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Preface

Learning is obviously an important phenomenon of natural intelligence. Therefore,
despite diverging speci�cations of the area of arti�cial intelligence, learning is a central
issue of arti�cial intelligence research. There is abundant evidence of the human ability
to learn from possibly incomplete information. In human communication, one usually
provides only incomplete information with respect to some target phenomenon to be
described or speci�ed, or even to be learned. Algorithmic or computational learning
theory is the theoretical division of machine learning research dealt with those prob-
lems. Analogical reasoning and inductive inference are typical research areas faced to
the central problem of processing possibly incomplete information.

Nowadays, there are three international conference series in the area of algorithmic
or computational learning theory. The youngest one is ALT (Algorithmic Learning
Theory) established in Japan in 1990 and held annually since then. Two years earlier,
there has been started the annual workshop series COLT (Computational Learning
Theory) in the USA. Already in 1986, a workshop series called AII (Analogical and
Inductive Inference) has been established in Germany. Compared to ALT and COLT,
the AII events are distinguished by a considerably smaller number of participants as
well as by putting much more emphasis on longer talks and room for discussions. So, the
International Research and Conference Center at Dagstuhl Castle seemed particularly
tailored to host AII�92. The organizers gratefully acknowledge the excellent working
conditions provided for this third event in the All series.

The AII workshos are focussed on all formal approaches to algorithmic resp. com-
putational learning particularly emphasising settings faced to processing incomplete
information. Both analogical reasoning and inductive inference are currently attract-
ing a considerable interest. Analogical reasoning plays a crucial role in the currently
booming �eld of case-based reasoning. In the field of inductive logic programming,
for instance, a couple of new techniques have been developed for inductive inference.
Moreover, AII events are always intended to bridge the gap between several research
communities. The basic areas of concern are theoretical computer science, arti�cial
intelligence, and cognitive sciences. The scienti�c programme of AII�92 re�ects the
endeavour to support communication between specialists of these areas quite well.

An international programme committee has been working to prepare AII�92, the
Dagstuhl Seminar # 9241, scienti�cally. Members of the programme committee are Set-
suo Arikawa (Fukuoka, Japan), Janis Barzdins (Riga, Latvia), Bruce Buchanan (Pitts-
burgh, PA, USA), Robert P. Daley (Pittsburgh, PA, USA). Luc De Raedt (Leuwen,
Belgium), Ulrich Furbach (Koblenz, Germany), Douglas R. Hofstadter (Bloomington,
IN, USA), Bipin Indurkhya (Boston, MA, USA), Klaus P. Jantke (Leipzig, Germany),
Carl H. Smith (College Park, MD, USA), Manfred Warmuth (Santa Cruz, CA, USA),
and Stefan Wrobel (St. Augustin, Germany).

The conference programme contains presentations of different type. First, there
are invited talks by distinguished scientists reporting on essential contributions to the
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area. Second, there are submitted papers which have been processed in a reviewing and
selection process as usual. Third, there have been invited two talks of a very special
type to be presented and discussed at evening sessions. Fourth, according to the policy
of Dagstuhl Seminars to provide every participants the opportunity to present her/ his
recent work, there are so-called supplementary talks. The programme attached at the
end of this collection allows to get an overview of these categories of contributions. The
invited talks and the submitted papers which passed the reviewing process successfully
are published in the proceedings volume Analogical and Inductive Inference, Klaus P.
Jantke (ed.), Lecture Notes in Arti�cial Intelligence, Springer-Verlag, 1992. Readers
interested in the proceedings of the former AII workshops may consult Springer-Verlag
Lecture Notes in Computer Science 265 and Lecture Notes in Arti�cial Intelligence 397.
Selected contributions will appear in a revised form in a special issue of the Journal
of Experimental and Theoretical Arti�cial Intelligence (J ETAI). This will be volume 5
(1993), issue 2.

As usually behind the scene, the work of a number of colleagues contributed essen-
tially to the success of the workshop. I want to express my sincere gratitude to all of
them. The Algorithmic Learning Group of Leipzig University of Technology, in partic-
ular Andreas Albrecht, Ulf Goldammer, Steffen Lange, and Eberhard Pippig, provided
continous assistance. Steffen Lange did a particularly important Work as organizing
secretary of AII�92. Last but not least, Thomas Zeugmann (Darmstadt) has intensively
pushed forward the assembly of the present publication.

Klaus P. J antke
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Unions of Identi�able Classes of Total Recursive

Functions

Ka.lvis Apsitis, R�sins Freivalds, Martins Krikis
Raimonds Simanovskis and Juris Smotrovs

University of Latvia, Riga

J. Barzdin (1974) has proved that there are classes of total recursive functions which
are EX �identi�able but their union is not. We prove that there are no 3 classes U1,
U2, U3 such that U1 U U2, U1 U U3, and U2 U U3 would be in 0d� but U1 U U2 U U3 ¢  \$�
For FIN-identi�cation there are 3 classes with the above�mentioned property and
there are no 4 classes U1, U2, U3, U4 such that all 4 unions of triples of these classes
would be identi�able but the union of all 4 classes would not. For identi�cation with

no more than p mindchanges a (2""&#39;2 � 1)-tuple of such classes do exist but there is no
(2""")-tuple with the above mentioned property.

A Language Learning Characterization of the Hypersimple Sets

Ganesh Baliga and John Case
University of Delaware, Newark

Hypersimple sets were introduced by Emil Post in his attempt to resolve what is now
known as Post�s problem. We present a characterization of hypersimple sets in terms
of the well�known language learning criterion Ta:tE:c"� (see Case and Lynes (1982) for
the de�nitions of Ta:tEa:"&#39; and T:ctBc"&#39;). This characterization yields, as a corollary, a
strikingly simple language class contained in T:ctBc* \ T:ctEa:*.
References:

Case, J ., and Lynes, C. (1982), Machine inductive inference and language identi�ca-
tion, in �Proceedings Automata, Languages and Programming, 9th Colloquium,
Aarhus, Denmark,� (M. Nielsen and E.M. Schmidt, Eds.), Lecture Notes in Com-
puter Science 140, pp. 107 - 115, Springer-Verlag, Berlin.

Learning from Multiple Sources of Inaccurate Data

Ganesh Baliga, University of Delaware, Newark
Sanjay Jain, National University of Singapore, Singapore

and

Arun Sharma, University of New South Wales, Sydney

Most theoretical studies: of inductive inference model a situation involving a. machine
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M learning its environment E on following lines. 1W, placed in E, receives data about
E, and simultaneously conjectures a sequence of hypotheses. M is said to learn E just
in case the sequence of hypotheses conjectured by M stabilizes to a �nal hypothesis
which correctly represents E.

The above model makes the idealized assumption that the data about E that M
receives is from a single and accurate source. An argument is made in favor of a
more realistic learning model which accounts for data emanating from multiple sources,
some or all of which may be inaccurate. Motivated by this argument, the present paper
introduces and theoretically analyzes a number of inference criteria in which a machine
is fed data from multiple sources, some of which could be infected with inaccuracies.
The main parameters of the investigation are the number of data sources, the number
of faulty data sources, and the kind of inaccuracies.

Efficient Inference of Formulas from I/ O Examples

Guntis Barzdins

Latvian University, Riga

In the talk an efficient method for inferring formulas constructed from the set of
known functions and satisfying several input-output examples is considered. The
method is based on the use of hypergraphs to represent the sets of valid formulas.
The hypergraph transformations are used to filter these sets against the provided I/ O
examples more efficiently than just one formula at a time as it would be in the case
of pure exhaustive search. In comparison with the earlier reports about the method,
here we present a generalization witch allows to consider not only discrete functions,
but also continuous functions. The computer experiments illustrating the use of the
generalized method for inferring the formula for computing the volume of the frustum
of the square pyramid are presented.

In�nitary Self-Reference in Learning Theory

John Case, University of Delaware, Newark

Kleene�s Second Recursion Theorem provides a means for transforming any program
p into a program e(p) which �rst creates a quiescent self copy and then runs p on that
self copy together with any externally given input. e(p), in effect, has perfect self-
knowledge and p represents how e(p) uses its self knowledge (and its knowledge of
the external world). In�nite regress paradoxes are avoided since e(p) creates its self
copy outside of itself. One mechanism to achieve this creation is a self-replication trick
isomorphic to that employed by single-celled organisms. Another is for e(p) to look in
a mirror to see which program it is. In 1974 I published an in�nitary generalization of
Kleene�s theorem which I called the Operator Recursion Theorem. It provides a means
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for obtaining an (algorithmically) growing network of programs which, in effect, share a
common (also growing) mirror from which they can obtain perfect models of themselves
and the other programs in the network. This and other recursion theorems have found
many applications in, among other domains, Gold style computational learning theory.
I will present and explain several examples intended to teach the use of in�nitary (and
other) recursion theorems in learning theory.

Representing the Spatial/Kinematik Domain and
Lattice Computers

John Case, Dayanand S. Rajan and Anil M. Shende
University of Delaware, Newark

An approach to analogical representation for objects and their motions in space is
proposed.

This approach involves lattice computer architectures and associated algorithms and
is shown to be abstracted from the behavior of human beings mentally solving spa-
tial / kinematic puzzles. There is also discussion of wherein this approach the modeling
of human cognition leaves off and the engineering begins.

The possible relevance of the approach to a number of issues in Arti�cial Intelli-
gence is discussed. These issues include efficiency of sentential versus analogical repre--
sentations, common sense reasoning, update propagation, learning performance tasks,
diagrammatic representations, spatial reasoning, metaphor, human categorization, and
pattern recognition.

Lastly there is a discussion of the somewhat related approach involving cellular
automata applied to computational physics.

Strong Separation of Learning Classes

John Case, University of Delaware, Newark
Keh-Jiann Chen Academica Sinica, Taipei, Republic of China

and

Sanjay Jain, National University of Singapore, Singapore

Suppose LC; and LC; are two machine learning classes each based on a criterion
of success. Suppose, for every machine which learns a class of functions according
to the LC; criterion of success, there is a machine which learns this class according
to the LC; criterion. In the case where the converse does not hold LC; is said to be
separated from LC2. It is shown that for many such separated learning classes from the
literature a much stronger separation holds: (VC 6 LC1)(3C I 6 (LC; � LC1))[C/ D C].
It is also shown that there is a pair of separated learning classes from the literature
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for which the stronger separation just above does not hold. A philosophical heuristic
toward the design of arti�cially intelligent learning programs is presented with each
strong separation result.

A Solution of the Credit Assignment Problem
in the Case of Learning Rectangles

Zhixiang Chen, Boston University and
Wolfgang Maass, TU Graz

The talk has been given by Peter Auer, TU Graz.

We present a paper of Zhixiang Chen and Wolfgang Maass which solves the following
open problem: Is there an algorithm for on-line learning of rectangles H:3&#39;=,{a,-,a,- +
1,. . . ,b,~} over the discrete domain {1, . . . ,n}d whose error bound is polylogarithmic
in the size 12� of the domain? They give a positive answer by solving the well known
�credit assignment problem� introducing a new error tolerant� binary search strategy
which tolerates certain types of wrong �credit assignments�.

We also present a tight lower bound on the learning complexity of the above learning
problem not given in the paper. Furthermore we present some new results on the
learning of rectangles in noisy environments which give sharp bounds on the tolerable
noise.

Desiderata for Generalization-to-N Algorithms

William W. Cohen, AT & T Bell Labs., Murray Hill

Systems that perform �generalizations-to-N� in explanation�based learning gener-
alize a proof tree by generalizing the shape of the tree, rather than simply changing
constants to variables. This paper introduces a formal framework which can be used
either to characterize or to specify the outputs of an algorithm for generalizing number.
The framework consists of two desiderata, or desired properties, for generalization-to-
N algorithms. In the paper, we �rst motivate and de�ne these desiderata, the review
one of several alternative frameworks for generalizing number: an automata�based
approach �rst described in Cohen (1988). Finally, we describe a generalization-to-N
technique that provably meets these desiderata. As an illustration of the operation of
the new algorithm, an implementation of it is applied to a number of examples from
the literature on generalization-to-N.
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The Power of Probabilism in Popperian FINite Learning

Robert Daley Bala Kalyanasundaram
University of Pittsburgh, Pittsburgh

Mahe Velauthapillai
Georgetown University, Washington, D.C.

We consider the capabilities of probabilistic FIN -type learners who must always pro-
duce programs (i.e., hypotheses) that halt on every input. We show that the structure
of the learning capability of probabilistic and team learning with success ratio above
ä in PFIN-type learning is analogous to the structure observed in FIN -type learning.
On the contrary, the structure of probabilistic and team learning with success ratio at
or below ä- is more sparse for PFIN-type learning than FIN -type learning. For n Z 2,
we show that the probabilistic hierarchy below ä for PFIN-type learning is defined
by the sequence 9:22, which has an accumulation point at ä. We also show that the

4 .power of redundancy at the accumulation point 5 1s different from the one observed
at �� More interestingly, for the first time, we show the power of redundancy even at
points that are not accumulation points.

An Analysis of Various Forms of �Jumping to Conclusions�

Peter A. Flach, Tilburg University

In this paper, I discuss and relate characterisations of different forms of �jumping
to conclusions�: Kraus, Lehmann & Magidor�s analysis of plausible reasoning (1990),
my own characterisation of inductive reasoning (Flach, 1991), Zadrozny�s account of
abductive reasoning (1991), and Gardenfors� theory of belief revision (1988). My main
claims are that �:� inductive reasoning can be characterised in a way simlar to plausi-
ble reasoning; (ii) inductive and abductive reasoning are special cases of explanatory
reasoning; and (iii) there are strong relations between belief revision and explanatory
reasoning. The ultimate goal of this research is a general account of jumping to con-
clusions.
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Synthesis of Logic Programs from Examples and Properties

Pierre Flener and Yves Deville, Universite de Louvain

In view of the synthesis of recursive (logic) programs whose intended relation is
known, we introduce �properties� as a speci�cation formalism. Properties help over-
come the limited expressive power and the ambiguity of examples, and yet preserve their
naturalness and conciseness. The promise is faster and more reliable synthesis of (logic)
programs from such augmented incomplete speci�cations than from examples alone.
Viewing recursive (logic) programs as very special concept descriptions, we advocate a
departure from �traditional� inductive learning techniques. Thus, within our general
framework of stepwise synthesis of logic programs from examples and properties, we
opt for a non-incremental synthesis that is moreover guided by a divide-and-conquer
(logic) program schema. Also, rather than inferring hypotheses from one speci�cation
source, and rejecting hypotheses using the other one, our synthesis mechanism makes
a �constructive� usage of both: it performs inductive inferences from examples, and
deductive inferences from properties. ;From a toolbox of interchangeable methods that
synthesize instantiations of predicate variables of a program schema, we develop such
a logic program synthesis mechanism.

An Inductive Inference Approach to Classi�cation

Rusins Freivalds, University of Latvia, Riga
and

Achim G. Hoffmann, Technische Universität Berlin

In this paper, we introduce a formal framework for investigating the relationship
of inductive inference and the task of classi�cation. We give the �rst results on the
relationship between functions that can be identi�ed in the limit and functions that
can be acquired from unclassi�ed objects only. Moreover, we present results on the
complexity of classi�cation functions and the preconditions necessary in order to allow
the computation of such functions.

Asking Questions Versus Veri�ability

William Gasarch, University of Maryland, College Park
and

Mahendran Velauthapillai, Georgetown University, Washington, DC

Case smith studied learning machines whose conjectures are veri�able (i.e. the
conjectures are total programs). They discovered that such machines are weaker than
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whose conjectures are not veri�able. Gasarch and Smith studied learning machines that
ask questions. They discovered that such machines are stronger than passive machines.
We raise the question �Can the weakness of veri�ability be overcome by the strength
of asking queries. We answer many interesting questions along the way. They include
a full examination of PEX and the resolution of some open problems of Gasarch Smith.
The motivating question has two answers: if unbounded mind changes are allowed then
the queries do not increase learning power of veri�able machines, where in the bounded
case they do.

Learning Decision Strategies with Genetic Algorithms

John J. Grefenstette, Naval Research Laboratory, Washington, DC

Machine learning offers the possibility of designing intelligent systems that re�ne
and improve their initial knowledge through their own experience. This article focuses
on the problem of learning sequential decision rules for multi-agent environments. We
describe the SAMUEL learning system that uses genetic algorithms and other com-
petition based techniques to learn decision strategies for autonomous agents. One of
the main themes in this research is that the learning system should be able to take
advantage of existing knowledge where available. This article describes some of the
mechanisms for expressing existing knowledge in SAMUEL, and explores some of the
issues in selecting constraints for the learning system.

A Model of the �Rediscription� Process in the Context of
Geometric Proportional Analogy Problems

Scott O�Hara, Boston University, Boston

It has been recognized for some time that analogies can rediscribean object or sit-
uation sometimes resulting in a radically new point of view. While thiscreative aspect
of analogy is often cited as a reason for its study, AI approaches to analogy have,
for the most part, ignored this phenomenon and instead have focused on computing
similarities between �xed descriptions. To study this �rediscription� process by which
new points of view can be created, we seek a micro�-world in which the rediscription
phenomenon occurs in its fully subtletly but in which in can be isolated from extra-
neous and ill�understood factors. Proportinal analogies (i.e., analogies of the form:
A is to B as C is to D) in the abstract domain of geometric �gures form just such a
micro�world. In this paper, we describe an algebraic formulation of the rediscription
process in the context of of geometric proportional analogies. We then discuss the
design of a computer programm called PAN which rediscribes geometric �gures while
solving proportional analogy problems. Finally, we brie�y discuss our plans for future
work in this area.
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Wittgenstein on Analogical and Inductive Inference

Achim G. Hoffmann

Technische Universität Berlin

In Wittgenstein�s philosophy there are two rather controversial viewpoints. In his
early philosophy (Tractatus-Logico Philosophicus) he advocated the model-theoretic
view of the world.

His late philosophy (Philosophical Investigations z 1950) rejects this model-theo-
retic view, where linguistic terms have a �xed ontological reference. Instead he argued
that the meaning of linguistic terms can only be determined as its use.

But the use of linguistic terms in any reasonable way (i.e. in order to communicate)
presupposes a certain intuitive ability to recognize and employ regularities, which are
connected with the kind of regularities other people recognize.

Moreover, regularities in using linguistic terms may change through the use of a
term. These regularities and the way of changing these regularities seems also to be
the basis for inductive and analogical inference.

Wittgenstein�s late considerations has been taken as an indication that human ana-
logical and inductive reasoning requires a rather extensive description. Hence, for re-
search in algorithmic induction one should rather assume an extensive body of knowl-
edge which acquires a limited amount of knowledge from the environment, instead
learning with a very small algorithm an unbounded amount of knowledge.

Why one Researcher Concluded that Formal Methods are
Inappropriate for Realistically Modelling Sequence

Extrapolation and Analogy-making

Douglas R. Hofstadter, Indiana University, Bloomington

Among my earliest research projects in Arti�cial Intelligence was the �Seek Whence�
project, a computer program whose goal was to observe a sequence of integers as it
was presented term by term, and to �seek whence� the sequence was originating - -
i.e., to seek the underlying rule of the sequence. I describe my initial approach which
was based on �natural� computer-science methods, such as recursion and tree search,
and I describe my gradual disenchantment with such techniques and my reasons for
eventually concluding that formal mathematical approaches to sequence extrapolation,
despite their elegance and appeal, are psychologically unrealistic and therefore consti-
tute a misleading avenue to follow.

I then show how the Seek-Whence project convinced me that the key to sequence
extrapolation is abstract perception of complex hierarchical structures, which led me to
the modelling of analogy-making. I describe the Arti�cial-Intelligence research project
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that ensued - - namely, the Copycat Project - - and I describe its architecture, which
attempts to model the �uidity and plasticity of human concepts and human perception.
The Copycat architecture is both parallel and non-deterministic, and accordingly its
behavior is emergent and unpredictable. I will attempt to make clear my reasons for
believing in the necessity of this type of approach for realistically modelling human
insight and creativity.

Predictive Analogy and Cognition

Bipin Indurkhya, Northeastern University, Boston

Abstract: The most prevalent sense of �analogy� in cognitive science and AI lit-
erature, which I refer to as �predictive analogy�, is the process of inferring further
similarities between two given situations based on some existing similarities. Though
attempts to validate predictive analogy on logical grounds have been singularly un-
successful, it is claimed that all the_ empirical evidence points to the usefulness of
predictive analogy in cognition. In this talk I critically analyze this claim. I argue
that the classroom experiments by cognitive psychologists to demonstrate predictive
analogy as a problem-solving heuristic do not really do so. Moreover, the few studies
of real-world problem-solving situations de�nitely point away from predictive analogy.
I present some examples where predictive analogy prevents one from seeing things as
they are, thereby hindering cognition. Having exposed its �dark side�, I argue for a
balanced perspective where predictive analogy is best seen as a psychological process
that is as likely to be a liability as an_asset to cognition.

Learning a Class of Regular Expressions via
Restricted Subset Queries

E�m Kinber, University of Latvia, Riga

A wide class of regular expressions non-representable as unions of �smaller� rex-
pressions is shown to be polynomial�time learnable via restricted subset queries from
arbitrary representative examples �re�ecting� the loop structure and a way the input
example is obtained from the unknown expression. The corresponding subclass of reg-
ular expressions of loop depth at most 1 is shown to be learnable from representive
examples via membership queries. A wide class of expressions with loops /1"� of arbi-
trary loop depth is shown to be learnable via restricted subset queries from arbitrary
examples.
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A Unifying Approach to Monotonic Language Learning

Steffen Lange, TH Leipzig and Thomas Zeugmann, TH Darmstadt

The present paper deals with monotonic and dual monotonic language learning from
positive and negative examples. The three notions of monotonicity re�ect different
formalizations of the requirement that the learner has to produce always better and
better generalizations when fed more and more data on the concept to be learnt.

The three versions of dual monotonicity describerthe concept that the inference
device has to produce exclusively specializations that fit better and better to the tar-
get language. We characterize strong�monotonic, monotonic, weak-monotonic, dual
strong�monotonic, dual monotonic and dual weak-monotonic as well as �nite language
learning from positive and negative data in terms of recursively generable �nite sets.
Thereby, we elaborate a unifying approach to monotonic language learning by showing
that there is exactly one learning algorithm which can perform any monotonic inference
task.

Background Knowledge and Declarative Bias in Inductive
Concept Learning

Nada Lavraé and Saso Dzeroski
Joéef Stefan Institute, Jamova

There are two main limitations of classical inductive learning algorithms: the limited
capability of taking into account the available background knowledge and the use of
limited knowledge representation formalism based on propositional logic. The paper
presents a method for using background knowledge effectively in learning both attribute
and relational descriptions. The method, implemented in the system LINUS, uses
propositional learners in a more expressive logic programming framework. This allows
for learning of logic programs in the form of constrained deductive hierarchical database
clauses. The paper discusses the language bias imposed by the method and shows how
a more expressive language of determinate logic programs can be used within the same
framework.

Analogical Reasoning Based on Typical Examples

Erica Melis

Universität des Saarlandes, Saarbrücken

Our Starting points for investigating analogical reasoning with typical examples were
some interesting results on concept structures and distinguished examples in congni-
tive psychology and our experience with a certain kind of analog asoning relying on
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typical examples, and the general insight that hybrid models of reasoning are the more
adequate ones in computationally modeling of human reasoning. Reasoning by typical
examples is developed as a special case of analogical reasoning using semantic informa-
tion contained in the concept structures. The corresponding inference rule is derived by
replacing explicit information about connections and similarity in a general pattern of
analogical inference by information about the relationship to typical examples. Using
the new inference rule analogical reasoning proceeds by checking a related example.
This procedure is simpler than ordinary knowledge based analogical inference. Finally
the connections to learning of pattern languages and �good� examples in inductive
learning are presented.

Equivalence and Re�nement for First-order Predicates

Stephen Muggleton
The Turing Institute, Glasgow G1 2AD

A number of authors within the Inductive Logic Programming literature have in-
vestigated the problem of introducing novel terms into the learner�s vocabulary. This
process is known as predicate invention. There is a growing need for a theoretical
framework for predicate invention. We describe a �rst attempt at such a framework in
an attempt to answer when predicate invention is necessary and from which universe
these predicates are chosen. The framework uses the notion of a lattice of predicate
utility. Some results of an initial implementation are given.

Characterization of Finite Identi�cation

Yasuhito Mukouchi
Kyushu University 39, Kasuga 816

A majority of studies on inductive inference of formal languages and models of
logic programming have mainly used Gold�s identi�cation in the limit as a correct
inference criterion. In this criterion, we can not decide in general whether the inference
terminates or not, and the results of the inference necessarily involve some risks. In this
paper, we deal with �nite identi�cation for a class of recursive languages. The inference
machine produces a unique guess just once when it is convinced the termination of the
inference, and the results do not involve any risks at all. We present necessary and
sufficient conditions for a class of recursive languages to be �nitely identi�able from
positive or complete data. We also present some classes of recursive languages that are
�nitely identi�able from positive or complete data.
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On Learning Certain Classes of Pictures Languages

Rani Siromoney
Madras Christian College, Madras

Learning sets of strings generated by grammars or accepted by automata have been
studied extensively. But not much work has been done on the learning of picture
languages (rectangular arrays in two dimensions), even though these models have been
of interest in applications to syntactic pattern recognition and recently, to problems
of tiling. Siromoney matrix array grammars were introduced in the seventies, as a
parallel/ sequential model for generating rectangular digitized pictures. One class can
be considered as a special case of pattern languages and such techniques applied for
the learning. Another class is an extension of equal matrix grammar to two dimensions
and techniques for learning an EML adopted. Finally, a linear time algorithm is given
for identifying an unknown local picture language from positive data. For the ef�cient
learning of recognizable �picture languages from positive data, restricted subset queries
are needed. I

Inductive Inference and Machine Learning

Carl H. Smith

University of Maryland, College Park

In this short talk, intended to promote discussion, an attempt will be made to
relate inductive inference with machine learning. Essentially, both �elds have the
same, perhaps unreachable, grand goal of being able to understand human learning
suf�ciently well so as to be able to program a computer to learn. The machine learning
community has decided to start directly with implementations, while the inductive
inference community is examining the boundary of the algorithmically learnable. All
other relationships between the two �leds may be mere serendipity.

On Identifying DNA Splicing Systems from Examples

Yuji Takada, FUJITSU and Rani Siromoney, Madras Christian College

DNA sequences are recombined with restriction enzymes and ligases. Splicing sys-
tems, generative devices introduced by Head, represent this DNA recombinant be-
haviors as operations on pairs of strings over a �nite alphabet. Culik II and Harju
proved that a language generated by a splicing system is regular. We give a method to
construct a splicing system from deterministic �nite state automaton. By combining
a conventional inductive inference/ learning method for deterministic �nite state au-
tomata with our method, we have an effective inductive inference/ learning method for
splicing systems.
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Rani Siromoney 
Madras Christian College, Madras 
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studied extensively. But not much work has been done on the learning of picture 
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of tiling. Siromoney matrix array grammars were introduced in the seventies, as a 
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the learning. Another class is an extension of equal matrix grammar to two dimensions 
and techniques for learning an EML adopted. Finally, a linear time algorithm is given 
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learning of recognizable picture languages from positive data, restricted subset queries 
are needed. 
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Carl H. Smith 
University of Maryland, College Park 
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inference community is examining the boundary of the algorithmically learnable. All 
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Ignoring Data May be the Only Way to Learn Efficiently

Rolf Wiehagen, Humboldt-Universität Berlin
and

Thomas Zeugmann, TH Darmstadt

In designing learning algorithms it seems quite reasonable to construct them in a
way such that all data the algorithm already has obtained are correctly and completely
reflected in the hypothesis the algorithm outputs on these data. However, this approach
may totally fail, i.e., it may lead to the unsolvability of the learning problem, or it may
exclude any efficient solution of it. In particular, we present a natural learning problem
and prove that it can be solved in polynomial time if and only if the algorithm is allowed
to ignore data.

On the Notion of Minimal Correcting Specializations in Machine Learning

Stefan Wrobel

GMD, St. Augustin 1

Generalization and specialization are the central operations examined in Machine
Learning. Where generalization addresses the problem of extending an incomplete
theory (inductive hypothesis), specialization is necessary whenever the existing theory
is incorrect, i.e., produces incorrect inferences. In this talk, we will discuss the issue of
what properties such a specialization operation should have. In particular, we will take
issue with the claim that specialization operations should be minimal, as it has been
put forth by some authors in Machine Learning, and argue that in many contexts, this
is not desirable.

Our argument is based on the standard de�nition of generality based on logical
derivability, i.e., one theory is said to be more general than another if the latter can be
derived from the former (F1 z, P2 iff Flt-P2). This de�nition of generality immediately
implies �that the notion of minimal specialization is one that is decided on the knowledge
level, i.e., on the closures of the respective theories. This, however, means that we
can build on work on the logic of theory change, where the properties of minimal
specialization operations on closed theories have been studied under the name of theory
contraction. We point out that minimal specializations can be obtained only with
maxi-choice contractions, and identify the undesirable properties of such operations
with respect to theory completion and reason maintenance.

We conclude with more practical aspects of specialization, and brie�y present the
specialization algorithm used in the knowledge revision tool KRT (a part of the MOBAL
system) that was developed based on the results of work on finite base contraction.
We will also contrast this algorithm with other methods that have been proposed to
obtain minimal specializations.
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Appendix

The invited papers as well as the submitted ones in the following conference pro-
gramme have been published in: K.P. J antke (Ed.), Analogical and Inductive Inference,
Lecture Notes in Arti�cial Intelligence 642, 1992, Springer-Verlag, Berlin.

Conference Programme

Monday, October 5

09:30 Opening

10:00 Coffee Break

10:30 Invited Talk

Rolf Wiehagen, Thomas Zeugmann
Too Much Information can be Too Much for Learning Efficiently
(recommended by Klaus P. Jantke)

12:00 Lunch

15:00 Coffee Break

15:30 Submitted Paper
Bipin Indurkhya
Predictive Analogy and Cognition

16:00 Submitted Paper
Scott 0�Hara

A Model of the �Redescription� Process in the Context of Geometric Pro-
portional Analogy Problems

18:00 Dinner

19:30 Special Session I
Douglas R. Hofstadter
Why one Researcher Concluded that Formal Methods are Inappropriate for
Realistically Modelling Sequence Extrapolation and Analogy-Making
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Tuesday, October 6

09:00 Invited Talk

John J. Grefenstette
Learning Decision Strategies with Genetic Algorithms
(recommended by Robert P. Daley)

10:00 Coffee Break

10:30 Invited Talk

Nada Lavrac, Saso Dzeroski
Background Knowledge and Declarative Bias in Inductive Concept Learning
(recommended by Luc De Raedt)

12:00 Lunch

15:00 Coffee Break

15:30 Submitted Paper
William W. Cohen

Desiderata for Generalization-to-N Algorithms
16:00 Submitted Paper

Peter A. Flach

An Analysis of Various Forms of �Jumping to Conclusions�

16:30 Supplementary Talk
Douglas R. Hofstadtcr
A Sketch of an Emergent & Parallel Architecture for Analogy-making

16:50 Supplementary Talk
Erica M elis

Analogical Inference Based on Typical Examples

17:10 Supplementary Talk
Stefan Wrobel
On the Notion of Minimal Specializations in Machine Learning

18:00 Dinner

19:30 GOSLER Project Meeting

Wednesday, October 7

09:00 Invited Talk

John Case, Dayanand S. Rajan, Anil M. Shende
Representing the Spatial/ Kinematic Domain and Lattice Computers
(recommended by Carl H. Smith)

10:00 Coffee Break
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10:30 Submitted Paper
Yasuhito Mukouchi

Characterization of Finite Identi�cation

11:00 Submitted Paper
Steffen Lange, Thomas Zeugmann
A Unifying Approach to Monotonic Language Learning on Informant

12:00 Lunch

15:00 Coffee Break

15:30 Submitted Paper
Ganesh Baliga, Sanjay Jain, Arun Sharma
Learning from Multiple Sources of Inaccurate Data

16:00 Submitted Paper
William I. Gasarch, Mahcndran Velauthapillai
Asking Questions Versus Veri�ability

16:30 Submitted Paper
E�m Kinber
Learning a Class of Regular Expressions via Restricted Subset Queries

17:00 MOBAL-Demo

Stefan Wrobel

18:00 Dinner

19:30 Special Session II
&#39; John Case

In�nitary Self-Reference in Learning Theory

Thursday, October 8

09:00 Invited Talk

Zhiziang Chen, Wolfgang Maass
A Solution of the Credit Assignment Problem in the Case of Learning Rec-

tangles 
(recommended by Manfred Warmuth)

10:00 Coffee Break

10:30 Submitted Paper
R-usins Freivalds, Achim G. Ho�mann
An Inductive Inference Approach to Classi�cation

11:00 Submitted Paper
John Case, Keh-Jiann Chen, Sanja-y Jain
Strong Separation of Learning Classes
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12:00 Lunch

15:00 Coffee Break

15:30 Submitted Paper
Robert P. Daley, Bala Kalyanasundaram, Mahendran Velauthapillai
The Power of Probabilism in Popperian Finite Learning

16:00 Submitted Paper
Kalvis Apsitis, Rusins Freivalds, Martins Krikis, Raimonds Simanovskis,
Juris Smotrovs

Unions of Identi�able Classes of Total Recursive Functions

16:30 Submitted Paper
Yaji Takada, Rani Siromoney
On Identifying DNA Splicing Systems from Examples

17:15 Supplementary Talk
Achim Hoffmann
Wittgenstein on Analogical and Inductive Inference

17:35 Supplementary Talk
Carl H. Smith

Inductive Inference and Machine Learning: A Tenuous Relationship

18:00 Conference Dinner

Friday, October 9

09:00 Invited Talk

Stephen Muggleton
Equivalence and Re�nement for First-Order Predicates
(recommended by Stefan Wrobel)

10:00 Coffee Break

10:30 Supplementary Talk
Rani Siromoney
On Learning Certain Classes of Picture Languages

10:50 Supplementary Talk
Ganesh R. Baliga, John Case
A Language Learning Characterization of the Hypersimple Sets

11:10 Supplementary Talk
Guntis Barzdins

Efficient Inference of Formulas from Input / Output Examples

11:30 Supplementary Talk
Pierre Flener, Yves Deville
Synthesis of Logic Programs From Examples and Properties
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