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L Computer Science Logic
13.-17.7.1992

Organizers:
EGoN BÖRGER (Universita di Pisa, Italia)

YURI GUREVICI-I (University of Michigan, Ann Arbor, USA)
HANS KLEINE BÜNING (Universität Paderborn, Germany)

MICHAEL M. RICHTER (Universität Kaiserslautern, Germany)

Research in the area between computer science and logic is fast growing and already shows a tendency
to split into various subareas. The aim of this workshop was to bring together eminent researchers
of the most active and internationally recognized research lines of computer science logic in order to
discuss and critically reflect upon the fundamental common problems, concepts and tools. 42 top
scientists and promising young researchers accepted the invitation to participate in the challenging
experience. They came from 14 countries, 1/6 from USA, 2 / 6 from Germany, the remaining half from
other European countries, including East Europe, and Israel.

Talks covered semantics, speci�cation and correctness proofs, complexity of logic algorithms, �nite
model theory, logic programming, lambda-calculus and functional programming, rewriting, non-
classical reasoning (in particular non-monotonic, temporal, epistemic and many-valued logics), linear
logic and proof theory. Many new methods and ideas were presented which open new lines of promis-
ing research in computer science logic. Critical discussions attempted to identify and examine the
underlying fundamental problems.

The atmosphere was very friendly, but the discussions were most lively and participants did not hold
back their critical remarks. The discussions turned many lectures - scheduled for daily morning
and afternoon sessions � into long disputations; this is a Dagstuhl effect that cannot be overstimated.
During the breaks and till late in the night, participants also gathered in smaller groups for continuing
discussions, communicating new results and exchanging ideas. During the week. numerous participants
worked together and some were inspired to start new research projects; this is one of the most fruitful
outcomes of the workshop.

The success of the workshop exceeded our expectations. The participants expressed high appreciation
of this gathering and praised the extraordinary Dagstuhl atmosphere which made this success possible.

Summing up intensive discussions over the last years in the Computer Science Logic community, on
the evening of July 14, 37 of the participants from 14 European countries, USA and Israel founded
the European Association for Computer Science Logic. This association which grew out from the
CSL workshop series, created by three of us in 1987 and run since then on an annual basis, aims at
promoting research and international cooperation in the area between logic and computer science.

As organizers of the Dagstuhl workshop on Computer Science Logic and on behalf of its participants
we want to thank the institute and its staff, both in Saarbrücken and in Dagstuhl, for the excellent
work they did to make it all run smoothly in an efficient but always pleasant and friendly manner.
They did much more than just their job; their inspiring dedication to �their� institute makes Dagstuhl
a perfect place. We also thank Dean Rosenzweig, who has edited this report.
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Firstorder properties of random substructures

Mu<r.os AJTAI

Assume that a structure is given on the �nite universe A and f is a random function mapping the set
F into A. The map f induces a structure on F in a natural way.

We show that if F has n elements and qp is a not too large �rstorder formula, then with a probablity
of at least 1 � n" it is enough to randomize f on n � n� points to get the value of go on F. Moreover,
with a probability exponentially close to 1, after this randomization cp collapses to a Z3-formula.

The \7�3�Theory of the Polynomial Many�One
Degrees is Decidable

KLAUS AMBOS-SPIES

(Joint work with M.Lorman)

Ambos-Spies and Nies (STACS �92) have shown that the theory of the polynomial�time many�one
(p�m) degrees of recursive sets is undecidable. This leads to the question on which quanti�er level
undecidability starts to occur.

Here we give a decision procedure for the V3�theory. This procedure does not only work for the
domain of all recursive sets, but can be adapted to many of the standard complexity classes. E.g. we
obtain a decision procedure for the V3�theory of the p-m-degrees of EXPTIME sets.

Lazy Functional Logic Programming with Disequality
Constraints

M.uuo Romucunz ARTALEJO

We use an approach to the combination of lazy functional programming, logic programming and
constraint programing, based on a general scheme CFLP(X) for Constraint Functional Logic Pro-
gramming over a constraint structure X (a continuous algebra) which can be supplied as a parameter.
CFLP has been recently proposed in [Lopez Fraguas 92] as a natural generalization of the well known
scheme CLP defined by J affar and Lassez for Constraint. Logic Progranuning.

We first report on the general properties of CFLP, which essentially ensure the existence of least
models for consistent programs, as well as the soundness and completeness of an operational semantics.
Models must be persistent extensions of the base constraint structure, while the operational semantics
is based on lazy constrained narrowing. �Laziness�, in this context, means that the goal is reduced
only by narrowing at �demanded� positions. What positions are regarded as demanded depends on
semantic information given by the least model. Hence, these general results provide no effective way
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of implementing a goal reduction strategy. This problem has to be faced for each particular instance
CFLP(X ) of the CFLP scheme, on the basis of X -dependent goal reduction methods.

Next, we de�ne a particular instance CFLP(H) of CFLP, using a constraint structure H which supplies
�nite and infinite trees built from constructors, equality and disequality constraints, and some other
primitive operations. In contrast to the constraint structure underlying Prolog II, infinite trees in
H may be non rational. We show by examples that the resulting programming language supports
interesting combinations of constraint logic programming and programming with lazy functions. We
introduce a paricular presentation of CFLP(H)-programs (the uniform CFLP(H)�programs) which
allows to specify a more efficient operational semantics for constrained lazy narrowing, by taking
advantage of speci�c features of H. The H -�specific formulation of the operational semantics for
uniform programs includes an effective strategy for selecting demanded positions. A more machine-
oriented approach towards the implementation of a language essentially equivalent to CFLP(H) has
been also undertaken [Kuchen et al. 92].
We conclude that the scheme CFLP is a meaningful extension of CLP, which stimulates new views
of declarative constraint programming and admits sensible instances. More work is still needed to
understand the general properties of the scheme and to develop practical implementations of useful
instances.

References

[Lopez Fraguas 92] F .J.Lopez Fraguas: A General Scheme for Constraint Functional Logic Program-
ming, to appear in Procs. ALP�92.

[Kuchen et al. 92] H.Kuchen, F.J.Lopez Fraguas, J .J .Moreno Navarro, M.Rndriguez Artalejo: Imple-
menting a Lazy Functional Logic Language with Disequality Constraints, to appear in Procs. ICLP�92.

On Gödel�s Theorems on Lengths of Proofs

SAMUEL R. Buss

We write i-k to denote provability by a proof of _<_ k lines and F" to denote provability by a proof of
5&#39; k Symbols. Z; denotes (i + 1)-st order arithmetic; the function symbols may include + and - as
well as (optionally) function symbols for all primitive recursive functions. Z; must be formalized in
a �Hilbert-style� calculus with schematic rules and possible with all tautologies as axioms (a �weakly
schematic� system).

The first part of our talk discusses G6del�s 1936 paper on proof speedup in higher-order systems of
arithmetic. Various authors have proven analogues of G6del�s theorem with proof length measured by
number of symbols; Parikh and Krajiéek gave a proof for the case where successor is the only function
symbol. We give the first publicly known proof of the exact theorem stated by Gödel, to wit. we show:

Theorem: Let i 2 1. There is an infinite family SF of 1&#39;1?-sentences and an integer lc so that, for all
d> e f. Z,-+1 In ¢ and Z.- l- 4S but so that there is no uniform upper bound on the number of lines in
Z,- proofs of da. Thus Z.-+1 has unbounded speedup over Z,-.

The second part of our talk concerns a recently discovered 1956 letter of Gödel to von Neumann in
which Gödel discusses the feasiblity of deciding whether a given formula has a proof of _<_ n symbols
in �rst-order logic. We speculate about G6del�s motivations, noting especially the fact that �F� d?�
is NP-complete (n is to be given in unary notation).
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We prove the following theorems:

Theorem Also for propositional logic. the decision problem �F� d?� is NP-complet.e.

This theorem is somewhat surprising since the. set. of tautologies is coNP-complete.

Theorem Given a �xed alphabet A and �xed number k of tapes, there is a constant 6 such that any
deterministic Turing machine with alphabet A and k tapes which decides �F� d?� takes time > 6 - n
in�nitely often. (Even with d) required to have 0(log n) Symbols.)

This last theorem was made as a claim in G6del�s 1956 let.ter. In addition, we prove a conjecture of
S. Cook�s that, if t.he Turing machine in the final theorem is nondet.erminist.ic, then it ca.n not have
runtime o(n/ logn).

Embedding of Combinatory Algebras into Themselves

CORRADO BÖHM

From the computational point. of view Combina.tory Logic and A�calculus act at the same time as
high-order functional progrannning interpreters a11d as low�level abstract machines. Combinatory
congruences and A�calculus convertibility classes a.re too re�ned to model usual equivalence classes of

programs.

A motiva.tion for the present. just. beginning research is to develop a new notion of equivalence between
combinators. Two combinators are equivalent on some predetermined combinator domain if the result.
of applying both combina.t.ors t.o the same arbitrary element of the doma.in are congruent. The domains
we are interested to. have the shape F a: or E m. where E is a 1eft.�inverse of F. and z: is any combinat.ory
term (variables a.re also a.dmit.ted).

An attractive way to study these new equivalences is offered by the introduction of privileged interna.l
models of combinatory algebras. essentially represented by two combinators. the combinat.or App
corresponding t.o the application combinator inside the model and a left�invertible combinator F
defining the model domain F a: . The model is just obtained embedding the combinatory algebra i11t.o
itself.

To any given F it corresponds an in�nity of mutually isomorph models (App, F). where all App are
mutually equivalent. With the help of an idempotent combinator Rp E. associated to the choice of
F and E, we can express combinators possibly transforming an App int.o a new one. and having
int.erest.ing properties.

All these result.s, if applied t.o two classic relations respectively discovered by Curry and by Church.
and de�ning implicitly two privileged int.ernal models, give some intuition of the underlying structure.
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A new speci�cation and correctness proof for the WAM

EGoN BÖRGER

In joint. work with Dean Rosenzweig we provide a new proof for our theorem on the correctness of (a
formal model of) the Warren Abstract Machine. Starting from an abstract Prolog tree model which
is close to programmer�s intuition, we derive the WAM methodically by stepwise re�nement of Prolog
models, proving correctness and completeness for each re�nement step. Along the way we explicitely
formulate, as proof assumptions, a set of natural conditions for a compiler to be correct, thus making
our proof applicable to a whole class of compilers.

The proof method, which improves considerably our previous work in Springer LN CS 533 and 592,
provides a rigorous mathematical framework for the study of Prolog compilation techniques.It can
be applied in a natural way to extensions and variants of Prolog and related WAMS allowing for
parallelism, constraint handling, types, functional components. We reach full mathematical rigour,
without. heavy methodological overhead, by using Gurevich�s notion of evolving algebras.

Minimal Space Requirements for Resolution

HANS KLEINE BÜNING

It. is well known that resolution is complete and sound for formulas in conjunctive normal form. Haken
has shown that there is an in�nite family of propositional formulas for which the shortest resolution
refut.at.ion requires superpolynomially many resolution steps. At least as important as the length of
refutations seems to be the space we need for the answer whether the formula is satis�able. There are
several non- det.erministic a.nd deterministic satis�ability algorithms solving the problem in linear or
quadratic space. Take for example one of the Davis�Putnam algorithms or evaluate the formula by
the sequence of possible truth assignments.

In ca.se of resolution we can not st.ore each clause of a refutation, because refutations of superpolyno-
mially lengt.h exists. But. we show that. we do not have t.o st.ore each deduced clause in order to obtain
the empty clause. Wo prove that for each unsatis�able formula F there is a sequence of resolution steps
leading t.o the empty clause, such that memory with at most 2length(F) places for clauses suffices.

That means resolution requires at most quadratic space in the lengt.h of the initial formula for nonde-
terministic applications of resolution and there. exists a polynomial upper bound for a deterministic
resolution algorithm.
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Cutting planes and constant depth Frege proofs

PETER CLOTE

The cutting planes refutation system for propositional logic is an extension of resolution and is based on
showing the non-existence of solutions for families of integer linear inequalities. We define a modified
system of cutting planes with limited extension and show that this system can polynomially simulate
constant depth Frege proof systems. Our principal tool to establish this result is an effective version
of cut elimination for modi�ed cutting planes with limited extension. Thus, within a polynomial
factor, one can simulate classical propositional logic proofs using modus ponens by refutation-style
proofs, provided the formula depth is bounded by a constant. Since there are polynomial size cutting
planes proofs for many elementary combinatorial principles (pigeonhole principle, Ramsey�s theorem),
we propose propositional versions of the Paris�Harrington theorem, Kanamori�McAloon theorem,
and variants as possible candidates for combinatorial tautologies which may require exponential size
cutting planes and Frege proofs.

A useful lemma on the extension of �nitely indexed functions

DIRK VAN DALEN

In a constructive setting the extension problem for functions requires special attention, even in seem-
ingly trivial cases. As a rule, some extra features have to be added in order to make the problem
manageable. The following lemma is shown: every strictly monotone function on {an . . . , an} Q R
can be extended to a strictly monotonic 7 on {a1,...,a,,,a,,+1}. The problem in the case of fi-
nitely indexed sets is that. the elements need not be distinct, nor is the equality decidable. Extra
information is required in order to construct the image of a,,+1. By Brouwer&#39;s continuity theorem.
every f : {a1,. . .,a.,.} �+ R is continuous. and so the given f is actually a homomorphism. By
exploiting the continuity moduli (both wa.ys) one can extend f by f(a,,+1). Fortunately one does
not ned the continuity theorem (i.e. fan theorem), bacause for strongly extensional functions one can
prove the continuity directly. By a spoiling argument one can prove the same extension result for
f : {a1, . . .,a,.+1} �-o X, where X : Q#� Q� or Q�. (Q# consists of the irrat.ionals apart from all
rationals, the strong irrationals.)

The above lemma allows us to prove, using Ehrenfeucht-Frai&#39;ssé games that Q#, Q� and Q� are
elementary equivalent. substructures of R. (w.r.t. < a.nd #, the apartness relation) and that. R is an
elementary substructure of R2 (w.r.t. <).
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Many-Valued Modal Logics

MELVIN FITTING

Suppose there are several experts, possibly with some dominating others. (Expert A dominates expert
B if B agrees to the truth of anything A declares true.) This puts some constraints on the logic each
can have. For example, if A dominates B and B believes X is false, A must also take X to be false.
Consequently, the only way A can take -wX to be true is if A and every expert that A dominates takes
X to be false. This gives the structure of experts the �avor of a Kripke Intuitionistic model.

Further, suppose the logical language is modal, and there is a given set of possible worlds. Each expert
has his or her own opinion on the truth of atoms at worlds, and also his or her opinion on which worlds
are accessible from which. All this is subject to the dominance condition mentioned above. This gives
us a multiple ezpert modal model.

Now, suppose we move to a many-valued logic by taking sets of experts, closed under dominance,
as truth values. At each world of the modal model each formula is assigned one of these sets as its
truth value: the set of experts who take the formula to be true at that world. In this way we get
a natural notion of a many-valued modal model. The truth value of a formula at a world is taken
from a many-valued logic, and also the accessibility relation is many-valued. (There have been earlier
approaches to many-valued modal logic, but in all of them the accessibility relation was classical.)

The notion of a many-valued modal model can be formulated directly, in a simple way. And it can
be proved that all many-valued modal models arise from multiple-expert modal models in the way
described above. Further, the set of validities of a many-valued modal logic can be characterized
proof-theoretically. and a completeness theorem can be proved.

Finally. each modal logic has a corresponding non-monotonic version, according to a now-standard
construction. In an analogous way, the many-valued modal logic described above also has a non-
monotonic version. Some standard results from the theory of non�monotonic logics extend to the
many-valued version. Research on this is currently under way.

Unique Satis�ability on Horn Sets can be solved in
nearly linear time

KENNETH BERMAN JOHN FRANCO JOHN SCHLIPF

The Unique Sat.is�al)ilit.y problem is. given a Boolean expression I, does there exist a unique satisfying
truth assignment for I? This problem can be solved easily in time bounded by a degree two polynomial
on the length of expressions when they are known to be Horn. The idea is to use a linear time algorithm
for strongly connected components on a dynamic digraph whose vertices are the atoms of I and whose
edges represent implications due to the Horn clauses. A two literal clause is represented immediately
in the digraph as an edge directed from its negated atom to it.s positive atom and other clauses (called
hyperclauses) become represented by edges (we say a hyperclause is moved to the digraph) when it is
found that all negated atoms in such hyperclauses are equivalent. Such an idea does not result in a
linear time algorithm because of the bookkeeping necessary to determine exactly when a hyperclause
should be moved t.o the digraph: that is, the bookkeeping necessary to determine when all the negated
atoms of a hyperclause are equivalent. However, we show that hyperclauses may be moved to the
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digraph early without affecting the outcome provided that the new edges are directed from the first
visited negated atom of hyperclauses to the positive atoms and that the traversal of the digraph be
ordered much like depth-�rst-search. Movement of a hyperclause to the digraph occurs when all of its
negated atoms have been visited during the traversal. Since it is much easier to keep track of visiting
than equivalence of the negated atoms, the result is an algorithm with complexity that differs from
linear by a factor resembling Iog"(|F|).

A Threshold for Satis�ability

ANDREAS GÖRDT

A propositional formula is in 2�CNF (2�conjunctive normal form) iff it is the conjunction of clauses
each of which has exactly two literals. We show: if C = 1 + e where 6 > 0 is �xed and q(n) >= Cn.
then almost all formulas in 2-CNF with q(n) different clauses, where n is the number of variables. are
unsatisfiable. If C = 1 � e and q(n) <= Cn, then almost. all formulas with q(n) clauses are satis�able.
By �almost all� we mean that. the probability of the set. of unsatis�able or satis�able formulas among
all formulas with q(n) clauses approaches 1 as n �-+ oo. So C = 1 gives us a threshold separating
satis�ability and unsatisfiability of formulas in 2�CNF in a probabilistic, asymptotic sense. To prove
our result, we translate the satisfiability problem of formulas in 2�CN F int.o a graph theoretical
question. Then we apply techniques from the theory of ransdom graphs.

Computational complexity and logic of �nite structures

ETIENNE GRANDJEAN

The title of this talk could have been: �Computational complexity and (descriptive) logical complex-
ity� or �why is a class of problems an interest.ing class ?�

I present some personal views of this last question by giving several at.tempts of answer and asking
other questions. I state four criteria that, in my opinion, a �good� complexity class must satisfy:

1) C must be defined by some fixed type T of machines with a fixed ressource bound: 2) C must be
robust (the type T of machines can be changed but C is not changed); 3) C must. be defined by a logic
(with synctactic rest.rictions): 4) C must have natural and various complete problems.

Using these four criteria, I review six "complexity classes": classical ones: N P. NLOGSPACE. P:
personal ones: NLINEAR, DLINEAR. (nondederministic and deterministic versions of linear time)
and SAT-easy. In particular, all these classes, except DLINEAR and SAT~�easy. can be charact.erized
by a logic (existential second�order logic or some of its syntactical rest.rict.ions). I show that NLINEAR
satis�es criteria (1-3) and a ha.lf of criterion (4) and that SAT�easy does not satisfy criteria (1-3)
but fully satisfy (4). The completeness results for class NLINEAR (resp. SAT�easy) are given via
reductions computable in linear time on a Turing machine (resp. Turing machine using a fixed number
of free sortings).
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On The Complexity of Nonmonotonic Reasoning

Gnom GOTTLOB

Complexity results for different reasoning tasks in nonmonotonic propositional reasoning are presented.
In the �rst part of the talk, the attention is drawn to systems of nonmonotonic logic such as Reiter�s
default logic, Moore�s autoepistemic logic, the nonmonotonic logic of McDermott and Doyle (N M1),
and the nonmonotonic modal logic N by Marek and Truszczyriski. All these logics have in common
that the semantics of an initially given set of premises is explained through a corresponding set of
�xed points (also called extensions or expansions). We show that for all these logics, brave reasoning
is Sf-complete, while cautious reasoning is Hf-complete. In the second part of the talk, different
other formalisms of nonmonotonic reasoning, such as propositional circumscription, abduction, and
various approaches to theory revision are discussed. We show that the main decision problems in these
formalisms are complete for classes at the second level of the polynomial hierarchy. An exception is

Dalal�s approach to theory revision which we classify as PNP[0�°3")]-complete. The results of the
second part of the talk are joint work with Thomas Eiter.

Evolving Algebras
YURI Gunsvron

Evolving algebras were introduced by the author a few years ago. The idea was to provide operational
semantics for algorithms by strengthening &#39;I\iring thesis so that algorithms can be simulated in lock-
step and at the desired abstraction level. There is by now a sizable evidence showing that evolving
algebras indeed provide the desired simulation. The talk is an introduction and a survey of the area.
In particular, we speak about universal evolving algebras and how evolving algebras can be used for
verification, correctness proofs, etc.

Stable Logic

BRIGITTE HÖSLI

Stable logic is a t.hree-valued logic. where the third truth-value has the intention �insignificant� and
where �true" and &#39;�insignificant� are the distinguished values. It is possible to characterize the tautol-
ogy in stable logic as follows: A formula is a tautology iff every subformula, which arises by elimination
of propositional variables, is a classical tautology. By this stability against loosing variables, the logic
is called stable.

Furthermore the logic has a strong relation to the weakening rule of the sequent calculus. We obtain
a calculus of classical logic only by adding the weakening rule (on the right side) to the calculus of
stable logic. &#39; �
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if The classical sequent calculus without the weakening on the left side is sound and complete w.r.t. the
three-valued semantics, where �true� is the only distinguished value. The classical calculus without
both weakening rules is sound and complete w.r.t. the three-valued semantics, where the truth-values
are ordered.

Stable logic has many connections to other non-classical logics. So it is possible to describe the
interpretation of the connectives in Lukasiewicz�s logic, and we can see the truth-tables of stable logic
as a counterpart to Boévar�s ones. Furthermore RM3, the strongest logic in the family of relevance
logics, has the same interpretation of the implication as stable logic.

The stable semantics is a special case of the phase semantics of Girard�s linear logic. So we can derive
them by a simple restriction from the interpretation of the multiplicative connectives. By the same
restriction we obtain an interpretation of the exponentional connectives in stable logic. Finally, the
extended stable logic is functionally complete only by adding a constant "true�.

Partial �xed point theories and logic programming

GERHARD JAEGER

An adequate treatment of negation and negative information is considered as one of the most. important
problems in the context of logic programming. The procedural approach to negation is generally
provided by the so called negation as failure rule which is fairly easy to implement but extremely
delicate from the point of view of denotational meaning. Other int.eresting (and related concepts) are
for example discussed in connection with to the closed world assumption, the completion of theories
or semantics based on some kind of minimal models semantics.

Partial �xed point theories are developed in order to study the proof- theoretic aspects of (large
classes) of logic programs with negation. In addition, they provide a bridge t.o theories of (iterated)
inductive de�nitions and the definability theory of those. Hence the also help to exploit many results
on inductive definability for logic programming and t.o provide a conceptually clear an perspicuous
approach to several concepts in this area.

Learning Rea.d�Once Formulas over Different Bases

MAREK KARPINSKI

(Joint work with L.Hellerst.ein)

We study computational complexity of learning read-once formulas over different. bases.In particular
we design the first polynomial time algorithm for learning read�once formulas over a threshold basis.
By the result of Angluin�Hellerstein�Karpinski, 1989. on the corresponding unate class of boolean
functions, this gives the first polynomial time learning algorithm for arbitrary read-once formulas
over a threshold basis with negation using membership and equivalence queries. Futhermore we study
the structural notion of nondegeneracy in the threshold formulas generalizing the result of Heiman�
Newman�Wigderson, 1990, on the uniqueness of rea.d�once formulas over boolean bases, and derive a
negative result on learnability of nondegenerate read-once formulas over the basis (AND.XOR).
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We discuss also the problem of learning depth-k decision trees, and give a polynomial time algorithm
for this problem.

An algebraic framework for logic programming and the
wellfounded model

GERARD  &]� RENARDEL DE LAVALETTE

(joint work with Catholijn Jonker)

This talk is about propositional general logic programs (negated atoms allowed in the bodies of
clauses). An interesting question is whether the meaning of such a program can be captured by
a single model, thereby incorporating some kind of negation as failure. Several such models have
been proposed: the perfect model, the stable model (both with two truth values), the partial stable
model and the wellfounded model (both with the additional truth value unde�ned). Of these only the
wellfounded model (introduced by Van Gelder, Ross and Schlipf in 1988) is at the same time universal,
unique and tractable.

We present simple algebraic definitions of general logic programs and related notions, abstracting
from the usual representation by clauses. This framework allows for a compact definition of the
wellfounded model. We also present an alternative de�nition using two �xpoint constructions, which
leads to a quadratic algorithm (using the linear-time algorithm for the minimal model of a collection
of Horn clauses by Dowling & Gallier and Minoux). This algorithm has essentially been developed by
Witteveen.

ILFA: A project in experimental logic computation

ANDREAS FLÖGEL HANS KLEINE BÜNING JÜRGEN LEHMANN THEODOR LETTMANN

ILFA is a library of general reusable software components for logic processing. ILFA stands for
Integrated Logical Functions for Advanced Applications and resulted from a research project between
IBM and the university of Duisburg.

The realisation in C allows the e�icient use of logical methods in many different computer envi-
ronments. ILFA contains a multitude of logic algorithms as well as a class�based realisation for
important. sublanguages of logic. Special attention has been put on an intuitive user interface for use
and combination of the library components.

It has been shown that logic processing, e.g. the manipulation of logic expressions, can practically be
used as a tool in computer science. Also for the study of the theoretical behaviour of logical algorithms,
the experimentation with different. variations has proved to be useful. The most practical work of
implementations of logic programming has been done to build special e�icient theorem provers. (e.g if
we consider Prolog as a kind of theorem prover). But, in general, there exists a wealth of (theoretical)
knowledge about. logic algorithms. Many of these logic algorithms have been implemented, but it
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IBM and the universit,y of Duisburg. 

The realisation in C allows the efficient. use of logical methods in many different computer envi­
ronments. ILFA contains a multitude of logic algorithms as well as a class- based realisation for 
important. sublauguages of logic. Special at.tention has been put on an intuitive user interface for use 
and combination of the library components. 

It has been shown that logic processing. e.g. the manipulation of logic expressions, can practically be 
used as a tool in computer science. Also for the study of the theoretical behaviour of logical algorithms, 
the experimentation with different variations has proved to be useful. The most practical work of 
implementations of logic programming has been done to build special efficient theorem provers. (e.g if 
we consider Prolog as a kind of theorem prover). But, in general. there exists a wealth of (theoretical) 
knowledge about logic algorithms. Many of these logic a lgorithms have been implemented, but it 
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is dif�cult to build upon the implementationbecause they are stand�alone and usually not specially
designed for reuse.

ILFA is a step towards a software library of efficient implementations for a wide range of logic algo-
rithms. The top level structure of the library can be pictured by several classes (or areas).The classes
stand for important sublanguages of logic processing and the belonging logic algorithms for the classes.
These areas are loosely coupled by a star�architecture in order to allow the transformation from one
representation to another.

In the ILFA�system, we have made special efforts in easing the use of the ILFA�components. The
user interface should support the different goals of ILFA. The �rst goal is the fast experimentation
and work with the algorithms of the system. Without special knowledge of a programming language,
the user can easily start to perform tasks in this area. The second kind of interface is the toolbox
environment. Here, different components can be combined in a more �exible way. This will mainly
be done by means of the black box methapher, i.e. looking upon algorithms and objects stored in
data structures of the library as building blocks of new algorithms. The environment gives an iconic
interface of the building blocks. It also supports the programming of meta algorithms. For example,
an application can generate n different provers which work with variations on a knowledge base. The
application can collect and interpret the results of the different provers, write them into new knowledge
bases and redistribute the knowledge bases on possibly modi�ed new provers.

The enhancement of the system with further areas is an ongoing work.

On the average case complexity of algorithms in general
and on SAT in particular

JOHANN A. MAKOWSKY

(in collaboration with Avraham Sha.rell)

We propose a suitable definition for the average lower bounds and show that it. complements exactly
the existing of the corresponding de�nitions for average upper bounds. To discuss the notion of
probabilistic lower bounds in more depth, we propose several properties which allow us to evaluate
candidate definitions. These properties are: Transitivity properties, honesty with respect to worst case
bounds, consistency with probabilistic upper bounds, dichotomy with respect to bounding functions and
robustness under small changes of the underlying probability function.

To illustrate our machinery we discuss most existing results on the probabilistic analysis of resolution
based algorithms for SAT and derive new statements on the average behaviour of resolution.

References:

J �A. Makowsky and A. Sharell, On the average case complexity of SAT for symmetric distributions,
Technical report TR 739, Department of Computer Science, Teclmion-Israel Institute of Technology.
1992

A. Sharell and J �A. Makowsky, Probabilistic lower bounds for average case complexity, Technical
report TR 746, Department of Computer Science, Technion-Israel Institute of Technology. 1992
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A modality-free interpretation of classical logic into linear logic

SIMONE MARTINI ANDREA MASINI

Several translations of intuitionistic logic into Girard�s linear logic have been proposed. Almost all
of them agree on a heavy use of modalities (! and ?) in order to mimick weakening and contraction
rules, the notable exception being the one give by Lincoln et al. in LICS91� where a translation of
the intuitionistic implicational logic into the intuitionistic fragment of multiplicative-additive linear
logic (IMALL) is given that does not use modalities. We show how the full propositional classical
logic can be translated into the Multiplicative-Additive fragment of propositional linear logic without
modalities (MALL), and without factorizing the interpretation through a translation of classical logic
into intuitionistic logic. The translation naturally defines a fragment of MALL for which the decision
problem is coNP-complete (for full MALL is PSPACE-complete, while for the full logic with modalities
is undecidable). The translation is an �asymmetrical interpretation� and, as such, it does not validate
the cut-rule (that is, it translates cut-free proofs in a suitable formal system for classical logic into
cut-free linear proofs).

Analyzing and Manipulating Boolean Functions
by Means of . Restricted Branching Programs

CHRISTOPH Mann-n,

We investigate the question whether and to what extend the solution of central tasks of digital logic
circuit design of a given Boolean function f bene�ts from a representation of f in terms of certain
restricted branching programs.

In detail we investigate

- satisfiability and tautology,

- equivalence,

- simultaneous satisfiability. and

- binary synthesis.

The work was done jointly with Jordan Gergov.
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Algebraic Semantics of Rewriting Terms and Types

KARL MEINKE

We present. a universal algebraic framework for rewriting terms and types over an arbitrary equational
speci�cation of types and typed combinators. Equational type speci�cations and their initial algebra
semantics were introduced in Meinke [1991]. For an arbitrary equational type speci�cation (e, E) we

prove t.hat the corresponding rewriting relation R(-��&#39;§) coincides with the provability relation (5, E) I-
for the equational calculus of terms and types. Using completeness results for this calculus we deduce
that rewriting for ground terms and ground types coincides with calculation in the initial model I (e, E)
of the type speci�cation.

References

K. Meinke, Equational speci�cation of abstract types and combinators, to appear in G. Jaeger (ed),
Proc. Computer Science Logic �91, Lecture Notes in Computer Science, Springer Verlag, Berlin, 1991.

Normal forms in many-valued logic

DANIELE MUNDICI

Many-valued automated deduction is a rapidly expanding �eld of research, and deep connections
are being found between error correcting codes, AF C��algebras, and the in�nite-valued sentential
calculus of Lukasiewicz. Surprisingly enough, little attention has been devoted to normal forms. We
present an effective normal form reduction technique: given any proposition p in the in�nite-valued
calculus, p is decomposed into a disjunction of basic constituents; the latter have a simple geometric
form, and are in fact the Schauder hats of the triangulation induced by p on its domain. Since logical
equivalence in the in�nite-valued calculus is stronger than all its n-valued counterparts, our reductions
are automatically valid for all n�valued calculi. As a by-product, we obtain the �rst constructive proof
of the fundamental McNaughton theorem (J SL volume of 1951) stating that, up to logical equivalence,
propositions in the in�nite-valued calculus coincide with continuous piecewise linear functions all of
whose pieces have integral coef�cients. Our constructions are elementary; the key tool is Minkowski�s
convex body theorem.

Undecidability of the Horn clause Implication Problem

J1-mzv MARCINKOWSKI Lsszsx PACHOLSKI

We prove that the problem �given two Horn clauses H; = (a; A02 -�» ß) and �H; = (11 A 0. � A7� �-o 6),
where a1, ß, 7.-, 6 are atomic formulas, decide if �H; is a consequence of H; � is not recursive.

The theorem follows from the series of more or less technical lemmas.
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De�nition 1. For a Horn clause H = (oz; A 03 -o ß), and a set G of ground clauses a G-H-derivation
tree is a tree labelled by unit clausses in such a way, that for each node t there exists a Substitution
o� with the property that the left and the right son of the node t are labelled by a(a1) and a(a3)
respectively, and t is labelled by am), and moreover the leaves are labelled with elements of G�.

Lemma 2. There exists a Horn clause �H = (a; A a3 -o ß). and a �nite set G of ground unit clauses
such that it is undecidable if for a given word in, there exists a �nite G-�H-derivation tree with a branch
w.

The next two lemmas have a technical character and say, that it is possible to force a derivation tree
to contain a given branch (Forcing Lemma) and to hide the large uncontrolled term that appears
in the root of a derivation (Hiding Lemma).

Reasoning about Knowledge

Ronrr PARIKH

This has become a rich area in the last few years. We give some examples.

1. Dialogues: We show how people learn from dialogues by modelling such dialogues in Kripke
structures. There is a resemblance to the Cantor-Bendixson theorem which can be made precise. We
show that some facts can be learned in certain dialogues only at a trans�nite stage.

However, if we change the rules to: win one dollar for a correct guess, lose a thousand dollars for an
incorrect guess. Then even though knowledge itself may take a trans�nite amount of time, a pro�table
guess can always be made after a finite amount of time.

2. Non-monotonicity: If I tell you that a x b = 12, where a, b are understood to be integers with
1 < a g b, then you do not know what a is, since a may be 2 or 3. However, if I tell you also that
a is even, then you know that a must be 2. Thus if I" = {K,(a x b = 12),K,(l < a 5 b, a,b E N}
then I� l- -vK,(a = 2) but F,K,,(a is even) F K,(a = 2) and hence we cannot have I�, K,(a is even)
l� &#39;1Ky(a = 2).

Thus we have non-monotonicity as soon as knowledge enters explicitly. McCarthy has proposed the
rule, �if you cannot prove K,(A) from F, then deduce -K,(A) from F�. We develop a model theory
(using largest models) and show a completeness result.

3. Speaker dependence of Language: A slide containing colored squares was projected on a
screen. The audience was asked to write down how many red squares and how many blue squares
they saw. There was wide variation. In particular, the number of blue squares seen varied from O to
27. Thus everyone interprets �blue� in his own way, though of course there is a rough correspondence
between different. usages.

If Alice tells Bob. "my book is blue�, she means that her book is blueg but he will take her to mean
that her book is blue 3. We show how this information is helpful to him in spite of this in many cases.

4. Reducing Topology to the Logic of Knowledge (joint work with L. Moss and K. Georgatos):
We show how topological notions can be expressed in a language with two modalities: K for knowledge
and Ü for effort. \-Ve get a. very nice logic which is currently under investigation.
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A Formal Model for Gödel

ELVINIA Rrcconr-ms

(joint work in progress with Egon Börger)

Gödel is a logic programming language which is intended to be a declarative successor to Prolog.
It has functionality and expressiveness similar to Prolog, but greatly improved declarative semantics
compared with it; in fact Gödel does not have the �impure� non-logical aspects of Prolog, like the
absence of occur-check, the use of unsafe negation, the use of non-logical predicates (var, nonvar,
assert, retract), the cut operator, ecc:

Gödel is a strongly typed language based on many-sorted logic with parametric polymorphism. It
has a module system and a �exible computational rule by a DELAY operator. The Prolog cut operator
is replaced by a commit operator, which generalises the bar commit of concurrent logic programming
languages. Gödel has also very powerful meta-logical facilities.

We propose a mathematically precise but natural formalisation of Gödel. The abstract (operational)
model is based upon Gurevich�s notion of evolving algebras.

Since the Gödel computational rule is a generalised form of SLDNF resolution, we basically base our
model on the Prolog Tree Algebra de�ned by Biirger & Rosenzweig as formal model for the Prolog
language.
We mantain all the Prolog Tree Algebra transition rules (for used defined predicates) appropriately
changed in order to formalise the non-sequentiality of Gödel computational rule both in the selection
phase (selecting the literal to compute into a conjunction of goals) and in the search phase (selecting
a possible candidate clause to reduce the current call).

We obtain a simple description of the procedural semantics of the commit operator and the pruning
phase, and we also give a complete formalisation of the negative (ground) literals and the conditionals
computation.

Our future goal is to refine our description to a description of the extension of the Gödel model with
the formalisation of meta-programming facilities of the language. We also plan to look for a parallel
version of the model, using our previous work done for an evolving algebra speci�cation of PARLOG.

Evolving algebras and process calculi
DEAN Rosnnzwmc

(Joint. work with Paola Glavan)

The notion of �concurrent evolving structure� of Gurevich & Moss is made more explicit, and linked
to usual algebraic calculi of processes.

Process calculi may be viewed as descriptions of behaviour, while evolving algebras can be understood
as (very) abstract machines. It is then natural that we can describe behaviour of machines, and build
machines which exhibit given behaviour.

In particular, we show how to simulate concurrent evolving structures by processes of value�passing
CCS, and vice versa. The simulations are correct in the following sense:
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If, composing the simulations, process �v algebra ��v process, we get from P to Q, they will be
linkedby the following relation:

PRQ if Va E £(P) 3rep(a) C £(Q)� such that

P i. P� iff Q ä q�

for some t e rep(a), and P"RQ&#39;.

Since processes and evolving algebras communicate by different primitive actions (handshake cum
value-passing vs. updating �blackboard-like� shared structures), we loose in abstraction level at both
simulation steps, arriving thus at the problem of comparing processes at different levels of abstraction.

Functional Completeness in Temporal Logic

G. LIGOZAT M. DE ROUGEMONT

For a model of time, a set of operators is functionally complete if, for any first-order formula with k
free variables, there exists an equivalent temporal formula with k reference points.

A theory has a finite H-dimension p, if any �rst-order formula is equivalent to a formula with at most
p bound variables. Gabbay ( 1979) showed that there exists a set of complete operators iff the theory
axiomatizing the models of time has a finite H-dimension.

Immerman & Kozen (1989) gave a game interpretation of the H-dimension as follows: generalize the
lci�Fraisse games between two structures U, V and two players I and II, to n rounds, starting from
k-vectors u E U and v E V. Let G(u, v, k, n) if II wins n rounds. The theory has H-dimension k, if for
all structures U, V, Starting vectors u, v and for all n, G(u, v, k, n) implies G(u, v, k�, n) with k� > k.

We present the classical applications of this result to linear and branching time, and generalize it to
other models of time, multi-trees. and some lattices.

Proving total correctness of programs
in Weak second-order logic

RUDOLF BERGHAMMER BIRGIT ELBL ULF SCHMERL

A purely syntactical but nevertheless handy de�nition of the predicate transformer top is presented.
Weak second-order logic is shown to be sufficient to formalize the weakest precondition for an imper-
ative programming language similar to Dijkstra�s language of guarded commands. It is demonstrated
how t.o express and prove important properties in this logic.
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Nonmonotonic reasoning

PETER SCHMITT

In this talk we present a survey of the approach to nonmonotonic reasoning developed by S. Kraus,
D. Lehmann and M. Magidor. We concentrate on the notions of preferential and rational closure
of a given knowledge base, review the motivations that lead to the axiomatic approach, discuss the
proposed axioms (rules), introduce a model theoretic semantics and quote the known completeness
theorems. We conclude with the following list of future research problems: 1. Extend the notions
of preferential and rational closure to full first order logic. 2. Find a model theory for the rational
closure. 3. Find a sufficiently concrete area of applicability for nonmonotonic logic.

Machine Checked Normalization Proofs for Typed Combinator
  Calculi

JAN SMITH

We present formalized normalization proofs of two calculi: simply typed combinators and a combinator
formulation of G6del�s system T. The proofs are based on Tait�s computability method and formalized
in Martin-L6f�s set theory. The motivation for doing these formalizations is to obtain machine checked
normalization proofs. The proofs presented in this talk have been checked using the the logical
framework implementation Alf, developed at Goteborg.

The first theory we discuss is the simply typed combinators. It is chosen because of its simplicity: we
want a machine checked proof which avoids as much as possible syntactical problems and concentrates
on the computability method.

Tait treated a combinator formulation of G6del�s T. Although that is a much more powerful theory
than the simply typed combinators. the normalization proof for G6del&#39;s T is, from the formal point
of view, a straightforward extension of that for the simply typed combinators.

This talked is based on a joint paper with Veronica Gaspes.

On the Complexity of Some Decision Problems in Programming

DIETER SPREEN

One of the central problems in programming is the correctness problems, z&#39;.e. the question whether
a program P computes a given function. If the function is given by a program Q which is already
known to be correct, then the problem can be reduced to the question whether the two programs P
and Q are equivalent. Sometimes, one only wants to know the correctness of the program P with
respect to a given set of input data. If Q is correct. with respect to these data, then it is suf�cient to
decide whether the function computed by P extends the function computed by Q.
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In order to deal with these problems mathematically, one has to �x a semantical framework. We use
Scott domains. Let (D, Q) be a Scott domain and z: a canonical indexing of its computable elements,
then we consider the decision problems �a:,- = d?�, for some given d E D, �:c,- = 2:,-?�, and ��a:,- Q zj ?�.
As it follows from the generalized Rice/Shapiro theorem and a characterization of the index sets
of non-Scott�open sets these problems are undecidable. It is the aim of this work to classify their
complexity. As it is shown, the question whether 13,- :: d is I13-complete, if d is non�nite. In the other
case the problem is recursively isomorphic to the halting set K, if d is maximal with respect to the
domain order. It is recursively isomorphic to the complement -I? of the halting set, if d = .L, and it is
recursively isomorphic to K x 7(- in the remaining case. As it is well known, K is L�?-complete, If is
II?-complete, and K x 75 is 2; 1-complete where {E}; 1, 11;� I n 2 1} is the Boolean hierarchy. This
completely classi�es the difficulty of deciding the question �a:,- = d?�.

For the remaining problems �:c,- = 21-?� and �:c,- C 1:,-?� it is shown that they are recursively
isomorphic. Moreover, they are Hg-complete, if the domain contains a computable non�nite element.
If all computable elements in D are �nite, then all ascending chains of �nite elements in D have to be
�nite. In the case that the lengths of all such chains are bounded and m is the maximal length, both
�z,- = 2,- ?� and �:c,- Q 1:,-?� are II;(:n__1)-complete. In the other case, it is shown that both problems
are in 23g n Hg \ �E€ 11;� I n 2 1 �� Moreover, two problems S1 and S2 in this class are given such that
51 S1 �z; E 31&#39;?� S1 52-

Cut-elimination and negation as failure

ROBERT F. STÄRK

What is the semantics of �Negation-as-Failure� in logic-programming? We try to answer this question
by proof-theoretic methods. We have developed a rule based sequent calculus for negation as failure.
Given any program P, a sequent I� is provable in the calculus if, and only if, it is true in all three-
va.lued models of the completion of P. The calculus is exactly the sequent calculus for the classical
completion of a program but without axioms of the form I�, A, -1A. The reason that we do not use
axioms of the form I�, A, -A is that they imply that a formula .4 has to be true or false; in terms of
logic programming this means that an atom A must succeed or fail, which in general is not true. It
is easy to transform SLDNF-computations into sequent proofs. For certain classes of programs the
converse is also possible. We give a sufficient and necessary condition on a program such that this
is possible. Via cut-elmination the complexity of a sequent proof is bounded to sequents constructed
from equations and literals only. Such proofs can then be converted into SLDNF-computations. We
obtain the main theorem that. a normal program is negation-complete if, and only if, it has the cut-
property. From this theorem we can derive a very strong completeness result for SLDNF�resolution.
Finally we de�ne a decidable class of logic programs which have the cut-property. This class contains
the de�nite programs and the allowed programs.
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Fixpoint Logics, Relational Machines
and Computational Complexity

VICTOR VIANU

(joint work with S. Abiteboul and M.Y. Vardi)

We establish a general connection between �xpoint logic and complexity. On one side, we have
fixpoint logic, parameterized by the choices of 1st�order operators (in�ationary or nonin�ationary)
and iteration constructs (deterministic, nondeterministic, and alternating). On the other side, we
have the complexity classes between P and EXPTIME. Our parameterized �xpoint logics capture
the complexity classes P, NP, PSPACE, and EXPTIME, but equality is achieved only over ordered
structures.

There is, however, an inherent mismatch between complexity and logic��while devices work on encod-
ings of structures, logic is applied directly to the underlying structures. To overcome this mismatch,
we develop a theory of relational complexity, which bridges the gap between standard complexity and
�xpoint logic. On one hand, we show that questions about containments among standard complexity
classes can be translated to questions about containment among relational classes. On the other hand,
the expressive power of �xpoint logic can be precisely characterized in terms of relational complexity
classes. This tight three�way relationship among �xpoint logics, relational complexity, and standard
complexity yields in a uniform way logical analogs to all containments among the complexity classes
P, NP, PSPACE, and EXPTIME. The logical formulation shows that some of the most tantalizing
questions in complexity theory boil down to a single question: the relative power of in�ationary versus
nonin�ationary 1st-order operators.

This paper appeared in Proc. Conf. on Structure in Complexity Theory, 1992. It is a followup of
the paper �Generic Computation and Its Complexity� (S.Abiteboul and V .Via.nu), which appeared in
STOC 91.

Abstract Data Types and Locally Reflective Subcategories

J.ADAMEK H.VOLGER

We have obtained a localized version of the abstract. initial semantics which is used in the theory
of abstract data types. One considers the following sit.ua.t.ion: a. category K (t.he category of �struc-
tures�) and a full, isomorphismclosed subcategory A (the category of �models�) and one is looking for
characterization results of the following type.

Theorem. If the ambient category K has A-limits then:
A is A-re�ective in K i.e. for each X 6 IC the category x\A admits enough A-initial objects iff A is
closed under A-limits and A satisfies the A-solution set condition.

The well known global version uses arbitrary limits (i.e. equalizers and products) and initial objects
in X \A. The conditional version of Y.Diers uses connected limits (i.e. equalizers and pullbacks) and
conditional initial objects i.e. objects initial in their connected component of X \.A. Our localized
version uses simply connected limits (i.e. pullbacks) and locally initial objects i.e. objects remaining
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initial in all their localizations. It can be shown that A is locally reflective in K iff all the localizations
A/A are re�ective in IC/A iff A is conditionally pseudoreflective in K. The quali�er �pseudo� means
replacing uniqueness by uniqueness up to an isomorphism. - It should be noted that categories with
pullbacks have been used in the theory of domains under the name of stable domains.

In the case A = M od(T) with T a firstorder theory it suffices to consider �nite limits and the
solution set condition can be removed. A syntactical characterization in the global case is due to
Volger(�79) and in the conditional case was given by M.Hébert (�89). For the localized version Hébert
recently announced a syntactical characterization result. � In the �rstorder case there is another
characterization result concerning equalizers. However, we were not able to prove this result in the
general situation.

Object modelling using )\-calculus for information systems

Juli ZLATU§KA

For information system modelling, the relational model provided a framework based on logic, essen-
tially Da.talog, providing for declarative data description and manipulation. Presently, object-oriented
models loose the implementation-independent background, being predominantly based on program-
ming constructs.

We argue for a model based on a variant of a simply typed /\-calculus, enriched by product and sum
types, and corresponding reductions. Using functions as the basic construct, the rule-manipulating
nature of x\�ca.lculus conversions can account for uniform expression of several features of object-
oriented environment.

Special classes of expressions can be chosen for encoding relational structures (implementational data
types) and functional structures (object-based types), with correspondence between them given by
mapping pairs carrying out transformation of one type of description into another. The basic idea
is to use the concept. of schema transformation for representing various classes of data manipulation:
retrieval. structure mapping, updates, and transactions. Operations modifying the state of the sys-
tem result. in terms de�ning schema mapping, having a counterpart in mappings between functional
environments, representing these state-changing operations as transformations of the underlying inter-
pretation. Multi-layered structure is obtained by composing schema transformations, adjusting to the
level of abstraction needed for particular purpose. As a result, semi �rst-order logic-based language for
object manipulation is obtained with encapsulated data operations provided by combinators, provid-
ing tools for veryfying implementation of the operations wrt declarative/object-oriented speci�cation,
and a tool for suf�ciently abstract representation of objects, object identity, and data abstractions
independently of the implementation structures.
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