W. Cellary, K. Vidyasankar ,
G. Vossen (editors):

Versioning in Database Management
Systems

Dagstuhl-Seminar-Report; 55
01.02.-05.02.93 (9305)



ISSN 0940-1121

Copyright © 1993 by IBFI GmbH, SchioB Dagstuhl, W-6648 Wadern, Germany

Tel.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum fur Informatik (IBFI) ist eine gemein-
nitzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persénlich
eingeladenen Gasten durchgefiihrt werden.

Verantwortlich fur das Programm:

Gesellschafter:

Trager:
Bezugsadresse:

Prof. Dr.-Ing. José Encarnagao,

Prof. Dr. Winfried Gorke,

Prof. Dr. Theo Harder,

Dr. Michael Laska,

Prof. Dr. Thomas Lengauer,

Prof. Walter Tichy Ph. D.,

Prof. Dr. Reinhard Wilhelm (wissenschatftlicher Direktor)

Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karisruhe,

Gesellschaft fur Informatik e.V., Bonn

Die Bundeslander Saarland und Rheinland-Pfalz

Geschaftsstelle SchloB Dagstuhl
Informatik, Bau 36

Universitat des Saarlandes

W - 6600 Saarbriicken
Germany

Tel.: +49 -681 - 302 - 4396

Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de



Versioning in Database Management Systems

Organizers: W. Cellary, K. Vidyasankar, G. Vossen

1 Introduction

Versioning of data refers to the ability of a database management system to crea-
te, organize, manage and maintain distinct versions of individual data items or
objects over certain periods of time. In traditional database systems, versioning
can be employed to improve the efficiency of transaction synchronization through
the provision of multi-version concurrency control algorithms. While traditional
systems emphasize the view of keeping versioning transparent from a user’s point
of view, i.e., having a user ignore that data objects may exist in multiple versions
in the database, more recent applications of database systems have among their
requirements that the versioning mechanism of the system has to be apparent to
users. For example, temporal databases, which organize data across time, need
to keep track of how data objects change over time (e.g., a person’s employment
history) and to answer historical queries (e.g., “what was a person’s position ten
years ago”). Moreover, in design environments as given in a computer-aided de-
sign (CAD) or software engineering (CASE) context, users need to experiment
or simply work with different versions of the same object, in order to explore
distinct evolution paths of the object under design, or to accommodate multiple
composition requirements. Here, the situation is further complicated by the fact
that design objects are typically of complex structure, with references to many
subobjects each of which can itself be multi-versioned. In addition, these versions
typically even represent objects which are not yet completed, and which are used
by a group of cooperating designers. To support such a cooperation, versioning
must be complemented by mechanisms to create configurations of potential final
design objects.

Since especially in non-traditional applications of databases a versioning fa-
cility has been recognized as important and must be provided at the user’s level
of abstraction, a number of different aspects of versioning has been investigated
over the past ten years. In particular, the questions that have been addressed
include

1. version models which provide data structuring concepts for organizing versi-
ons into derivation histories, for composing complex objects from versions of
their component objects (i.e., for forming configurations), and for tracking
equivalent versions across multiple representations of the underlying object,



2. operational issues including inheritance and derivation, i.e., mechanisms
through which new versions can be obtained from existing ones, change
notification and propagation describing how complex interconnected design
structures respond to changes, and workspace models, i.e., mechanisms
through which new versions become visible to and sharable by a designer
community,

3. organizational frameworks for group cooperation, which add an appropriate
layer of abstraction to a versioned database,

4. language concepts through which users can conveniently and adequately
employ an apparent versioning mechanism,

5. implementation aspects including storage structures for versions and their
histories, transaction processing in the presence of versions and/or work-
spaces (and distributed system architectures), consistency preservation for
configurations and multiple representations.

The work that has been done on versioning in databases in recent years shows
that a number of issues is still not well-understood, although commercial products
supporting versioning are already available in the marketplace. For example,
the perception that a versioning facility should be orthogonal to both object
composition and concurrency control has only recently been advocated. By the
same token, a unification or even standardization of approaches is rarely in sight.
Finally, the proper meaning, implications of and requirements to versioning in
distinct application domains (including, CAD, CASE, office information systems,
or multimedia systems) are neither fully understood nor exhaustively explored.

Given this situation, it was the goal of this workshop to bring together, to the
organizers’ knowledge for the first time separate from a major database conference
or workshop, people from the international research community who have made
important contributions to versioning and/or are still actively working on this
subject. Furthermore, it was our intention to identify commonalities among the
variety of proposals that have been made in the past, and to isolate demanding
open problems in this field.

The meeting brought together 28 scientists from the eight countries of Brazil,
Canada, Croatia, France, Germany, Italy, Poland, and USA (see last section).
During the week, 20 presentations spanning a wide range of issues were given in
a dynamically composed program, with plenty of discussion time after each; in
addition, an open discussion was held on Thursday afternoon and evening.



We felt that all participants enjoyed the workshop, and we wish to thank the
Dagstuhl staff for ensuring that everything ran so smoothly. The Dagstuhl office
in particular provided financial support for the participants from the Central
European countries, thereby enabling them to travel to the castle and to attend
the workshop, which is gratefully acknowledged. Special thanks go to the kitchen
staff for keeping us stuffed with good food all the time, and to Melanie Spang
for her patience in handling everything that came up during the week.



2 Abstracts of Presentations

The following abstracts of presentations appear in the order the presentations
were given; the first four were given on Monday, the next five on Tuesday, the
next three on Wednesday, the next five on Thursday, and the last three on Friday.

Database Version Approach
W. Cellary, Franco-Polish School of New Information and Communication
Technologies, Poznan, Poland?

To maintain consistency, a multiversion database is organized as a set of database
versions, each database version containing one version of each object. A database
version is a unit of consistency, i.e., the version of an object contained in a
database version is consistent with the versions of all other objects contained in
the same database version. A database version is also a unit of versioning, i.e., to
create a new version of an object, a new database version must be created, where
the new object version appears in the context of other object versions, and has
to respect consistency constraints. There are two kinds of transactions: database
version transactions and object transactions. A database version transaction
derives a new database version, called a “child” from a given one, called the
“parent”. When derived, a child database version is a logical copy of its parent.
Then it may evolve independently of its parent. An object transaction is an
ordinary transaction known from the monoversion databases. It is addressed to
one or several database versions. It queries and updates object versions contained
in a database version in such a way that the database version remains consistent
when the transaction commits. To avoid redundancy, object versions may be
shared by several database versions. To obtain high performance of database
management a special addressing is used based on “version stamps”. Version
stamps permit to deduce which database versions share a given object version
without storing explicit links among them. As a consequence, creation of a
new database version does not require any modification of control data storing
information on object version association with database versions.

1Joint work with G. Jomier, University Paris-Dauphine, France.

4



The Constellation Approach for Managing Multi-Version Objects in
CAD Databases
G. Vossen, University of Giessen, Germany

One of the key issues in integrating database technology into design environments
and processes is finding the appropriate logical organization of databases at the
application-interface level, since this has to account for requirements like versio-
ning, consistency, and design transactions. This talk described a novel approach
to the organization, manipulation and management of (versioned) design objects
in a design database and investigated its use in design processes. This approach
is based on the fundamental perception that valuable database support for ap-
plications like CAD must be based on the specific way in which designers carry
out projects, and that a database can only play the role of a tool which is easy
to use. To this end, it must be reflected that design objects are composite and
exist in multiple versions, a design process is evolutionary and cooperative, with
many people of distinct levels of expertise and competence involved, and there is
no completely predefined notion of “database consistency”.

To account for these requirements, we proposed a new organizational frame-
work for design databases based on constellations. Informally, a constellation
is a set of multiversion design objects together with all their subobjects; it ab-
stracts from physically existing object versions and just considers composition.
Constellations can be versioned into configurations, where a configuration — as a
“snapshot” of some part of an artifact under design — is comprised of one version
of each object of the underlying constellation; thus, configurations state which
versions of distinct objects make sense together. The constellation approach has
several advantages: First, it can provide a natural reflection of a design process:
since constellations are considered the units of allocation to designers, they ac-
count for dependencies between designers as well as parallel work of designers.
Second, versioning of objects is orthogonal to object composition, which renders
efficient manipulation and management of design objects possible. Third, it pro-
vides an adequate notion of consistency for a design database. This is due to the
fact that only configurations are units of consistency in our approach, so that
consistency becomes context-dependent.

The clear logical decomposition of a design database into well-defined units
of consistency also has an important impact on transaction processing. Indeed,
a flexible support of design processes becomes possible by using specific types
of transactions whose scope is limited to well-defined portions of the database.
Transactions can either operate on object versions, on configurations, or on con-
stellations. Since consistency is confined to configurations, transactions operating
on object versions within the context of a configuration are transactions in the

5



traditional sense. They are, in a sense, orthogonal to transactions manipulating
configurations and constellations. Finally, the approach is object-oriented: De-
sign objects have an identity and a value, where the latter may contain references
to other objects. Similarly, constellations and configurations have unique identi-
ties, and their “values” have to satisfy a number of conditions. However, since
no specific assumptions are made on the object model used, our approach can be
adopted by an arbitrary object management system.

A full version of the paper on which this talk was based appeared as Technical
Report No. 9105, University of Giessen; it was written together with W. Cellary
and G. Jomier, and is available from the author.

Version Consistency and Serializability in Design Databases
K. Vidyasankar, Memorial University of Newfoundland, Canada?

A database used by engineering or manufacturing applications for analysis and
design purposes is called a design database . Here data items represent the
actual physical structure of engineering parts and components. A design process
can be thought of as starting with certain base data items or design objects,
and deriving others from them. Several alternate designs may be tried from the
same set of base objects. Designs with several sets of base objects may also
be tried. Hence several versions of various data items may exist in the system
simultaneously. Then “consistent” versions must be used in each derivation. Also
a concurrency control mechanism for design database systems must allow keeping
various versions until the end of the design process.

In this paper we propose a formal definition of version consistency in terms
of transaction histories. This allows checking version consistency by constructing
a “history” graph. We also propose that a notion called ,-serializability be
used as the correctness criterion for concurrent executions in design databases.
(For business and administrative databases, the commonly accepted criterion is
view-serializability.) We then show that 7,-serializability of a version consistent
history can be checked in polynomial time. (With general histories the problem
is NP-complete.) For this also a history graph needs to be constructed. Both
version consistency and T,-serializability can be checked using the same graph.

2Joint work with C.N.G. Dampney, School of Mathematics, Physics, Computing and Electro-
nics, Macquarie University, North Ryde, N.S.W. 2113, Australia. This research was supported
in part by the Natural Sciences and Engineering Research Council of Canada Individual Opera-
ting Grant A-3182 of K. Vidyasankar. This work was presented in ICDT ’88, 2nd International
Conference on Database Theory, Bruges, Belgium, August/September 1988, Proceedings LNCS
326, Springer-Verlag, pp. 368-382.



Evolution and Versioning of OODB Schemas Through a View
Mechanism
E. Bertino, University of Genova, Italy

In this talk, we present a view model for object-oriented databases that extends
in various directions view models typical of relational databases. In particular,
the definition language allows views to be defined that augment class definiti-
ons (by adding attributes and methods), and that support a wide spectrum of
schema modifications. Therefore, views represent a unified mechanism able to
provide several functions, such as query shorthand, definitions of dynamic sets
and partitions of classes, authorizations, schema changes and versions, object

perspectives.

Managing the Interaction between Versions and Time in Temporal
Object-Oriented Databases
C. Bauzer Medeiros, Universidade Estadual de Campinas, Brazil

Temporal databases allow maintaining information about the evolution of data
along time. This evolution is usually considered along two independent time
axes: valid time — the periods in which the data was valid; and transaction time
- system-generated time stamps, which indicate when the data was stored. Users
can therefore keep track of different "histories” of data, for the same set of data,
and at the same time indicate when these were believed to be valid.

Several mechanisms have been proposed to support time in relational data-
bases, but there are still many problems that remain to be solved. The support
of time in object oriented databases presents yet further difficulties, e.g., the
composition of objects which have different valid time spans, or the possibility
of inheritance through time.

These issues can be yet further complicated when one considers applications
that require maintenance of versions as well as their temporal evolution. In this
case, the DBMS has to provide support for four different dimensions of data
evolution: along two time axes (valid and transaction times) and according to
two different version generation operations (revisions and variants).

Two solutions were presented to allow simultaneous support of these four
dimensions. Both solutions are based on the Multiversion Database Version
Model, where the creation of an entity version entails the creation of a logical
database version containing this new entity version. If one adopts this model,
one can treat a temporal object-oriented database as a set of slices, where each
slice is a “snapshot” of the database at a given transaction time. One solution

7



entails considering each slice as a valid-time database with versions. The other
solution sees each slice as containing a set of snapshot databases with versions.
In the latter case, the slice is again partitioned in valid-time slices (the snapshot
databases), where all elements have the same validity properties.

CLOOD: A Class-less Model for Object-Oriented Design Databases
M. Gross-Hardt, University of Giessen, Germany

Recently, it has been argued that traditional models for object-oriented databases
are not adequate in many of those applications which originally triggered the
development of this novel databases technology. In order for a data model to be
useful in design applications like CAD or CASE, it must reflect and support the
specific database requirements of these domains. In this talk, a specialized model
for object-oriented databases was presented, which overcomes the limitations of
previous models especially for technical applications. Its major features include
that it is not based on the notion of class, and that a versioning mechanism
is directly built into the model. No claim is made that this model can serve
as a replacement for other object-oriented models, but it seems better suited
for design applications than previous “general-purpose” models. The basic idea
underlying this model is to have objects freely exist in a database. Objects still
have a structure and a behavior, but can additionally be versioned. Thus, each
object in our model has an identifier, an associated set of versions, and a set of
messages it understands. Versions in turn have a number and a value, where
values are elements of domains that are described by types. Objects can be
composed of other objects, and can interact.

Clearly, a declarative way of querying and updating a database of objects
is desirable. To this end, the general notion of a collection was introduced.
Basically, collections are arbitrary sets of objects and versions; however, it seems
useful to identify a number of collections which have specific properties. For
example, configurations are consistent sets of versions, or classes are collections
in which each object has the same structure and behavior. Thus, a database
in our model can be grouped into a variety of application-dependent collections,
which can then be subject to user operations.

A full version of the paper on which this talk was based appeared as Technical
Report No. 9208, University of Giessen; it was written together with Gottfried
Vossen, and is available from the author.



Environment to Develop and Maintain Large Knowledge Bases
S. Lanka, Penn State University, USA

We describe an environment that facilitates concurrent development of a large
knowledge base in a collaborative manner. The updates performed by a knowled-
ge engineer can be thought of as a long duration transaction. A version-oriented
concurrency control mechanism is chosen to alleviate problems that arise due to
a long duration transaction. An object store is designed to efficiently manage
multiple versions of a knowledge base. We show that the cost of maintaining
multiple versions is within a small constant factor of maintaining a single ver-
sion. The object store is implemented using Symbolics’ Statice object-oriented
DBMS.

The multiple versions of a knowledge base thus created are merged to form
a single unified version of the knowledge base that is consistent. To compute
a merged version that is consistent is NP-complete. We then formulate the
computation of a consistent merged version as an integer programming problem.

Supporting Engineering Applications by PRIMA — Versioning
Concepts and Architectural Issues
W. Kifer, IBM Almaden, USA?®

Engineering applications are characterized by a set of interrelated tools that
perform complex transformations on highly interconnected data. So-called CAD
frameworks, aimed to support engineering applications, focus on methods for
organizing shared data repositories, organizing the design tools, their executions,
the transfer of data among them, and the way they access data. Obviously,
data organization and data processing techniques play a key role in such an
environment.

In this talk, we present an architecture based on a complex-object database
management system, such as PRIMA, suiting these requirements. We briefly
discuss the overall architecture before we focus on the data management com-
ponents. PRIMA supports the needs of engineering applications with respect to
data organization and data management by a powerful data model which provides

e versioned complex objects (COs)

The COs offered by PRIMA are able to represent heterogeneous, network-like sets
of elementary objects (EOs). EOs are similar to tuples known from the area of

3Joint work with H. Schoning, Univ. Kaiserslautern, FRG.



relational database systems. However, special structural relationships (or links)
are used to set up nets of EOs, the so-called COs. The COs may be versioned,
each version representing a different net of EOs. The versions of one CO are
organized in a version derivation graph. COs and versions of different COs may
be linked together by version links or object links, respectively.

o a descriptive SQL-like query language

The query language handles sets of heterogeneous COs linked together via object
or version links, respectively. The result set of such a query consists of COs or
versions of COs and their constituting EOs along with their structural links.

e a tailored processing model

Tools used in engineering applications expose a so-called load-work-store beha-
vior. Using the descriptive query language a set of COs (along with their con-
stituting nets of EOs) is extracted from the data base and loaded into an object
buffer. There, the data can be processed using a main-memory pointer-based
hierarchical cursor interface and new versions of the data may be derived. After
this work phase, the data is written to the database.

Obviously, efficient extraction of COs and their components as well as query
optimization are critical tasks. Instead of implementing the described data model
from scratch we have chosen to implement it on top of an existing complex-
object data model, which does not provide version support. We demonstrate that
this approach is beneficial in contrast to similar approaches based on relational
database systems. The key to success is the ability of the underlying complex-
object data model to handle overlapping nets of objects efficiently.

Supporting Cooperative Design in a DBMS-based Design
Environment
N. Ritter, University of Kaiserslautern, FRG

Facing the growing complexity of technical products, the process of design is
typically carried out by a team of cooperating designers rather than by a single
person. Several methodologies have been developed in order to structure the o-
verall design process and to support designers working on partial design problems
and cooperating with each other, e.g., by negotiating their individual design goals
or by exchanging their partial results. However, today’s CAD systems typically
do not support cooperative work in a satisfactory manner. Exchange of prelimi-
nary results is usually done without system control and, therefore, also without
system support. In larger designer teams this causes inconsistencies of design

10



objects which must be hand-resolved with a considerable overhead. For that rea-
son a processing model is needed that allows to control the inherent dynamics of
design. It should be rich enough to reflect the major characteristics of a design
process, e.g., goal orientation, hierarchical decomposition, stepwise refinement as
well as team-orientation and cooperation. We propose a model of design process
dynamics which distinguishes different levels of abstraction. At a higher level,
the administrative part of design work has to focus on the description and or-
dering of design tasks and a controlled communication of (preliminary) design
states. On the subordinated level the organization of the actions performed in
order to fulfill a certain design task or sub-task is the subject of consideration.
Different design states are captured by means of a version model and caused by
tool executions. The derivation of a design object version is supported by the
concepts of a third level of abstraction. This conceptualization provides several
types of operational units serving for the structuring of the design process. The
operational units can be considered as spheres of control, similar to transactions.
In our contribution the different types of operational units are detailed. The dis-
cussion mainly focuses on their properties and assertions which allow to control
the design process dynamics without loosing the flexibility of applying different
design methodologies.

Graph Modeling in CASE-Applications
J. Ebert, University of Koblenz-Landau, FRG

Graphs are simultaneously expressive pictures, formal models, and efficient data
structures. TGraphs, i.e., typed, attributed, and ordered directed graphs, are
used as the data model for documents inside the KOGGE-CASE-Environments.

Classes of TGraphs are defined by entity-relationship-diagrams extended by
additional integrity constraints in the graph specification language GRAL. These
definitions directly correspond to Z-schemata. The E-R-diagrams describe the
type structure and the attributes. GRAL is a Z-like language, which allows to
formulate restrictions on TGraphs in such a way, that efficient procedures for
testing these restrictions may generated.

In this talk, TGraphs are used on a higher level of granularity. A graph clas-
s is given which models whole documents as vertices and their relationships as
arcs. Let the system graph be the subgraph induced by the set of dependsOn-
and hasAsVersion-arcs. Then, a formal definition delivers versions as two-vertex
subgraphs which are contained in configurations modeled as and/or-subgraphs.
These again are contained in constellations which are progressively closed sub-
graphs of the system graph.

11



UNDO in CAD Systems
M. Rosendahl, University of Koblenz-Landau, FRG

The user of a CAD system wants the possibility to undo the last operation, for
instance if the result of a operation is not what the user expected. The operation
undo has to change the database to the status it had before the operation. Be-
cause a mistake may be seen not before more than one operation is finished, the
undo operation should be evaluated for more than one operation. Also a redo
feature should be possible. If after an undo operation a new different operation
than before is performed, the history of the system states becomes a tree. The
user should be able to navigate in this tree.

To achieve this, the difference between two states is held in a log file. After
moving from state S; to S;;; the information A(z,7 + 1) is written. Then there
is the function UNDO(Si41,A(7,7 + 1)) — (S;, A(7 + 1,7)). A(@ + 1,1) is the
information to compute state S; from S;4; and is needed by a later redo operation.
For system performance two goals have to be achieved:

e Minimize the space for A(z, j),
e minimize the time to compute A(z,7).

The time for the UNDO operation is less critical, because this operation has not
to be performed after each operation.

The difficulty with these goals is that in CAD systems one operation can chan-
ge the values in nearly all entities of the database, e.g., a move of the total model.
So as far as possible the performed operation is held in the delta information.
Only if the operation cannot be inverted, then old data or the data differences
are recorded. If the delete operation will only set a tag in the data, delete and
undelete operations must only record the items to be (un-)deleted. User-defined
operations are either broken down into the basic operation or the data changes
are recorded. Additional problems arrive on systems where the data structure
of the system is an arbitrary graph and not only a collection, because then the
structure of the graph can be changed by an operation, e.g., building a segment
or resolving a segment into its elements.

A step further is a solution to the problem to insert a operation after some
undo operations and then redo the original operations from the state after the
inserted operation. There are situation when this can only be done with user
interaction.

12



Representing and Retrieving Information in a Multiversion Database
(MVDB)
S. Gancgarski, Universite Paris Dauphine, France

Most new database applications, nowadays, need tools that will help identifying
and managing data versions. We discuss the issues involved in representing and
retrieving versioned data in Multiversion Databases, particularly when using the
Database Versions Approach [CJ90]. In this approach, a Multiversion Database is
seen as a set of Database Versions (DBV). Each DBV contains exactly one version
per object, and represents a state of the real world modelled by the Database.
On a logical point of view, DBV are independent with each other and can be
updated without any side-effect on other DBV. However, on a physical point of
view, several DBV can share the same object version, to avoid redundancy, .

At the interface level (e.g., CAD application), the user may want to work
within one DBV, or he may want to work on a part of the MVDB. The first
case is quite similar to working in a monoversion Database. The second case is
more specific. Indeed, each DBV has its particular meaning, which is related
to two kinds of information: information about DBV and links between DBV.
The first kind of information gathers both DBV content (object versions that
are contained in the DBV) and DBV characteristics (e.g., the DBV status). The
second kind of information concerns application semantics (e.g., derived from
link) and must be stored additionally to information about DBV. Usually, those
links partially order the configurations set, and the MVDB can be seen as a
multigraph, whose nodes are the configurations. In order to allow information
retrieval in the MVDB, our first attempt will be to provide the user with new
functionalities for retrieving interesting DBV in the MVDB multigraph. In a first
step, we consider a simple, particular case: the MVDB multigraph is reduced to
a DAG with one links type, called the “DBV users Graph”.

The main problem is that the DBV users Graph can be very large. Therefore,
in most cases, it is impossible for a system to present it to the user as a whole.
Thus, tools must be developed to provide the user a way to define “views” on it.
One such tool would be a Multiversion Database Graph Query Language. This
language should enable graph view definition, using every kind of information
contained in the MVDB. Graph views may be synthesized, by reducing the num-
ber of represented DBVs, and by directly representing transitive relationships
instead of successions of direct relationships. Furthermore, this language should
allow the user to work in an incremental way, navigating through different parts
of a graph.

Related work can be divided into two main parts: Multiversion Query Langu-
ages and Graph Query Languages (GQL). Multiversion Query Languages are, in

13



most cases, extensions of object-oriented query languages. In some cases [Kaf92],
the only extension is that selection criteria can concern object version’s values
or ranking number. [Bjo89] proposes primitives that allow navigation through
version graphs. The main restriction with such languages resides in that queries
only return either object versions or configurations, i.e., it is not possible to sel-
ect particular links between configurations. Graph Query Languages are better
adapted to define Graph Views. For example, in Graphlog [Con89], it is possible
to define “virtual links”, which are computed but not stored. Actually, virtual
links are a restricted form of Graph Views, but the logical approach of such a
language implies efficiency problems.

We formalize the notion of Graph View, and present our first attempt to
define an algebraic Multiversion Graph Query Language. We present primitive
functions and function constructors that allow the definition of more sophisticated
functions or queries. In future work, we will implement this language on top of
the Database Version Manager [CKW90], and we will extend it to generalize the
notion of view on the MVDB.

References:

[Bjo89] Bjornerstedt A., Hultén C. Version Control in an Object-Oriented
Architecture. Section §: Object versions at the application level Object-Oriented
Concepts, Databases, and Applications (Kim W., Lochovsky F. Editors), chapter
18 (p. 451).

[CKW90] Cellary W., Koszlajda T., Wieczerzycki W. Database Version Ma-
nager: Prototype Technical University of Poznan, July 1990.

[CJ90] Cellary W., Jomier G. Consistency of Versions in Object-Oriented
Databases. VLDB 90, Brisbane (Australia).

[Con89] Consens M., Mendelzon A. Ezpressing Structural Hypertezt Queries
in GraphLog Hypertext 89, Tempe (Arizona), November 89.

[Kaf92] Kafer W., Schéning H. Mapping a Version Model to a Complez-Object
Data Model. IEEE Data Engineering , Tempe (Arizona), February 92.

14



Configuration Management for the Integration, the Control, the
Maintenance and the Installation of Hardware/Software Systems*
M.J. Blin, Universite Paris Dauphine, France

To be adapted to specific environments, the different elements — entities —
of systems are developed in several versions. Thus, systems exist in several
versions. When the development is finished, different users are concerned with
a developed system: the integration team which will verify that a version of the
system is well integrated with the operating environment, the certification team
which will submit the versions of the system to certification tests like performance
or ergonomic tests, the installation team which will install the versions of the
system on sites, the maintenance team which will create new versions of the
system. Entities are, the most time, of different nature: programs, manuals,
test data, etc., and may be complex. References between entities may have
different meanings like: "tested by” or "may be replaced by”... All the users are
not necessarily interested by all the entities composing the system. A delivery
configuration manager has to supply users with consistent sets of entities.

We propose a new model of configurations based on the Database Version
Model. Our solution provides efficient solutions to the raised problems and allows
operations on entity versions and on configurations like finding all configurations
containing specific entity versions, creating a new configuration containing new
entity versions from each configuration specified by a rule, comparing or merging
configurations.

Versions in the Context of Object-Oriented Databases
L. Goldstein Golendziner, Universidade Federal do Rio Grande do Sul, Brazil

Object-Oriented Database Systems emerged as a consequence of the requirements
imposed by the new computer applications like CAD, CASE and Office Autn-
mation. The principles on which the object-oriented paradigm are based are:
objects with unique identification, encapsulation, types or classes, methods, and
class hierarchies, with the inheritance mechanism.

Versions represent design steps or alternatives of primitive or structured ob-
jects and there have been several works trying to understand and integrate the
version concept with object-oriented models.

The talk focuses on three aspects that have to be considered when trying
to integrate versions and object-oriented models. The first is the concept of
generic object, similar to that defined in the ORION and Iris systems. A generic

4Joint research with G. Jomier Lamsade/Paris-Dauphine University

15



object gathers several versions of one object and it partitions the set of versions
of a class.. The second aspect refers to how objects (and versions) are related
in a class hierarchy, taking inheritance into consideration. Versions of objects
can exist in more than one class of the hierarchy and a correspondence must
be defined among them. The third aspect discussed is a discipline for version
creation. The versioning process can be constrained, based on the structure of
the versions. Rules can be defined to restrict the changes allowable to versions.

Concurrency Control in the Database Version Approach
W. Cellary, Franco-Polish School of New Information and Communication
Technologies, Poznan, Poland®

The problem of consistency of object-oriented databases is considered, when ob-
jects contained in the database are multiversioned, and they are accessed by
concurrent transactions. In such databases there are two aspects of the consi-
stency problem, one related to concurrency, as in monoversion databases, and
the other related to versioning. In this paper the problems of mutual dependen-
cies of version management upon concurrency control are studied. It is shown
that in different approaches developed up to date in different application areas,
these aspects of consistency are not separated. As a result, a trade off is assumed
between versioning functionalities provided and concurrency degree allowed. It
is shown that in the database version approach object version management is or-
thogonal to concurrency control. As a result, there is no more need for the trade
off: versioning functionalities provided are rich, and concurrency degree is high.
In the paper the version manager and concurrency controller for a multiversion
object-oriented database are described in detail.

Database Versions and Long Duration Transactions
G. Jomier, Universite Paris Dauphine, France

Long duration transactions appear in design applications. In those applications
there is also a need for people to work in cooperation and to use versions to
be able to follow the history of the project, to try options etc. Propositions
have been made to solve the problem of concurrent work in that context. They
include schemas of long duration transactions (trees or sets of sub-transactions,
nested transactions, cooperative transactions etc.), intermediate save-points or
recovery points, classical mechanisms of concurrency control with long and short

5Joint Work with G. Jomier, University Paris-Dauphine, France

16



duration locks, check-out and check-in protocols, management of versions and
configurations.

We propose a new approach of the long duration transactions problem using
the Database Version (DBV) model. This model allows the storage and the ma-
nipulation of as many database versions as necessary for the users, each database
version storing a state of the universe modelled by the database. These databa-
se versions are identified and may be qualified and associated to authorizations.
Tools are provided to help users to navigate in the set of database versions, to
compare the content of any two database versions and to merge two database
versions. Moreover, when several users want to work simultaneously on the same
database version D they may work concurrently on D using classical concurrency
control mechanisms or they may work on different database versions derived from
D; then, if necessary, they will merge their results later.

Long duration transactions may be seen as sets of subtransactions. They
begin in one DBV and end in one DBV. Intermediate states of the database
corresponding to the end of sub-transactions may be temporally stored in data-
base versions and used as save points and visibility points by users, according
to associated qualifications and authorizations. At the commitment of the long
duration transaction these particular database versions disappear, except for the
other simultaneous long duration transactions which would have used them as
intermediate states. Using DBVs in that way, long duration transactions are
generalizations of classical transactions taking into account the fact that the
multiversion database stores as many states of the real world as necessary, and
may generate new database versions at will.

On the Correctness of Concurrency Control for Multiversion
Database Systems with Limited Number of Versions
T. Morzy, Technical University of Poznan, Poland

In the talk the concurrency control problem for multiversion databases with a
system-imposed upper bound on the total number of data-item versions stored
in a database is addressed. We call such systems KV database systems. The
main practical reason for studying this problem is that in practice multiversion
databases with an unlimited number of versions do not appear, because of the
limited storage space available. On the other hand, KV database systems beco-
me more and more popular in practice (e.g.,, RDBMS ORACLE or DEC Rdb),
but the behavior of these databases is not yet well-understood. KV databases
add a new aspect to multiversion concurrency control, namely the overwriting
of versions. Transactions issue write operations, and the system must decide
whether the versions produced by these operations are added to the database

17



or old versions stored in the database get overwritten. In the second case, the
system must decide which stored versions to overwrite, in order to ensure the
correctness of concurrency control and performance. In the talk, the extended
multiversion concurrency control to account for the version overwriting aspect of
KV databases is presented. Three correctness criteria for transaction schedules
are presented, and formal tools for verifying these criteria are given. The hierar-
chy of schedules corresponding to the hierarchy of concurrency degrees achieved
for particular correctness criteria is given.

Stamp Locking Method for Multiversion Composite Objects
W. Wieczerzycki, Franco-Polish School of New Information and Communication
Technologies, Poznan, Poland

Multiversion objects require proper management. It is particularly hard in the
case of composite objects in a multiuser environment. The main problem is how
to maintain database consistency, which is related to two aspects: concurren-
cy and versioning. The concurrency aspect follows from concurrent transaction
processing, while the versioning aspect concerns the identification of versions
of different objects which go together. In the paper the concurrency aspect of
database consistency is considered.

In classical databases, to preserve database consistency during concurrent
transaction execution the hierarchical locking method is commonly used. This
method, however, may not be directly applied in the multiversion object-oriented
databases (OODBs). It follows from the fact that it concerns a single hierarchy,
namely the granularity hierarchy, which is usually composed of three levels only.
On the contrary, in multiversion OODBs at least four hierarchies may be distin-
guished: granularity, inheritance, composition and version derivation. The latter
three are usually composed of much more levels than the classical granularity
hierarchy. According to the concept of hierarchical locking, all the hierarchies
mentioned above should be taken into account by the locking method in a uniform
way. Because of the complexity of OODBs hierarchies, any attempt to adapt the
classical method leads to a great number of intentional locks and complex locking
strategy. The reason is that intentional locks have to be independently set in all
the hierarchies, on all the nodes which are predecessors of the accessed nodes.

In the paper a stamp locking approach was proposed, which offers simple and
efficient locking strategy for all the hierarchies of multiversion OODBs. In this
approach, so called “stamp locks” are used, instead of intentional locks. A stamp
lock is defined as an extension of a classical lock in such a way that it contains the
information about the position of nodes concerned in all the hierarchies. Thus,
to lock related nodes or subtrees of nodes of all or some of the hierarchies it

18



is sufficient to set a single stamp lock only. The stamp locking approach may
be easily applied to different versioning models and different object composition
models. It also may be extended for directed acyclic graphs.

Versioned Bt-Trees
S. Lanka, Penn State University, USA

In this talk we will describe a versioned B*-Tree index mechanism. In a versioned
B*+-Tree the effects of an update from a transaction does not obliterate the effects
of updates from previous transactions. The execution of a transaction creates
a new version of the B*-Tree. In addition, the other versions of the B*-Tree
created from the previous transactions also persist. A versioned B*-Tree index
mechanism is useful in databases that support — design activity and large software
development projects. A versioned B*-Tree is implemented on top of the B*-
Tree implementation from UC Berkeley. Our experimental results demonstrate
the viability of a versioned B*-Tree. We constructed a versioned B*-Tree with up
to 700 versions and a million keys, thus exhibiting the scalability of the versioned
B*-Tree implementation. '

Handling Versions of Different Quality in Real-Time Databases
A. Buchmann, University of Darmstadt, FRG

Real-time databases include timely execution of transactions as part of the cor-
rectness criterion. When overload situations occur it may be preferable to execute
a transaction that produces results of lower quality rather than missing the de-
adline. We call this substitution of cheaper but lower quality tasks a contingency
plan. From an analysis of applications we have identified four possible trade-offs
between precision, currency, completeness or consistency vs. timeliness. When
transactions write data of lower quality back into the database during an overlo-
ad situation we obtain versions of lower quality. Special mechanisms are required
for masking data of lower quality and for eventually repairing the database after
the overload situation is over. This process is a variant of the version merging
problem. We discussed the kind of masks required and some criteria under which
merging of the various versions is possible.

19



3 Specific Discussion Topics

The organizers considered it important to get discussions between the partici-
pants started early on, and to provide enough opportunities to keep them going.
Two things were done in this respect. First, every participant was asked to pose
a question he or she considered most important for the week of the workshop.
Second, on Thursday afternoon and evening, an open discussion was held du-
ring which people could express what they felt they had learned, or what they
considered the most demanding open problems.

The opening session was started with an introduction by K. Vidyasankar,
who gave a decomposition of the field of versioning according to the organizers’
perception, and asked everybody to place his or her forthcoming contribution or
interests into the appropriate location of that scheme. The decomposition looked
as follows:

Versioning
apparent (i.e., visible to end-users)
models
applications
implementations issues
other issues
cooperation
temporal aspects
object orientation
transparent (i.e., not visible to end-users)
concurrency control
recovery
other issues

The questions that were then raised by participants were the following (in the
order they were posed):

1. Do we need conceptually distinct approaches for dealing with internal and
external versioning, or are these just two facets of the same problem, and
is the object-oriented paradigm powerful enough to cover versioning as just
one issue (i.e., can versioning be captured completely by an object-oriented
model)? (Vossen)

2. Which requirements to versioning can be identified from an application
point of view? (Cellary)

3. How can versions be used in schema updates for object-oriented databases?

(Ferrandina)

20



10.

11.

12.

13.

14.

15.

16.

What is the relationship between version models for computer-supported
cooperative work (CSCW), complex objects and non-ACID transactions?
(Harder)

What techniques can be used for redo and undo in the presence of versioning
in CAD systems, and what restrictions on data structures are needed for
efficient implementations? (Rosendahl)

What can database people help CASE people for keeping large configuration
graphs, and how does the underlying model compare to database models?
(Ebert)

What requirements are needed for design applications and their integrity
constraints? (Gross-Hardt)

Do we need an appropriate versioning for CSCW, and what is the rela-
tionship between versioning and extended transaction models for CSCW?

(Ritter)

What is the relationship between a version model and a complex-object
model, and how do they fit into a cooperation model? (Kafer)

How general are version models for CAD applications, in particular VLSI
design, (or how general can they be) with respect to other areas than those
for which they were developed? (Schéning)

What are application requirements to version models, and what impact do
schema updates have on applications? (Bertino)

What are the database systems fitting CAD applications, what features
need to be added to OODBS to satisfy CAD, and what should be left to
the application level? (Goldstein Golendziner)

What are the fundamental questions with respect to serializability in multi-
version systems? (Morzy)

What are the requirements for a specialized language for user-defined ver-
sioning concepts? (Brosda)

What are the implementation issues for OODBS which use versioning for
schema updates? (Madec)

Is versioning really going to matter when we are looking at throughput
from a concurrency control point of view? (Lanka)

21



17.

18.

19.

20.

21.

22.

Are there any efficient mechanisms to efficiently keep track of coherent con-
figurations, and how can users be given nice views of their configurations?
(Bauzer Medeiros)

How do changes to a schema (in the type hierarchy) of an OODBS influence
the versions? (Even)

Is it possible to adapt classical concurrency control to versioning in an
efficient way? (Wieczerzycki)

What are the specific issues of information retrieval in multi-version systems
compared to mono-version systems? (Gangarski)

What are the differences in versioning between CAD and CASE? (Rykows-
ki)

What are the language issues for long-duration transactions? (Jomier)

The following is a brief account of issues raised during the Thursday discus-
sions: First, the notion of consistency was discussed in some detail, with the
following points being raised:

e Database management systems are among the only true multi-user systems

running on a computer, and if they offer versioning, they contribute to
solving the consistency problem for databases (Cellary).

However, this is not true for CASE, since there consistency, i.e., type con-
sistency, is well-defined, there is a concept for this (Ebert).

It seems unreasonable to look at consistency as a binary thing; more ap-
propriate would be to try to define a layered notion of consistency, and to
separate consistency from “integrity.” Also, design is more structured than
most people think; in particular, a schema can always be designed (“instan-
tiate predefined parameters”). Since re-use is a big portion of any design
activity, constraint specification and verification mechanisms are needed.

(Buchmann)

Second, there was a major discussion on the operation of merging, in parti-
cular merging versions or configurations.

e The really crucial operation in design databases is the step of merging;

therefore, this needs more much emphasis in people’s considerations. The
problem is how to reduce the number of versions in a database, not how

22



to increase them. What is needed for merging, as for transactions, is some
hierarchical structure from the objects operated upon. For merging, we
also need to be very clear about consistency; in particular, we need to
distinguish “completeness” from “value consistency” etc. (Buchmann)

e The main problem is that of merging, and to define conditions under which
a merge can be performed. (Morzy)

o A definition of “merge” cannot be given without appropriate preconditions.

(Schoning)

e A merge operation, which is semantic in nature, cannot be defined just via
the syntactic notion of a transaction. (Cellary)

e Another option would be to decrease the granularity of objects to small
things which can be combined (merged) by the user; this can be done, for
instance, in software configuration management. (Ebert)

¢ One constraint imposed on merging by cooperation is to “merge carefully.”
(Bauzer Medeiros)

The discussion was concluded by a few statements about what people had
learned, for example:

e Database systems can contribute to solving the problems of advanced ap-
plications, but cannot solve them. (Cellary)

e Dealing with versions is a complex problem, but nevertheless we would like
to have a solution. What we have seen (also here) is that people restrict
the problem; then it can be experimented with techniques etc. The result
is a partial solution only, but it helps. (Vidyasankar)

e Database and CASE problems are not as distinct as anticipated. In CA-
SE, concurrency is not a big issue. Database people deal with object-
orientation, as do people in programming languages, operating systems,
software engineering, and artificial intelligence. Removing the borders
would be nice and is desirable. (Ebert)

e Encapsulation is in chips! Computer science has not yet seen another such
revolution as chips; object-orientation might bring that along. (Cellary,
Rosendahl)

23






List of Participants

. Claudia Bauzer Medeiros
Departamento de Ciencia
da Computacao

Instituto de Matematica,
Estatistica e Ciencia

da Computacao
Universidade Estadual
de Campinas

Caixa Postal 6065
13081-970 Campinas SP, Brazil
cmbm@dcc.unicamp.br

. Elisa Bertino

Dipartimento di Informatica
Universita di Genova

Via L.B. Alberti, 4

[-16132 Genova, Italy
bertino@cisi.unige.it

. Marie Jose Blin

Universite Paris-Dauphine
LAMSADE

Place du Marechal de Lattre

de Tassigny

F-75775 Paris Cedex 16, France
blin@dauphine.fr .

. Volkert Brosda
Fachhochschule Hannover

FB Bibliotheks-, Informations-
und Dokumentationswesen
Bernhard-Caspar-Strafle 7
W-3000 Hannover 91, Germany

. Alex Buchmann

TH Darmstadt
Fachbereich Informatik
Alexanderstr. 10

24

10.

W-6100 Darmstadt, Germany
buchmann
Qinformatik.th-darmstadt.de

W.S. Cellary

Franco-Polish School of

New Information and
Communication Technologies
ul. Mansfelda 4

PL-60854 Poznan, Poland
cellary@efp.poz.edu.pl

Branimir Dukic
University of Osijek
Ekonomik Fakultet
Gajec TRG 7

5400 Osijek, Croatia

Jiirgen Ebert

Fachbereich Informatik
Universitat Koblenz-Landau
Rheinau 3-4

W-5400 Koblenz, Germany
ebert@informatik.uni-koblenz.de

Susan Even

Fachbereich Informatik
Universitat Frankfurt
Robert-Mayer-Str. 11-15
W-6000 Frankfurt/Main 11
Germany
even@informatik.uni-frankfurt.de

Marie-Christine Fauvet
IMAG-LGI

Universite de Grenoble

B.P. 53X

F-38041 Grenoble Cedex, France
fauvet@imag.fr



11.

12,

13.

14,

15.

Fabrizio Ferrandina
Fachbereich Informatik
Universitat Frankfurt
Robert-Mayer-Str. 11-15
W-6000 Frankfurt/Main 11
Germany

ferrandi
Q@informatik.uni.frankfurt.de

Stephane Gancarski

Universite Paris-Dauphine
LAMSADE

Place du Marechal de Lattre

de Tassigny

F-75775 Paris Cedex 16, France
gancarski@dauphine.fr

Lia Goldstein Golendziner
Universidade Federal

do Rio Grande do Sul
Instituto de Informatica
Dept. Informatica Aplicada
Caixa Postal 15064
91501-970 Porto Alegre
Rio Grande do Sul, Brazil
lia@inf.ufrgs.br

Margret Gross-Hardt
Arbeitsgruppe Informatik
Universitat Giessen
Arndtstr. 2

W-6300 Giessen, Germany
gross-hardt@neumann.
informatik.uni-giessen.de

Theo Harder

Universitat Kaiserslautern
Fachbereich Informatik

Postfach 3049

W-6750 Kaiserslautern, Germany
haerder@informatik.uni-kl.de

25

16.

17.

18.

19.

20.

21,

22,

Genevieve Jomier

Universite Paris-Dauphine
LAMSADE

Place du Marechal de Lattre

de Tassigny

F-75775 Paris Cedex 16, France

jomier@dauphine.fr

Wolfgang Kafer

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099, USA
kaefer@almaden.ibm.com

Sitaram Lanka

Computer Science Department
Pennsylvania State University
University Park, PA 16802, USA
lanka@cs.psu.edu

Joelle Madec

O; Technology

7 Rue du Parc de Clagny
F-78035 Versailles, France
joelle@o2tech.fr

Tadeusz Morzy
Politechnika Poznanska
Instytut Informatyki

ul. Piotrowo 3a

PL-60965 Poznan, Poland
morzy@plpotu51.bitnet

Carolle Palisser

Universite de Nantes

2 Rue Houssiniere

F-44072 Nantes, France
palisser@narech.dnet.circe.fr

Norbert Ritter
Universitat Kaiserslautern
Fachbereich Informatik



23.

24.

25.

26.

27.

28.

Erwin-Schrodinger-Str.
W-6750 Kaiserslautern, Germany
ritter@informatik.uni-kl.de

Manfred Rosendahl
Fachbereich Informatik
Universitat Koblenz-Landau
Rheinau 3—4

W-5400 Koblenz, Germany
ros@informatik.uni-koblenz.de

Jarogniew Rykowski
Franco-Polish School of

New Information and
Communication Technologies
ul. Mansfelda 4

PL-60854 Poznan, Poland
rykowski@efp.poz.edu.pl

Harald Schoning

Universitat Kaiserslautern
Fachbereich Informatik

Postfach 3049

W-6750 Kaiserslautern, Germany
schoenin@informatik.uni-kl.de

K. Vidyasankar

Department of Computer Science
Memorial University of Newfound-
land

St. John’s, Newfoundland
Canada A1C 5S7
vidyaQgarfield.cs.mun.ca

Gottfried Vossen

Arbeitsgruppe Informatik
Universitat Giessen

Arndtstr. 2

W-6300 Giessen, Germany
vossen@informatik.rwth-aachen.de

Waldemar Wieczerzycki
Franco-Polish School of

26

New Information and
Communication Technologies
ul. Mansfelda 4

PL-60854 Poznan, Poland
wieczerzyckiQefp.poz.edu.pl






Zuletzt erschienene und geplante Titel:

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13..-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schéning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.02.92 (9206)

B. BooB, W. Coy, J.-M. Pfliiger (editors):
Limits of Modelling with Programmed Machines, Dagstuhl-Seminar-Report; 31, 10.-14.2.92
(9207)

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schdning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. BooB, W. Coy, J.-M. Pfliger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Bdrger, Y. Gurevich, H. Kleine-Buning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th Intemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Kriickeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08 92 (9232)



R. Cohen, R. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.R. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Repont; 48; 21.09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Repont; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarnagéo, J. Foley (editors):
Muiltimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.11.92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249 )

B. Courcelle, H. Ehrig, G. Rozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01.-08.01.93
(9301)

A. Arold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54; 11.01.-15.01.93 (9302)

W. Cellary, K. Vidyasankar , G. Vossen (editors):
Versioning in Database Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test , Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, R. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308) :

H. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

J. Pustejovsky, H. Kamp (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar-
Report; 60; 29.03.-02.04.93 (9313)

W. StraBer, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)



