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Dagstuhl Workshop
on

Algorithms and Number Theory

June 22 - 26, 1992

Organizers:

Johannes Buchmann (Saarbrücken)
Harald Niederreiter (Wien)

Andrew M. Odlyzko (New Jersey)
Horst Günter Zimmer (Saarbrücken)

Overview

The main interest of this workshop was the theory and practice of algorithms in
number theory. The conference covered algorithms for factoring integers and poly-
nomials, discrete logarithms, quadratic forms, diophantine equations, elliptic and
hyperelliptic curves, and number �elds.
The 35 participants of this workshop came from 10 countries. Besides the formal
program, there was ample time for free discussions and informal meetings between
participants. The nice setup of the Dagstuhl Institute made this workshop a very
enjoyable experience.

The organizers would like to thank everyone who contributed to the success of this
meeting.
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ABSTRACTS

On the Analogue of the Division
Polynomials for Hyperelliptic Curves

David G. Cantor

We study hyperelliptic curves given by Weierstrass equations of the form

&#39;29-H �
}r2 =  )' = Z a,-X�, 0294.1 = 0�4

i=0

When g = 1 these are elliptic curves. In this case, there are well-known division
polynomials which can be used to multiply a point by an integer r.

When g is > 1, then one must work with the J acobian of this curve. We obtain the
analogue of the division polynomials. These can be used to determine the cardinality
of the Jacobian.

A Deterministic Factorization

Algorithm
for Polynomials over Finite Fields

Harald Niederreiter

Let Fq be a �nite �eld of order q (q an arbitrary prime power), f E IF q[:c] a monic
squarefree polynomial with deg( f) = d 2 1, and g1, ..., gm 6 Fq[a:] the distinct monic
irreducible factors of f. Consider the differential equation

hf"��"" (7) = "" �I�
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with unknown h E IFq[:r], where H ("&#39;1) is the Hasse-Teichmiiller derivative of order
q-� 1. Then (1) has a linear solution space with an lFq-basis given by �g,�-, 1 5 i 5 m.
Moreover, (1) is equivalent to a d X d homogeneous system of linear equations for the
coe�icients of h. By calculating gcd( f, h) for all solutions h of (1), we get all monic
factors of f (with repetitions if q > 2). In the case q = 2 this method simpli�es
considerably. First of all, (1) reduces to the ordinary differential equation

(fh)&#39; = &#39;12- (2)

Furthermore, (2) is equivalent to a d x d system of linear equations for the coefficients
of h with no set-up cost (as opposed to the set-up cost 0(d2) in the Berlekamp
algorithm). If f is sparse, then the system of linear equations is sparse. Also, the
system has a very special structure which may allow faster solution methods.

Some New Results from Numerical

Sieving Devices
Hugh C. Williams

A machine is called a number sieve if it is a device which finds solutions to systems
of single variable linear congruences with varying moduli. The mechanism detects
these solutions by simple searching through all the integers up to a certain bound.
In this paper, we discuss the results of running this type of device on two different
problems. The first of these is the difficult problem of tabulating g(k), where g( k) is

the least positive integer such that all prime divisors g ( g(kk) ) must exceed k + 1.
By using the OASIS system at the university of Manitoba, we were able to produce
an extensive list of all values of g(k) for 2 _<_ k _<_ 151, with the exception of g(150)
only.
The second problem is that of determing pseudoprimes. Let p be an odd prime; a
pseudoprime < p is the least positive integer which is not a perfect square such that
LP =_�&#39; &#39;1 (mod 8) and (L,,/ g) = 1 for all primes g S p. By developping a new sieve
which makes use of 16 of the SSU VLSI sieve chips designed by Cam Patterson,
we were able to search through the integers for pseudoprimes at the rate of about
8.9 x 10� per second. As a result of running this device for a few weeks, we now
know all the pseudoprimes up to and including L239. These numbers are of particular
interest because of their connection to the problem of whether primality testing is
in complexity class P.
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Computing Resolvents and
Galois groups

for polynomials With small degree
Michel Olivier

Let f E Ihr] be monic irreducible. We want to compute the Galois group of f.
We describe an algorithm for computing relative H -polynomials to G, where H and
G are transitive subgroups of 5,, of degree n, such that H C G.

P(a:1, ..., 23,.) is a relative H-polynomial to G if

H={0¬G:o&#39;P=P}.

The resolvent relative to G, H, P and f is

R(a:) = H (m � 1&#39;P(91,...,c9,.)),
T

where 7&#39; runs over a complete representative set of G mod H, P(a:1,...,:r,.)eis a
relative H -polynornial to G, f E Z[:z:] is a monic irreducible polynomial, and
(01, ...,0,,) are the roots of f in C.

We give the graph of all transitive groups with degree 8 and 9, and all resolvents
needed for computing the Galois group of f.

Massively Parallel Computation of
Discrete Logarithms

Kevin McCurley

The discrete logarithm problem is the following: given group elements a and g, �nd
an integer as such that g� = a, provided such an a: exists. This problem arises in
cryptography from trying to invert the presumed one-way-function f = g�. We
have (joint with Dan Gordon) now completed most of the computation required to
compute discrete logarithms in the multiplicative group of GF (2401) and GF(25°3).
The algorithm that we are using is based on that of Coppersmith, but we use a
sieving method to screen polynomials over GF (2) for divisibility by irreducibles of
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small degree. In the second phase of the computation we have used a massively
parallel MIMD implementaion of the conjugate gradient algorithm for solving linear
systems over �nite �elds. All of this work was performed on large.MIMD machines,
including two 1024 processors nCUBE-2 hypercubes with 4 GB of RAM, and Intel
iPSC 860 with 64 processors, and the Ddta Touchstone Intel mesh-connected ma-
chine with 512 processors. The linear algebra phase involves solving a sparse system
of approximately 10000 - 80000 equations over a �eld GF (p) where p is 100-500 bits.

Iterated absolute values of differences

of consecutive primes
Andrew M. Odlyzko

Let pl = 2, P2 = 3, be the primes, and set

do(Tl)
d); + 1(71)

A conjecture, usually ascribed to Gilbreath, but actually due to Proth in the 19-th
century says that dk(1) = 1 for all k Z 1. This conjecture has now been veri�ed
numerically for k 5 1r(2 x 10�) z 2 >< 101°. The numerical evidence supports
heuristic arguments, that this conjecture is true for many other sequences as well
that are suf�ciently nicely behaved.

M, n21
|d:.(n) � du� + 1)I� n 21, k 2 0.

Block Korkin-Zolotarev Bases and
Succesive Minima

Claus-Peter Schnorr

Let b1, ...� bm E R" be a basis of lattice L that is a block Korkin-Zolotarev basis with
block size ß and let A.-(L) denote the successive minima of lattice L. We prove that

4 7g; A �1"z&#39;+3 .
i+37� _||||/()��Yß 4 9M m< b,� 2 ÄgL2 < 37 f =1�...�
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Succesive Minima 
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Let b1 , ... , bm E R" be a basis of lattice L that is a block Korkin-Zolotarev basis with 
block size /3 and let>.;(£) denote the successive minima of lattice L. We prove that 

4 -A r-t i+3 
i + 3 'fJ -i :$ llb,112 

/ >.;(L)
2 < 'fJ -

4
- f?r i = 1, ... , m 
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where 75 is the Hermite constant. For �ß = 3, we establish the optimal upper bound

m�1

(3)74
and we present block Korkin-Zolotarev lattice bases achieving this bound.

llbxll�/>\1(L)2IA

We improve the NEAREST PLANE ALGORITHM of BABAI (1986) using block
Korkin-Zolotarev basis. Given a block Korkin-Zolotarev basis b1, ..., bm with block
size ß and m E L(b1, ..., b,,.), a lattice point v can be found in time �ow) satisfying

III - UII� S m75?� II1inueL||$ - �II�-

Factoring with ECM
Franz-Dieter Berger

There are several ways to implement the elliptic curve method p-�� I talked
about my practical experience with

0 simultaneous gcd computation

o standard continuation

0 improved standard continuation

(suggested by Montgomery, 1987)

o parallel implementation using a UNIX network.

It turns out that the theoretical speedup of the simultaneous gcd method is in
practice not reachable and that the improved standard continuation is preferable, if
you have enough main memory.
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Massively Parallel Factoring
Arj en K. Lenstra

In joint work with Brandon Dixon (Princeton University) and Dan Bernstein (Uni-
versity of Berkley), we did some experiments with Single Instruction Multiple Data
(SIMD) implementations of several integer factoring methods: elliptic curve method
(ecm), double large prime multiple polynomial quadratic sieve (ppmpqs), and the
lattice sieve variant of the number �eld sieve (lnfs). On a 16K MasPar SIMD com-
puter, which consists of 16384 small (0.2 mips) processors on a 128 * 128 grid, this
led to the following results:

0 the �rst ever found 40 digit ecm factor, using a program that runs 1280 curves
in parallel on 16384 processors and that makes use of a new version of Mont-
gomery multiplication,

o the factorization of the 110-digit number on the RSA challenge list using ppm-
pqs in 30 days of CPU time, and

o an implementation of lnfs that would need slightly more than one week of CPU
time to factor F9.

Experiences �With Pomerance�s
self-initializing quadratic sieve method

on a Cray Y�MP4
Herman te Riele

We have implemented Pomerance�s self-initializing version of the quadratic sieve
factoring algorithm on the Cray Y-MP4 supercomputer of the Academic Computer
Center (SARA) in Amsterdam. For 81-digit numbers and for the polynomials in the
above factoring algorithm having a leading coefficient which is the square of four
distinct prime factors, we found a reduction of the CPU time spent in the initializa-
tion of the polynomials of about 0.5. However, since this polynomial initialization
time consumes only about 8% of the total CPU time, the time to factor the number
was reduced only by a factor of about 0.96. We expect this reduction factor to
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become about 0.92 for an implemetation of Pomerance�s self-initializing quadratic
sieve algorithm on a Silicon Graphics workstation (if sufficient memory is available).

On the analytic rank in families of
twists of elliptic curves

Gerhard Frey

Let E be an elliptic curve de�ned over Q with conductor NE. We assume that E
is modular and hence its L-series, LE(s) = Zann", has an analytic continuation
to the complex plane and satis�es a functional equation. For a squarefree integer
D prime to E, the twist ED of E has an L�series LED (.5) = E xD(n)a,,n"� and, due
to the results of Gross-Zagier, Kolyvagin and others, the set of Q-rational points of
ED is finite, if LDD(1) = 0, otherwise the (analytic) rank of ED is positive. If ED is
even (i.e. LD(s) is an even function), one can compute

27m

L,.~,.<1>= Ex<n>3&#39;1 �m,n

and we are interested in the set of numbers D with LDD(1) = 0. Using a theorem
of Waldspurger, one can translate this equation into an analogous question about
Fourier coef�cients of a cusp form F D of weight 3/2 which is mapped to fD(t) =
Z ane2"�"� by the Shimura map. We determined F E in some curves (for instance
for the curves 11B, 19B, 38B, 49A, 98B of the Antwerp tables) and computed its
Fourier coef�cients up to n z 3 - 106. It turned out that, in all cases, the ratio of
the number of twists ED with positive rank divided by all twists ED(0 < D S n) is
behaving  BO�   .

Class groups and selmer groups
Edward Schaefer

It is often the case that a selmer group of an Abelian variety and a group related
to an ideal class group can be embedded into the same group of homomorphisms.

11
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Ideally the images of the two groups are almost the same so we can get information
about one group from the other. In order to do this, we compute upper bounds on
the index of the intersection in each of the two groups. We do this by computing
locally where we have quick algorithms for elliptic curves and good ideas for abelian
varieties in general.

The Discrete Logarithm at J acobians
of Algebraic Curves

Hans-Georg Riick

For the development of cryptosystems based on exponentiation one needs �nite
abelian groups in which the evaluation of the discrete logarithm is a difficult problem.
We consider jacobians of algebraic curves over �nite �elds. Examples for these curves
are elliptic and hyperelliptic curves. We present explicit formulas for the addition
law on their jacobians. This leads to a �Schoof-Algorithm� for curves of genus 2
(Thesis W. Kamphéitter).
Furthermore, we state a general theorem (joint work with G. Frey) which shows that
in certain cases the evaluation of the discrete logarithm in jacobians can be reduced
to the evaluation of the discrete logarithm in the multiplicative group of a �nite
�eld. Hence in order to �nd curves whose jacobians are useful for cryptosystems,
one must avoid the assumptions of this theorem.

The Demjanenko matrix -
a link between torsion points on elliptic

curves and units in cyclotomic �elds
Horst G. Zimmer

In proving the boundedness conjecture for the class of 2-de�cient elliptic curves E
over a number �eld K, H. G. Folz encountered the Demjanenko matrix D over the
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varieties in general. 

The Discrete Logarithm at Jacobians 
of Algebraic Curves 

Hans-Georg Riick 

For the development of cryptosystems based on exponentiation one needs finite 
abelian groups in which the evaluation of the discrete logarithm is a difficult problem. 
We consider jacobians of algebraic curves over finite fields. Examples for these curves 
are elliptic and hyperelliptic curves. We present explicit formulas for the addition 
law on their jacobians. This leads to a " Schoof-Algorithm" for curves of genus 2 
(Thesis W. Kamphatter ). 
Furt hermore, we state a general theorem (joint work with G. Frey) which shows that 
in certain cases the evaluation of the discrete logarithm in jacobians can be reduced 
to the evaluation of the discrete logarithm in the multiplicative group of a finite 
field. Hence in order to find curves whose jacobians are useful for cryptosystems, 
one must avoid the assumptions of this theorem. 
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prime �eld IF2. For a prime p Z 5, one considers the set M = (Z/pZ)��{_1-,§,..., f}
of cardinality m = 1&#39;51 and takes its characteristic function

x... = (Z/pzr �-+ {0.1}
to de�ne

In general, D has rank

with defect d = 0, but there are primes p for which the defect is (I > 0; e.g.,
p = 29, 113 and 163, where d = 3,3 and 2, respectively. Those primes 1; having
defect d > 0 are called exceptional. Folz found a stronger bound for the torsion
primes p that are non-exceptional than for exceptional torsion primes.
On the other hand, let K =  denote the p-th c_vcloton1ic �eld and K+ =
Q({ + {�1) its maximal real subfield. Let h. and h?� stand for the class number
and E and E+ for the unit group of K and K�� respectively. Consider the subgroup
EWG 3 E of cyclotomic units of K and the corresponding subgroup E�; 3 E�&#39; with
respect to K +, where E�; = Ecyc O K+, and introduce the subgroup E55: 3 Ejyc
of totally positive cyclotomic units in K as well as the subgroup E?� 3 E�� of
arbitrary totally positive units in K ". As usual, let h� = h./h+, the minus part
of the class number h of K. Combining results of E. Reyssat and F. Hazama, W.
Schwarz proved the following
Theorem The following are equivalent:

1. D is Singular over F2, i.e. d > 0;

2. 2|h&#39;;

3. 0 : E�) > 1;cyc

4. 2|h+ or (EP°� : E�) > 1.

Some numerical experiments showed that the defect of the Demjanenko matrix D is

d 3 4 for p < 1000 (Folz)

d 3 12 for p <10000 0� Klar)

d 3 15 for p < 100000 (Schwarz).

These results suggest that
d

lim sup 2 1.
p-voo lOg2 p
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Short representation of numbers
in number �elds

Johannes Buchmann

I tried to prove:

Theorem

Let K be an algebraic number �eld of absolute discriminant D. For each integer a
in K, there is a representation

such that 
|a,-|, < max{log D, log N(a)}0(1)

l,log e,- S (log1ogH(a))0(1),

where I |� denotes the binary length of an appropriate basis representation.

On the resolution of index form

equations in quartic number �elds
Istvan Gaal

Let K = Q({)be a quartic number field generated by the element f with I (f ) = n and
de�ning polynomial f = 11:4 + p:v3 +qa:2 + m: + s. Furthermore, let g be an integer,
such that any a E ZK can be written in the form a = (x1 + 3:25 + 3:352 + $453)/g,
p� I1, I2, I3, I4 E P'��

Theorem 
a E ZK has index m if and only if there is a solution (M, N) E Z2 of

6

F<M� N) = 9-53 (1)
such that there exist (x2, 2:3, 3:4) E Z3 With

Q1(1/7333734) = M @���
Q2(x2ax3ax4) = Na
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where F E Z[X, Y] is a binary cubic form, Q1,Q2 E Z[x2,a:3,:1:4] are ternary
quadratic forms, all of them having coefficients depending only on p, q, r, s.

Equation (1) is either trivial to solve (if F is reducible) or (1) is a cubic Thue
equation that can also be solved without dif�culties. We give a general method,
applicable to any quartic �eld, to �nd the solutions with max|:I:,-| < 101° of 04Á
Moreover, in case of totally complex quartic �elds, we can determine all solutions
of (2) by using the following statement:

Theorem 
If K is totally complex, then F (cc, 1) = 0 has three distinct real roots, /\1 < /\2 < A3.
The form

Q1032: 333 m4) + �\Q($2a x37 x4)

is a positive de�nite quadratic form if and only if Ä E (A1, A2).

Children�s drawings - dessins d�enfant
Hendrik W. Lenstra

In this lecture, I attempted to explain what people mean when they say that a

drawing like f
gives rise to a number �eld K C C that has degree 10 over Q , that has 2 real places
and 4 complex places, and that is unrami�ed at all primes p > 14. The number 10
is the total number of �conjugates� of the drawing, which are two symmetric ones -
the drawing itself and Q

and from pairs of asymmetric ones:

M M it if
The number 14 is twice the number of edges in the drawing.

The lecture gave not much more than de�nitions. They depend on a theorem that
describes all unrami�ed coverings of lP1(C) � {0, 1, oo}, and which depends on al-A
gebraic topology and the Riemann existence theorem.
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All that is known so far in the theory of children�s drawings has been known, in
substance, for a long time. It is hoped that a better understanding will lead to more
information on the absolute Galois group of Q. This hope is due to Grothendieck,
but, with possible exception of him, nobody seems to know where the theory is
going. For this reason, many numerical experiments one performed, and they led to
results that the theory cannot yet fully explain.

Computation of Grothendieck dessins
Henri Cohen

In this talk, we explain algorithms for computing the Belyi function go of a Grothen-
dieck dessin (see H. Lenstra�s talk). They involve in particular the extensive use of
Groebner bases algorithms or, at best, of resultants. The special cases of trees is
mentioned for which a simple combinatorial formula allows us to deduce the degree
of the number �eld in many cases.
The special cases of quadratic and cubic �elds is mentioned. Finally, the case of the
dessin (not a tree) is described.

Progress on Thue equations
Benne de Wegner

(1) A general procedure for solving Thue equations F (X, Y) = m(F E Z[X, Y], m E
Z) in X, Y E Z was described by Tzanakis & de Wegner in 1989. This procedure
requires explicit knowledge of a system of fundamental units of the �eld L = `@N�
de�ned by F(19, 1) = 0. It is shown that it suf�ces to know only the independent
units, at least when m = 1, at the cost of a tiny amount of extra computations.

(2) The procedure is generalized to Thue equations over rings of integers. That is,
when K is an algebraic number field, we consider F E 0K[X,Y],m E OK. The
most important observation here is that one needs relative units over K of L. A
consequence is that a Thue equation over Z, for which L has a proper sub�eld of
index Z 3, is easier to solve than an arbitrary Thue equation of the same degree.
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(3) The p-adic Mordell equations

y2 _ $3 i2a3b5c7d,
y� � $3 _ i2"3"11°

can be reduced to:

o 22 cubic equations,

o 122 cubic Thue-Mahler equations (with S 3 primes)

o the equation u + v = Ü, with u�v having only 2, 3, 5, 7 (resp. 2, 3, 11) as
prime divisors.

All these equations can be solved completely and the plan is to actually do so in the
near future.

(1) joint work with N. Tzanakis
(2) joint work with N. Smart

Divisibility properties of solutions of a

diophantine equation
Herman te Riele

Based on congruences mod p, for prime p, and on properties of Bernoulli polynomials
and Bernoulli numbers, several conditions are derived for m, k Z 2 if they satisfy the

diophantine equation
1�°+2"+...+(a,--1)" =a:�°.

Using the results of experiments with these conditions on a Silicon Graphics� work-
station, it is proved that as is neither divisible by a regular prime, nor by any irregular
prime < 10000 and that k is divisible by the least common multiple of all the positive
integers 5 210. The results obtained indicate that it is just a matter of spending
more CPU-time to extend these results.

(joint work with Pieter Moree and Jezzy Urbanowiez)
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Generalization of the

Voronoi algorithm for quadratic forms
Jacques Martinet

A quadratic form Q on IR" is said to be perfect when the matrices P); = X �X
span sym,,(lR) for X E S the set of minimal vectors of Q (for X E Z"). Voronoi
de�ned the domain DQ of Q in sym�(1R), a convex polyedral cone, and attached
to each face f� of DQ a new perfect form; this de�nes a graph.

Theorem 
This graph is connected and the quotient graph for forms up to equivalence (and
scaling) is �nite.

We generalize this result of Voronoi by introducing the notion of a T-perfect form
for convenient subspaces T of symn and the notion of T-equivalence and prove a
theorem of convexity. This can be applied for forms invariant under a given integral
representation with I

T = {M E symnl V3 6 G, �p(s)Mp(s) = M}

or for forms with given form Q(:1:1�...�a:�0,...�0).

Joint work with Anne-Marie Bergé (Bordeaux) and F rangois Sigrist (Neuchatel), to
appear in Astérisque.

On integral lattices of prescribed
minimum

Michael E. Pohst

We report on joint work with W. Plesken (Aachen). For m = 2,3,4 we computed
all ascending chains of lattices A1 Q A2 Q . . . in Euclidean space with the properties

i) A; is of dimension i,

ii) A.- is integral,

iii) m = M(As) == min{||.2v.||�|2 6 As - {m},
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iv) A.- is generated by vectors of length m,

v) A,-+1 is of minimal discriminant among all lattices satisfying (i)-(iv) (for i+ 1)
and containing A,-.

In the sequel, we only describe the (new) results for m = 4. Then all lattices up to
dimension 24 lie in the Leech lattice L. Hence, for i > 24 we have A.- = LLF;-24 for

� some lattice I�.--24 which again satis�es �Ñ� -  ��� Besides the lattices themselves, we
computed all their vectors of minimal length and their automorphism groups.

DANFI, a data base for
algebraic number theory

Attila Pethö

I reported on the database DANFI which is developed by Katalin Boguar (Debrecen)
and Ulrich Schroter (Düsseldorf). With the help of DANFI one can get reports and
views on characteristic data of algebraic number �elds. A special feature of the
database is that it will work closely connected with the software package KANT
developed in Düsseldorf.

Squares in recurrence sequences
Attila Pethö

We gave in this lecture an outline of the proof of the following theorem:

Let s, 51 E {1� �1}. Assume that there exist a cyclic cubic number �eld K and an
17 E ZK such that

NK/0(7))
NK/Q(772 - 1177 - 1)

|| 
m

E15"
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holds for a n 6 E20. Then K is generated by one of the polynomials -

23 � 1223 + 92 + 1
23 � 1223 + 352 + 1
23 + 323 � 1602 + 1
23 � 1722 � 252 + 1
23 � 1323 + 102 + 1
23 - 1422 + 112 + 1
23 � 923 + 62 + 1
23 + 32� � 102 + 1

and 77 is one of their zeros. The converse is also true.

Computations in number �elds
Francisco. Diaz y Diaz

I describe some simple computations on relative discriminants of number �elds ex-
tensions and I show how to use it to simplify the proof of the existence of non-
isomorphic number �elds having the same discriminant and the possible existence
of unessential divisors of the relative discriminant on related topics.
The paricular examples considered here come from the tables of unprimitive number
�elds of degree nine computed by M. Olivier and myself.

Addition laws on elliptic curves
Wieb Bosma

An addition law on  elliptic curve: E : Y3Z = X3 + AX Z3 + bZ3 consists of a
triple of polynomials m3, y3, 23 in EM, B] [$1, yl, 21, :1:-2,y2, 23] such that not all three
are zero and on same open, nonzero subset U Q E x E one has

(x1 : y1:21)+(:cg:y2:22)= (a:3:y3:23).

By elementary methods one easily arrives at a triple of addition laws for which the
defining opens cover E x E (a complete system). The bidegree of these formulars
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will be (2,2), (3,3), (9,9) respectively. In a paper by H. Lange & W. Ruppert, it was
proved (Invent. Math. 1985) that there exists a complete system of addition laws
of bidegree (2,2). Moreover, they exhibit a complete system of 3 such laws.
Using these, it is proved in this talk that there exists a complete system of 2 addition
laws of bidegree (2,2).

Fast exponentiation with

precomputation
Kevin McCurley

The computational problem of computing g" for large n. and g in some group is one
that arrises in many cryptographic systems based on the discrete logarithm problem.
For the RSA system, the problem that arises has n �xed, and g, depending as it does
on the message, varies across the reduced residues modular a large composite. By
contrasts in the Dif�e-Hellman, El Gamal, and the newly proposed digital signature
standard DSS, g remains �xed and n varies across a large range, typically 160 bits
or 512 bits.

For �xed exponent n, the best method uses addition chains, and uses at least K
" multiplications in the group when the exponent has It bits. For the case of g �xed
and n chosen randomly from [0, n], we show that a precomputation of 1-0-l8915c%\7 powers
of g allows us to compute g" for 0 < n < N in O ( ) group multiplications.
We prove that this is asymptotically optimal and we derive concrete lower bounds
for some values of N that occur in applications. Moreover, the method is extremely
practical. For example, if N has 512 bit, then our method can compute g" in
at most 106 multiplications if we precompute and store 362 powers of g, and 93
multiplications if we precompute and store 650 values. We discovered a range of
methods that give a time-space tradeoff where more storage will reduce the amount
of computation even further. This example may be compared with the value of
512-1022 multiplications for the standard binary method on addition chains.
We also show how to parallelize the method, achieving log log N multiplications on
O (Fg�g�) processors. We also show how to use storage to improve over normal
basis methods in _GF(p"), where raising to the p-th power is a cyclic shift and
therefore almost free.

(Joint work with E.F. Brickel, D. Gordon, D. Wilson.)
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For the RSA system, the problem that arises has n fixed, and g , depending as it does 
on the message, varies across the reduced residues modular a large composite. By 
contrasts in the Diffie-Hellman, El Gamal, and the newly proposed digital signature 
standard DSS, g remains fixed and n varies across a large range, typically 160 bits 
or 512 bits. 
For fixed exponent n, the best method uses addition chains, and uses at least K 
multiplications in the group when the exponent has k bits. For the case of g fixed 
and n chosen randomly from [0, n], we show that a precomputation of lo~ro~N powers 

of g allows us to compute gn for 0 < n < N in O (i
0
~:SO~N) group multiplications. 

We prove that this is asymptotically optimal and we derive concrete lower bounds 
for some values of N that occur in applications. Moreover, the method is extremely 
practical. For example, if N has 512 bit, then our method can compute gn in 
at most 106 multiplications if we precompute and store 362 powers of g, and 93 
multiplications if we precompute and store 650 values. We discovered a range of 
methods that give a time-space tradeoff where more storage will reduce the amount 
of computation even further. This example may be compared with the value of 
512-1022 multiplications for the standard binary method on addition chains. 
We also show how to parallelize the method, achieving log log N multiplications on 
0 C:ro:N) processors. We also show how to use storage to improve over normal 

basis methods in GF(P"), where raising to the p-th power is a cyclic shift and 
therefore almost free. 

(Joint work with E.F. Brickel, D. Gordon, D. Wilson.) 
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Simultaneous unit and class group
computation - practical experience

Johannes Graf Von Schmettow

The most promising method for fast computation of the unit group and class group
of an algebraic number �eld of arbitrary degree seems to be the � Relation method�.
We report on the progress being made in Düsseldorf when implementing it. This is
done by using the number theory package KANT-2 which is written in Standard-C
and uses the memory management, integer, real and polynomial features of the Cay-
ley Platform. KANT-2 is public domain and will be available from October1992.
The main idea of the relation method is to compute a factor basis consisting of prime
ideals of the number �eld and then looking for relations among them, i.e. algebraic
numbers that decompose into the given basis. Re�ned methods for enumerating lat-
tice points within ellipsoids are needed for �nding the relations.The resulting matrix
of exponents is then Hermite-reduced. The columns consisting of 0�s represent units
- using reduction techniques of 111-type it is possible to compute a basis of the given
units, even if the unit rank is comparativly large.
The structure of the class group can also be derived from the Hermite normal form.
Of course at the end it is necessary to prove that one actually computed class group
and unit group (and not only sub- or supergroups). This is done by root extracting
methods which have been developed in Düsseldorf in the past years.

The method has been successfully used for �elds of degree up to 24 and of unit rank
up to 17.

Editor: Franz�Dieter Berger (Saarbrücken)
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