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Workshop on Molecular Bioinformatics

Organizers:
Thomas Lengauer (GMD, Schloss Birlinghoven/University of Bonn),

Dietmar Schomburg (GBF, Braunschweig),
Michael S. Waterman (USC, Los Angeles)

September 7 - 11, 1992

Molecular Bioinformatics is a notion that. one can a.ssign to a.n area. in applied com-
puter science which is rapidly gaining significance. Roughly, this area is conc&#39;ernecl
with the development of methods and tools for analyzing, nn(lerst.an(&#39;ling, reasoning
about and, eventually, designing large biomole(&#39;ul<-~s auch as DNA. R NA, and proteins
with t.he aid of the computer.

With the knowledge in molecula.r biology increasing at an explosive rate, and
data on genomes and their products being (.&#39;ollect.e(.l at tremendous speeds. :V&#39;lolecular
Bioinformatics becomes an important challenge to applied computer scientist.s.

Before this background, the Dagstuhl Seminar on Molecular Bioinformatics
brought together experts from all over the world t.hat are working on algorit.hn1ic
issues in this �eld. The Workshop was interdiscplina.ry, with people frorn mole<&#39;.u�
lar biology, computer science, and applied 1cnathe1�natics a.ttending. The worksliop
focussed on the following topics:

0 Alignment of biomolecular sequences (DNA, RNA, Proteins),

o Modeling of large biomolecules, including the prediction a11d analysis of secon-
dary and higher-level structure as well as spatial conformations (folding),

0 Molecular dynamics and simulations of interactions between biomolecules,

o Interpreting nucleotide sequences and their role in gene regulation,

0 Reading genomic sequences.

Besides the presentations, there were two organized evening discussion sessions
on the topics PAM matrices and Computer-Aided Drug Design.

The experiment of bringing together researchers with wide] y varying bacl~:g&#39;roun(ls
to discuss an exciting new interdisciplinary field was successful. The attendees dis-
cussed lively and often controversially, developed a sense of identity for the new field
during the workshop, and went back home with new insights, problems and ideas.
For the German researchers, the workshop was an ideal preparation for forming
cooperations within the new funding program Molecular Bioinformatics

that had just been announced by the BM FT (German Ministery for Research and
Technology). A few participants evaluated the workshop as their �most productive
workshop experience�.

We are especially grateful to the Dagstuhl office and team for their excellent
organization in preparing and conducting the workshop, as well as their always
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enga.ge(l and personal support.» in all matters. The cordial a.t.rnosphe~re in the .S&#39;(fhIol$
was an essential ingredient of the Sll(�(&#39;(_&#39;5s of this workshop. We are also grateful to
NSF for providing a grant for �nancial support. of int..ercontinent.al travel of the (7.8.
based participants of this workshop.

engaged and personal support in all 111a U<'rs. Thf' cordial at.mosplwre in ll1<• Sd1/oB 
wa.s a.n Pssent ial ingrNlient. of the succ('ss of this workshop. We a.r<· a,lso grnlefu l to 
NSF for pro\·iding a grant for financial support of i11tt>rcontine11tal t ra.vel or tlw (:.S. 
based participants of this workshop. 
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Structuring Sequence Data Banks for Instantaneous
Parallel Searching

Alberto Apostolico, University of Padua

Current molecular sequence data. ba.nks consist mainly of raw sequences with some
annotation. While such a basic information will hardly be forfait.ed ever in the
future, auxiliary data structures are being gradually introduced and studied which
facilitate various kinds of searches and (&#39;omparisons. For some such manipulations.
serial computation is inadequate, so that efficient parallel methods are sought. We
present a data structure that supports constant-time implementation on a CRCVV
PRAM of exact searches for arbitrary patterns into arbitrary substrings of a sequence
data. bank.

On the Accurate Notion of Locally Optimal Alignments
and Subalignments in Genetic Sequences

Norbert Blum, University of Bonn

We review old and new results with respect to locally optimal alignments and sub-
alignments in genetic sequences. The main theorem is that the subgraph of the edit.
graph, containing exactly the locally optimal subalignments, can be computed in
(&#39;9(nmlog(_n + m)) time, in the case that the underlying cost functions are concave.

A Lattice Enumeration Approach to Protein Folding

Hue Sun Chan, University of California at San Francisco (UCSF)

To study the protein folding problem, we use exhaustive sequence and conforma-
tional enumerations to study copolymer chains configured on lattices. These model
molecules are short self-avoiding chains of hydrophobic (H) and polar (P) mono-
mers. This simple model shows that under folding conditions, a signi�cant fraction
of H / P copolymers exhibit protein-like behavior such as high compactness, conside-
rable amount of secondary structure, and low degeneracy of the lowest energy state.
We also explore the folding kinetics of those H / P copolymers which have unique
native structures. Under folding conditions, these model protein molecules collapse
quickly to an ensemble of relatively compact conformations, and then re-arrange
much more slowly as they seek their unique native states. Folding time of the model
molecules is strongly sequence-dependent, because the arrangement of H�s and P�s
along the sequence determines the energetic landscape of the chain�s conformatio-
nal space. The fastest folding sequences are those whose native structures are most
accessible and least protected by energy barriers.
(This is joint work with Ken A. Dill at UCSF)
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Physical Mapping in Practice

William I. Chang, Cold Spring Harbor Laboratory, N.Y. USA

(�lose collaboration l)et.ween biologists (D. lieacli Lab) and inatl1en&#39;1atica.l s(�ic11l;isl.s
(T. Marr. Lab) at C.S.ll.L. resnltecl in the lastest, mapping to (late of a.n entire
genoine S. pombc (fission yeast. a model organism for the stucly of the cell <&#39;_\&#39;(&#39;le).
Contig assembly and error analysis are (lone using a l:)ra1ich-ancl-honncl algorithm
that �nds the globally optimal linear a.i°rz-i.1igm11<~-Iit of anchors, minimizing the mst
of inconsistencies in the data (l&#39;alse |)()Sll.l\&#39;(;�.H�, false negati\&#39;es, r(��potitive S(.�(|ll(�ll(&#39;(�S).
Carrie(l out in conjunction with (�.-\�])f�l&#39;llll(-�Hts. this analysis is used to resolve in-
consistencies (l)_v repeating experiments) and to <�lircct Further (*..\&#39;])6�l"illl(-3IllS. lligh
confidence in the partially constrnct.<-~(l map inakes possible reclucerl lal)orator_v work
and an accelerated rate of progress.

Sublinear Approximate Matching with Constant Fraction
Error

William I. Chang, Cold Spring Harbor Laboratory, N.Y. USA

Pattern matching is a classical prohleni of computer science. and approximate inat-
ching of sequences is motiva.te(l by molecular l)iolog_y. (liven a database of size n and
a pattern of size in over a b-letter al pl1al:)et, we wish to find all locations in the-. data»
base where the pattern occurs with at most Iv cliffeimices (substitutions, insertions,
or deletions). There exist constants /lg, such that for k < pbm, k differences inatcliiii g
has average case cornplexity (&#39;)((&#39;n./&#39;m)(l.v + log,,m)). This algoritlnn requires spa(_&#39;e
polynomial in the. size of the pattern and can be generalized to other (listance as
well as similarit.y measures.

A Contact Potential that Recognizes the Correct Folding of
Proteins

V.N. Maiorov and G.M. Crippen, University of Michigan

We have devised a c.ontinons function of interresidue contacts in globula.r proteins
such that the X-ray crystal structure has a lower function value than that of thou-
sands of protein-like alternative conformations. From a training set of 37 proteins
a.nd a total of 10,000 alternatives, the potential satis�es altogether 73 proteins vs.
their 530,000 alternatives. In addition, another 95 highly homologous protein crystal
structures are correctly treated. While the potential is intended primarily to select.
the native out of a large choice of rather similar or very (lissirnilar conformers. it
can also indicate approximatlely whether the native is one of the choices.

Physical Mapping in Practice 

William I. Chang, Cold Spring Harbor Laboratory, N.Y. USA 

Close roll a borat io11 bet \\'ee11 biologists (D. BPacli LalJ) and rnaLhemat. irnl scient. is! s 
(T 1\larr. Lab) al C.S. lI.L. resultPd i11 1l1C' fa.'-it(·•st 1m1ppi11g to datf' of a 11 c·ntire 
ge11ome S. po111b( ( fission y<'ast. a nio<kl org,111is111 for t lw study <>r t.lie c<'II cn·I<' ). 
Cont,.ig assembly and error analysis ,H<' don<' 1tsi11g ,1 branch-and-bound algorit l11n 
that find s tlte globally optimal lin1•,H ,trranµ;c·nw11 l of anchors. 111inimizing t lH' cnsl 
of inconsistencies in tlif' data ( false· posit in·s. false 1wgc1tin·s, rC"p<'l,itive s<'q11<•1tn's). 
Carried out in conjnnclio11 with c·xpninw11ts. 1l1i-. a.11alysis is us<-~d to rt·sol\'<· in
consistencies (1,y rt•peat.i11g cxpNillH'nl.s) a11d t.o direct l'urtlwr expnirnc·nt s. ll igli 
confidence i11 t.lte partially com;tru,t<'d 111<1p n1akl's possible rf'clucecl labor,1.tor_v work 
a11cl an accel<'ral eel rate- of progress. 

Sublinear Approximate Matching with Constant Fraction 
Error 

William I. Chang, Cold Spring Harbor Laboratory, N.Y. U SA 

Pat.t.ern rnatchi11g is a classical problPm of co1np11tn science, and a.pproxima t.1• tnal.

ching of sequences is motivated by molecular biology. Ci\·en a <lataba.se of siz<· 11 c111d 
a pa.t.ten1 of siz<· rn over a b-letter alphalwt, W<' wisl1 t.o find a.II locai.inns i11 Llw data
base where the pattern occurs with al 1nosl. J.· diffN<'ttn•s (substit.ulions, i11scrt ions , 
or deletions). There exist constants pi, sucl1 that for I.· < ('&m, k diff<-'rf'nc<~s 111a1 ch i 11g 
has average case complexity 0 ((11/111 )(k + loybm )). This a.lgoritli111 r<'quircs spa<'<' 
polynomial in tlte size of the pattern c1.nd can be general ized t.o othN disla11rn as 
well as similarity measures. 

A Contact Potential that Recognizes the Correct Folding of 
Proteins 

V.N. Maiorov and G .M. Crippen, University of Michigan 

vVe have devised a cont.inous function of int<'rrcsiduc ront.a.ct.s i11 globular prot.eius 
such that the X-ray crystal structurf' has a lowPr fu!lction valu<' than tha.t of thou
sands of protein-like alternativ<' conformations. From a t.ra.ining set. of :37 prot.<'ins 
and a total of 10,000 allernatives, l,he potential satisfies altogether 73 prot.eins vs. 
their 530,000 a lternatives. In add it.ion, another 95 highly homologous protei n cryst.a l 
structures are correctly treated. While the potential is in tended primarily t.o select. 
the native out of a large choice or rather similar or very d issimi lar rnnfornwrs, it 
can a lso indicate approxima.Uely whether tlw native is one of the choices. 

7 



Is Darwinism a Falsifyable Theory?

Andreas Dress, Univ. Bielefeld; H.J. Bandelt, Univ. Hamburg

Though conceive(ol as a. theory. (�lescribing and e.\&#39;plaining what has happened rather
than predicting what. will happen, tliere is one predirttiou lollowing 110111 Darwin&#39;s
(as well a.s from lc,amarque�s) theory which can be t(-st<,-(l: the claim that all living
species can be grouped in a sensible and consistent way into one big pliylogenetic
tree. Standard tree reconstruction nietho(ls - suc<&#39;<+-ssl&#39;ul as they inay be - are not [it
to properly put. this claini to a test. because all of them presuppose that what tliey
are searching for:actuall.V is a tree structure. llence an alternative to these metho(ls
is suggested. One looks lor all decoinpositions .1� = �Ä U B of the (&#39;()lle(&#39;ti0n Ä� of
species under consideration into two 1ion":-enipty, <lisjoint snbset.s A and B such that
for any species A, .4� in A and B, B� in B the four spe(�i(-s tree with .4 next 10 .141� and
/3 next. to B� is not the least. probable ol� the tliree (non�degenerato) tree s1 rn(&#39;tu1&#39;es,
one can define on our four species. One then (."d.l.l visualise the resulting laniily
of decompositions, of which - by some abstract con1binal.orial arguments � there
cannot be more than g on an n-set X, by a netted diagram which simultaneously
1�epI�ese11ts - through systems of pairwise parallel edges - all found deconipositions.
For biological data these diagrams turn out to be almost always almost treelil<e
- thus corroborating Da1&#39;win�s ideas - while for, say, psychological data. on colour
similarity, the famous colour circle will be reprocluced.

Statistical Geometry in Sequence Space

Andreas Dress, Univ. Bielefeld with Manfred Eigen and Ruthild Winkler
Oswatitsch, MPI Göttingen

A statisti(�a.l method of coniparative sequeiice analysis that combines horizontal and
vertical correlations among aligned seqiiences can be basecl on the analysis Inainly of
quartet coinbinations of sequences. consi(lere(l as geoinetric four-point configurations
in sequence space. Numerical invariants related to relati\&#39;e internal segment. length
are assigned to each such confi gu ration and statistical averages of tllese invariants are
established. They can be used for internal calibration of the topology of divergence
and for quantitative determination of the noise level. (lomparison with computer
sin&#39;1ulations reveals the high sensitivity of assignment of basic topologies even if
much randoini7,ed. ln addition, these procedures can be cliecked by vertical analysis
of the aligned sequences to allow the stuccly of (li\.~&#39;e1&#39;gencies with positional] y varying
substitution prol)abilities.

Is Darwinism a Falsifyable Theory? 

Andreas Dress, Univ. Bielefeld; H.J. Bandelt., Univ. H amburg 

Though co11cei\'t·d as a theory. df•scribi11g; and <·xplai11ing what has happe11C'cl ra1 lwr 
I ha n prf'didi ng what wi II happen. llicrf' is 011c p1wlir1 io11 following frorn l>a,r\\'i 11 's 
(as well as from Lamarque's) theory which can be t1•st<·d: t.hf' clai111 t li c1t. all livi11g; 
s1w('if's ,a11 bf' grouped in a seusibl<· ,rnd ronsistE•nt wa_,· into 01w big phylogc·nctic 
t.rce. Slandar<l tree· rP-construdion llH't hods - surcess1'11l as they ma_,· b<' - ilr<' not fit 
I o properly put this claim to a tt-'s\ .. h<'ca.use all of t.!1<'111 pn·suppos<' t !tat. wl1al t.h<·y 
an' sc·cHching for :act.uall_v is a tref' struct.u rf'. H<>m·c· c111 ;-dl<'rnative lo I hesc· met l1ods 
is suggested. One looks for a.II dc·co111posit io11s .t = A U B or t lw rnlkct io11 ,.y ol' 
specie's under considcrc1tio11 into 1.wo 11011-empt.y, disjoint su l,:wt.s A a.11d 8 sud1 tha t 
for <111y species A, A' in A and B, B' in B t.lw four S/H'r·i<'s trC'e with .4 1wxt. tc, .4' and 
/J llf'Xt to R' is not the> l<·•ast. probablf• oft lw t lire·<· (11011-d<•g1·11en1t<' ) t rt-~1· st rnctun•s. 
011c· ,an df'fi11c on our four species. 01w tlie11 n111 visLrnlisc tli<' rPs1ilt.i11g; farnily 
of decornposit.ions, of which - hy so111c• abstrn.ct. combi11c1.tori,tl a.rgunw11t.s - t l1cr<· 
cannot be more t.ha.n (~) on an n-set .:r , by a nett.eel d iagram which si11rnl t;n1eo11sly 
r<'prcsents - through systems of pairwise para.lie! edges - all foun<l decompositio11s. 
For biologica l dat.a t.hese diagrams turn out. to bP almost always alrnost treelike 
- thus corroborat.ing Da.rwin's id<'as - while for , say, ps_vcLological da.ta 011 colour 
similarity. Uw famous colour circle will be> reprod11cf'd. 

Statistical Geometry in Sequence Space 

Andreas Dress, U niv. Bielefeld with Manfred Eigen and Ruthild Winkler 
Oswatitsch, MPI Gottingen 

A st,ttistical 111dl1od of colllpa.ra.tiv1' !-icquc•nce ,walysis that. combinf's horiwnta.1 a.11d 
vnt.ica.l corrf'lat.io11s a.n1011g alig11C'd S<'((11(•11ccs can Lw l,as,·d ou the a.11alysis rna.i1ily of 
quart.<'!. co11d,i11c1t iorn, of s<'qtwnc<'s. co11sidcrf'd as geo111dric four-poi11t coufigurations 
i11 s<:'qu<'11cc spa.ce. Numerica.l invari a.111.s rela.t<'d to n•lat.i,·<' int.erna.J segment. le11gtl1 
ilJ'<' assigned t.o ea.eh such co11figurat.io11 a11d statistical avera.ges or I hcse inva.riants an: 
<·sta.bl ishf'd. They ca.n be used for in1n11al cal ibrat,ion of I hf• topology of d iv<'rge11Ce 
a.nd for quant.itative determination of the 11oist> levc•l. C()mpa.rison with computer 
simulations r<'V<'a ls th<' high sensit ivit.y of assign1nent of basic topologies 1•ve11 if 
111ud1 rando111 i7,c•d . In addition, Lh<'sc procedures can be clwcked by vertical analysis 
of Lhe a.lignC'd s0quences to a.llow t.lw st.udy of di,·erg<·11ci<·s witl1 positio11ally rnrying 
suhsti t ution probabilities. 



Embedding Sequence Analysis in the
Functional Programming Paradigm

Robert Giegerich, University of Bielefeld

Colnpositiona]ity a.11d e.\&#39;tensibility of analysis algoritlnns a.re important. for close
investigations of complex se(.&#39;on(la.ry structures in biosequences. Since these two pro-
perties belong t.o the main virtues of futictional programs. a (�a.sc study was per-
formed to eva.luate the viability of embedding scqumicc analysis in the finictional
paradigm. Its first part shows how an advanc.ed pattern nlatching language can be
implemented in a concise, transparent, and extensible way. lts second part reports
on an in1plen1enta.tion of la.zy position trees, including cflicie.1i<:_y measurenients per-
formed with three current func.tiona.l language s.vstems.

A Formal Method for the Evaluation and Comparison
of a Class of Aligning Algorithms

Gaston H. Gonnet, ETH Zürich

Two a.spects are considered to be the essential measures of an alignment algorithm:
(a.) How well does it discriminate between homologous sequences and random se-
quences and (b) When aligning homologous sequences, how many errors (misaligned
positions) it will make. The methodology used for comparing algorithms and their
associated scoring matrices, is based on simulating evolution, creating new S(:?(]u(;31&#39;l(&#39;�(�.S
from a given one and then aligning the evolved sequence aga.inst the original one.
Since we know the results of the evolution, it is directly measurable how inany errors
were done in the alignment. Since we can obviously produce 1&#39;&t]1(.lO11&#39;l sequences, we
can also test the discrimination of the algorithm. A couple of observations make
the simulation of evolution possible. Since we restrict ourselves to the class of al-
gorithms which are based on dynamic programming, we can simulate evolution as
a Ma.rkovian process. The DP algorithms will ignore any relation between amino
acids when they are compared, and will assign a cost which is constant and depends
only on these amino acids. Something similar happens for insertions/ deletions. The
mathematical exact evaluation of the results is only possible for dynamic. progra1n~
ming algorithms without deletions. For the complete algorithms we have to content
ourselves with Monte Carlo simulation results. This is work in progress;

The Darwin System

Gaston H. Gonnet, ETH Zürich

Darwin is an interactive and programmable system for doing computations in mo-
lecular biology. Darwin is a descendent of the Maple system for doing computer
algebra and shares its syntax and various design philosophies. Darwin is particu-
larly strong in text handling and in sequence comparison. Darwin uses Pat indices
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as an underlying structure (Pat. in(li(&#39;es are Patricia tree impleinentat ions of suffix
trees) for doing: all against all sequence aligment of a database in (&#39;)( ;�\"""). J < �.2: one
a.gainst a.ll sequence alignment in (")(.«\"").a < l; loiige-st repetition searcliingz most
frequent k-gra.1ns and, of course, exact matches in 6(lo_q.\&#39;). 1)arwin a.lso has appro-
xima.te text searching (Levenshteinis distance) as a primitive. This is llI�l|)l(:&#39;lll(?lI.1»(�(l
as a partially defiiied DFA. In this way the algoritlnn adapts to the s<-.-a.rc|1i11g string
and in practice is remarkable fast. Tlie systeni is i111ple111e11ted by a kernel i11 (T and
libra.ries (some contributed by users) in Darwin itself. l11 1&#39;1u1s o11 various Uiiix work-
stations and is distributed by e-mail at no cost. In total Darwin hab" more tlu.-1&#39;1 150
functions and commands, so this is clearly a very pa.rtial description of the system.
We have been doing all are computations since 1990 in this system excl11sivel_y.

Reconstruction of Phylogenetic Trees

Arndt v. Haeseler, Univ. Munich

For a set X = {$1, . . . , .,�5&#39;.,,} of n aligned sequences we want. to recoiistruct a phyloge-
netic tree T displaying the evolutionary rela.tionsl1ip of the sequeiices. Using any dis-
simila.rity measure 6 2 X x X �+ R. we define a neighbour relation ||�5 (with respect to
Ö�) for each quartet of sequences. We sa_y S1 and S2 are neighbours with respect to .5};
and S4 (S1S2ll6-S354) 0bk� (S(S1, S2) + (�S3, S4) < TII.t7�l.{6(S1,S;;) + (S(.S&#39;-2, S4), ($(S1, S4) +
6(S2, 53)}. A similar de�nition of ueighbourliness is made for binary unrooted trees
T. We propose a method to find a tre.e T among all tree topologies for which the
number of quartets that fulfil both relations � a11d 3l� is maximal. l�inally, we
discuss some examples from our studies of rR N A and tR.N A sequences.

Homology Modeling and Distance Geometry

Timothy F. Havel, Harvard Medical School

Distance geometry is a geometric model of molecules, wlierein the structure is defi-
ned in terms of distance and chirality constraints. These a.re, respectively, lower and
upper bounds on the interatomic distances, a11d the orient.ations of selected rigid
and asymmetric tetrahedra of atoms. Dista.nce geometry calculations are designed
to reveal the geometric structure of the set of all conformations (spatial arrange-
ments of the atoms) consistent with this information. The. most important of these
calculations involves computing a conformational ensemble, i.e. a set of conformati-
ons satisfying the constraints, but otherwise random. By analysing such an ensemble
to discover new geometric properties that are uniformly present in all its members
and hence are, with high probability, necessary consequences of the geometric cons-
traints used as input, these calculations provide us with a. crude but effective method
of geometric reasoning. Distance geometry calculations have found numerous app-
lications in chemistry and biology, most notably methods of determining structure
from e. g. N MR data, exploring conformation space, and generating coordinates from
connectivity tables. In this lecture, a new application is introduced, which obtains
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the distance and chirality constraints sufficient to determine a protein sl1�u(�tu1�e
from aligmnents of its sequence with hoinologous proteins of known st1&#39;ucture. As
an example. I have predicted the structure of the lillaxorloxin from 1L�.(&#39;oli using as
homologues the crystal st1�uctures of the l*�la.vodo.\&#39;ins from .»l.ni(luIans. (�.I)eij<&#39;i&#39;i(&#39;l<.
C.(�1�i.9&#39;Pi1s and D.vulgaris. The conlplete results of this stud)� be found in a l&#39;orthco-
rning issue of the journal Molecular .S&#39;irmzla.t.io1i.

Double Point Chains in Proteins and

Inverse Protein Folding

Frieder Kaden, GMD, St. Augustin

How 1na.ny possibilities a.re there to walk through the str11(�tu1�e of a giwn protein
if not only the main chain steps are allowed but also steps between residues that
a.re far apart in the sequence but whose geometric distance is almost like that. ol�
backbone neighbours, and each residue is visited exactly once"? Tlie main chain of
the protein corresponds to its ordinary sequence. Other walks through the protein
lea.d to modi�ed sequences that can be a.pplied to lind alignnients to new protein
sequences in the sense of the inverse problem of protein folding. ln 2: suitable graph
the above question appea.rs as the Nl��cornplete problem of finding all llarniltonian
paths. The problem is transformed into a double point problem that can be s()l\~&#39;e(l
by a method which is a three-diinensional generalization of the formalisin of L.
Kauffman presented in his Formal Knot Th(�()l&#39;__\&#39; in 1983.

Physical Mapping of Chromosomes

Richard M. Karp, University of California, Berkeley, CA, USA

We present several algorithms for reassemhling the overlap structure of clones on a
chromosome, given various kinds of fingerprint data for the clones.

Graph Theoretical Description of Sheet Topologies

Ina Koch, GMD, St. Augustin

My talk was about. the usage of graph theoretical descriptions of proteins at dill&#39;erent
structure levels. We defined the protein graph, that describes the protein structure
at the residue level, and the beta graph describiiig sheet topologies. At the protein
graph level we derived patterns, which call be divided in sequentially short-range
(describing helical and turn structures) and long�range patterns (describing super-
secondary structures). We matched the long�range patterns against certain sheet
topologies, chosen from a set of non-homologous proteins in order to find relations
between patterns and topologies. First results show, that there is a quite (&#39;lifI"erent
amino acid distribution in the patterns, which are niatching against certain topolo-
gies.
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Approximate Pattern Matching:
New Algorithms and Applications

Udi Manber, University of Arizona

We (les(�1�il)e(l a tool for approximate pattern 1nat.(&#39;hing. (&#39;a.lled agrep. .-l grep can
search, very last. for <&#39;omplicat.ed patterns including a.r|)it.rar_v regular expressions
and allowing insertions. deletions. and/or suhst..itution errors. lC.\&#39;amples of the use of
agrep were shown. and two of the five new algorithms that agrep uses were presented.
Prelimiiiary ideas about fast a.pproxiinate pa.ttern mat:cl�1ing in a prepro(:esse(l library
of patterns, using: the triangle inequality to prune the sea.I&#39;(&#39;l1 tree. were also discussed.

Machine Discovery by Decision Trees over Regular Patterns

Satoru Miyano, Kyushu University

Wo describe a n1a.clline-learning system that produces hypotheses from positive and
negative examples. and report some experiments on protein dat.a using HR and
(Ion Bank. This learning system is developed with a learning algorithm for decision
trees over regular patterns, which we devised newly for this research. ln the experi-
ments on transmembrane domain identification. the system disctovered very simple
hypotheses with very high accuracy from a small number of positive and negative
data. These hypotheses show that negative motifs, that is. motifs of negative data.
play a key role in such identi�catioii. In these experiments, we classi�ed 20 symbols
of amino acid residues according to the l1ydropa.thy iudices due to Kyte and D00-
little. VVe call such trausformation of symbols an indexing. We. observed that the
iiulexing by the hydropatliy indices is iniport..ant. in ma.king the learning algorithm
eilicient and accurate. This observa.tion inspired us with a. desire to discover such an
indexing itself without any help of biological l<nowledge but just by a learning algo-
rithm with data.. We succeeded in it by con�il)iuing the above learning algorithm and
the local search technique for �nding indexings. We also report some experiments
on signal pept.ides.
(This work is with S.Aril<awa, S.Kl1l&#39;l£l.\��. S.Shimozono. z�\.Shimhara a.nd T.Shiinhara)

Representing Suboptimal Alignments of
Biological Sequences

Dalit Naor, Stanford Univ.� USA

The opytimal alignment between a pair of biological sequences that minimizes the
edit-distance may not necessarily reflect the correct biological alignment, that is the
alignment based on Sl,l&#39;1l(&#39;.l-l.1l�(_�. or evolutionary changes. However, in many cases the
edit..-distance alignment. is a good approximation to the biological alignment. Sub-
optimal alignments are alignments whose scores lie within the neigbonrhood of the
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Approximate Pattern Matching: 
New Algorithms and Applications 

Udi Manber, University of Arizona 
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optimum, and they were suggested as all.ernat.ives t.o the optimal one. We study the
conibinatorial nature of suboptirual aligiuneuts and give a compact. rcpresentatioiI
of them. VVe define a canonical set of alignments. and argue that they can be viewed
as the essential ones. We currently test this hypothesis with protein seqiiences.

Algorithmic Aspects of Protein Structure

Chris Sander, EMBL, Heidelberg

Proteins are beautiful and con�1plicated three-climensional structures. Their slialw
a.nd biological function is coded by genetic inl&#39;orn1ation. &#39;l�here are thousands of bio-
logically distinct. protein classes. Piiysicist. view proteins a.s polymer chains and try
t.o understand the structural principles common to all. Biologists try to un(.lerstau(l
how genetic. information is translated into the highly iiidividualistic biological role
of a protein. (bmputer scientists see proteins as gra.phs or space curves and try to
develop algoritluns that siinplify the enormous combinatorial complexity of picking
out the correct structure for a given genetic sequence.
(�During the. workshop we proved tha.t the protein folding problem is SO-l.�.l�cl.l�(l, U.
Manber and (.7. Sander, unpublished)

Climbing a Tree Through the Window

David Sankoff, University of Montreal

The method of nearest-neighbourinterchange effects local improvements in a |)iua.ry
tree by replacing a 4-subtree by one ol� its two a.lt.ernatives if this improves the ob-
jective function. We extend this to l<-subtrees in order to reduce the number of local
optima. Possible sequences of k-subtrees to be examined are pro<luce(;l by moving a
window over the tree, iucorpora.ting one edge at a time while deactivating another.
The direct.ion of this movement. is chosen according to a hill-climbing strategy. The
algorithm includes a backtra.c.l<ing coiupoueut. Series of simiilations of moleciilar
evolution data/parsimony analysis are carried out. for I: : 4.1.. . . . 8. contrasting the
hill-climbing strategy to one based on a random choice of ne_\&#39;t. window. and compa-
ring two St0P1I>ing rules. Increasing window size I: is found to be the most effective
wa.y of improving the local optimum, followed by the choice of hill-climbing over
the random strategy. A suggestion for achieving higher values of k is based on a
recursive use of the hill-climbing st.rat(-gy.

Secondary Structure Problems in Coiled-Coil Proteins

Jeanette P. Schmidt, Polytechnic Univ., Brooklyn, N.Y.

We describe efficient computational tools for the (~xamiuation of a class of proteins
that fold as alpha-helica.l coilecl-coil proteins. In particular we detect whether a
sequence of amino acids c.ont.ains the 7-residue periodicity of amino acids ll(�(i(�.?SH?1.l&#39;_\�
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to promote a coiled-coil conformation. A penalty matrix� is used which determines
the quality of the fit of a given amino acid at a given position of the hepta.d. A simple
and ef�fic.ient algorithm is presented, which can detect irregular periodic repetitions
of a.ny constant size pattern in an arbitrary text, in time that is linear in the size of
the text, (where gaps are allowed a.nd the pattern is speciliecl by a.n arbitrary penalty
matrix). The a.lgorithm is used to align proteins (presuined to be coiled-coil) to the
7 positions of the heptad. The alignment is currently used to compare the outer
surface of one coiled~coil protein to the other surface of a second coiled-coil protein.
(Joint work with V. Fischetti, G. Landau and l�. Sellers.)

Sequence-Structure Relationship in the Twighlight Zone

Reihard Schneider, EMBL, Heidelberg

The da.t.abase of known protein three�dimensional structures can be significantly in-
creased by the use of sequence homology, based on the following observations. (1)
The database of known sequences, currently at more than 25000 proteins, is two or-
ders of magnitude larger than the database of known st.ructures. �

� The currently
most powerful method of predicting protein structures is model building by homo-
logy. (3) Structural homology can be inferred from the level of sequence similarity.
(4) The threshold of sequence similarity sufficient for structural homology depends
strongly on the length of the alignment. This emprically derived threshold curve
for structural similarity was discussed. We first quantify the relation between se-
quence similarity, struc.ture similarity and alignment length by an exhaustive survey
of alignments between proteins of known structure and report. a homology threshold
curve as a. function of alignment length. We then produce a database of homology-
derived secondary structure of proteins (H SSP ) by aligning to each protein of known
structure all sequences deemed homologous on the basis of the. tlireshold curve. For
each known protein structure, the derived database contains the aligned sequences.
secondary structure, sequence variability and sequence pro�le. Tertiary structures
of the aligned sequences are implied, but not modelled explicitly. The results are
useful in assessing the structural significance of matcht-s in sequence database sear-
ches, in deriving preferences and patterns for stru(&#39;tur<&#39; prediction, in elucidating
the structural role of conserved residues and in modelling three-dimensional detail
by homology. The results of a c.omprel1ensive sequence analysis of the 18? predicted
open reading frames of yeast. chromosome III were presented and discussed. When
the results of database similarity searches are pooled with prior knowledge, a likely
function can be assigned to 42% of the proteins, and a predicted 3-D structure to a
third of these (14%). The function of the remaining 58% remains to be determined.
An outlook for other genome projects was given. In our opinion, development in the
area of protein sequence analysis should focus on three major areas. (1) improved
algorithms for the detection of real, but difficult to catch, homologies and for the
direct prediction of structure and function. (2) the integration of heterogenous tools
into a overall working enviroment with facile exchange of information between tasks
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(sequence analysis workbench) (3) direct, on-line, on�desk availability of all relevant,
information in the biological literature.

Computer-Aided Design of Proteins With New Properties

Dietmar Schomburg, GBF Braunschweig / CAPE

By the increase of knowledge on protein 3D-structiire, the last development of mo-
lecular graphics and force �eld calculations, and a good understanding of structure-
function correlation, a rational design of proteins with new desired properties has
been possible recently. A few examples are given in the lecture. Still, the computer-
based methods as sequence alignment, 3D structure prediction, and docking pre-
diction urgently need improvement. Examples of new develop1�nent.s at CA P E - tliv
German Centre of Applied Protein Engineering - were presented in the lecture.

Applications of Arti�cial Intelligence and Machine Learning
to Protein Structures

Steffen Schulze�Kremer, Brainware GmbH, Berlin

The IPSA method aims at lea.rning patterns of supersecondary structure from a set
of known proteins. This involves selecting a list of properties of secondary struc-
tures (topological, geometrical and cheniophysicali); setting up a database; running
learning from observation programs on that database. So far pairs of a-helices and
pairs of an a�helix and a /3-strand have been classified and described. Among the
classes generated there are some with three secondary structures in exact a.gree-
ment, although only information on two secondary structures was given, and classes
that were formed completely by long range interactions. Another Al-application
in Biochemistry was shown, the use of genetic algorithms. It involves a torsion
angle representation using standard bond lengths and angles; the operators SE-
LECT, MUTATE and CROSSOVER; and a very simple fitness function of the form
E = Etor + Evdw + Esmt. Although no conformation generated resembled the native
structure (of Crambin), the genetic algorithm produced very low �tness individuals.
Work is going on to improve the fitness function.

Automatic Derivation of Patterns to Predict

Protein Structure

Joachim Selbig, GMD, St. Augustin

Pattern-based heuristic prediction of protein structure rests upon some form of local
homology where the homology information is extracted from structure data bases in
a generic form by certain generalization principles. Taking into account sequentially
long-range interactions requires an appropriate representation of protein structure.
In particular, this holds to the case when the patterns are generated automatically
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by machine learning methods. Though the pattern generation by hand on the base
of biophysical principles is very successful machine lea.rning methods may be used to
search the available data. systematically and thus to improve our understanding of
the protein folding principles. Learning has been mainly viewed as inducing general
concept desciptions from a learning set subdivided into classes. One of the import-
ant dimensions for cha.racterizing learning systems is the type of the representation
languages used to describe the elements of the learning set and the concepts. In
our approach the data about the spatial structure of the proteins determined by
X�ray crystallography are transformed into a graph description which provides the
possibility to de�ne a multitude of patterns for describing structural elements and
which may be understood as discrete forms of the contact maps.

Physical Mapping of DNA and Interval Graphs

Ron Shamir, Tel Aviv University, Israel

A fundamental problem in temporal reasoning is to determine the consistency of a
set of events, where for each pair of events a set of possible atomic relations (prece-
dence, overlap, containment etc.) is prescribed. Events are assumed to be intervals
on the real line. We study the problem for a simpli�ed model, where the only atomic
relations are precedence and intersection. By restricting the input to a subset of the
power set. of atomic relations one gets a variety of interesting combinatorial pro-
blems. We give N P-hardness results or polynomial algorithms for a variety of such
restricted problems. In the DNA physical mapping problem, the chromosome corre-
sponds to the time line and the fragments of the DNA are the events. A simpli�ed
model for the biological problem is shown to be equivalent to one of the NP-hard
restrictions of the general model. Ways to exploit. the many polynomial restrictions
in order to expedite physical map assembly are suggested.
(Joint work with M.C. Golumbic, IBM Haifa, Israel, and in part with H. Kaplan,
Tel Aviv University, Israel) 0

Hide and Seek on a Polyprotein

Manfred Sippl, University Salzburg

The set of experimentally determined protein structures is used to derive a know-
ledge based force �eld which in turn allows calculation of conformational energies
of proteins. The �nal goal is the computational determination of protein structures
using the knowledge based force �eld. The development of force �elds depends 011
useful techniques for the assessment of the performance of the force field at each
stage of development. A necessary condition is that the native fold of a protein has
lowest energy compared to a number of nonnative decoys. The current version of the
force �eld is able to identify all native folds in our data base (160 individual chains)
among approximately 40,000 alternatives. At the current state of development the
force field can be used to validate experimentally determined structures, to detect
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nat.ive like folds for sequences of unknown structure in a da.ta base of known folds
using sequence struc.ture. alignment techniques and to build models of ent.ire folds
from ensembles of overlapping fragments.

The Prediction of Some Protein Structural Features

Temple F. Smith, Boston University

Using an alignment of some 127 proteins from the PDB with their close homo-
logs a number of statistical measure were obtained: these included the conditional

probabilities:
P(.S&#39;/,.|S;,._1,), P(.5&#39;;,|ak.), . . . , P(Sk|ak, a.k__1 . .5&#39;k_1 @"�� �mm these the missing or Shannon
information was calcula.t.ed, given that. there are only eight structural states. These
data suggest that the standard secondary structure prediction can do no better than
65% which is inaccord with experience. In addition these data suggest that the use
of the variability at aligned homologous positions provides the largest reduction
in missing information. with an upper limit of 86% on predictions fully exploiting
such information. Finally if secondary structure prediction is done in the context
of our understandings of realizable tertiary structures much higher values may be
possible. This was tested by modeling the tertiary 3-D information of a set of seven
domain classes using discrete space state models. These models condition the pri-
mary and secondary structure on allowed tertiary struc.tures and appear to increase
the predictability to near 95%.

Interpretation of Parametric Alignment Plots

Martin Vingron, Univ. of Southern California

Based on the methods presented by M. \/Vaterman (see above) the patterns arising
for parametric alignments were analyzed. The logic behind the plot was first ex-
empli�ed based on the comparison of random sequences. The most striking feature
there is the clear reflection of the statistical features of alignment score in the com-
binatorial structure for the plots. When moving to the comparison of real biological
sequences these features can be found again in a somewhat distorted form though.
Nevertheless, we could highlight certain patterns which seem linked to biologically
correct alignments and which might aid in their recognition.

New Problems in Evolutionary Tree Construction

Tandy J. Warnow, Sandia National Labs, USA

Classical models for constructing trees from discrete data either use distance matri-
ces or qualitative characters. The complexity of these problems are discussed, a.nd
the flaws in these models are examined. Several new models for tree construction are
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then presented which may permit efficient algorithms to be discovered, a.nd which
avoid some of the inherent limitations of the classical formulations.

Parametric Sequence Alignment

Michael Waterman, Univ. Southern California

Dynamic programming algorithms for optimal alignments of two nucleic acid or
protein sequences require setting penalty paranieters. While the choice of these pa.-
rameters greatly influences the quality of the resulting alignments. this choice has
been made in an ad hoc fashion. In this ta.lk we present an algorithm to find optimal
alignment scores for all choices of the penalty parameters when the score is linear in
the penalty parameters. In addition some statistical theory of the asymptotic growth
of alignment scores with the length of random sequences is presented and related to
the parametric sequence alignments.

RNA Secondary Structure Modeling

Michael Zuker, NRC, Ottawa, Canada

RNA secondary structure modeling differs fundame.ntally from conventional atomic
resolution modeling. By borrowing discrete optimization methods used in sequence
a.lignment, it ca.n unfailingly predict minimum free energy as well as close to opti-
mal foldings. The de�nition of secondary structure and the recursion for computing
optimal foldings a.re given. The dynamic programming �ll algorithm runs in the
time @(n��) as presented, where n is the sequence size. A stopping rule is introduced
that limits a backtracking step in the search for a best interior or bulge loop closed
by a given base pair. It is conjectured that the expected depth of the backtracking
search is bounded, resulting in an overall (&#39;9(n3) performance. lt is shown how to
predict suboptimal foldings by executing the fill algorithm on two ligated copies of
the same sequence. Base pairs that can participate in optimal and close to optimal
foldings a.re displayed as points in triangular arrays called energy dot plots. The
energy dot plot for the entire 4217 base genome of the bacteriophage P��� reveals
distinct structural domains that correspond well to what is observed by electron
microscopy. A detailed model for the central region agrees well with data from en-
zyme cleavage and chemical modification experiments, and is further supported by
studies on mutant phages. A cluttered region in the dot plot contains base pairs of
a slightly suboptimal alternate folding that is observed by electron mic.rosc.opy.
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