
Victor R. Basili, H. Dieter Rombach,
Richard W. Selby (editors):

Experimental Software Engineering Issues

Dagstuhl-Seminar-Report; 47
14.09.-18.09.92 (9238)

Victor R. Basili, H. Dieter Rombach,
Richard W. Selby (editors):

Experimental Software Engineering Issues

Dagstuhl-Seminar-Report; 47
14.09.-18.09.92 (9238)

ISSN 0940-1121

Copyright © 1992 by IBFI GmbH, Schloß Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das Intemationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm:
Prof. Dr.-Ing. José Encamagao,
Prof. Dr. Winfried Görke,
Prof. Dr. Theo Härder�
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V.� Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloß Dagstuhl
Informatik, Bau 36
Universität des Saarlandes
W - 6600 Saarbrücken

Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-mail: olfice@dag.uni-sb.de

ISSN 0940-1121

Copyright© 1992 by IBFI GmbH, SchloB Dagstuhl, W-6648 Wadern, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lntemationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefuhrt warden.

Verantwortlich fur das Programm:
Prof. Dr.-lng. Jose Encama9ao,
Prof. Dr. Winfried Gorke,
Prof. Dr. Theo Harder,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Ph. D. Walter Tichy,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
UniversiUit Kar1sruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle SchloB Dagstuhl
lnformatik, Bau 36
Universitat des Saarlandes
W - 6600 Saarbrucken
Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Experimental Software Engineering Issues:
A Critical Assessment and Future Directions

H. Dieter Rombach, Universität Kaiserslautem, Germany
Victor R. Basili, University of Maryland, USA

Richard R. Selby, University of California, USA

Since its inception in 1968, software engineering has struggled to �nd its identity. Today, we
can identify three different approaches to study of the discipline of software engineering in the
research community: the mathematical or formal methods approach, the system building ap-
proach, and the empirical studies group. Within the mathematical or formal methods camp,
the emphasis is on �nding better formal methods and languages and software development is
viewed as a mathematical transformation process. Within the system building group, the em-
phasis is on �nding better methods for structuring large systems and software development is
viewed as a creative task which cannot be controlled other than through rigid constraints on
the resulting product.
Within the empirical studies group, the emphasis is on understanding the strengths and weak-
nesses of methods and tools in order to tailor them to the speci�c goals of a particular software
project.

[he purpose of this workshop was to gather together those member of the software engineer-
ng community who support an engineering approach, based upon empirical studies to provide
m interchange of ideas and paradigms for research.

l�his empirical approach is made dif�cult when one observes that in practical software organi-
rations, project contexts (i.e., project goals and enviromnental characteristics) vary from
)l�0jCCt to project. Thus, no single technology or method can be expected to work well in all
:ontexts and observing software phenomena out-of-context, seems to be doomed to fail. As
am of the learning process, we need to characterize and understand the project context and
rnderstand the various phenomena relative to those context and learn in an incremental and
wolutionary manner. We need to replicate experiments in different contexts to fully under-
rtand the nature of the various phenomena and be able to build models to facilitate learning.

rnprovement oriented approaches, that take into account the evolutionary and experimental
nature of software have recently been suggested as a framework for studying the relationship
aetween product and knowledge engineering.
[�his framework bears the potential of integrating the e�orts of the mathematical analysis, sys-
em building, and empirical studies approaches in a promising way. This improvement ap-
mach is based on the use of empirical technology for building models. Formal methods as
vell as system building technology can be elevated to the level of useful technologies from an
zngineering perspective if augmented with knowledge of their e�ectiveness based on empiri-
:al evidence.

We have only begun to understand the experimental nature of software engineering, the role
if empirical studies and measurement within software engineering, and the mechanisms need-

Experimental Software Engineering Issues:
A Critical Assessment and Future Directions

H. Dieter Rombach, Universitiit Kaiserslautem, Gennany
Victor R. Basili, University of Maryland, USA

Richard R. Selby, University of California, USA

Since its inception in 1968, software engineering has struggled to find its identity. Today, we
can identify three different approaches to study of the discipline of software engineering in the
research community: the mathematical or formal methods approach, the system building ap
proach, and the empirical studies group. Within the mathematical or formal methods camp,
the emphasis is on finding better formal methods and languages and software development is
viewed as a mathematical transformation process. Within the system building group, the em
phasis is on finding better methods for structuring large systems and software development is
viewed as a creative task which cannot be controlled other than through rigid constraints on
the resulting product.

Within the empirical studies group, the emphasis is on understanding the strengths and weak
:iesses of methods and tools in order to tailor them to the specific goals of a particular software
?roject.

Ilte purpose of this workshop was to gather together those member of the software engineer
ng community who support an engineering approach, based upon empirical studies to provide
m interchange of ideas and paradigms for research.

[ms empirical approach is made difficult when one observes that in practical software organi
!':ations, project contexts (i.e., project goals and environmental characteristics) vary from
>roject to project. Thus, no single technology or method can be expected to work well in all
:ontexts and observing software phenomena out-of-context, seems to be doomed to fail. As
>art of the learning process, we need to characterize and understand the project context and
mderstand the various phenomena relative to those context and learn in an incremental and
:volutionary manner. We need to ~plicate experiments in different contexts to fully under
;tand the nature of the various phenomena and be able to build models to facilitate learning.

rnprovement oriented approaches, that take into account the evolutionary and experimental
1ature of software have recently been suggested as a framework for studying the relationship
>etween product and knowledge engineering.

fbis framework bears the potential of integrating the efforts of the mathematical analysis, sys
em building, and empirical studies approaches in a promising way. This improvement ap-
1roach is based on the use of empirical technology for building models. Fonnal methods as
vell as system building technology can be elevated to the level of useful technologies from an
:ngineering perspective if augmented with knowledge of their effectiveness based on empiri
:al evidence.

We have only begun to understand the experimental nature of software engineering, the role
,f empirical studies and measurement within software engineering, and the mechanisms need-

3

ed to apply them successfully. Seminar discussion was focused on assessing past accomplish-
ments within the experimental software engineering community and proposing necessary
future steps. The discussion included various topics of interest to experimental software engi-
zieeringt

(1 1) Identifying the appropriate paradigms for software engineering (2) Understanding the
range of different contexts for empirical studies in software engineering

(3) Devising the appropriate procedures and mechanisms for empirical studies

(4) Guiding the use of empirical data to build or improve existing software models

(5) Identifying appropriate concepts and mechanisms for packaging existing models for
reuse across projects

(6) Proposing appropriate means for distributing zxperimental ideas to practitioners and
students

It was clear for the workshop discussion that a lot has been achieved in the past from both the
practitioner's as well as the researcher's perspective.

Nevertheless. much more research and infusion of experimental software engineering technol-
ogy into practice is needed. Advances in research and practice are highly interdependent.

Advances of the state-of-the-practice require more mature research results; advances in re-
search - especially in the area of experimental software engineering - require early feedback
from practical experience.

The following sections provide a snapshot of some of the most important achievements iden-
ti�ed by the seminar attendees:

PAST ACHIEVEMENTS (Practitioner's Perspective):

Each workshop attendee was in a position to report about empirical studies and/or measure-
ment programs and subjective results ranging from increased understanding of certain soft-
ware engineering phenomena or the improvements of real-world software processes. Most of
these achievements are not well documented or documentation is company-con�dential.
Achievements are typically based on empirical studies in very speci�c contexts and cannot be
generalized due to the variability of contexts across different organizations.

The workshop attendees felt that in order to live up to the theme of the workshop, we needed
to come up with �documented� results which can be analyzed by others and can be used to
convey the potential value of empirical work in terms of measurable bene�ts. One outstanding
sample of achievements possible through empirical studies within an experimental framework
was reported from the Software Engineering Laboratory (SEL) at NASA's Goddard Space
Flight Center and will be mentioned here as an example:

- People oriented technologies appear to be most effective (e.g., inspections,
Cleanroom) as opposed to automated tools

- Commonly accepted complexity measures are not very meaningful in the SEL
domain

o Ada Software costs more to develop but less to deliver because of reuse (mul-
tiple experiments)

ed to apply them successfully. Seminar discussion wa., focused on assessing past accomplish
ments within the experimental software engineering community and proposing necessary
fu ture steps. T11e discussion included vanou!> topics of interest to experimental software engi
;,eenng:

(l .1 Identifying the appropriate parn(!1gms for software engineering (2) Understanding the
range of different contexts fo r empirical studie•; in software engineering

13) Devising the appropriate procedures and mech.misms for empirical studies

(4) Guiding the use of empincal data to build or improve existing software models

(5) Identifying appropriate concept" and mechani)ms for packaging existing models for
reuse across proJects

(6) Proposing appropriate means for distributing :.xperimental ideas to practitioners and
students

It was clear for the workshop disc ussion that a lot has been achieved in the past from both the
practitioner's as well as the researcher's perspective.

Nevertheless. much more research and infusion of experimental software engineering technol
ogy into practice is needed. Advances in research and practice are highly interdependent.

Advances of the state-of-the-practice require more mature research results; advances in re
search - especially in the area of experimental software engineering - require early feedback
from practical experience.

The following sections provide a snapshot of some of the most important achievements iden
tified by the seminar attendees:

PAST ACHlE VEMENTS (Practitioner's Perspective):

Each workshop attendee was in a position to report about empirical studies and/or measure
ment programs and subjective results ranging from increased understanding of certain soft
ware engineering phenomena or the improvements of real-world software processes. Most of
these achievements are not well documented or documentation is company-confidential.
Achievements are typically based on empirical studies in very specific contexts and cannot be
generalized due to the variability of contexts across different organizations.

The workshop attendees felt that in order to live up to the theme of the workshop, we needed
to come up with "documented" results which can be analyzed by others and can be used to
convey the potential value of empirical work in terms of measurable benefits. One outstanding
sample nf achievements possible through empirical studies within an experimental framework
w~h reported from the Software Engineering Laboratory (SEL) at NASA's Goddard Space
Flight Center and will be mentioned here as an example:

• People oriented technologies appear to be most effective (e.g., inspections,
Cleanroom) as opposed to automated tools

• Commonly accepted complexity measures are not very meaningful in the SEL
domain

• Ada software costs more to develop but less to deliver because of reuse (mul
tiple experiments)

4

Inspections by stepwise abstraction reading are more effective and more cost
effective than basic functional or structural testing techniques (Basili. Selby)

Models/relationships developed can be incorporated into the management pro-
cess (e.g., manager's handbook) and supported (e.g., SME - an automated
environment)

The error rates in development projects were reduced signi�cantly through the
use of Cleanroom (e.g., 33% on a series of 3 projects)

Environmental heritage/context/legacy is the dominant impact on processes
and products (e.g., use of Ada over time)

Productive reuse is driven by process reuse and packaging of design - NOT by
code packaging (e.g., Ada/OOD experiments)
Some effective processes in other contexts are inappropriate for the SEL (e.g.,
IV&V)

Personnel variation in productivity are tremendous (factors of 3 or 4 for large
systems; factors of up to 15 in small Systems)

Design structure (strength/compiling) is a good predictor of module defects
(Card/Page/McGarry)

Examples from other local environments were reported but cannot be reported in this brief
summary.

PAST ACHIEVEMENTS (Researcher's Perspective):

The most important lessons learned about empirical studies and measurement included a
broad agreement regarding the experimental nature of software engineering. It was the com-
mon view that empirical studies are needed as a driver for learning and improvement, and that
such studies (1) need to be performed with a goal and hypothesis in mind and (2) that context
characteristics need to be taken into account when interpreting measurement data.

The most frequently occurring themes during the discussion and on the questionnaires were

Software engineering research needs to be driven by empirical studies

Metrics and data in isolation (i.e., without context) are useless

No single set of metrics is universally best

Sound empirical approaches are essential
Empirical studies have produced results in local contexts; we have not been
able to generalize local results a

Again, the example lessons learned within the SEL are given as an example:
The purpose of experimentation should be for self-improvement and self-un-
derstanding rather than inter-organization and inter-country comparison
Expectation of N to 1 improvement in productivity over �nite time (5 to l0
years) is baseless and won't happen

We are most effective when using multiple processes based on context (e.g.,
the SEL uses Fortran/Functional-Decomposition-based design/reuse-oriented
waterfall, Ada/OOD/reuse-oriented waterfall, and Cleanroom)

• Inspections by stepwise abstraction reading are more effective and more cost
effective than basic functional or structural testing techniques (Basili. Selby}

• Models/relationships developed can be incorporated into the management pro
cess (e.g .. manager's handbook) and supported (e.g .. SME - an automated
environment)

• The error rates in development projects were reduced significantly through the
use of Cleanroom (e.g .• 33% on a series of 3 projects)

• Environmental heritage/context/legacy is the dominant impact on processes
and products (e.g .• use of Ada over time)

• Productive reuse is driven by process reuse and packaging of design - NOT by
code packaging (e.g .• Ada/00D experiments)

• Some effective processes in other contexts are inappropriate for the SEL (e.g ..
IV&V)

• Personnel variation in productivity are tremendous (factors of 3 or 4 for large
systems; factors of up to 15 in small systems)

• Design structure (strength/compiling) is a good predictor of module defects
(Card/Page/McGarry)

Examples from other local environments were reported but cannot be reported in this brief
summary.

PAST ACHIEVEMENTS (Researcher's Perspective):

The most important lessons learned about empirical studies and measurement included a
broad agreement regarding the experimental nature of software engineering. It was the com
mon view that empirical studies are needed as a driver for learning and improvement, and that
such studies (1) need to be perfonned with a goal and hypothesis in mind and (2) that context
characteristics need to be taken into account when interpreting measurement data.

The most frequently occurring themes during the discussion and on the questionnaires were

• Software engineering research needs to be driven by empirical studies

• Metrics and data in isolation (i.e., without context) are useless

• No single set of metrics is universally best

• Sound empirical approaches are essential

• Empirical studies have produced results in local contexts; we have not been
able to generalize local results

Again, the example lessons learned within the SEL are given as an example:

• The purpose of experimentation should be for self-improvement and self-un
derstanding rather than inter-organization and inter-country comparison

• Expectation of N to 1 improvement in productivity over finite time (5 to 10
years) is baseless and won't happen

• We are most effective when using multiple processes based on context (e.g.,
the SEL uses Fortran/Functional-Decomposition-based design/reuse-oriented
waterfall, Ada/00D/reuse-oriented waterfall, and Ocanroom)

5

- Each of the above technologies and processes had to be tailored to the environ-
ment

- Understanding (baselining) is absolutely mandatory as a �rst step (before
planning, controlling, technology transfer)

o Process de�nition and clari�cation of the empirical process is mandatory for
successful experimentation and measurement (i.e., Doctor heal thyself)

o The process improvement paradigm is equally important for the software de-
velopment task and the experimentation/data collection task

o The process for empirical studies has to be well de�ned and improved

- There must be a goal/rational for data collection

o Data by itself provides minimal, most likely erroneous or detrimental insights
v Measurement data has intrinsic imprecision and inconsistency, and incomple-

tely represented context. This drives the need to study trends.
o More data does not necessarily mean better results (i.e., National databases for

measurement data are a waste of time and resources)

o Packaging of experience is the key to success - but is rarely done effectively.

o Packaging (i.e., development of local standards) needs to be experience driven
(e. g, 2167A is incomplete approach if it is not based upon experience)

v Effective cookbooks can be developed for particular domains (e.g., SEL mea-
surement handbook, SEL management handbook)

o Experimentation requires two identi�able, separate (but cooperating) organi-
zational infrastructure components, which both involve cost

- overhead to project (noise -- 2%)

- analysis and synthesis of data (8-10%)

- support (quality assurance, databases,...)
o Developers treat data collection/experimentation as an annoyance only

0 Infusion of signi�cant process change (e.g., Ada, Cleanroom, OOD) requires 5
to 10 years to mature within an organization.

The attendees agreed, during the discussion of important topics for future consideration that
there is a need for the continued development of experimental, empirical and infrastructure
technology. There is also a need for more wide-spread practical applications of existing em-
pirical methods in order to build models of interesting software product and process aspects,
and characterize the potential and litnits of existing technologies as a basis for systematic soft-
ware engineering.

In summary, important accomplishments towards the manifestation of empirical studies as a
major subdiscipline of software engineering, and its in�uence in moving software engineering
as a whole towards a true engineering discipline were identi�ed. By the end of the workshop.
most of the attendees acknowledged that now they feel part of a true community of empirical-
ly oriented software engineers. In order to foster that sense of community, future gatherings
like this were suggested, and a e-mail list for people interested in empirical software engineer-
ing research was suggested.

NOTE: Since October 1992 such an e-mail list (empirical-se@infomratik.uni-ld.de) exists!

• Each of the above technologies and processes had to be tailored to the environ
ment

• Understanding (baselining) is absolutely mandatory as a first step (before
planning, controlling, technology transfer)

• Process definition and clarification of the empirical process is mandatory for
successful experimentation and measurement (i.e., Doctor heal thyself)

• The process improvement paradigm is equally important for the software de-
velopment task and the experimentation/data collection task

• The process for empirical studies has to be well defined and improved

• There must be a goal/rational for data collection

• Data by itself provides minimal. most likely erroneous or detrimental insights

• Measurement data has intrinsic imprecision and inconsistency, and incomple
tely represented context. This drives the need to study trends.

• More data does not necessarily mean better results (i.e., National databases for
measurement data are a waste of time and resources)

• Packaging of experience is the key to success - but is rarely done effectively.

• Packaging (i.e., development of local standards) needs to be experience driven
(e.g, 2167 A is incomplete approach if it is not based upon experience)

• Effective cookbooks can be developed for particular domains (e .g., SEL mea
surement handbook. SEL management handbook)

• Experimentation requires two identifiable, separate (but cooperating) organi-
zational infrastructure components, which both involve cost

overhead to project (noise -- 2%)

analysis and synthesis of data t8-10%)
support (quality assurance, databases, ...)

• Developers treat data collection/experimentation as an annoyance only
0 Infusion of significant process change (e.g., Ada, Cleanroom, 00D) requires 5

to 10 years to mature within an organization.

The attendees agreed, during the discussion of important topics for future consideration that
there is a need for the continued development of experimental, empirical and infrastructure
technology. There is also a need for more wide-spread practical applications of existing em
pirical methods in order to build models of interesting software product and process aspects,
and characterize the potential and limits of existing technologies as a basis for systematic soft
ware engineering.

In summary, important accomplishments towards the manifestation of empirical studies as a
major subdiscipline of software engineering, and its influence in moving software engineering
as a whole towards a true engineering discipline were identified. By the end of the workshop,
most of the attendees acknowledged that now they feel part of a true community of empirical
ly oriented software engineers. In order to foster that sense of community, future gatherings
like this were suggested, and a e-mail list for people interested in empirical software engineer
ing research was suggested.

NOTE: Since October 1992 such an e-mail list (empirical-se@informatik.uni-ld.de) exists!

6

The Experimental Paradigm in Software Engineering

Victor R. Basili, University of Maryland, College Park

' There is a need to understand software and engineering. Software is inherently complex; and
there is a lack of well de�ned primitives or components of the artifact and the discipline. We
need good inductive and deductive paradigms to build. analyze and evaluate models of the
software process and products, various aspects of the environment, e. g. people, organization,
and the interactions of these models. The experimental paradigm requires the building of
laboratory environments for experimenters, which are useful to developers, and allow us to
package models. This can be done and has been done at NASA/GSFC in the Software
Engineering Laboratory (SE) and has been effective.

Pro�le of an Artifact Assessment Capability

William W. Agresti, The MITRE Corporation, McLean, Virginia

We outline features of an engineering software artifact assessment capability to analyze
evolving Ada designs. Experience developing this capability have led to our speculation about
the role and practice of empirical software engineering. We discuss the role of identifying
leading indicators and "speaking with data." Viewing our industrial software projects as
"naturally" occurring experiments and possibly using them in large, simple trials study are
suggested.

Problems in Modeling the Software Development Process as an
Adventure Game

Jochen Ludewig, Institut für Informatik, Universität Stuttgart

In our group at Stuttgart University, we are working on a project named SESAM (= Software
Engineering Simulation using Animated Models.)
-The goal of SESAM is to provide a Simulator which can be used like an adventure game, or a
flight simulator. Its user plays the role of a software project manager, who has to control his or
her project so that it is finished within schedule and budget, delivering software of the required
level of quality.
For such a simulator, we need a model (e. g. a set of differential equations) describing the
change of state variables over time, which may be in�uenced by other state variables, and by
the user's actions. Such a model (which is actually a theory of the software development
process) does not exist today.

Building a series of prototypes, which are based on increasingly sophisticated hypotheses, we
try to get to a model (= a simulator) which can be used for teaching Software Engineering.

Support of Experimentation by Measurement Theory

Horst Zuse, Technische Universität Berlin

During the last years much attention has been directed toward the measurement of the
properties and the complexity of software. The major goal using software measures is to get

I 7

The Experimental Paradigm in Software Engineering

Victor R. Basili, University of Maryland, College Park

· There is a need to understand software and engineering. Software is inherently complex; and
there is a lack of well defined primitives or components of the artifact and the discipline. We
need good inductive and deductive paradigms to build, analyze and evaluate models of the
software process and products, various aspects of the environment, e.g. people, organization,
and the interactions of these models. The experimental paradigm requires the building of
laboratory environments for experimenters, which are useful to developers, and allow us to
package models. This can be done and has been done at NASNGSFC in the Software
Engineering Laboratory (SE) and has been effective.

Profile of an Artifact Assessment Capability

William W. Agresti, The MITRE Corporation, McLean, Virginia

We outline features of an engineering software artifact assessment capability to analyze
evolving Ada designs. Experience developing this capability have led to our speculation about
the role and practice of empirical software engineering. We discuss the role of identifying
leading indicators and "speaking with data." Viewing our industrial software projects as
"naturally" occurring experiments and possibly using them in large, simple trials study are
suggested.

Problems in Modeling the Software Development Proce~ as an

Adventure Game

Jochen Ludewig, Institut ftir Inforrnatik, Universitat Stuttgart

In our group at Stuttgart University, we are working on a project named SESAM (= Software
Engineering Simulation using Animated Models.)

The goal of SESAM is to provide a Simulator which can be used like an adventure game, or a
flight simulator. Its user plays the role of a software project manager, who has to control his or
her project so that it is finished within schedule and budget, delivering software of the required
level of quality.

For such a simulator, we need a model (e.g. a set of differential equations) describing the
change of state variables over time, which may be influenced by other state variables, and by
the user's actions. Such a model (which is actually a theory of the software development
process) docs not exist today.

Building a series of prototypes, which are based on increasingly sophisticated hypotheses, we
try to get to a model (= a simulator) which can be used for teaching Software Engineering.

Support of Experimentation by Measurement Theory

Horst Zusc, Technische Universitat Berlin

During the last years much attention has been directed towaro the measurement of the
properties and the complexity of software. The major goal using software measures is to get

7

reliable software. an objective representation of the properties of software and the software
development process by numbers, and a prediction which factors of software complexity have
been developed in order to determine the static complexity of single programs (intra-modular
complexity) and of entire software systems (inter-modular complexity) during the phases of the
software life-cycle.

Since software complexity cannot be de�ned mathematically, it is necessary to make
experiments in order to get correlations between software metrics and errors or metrics and
factors of software maintenance. Validation of software metrics is another important topic
which is close connected to correlations between attributes of objects.

However, to validate metrics and to interpret correlations between attributes of software is not
an easy task. We think, that measurement theory can help here to get better results. The reason
for recommending the use of measurement theory for a support of experiments, correlations
and validation is that measurement theory deals with the "connection" of the empirical world
with the numerical world. Measurement theory gives hypotheses about reality._

Software Engineering as an Organizational Challenge

Günther R. Koch, 2i Industrial InformaticsGmbH Freiburg

The corresponding European project to SEI's Assessment Methodology Project is
BOOTSTRAP (funded under ESPRIT). The basic hypotheses we constructed from "market
research" inputs is that the software (engineering) exists in the first phase is a managerial and
organizational crisis, then comes methodology and only in third line technology. Thus our
investigation method is to assess software engineering units in these three dimensions.
Different from SEI BOOTSTRAP conclude a "quality pro�le" per assessed organizational unit
and uses this profile for stimulating self improvement processes. From thisexperience we are
motivated to start in depth research on how to model maturity of organizations avoiding
"absolute" ordinal scales (as by SEI).

Fundamental Role of Measurement in Software Engineering

Norm Fenton, Centre for Software Reliability, City University London

There are many reasons why we need to use measurement in software engineering. For
example, we need to use measurement if we wish to assess the reliability of our products, the
productivity of personnel, the relative costs of different process methods, or to make accurate
predictions of costs/schedules. However, one of the most important uses of measurement is to
assess the efficacy of software engineering inethods/techniques/tools. The whole profession
has been plagued by the constant introduction of new proposed "technological fixes", some of
whose ef�cacy is demonstrated by any more than anecdotal evidence. Thus software
practitioners are at the mercy of "salesmen" or self-appointed experts when they come .to
choose new methods/tools. We believe it is possible to assess objectively the efficacy of
methods; using case studies this is done by measuring the extent to which the method has been
applied, the 'quality' (notably reliability, maintainability) of the product which result, and the
cost of applying the method. We are currently using this approach to assess the efficacy of
standards. (SMARTIE project)

reliable software:. an objective representation of the properties of software and the software
development process by numbers, and a prediction which factors of software complexity have
been developed in order to determine the static complexity of single programs (intra-modular
complexity) and of entire software systems (inter-modular complexity) during the phases of the
software life-cycle.

Since software complexity cannot be defined mathematically, it is necessary to make
experiments in order to get correlations between software metrics and errors or metrics and
factors of software maintenance. Validation of software metrics is another important topic
which is close connected to correlations between attributes of objects.

However, to validate metrics and to interpret correlations between attributes of software is not
an easy task. We think, that measurement theory can help here to get better results. The reason
for recommending the use of measurement theory for a suppon of experiments, correlations
and validation is that measurement theory deals with the "connection" of the empirical world
with the numerical world. Measurement theory gives hypotheses about reality._

Software Engineering as an Organizational Challenge

Gunther R. Koch, 2i Industrial Informatics GmbH Freiburg

The corresponding European project to SEI's Assessment Methodology Project is
BOOTSTRAP (funded under ESPRIT). The basic hypotheses we constructed from "market
research" inputs is that the software (engineering) exists in the first phase is a managerial and
organizational crisis, then comes methodology and only in third line technology. Thus our
investigation method is to assess software engineering units in these three dimensions.
Different from SEI BOOTSTRAP conclude a "quality profile" per assessed organizational unit
and uses this profile for stimulating self improvement processes. From this experience we are
motivated to stan in depth research on how to model maturity of organizations avoiding
"absolute" ordinal scales (as by SEO.

Fundamental Role of Measurement in Software Engineering

Norm Fenton, Centre for Software Reliability, City University London

There are many reasons why we need to use measurement in software engineering, For
example, we need to use measurement if we wish to assess the reliability of our products, the
productivity of personnel, the relative costs of different process methods, or to make accurate
predictions of costs/schedules. However, one of the most important uses of measurement is to
assess the efficacy of software engineering methods/techniques/tools. The whole profession
has been plagued t,y the constant introduction of new proposed "technological fixes", some of
whose efficacy is demonstrated by any more than anecdotal evidence. Thus software
practitioners are at the mercy of "salesmen" or self-appointed experts when they come to
choose new methods/tools. We believe it is possible to assess objectively the efficacy of
methods; using case studies this is done by measuring the ex.tent to which the method has been
applied, the 'quality' (notably reliability, maintainability) of the product which result, and the
cost of applying the method. We are currently using this approach to assess the efficacy of
standards. (SMARTIE project)

8

Manny Lehman, Imperial College. London

The first issue must be to define Software engineering. These is a whole spectrum of
viewpoints. Mine, which I regard of fundamental importance is based on a distinction between
broad definition of programming and programmers on the one hand and software engineering
and software engineers on the other. The former are product engineers responsible for the
development and evolution of specific systems or system elements. The latter on the other
hand, are concemed with the processes by which software is developed, maintained
satisfactory and evolved and the support of those processes is methods and tools. They are
process engineers. Clear the terminology is not, of itself important. But the existence of these
two roles the different but complementary contribution that they wake to software development
and to the increasing exploitation of computer technology must be recognized, understood and
its implication applied. The "end" in software technology is the software product which must
be satisfactory in application and remain satisfactory as (as a consequence of feedback and
system exogenous change) the software must be changed and evolved. Software maintenance
is the maintenance of user satisfaction, and of the validity of the assumption set embedded in
software. Maintaining satisfaction, the quality of the product in relation to its application
domain is the need and the good. The evolution process is the means whereby we achieve the
goal. The quality of a product can, in general, be no better than the quality by the process that
produced it.

Reuse of Models

Stuart Feldman Bellcore, Monistown, NJ

On the main assigned topic of packaging for reuse, my main point is that models should be
created and packaged for a purpose; more artifacts (models, process descriptions, etc.) are
thought to be reusable than are reused. The first step in reuse is finding something that meets
the need and deciding to investigate it further. Later steps include detailed checking of
suitability and actual instantiation.

The modelable components can be products, processes, or mixtures (such as executable data).

The most important problem is that first step: making clear why a major part should be
utilized. If a process model does not come with appropriate descriptive information,
references to earlier uses and limitations, and perhaps tools to simplify application, it will
probably not be chosen. Pragmatists tend to look for strong evidence that application will
be of direct value, leading to results that are better, soon, cheaper, or surer. If product data do
not come with some sort of certi�cation or indication of usability, they will also be ignored.

Later, more detailed infonnation is needed to verify that a component actually meets the
current need or can be modi�ed to do so. Process models are unlikely to be so numerous in
the next few years that sophisticated query or storage facilities will be needed. Libraries of
objects and other code components do demand such facilities.

There are many examples of successfully reused product data, including mathematics
libraries, widget collections, and other GUI interfaces. Major subsystems and other libraries
will typically be reused in specific industrial settings. Processes are commonly reused when
embedded in a tool; many people do not even think of these applications as process reuse.
Much rarer is reuse of descriptions of processes, except those embedded in textbooks or local
rule books.

Manny Lehman, Imperial College, London

The first issue must be to define Software engineering. These is a whole spectrum of
viewpoints. Mine, which I regard of fundamental importance is based on a distinction between
broad definition of programming and programmers on the one hand and software engineering
and software engineers on the other. The former are product engineers responsible for the
development and evolution of specific systems or system elements. Tl_le latter on the other
hand, are concerned with the processes by which software is developed, maintained
satisfactory and evolved and the support of those processes is methods and tools. They are
process engineers. Clear the terminology is not, of itself important. But the existence of these
two roles the different but complementary contribution that they wake to software development
and to the increasing exploitation of computer technology must be recognized, understood and
its implication applied. The "end" in software technology is the software product which must
be satisfactory in application and remain satisfactory as (as a consequence of feedback and
system exogenous change) the software must be changed and evolved. Software maintenance
is the maintenance of user satisfaction, and of the validity of the assumption set embedded in
software. Maintaining satisfaction, the quality of the product in relation to its application
domain is the need and the good. The evolution process is the means whereby we achieve the
goal. The quality of a product can, in general, be no better than the quality by the process that
produced it.

Reuse of Models

Stuart Feldman Bellcore, Morristown, NJ

On the main assigned topic of packaging for reuse, my main point is that models should be
created and packaged for a purpose; more artifacts (models, process descriptions, etc.) are
thought to be reusable than are reused. The first step in reuse is finding something that meets
the need and deciding to investigate it further. Later steps include detailed checking of
suitability and actual instantiation.

The modelable components can be products, processes, or mixtures (such as executable data).

The most important problem is that first step: making clear why a major part should be
utilized. If a process model does not come with appropriate descriptive information,
references to earlier uses and limitations, and perhaps tools to simplify application, it will
probably not be chosen. Pragmatists tend to look for strong evidence that application will
be of direct value, leading to results that are better, soon, cheaper, or surer. If product data do
not come with some sort of certification or indication of usability, they will also be ignored.

Later, more detailed information is needed to verify that a component actually meets the
current need or can be modified to do so. Process models are unlikely to be so numerous in
the next few years that sophisticated query or storage facilities will be needed. Libraries of
objects and other code components do demand such facilities.

There are many examples of successfully reused product data, including mathematics
libraries, widget collections, and other GUI interfaces. Major subsystems and other libraries
will typically be reused in specific industrial settings. Processes are commonly reused when
embedded in a tool; many people do not even think of these applications as process reuse.
Much rarer is reuse of descriptions of processes, except those embedded in textbooks or local
rule books.

9

Software Product Research

There is a crying need for credible information on software artifacts. At this late date, we do
not have information on statistics of static and dynamic structure, architecture and design
relations, failure data, and so forth, for a documented variety of contexts. Without such
information, tool research is seriously hampered and software research is difficult. An effort
should be initiated to organize such data from a variety of industrial sources, with uniform
definitions and statistics conventions. Bellcore would contribute to such an effort.

Process-and-Context-Model Based Measurements

Nazim H. Madhavji, School of Computer Science, McGill University, Montreal, Canada

Measurement of a software development process is an important way to understand and
improve its quality. Ther is an overwhelming evidence, however, that measurements were
carried out at all, are predominantly applied to entities of informally de�ned or unde�ned
software processes. In addition, the context of the process is rarely documented. Consequently,
there are: inconsistencies in data gathered in processes; difficulties in determining reasons for
such inconsistencies; concems regarding the validity of the interpretations, especially when the
context is not clear", invalid measurement points (w.r.t. project objectives) especially when
processes have changed; and other such problems in software projects.

Our hypothesis is that underlying a process measurement programme should be defined
process models so that measurements have their rationale made explicit in the models. The
relationship between process models and measurements is analogous to the relationship
between software requirements and code. There are many anticipated benefits of the model-
based measurement programme. However, new problems that need to be solved to make this
approach viable include: management of process models (w.r.t. fruitful representation of
enacted processes); construction and use of an effective change mechanism to manage changes
in process models and processes, and assess the impact of changes on measurements.

Model Reuse and Technology Transfer

Albert Endres, IBM Development Laboratory, Böblingen, Germany

Quantitative models are a widely accepted means to predict and to control software quality and
development productivity. If these models are updated to re�ect the positive effect of new
processes or new technologies, and if the same models are reused by several projects, this will
make the advantage of the new technology visible and will create pressure to adopt it. Thus,
reuse of models becomes a vehicle for technology transfer.

In my talk, I illustrated the above using a defect removal model as an example.

Norman F. Schneidewind, Naval Postgraduate School, Monterey, CA

We explain why it is important to validate metrics for use on multiple projects and how the risk
of doing so can be assessed. We also point out that by prototyping the measurement plan on a
project, we can eliminate the risk inherent in the process of validating metrics on one project
and applying them on another project, where the two projects may have significant differences
in application and domain environment characteristics. In order to support the application of
metrics across multiple projects, there must be reuse of methodologies, metrics, and metrics
processes. A metrics methodology is reusable when there is a process associated with the

10

Software Produu Research

There is a crying need for credible information on software artifacts. At this late date, we do
not have information on statistics of static and dynamic structure, architecture and design
relations, failure data, and so forth, for a documented variety of contexts. Without such
information, tool research is seriously hampered and software research is difficult. An effon
should be initiated to organize such data from a variety of industrial sources, with uniform
definitions and statistics conventions. Bellcore would contribute to such an effon.

Process-and-Context-Model Based Measurements

Nazirn H. Madhavji, School of Computer Science, McGill University, Montreal, Canada

Measurement of a software development process is an imponant way to understand and
improve its quality. Ther is an overwhelming evidence, however, that measurements were
carried out at all, are predominantly applied to entities of informally defined or undefined
software processes. In addition, the context of the process is rarely documented. Consequently,
there are: inconsistencies in data gathered in processes; difficulties in determining reasons for
such inconsistencies; concerns regarding the validity of the interpretations, especially when the
context is not clear; invalid measurement points (w.r.t. project objectives) especially when
processes have changed; and other such problems in software projects.

Our hypothesis is that underlying a process measurement programme should be defined
process models so that measurements have their rationale made explicit in the models. The
relationship between process models and measurements is analogous to the relationship
between software requirements and code. There are many anticipated benefits of the model
based measurement programme. However, new problems that need to be solved to make this
approach viable include: management of process models (w.r.t fruitful representation of
enacted processes); construction and use of an effective change mechanism to manage changes
in process models and processes, and assess the impact of changes on measurements.

Model Reuse and Technology Transfer

Alben Endres, IBM Development Laboratory, Btsblingen, Germany

Quantitative models are a widely accepted means to predict and to control software quality and
development productivity. If these models are updated to reflect the positive effect of new
processes or new technologies, and if the same models are reused by several projects, this will
make the advantage of the new technology visible and will create pressure to adopt it. Thus,
reuse of models becomes a vehicle for technology transfer.

In my talk, I illustrated the above using a defect removal model as an example.

Norman F. Schneidewind, Naval Postgraduate School, Monterey, CA

We explain why it is irnponant to validate metrics for use on multiple projects and how the risk
of doing so can be assessed. We also point out that by prototyping the measurement plan on a
project, we can eliminate the risk inherent in the process of validating metrics on one project
and applying them on another project, where the two projects may have significant differences
in application and domain environment characteristics. In order to suppon the application of
metrics across multiple projects, there must be reuse of methodologies, metrics, and metrics
processes. A metrics methodology is reusable when there is a process associated with the

10

methodology that can be applied across projects. Both the metrics and the process for applying
metrics must be reusable Metrics are reusable when validated metrics can be applied across
projects. using the methodology. An example is given of assessing risk by using the con�dence
limits of a metric to evaluate the consequences of best-case and worst-case outcomes of using
metrics on multiple projects.

Kevin Wentzel, Hewlett Packard Laboratories, Palo Alto, CA

Models for use in software engineering include analytical, process, organizational and
technological models. These models are best developed, tested and tuned in an experimental
environment which mixes investigators with practical users of the models. Models should be
linked or integrated into domain speci�c kits oriented toward user's goals to be transferred and
used effectively. Application of the experimental paradigm to software engineering research is
difficult. Controls are almost impossible to establish in realistic situations. The involvement of
humans with their varying interests, abilities and motivations make experiments difficult to
evaluate. But, the mix of experiments and practitioners is essential if we want our results to be
applicable to more than a research laboratory.

Establishing the Fundamentals of Software Engineering

Dan Hoffman, University of Victoria BC Canada

There is a crippling lack of agreement as to what constitutes the fundamental techniques of
Software Engineering. In industry, there is little use of explicitly de�ned methods. Academic
proposals, though promising, have seen little industrial use and evaluation. Pilot projects in
industry can help establish the fundamentals by showing which techniques are effective in
various situations. The critical question is: how should these projects be organized and
instrumental so that the results are convincing and widely applicable?

Software Engineering is not Engineering - and maybe never will be

Bev Littlewood, Centre for Software Reliability, City University London

It seems necessary (albeit perhaps not suf�cient) that we are able to predict and control before
we can claim that we are engineering our systems. Our ability to do this is presently limited,
and seems not to have improved significantly in the past ten years. Some reasons for this are

- dearth of adequate metrics for attributes of interest (e. g. complexity)

� very incomplete identification of the attributes that may be important - resulting in
confounding of factors and invalid extrapolation of results to moved circumstances

- poor models for the relationships between metrics/attributes

- generally poor validation: most s/w metrics research is presented and justified to potential
users via mere anecdote

One exception to this dismal picture is software reliability growthmodeling. In particular, here
there are now sophisticated validation techniques that allow a user to know whether (or not) the
reliability predictness are trustworthy on his/her particular project.
The downside is that the scope of these reliability models is very restricted. The lesson may be
that, if we learn to walk before we run, we may be able to obtain a scientifically respectable
(but limited) theory.

11

methodology that can be applied across projects. Both the metrics and the process for applying
metrics must be reusable Metrics are reusable when validated metrics can be applied across
projects. using the methodology. An example is given of assessing risk by using the confidence
limits of a metric to evaluate the consequences of best-case and worst-case outcomes of using
metrics on multiple projects.

Kevin Wentzel, Hewlett Packard Laboratories, Palo Alto, CA

Models for use in software engineering include analytical, process, organizational and
technological models. These models are best developed, tested and tuned in an experimental
environment which mixes investigators with practical users of the models. Models should be
linked or integrated into domain specific kits oriented toward user's goals to be transferred and
used effectively. Application of the experimental paradigm to software engineering research is
difficult. Controls are almost impossible to establish in realistic situations. The involvement of
humans with their varying interests, abilities and motivations make experiments difficult to
evaluate. But, the mix of experiments and practitioners is essential if we want our results to be
applicable to more than a research laboratory.

Establishing the Fundamentals of Software Engineering

Dan Hoffman, University of Victoria BC Canada

There is a crippling lack of agreement as to what constitutes the fundamental techniques of
Software Engineering. In industry, there is little use of explicitly defined methods. Academic
proposals, though promising, have seen little industrial use and evaluation. Pilot projects in
industry can help establish the fundamentals by showing which techniques are effective in
various situations. The critical question is: how should these projects be organized and
instrumental so that the results are convincing and widely applicable?

Software Engineering is not Engineering - and maybe never will be

Bev Littlewood, Centre for Software Reliability, City University London

It seems necessary (albeit perhaps not sufficient) that we are able to predict and control before
we can claim that we are engineering our systems. Our ability to do this is presently limited,
and seems not to have improved significantly in the past ten years. Some reasons for this are ·

- dearth of adequate metrics for attributes of interest (e.g. complexity)

- very incomplete identification of the attributes that may be important - resulting in
confounding of factors and invalid extrapolation of results to moved circumstances

- pOQr models for the relationships between metrics/attributes

- generally poor validation: most s/w metrics research is presented and justified to potential
users via mere anecdote

One exception to this dismal picture is software reliability growth modeling. In particular, here
there are now sophisticated validation techniques that allow a user to know whether (or not) the
reliability pred.ictness are trustworthy on his/her particular project

The downside is that the scope of these reliability models is very restricted. The lesson may be
that, if we learn to walk before we run, we may be able to obtain a scientifically respectable
(but limited) theory.

11

Case studies

Barbara Kitchenham, NCC

I believe that experimentation in software engineering covers a variety of approaches. These
can be characterized as

- formal experiments based on the hypothetico-deductive paradigm

- case studies which are specific projects aimed at trialling some method/tool

- survey which are analyses of large database aimed at detecting trends

Case studies are attractive to industry because they allow a technology/tool/method to be
investigated in the context of the company. I am interested in whether we can improve the
confidence we can have in the results of case studies.

The most important issue is to have some means of interpreting results i.e. a basis for
comparison. In my experience, a basis for comparison could be one of three types:

i) comparison with a baseline where a baseline could be constructed from measurements
derived from other similar projects using current methods (i.e. a baseline must be quite large
7+ projects)

ii) comparison with a matched control project, where the control project uses the current
method. �

iii) comparison within a project. This can be done if the technology under investigation applies
to components (documents/modules). In this case the technology/method can be applied to
some components (preferably selected at random) and the remaining components can be
developed in the "nomial" way.

I think we should also use the standard terminology and techniques of experimental design to
assist planning, running and analyzing of case studies. We must state our hypothesis in order
to determine what response variables we should measure. We should also use state variable to
describe the environment in which the case study in being conducted. Such a characterisation
can help with the selection of an appropriate project for a case study and the interpretation of
the case study result.

An Axiomatic Model of Program Complexity

Marvin Zelkowitz, University of Maryland, NIST, USA
We have developed an axiomatic model of program complexity that provides minimal criteria
that a valid program complexity must adhere to. The basic model differentiates between the
relationship between programs and a complexity measure. Complexity is a relation between
programs (some, not all programs) and a complexity measure is a real number applied to a
given program. So if a relation exists between two programs then their complexity can be
compared. All other models generate models generate numbers on a given program. so the
complexity between any two programs can be compound.
We have 5 axioms defming this model. Axioms 1 + 2 tell when this complexity relationship
must exist, axiom 3 shows that larger programs generally (but not always) get more complex.
Axiom 4 is the relationship between complexity and complexity measures and axiom 5 is the
distribution on complexity measure values.

We experimented with this model using data from the NASA SEL using the Selby-Porter
classi�cation tree model. By using the axioms we reduced the 74 potential measures to 18
effective ones, and by applying classi�cation tree process to these 18 only, we can improve o
the original classi�cation tree process and identify high cost modules. a

12

Case studies

Barbara Kitchenham, NCC

I believe that experimentation in software engineering covers a variety of approaches. These
can be characterized as

- formal experiments based on the hypothetico-deductive paradigm

- case studies which a.re specific projects aimed at trialling some method/tool

- survey which a.re analyses of large database aimed at detecting trends

Case studies are attractive to industry because they allow a technology/tool/method to be
investigated in the context of the company. I am interested in whether we can improve the
confidence we can have in the results of case studies.

The most important issue is to have some means of interpreting results i.e . a basis for
comparison. In my experience, a basis for comparison could be one of three types:

i) comparison with a baseline where a baseline could be constructed from measurements
derived from other similar projects using current methods (i.e. a baseline must be quite large
7+ projects)

ii) comparison with a matched control project, where the control project uses the current
method.

iii) comparison within a project This can be done if the technology under investigation applies
to components (documents/modules). In this case the technology/method can be applied to
some components (preferably selected at random) and the remaining components can be
developed in the "normal" way.

I think we should also use the standard terminology and techniques of experimental design to
assist planning, running and analyzing of case studies. We must state our hypothesi's in order
to determine what response variables we should measure. We should also use state variable to
describe the environment in which the case study in being conducted. Such a characterisation
can help with the selection of an appropriate project for a case study and the interpretation of
the case study result.

An Axiomatic Model of Program Complexity

Marvin Zelkowitz, University of Maryland, NIST, USA

We have developed an axiomatic model of program complexity that provides minimal criteria
that a valid program c-omplexity must adhere to. The basic model differentiates between the
relationship between programs and a complexity measure. Complexity is a relation between
programs (some, not all programs) and a complexity measure is a real number applied to a
given program. So if a relation exists between two programs then their complexity can be
compared. All other models generate models generate numbers on a given program, so the
complexity between any two programs can be compound

We have 5 axioms defining this model. Axioms 1 + 2 tell when this complexity relationship
must exist, axiom 3 shows that larger programs generally (but not always) get more complex.
Axiom 4 is the relationship between complexity and complexity measures and axiom 5 is the
distribution on complexity measure values.

We experimented with this model using data from the NASA SEL using the Selby-Porter
classification tree model. By using the axioms we reduced the 74 potential measures to 18
effective ones, and by applying classification tree process to these 18 only, we can improve on
the original classification tree process and identify high cost modules.

12

Collection and Distribution of Experimental Software Engineering Data

Warren Harrison, Portland State University, Oregon

A major problem in experimental software engineering is the availability of consistent, reliable
and general empirical data. Very few studies are able to use data from other studies due to
inconsistent counting rules, data collection procedures etc. .
In order to advance beyond its current state, it appears, these issues must be addressed. One
way this can be done is by identifying a common set of tools and processes for all to use which
will maintain information on the basic elements and relationships that make up the software
object. This information, when maintained in a data base, can be used to produce the metric of
the researcher's choice through the use of a standard query script.
The information to be retained must be balanced with the need to be unable to reproduce the
source code from the data base to encourage industry to contribute data. The specific
information relationships and security needs those affected.

Measurement - A point of view

John Marciniak, CT A, Rockville, Maryland

Measurement ist the most important technical area with respect to software engineering in the
1990's. This is so, in my opinion, because the practice of software developed has advanced to
a state of discipline that cannot be advanced without quantitative understanding. The emphasis
on process improvement and quality demands the use of measurement.
From a practitioner's viewpoint, there are two aspects of measurement: from a practitioner's
view and from a researcher's view.

From the research view, the researcher needs to put into place the scientific basis for
measurement, and deliver speci�c mechanisms that should be used in engineering practice.
From a practitioner's view, treasurement must be integrated into engineering practice. A
software engineer needs to have practical measures and themeans to apply them to understand
and control both the process he/she is using, and to predict the attributes of the product that will
be achieved.

Both views are important and necessary. Research provides the basis to provide practical
engineering application.

On Experimental Computer Science

Walter F. Tichy, Universität Karlsruhe

Experimental Computer science appears to be in its infancy, and software engineering research
is no_ exception. Consider the following data: a) TOPLAS published a total of 89 papers in the
four years starting with 1988. Theory papers accounted for 61% and design papers for 24%.
Only 13 papers (15%) had a non-trivial, quantitative evaluation. There were zero papers
describing an experiment for testing stated hypothesis.
b) IEEE Transaction on Software Engineering published 92 full�length papers between June 91
an June 92. These were about 35 papers on theory and 40 on design and case studies. Only l7
(18%) included quantitative evaluation or experimental results. '
The following conclusions arer suggested: 1) Researchers in the "systems" area may be
confusing experimental apparatus (their designs) with results. 2) Computer Scientists produce

13

Collection and Distribution of Experimental Software Engineering Data

Warren Harrison, Portland State University, Oregon

A major problem in experimental software engineering is the availability of consistent, reliable
and general empirical data. Very few studies are able to use data from other studies due to
inconsistent counting rules, data collection procedures etc . .

In order to advance beyond its current state, it appears, these issues must be addressed. One
way this can be done is by identifying a common set of tools and processes for all to use which
will maintain information on the basic elements and relationships that make up the software
object. This information, when maintained in a data base, can be used to produce the metric of
the researcher's choice through the use of a standard query script

The information to be retained must be balanced with the need to be unable to reproduce the
source code from the data base to encourage industry to contribute data. The specific
information relationships and security needs those affected.

Measurement - A point of view

John Marciniak, CT A, Rockville, Maryland

Measurement ist the most important technical area with respect to software engineering in the
1990's. This is so, in my opinion, because the practice of software developed has advanced to
a state of discipline that cannot be advanced without quantitative understanding. The emphasis
on process improvement and quality demands the use of measurement.

From a practitioner's viewpoint, there are two aspects of measurement: from a practitioner's
view and from a researcher's view.

From the research view, the researcher needs to put into place the scientific basis for
measurement, and deliver specific mechanisms that should be used in engineering practice.

From a practitioner's view, treasurement must be integrated into engineering practice. A
software engineer needs to have practical measures and the means to apply them to understand
and control both the process he/she is using, and to predict the attributes of the product that will
be achieved.

Both views are imponant and necessary. Research provides the basis to provide practical
engineering application.

On Experimental Computer Science

Walter F. Tichy, Universitat Karlsruhe

Experimental Computer science appears to be in its infancy, and software engineering research
is no exception. Consider the following data: a) TOPLAS published a total of 89 papers in the
four years starting with 1988. Theory papers accounted for 61% and design papers for 24%.
Only 13 papers (15%) had a non-trivial, quantitative evaluation. There were :zero papers
describing an experiment for testing stated hypothesis.

b) IEEE Transaction on Software Engineering published 92 full-length papers between June 91
an June 92. These were about 35 papers on theory and 40 on design and case studies. Only 17
(18%) included quantitative evaluation or experimental results.

The following conclusions arcr suggested: 1) Researchers in the "systems" area may be
confusing experimental apparatus (their designs) with results. 2) Computer Scientists produce

13

too many designs and too few experiments and experimentally veri�ed results. 3) Too few
students are being trained in experimentation.

The need for corrective action is great and goes beyond Software Engineering. Computer
Scientists should no longer develop systems for their own sake but always perform a careful
evaluation of their systems.

Software Engineering Still on the way to an Engineering Discipline

Norber Fuchs, Alcatel Austria - ELIN Research Centre

All areas of business and industry are used to have quantitative support to management
decision making. They use measurement in estimation. evaluation and controlling. It is part of
the normal way doing measurement.

Different things in software engineering are not really accepted as a support for managers and
engineers. Measurements still are used out of context. "Magic number" are still used for
proving everything. What we need is a broader acceptance of measurements in a context, for a
purpose, under a certain viewpoint, related to goals. To use measurement in that sense we need
a defined process with activities and relations defined between them.

Experimental software engineering seems to be one (the only?) way to come there. But it still
seems to be a very long way.

Karl Heinrich Möller, Siemens AG, München

Fortschritte in Software Engineering sind nicht mehr möglich, indem einzelne Gebiete noch
tiefer erforscht werden, erforderlich ist vielmehr, die Zusammenarbeit über "Grenzen" hinweg:
Universitäten, Sozialwissenschaften, Psychologie etc. .

Dieser Workshop war eine ausgezeichnete Gelegenheit auf diesem Weg fortzuschreiten.

Experimental Software Engineering Should Concentrate on Software
Evolution

Hausi A. Mueller, University of Victoria, Victoria, B.C. Canada

For the future the software engineering discipline it is critical that we devote sufficient energies
to software evolution commensurate with its socio-economic implications. We propose that the
area of experimental software engineering focus more on software analysis and understanding
to reflect the needs of large, evolving software systems property. Since the results Of evolution
experiments don't necessarily scale up, we argue that the experiments should be performed in
sites using large systems, such as telephone switching systems, banking systems, or health
information systems which evolve naturally over decades.

Thesis l: Shift experimental software engineering research efforts from software construction
to software analysis and under standing. Thesis 2: Concentrate on suf�ciently large evolution
experiments using real-world software systems; experiments with toy examples do not scale
up. Thesis 3: There will always be old software.

14

too many designs and too few experiments and experimentally verified results. 3) Too few
students are being trained in experimentation.

The need for corrective action is great and goes beyond Software Engineering. Computer
Scientists should no longer develop systems for their own sake but always perform a careful
evaluation of their systems.

Software Engineering Still on the way to an Engineering Discipline

Norber Fuchs, Alcatel Austria - ELIN Research Centre

All areas of business and industry are used to have quantitative support to management
decision making. They use measurement in estimation. evaluation and controlling. It is part of
the normal way doing measurement.

Different things in software engineering are not really accepted as a support for managers and
engineers. Measurements still are used out of context. "Magic number" are still used for
proving everything. What we need is a broader acceptance of measurements in a context, for a
purpose. under a certain viewpoint, related to goals. To use measurement in that sense we need
a defined process with activities and relations defined between them.

Experimental software engineering seems to be one (the only?) way to come there. But it still
seems to be a very long way.

Karl Heinrich Moller, Siemens AG, Munchen

Fortschritte in Software Engineering sind nicht mehr moglich, indem einzelne Gebiete noch
tiefer erforscht werden, erforderlich ist vielmehr, die Zusammenarbeit iiber "Grenzen" hinweg:
Universitaten, Sozialwissenschaften, Psychologie etc ..

Dieser Workshop war eine ausgezeichnete Gelegenheit auf diesem Weg fortzuschreiten.

Experimental Software Engineering Should Concentrate on Software
Evolution

Hausi A. Mueller, University of Victoria, Victoria, B.C. Canada

For the future the software engineering discipline it is critical that we devote sufficient energies
to software evolution commensurate with its socio-economic implications. We propose that the
area of experimental software engineering focus more on software analysis and understanding
to reflect the needs of large, evolving software systems property. Since the results Of evolution
experiments don't necessarily scale up, we argue that the experiments should be performed in
sites using large systems, such as telephone switching systems, banking systems, or health
information systems which evolve naturally over decades.

Thesis 1: Shift experimental software engineering research efforts from software construction
to software analysis and under standing. Thesis 2: Concentrate on sufficiently large evolution
experiments using real-world software systems; experiments with toy examples do not scale
up. Thesis 3: There will always be old software.

14

Effective Use of Measurement and Experimentation in Computing
Curricula

Stu Zweben, Ohio State University, Columbus, Ohio

Empirical activities are fundamental to the computing discipline and hence must be an integral
part of any computing curriculum. The study of empirical paradigms of science and
engineering can and should be part of the requirements of an undergraduate computing degree.
Courses in basic science, social science, engineering, and statistics can introduce or
complement studies of these paradigms within the major. In the major not only courses in
software engineering, but also standard courses in algorithms and data structures and advanced
courses in areas such as AI and parallel computing, provide opportunities to apply the
paradigms. However, one must be careful that students� backgrounds are consistent with the
educational objectives expected in courses that employ these paradigms. For example, we
should not expect students to be able to evaluate different design methods if they've never
really applied them. Educators should be guided in developing appropriate curricula by
analyzing the educational objectives, perhaps using a taxonomy such as proposed by bloom.

Qualitative Techniques and Tools for_Modeling, Analyzing, and Simulating
Software Production

Walt Scacchi, University of Southem California

Empirical studies of software production can bene�t in a fundamental way through the use of
qualitative research methods and tools. Qualitative methods rely upon observational case
studies, �eld studies, and comparative case/�eld studies as part of their experimental design.
These methods can be used to empirically determine the nature, composition, present and
historical context of software products and processes within an organizational setting.
Computational tools supporting qualitative research methods are now beginning to appear.
Since qualitative research methods are complementary to quantitative measures and traditional
experimental research designs, then these computational tools will need to support both
knowledge-based techniques for modeling, analyzing and simulating software production as
well as statistical techniques. At USC, we have applied qualitative research methods to study
more than 20 industrial software projects using computation tools such as these.

The Role of Simulation in Software Engineering Experimentation

A. von Mayrhauser, Colorado State University, Fort Collins, Colorado

Software engineering experimentation must develop beyond statistical analysis of data and
analytic models. We must become more active in developing a comprehensive discipline of
simulation to aid experimental software engineering. This will require developing standard
modeling components, connections between them, tools, and selection rules for them.

We are on the right track with the framework our process modeling advances provide. Unless
we learn, however, more about how lower level components in the framework operate and
when to use, what accuracy they provide, etc. process models will become a frame without a
picture.
Ultimately we must come up with a "motherboard" architecture for software process and
product with a well-de�ned, validated set of models and selection mechanisms for them. An

15

Effective Use of Measurement and Experimentation in Computing
Curricula

Stu Zweben, Ohio State University, Columbus, Ohio

Empirical activities are fundamental to the computing discipline and hence must be an integral
part of any computing curriculum. The study of empirical paradigms of science and
engineering can and should be part of the requirements of an undergraduate computing degree.
Courses in basic science, social science, engineering, and statistics can introduce or
complement studies of these paradigms within the major. In the major not only courses in
software engineering, but also standard courses in algorithms and data structures and advanced
courses in areas such as AI and parallel computing, provide opportunities to apply the
paradigms. However, one must be careful that students' backgrounds are consistent with the
educational objectives expected in courses that employ these paradigms. For example, we
should not expect students to be able to evaluate different design methods if they've never
really applied them. Educators should be guided in developing appropriate curricula by
analyzing the educational objectives, perhaps using a taxonomy such as proposed by bloom.

Qualitative Techniques and Tools for .Modeling, Analyzing, and Simulating
Software Production

Walt Scacchi, University of Southern California

Empirical studies of software production can benefit in a fundamental way through the use of
qualitative research methods and tools. Qualitative methods rely upon observational case
studies, field studies, and comparative case/field studies as pan of their experimental design.
These methods can be used to empirically determine the nature, composition, present and
historical context of software products and processes within an organizational setting.
Computational tools supporting qualitative research methods are now beginning to appear.
Since qualitative research methods are complementary to quantitative measures and traditional
experimental research designs, then these computational tools will need to support both
knowledge-based techniques for modeling, analyzing and simulating software production as
well as statistical techniques. At USC, we have applied qualitative research methods to study
more than 20 industrial software projects using computation tools such as these.

The Role of Simulation in Software Engineering Experimentation

A. von Mayrhauser, Colorado State University, Fort Collins, Colorado

Software engineering experimentation must develop beyond statistical analysis of data and
analytic models. We must become more active in developing a comprehensive discipline of
simulation to aid experimental software engineering. This will require developing standard
modeling components, connections between them, tools, and selection rules for them.

We are on the right track with the framework our process modeling advances provide. Unless
we learn, however, more about how lower level components in the framework operate and
when to use, what accuracy they provide, etc. process models will become a frame without a
picture.

Ultimately we must come up with a "motherboard" architecture for software process and
product with a well-defined, validated set of models and selection mechanisms for them. An

15

example of a family of models that warrants further work is reliability models. We often do not
know why they work as well as they do (or not as the case may be). Simulation can help to
answer some of these questions and provide predictable. high-quality components to populate
a process framework.

Building Quantitative Models of the Software Development Process

Lionel Briand, SEL - CSD, University of Maryland, College Park

In order to make of software development an engineering discipline, technologies must be
assessed and processes must be optimized based on quantitative analysis. A

In order to do so, data must be collected, validated and transformed into models. These models
should have the property of being predictive, but also interpretable in order to allow for process
control and improvement.

Also, in order to increase the potential impact of software measurement on the software
process, more metrics collectible early in the phases of software development should be
developed and validated. Thus testability, maintainability, cost, schedule, reliability of
software systems could be controlled effectively based on corporate past experience.
Early in the 70's, the SEL (NASA GSFC - U. Md. - CSC) started addressing these issues.
Successes, but also failures were the results of 15 years of effort and commitment. Thus, a real
expertise has been acquired and has shown with strength that measurement may lead to
software process improvement

Rethinking Measurement to Support Incremental Process Improvement

Adam Porter, University of Maryland, College Park

Software engineering has been unable to provide a detailed mechanism for systematic,
incremental process improvement. As a discipline, we lack the knowledge necessary to select
the right processes, methods and tools to combat speci�c goals. We have also not developed
models that illuminate that link between local actions and global process. In the absence of such
information and models, we cannot reason about tradeoffs associated with altemate processes,
risking arbitrary side-effects. We are developing formal models of process improvement to
compare altemative processes. The goal of such a model is to quantify the value of candidate
process improvements.

Appropriate Research Philosophies in Software Engineering

Ross Jeffery, University of New South Wales

Evidence from recent empirical research shows that software requirements identi�cation and
post-delivery evolution are the major software process concems. They are also lifecycle sub-
processes which have high social components in contrast with the construction process and
concem the conceptual construct underlying the system rather than the contracted product.
Three classes of research which can be used in software engineering are the positivist,
interpretive, and empirical methods. The positivist approach includes traditional theory/test
experimentation. This has been criticized for having insufficient consideration of the context

16

example of a far,uly of models that warrants further work is reliability models. We often do not
know why they work as well as they do (or not as the case may be). Simulation can help to
answer some of these questions and provide predictable. high-quality components to populate
a process framework.

Building Quantitative Models of the Software Development Process

Lionel Briand, SEL - CSD, University of Maryland, College Park

In order to make of software development an engineering discipline, technologies must be
assessed and processes must be optimized based on quantitative analysis.

In order to do so, data must be collected, validated and transformed into models. These models
should have the property of being predictive, but also interpretable in order to allow for process
control and improvement.

Also, in order to increase the potential impact of software measurement on the software
process, more metrics collectible early in the phases of software development should be
developed and validated. Thus testability, maintainability, cost, schedule, reliability of
software systems could be controlled effectively based on corporate past experience.

Early in the 70's, the SEL (NASA GSFC - U. Md. - CSC) started addressing these issues.
Successes, but also failures were the results of 15 years of effort and commitment. Thus, a real
expertise has been acquired and has shown with strength that measurement may lead to
software process improvement

Rethinking Measurement to Support Incremental Process Improvement

Adam Porter, University of Maryland, College Park

Software engineering has been unable to provide a detailed mechanism for systematic,
incremental process improvement As a discipline, we lack the knowledge necessary to select
the right processes, methods and tools to combat specific goals. We have also not developed
models that illuminate that link between local actions and global process. In the absence of such
information and models, we cannot reason about tradeoff s associated with alternate processes,
risking arbitrary side-effects. We are developing formal models of process improvement to
compare alternative processes. The goal of such a model is to quantify the value of candidate
process improvements.

Appropriate Research Philosophies in Software Engineering

Ross Jeffery, University of New South Wales

Evidence from recent empirical research shows that software requirements identification and
post-delivery evolution are the major software process concerns. They are also lifecycle sub
processes which have high social components in contrast with the construction process and
concern the conceptual construct underlying the system rather than the contracted product.
Three classes of research which can be used in software engineering are the positivist,
interpretive, and empirical methods. The positivist approach includes traditional theory/test
experimentation. This has been criticized for having insufficient consideration of the context

16

and history of the events under study and limited to stimulus/response experimentation.
Interpretive studies do not search fondetenninism or universal lessons. but rather a
understanding of the phenomena behind the behavior. Critical studies aim to change the status
quo through whention. The empirical evidence suggests that greater use of interpretive
research will be necessary to provide knowledge and improvement in the software process.

Future Work

Vincent Y. Shen, Hong Kong Universityof Science and Technology

I think we have accomplished a lot in the past 10 -. 20-years. There are a lot of agreements
which we did not have before. I feel" that we have gone past the "knee" of getting new and
signi�cant results -. i.e., future efforts will bring fewer new discoveries. There is nothing wrong
for a discipline that has .reached maturity, which is -the state I believe the metrics and
measurements community has reached.
1 think it is now time to move out of our subculture so that we can demonstrate our value to

software practitioners. There were two proposals made at the workshop which are worth
pursuing: the "benchmark" project and the "software enginwring handbook" project. We can
make the software engineering discipline more an "engineering" discipline.

Markku Oivo, VTI� Technical Research Center of Finland

It is fairly easy to develop just another metric but the real challenge is to convince the
practitioners of the value of experimental software engineering. We need to sell our ideas to
the industry starting with companies which aremature enough for changing their environment
to a constantly improving process which can be measured and guided based oniboth on-line and
postmortem quantification feedback With the good success stories we can spread out the word
and get the ideas widely spread in the industry. For planning, packaging, and reusing
information we need to build useful models which consistent intemal representations. We need
to offer different viewpoints to these models for different users.

A Reuse Culture for Software Construction

Claus Lewerentz, Forschungszentrum Informatik Karlsruhe

We advocatethe idea of creating a new style of software construction that is based on the
systematic reuse of application-speci�c collections of software components and design
structures together with corresponding process models. On the structural level object-oriented
approaches proved to be well suited for the specification and realization of such application
frameworks. On the management level a whole set of measures has to be taken to foster the
creation, propagation, and application of reusable software. Particularly there are different
processes. �for constructing general or application-speci�c and reusable components and
frameworks and for the development �of a particular application software system.

17

and history of the· events under study and limited to stimulus/response expenmentation.
Interpretive studies do not search for . determinism or universal lessons, but rather a
understanding of the phenomena behind the.behavior. Critical studies aim to change the status
quo through whention. The empirical evidence suggests that greater use of interpretive
research will be necessary to provide knowledge and improvement in the software process.

Future Work

Vincent Y. Shen, Hong Kong University of Science and Technology

I thin.le we have a,ceomplished a lot in the past 10 .. 20 years. There are a lot of agreements
which we did not have before. I feel that we have gone past the "knee" of getting new and
significant results ~ i.e., future effons will bring fewer new discoveries. There is nothing wrong
for· a discipline that has .reached maturity, which is -the state I believe the metrics and
measurements community has reached.

I thin.le it is now time to move out of our subculrure so that we can demonstrate our value to
software practitioners. There were two proposals made at the workshop which are worth
pursuing: the "benchmark" project and the "software engineering handbook" project. We can
make the software engineering discipline more an "engineering" discipline.

Markku Oivo, VTT Technical Research Center of Finland

It is fairly easy to develop just another metric but the real challenge is to convince the
practitioners of the-value of experimental software engineeri~g. We need to sell our ideas to
the industry starting with companies which are mature enough for chaQging their environment
to a constantly improving process which can be measured and guided based on.both on-line and
post monem quantification feedback. Witp the good success stories we can spread out the word
and get the ideas widely spread in the industry. For planning, packaging, and reusing
information we need to build u·seful models which consi~tent internal representations. We need
to offer different viewpoints to these models for different users.

A Reuse Culture for Software Construction

Claus Lewerentz, Forschungszentrum Inf ormati.k Karlsruhe

We advocate the idea of creating a new style of software construction that is based on the
systematic reuse of application-specific oollections of software components and design
structures together with corresponding process models. On the structural level object-oriented
approaches proved to be well suited for the specification and realization of such application
frameworks. On tfie manage~ent level a whole set of measures has to be taken to foster the
creation, propagation, and application of reusable software. Particularly there are different
processes · for constructing general or application-specific and reusable components and
frameworks and for the development of a particular application software system.

17

Software Business, Concurrent Engineering, and Experience Factory

Relationships

Giovanni Cantone. University of Rome at Tor Vergata

Relevant future investigations include relationships of both product quality versus process
quality and the �nn's business enviromnent versus the fum's organization. A simple model of
a business is the business life cycle (BLC). Each stage of the BLC is characterized by some
kind of technology, possibly of workers, who fill roles, members and possibly of competitors
and so on. What is the present main stage of the software BLC? How does it affect the
organization of the software factory? What is the strategic position of a firm into the SBLC
presently and in perspective. Does such a position affect the factory organization? l-low? Due
to the invasive nature of software products and technology, have we to expect software �rms
necessarily located in different points of the SBLC? The experience factory and need for
engineering and synchronization between software factory processes are brie�y essential from
the viewpoint of the SBLC.

Software Understanding

Frank McGar-ry, NASA Goddard Space Flight Center, Greenbelt. MD, USA

Software engineers are finally coming to the realization that we cannot produce any signi�cant
principles of software (engineering) without �rst observing and recording the existing
relationships, rules, and de facto models of software. This is the first step of understanding.
Software as currently used in the practitioner community has been one of the key elements
previously overlooked by the researcher software conununity. The year 1992, as evidenced by
this seminar in Dagstuhl, has witnessed the evolving acceptance and realization that efforts
must be accelerated in creating the baseline understanding of software in practice. .
Briding the gap between research and `"�� in software engineering ;��
re�ections on the staffing factor paradox.

Chris F. Kemerer, MIT Sloan School of Management

While there are many areas of "disconnect" between industry and academia. none is perhaps so
glaring as the differential attention paid to the staffing on software projects. Practicing project
managers treat this as one of, if not the most. important variable under their control, while
academics typically ignore this factor in their models and analyses. While difficult to study
(for a number of reasons) it is essential that academia devote more attention to this issue.

Les Belady, Mitsubishi Research Laboratories. Cambridge, Mass.

Software engineering will probably split into many branches - systems engineering,
applications engineering. etc - and become more involved with problems of the application
domain, computer hardware and communication. Accordingly, whose who experiment (with
models) and trying to quantify software. would include in their studies the entire enterprise. and
its economics, for which a software controlled computer applications is developed. By the way,
computer science - and along with it software engineering - will be an important part of the
education of many subjects and not much a well defined. isolated discipline.

l8

Software Business, Concurrent Engineering, and Experience Factory

Relationships

Giovanni Cantone, University of Rome at Tor Vergata

Relevant future investigations include relationships of boch product quality versus process
quality and the firm's business environment versus the firm's organization. A simple model of
a business is the business life cycle (BLC). Each stage of the BLC is characterized by some
kind of technology, possibly of workers, who fill roles, members and possibly of competitors
and so on. What is the present main stage of the software BLC? How docs it affect the
organization of the software factory? What is the strategic position of a firm into the SBLC
presently and in perspective. Docs such a position affect die factory organization? How? Due
to the invasive nature of software products and technology, have we to expect software firms
necessarily located in different points of die SBLC? The experience factory and need for
engineering and synchronization between software factory processes are briefly cucntial from
the viewpoint of the SBLC.

Software Understanding

Frank McGarry, NASA Goddard Space Flight Center, Cmenbelt, MD, USA

Software engineers are finally coming to the realization that we cannot produce any significant
principles of software (engineering) without first obsctving and recording t~ existing
relationships, rules, and de facto models of software. This is the first step of undcrswlding.
Software as currently used in the practitioner community has been one of the key elements
previously overlooked by die researcher software community. The year 1992, uevide11ced by
this seminar in Dagstuhl, has witnessed die evolving acccpcance and realiz.alion that efforts
must be accelerated in creating the baseline understanding of software in practice.

Briding the gap between rcsean:h and practice in software engineering meuumncnt:
reflections on the staffing factor paradox.

Chris F. Kemerer, MIT Sloan School of Management

While there arc many areas of "disconnect" between industry and academia. none is perhaps so
glaring as the differential aucntion paid to the staffing oa software projects. Praclicing project
managers treat this as one of, if not die most. important variable under lheir control. while
academics typically ignore this factor in their models and analyses. While diffacult to study
(for a number of reasons) it is essential tbat acadeniia devOlc ~ attention ro this issue.

Les Bclady, Mitsubishi Research Labonlories, Cambridge. Mass.

Software engineering will probably split inro many bnnches - systems enginccrins.
applications engineering, etc - and become more involved with problem, of the application
domain, computer hardware and communication. Aocordingly, whose who experiment (wich
models) and trying to quantify software, would include in their studies the entire enlelprile, and
its economics, for which a software controlled compuser applications is developed. By the way,
computer science - and along with it softw&M engineering - will be an important pan of die
education of many subjects and not much a well defined, isolaled dilcipllne.

18

Yet Another Laboratory for Software Engineering

Eric Sumner, AT&T Bell Laboratories

The Software Production Research department is devoted to experimental research in large
software engineering. It was formed in the Fall of 1990 at Indian Hill, the Illinois complex that
houses many large software developments including that of the SESS switch.
Development projects at Indian Hill invest 5% of their budgets in process management teams
(PMTs) which are responsible for the cost, interval, and quality of each development process
(e.g., design, customer documentation). The research department engages in two types of
activities. In the first, we attempt to improve the PMT methodology by inventing new
approaches for observation, description, measurement, and analysis of large software system
development. In the second, we attempt to directly improve the development methodology by
inventing new processes and associated technologies for developing large software systems.

Objectives and Context of Software Measurement, Analysis, and Control

Michael A. Cusumano, MIT Sloan School of Management

111is paper focuses on the what and why of measurement in software development and the
impact of the context of the development organization or of speci�c projects or approaches to
measurement, analysis, and control.
It is naive to expect a consensus to emerge easily within even a single organization, let alone
within an entire industry or among a set of different actors or observers, regarding what to
measure or why to invest the time and resources to collect and analyze data in software
development. The perspective of senior managers, project managers, QA or inspection
personnel, marketing and customer service groups, and researchers from companies or
academics can be very different. Different types of systems and customers, as well as different
company and division cultures, also may have an enormous impact on what projects can
realistically measure and how they can use data for planning and control, learning, or
benchmarking - three general reasons why we measure software development activities.

Software Measurement and Experimentation Frameworks, Mechanisms
and Infrastructure

Richard W. Selby, University of Califomia, Irvine

Software measurement continues to be an important and rapidly growing area in software
engineering research and practice. Measurement enables the systematic analysis,
understanding and improvement of software systems and processes. Measurement principles,
techniques and systems provide a cross-cutting foundation for many aspects of software
development and evolution from experimentation to empirically guided software synthesis.
This workshop was very effective in bringing together many leading researchers and
practitioners in the measurement area to define points of consensus, controversy and future
directions. I personally enjoyed the workshop very much, especially because of the opportunity
to have deep interactions with the other participants. I hope this meeting is just one of many
opportunities to have such synergistic relationships and I look forward to the next meeting.

19

Yet Another Laboratory for Software Engineering

Eric Sumner. AT&T Bell Laboratories

The Software Production Research department is devoted to experimental research in large
software engineering. It was formed in the Fall of 1990 at Indian Hill, the Illinois complex that
houses many large software developments including that of the 5ESS switch.

Development projects at Indian Hill invest 5% of their budgets in process management teams
(PMTs) which are responsible for the cost, interval, and quality of each development process
(e.g., design, customer documentation). The research department engages in two types of
activities. In the first. we attempt to improve the PMT methodology by inventing new
approaches for observation, description, measurement. and analysis of large software system
development. In the second, we attempt to directly improve the development methodology by
inventing new processes and associated technologies for developing large software systems.

Objectives and Context of Software Measurement, Analysis, and Control

Michael A. Cusumano, MIT Sloan School of Management

This paper focuses on the what and why of measurement in software development and the
impact of the context of the development organi7.ation or of specific projects or approaches to
measurement, analysis, and control.

It is naive to expect a consensus to emerge easily within even a single organization, let alone
within an entire industry or among a set of different actors or observers, regarding what to
measure or why to invest the time and resources to collect and analyze data in software
development. The perspective of senior managers, project managers, QA or inspection
personnel, marketing and customer service groups, and researchers from companies or
academics can be very different. Different types of systems and customers, as well as different
company and division cultures, also may have an enormous impact on what projects can
realistically measure and how they can use data for planning and control, learning, or
benchmarking - three general reasons why we measure software development activities.

Software Measurement and Experimentation Frameworks, Mechanisms
and Infrastructure

Richard W. Selby, University of California, Irvine

Software measurement continues to be an important and rapidly growing area in software
engineering research and practice. Measurement enables the systematic analysis,
understanding and improvement of software systems and processes. Measurement principles,
techniques and systems provide a cross-cutting foundation for many aspects of software
development and evolution from experimentation to empirically guided software synthesis.

This workshop was very effective in bringing together many leading researchers and
practitioners in the measurement area to define points of consensus. controversy and future
directions. I personally enjoyed the workshop very much, especially because of the opportunity
to have deep interactions with the other participants. I hope this meeting is just one of many
opportunities to have such synergistic relationships and I look forward to the next meeting.

19

Systematic Software Technology Transfer

H. Dieter Rombach, FB Informatik, Universität Kaiscrslautcm

Software development is an engineering activity and need to be treated as such. In addition to
technological methods and tools (e.g., languages, compilers, testing tools) we need to
incorporate experimentation and measurement. One area in which the need for measurement is
needed is technology transfer. We need to be able to quantify the needs for new technology.
the effects and limitations of new candidate technology, and monitor the economic
effectiveness of new technology. Furthermore, we need companies to treat technology
improvement and transfer as an issue which requires speci�c attention. Transferring new
technologies into an organization can be expected to change the development process used by
this organization. It is unrealistic to expect project members to manage such changes on the �y
and still ful�ll their product-oriented project goals. We suggested a model which is based on
sound scientific and engineering principles. It distinguishes between roles of technology
improvement versus application development on the one hand, and process versus product
engineering on the other. This model is currently being instantiated in the Software Technology
Transfer Institute at Kaiserslautern. This seminar was very successful in bringing together the
different groups (industry and academia) to exchange experiences gained in the past l0 years
and to develop an agenda for the future

20

Systematic Software Technology Transfer

H. Dieter Rombach, FB lnfonnatik, Universitiit Kaiserslautem

Software development is an engineering activity and need to be treated as such. In addition to
technological methods and tools (e.g., languages, ~ompilers, testing tools) we need to
incorporate experimentation and measurement. One area in which the need for measurement is
needed is technology transfer. We need to be able to quantify the needs for new technology,
the effects and limitations of new candidate technology, and monitor the economic
effectiveness of new technology. Furthermore, we need companies to treat technology
improvement and transfer as an issue which requires specific attention. Transferring new
technologies into an organization can be expected to change the development process used by
this organization. It is unrealistic to expect project members to manage such changes on the fly
and still fulfill their product-oriented project goals. We suggested a model which is based on
sound scientific and engineering principles. It distinguishes between roles of technology
improvement versus application development on the one hand, and process versus product
engineering on the other. This model is currently being instantiated in the Software Technology
Transfer Institute at Kaiserslautern. This seminar was very successful in bringing together the
different groups (industry and academia) to exchange experiences gained in the past 10 years
and to develop an agenda for the future

20

Dagstuhl-Seminar 9238:

William Agresti
MITRE Corp.
7525 Colshire Drive
McLean VA 22102
USA

agresti@mitre.org
tel.: +1 -703-883-75 77

Victor R. Basili
Univ. of Maryland at Colle e Park
Department of Computer cience
College Park MD 20742
USA
basiIi@cs.umd.edu
tel.: +01 -301 -405-26 68

Laszlo A. Belady
Mitsubishi Electric Research Labs
201 Broadway
Cambridge MA 02139
USA

belady@merl.com
tel.: +1 -617-621-75 O2

Lionel Briand
Univ. of Maryland at Colle e Park
Department of Computer cience
College Park MD 20742
USA
lionel@tame.cs.umd.edu
tel.: +1 -301 -405-27 21

Giovanni Cantone
Universit of Rome - The Vergata
Dept. of Iectronic Engineering
Via della Ricerca Scientifica
I-00133 Roma

Italy
cantone@tovvx1 .ccd.utovrm.it
teI.: +39-6-72 59 44 95

Michael Cusumano
MlT
Sloan School of Management
Cambridge MA 02139
USA
mcusumano@sloan.mit.edu
tel. : +61 7-253-2574

Albert Endres
IBM Deutschland GmbH
Entwicklung und Forschung Abt. 32 75
Schönaicher Str. 220
W-7030 Böblingen
Germany
aendres@vnet.ibm.com
tel.: +49-7031-16-34 65

List of Participants (update: 23.11.92)

Stuart Feldman
Bellcore
MRE 2E-386
445 South Street
Morristown NJ 07960-1910
USA

sif@bellcore.com
tel.: +1 -201 -829-43 05

Norman Fenton

City University
Center for Software Reliability
Northhampton Square
London EC1V HB
Great Britain

n.e.fenton@city.ac.uk
teI.: +44-71-477-84 25

Norbert Fuchs
ALCATEL-Austria ELIN

Forschungszentrum
Ruthnergasse 1-7
A-1210 Wien

Austria
norbert.fuchs@rcvie.co.at
tel.: +43-1-39 16 21/2 64

Warren Harrison
Portland State University
Center for Software Quality Research
P.O. Box 751
Portland Oregon 97207-0751
USA

warren@cs.pdx.edu
tel.:+1-503-725-31 O8

Dan Hoffman
University of Victoria
Department of Computer Science
P. . Box 3055
Victoria B.C. V8W 3P6
Canada
dhoflman@uvunix.uvic.ca
teI.: +1 -604-721 -7222

Ross Jene
University 0 New Sourth Wales
School of Information Systems
P.O. Box 1
Kensington New South Wales 2033

Australia
rossj@cumulus.csd.unsw.oz.au
tel.: +61 -2-6 97 44 13

Dagstuhl-Seminar 9238:

William Agresti
MITRE Corp.
7525 Colshire Drive
Mclean VA 22102
USA
agresti@mitre.org
tel.: + 1-703-883-75 77

Victor A. Basili
Univ. of Maryland at College Park
Department of Computer Science
College Park MD 20742
USA
basili@cs.umd.edu
tel. : +01-301 -405-26 68

Laszlo A. Belady
Mitsubishi Electric Research Labs
201 Broadway
Cambridge MA 02139
USA
belady@merl .corn
tel. : + 1-617-621-75 02

Lionel Briand
Univ. of Maryland at College Pa.rk
Department of Computer Science
College Park MD 20742
USA
lionel@tame.cs.umd.edu
tel. : + 1-301-405-27 21

Giovanni Cantone
University of Rome - The Vergata
Dept. of Electronic Engineering
Via della Ricerca Scientifica
1-00133 Roma
Italy
cantone@towx1 .ccd.utovrm.it
tel. : +39-6-72 59 44 95

Michael Cusumano
MIT
Sloan School of Management
Cambridge MA 02139
USA
mcusumano@sloan.mit.edu
tel. : +617-253-2574

Albert Endres
IBM Deutschland GmbH
Entwicklung und Forschung Abt. 32 75
Schonaicher Str. 220
W-7030 Boblingen
Germany
aendres@vnet.ibm.com
tel.: +49-7031-16-34 65

List of Panicipants (update: 23.11.92)

Stuart Feldman
Bellcore
MAE 2E-386
445 South Street
Morristown NJ 07960-1910
USA
sif@bellcore.com
tel. : + 1-201 -829-43 05

Norman Fenton
City University
Center for Software Reliability
Northhampton Square
London EC1 V HB
Great Britain
n.e.fenton@city.ac.uk
tel. : +44-71 -477-84 25

Norbert Fuchs
ALCATEL-Austria ELIN
Forschungszentrum
Ruthnergasse 1-7
A-1210 Wien
Austria
norbert.fuchs@rcvie.co.at
tel.: +43-1 -39 16 21 /2 64

Warren Harrison
Portland State University
Center for Software Quality Research
P.O. Box 751
Portland Oregon 97207-0751
USA
warren@cs.pdx.edu
tel.: +1-503-725-31 08

Dan Hoffman
University of Victoria
Department of Computer Science
P.O. Box 3055
Victoria B.C. VBW 3P6
Canada
dhoffman@uvunix.uvic.ca
tel. : + 1-604-721 -7222

Ross Jeffery
University of New Sourth Wales
School of Information Systems
P.O. Box 1
Kensington New South Wales 2033
Australia
rossj@cumulus.csd.unsw.oz.au
tel. : +61-2-6 97 44 13

Chris Kemerer Nazim Madhavji
MIT McGiII University
Sloan School of Management SchoII ot Computer Science
E53-315 3480 University Street
50 Memorial Drive Montreal Quebec H3A 2A7
Cambridge MA 02139 Canada
USA madhavji@opus.cs.mcgill.ca
ckemerer@sloan.mit.edu tel.: +1 -51 4-398-37 40

tel. +1-617-.253-29 71
John Marciniak

Barbara Kitchenham CTA lnc.
National Computer Centre Limited 6116 Executive Blvd.
Oxford House Rokvalle MD 20852
Oxford Road USA
Manchester M1 7ED marc:nik@smtplink.cta.com
Great Bntain tel.: -1-301-816-14 39

tel.: +44-61-228-68 33
Anneliese v. Mayrhauser

Gunter R. Koch . Colorado State University
2i Industrial Informatics GmbH Computer Science Department
Haierwe 20e Fort r�.ollins CO 80523
W�7800 reiburg USA
Germany avm@cs.colostate.edu
gk@dandsnx.uucp tel.: +1-303-491-70 16
tel.: +49-761-4 22 57

Frank McGarry
Meir Lehman NASA/GSFC
Imperial College of Science Code 552
Department of Computing Romm E237 - Bldg. 23
180 Queen's Gate Greenbelt MD 20771
London SW7 2BZ USA
Great Britain fmcgarry@GSfcmail.nasa.gov
mml@iedoc.ic.ac.uk tel; +1 -301 -286-63 47

tel.: +44-71-589-51 11
Karl Heinrich Möller

Claus Lewerentz SIEMENS AG - ZFE ST AC5

FZI Karlsruhe Zentralabt. Forschung und Entwicklung
Haid-und-Neu-Str. 10-14 Otto-Hahn-Ring 6
W-7500 Karlsruhe W-8000 München 83

Germany Germany
lewerentz@fzi.de tel.: +49-89-636-4 76 60

tel.: +49-721-9654-6 02
r Hausi A. Muller

Bev Littlewood University of Victoria
City University Department of Computer Science
Center for Software Reliability P.O. Box 3055
Northhampton Square Victoria B.C. V8W 3P6
London EC1V HB Canada
Great Britain hausi@csr.uvic.ca
b. IittIewood@city.ac.uk teI.: +1 -604-721 -7630
teI.: +44-71-477-84 20

Markku Oivo
Jochen Ludewig Technical Research Center of Finland
Universität Stuttgart Computer Technology Laboratory
Institut für Informatik Kaitovayla 1
Breitwiesenstraße 20-22 SF-90571 Oulu

W-7000 Stuttgart 80 Finland

Chris Kemerer
MIT
Sloan School of Management
E53-315
50 Memorial Dnve
Cambridge MA 02139
USA
ckemerer@sloan.mit.edu
tel.. + 1-617-253-29 71

Barbara Kitchenham
National Computer Centre Limited
Oxford House
Oxford Road
Manchester M1 ?ED
Great Britain
tel. : +44-61 -228-68 33

Gunter R. Koch
2i Industrial Informatics GmbH
Haierweg 20e
W-7800 Freiburg
Germany
gk@dandsnx.uucp
tel.: +49-761-4 22 57

Meir Lehman
Imperial College of Science
Department of Computing
180 Queen's Gate
London SW? 2BZ
Great Britain
mml@iedoc.ic.ac. uk
tel. : +44-71-589-51 11

Claus Lewerentz
FZI Karlsruhe
Haid-und-Neu-Str. 10-14
W-7500 Karlsruhe
Germany
lewerentz@fzi.de
tel .: +49-721-9654-6 02

Bev Littlewood
City University
Center for Software Reliability
Northhampton Square
London EC1 V HB
Great Britain
b.littlewood@city.ac. uk
tel.: +44-71-477-84 20

Jochen Ludewig
Universitat Stuttgart
lnstitut fur lnformatik
BreitwiesenstraBe 20-22
W-7000 Stuttgart 80
Germany
ludewig@i nf ormatik. u ni-stuttgart. de
tel. : +49-711-7816-354

Nazim Madhavji
McGill University
Scholl of Computer Science
3480 University Street
Montreal Quebec H3A 2A7
Canada
madhavji@opus.cs.mcgill.ca
tel.: + 1-514-398-37 40

John Marciniak
CTA Inc.
6116 Executive Blvd.
Rokvdle MD 20852
USA
marc1nik@smtplink.cta.com
tel.: --1-301-816-14 39

Anneliese v. Mayrhauser
Colorado State University
Computer Science Department
Fort :~ollins CO 80523
USA
avm@cs.co lostate. edu
tel. : + 1-303-491-70 16

Frank McGarry
NASAIGSFC
Code 552
Romm E237 - Bldg. 23
Greenbelt MD 20771
USA
fmcgarry@GSfcmail.nasa.gov
tel.. + 1-301-286-63 47

Karl Heinrich MOiier
SIEMENS AG - ZFE ST ACS
Zentralabt. Forschung und Entwicklung
Otto-Hahn-Ring 6
W-8000 Munchen 83
Germany
tel.: +49-89-636-4 76 60

Hausi A. Muller
University of Victoria
Department of Computer Science
P.O. Box 3055
Victoria B.C. V8W 3P6
Canada
hausi@csr.uvic.ca
tel.: + 1-604-721-7630

Markku Oivo
Technical Research Center of Finland
Computer Technology Laboratory
Kaitovayla 1
SF-90571 Oulu
Finland
moi@tko.vtt.fi
tel.: +358-81-551-21 11

Adam Porter
Univ. of Maryland at Colle e Park
Department of Computer cience
College Park MD 20742
USA

aporter@cs.umd.edu
teI.: +1 -301 -405-27 02

H. Dieter Rombach
Fachbereich Informatik
AG Software Engineering
Postfach 3049
W-6750 Kaiserslautern

Germany
rombach@informatik.uni-kI.de
teI.: +49-631-205-28 95

Walt Scacchl
University of Southern California
School of Business Administration

Decision Systems Department
Bn'dge Hall 401 V
Los Angeles CA 90089-1421
USA

scacchi@po|lux.usc.edu
teI.: +1 -21 3-740-47 82

Norm Schneidewind
U.N. Naval Postgraduate School
Code AS/SS
Monterey CA 93943-5100
USA

0442p@cc.nps.navy.miI
teI.: +1 -408-646�27 19

Richard W. Selby
University of California
Department of Information and
Computer Science
Irvine CA 92717
USA

selby@ics.uci.edu
teI.: +01 -714-856-63 26

Vincent Shen
The Hong Kong University of
Science and Technology
Department of Computer Science
Clear Water Bay
Kowloon

Hong Kong
shen@uxmail.ust.hk
tel.: (852) 358-7009

Eric Sumner
AT&T Bell Labs�
1000 E Warrenville Rd
Naperville IL 60566
USA

ees@research.ih.att.com
tel.:+1-708-713-76 60

Walter Tlchy
Universität Karlsruhe
Fakultät für Informatik
Im Fasanengarten 5
W-7500 Karlsruhe

Germany
tichy@ira.uka.de
tel. : +49-721-608-3934

Kevin Wentzel
Hewlett Packard Labs
P. O. Box 10490
Palo Alto CA 94303-0969
USA

wentzel@hpl.hp.com
tel.: 415-857-4018

Marvin Zelkowitz
Univ. of Maryland at Colle e Park
Department of Computer tudies
College Park MD 20742
USA

mvz@cs.umd.edu
teI.: +1 -301 -405-26 90

Horst Zuse
TU Berlin r
Fachbereich 20 Informatik
Franklinstr. 28-29
W-1000 Berlin 10

Germany
zuse@tubvm.cs.tu-berlin�de
teI.: +49-30-314-7 34 39

Stu Zweben
Ohio State University
Depart. of Computer &
lnforrnation Science
2036 Neil Avenue
Columbus OH 43210-1277
USA

zweben@cis.ohio-state.edu
teI.: +1 -61 4-292-95 26

Adam Porter
Univ. of Maryland at College Park
Department of Computer Science
College Park MD 20742
USA
aporter@cs.umd.edu
tel. : + 1-301-405-27 02

H. Dieter Rombach
Fachbereich lnformatik
AG Software Engineering
Postfach 3049
W-6750 Kaiserslautern
Germany
rombach@informatik.uni-kl.de
tel. : +49-631-205-28 95

Walt Scacchl
University of Southern California
School of Business Administration
Decision Systems Department
Bridge Hall 401 V
Los Angeles CA 90089-1421
USA
scacchi@pollux.usc.edu
tel.: +1-213-740-47 82

Norm Schneldewind
U.N. Naval Postgraduate School
Code AS/SS
Monterey CA 93943-5100
USA
0442p@cc.nps.navy.mil
tel. : + 1-408-646-27 19

Richard W. SelbY.
University of California
Department of Information and
Computer Science
Irvine CA 92717
USA
selby@ics.uci.edu
tel.: +O 1-714-856-63 26

Vincent Shen
The Hong Kong University of
Science and Technology
Department of Computer Science
Clear Water Bay
Kowloon
Hong Kong
shen@uxmail. ust. hk
tel. : (852) 358-7009

Eric Sumner
AT&T Bell Labs
1000 E Warrenville Rd
Naperville IL 60566
USA
ees@research.ih.att.com
tel. :+ 1-708-713-76 60

Walter Tichy
Univer~itat Karlsruhe
Fakultat fur lnformatik
Im Fasanengarten 5
W-7500 Karlsruhe
Germany
tichy@ira.uka.de
tel.: +49-721-608-3934

Kevin Wentzel
Hewlett Packard Labs
P. 0 . Box 10490
Palo Alto CA 94303-0969
USA
wentzel@hpl.hp.com
tel. : 415-857-4018

Marvin Zelkowltz
Univ. of Maryland at College Park
Department of Computer Studies
College Park MD 20742
USA
mvz@cs.umd.edu
tel. : + 1-301-405-26 90

Horst Zuse
TU Berlin
Fachbereich 20 lnformatik
Franklinstr. 28-29
W-1000 Berlin 10
Germany
zuse@tubvm.cs.tu-berlin.de
tel.: +49-30-314-7 34 39

Stu Zweben
Ohio State University
Depart. of Computer &
Information Science
2036 Neil Avenue
Columbus OH 43210-1277
USA
zweben@cis.ohio-state.edu
tel.: + 1-614-292-95 26

Zuletzt erschienene und geplante Titel:
N. Habermann� W.F. Tichy (editors):

Future Directions in Software Engineering, Dagstuhl-Seminar-Fleport; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr� F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps. G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl�Seminar-Fieport; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Dittie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar~Fieport; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, AM. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Fleport; 39; 22.06.-26.06.92 (9226)

E. Bürger, Y. Gurevich� H. Kleine-Büning� M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Kaminski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th Intemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Krückeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeiing (UM'92)� Dagstuhi-Seminar-Repon; 44; 10.-
13.8.92 (9233)

R. Fieischuk, D. Uhlig (editors):
Cormlexity and Realization o1 Boolean Functions, Dagstuhl-Seminar-Flepott; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schornburg, M.S. Waterman (editors):
Molecular Biointormatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.R. Basili, H.D. Rombach, Fl.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar�Report; 48; 21 .09.-25.09.92 (9239)

HP. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity of Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encamacao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Fiammig, J. Staunstrup, G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

Zuletzt erschienene und geplante Titel:

N. Habermann, W.F. Tichy (editors) ·
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms: Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments: Oagstuhl-Seminar-Report; 34 ; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors)·
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3 .-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism: Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors) :
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. BOrger, Y. Gurevich, H. Kleine-Boning, M.M. Richter (editors):
Colll)uter Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th International Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31 .07.92 (9231)

J.W. Davenport, F. Kruckeberg, R.E. Moore, S. Rulll) (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Cofl1)1exity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11 .09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
Cofl1)uter Science and Philosophy, Oagstuhl-Seminar-Report; 48; 21.09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Cofl1)lexity of Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encama~ao, J. Foley (editors):
Multimedia - System Architectures and Applications, Oagstuhl-Seminar-Report; 51; 02.11.-
06.11 .92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

