than counter passing even when no laziness or parallelism is gained.

12

Code Generation for a Lazy Functional Language

E.P. Wentworth

Rhodes University, South Africa

A native-code implementa.tion of a lazy functional language on a SPARC ar-
chitecture is discussed. The compiler produces intermediate stack-based code
for a derivative of the SE-CD machine, the FLFM. Native code is generated
by a.n algorithm which partially executes the FLFM code.

Some lazy list-based programs a.re found to exhibit particularly poor reg-
ister window locality: this is partially alleviated by a hybrid policy which
sometimes uses register windows and sometimes saves the context explicitly.

Good performance is achieved for those functions which do not require the
full generality demanded by la.zy functional la.nguages. In particular, simple
numeric functions with strict arguments have execution rates that approach
the performance of the vendor�s C compiler.

Straight-line code generation and evaluation by partial evaluation

Fritz Henglein
DIKU

The ma.in problems in exploiting the �ne-grain parallelism in stra.ight-line
code (basic blocks) a.re the small size of basic blocks in typical sequential
code a.nd the sequential data. dependencies within basic blocks.

We observe that partial evaluation addresses both of these issues: partial
evaluation of oblivious or partially oblivious programs (often to be found in
numerical applications) results in la.rge basic blocks (as previously observed),

13

Code Generation for a Lazy Functional Language

E.P. \,Ventworth
Rhodes University, South Africa

A native-code implementation of a lazy functional language on a SPARC ar
chitecture is discussed. The compiler produces intermediate stack-based code
for a derivative of the SECD machine, the FLFM. Native code is generated
by an algorithm which pa.rtia.l ly executes the FLFM code.

Some lazy list-based programs are found to exhibit particularly poor reg
ister window locality: this is partially alleviated by a hybrid policy which
sometimes uses register windows and sometimes saves the context explicitly.

Good performance is achieved for those functions which do not require the
full generality demanded by lazy functional languages. In particular, simple
numeric functions with strict arguments have execution rates that approach
the performance of the vendor"'s C compiler.

Straight-line code generation and evaluation by partial evaluation

Fritz Henglein
DIKU

The ma.in problems in exploiting the fine-grain parallelism in straight-line
code (basic blocks) are the small size of basic blocks in typical sequential
code a.nd the sequential data dependencies within basic blocks.

We observe that partial evaluation addresses both of these issues: partial
evaluation of oblivious or partially oblivious programs (often to be found in
numerical applications) results in large basic blocks (as previously observed),

and, using the algebraic properties of the operators in the resulting straight-
line code, partial evaluation ca.n be used to generate very efficient parallel
code with a high degree of processor utilization.

This is exempli�ed by the well-known problem of parallel evaluation of
expressions (and, more generally, straight-line code) over a semi-ring. In
this context, partial evaluation is evaluation over the induced polynomial
semi-ring that can be executed in parallel by tree contraction.

Abstract Interpretation of Parallel Functional Programs

John Hughes
University of Glasgow

Although functional progra.ms cannot update sha.red data, graph reducers
do. Consequently parallel graph reducers must. synchronise on each access
to the graph, a.nd this synchronisation ca.n cost 20% of the execution time.
My goal is an analysis to detect possible si-m.ulta'n.eous uses of values: graph
nodes which cannot be simultaneously used by two parallel processes can be
accessed without synchronisation. I take the task decomposition as given,
and so analyse a la.nguage with explicit parallel constructs.

The approach is to de�ne a non-sta.ndard sema.ntics for the explicitly par-
allel language, and derive a.n analysis by abstracting it. A novel a.spect is
that the non-sta.ndard semantics is constructed systematically: it is a call-
by-name semantics in a monad which pairs each va.lue with a process rep-
resenting its computation. These processes lie in a.n unusual a.nd somewhat
counter-intuitive process a.lgebra: processes ca.n continue computing after
�termination� (delivering a result), and consequently sequential composition
in some cases reduces to parallel composition! Pleasantly, it is sufficient to
define an abstraction of processes to fix an abstra.ction of the entire semantics.

I de�ne analyses to detect simultaneous uses a.nd simultaneous demands:
the former is simpler�, the latter permits more optimisations since only the

14

and, using the algebraic properties of the operators in the resulting straight
line code, partial evaluation can be used to generate very efficient parallel
code with a high degree of processor utilization.

This is exemplified by the well-known problem of parallel evaluation of
expressions (and, more generally, straight-line code) over a semi-ring. In
this context, partial evaluation is evaluation over the induced polynomial
semi-ring that can be executed in parallel by tree contraction.

Abstract Interpretation of Parallel Functional Programs

John Hughes
Universit.y of Glasgow

Although funct.ional programs cannot upda.te shared data, graph reducers
do. Consequently parallel graph reducers must synchronise on each access
to the graph, a.nd this synchronisat.ion can cost 20% of the execution time.
My goal is an ana.lysis to detect possible sinmltaneous uses of values: graph
nodes which cannot be simultaneously used by two parallel processes can be
accessed without synchronisation. I take the task decomposition as given,
and so analyse a language with explicit parallel constructs.

The approach is to define a non-standard semantics for the explicitly par
allel language, and derive an analysis by abstracting it. A novel aspect is
that the non-standard semantics is constructed systematically: it is a call
by-name semantics in a monad which pairs each value with a process rep
resenting its computation. These processes lie in an unusual and somewhat
counter-intuitive process algebra: processes can cont inue comput ing after
'termination, (delivering a result), and consequently sequential composition
in some cases reduces to para.lie! composition! Pleasantly, it is sufficient to
define an abstractioi1 of]Jrocesses to fix an abstraetion of the entire semantics.

I define analyses to detect simultaneous uses and simultaneous demands:
the former is simpler·, the latter permi ts more optimisations since only the

14

�rst use of a node upda.tes it. Practical results a.re very disa.ppointing �-
almost no opportunities to remove synchronisa.tion are discovered. This is
essentially because the original semantics is call-by-name while real imple-
mentations use call-by-need. When the source program is transformed to
model call-by-need much better results are obtained.

The monad of functional processes offered much insight into the behaviour
of parallel programs, and was de�nitely useful. On the other hand, call-
by-name proved a very poor approximation to call-by-need. Unfortunately
call-by-need is hard to a.bstra.ct well: a way of doing so is urgently needed.

Computing Fixed Points in Static Program Analysis

Hanne Riis Nielson

Aa.rhus University, Denmark

In the context of abstract interpreta.tion we study the number of times a
functional needs to be unfolded in order to compute the least �xed point.
In the monotone framework where all functions are known to be monotone

we get an exponential upper bound. If we restrict the functions to be strict
and additive we get a. quadratic upper bound. These bounds a.re tight in a
certain sense. a

By specializing the form of the functionals we show how the classical
notions of fastness and k-boundedness ca.rry over to the framework of abstract
interpretation. This gives us an alternative and more precise way of bounding
the number of unfoldings needed to compute the lea.st �xed points. For
iterative forms (often obtained when analysing ta.il recursive programs) a.nd
primitive -recursive forms (often obtained for programs with a single recursive
call) we have simple methods for bounding the number of unfoldings.

Finally, we suggest an algorithm for computing �xed points based on
�iterative squaring. In the monotone framework it has time complexity O(log
k * n) when the functional is k~bounded and the domain of the functions has

15

first use of a node updates it. Practical results are very disappointing -
almost no opportunities to remove synchronisation are discovered. This is
essentially because the original semantics is call-by-name whjle real imple
mentations use call-by-need. When the source program is transformed to
model call-by-need much better results are obtained.

The monad of functional processes offered much insight into the behaviour
of parallel programs, and was definitely useful. On the other hand, call
by-name proved a very poor approximation to call-by-need. Unfortunately
call-by-need is hard to abstract well: a wa.y of doing so is urgently needed.

Computing Fixed Points in Static Program Analysis

Ha.nne Riis Nielson
Aarhus University, Denmark

In the context of abstract interpretation we study the number of times a
functional needs to be unfolded in order to compute the least fixed point.
In the monotone framework where all functions are known to be monotone
we get an exponential upper bound. If we restrict the functions to be strict
and additive we get a quadratic upper bound. These bounds a.re tight in a
certain sense.

By specializing the form of the functionals we show how the classical
notions of fastness and k-boundedness carry over to t he framework of abstract
interpretation. This gives us an alternative and more precise way of bounding
the number of unfoldings needed to compute the least fixed points. For
iterative forms (often obtained when analysing ta.ii recursive programs) and
primitive recursive forms (often obtained for programs with a single recursive
call) we have simple methods for bounding the number of unfoldings.

Finally, we suggest an algorithm for computing fixed points based on
. iterative squaring. In the monotone framework it has time complexity O(log
k * n) when the functional is k-bounded and the domain of the functions has

15

n elements. When the functions are strict and additive the time complexity
can be reduced to O(log k * (log n)3).

Dependence Analysis in Array Computations

Paul H J Kelly
Imperial College, UK.

Dependence a.na.lysis of loop progra.ms with a.rra.ys is a successful body of
techniques with well-known a.pplica.tions in compiling imperative languages
for target architectures with vector or pipelined arithmetic, cache memories
and multiple processors. This talk introduced and reviewed the approach
a.nd compared it with the work of the functional programming and data flow
communities. Importa.nt points of contact include

o the compilation of data. parallel functional programs to make efficient
use of intermediate storage.

o generating closure-free code for recursive functional array definitions.

0 algebraic transformation of functional programs to enhance parallelism
a.nd locality.

I concluded by discussing work in progress on applying dependence analysis
to translate loop programs into functional versions in which dependence is
accurately retained, with the objective of exploiting algebraic transformation
techniques.

The Structure of a Back-End to Compile Functional Languages

Manuel M.T. Chakrava.rty
TU Berlin

16

n elements. When the functions are strict and additive the time complexity
can be reduced to O(log k * (log n)3).

Dependence Analysis in Array Computations

Paul H J Kelly
Imperial College, UK.

Dependence analysis of loop programs with arrays is a successful body of
techniques with well-known applications in compiling imperative languages
for target architectures with vector or pipelined arithmetic, cache memories
and multiple processors. This talk introduced and reviewed the approach
and compared it with the work of the functional programming and data flow
communities. Important points of contact include

• the compilation of data parallel function<1l programs to make efficient
use of intermediate storage.

• generating closure-free code for recursive functional array definitions.

• a.lgebraic transformation of functional programs to enhance parallelism
and locality.

I concluded by discussing work in progress on ap1,lying dependence analysis
to translate loop programs into functional versions in which dependence is
accurately retained, with the objective of exploiting algebraic transformation
techniques.

The Structure of a Back-End to Compile Functional Languages

Manuel M.T. Chakrava.rty
TU Berlin

16

We present the structure of a back-end feasible for the compilation of lazy
functional (logic) languages. It is based on the J UMP-machine and supports
a wide range of optimizations. Emphasis is laid on independence from the
target machine a.nd on the use of techniques developed in the �traditional�
compiler construction.

The back-end consists of three independent translation steps. The �rst
and the second produce two different intermediate languages, namely J Code
(JUMP-ma.chine code) and TreeCode. Assembly code for the target ma-
chine is genera.ted in the final step. The intermediate language J Code is an
abstract, block-structured Code supplying a.n unlimited number of named
variables. So, memory ma.pping is not done at this stage, but the functional
features (e.g. pa.ttern matching, suspensions, term construction) are explicit.
In contrast, TreeCode is a linea.r code including labels and goto instructions.
Access paths a.re explicit, i.e. memory mapping is done. Nevertheless inde-
pendence from the target machine is preserved.

Together with optimizations like copy propagation a.nd boxing analysis
the memory ma.pping is performed on the level of J Code. Thereby, variables
are sepera.ted in different memory classes. Including the class of the pseudo
registers that contains the ca.ndida.tes for la.ter assignment to hardware reg-
isters, saving the unnecessary work of a sta.ck simulation.

In the la.st translation step information depending on the target machine
is introduced, e.g. number and kinds of registers. Also, code selection is
performed a.nd some final optimizations like constant folding are done.

The implementation of such a ba.ck-end led to an efficient implementation
of the functional logic language-Guarded TermML. Thereby, the use of the
back-end generator BEG saved a lot of effort in developing the last translation

phase.

Small expressions should be evaluated

Martin Raber

Universität Saarbriicken

17

We present the structure of a back-end feasible for the compilation of lazy
functional (logic) languages. It is based on the JUMP-machine and supports
a wide range of optimizations. Emphasis is laid on independence from the
target ma.chine and on the use of techniques developed in the "traditional"
compiler construction.

The back-end consists of three independent translation steps. The first
and the second produce two different intermediate languages, namely JCode
(JUMP-machine code) and TreeCode. Assembly code for the target ma
chine is generated in the final step. The intermediate language JCode is an
abstract, block-structured Code supplying an unlimited number of named
variables. So, memory mapping is not done at this stage, but the functional
features (e.g. pattern matching, suspensions, term construction) are explicit.
In contrast, TreeCode is a linear code including labels and goto instructions.
Access paths are explicit, i.e. memory mapping is done. Nevertheless inde
pendence from the target machine is preserved.

Together with optimizations like copy propagation and boxing analysis
the memory mapping is performed on the level of JCode. Thereby, variables
are seperated in different memory classes. Including the class of the pseudo
registers that contains the candidates for later assignment to hardware reg
isters, saving the unnecessary work of a stack simulation.

In the last translation step information depending on the target machine
is introduced, e.g. number and kinds of registers. Also, code selection is
performed and some final optimizations like constant folding are done.

The implementation of such a back-end led to an efficient implementation
of the functional logic language Guarded TermML. Thereby, the use of the
back-end generator BEG saved a lot of effort in developing the last translation
phase.

Sn1all expressions should be evaluated

Martin Raber
U niversita.t Sa.:,.rbriicken

17

Delayed evaluation has been recognized as one source of inefficiency when
implementing a lazy functional language. One attempt for optimization has
been through strictness analysis. Strict expressions can always be evaluated
at once without a fear of changing the termination behaviour.

Beyond strictness analysis there is another class of subexpressions being
well suited for an immediate evaluation. We call them small expressions.
Small expressions only contain non-recursive functions without functional
parameters. We present two abstract interpretations:

0 one shows up to what extent a small expressions needs its free variables

o another one computes up to what extent a variable will be evalua.ted
at a certain point.

Constraints + Control = Compilation or
How to Compile Matching and Residuation in LIFE

Gerard Ellis and Peter Van Roy
DEC Paris Research Laboratory, France

The language LIFE is based on the underlying idea of normalizing a con-
junction of primitive constraints. There are two basic operations: uni�cation
(enforcing equality of objects by adding constraints to the global state) and
matching (implication, i.e. checking whether constraints are entailed or dis-
entailed). Variables are logical variables. The data structures a.re 2/2-terms,
which are to Herbra.nd terms (Prolog terms) what dynamic records are to
static arrays. A «L,-term can be represented as a conjunction of primitive
constraints.

Functions calls in LIFE have a data.-driven component. A function �res
if the actual parameters imply the formal parameters. If fails if the actual
parameters imply the negation of the formal parameters. In the third case the
function suspends, or residuates (that is, a residual equation is created). The

18

Delayed evaluation has been recognized as one source of inefficiency when
implementing a lazy functional language. One attempt for optimization has
been through strictness analysis. Strict expressions can always be evaluated
at once without a fear of changing the termination behaviour.

Beyond strictness analysis there is another class of subexpressions being
well suited for an immediate evaluation. We call them small expressions.
Small expressions only contain non-recursive functions without functional
parameters. We present two abstract interpretations:

• one shows up to what extent a small expressions needs its free variables

• another one computes up to what extent a variable will be evaluated
at a certain point.

Constraints + Control = Compilation or
How to Compile Matching and Residuation in LIFE

Gerard Ellis and Peter Van Roy
DEC Paris Research Laboratory, France

The language LIFE is lfased on the underlying idea of normalizing a con
junction of primitive constraints. There are two basic operations: unification
(enforcing equality of objects by adding constraints to the global state) and
matching (implication, i.e. checking whether constraints are entailed or dis
entailed}. Variables are logical variables. The data structures are 'lj.,-terms,
which are to Herbrand terms (Prolog terms) what dynamic records are to
static arrays. A 'lj.,-term can be represented as a conjunction of primitive
constraints.

Functions calls in LIFE have a data-driven component. A function fires
if the actual parameters imply the formal parameters. If fails if the actual
parameters imply the negation of the formal parameters. In the third case the
function suspends, or residuates (that is, a residua.I equation is created). The

18

suspended call will be reactivated if any of the residuated variables are further
instantiated. Therefore it is not necessary to know a function�s arguments
to call it, and a function behaves like a passive constraint or demon.

This talk presents an e�icient algorithm for executing matching and resid-
uation for functions that consist of a single rule. The primitive constraints
that make up the function�s formal parameters form a dependency tree (which
may be a rational tree). The algorithm traverses the tree and maintains a set
of residuated constraints along a wavefront in the tree. Each of these con-
straints is the root of a subtree containing all the constraints that depend on
it. Therefore a subtree contains precisely the work that must be suspended
when its root residuates.

The compiled code consists of a depth-�rst arrangement of the constraints
in the dependency tree, with a mechanism for efficiently suspending and reac-
tivating the execution of arbitrary subtrees. This mechanism was discovered
by Micha Meier, who used it to implement uni�cation. The constraints are
macro-expanded into native code, with a.n instruction granularity similar to
WAM instructions. Our algorithm achieves linear code size and time (in the
size of the formal parameters), is able to residuate on multiple constraints
without blocking, does no redundant work, and does fast failure. Further
work will extend the algorithm to implement functions consisting of multiple
rules and to take analysis information into account.

An OR-Parallel Implementation of K-LEAF Based on Graph

Rewriting

Werner Damm, Feixiong Liu and Thomas Peikenkamp
Oldenburg Universität

K-LEAF is a first-order functional + logic language based on Horn Clause
logic with equality. Most of current K-LEAF implementations (sequential
or parallel) rely on an extended version of Wa.rren Abstract Machine (K-
WAM). Here we present a graph rewriting model enhanced with sharing

19

suspended call will be reactivated if any of the residuated variables are further
instantiated. Therefore it is not necessary to know a function's arguments
to call it , and a function behaves like a passive constraint or demon.

This talk presents an efficient algorithm for executing matching and resid
uation for functions that consist of a single rule. The primitive constraints
that make up the function's formal parameters form a dependency tree (which
may be a rational tree). The algorithm traverses the tree and maintains a set
of residuated constraints along a wavefront in the tree. Each of these con
straints is the root of a subtree containing all the constraints that depend on
it. Therefore a subtree contains precisely the work that must be suspended
when its root residuates.

The compiled code consists of a depth-first arrangement of the constraints
in the dependency tree, with a mechanism for efficiently suspending and reac
tivating the execution of arbitrary subtrees. This mechanism wa.s discovered
by Micha Meier, who used it to implement unification. The constraints are
macro-expanded into native code, with an instruction granularity similar to
WAM instructions. Our algorithm achieves linear code size and time (in the
size of the formal parameters), is able to residuate on multiple constraints
without blocking, does no redundant work, and does fast failure. Further
work will extend the algorithm to implement functions consisting of multiple
rules and to take analysis information into account.

An OR-Parallel Implementation of K-LEAF Based on Graph
Rewriting

Werner Damm, Feixiong Liu and Thomas Peikenkamp
Oldenburg Universita.t

K-LEAF is a first-order functional + logic language based on Horn Clause
logic with equality. Most of current K-LEAF implementations (sequential
or parallel) rely on an extended version of vVarren Abstract Machine (K
WAM). Here we present a graph rewriting model enhanced with sharing

19

for the OR-Parallel execution of K-LEAF programs. Our graph rewriting
model provides an approach to dealing with sharing between OR-Parallel
processes. With this approach, recomputation of shared computation paths
can be avoided. We also a.ddress some important concepts in functional +
logic models such as lazy evaluation and functional style parallelism. Lazy
evaluation can be more naturally supported in our graph rewriting model
than in the K-WAM because of an embedded suspension mechanism. The
functional style parallelism can be exploited by combining parallel uni�cation
and strictness annotations.

A Scheme for Constraint Functional Logic Programming

Francisco-J a.vier Lopez- Fragu as
Universida.d Complutense de Madrid, Spain

We present a general scheme CFLP(X) for first order constraint functional
logic programming which plays, with respect to lazy functional logic program-
ming with constructor discipline (as realized, e.g.,in K-LEAF or BABEL), a
similar role to the well known of � Constraint Logic Programming�, CLP(X),
with respect to logic programming. '

In CFLP(X), over a base structure equipped with a set of prede�ned
functions a.nd predicates, we define new ones by means of ��constrained con-
ditional rewrite rules�. We formulate a declarative semantics in a general
setting, where base structures a.re Scott domains and functions and predi-
cates (both primitive a.nd user de�ned ones) are continuous. We are able to
prove that every consistent program has a least model, which is also the least
�xpoint of a.n operator associated to the program.

We propose a sound operational semantics, constrained narrowing, which
is a generalization of narrowing where uni�cation is replaced by the more
general notion of constraint satisfaction. We give then an abstract charac-
terization of la.zy computations, a.nd we prove that the resulted computation

�Z0

for the OR-Parallel execution of K-LEAF programs. Our graph rewriting
model provides an approach to dealing with sharing betwe~n OR-Parallel
processes. With this approach, recomputation of shared computation paths
can be avoided. We also address some important concepts in functional +
logic models such as lazy evaluation and functional style parallelism. Lazy
evaluation can be more naturally supported in our graph rewriting model
than in the K-WAM because of an embedded suspension mechanism. The
functional style parallelism can be exploited by combining parallel unification
and strictness annotations.

A Sche1ne for Constraint Functional Logic Programming

Francisco-Javier Lopez-Fraguas
Universida.d Complutense de Madrid, Spain

We present a genera.I scheme CFLP(X) for first order constraint functional
logic programming which plays, with respect to lazy functional logic program
ming with constructor discipline (a.c; realized, e.g. ,in K-LEAF or BABEL), a
similar role to the well known of "Constraint Logic Programming", CLP(X),
with respect to logic programming.

In CFLP(X), over a base structure equipped with a set of predefined
functions and predicates, we define new ones by means of "con·strained con
ditional rewrite rules". V./e formulate a declarative semantics in a general
setting, where base structures are Scott domains and functions and predi
cates (both primitive and user defined ones) are continuous. We are able to
prove that every consistent program has a least model, which is also the least
fixpoint of an opera.tor associated to the program.

We propose a sound operat.iona.l semantics, constrained narrowing, which
is a genera.liza.tion of narrowing where unification is replaced by the more
genera.I notion of constraint satisfaction. Vie give then an abstract charac
terization of lazy computations, and we prove that the resulted computation

20

mechanism, lazy constra.ined narrowing, is complete for semantically non
ambiguous programs. The proof of this is rather simple, and is based on a
suitable notion of approximation to expressions and goals, for which well-
founded orderings are provided.

Implementing a Lazy Functional Logic Language with Disequality
Constraints

- Herbert Kuchen. RWTH Aachen

Francisco Lopez-Fraguas, UCM Madrid
Juan Jose Moreno, UCM Madrid

Ma.rio R.odriguez-Arta.lejo, UCM Madrid

We investigate the implementation of a la.zy functional logic language (in
particular the la.ngua.ge BABEL) which uses disequa.lity constraints for solv-
ing equations a.nd building answers. We specify a new operational semantics
which combines la.zy narrowing with disequality constraints and we define an
abstract machine tailored to the execution of BABEL programs according
to this semantics. The machine is designed as a quite natural extension of
a lazy graph narrowing machine. Disjunctions of disequalities are handled
using the backtracking mechanism. The presented mechanisms are rather in-
dependent of the LBAM and can be inserted into other narrowing machines
as well. If there are no disequalities in the program, the machine behaves
exactly like the LBAM, a.nd no additional overhead is needed. A prototype
implementation is in progress.

FACILE: A Functional Language for Parallel Programming

Bent Thomsen

ECRC, Munich

�.21

mechanism, lazy constrained narrowing, is complete for semantically non
ambiguous programs. The proof of this is rather simple, and is based on a
suitable notion of approximation to expressions and goals, for which well
founded orderings are provided.

Implementing a Lazy Functional Logic Language with Disequality
Constraints

· Herbert Kuchen, RWTH Aachen
Francisco Lopez-Fra.gua.s, UCM Madrid

Juan Jose Moreno, UCM Madrid
Mario Rodriguez-Artalejo, UCM Madrid

We investigate the implementation of a lazy functional logic language (in
particular the language BABEL) which uses disequality constraints for solv
ing equations and building answers. We specify a new operational semantics
which combines lazy narrowing with disequality constraints and 'Y!e define an
abstract machine tailored to the execution of BABEL programs according
to this semantics. The machine is designed as a quite natural extension of
a lazy graph narrowing ma.chine. Disjunctions of disequalities are handled
using the backtracking mechanism. The presented mechanisms are rather in
dependent of the LBAM and can be inserted into other narrowing machines
as well. If there are no disequalities in the program, the machine behaves
exactly like the LBAM, and no additional overhead is needed. A prototype
implementation is in progress.

FACILE: A Functional Language for Parallel Programming

Bent Thomsen
ECRC, Munich

21

In this talk we present the Facile language currently under development at
ECRC. Facile is an experimental programming language resulting from a
concrete attempt to integrate the typed call-by-value A-calculus with a pro-
cess language similar to CCS. Call-by-value A-calculus and CCS have merged
symmetrically to obtain a language that supports both functional and process
abstractions: functions may be de�ned and used to specify internal compu-
tations of concurrent processes; dynamic process creation and synchronised
communication over typed channels may occur during any expression evalua-
tion. Functions, processes a.nd communication channels are �rst class values.
The language has static typing. At the theoretical level, an operational se-
mantics has been developed in terms of labelled transition systems, a.nd a
notion of observa.bility of programs is de�ned by extending the notion of
bisimulation. A version of the language supporting polymorphic types has
been implemented by extending the ML language with the concurrency con-
structs of Facile.

A New Direction in Functions as Processes

Lone Leth Thomsen

ECRC, Munich

�We present the process calculus LAP (LAbel-passing communicating Pro-
cesses) suitable for describing recon�gurable networks of communicating pro-
cesses where the only computation is the recon�guration of the network. The
work is motivated by the many attempts to develop parallel/ concurrent im-
plementations of functional languages (e.g. by using director strings as the
underlying model) and by the recent developments in process algebras for
various notions of concurrency. We introduce director strings, and we trans-
late director string expressions into LAP. The translation is done by trans-
lating the director string conversion rules into LAP. We present a reduction
algorithm for rewriting LAP representations of director string expressions.

l0
[Q

In this talk we present the Facile language currently under development at
ECRC. Facile is an experimental programming language resulting from a
concrete attempt to integrate the typed call-by-value >.-calculus with a pro
cess language similar to CCS. Call-by-value >.-calculus and CCS have merged
symmetrically to obtain a language that supports both functional and process
abstractions: functions may be defined and used to specify internal compu
tations of concurrent processes; dynamic process creation and synchronised
communication over typed channels may occur during any expression evalua
tion. Functions, processes and communication channels are first class values.
The language has static typing. At the theoretical level, an operational se
mantics has been developed in terms of labelled transition systems, and a
notion of observability of programs is defined by extending the notion of
bisimulation. A version of the language supporting polymorphic types has
been implemented by extending the ML language with the concurrency con
structs of Facile.

A New Direction in Functions as Processes

Lone Leth Thomsen
ECRC, Munich

We present the process calculus LAP (LAbel-passing communicating Pro
cesses) suitable for describing reconfigurable networks of communicating pro
cesses where the only computation is the reconfiguration of the network. The
work is motivated by the many attempts to develop parallel/concurrent im
plementations of functional languages (e.g. by using director strings as the
underlying model) and by the recent developmrnts in process algebras for
various notions of concurrency. We introduce director strings, and we trans
late director string expressions into LAP. The translation is done by trans
lating the director string conversion rules into LAP. We present a reduction
algorithm for rewriting LAP representations of director string expressions.

22

Finally we work through an example, and the correctness of the translations
is demonstrated.

Process Networks and Graph Rewriting

John Gla.uert

University of East Anglia.

Building on the work of Milner, Leth, and Honda. and Tokoro, on modelling
lambda-expressions as process networks, we develop a number of new trans-
lations with novel features:

o In addition to the pure lambda-calculus, we a.re able to translate simple
data values and their operators.

0 The model of communica.tion used is essentially asynchronous a.nd will
allow a stra.ightforwa.rd implementa.tion.

o The process notation used may be mapped to a rewriting system in the
practical graph rewriting language Dactl.

Two translations are discussed. One combines both la.zy a.nd by-value eval-
uation using annotated applications in the style of Burton. This translation
exhibits useful pa.rallelis1n.

A second translation is suita.ble for translating all the features of the Facile
language of Giaca.lone, Mishra, a.nd Prasad, which provides a symmetric
integration of concurrent and functional programming. Both functional and
process features of Facile are treated.

Finally we work through an example, and the correctness of the translations
is demonstrated.

Process Networks and Graph Rewriting

John Glauert
University of East Anglia

Building on the work of Milner, Leth, and Honda and Tokoro, on modelling
lambda-expressions as process networks, we develop a number of new trans
lations with novel features:

• In addition to the pure lambda-calculus, we are a.ble to tra.nsla.te simple
data values and their operators.

• The model of communication used is essentially asynchronous a.nd will
allow a straightforward implementation.

• The process notation used may be mapped to a rewriting system in the
practical graph rewriting language Da.ctl.

Two translations are discussed. One combines both lazy and by-value eval
uation using annotated applications in the style of Burton. This translation
exhibits useful parallelism.

A second translation is suitable for translating all the features of the Facile
language of Giacalone, Mishra, and Prasad, which provides a symmetric
integration of concurrent and functional programming. Both functional and
process features of Facile a.re treated.

TPL : The Typed A-Calculus
with First-Class Processes

Flemming N ielson
Aarhus University, Denmark

We extend the typed ,\-calculus with CCS- or CSP-like processes and al-
low these to be �rst�cla.ss citizens just as functions a.re first-class citizens in
functional la.ngua.ges. The ma.in novel fea.ture of the language is the use of
types to rec.ord the coin-municatio-n. possibilities possessed by processes and
in this we give up the causality between communica.tions, i.e. the types do
not model whether or not one communication may take place before another.
In analogy with the semantics of the)\-calculus, and of CCS, we develop a
structural operational semantics for the la.ngua.ge. We then prove that the
operational semantics preserves the types and we use this to give examples
of �errors� that cannot arise for well-typed programs.

PROGRAMMING BY MULTISET TRANSFORMATION

Daniel Le Metayer
Imperial College, London

We present a formalism, called Gamma, in which programs are described
in terms of multiset transformations. A distinguishing property of Gamma
is the possibility of expressing algorithms in a very abstract way, without
arti�cial sequentiality. The expressive power of the formalism is illu� strated
through a series of examples. Then we consider the problem of transform-
ing functional programs to increase their level of parallelism. We present
a technique allowing us to derive the canonical form of a program w.r.t.

24

TPL : The Typed >.-Calculus
with First-Class Processes

Flemming Nielson
Aarhus University, Denmark

We extend the typed >.-calculus with CCS- or CSP-like processes and al
low these to be first-class citizens just as functions are first-class citizens in
functional languages. The main novel feature of the language is the use of
types to record the communication possibilities possessed by processes and
in this we give up the causality between communications, i.e. the types do
not model whether or not one communication may take place before another.
In analogy with the semantics of the >.-calculus, and of CCS, we develop a
structural operational semantics for the language. We then prove that the
operational semantics preserves the types and we use this to give examples
of 'errors' that cannot arise for well-typed programs.

PROGRAMMING BY MULTISET TRANSFORMATION

Daniel Le Metayer
Imperial College, London

We present a. formalism, called Gamma., in which programs are described
in terms of multiset tra.nsforma.t.ions. A distinguishing property of Gamma
is the possibility of expressing algorithms in a very abstract way, without
artificial sequentiality. The expressive power of the formalism is illu- stra.ted
through a series of examples. Then we consider the problem of transform
ing functional programs to increase their level of parallelism. We present
a technique allowing us to derive the canonical form of a program w.r.t.

24

the associativity/commutativity properties of certain operators. The de-
rived canonical form is a very parallel version of the original function and"
it can be expressed as a combination of Gamma programs. As an aside
this transformation can also be used to prove the equality of functions w.r.t.
associativity / commutativity of certain operators.

Con�uence Properties of Gamma Programms

Chris Hankin

Imperial College, London

Gamma. is a programming notation based on multiset transformation. The
attraction of the formalism is that programs exhibit a high degree of par-
allelism (and non-determinism) since the multiset data structure does not
impose any sequentiality on access. However, the usual style of program
derivation in Gamma is based on the sequential composition of multiset trans-
formers which a.re instances of a small set of program schemes (Tropes). In
this ta.lk, we will study how sequential composition can be safely replaced
by parallel combination of Tropes. The correctness of this transformation
depends on the fact that the Tropes instances a.re deterministic (con�uent).
We establish sufficient conditions for a Gamma program to be con�uent and
discuss the issue of modularity of con�uence.

Graph-Grammar based Monitoring of Parallel Graph Reduction
Machines

Heiko Dorr

Freie Universität Berlin

25

the associativity /commutativity properties of certain operators. The de
rived canonical form is a very parallel version of the original function and
it can be expressed as a combi nation of Gamma programs. As an aside
t his transformation can also be used to prove the equality of functions w.r.t.
associativity/ commutativity of certain operators.

Confluence P roperties of Gam ma Progran1ms

Chris Hankin
Imperial College, London

Gamma. is a programming notation based on multiset transformation. The
attraction of the formalism is that programs exhibit a high degree of par
allelism (and non-determinism) since the multiset data structure does not
impose any sequentiality on access. However, the usual style of program
derivation in Gamma is based on the sequential composit.ion of mult iset trans
formers which are instances of a small set of program schemes (Tropes). In
this talk, we will study how sequential composition can be safely replaced
by parallel combination of Tropes. The correctness of this transformation
depends on the fact that the Tropes instances a.re deterministic (confluent).
We establish sufficient conditions for a. Gamma program to be confluent and
discuss the issue of modularity of confluence.

Graph-Grammar based Monit oring of Paralle l Graph R eduction
Machines

Heiko Dorr
Freie Universitat Berlin

Graph-grammar based monitoring extends standard event trace techniques.
These techniques usually lead to signi�cant system performance degradation
even when a small amount of information is extracted during the run of
the measured system. Thus, event sampling is a commonly used alternative
although it gives mainly quantitative system measures.

In graph-grammar based event trace monitoring, a complete operational
graph-grammar model of the system, here a parallel graph reduction machine,
minimizes the performance degradation. To achieve this minimizsation, a
correnpondence between a) graphs and system states and b) rewrite rules
and events is set up. Since the system state is represented by a graph,
each state transition, i.e. a reduction step, ca.n be signalled by very short
event messages. At least for interpretative graph reduction machines, this
method seems a practical way to get necessary information for analyzing and
debugging purposes.

A Distributed Garbage Collector

David R. Lester

Manchester University

A new Garbage Collector was presented which addresses the somewhat tricky
, problem of collecting cyclic structures within a, basically, reference counting

context.

The algorithm draws heavily on previous work by John Hughes, Ian Wat-
son, Paul Watson, and David Bevan.

The algorithm is (theoretically) ideally suited to its intended application
area: implementing Functional Language on Distributed Architectures. A
decision on its practicality awaits its implementation.

Graph-grammar based monitoring extends standard event trace techniques.
These techniques usually lead to significant system performance degradation
even when a small amount of information is extracted during the run of
the measured system. Thus, event sampling is a commonly used alternative
although it gives mainly quantitative system measures.

In graph-grammar based event trace monitoring, a complete operational
graph-grammar model of the system, here a parallel graph reduction machine,
minimizes the performance degradation. To achieve this minimizsation, a
correnpondence between a) graphs and system states and b) rewrite rules
and events is set up. Since the system state is represented by a graph,
ea,ch state transition, i.e. a reduction step, can be signalled by very short
event messages. At least for interpretat ive graph reduction ma.chines, this
method seems a practical way to get necessary information for analyzing and
debugging purposes.

A Distributed Garbage Collector

David R. Lester
Manchester University

A new Garbage Collector was presented which addresses the somewhat tricky
problem of collecting cyclic structures within a, basically, reference counting
context.

The algorithm draws heavily on previous work by John Hughes, Ian Wat
son, Paul Watson, and David Bevan.

The algorithm is (theoretically) ideally suited to its intended application
area: implementing Functional Language on Distributed Architectures. A
decision on its practicality awaits its implementation.

26

Dagstuhl-Seminar 9213 Participants (update: 25.3.92)

Lennart Augustsson Eric Goubault
Chalmers University of Technology Eoole Normale Superieure
De artment of Computer Sciences LIENS
S- 1296 Goteborg 45 Rue d'UIm
Sweden F-75230 Paris Cedex 05
augustss@cs.chalmers.se France
tel.: +46 31 721042 (from April '92: goubault@dmi.ens.fr
7721042)

Kevin Hammond
Manuel Chakravarty Glasgow University
TU Berlin Department of Computing Science
Fachbereich Informatik 17 Lilybank Gardens
FR 5-6 Glasgow G12 800
Franklinstr. 28/29 Great Britain
W-1000 Berlin 10 kh@dcs.glasgow.ac.uk
Germany
chak@cs.tu-berIin.de Chris Hankln
tel.: +49-30-314 25213 Imperial Colle e of Science

Department o Computing
Werner Damm 180 Queen's Gate
Universitat Oldenburg London SW7 2BZ
FB 10 - Informatik Great Britain
Ammerlander Herrstr. 114 cIh@doc.ic.ac.uk
W-2900 Oldenburg tel.: +44-71-589 5111
Germanö .Werner. amm@arbi.informatik.uni-oIden- Fritz Henglein
burg.de University of Co enhagentel.: +49-441-798 4502 geäartment of omputer Science
Heiko Dorr Universitetsparken 1
Freie Universitat Berlin DK-2100 Copenhagen
Fachbereich Mathematik Denmark
Institut fur Informatik hengIein@diku.dk
Nestorstrae 8-9 tel.: +45-3139 3311 ext. 530
W-1000 Berlin 31
Germany Guido Hogen
doerr@inf.fu-berlin.de RWTH Aachen
tel.: +49-30-896 91 106 Fachbereich Informatik

Lehrstuhl f/"ur Informatik II
Hugh Glaser Ahornstr. 55
University of Southampton W-5100 Aachen
Department of Electronics and German
Com uter Science ghogen zeus.informatik.rwth-aachen.de
Sout ampton S09 SNH tel.: +49-241-80 21241
Great Britain
hg@ecs.soton.ao.uk Denis Howe
tel.: +44-703 54 36 70 Imperial College of Science

' Department of Computer Science
John Glauert 180 Queen's Gate
Universit of East Anglia London SW7 2BZ
School o Information Systems Great Britain
Norwich NR4 7TJ dbh@doc.imperia|.ac.uk
Great Britain tel.: +44-71-589 5111 (5064)

jnrvg@sys.uea.ac.uk
tel.: +44-603-59 26 71

Dagstuhl-Seminar 9213

Lennart Augustsson
Chalmers University of Technology
Department of Computer Sciences
S-41296 Goteborg
Sweden
augustss@cs.chalmers.se
tel. : +46 31 721042 (from April '92:
7721042)

Manuel Chakravarty
TU Berlin
Fachbereich lnformatik
FR 5-6
Franklinstr. 28/29
W-1000 Berlin 1 O
Germany
chak@cs.tu-berlin.de
tel.: +49-30-314 25213

Werner Damm
Universitat Oldenburg
FB 1 O - I nformatik
Ammertander Herrstr. 114
W-2900 Oldenburg
Germany .
Werner. Damm@arbi.informatik.uni-olden
burg.de
te I.: +49-441-798 4502

Heiko D6rr
Freie Universitat Berlin
Fachbereich Mathematik
lnstitut fur lnformatik
Nestorstrae 8-9
W-1000 Berlin 31
Germany
doerr@inf.fu-berlin.de
tel. : +49-30-896 91 1 06

Hugh Glaser
University of Southampton
Department of Electronics and
Computer Science
Southampton SO9 5NH
Great Britain
hg@ecs.soton.ac.uk
tel.: +44-703 54 36 70

John Glauert
Universitr of East Anglia
School o Information Systems
Norwich NR4 7T J
Great Britain
jrwg@sys.uea.ac.uk
tel. : +44-603-59 26 71

Participants {update: 25.3.92)

Eric Goubault
Ecole Normale Superieure
LIENS
45 Rue d'Ulm
F-75230 Paris Cedex 05
France
goubault@dmi.ens.fr

Kevin Hammond
Glasgow University
Department of Computing Science
17 Lilybank Gardens
Glasgow G12 8QQ
Great Britain
kh@dcs.glasgow.ac.uk

Chris Hankin
Imperial College of Science
Department of Computing
180 Queen's Gate
London SW7 2BZ
Great Britain
clh@doc.ic.ac. uk
tel.: +44-71-589 5111

Fritz Hengleln
University of Copenhagen
Department of Computer Science
DIKU
Universitetsparken 1
DK-2100 Copenhagen
Denmark
henglein@diku.dk
tel. : +45-3139 3311 ext. 530

Guido Hogen
RWTH Aachen
Fachbereich lnformatik
Lehrstuhl f/"ur lnformatik II
Ahornstr. 55
W-5100 Aachen
German}'
ghogen@zeus.informatik.rwth-aachen.de
tel.: +49-241 -80 21241

Denis Howe
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
dbh@doc.imperial.ac.uk
tel.: +44-71-589 5111 (5064)

John Hughes Francisco Lo z-Fraguas
University of Glasgow Universidad omplutense de Madrid
Department of Computing Science Fac. de Matematicas UCM
Glasgow G12 8QQ 28040 Madrid
Great Britain Spain
rjmh@dcs.glasgow.ac.uk teI.: +34-1-39 44 512
teI.: +44-41-330 4454

i Daniel le Meta er
Sebastian Hunt Universite de ennes
Imperial College of Science IRISA
Department of Computer Science Campus de Beaulieu
180 Queen's Gate Avenue du General Leclerc
London SW7 2BZ F-35042 Rennes Cedex
Great Britain France

Ish@doc.ic.ac.uk |emetayer@irisa.fr

Paul Kellg Flemmin Nielson
Imperial ollege of Science Aarhus niversity
Department of Computer Science Dept. of Computer Science
180 Queen's Gate Ny Munkegade 116
London SW7 2BZ DK-8000 Aarhus C
Great Britain Denmark
phjk@doc.imperial.ac.uk fnie|son@daimi.aau.dk
teI.: +44-71-589 5111 ext 5028 teI.: +45-86-12 71 88

Herbert Kuchen Hanne Fiiis Nielson
RWTH Aachen Aarhus University
Fachbereich Informatik Dept. of Computer Science
Ahornstr. 55 Ny Munkegade 116
W-51 O0 Aachen DK-8000 Aarhus C
German I Denmark
herben zeus.informatik.rvvth-aachen.de hrn@daimi.aau.dk
teI.: +49-241-802 1211 teI.: +45-86-12 71 88

David Lester Eric Nocker
The University of Manchester Katholieke Universiteit Nijmegen
Dept. of Computer Science Department of lnformatica
Manchester M13 9PL Toernooiveld
Great Britain NL-6525 ED Nijmegen
dlester@cs.man.ac.uk The Netherlands
teI.: +44-61-275 5726 eric@cs.kun.nI

teI.: +31 -80-65 2509
Lone Leth Thomsen
ECRC Munchen Thomas Peikenkamp
Arabellastr. 17 Universitat Oldenburg
W-8000 Munchen 81 FB 10 - lnformatik
Germany Ammerlander Herrstr. 114
Ione@ecrc.de W-2900 Oldenburg
teI.: +49-89-92 69 91 34 Germany

thomas.peikenkamp@arbi.informatik.uni-
Feixiong Liu oldenburg.de
Universitat Oldenburg teI.: +49-441-798 4520
FB 10 - Informatik
Ammerlander Herrstr. 114
W-2900 Oldenburg
Germany

John Hughes
University of Glasgow
Department of Computing Science
Glasgow G12 800
Great Britain
rjmh@dcs.glasgow.ac.uk
tel.: +44-41 -330 4454

Sebastian Hunt
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
lsh@doc.ic.ac.uk

Paul Kelly
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
phjk@doc.imperial.ac.uk
tel. : +44-71-589 5111 ext 5028

Herbert Kuchen
RWTH Aachen
Fachbereich lnformatik
Ahornstr. 55
W-5100 Aachen
Germany
herbert@zeus. informatik. rwth-aachen.de
tel.: +49-241-802 1211

David Lester
The University of Manchester
Dept. of Computer Science
Manchester M13 9PL
Great Britain
dlester@cs.man.ac.uk
tel. : +44-61-275 5726

Lone Leth Thomsen
ECRC Munchen
Arabellastr. 1 7
W-8000 Munchen 81
Germany
lone@ecrc.de
tel. : +49-89-92 69 91 34

Feixiong Liu
Universitat Oldenburg
FB 1 O - I nformatik
Ammerlander Herrstr. 114
W-2900 Oldenburg
Germany

Francisco Lopez-Fraguas
Universidad Complutense de Madrid
Fae. de Matematicas UCM
28040 Madrid
Spain
tel.: +34-1-39 44 512

Daniel le Metayer
Universite de Rennes
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France
lemetayer@irisa.fr

Flemming Nielson
Aarhus University
Dept. of Computer Science
Ny Munkegade 116
DK-8000 Aarhus C
Denmark
fnielson@daimi.aau.dk
tel.: +45-86-12 71 88

Hanna Riis Nielson
Aarhus University
Dept. of Computer Science
Ny Munkegade 116
DK-8000 Aarhus C
Denmark
hrn@daimi.aau.dk
tel. : +45-86-12 71 88

Eric Nocker
Katholieke Universiteit Nijmegen
Department of lnformatica
Toernooiveld
NL-6525 ED Nijmegen
The Netherlands
eric@cs.kun.nl
tel.: +31-80-65 2509

Thomas Pelkenkamp
Universitat Oldenburg
FB 1 o - I nformatik
Ammerlander Herrstr. 114
W-2900 Oldenburg
Germany
thomas.peikenkamp@arbi.informatik.uni
oldenburg.de
tel.: +49-441-798 4520

Rinus Plasmeljer
Katholieke Universiteit Nijmegen
Department of lnformatica
Toernooiveld
NL-6525 ED Nijmegen
The Netherlands
rinus@cs.kun.nl
teI.: +31 -80-65 26 43

Martin Raber
Universitat des Saarlandes
Fachbereich 14 - Informatik
Im Stadtwald 15
W-6600 Saarbmcken 11

Germany
raber@sol.cs.uni-sb.de
teI.: +49-681-302 2964

David Sands
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain

ds@doc.imperiaI.ac.uk
teI.: +44-71-589 5111 Ext 4993

Helmut Seidl
Universitat des Saarlandes
Fachbereich 14 - Informatik
Im Stadtwald 15
W-6600 Saarbrucken 11

Germany
seidl@cs.uni-sb.de
teI.: +49-681-302 2454

Bent Thomsen
ECRC Munchen
Arabellastr. 17
W-8000 Munchen 81

Germany
bt@ecrc.de
teI.: +49-89-92 69 91 82

Peter Van Roy
Digital Equipment Corporation
Paris Research Laboratory
85 Avenue Victor Hugo
F-92500 Rueil-Malmaison Cedex
France

vanroy@prI.dec.com
teI.: +33-1-47 14 28 65

David Wakellng
University of York
Department of Computer Science
York YO1 5DD
Great Britain

dw@minster.york.ac.uk
teI.: (+4) 0904 432777

Peter Wentworth
Rhodes University
Department of Computer Science
Grahamstown 6140
South Africa �

cspw@aIpha.ru.ac.za
teI.: +27 41 22023

Reinhard Wilhelm
Universitat des Saarlandes
Fachbereich 14 - Informatik
Im Stadtwald 15
W-6600 Saarbrucken 11
German
wilhelm cs.uni-sb.de
teI.: +49-681-302 3434

Rinus Plasmeljer
Katholieke Universiteit Nijmegen
Department of lnformatica
Toernooiveld
NL-6525 ED Nijmegen
The Netherlands
rinus@cs.kun.nl
tel.: +31-80-65 26 43

Martin Raber
Universitat des Saarlandes
Fachbereich 14 - lnformatik
Im Stadtwald 15
W-6600 Saarbrucken 11
Germany
raber@sol.cs.uni-sb.de
tel.: +49-681-302 2964

David Sands
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
ds@doc.imperial.ac.uk
tel.: +44-71-589 5111 Ext 4993

Helmut Seidl
Universitat des Saarlandes
Fachbereich 14 - lnformatik
Im Stadtwald 15
W-6600 Saarbrucken 11
Germany
seidl@cs.uni-sb.de
tel.: +49-681-302 2454

Bent Thomsen
ECRC Munchen
Arabellastr. 17
W-8000 Munchen 81
Germany
bt@ecrc.de
tel. : +49-89-92 69 91 82

Peter Van Roy
Digital Equipment Corporation
Paris Research Laboratory
85 Avenue Victor Hugo
F-92500 Rueil-Malmaison Cedex
France
vanroy@prl. dee. corn
tel.: +33-1-47 14 28 65

David Wakeling
University of York
Department of Computer Science
York YO1 5DD
Great Britain
dw@minster.york.ac.uk
tel.: (+4) 0904 432777

Peter Wentworth
Rhodes University
Department of Computer Science
Grahamstown 6140
South Africa
cspw@alpha.ru.ac.za
tel. : +27 41 22023

Reinhard WIiheim
Universitat des Saarlandes
Fachbereich 14 - lnformatik
Im Stadtwald 15
W-6600 Saarbrucken 11
Germany
wilhelm@cs.uni-sb.de
tel.: +49-681-302 3434

Zuletzt erschienene und geplante Titel:
H. Alt � B. Chazelle, E. Welzl (editors):

Computational Geometry, Dagstuhl-Seminar-Fleport; 22,. 07.10.-1 1 .10.91 (9141)
F.J. Brandenburg , J. Berstel, D. Wotschke (editors):

Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10.-
18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez � G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21.10.-25.10.91 (9143)

H. Noltemeier, T. Ottmann, D. Wood (editors):
Data Structures� DagstuhI-Seminar-Report; 25, 4.11.-8.1 1.91 (9145)

A. Dress, M. K-arpinski� M. Singer(editors):
Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149),

B. Buchberger, J. Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Fleport; 27, 16.-20.12.91 (9151)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Fleport; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Constmction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Fleport; 30, 3.-7.02.92 (9206)

B. Booß, W. Coy, J.-M. Ptlüger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar�Report; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Fteport; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Bool3, W. Coy, J.-M. P1IiJger(editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Fleport; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps (Madison, Wisconsin), G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors): s
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin. J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diftie, G.J. Simmons (editors): .
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

Zuletzt erschlenene und geplante Tltel:
H. Alt , B. Chazette, E. Welzl (editors):

Col11)Utational Geometry, Dagstuhl-Seminar-Report; 22, 07.10.-11 .10.91 (9141)

F.J. Brandenburg , J. Berstel, D. Wotschke (editors) :
Trends and Applications in Formal Language Theory, Dagstuhl-Seminar-Report; 23, 14.10.-
18.10.91 (9142)

H. Comon , H. Ganzinger, C. Kirchner, H. Kirchner, J.-L. Lassez , G. Smolka (editors):
Theorem Proving and Logic Programming with Constraints, Dagstuhl-Seminar-Report; 24,
21 .10.-25.10.91 (9143)

H. Noltemeier, T . Ottmann, D. Wood (editors):
Data Strudures, Dagstuhl-Seminar-Report; 25, 4.11 .-8.11 .91 (9145)

A. Dress, M. Karpinski, M. Singer(editors):
Efficient Interpolation Algorithms, Dagstuhl-Seminar-Report; 26, 2.-6.12.91 (9149),

B. Buchberger, J . Davenport, F. Schwarz (editors):
Algorithms of Computeralgebra, Dagstuhl-Seminar-Report; 27, 16.-20.12.91 (9151)

K. ColTl)ton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13 .. -17.1 .92
(9203)

K. Ambos-Spies, S. Homer, U. SchOning (editors) :
Structure and ColTl)lexity Theory, Dagstuhl-Seminar-Report ; 30, 3.-7.02.92 (9206)

B. BooB, w. Coy, J .-M. Pfluger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 1 O. -14.2.92
(9207)

K. ColTl)ton, J.E. Pin , W . Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1 .92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors) :
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. SchOning (editors) :
Structure and ColTl)lex ity Theory, Dagstuhl-Seminar-Report ; 30, 3.-7.2.92 (9206)

B. BooB, W. Coy, J .-M. Pfluger (editors):
Limits of lnformation-technologi.::al Models, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T . Reps (Madison, Wisconsin), G. Snelting (editors) :
Programming Environments; Dagstuhl-Seminar-Report; 34; 9 .3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors) :
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3 .-19.3.9 (9212)

W. Damm, Ch. Hankin, J . Hughes (editors):
Functional Languages:
ColTl)iler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors) :
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

